]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kernel/vm86_32.c
x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
[karo-tx-linux.git] / arch / x86 / kernel / vm86_32.c
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/kernel.h>
40 #include <linux/signal.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/smp.h>
44 #include <linux/highmem.h>
45 #include <linux/ptrace.h>
46 #include <linux/audit.h>
47 #include <linux/stddef.h>
48 #include <linux/slab.h>
49 #include <linux/security.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/io.h>
53 #include <asm/tlbflush.h>
54 #include <asm/irq.h>
55 #include <asm/traps.h>
56 #include <asm/vm86.h>
57
58 /*
59  * Known problems:
60  *
61  * Interrupt handling is not guaranteed:
62  * - a real x86 will disable all interrupts for one instruction
63  *   after a "mov ss,xx" to make stack handling atomic even without
64  *   the 'lss' instruction. We can't guarantee this in v86 mode,
65  *   as the next instruction might result in a page fault or similar.
66  * - a real x86 will have interrupts disabled for one instruction
67  *   past the 'sti' that enables them. We don't bother with all the
68  *   details yet.
69  *
70  * Let's hope these problems do not actually matter for anything.
71  */
72
73
74 /*
75  * 8- and 16-bit register defines..
76  */
77 #define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
78 #define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
79 #define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
80 #define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
81
82 /*
83  * virtual flags (16 and 32-bit versions)
84  */
85 #define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
86 #define VEFLAGS (current->thread.vm86->veflags)
87
88 #define set_flags(X, new, mask) \
89 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
90
91 #define SAFE_MASK       (0xDD5)
92 #define RETURN_MASK     (0xDFF)
93
94 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
95 {
96         struct tss_struct *tss;
97         struct task_struct *tsk = current;
98         struct vm86plus_struct __user *user;
99         struct vm86 *vm86 = current->thread.vm86;
100         long err = 0;
101
102         /*
103          * This gets called from entry.S with interrupts disabled, but
104          * from process context. Enable interrupts here, before trying
105          * to access user space.
106          */
107         local_irq_enable();
108
109         if (!vm86 || !vm86->user_vm86) {
110                 pr_alert("no user_vm86: BAD\n");
111                 do_exit(SIGSEGV);
112         }
113         set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114         user = vm86->user_vm86;
115
116         if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
117                        sizeof(struct vm86plus_struct) :
118                        sizeof(struct vm86_struct))) {
119                 pr_alert("could not access userspace vm86 info\n");
120                 do_exit(SIGSEGV);
121         }
122
123         put_user_try {
124                 put_user_ex(regs->pt.bx, &user->regs.ebx);
125                 put_user_ex(regs->pt.cx, &user->regs.ecx);
126                 put_user_ex(regs->pt.dx, &user->regs.edx);
127                 put_user_ex(regs->pt.si, &user->regs.esi);
128                 put_user_ex(regs->pt.di, &user->regs.edi);
129                 put_user_ex(regs->pt.bp, &user->regs.ebp);
130                 put_user_ex(regs->pt.ax, &user->regs.eax);
131                 put_user_ex(regs->pt.ip, &user->regs.eip);
132                 put_user_ex(regs->pt.cs, &user->regs.cs);
133                 put_user_ex(regs->pt.flags, &user->regs.eflags);
134                 put_user_ex(regs->pt.sp, &user->regs.esp);
135                 put_user_ex(regs->pt.ss, &user->regs.ss);
136                 put_user_ex(regs->es, &user->regs.es);
137                 put_user_ex(regs->ds, &user->regs.ds);
138                 put_user_ex(regs->fs, &user->regs.fs);
139                 put_user_ex(regs->gs, &user->regs.gs);
140
141                 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
142         } put_user_catch(err);
143         if (err) {
144                 pr_alert("could not access userspace vm86 info\n");
145                 do_exit(SIGSEGV);
146         }
147
148         tss = &per_cpu(cpu_tss, get_cpu());
149         tsk->thread.sp0 = vm86->saved_sp0;
150         tsk->thread.sysenter_cs = __KERNEL_CS;
151         load_sp0(tss, &tsk->thread);
152         vm86->saved_sp0 = 0;
153         put_cpu();
154
155         memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
156
157         lazy_load_gs(vm86->regs32.gs);
158
159         regs->pt.ax = retval;
160 }
161
162 static void mark_screen_rdonly(struct mm_struct *mm)
163 {
164         struct vm_area_struct *vma;
165         spinlock_t *ptl;
166         pgd_t *pgd;
167         p4d_t *p4d;
168         pud_t *pud;
169         pmd_t *pmd;
170         pte_t *pte;
171         int i;
172
173         down_write(&mm->mmap_sem);
174         pgd = pgd_offset(mm, 0xA0000);
175         if (pgd_none_or_clear_bad(pgd))
176                 goto out;
177         p4d = p4d_offset(pgd, 0xA0000);
178         if (p4d_none_or_clear_bad(p4d))
179                 goto out;
180         pud = pud_offset(p4d, 0xA0000);
181         if (pud_none_or_clear_bad(pud))
182                 goto out;
183         pmd = pmd_offset(pud, 0xA0000);
184
185         if (pmd_trans_huge(*pmd)) {
186                 vma = find_vma(mm, 0xA0000);
187                 split_huge_pmd(vma, pmd, 0xA0000);
188         }
189         if (pmd_none_or_clear_bad(pmd))
190                 goto out;
191         pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
192         for (i = 0; i < 32; i++) {
193                 if (pte_present(*pte))
194                         set_pte(pte, pte_wrprotect(*pte));
195                 pte++;
196         }
197         pte_unmap_unlock(pte, ptl);
198 out:
199         up_write(&mm->mmap_sem);
200         flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
201 }
202
203
204
205 static int do_vm86_irq_handling(int subfunction, int irqnumber);
206 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
207
208 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
209 {
210         return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
211 }
212
213
214 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
215 {
216         switch (cmd) {
217         case VM86_REQUEST_IRQ:
218         case VM86_FREE_IRQ:
219         case VM86_GET_IRQ_BITS:
220         case VM86_GET_AND_RESET_IRQ:
221                 return do_vm86_irq_handling(cmd, (int)arg);
222         case VM86_PLUS_INSTALL_CHECK:
223                 /*
224                  * NOTE: on old vm86 stuff this will return the error
225                  *  from access_ok(), because the subfunction is
226                  *  interpreted as (invalid) address to vm86_struct.
