]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kernel/irq.c
931bdd2f975949ad1166d007187834dabd1d052e
[karo-tx-linux.git] / arch / x86 / kernel / irq.c
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30
31 atomic_t irq_err_count;
32
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback)(void) = NULL;
35
36 /*
37  * 'what should we do if we get a hw irq event on an illegal vector'.
38  * each architecture has to answer this themselves.
39  */
40 void ack_bad_irq(unsigned int irq)
41 {
42         if (printk_ratelimit())
43                 pr_err("unexpected IRQ trap at vector %02x\n", irq);
44
45         /*
46          * Currently unexpected vectors happen only on SMP and APIC.
47          * We _must_ ack these because every local APIC has only N
48          * irq slots per priority level, and a 'hanging, unacked' IRQ
49          * holds up an irq slot - in excessive cases (when multiple
50          * unexpected vectors occur) that might lock up the APIC
51          * completely.
52          * But only ack when the APIC is enabled -AK
53          */
54         ack_APIC_irq();
55 }
56
57 #define irq_stats(x)            (&per_cpu(irq_stat, x))
58 /*
59  * /proc/interrupts printing for arch specific interrupts
60  */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63         int j;
64
65         seq_printf(p, "%*s: ", prec, "NMI");
66         for_each_online_cpu(j)
67                 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68         seq_puts(p, "  Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70         seq_printf(p, "%*s: ", prec, "LOC");
71         for_each_online_cpu(j)
72                 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73         seq_puts(p, "  Local timer interrupts\n");
74
75         seq_printf(p, "%*s: ", prec, "SPU");
76         for_each_online_cpu(j)
77                 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78         seq_puts(p, "  Spurious interrupts\n");
79         seq_printf(p, "%*s: ", prec, "PMI");
80         for_each_online_cpu(j)
81                 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82         seq_puts(p, "  Performance monitoring interrupts\n");
83         seq_printf(p, "%*s: ", prec, "IWI");
84         for_each_online_cpu(j)
85                 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86         seq_puts(p, "  IRQ work interrupts\n");
87         seq_printf(p, "%*s: ", prec, "RTR");
88         for_each_online_cpu(j)
89                 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90         seq_puts(p, "  APIC ICR read retries\n");
91 #endif
92         if (x86_platform_ipi_callback) {
93                 seq_printf(p, "%*s: ", prec, "PLT");
94                 for_each_online_cpu(j)
95                         seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
96                 seq_puts(p, "  Platform interrupts\n");
97         }
98 #ifdef CONFIG_SMP
99         seq_printf(p, "%*s: ", prec, "RES");
100         for_each_online_cpu(j)
101                 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102         seq_puts(p, "  Rescheduling interrupts\n");
103         seq_printf(p, "%*s: ", prec, "CAL");
104         for_each_online_cpu(j)
105                 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
106                                         irq_stats(j)->irq_tlb_count);
107         seq_puts(p, "  Function call interrupts\n");
108         seq_printf(p, "%*s: ", prec, "TLB");
109         for_each_online_cpu(j)
110                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
111         seq_puts(p, "  TLB shootdowns\n");
112 #endif
113 #ifdef CONFIG_X86_THERMAL_VECTOR
114         seq_printf(p, "%*s: ", prec, "TRM");
115         for_each_online_cpu(j)
116                 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
117         seq_puts(p, "  Thermal event interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE_THRESHOLD
120         seq_printf(p, "%*s: ", prec, "THR");
121         for_each_online_cpu(j)
122                 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
123         seq_puts(p, "  Threshold APIC interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE_AMD
126         seq_printf(p, "%*s: ", prec, "DFR");
127         for_each_online_cpu(j)
128                 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
129         seq_puts(p, "  Deferred Error APIC interrupts\n");
130 #endif
131 #ifdef CONFIG_X86_MCE
132         seq_printf(p, "%*s: ", prec, "MCE");
133         for_each_online_cpu(j)
134                 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
