]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kernel/tsc_sync.c
x86: Add a synthetic TSC_RELIABLE feature bit.
[mv-sheeva.git] / arch / x86 / kernel / tsc_sync.c
1 /*
2  * check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/smp.h>
21 #include <linux/nmi.h>
22 #include <asm/tsc.h>
23
24 /*
25  * Entry/exit counters that make sure that both CPUs
26  * run the measurement code at once:
27  */
28 static __cpuinitdata atomic_t start_count;
29 static __cpuinitdata atomic_t stop_count;
30
31 /*
32  * We use a raw spinlock in this exceptional case, because
33  * we want to have the fastest, inlined, non-debug version
34  * of a critical section, to be able to prove TSC time-warps:
35  */
36 static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED;
37 static __cpuinitdata cycles_t last_tsc;
38 static __cpuinitdata cycles_t max_warp;
39 static __cpuinitdata int nr_warps;
40
41 /*
42  * TSC-warp measurement loop running on both CPUs:
43  */
44 static __cpuinit void check_tsc_warp(void)
45 {
46         cycles_t start, now, prev, end;
47         int i;
48
49         start = get_cycles();
50         /*
51          * The measurement runs for 20 msecs:
52          */
53         end = start + tsc_khz * 20ULL;
54         now = start;
55
56         for (i = 0; ; i++) {
57                 /*
58                  * We take the global lock, measure TSC, save the
59                  * previous TSC that was measured (possibly on
60                  * another CPU) and update the previous TSC timestamp.
61                  */
62                 __raw_spin_lock(&sync_lock);
63                 prev = last_tsc;
64                 now = get_cycles();
65                 last_tsc = now;
66                 __raw_spin_unlock(&sync_lock);
67
68                 /*
69                  * Be nice every now and then (and also check whether
70                  * measurement is done [we also insert a 10 million
71                  * loops safety exit, so we dont lock up in case the
72                  * TSC readout is totally broken]):
73                  */
74                 if (unlikely(!(i & 7))) {
75                         if (now > end || i > 10000000)
76                                 break;
77                         cpu_relax();
78                         touch_nmi_watchdog();
79                 }
80                 /*
81                  * Outside the critical section we can now see whether
82                  * we saw a time-warp of the TSC going backwards:
83                  */
84                 if (unlikely(prev > now)) {
85                         __raw_spin_lock(&sync_lock);
86                         max_warp = max(max_warp, prev - now);
87                         nr_warps++;
88                         __raw_spin_unlock(&sync_lock);
89                 }
90         }
91         WARN(!(now-start),
92                 "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
93                         now-start, end-start);
94 }
95
96 /*
97  * Source CPU calls into this - it waits for the freshly booted
98  * target CPU to arrive and then starts the measurement:
99  */
100 void __cpuinit check_tsc_sync_source(int cpu)
101 {
102         int cpus = 2;
103
104         /*
105          * No need to check if we already know that the TSC is not
106          * synchronized:
107          */
108         if (unsynchronized_tsc())
109                 return;
110
111         if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
112                 printk(KERN_INFO
113                        "Skipping synchronization checks as TSC is reliable.\n");
114                 return;
115         }
116
117         printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
118                           smp_processor_id(), cpu);
119
120         /*
121          * Reset it - in case this is a second bootup:
122          */
123         atomic_set(&stop_count, 0);
124
125         /*
126          * Wait for the target to arrive:
127          */
128         while (atomic_read(&start_count) != cpus-1)
129                 cpu_relax();
130         /*
131          * Trigger the target to continue into the measurement too:
132          */
133         atomic_inc(&start_count);
134
135         check_tsc_warp();
136
137         while (atomic_read(&stop_count) != cpus-1)
138                 cpu_relax();
139
140         if (nr_warps) {
141                 printk("\n");
142                 printk(KERN_WARNING "Measured %Ld cycles TSC warp between CPUs,"
143                                     " turning off TSC clock.\n", max_warp);
144                 mark_tsc_unstable("check_tsc_sync_source failed");
145         } else {
146                 printk(" passed.\n");
147         }
148
149         /*
150          * Reset it - just in case we boot another CPU later:
151          */
152         atomic_set(&start_count, 0);
153         nr_warps = 0;
154         max_warp = 0;
155         last_tsc = 0;
156
157         /*
158          * Let the target continue with the bootup:
159          */
160         atomic_inc(&stop_count);
161 }
162
163 /*
164  * Freshly booted CPUs call into this:
165  */
166 void __cpuinit check_tsc_sync_target(void)
167 {
168         int cpus = 2;
169
170         if (unsynchronized_tsc() || boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
171                 return;
172
173         /*
174          * Register this CPU's participation and wait for the
175          * source CPU to start the measurement:
176          */
177         atomic_inc(&start_count);
178         while (atomic_read(&start_count) != cpus)
179                 cpu_relax();
180
181         check_tsc_warp();
182
183         /*
184          * Ok, we are done:
185          */
186         atomic_inc(&stop_count);
187
188         /*
189          * Wait for the source CPU to print stuff:
190          */
191         while (atomic_read(&stop_count) != cpus)
192                 cpu_relax();
193 }
194 #undef NR_LOOPS
195