135         seq_puts(p, "  Machine check exceptions\n");
136         seq_printf(p, "%*s: ", prec, "MCP");
137         for_each_online_cpu(j)
138                 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
139         seq_puts(p, "  Machine check polls\n");
140 #endif
141 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
142         seq_printf(p, "%*s: ", prec, "HYP");
143         for_each_online_cpu(j)
144                 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
145         seq_puts(p, "  Hypervisor callback interrupts\n");
146 #endif
147         seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
148 #if defined(CONFIG_X86_IO_APIC)
149         seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
150 #endif
151 #ifdef CONFIG_HAVE_KVM
152         seq_printf(p, "%*s: ", prec, "PIN");
153         for_each_online_cpu(j)
154                 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
155         seq_puts(p, "  Posted-interrupt notification event\n");
156
157         seq_printf(p, "%*s: ", prec, "PIW");
158         for_each_online_cpu(j)
159                 seq_printf(p, "%10u ",
160                            irq_stats(j)->kvm_posted_intr_wakeup_ipis);
161         seq_puts(p, "  Posted-interrupt wakeup event\n");
162 #endif
163         return 0;
164 }
165
166 /*
167  * /proc/stat helpers
168  */
169 u64 arch_irq_stat_cpu(unsigned int cpu)
170 {
171         u64 sum = irq_stats(cpu)->__nmi_count;
172
173 #ifdef CONFIG_X86_LOCAL_APIC
174         sum += irq_stats(cpu)->apic_timer_irqs;
175         sum += irq_stats(cpu)->irq_spurious_count;
176         sum += irq_stats(cpu)->apic_perf_irqs;
177         sum += irq_stats(cpu)->apic_irq_work_irqs;
178         sum += irq_stats(cpu)->icr_read_retry_count;
179 #endif
180         if (x86_platform_ipi_callback)
181                 sum += irq_stats(cpu)->x86_platform_ipis;
182 #ifdef CONFIG_SMP
183         sum += irq_stats(cpu)->irq_resched_count;
184         sum += irq_stats(cpu)->irq_call_count;
185 #endif
186 #ifdef CONFIG_X86_THERMAL_VECTOR
187         sum += irq_stats(cpu)->irq_thermal_count;
188 #endif
189 #ifdef CONFIG_X86_MCE_THRESHOLD
190         sum += irq_stats(cpu)->irq_threshold_count;
191 #endif
192 #ifdef CONFIG_X86_MCE
193         sum += per_cpu(mce_exception_count, cpu);
194         sum += per_cpu(mce_poll_count, cpu);
195 #endif
196         return sum;
197 }
198
199 u64 arch_irq_stat(void)
200 {
201         u64 sum = atomic_read(&irq_err_count);
202         return sum;
203 }
204
205
206 /*
207  * do_IRQ handles all normal device IRQ's (the special
208  * SMP cross-CPU interrupts have their own specific
209  * handlers).
210  */
211 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
212 {
213         struct pt_regs *old_regs = set_irq_regs(regs);
214
215         /* high bit used in ret_from_ code  */
216         unsigned vector = ~regs->orig_ax;
217         unsigned irq;
218
219         entering_irq();
220
221         irq = __this_cpu_read(vector_irq[vector]);
222
223         if (!handle_irq(irq, regs)) {
224                 ack_APIC_irq();
225
226                 if (irq != VECTOR_RETRIGGERED) {
227                         pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
228                                              __func__, smp_processor_id(),
229                                              vector, irq);
230                 } else {
231                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
232                 }
233         }
234
235         exiting_irq();
236
237         set_irq_regs(old_regs);
238         return 1;
239 }
240
241 /*
242  * Handler for X86_PLATFORM_IPI_VECTOR.
243  */
244 void __smp_x86_platform_ipi(void)
245 {
246         inc_irq_stat(x86_platform_ipis);
247
248         if (x86_platform_ipi_callback)
249                 x86_platform_ipi_callback();
250 }
251
252 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
253 {
254         struct pt_regs *old_regs = set_irq_regs(regs);
255
256         entering_ack_irq();
257         __smp_x86_platform_ipi();
258         exiting_irq();
259         set_irq_regs(old_regs);
260 }
261
262 #ifdef CONFIG_HAVE_KVM
263 static void dummy_handler(void) {}
264 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
265
266 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
267 {
268         if (handler)
269                 kvm_posted_intr_wakeup_handler = handler;
270         else
271                 kvm_posted_intr_wakeup_handler = dummy_handler;
272 }
273 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
274
275 /*
276  * Handler for POSTED_INTERRUPT_VECTOR.
277  */
278 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
279 {
280         struct pt_regs *old_regs = set_irq_regs(regs);
281
282         entering_ack_irq();
283         inc_irq_stat(kvm_posted_intr_ipis);
284         exiting_irq();
285         set_irq_regs(old_regs);
286 }
287
288 /*
289  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
290  */
291 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
292 {
293         struct pt_regs *old_regs = set_irq_regs(regs);
294
295         entering_ack_irq();
296         inc_irq_stat(kvm_posted_intr_wakeup_ipis);
297         kvm_posted_intr_wakeup_handler();
298         exiting_irq();
299         set_irq_regs(old_regs);
300 }
301 #endif
302
303 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
304 {
305         struct pt_regs *old_regs = set_irq_regs(regs);
306
307         entering_ack_irq();
308         trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
309         __smp_x86_platform_ipi();
310         trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
311         exiting_irq();
312         set_irq_regs(old_regs);
313 }
314
315 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
316
317 #ifdef CONFIG_HOTPLUG_CPU
318
319 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
320  * below, which is protected by stop_machine().  Putting them on the stack
321  * results in a stack frame overflow.  Dynamically allocating could result in a
322  * failure so declare these two cpumasks as global.
323  */
324 static struct cpumask affinity_new, online_new;
325
326 /*
327  * This cpu is going to be removed and its vectors migrated to the remaining
328  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
329  * This function is protected by stop_machine().
330  */
331 int check_irq_vectors_for_cpu_disable(void)
332 {
333         int irq, cpu;
334         unsigned int this_cpu, vector, this_count, count;
335         struct irq_desc *desc;
336         struct irq_data *data;
337
338         this_cpu = smp_processor_id();
339         cpumask_copy(&online_new, cpu_online_mask);
340         cpumask_clear_cpu(this_cpu, &online_new);
341
342         this_count = 0;
343         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
344                 irq = __this_cpu_read(vector_irq[vector]);
345                 if (irq >= 0) {
346                         desc = irq_to_desc(irq);
347                         if (!desc)
348                                 continue;
349
350                         /*
351                          * Protect against concurrent action removal,
352                          * affinity changes etc.
353                          */
354                         raw_spin_lock(&desc->lock);
355                         data = irq_desc_get_irq_data(desc);
356                         cpumask_copy(&affinity_new,
357                                      irq_data_get_affinity_mask(data));
358                         cpumask_clear_cpu(this_cpu, &affinity_new);
359
360                         /* Do not count inactive or per-cpu irqs. */
361                         if (!irq_has_action(irq) || irqd_is_per_cpu(data)) {
362                                 raw_spin_unlock(&desc->lock);
363                                 continue;
364                         }
365
366                         raw_spin_unlock(&desc->lock);
367                         /*
368                          * A single irq may be mapped to multiple
369                          * cpu's vector_irq[] (for example IOAPIC cluster
370                          * mode).  In this case we have two
371                          * possibilities:
372                          *
373                          * 1) the resulting affinity mask is empty; that is
374                          * this the down'd cpu is the last cpu in the irq's
375                          * affinity mask, or
376                          *
377                          * 2) the resulting affinity mask is no longer
378                          * a subset of the online cpus but the affinity
379                          * mask is not zero; that is the down'd cpu is the
380                          * last online cpu in a user set affinity mask.
381                          */
382                         if (cpumask_empty(&affinity_new) ||
383                             !cpumask_subset(&affinity_new, &online_new))
384                                 this_count++;
385                 }
386         }
387
388         count = 0;
389         for_each_online_cpu(cpu) {
390                 if (cpu == this_cpu)
391                         continue;
392                 /*
393                  * We scan from FIRST_EXTERNAL_VECTOR to first system
394                  * vector. If the vector is marked in the used vectors
395                  * bitmap or an irq is assigned to it, we don't count
396                  * it as available.
397                  *
398                  * As this is an inaccurate snapshot anyway, we can do
399                  * this w/o holding vector_lock.
400                  */
401                 for (vector = FIRST_EXTERNAL_VECTOR;
402                      vector < first_system_vector; vector++) {
403                         if (!test_bit(vector, used_vectors) &&
404                             per_cpu(vector_irq, cpu)[vector] <= VECTOR_UNUSED)
405                                 count++;
406                 }
407         }
408
409         if (count < this_count) {
410                 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
411                         this_cpu, this_count, count);
412                 return -ERANGE;
413         }
414         return 0;
415 }
416
417 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
418 void fixup_irqs(void)
419 {
420         unsigned int irq, vector;
421         static int warned;
422         struct irq_desc *desc;
423         struct irq_data *data;
424         struct irq_chip *chip;
425         int ret;
426
427         for_each_irq_desc(irq, desc) {
428                 int break_affinity = 0;
429                 int set_affinity = 1;
430                 const struct cpumask *affinity;
431
432                 if (!desc)
433                         continue;
434                 if (irq == 2)
435                         continue;
436
437                 /* interrupt's are disabled at this point */
438                 raw_spin_lock(&desc->lock);
439
440                 data = irq_desc_get_irq_data(desc);
441                 affinity = irq_data_get_affinity_mask(data);
442                 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
443                     cpumask_subset(affinity, cpu_online_mask)) {
444                         raw_spin_unlock(&desc->lock);
445                         continue;
446                 }
447
448                 /*
449                  * Complete the irq move. This cpu is going down and for
450                  * non intr-remapping case, we can't wait till this interrupt
451                  * arrives at this cpu before completing the irq move.
452                  */
453                 irq_force_complete_move(irq);
454
455                 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
456                         break_affinity = 1;
457                         affinity = cpu_online_mask;
458                 }
459
460                 chip = irq_data_get_irq_chip(data);
461                 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
462                         chip->irq_mask(data);
463
464                 if (chip->irq_set_affinity) {
465                         ret = chip->irq_set_affinity(data, affinity, true);
466                         if (ret == -ENOSPC)
467                                 pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
468                 } else {
469                         if (!(warned++))
470                                 set_affinity = 0;
471                 }
472
473                 /*
474                  * We unmask if the irq was not marked masked by the
475                  * core code. That respects the lazy irq disable
476                  * behaviour.
477                  */
478                 if (!irqd_can_move_in_process_context(data) &&
479                     !irqd_irq_masked(data) && chip->irq_unmask)
480                         chip->irq_unmask(data);
481
482                 raw_spin_unlock(&desc->lock);
483
484                 if (break_affinity && set_affinity)
485                         pr_notice("Broke affinity for irq %i\n", irq);
486                 else if (!set_affinity)
487                         pr_notice("Cannot set affinity for irq %i\n", irq);
488         }
489
490         /*
491          * We can remove mdelay() and then send spuriuous interrupts to
492          * new cpu targets for all the irqs that were handled previously by
493          * this cpu. While it works, I have seen spurious interrupt messages
494          * (nothing wrong but still...).
495          *
496          * So for now, retain mdelay(1) and check the IRR and then send those
497          * interrupts to new targets as this cpu is already offlined...
498          */
499         mdelay(1);
500
501         /*
502          * We can walk the vector array of this cpu without holding
503          * vector_lock because the cpu is already marked !online, so
504          * nothing else will touch it.
505          */
506         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
507                 unsigned int irr;
508
509                 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNUSED)
510                         continue;
511
512                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
513                 if (irr  & (1 << (vector % 32))) {
514                         irq = __this_cpu_read(vector_irq[vector]);
515
516                         desc = irq_to_desc(irq);
517                         raw_spin_lock(&desc->lock);
518                         data = irq_desc_get_irq_data(desc);
519                         chip = irq_data_get_irq_chip(data);
520                         if (chip->irq_retrigger) {
521                                 chip->irq_retrigger(data);
522                                 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523                         }
524                         raw_spin_unlock(&desc->lock);
525                 }
526                 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528         }
529 }
530 #endif