227                  *  So the installation check works.
228                  */
229                 return 0;
230         }
231
232         /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
233         return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
234 }
235
236
237 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
238 {
239         struct tss_struct *tss;
240         struct task_struct *tsk = current;
241         struct vm86 *vm86 = tsk->thread.vm86;
242         struct kernel_vm86_regs vm86regs;
243         struct pt_regs *regs = current_pt_regs();
244         unsigned long err = 0;
245
246         err = security_mmap_addr(0);
247         if (err) {
248                 /*
249                  * vm86 cannot virtualize the address space, so vm86 users
250                  * need to manage the low 1MB themselves using mmap.  Given
251                  * that BIOS places important data in the first page, vm86
252                  * is essentially useless if mmap_min_addr != 0.  DOSEMU,
253                  * for example, won't even bother trying to use vm86 if it
254                  * can't map a page at virtual address 0.
255                  *
256                  * To reduce the available kernel attack surface, simply
257                  * disallow vm86(old) for users who cannot mmap at va 0.
258                  *
259                  * The implementation of security_mmap_addr will allow
260                  * suitably privileged users to map va 0 even if
261                  * vm.mmap_min_addr is set above 0, and we want this
262                  * behavior for vm86 as well, as it ensures that legacy
263                  * tools like vbetool will not fail just because of
264                  * vm.mmap_min_addr.
265                  */
266                 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
267                              current->comm, task_pid_nr(current),
268                              from_kuid_munged(&init_user_ns, current_uid()));
269                 return -EPERM;
270         }
271
272         if (!vm86) {
273                 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
274                         return -ENOMEM;
275                 tsk->thread.vm86 = vm86;
276         }
277         if (vm86->saved_sp0)
278                 return -EPERM;
279
280         if (!access_ok(VERIFY_READ, user_vm86, plus ?
281                        sizeof(struct vm86_struct) :
282                        sizeof(struct vm86plus_struct)))
283                 return -EFAULT;
284
285         memset(&vm86regs, 0, sizeof(vm86regs));
286         get_user_try {
287                 unsigned short seg;
288                 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
289                 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
290                 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
291                 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
292                 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
293                 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
294                 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
295                 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
296                 get_user_ex(seg, &user_vm86->regs.cs);
297                 vm86regs.pt.cs = seg;
298                 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
299                 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
300                 get_user_ex(seg, &user_vm86->regs.ss);
301                 vm86regs.pt.ss = seg;
302                 get_user_ex(vm86regs.es, &user_vm86->regs.es);
303                 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
304                 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
305                 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
306
307                 get_user_ex(vm86->flags, &user_vm86->flags);
308                 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
309                 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
310         } get_user_catch(err);
311         if (err)
312                 return err;
313
314         if (copy_from_user(&vm86->int_revectored,
315                            &user_vm86->int_revectored,
316                            sizeof(struct revectored_struct)))
317                 return -EFAULT;
318         if (copy_from_user(&vm86->int21_revectored,
319                            &user_vm86->int21_revectored,
320                            sizeof(struct revectored_struct)))
321                 return -EFAULT;
322         if (plus) {
323                 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
324                                    sizeof(struct vm86plus_info_struct)))
325                         return -EFAULT;
326                 vm86->vm86plus.is_vm86pus = 1;
327         } else
328                 memset(&vm86->vm86plus, 0,
329                        sizeof(struct vm86plus_info_struct));
330
331         memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
332         vm86->user_vm86 = user_vm86;
333
334 /*
335  * The flags register is also special: we cannot trust that the user
336  * has set it up safely, so this makes sure interrupt etc flags are
337  * inherited from protected mode.
338  */
339         VEFLAGS = vm86regs.pt.flags;
340         vm86regs.pt.flags &= SAFE_MASK;
341         vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
342         vm86regs.pt.flags |= X86_VM_MASK;
343
344         vm86regs.pt.orig_ax = regs->orig_ax;
345
346         switch (vm86->cpu_type) {
347         case CPU_286:
348                 vm86->veflags_mask = 0;
349                 break;
350         case CPU_386:
351                 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352                 break;
353         case CPU_486:
354                 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
355                 break;
356         default:
357                 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
358                 break;
359         }
360
361 /*
362  * Save old state
363  */
364         vm86->saved_sp0 = tsk->thread.sp0;
365         lazy_save_gs(vm86->regs32.gs);
366
367         tss = &per_cpu(cpu_tss, get_cpu());
368         /* make room for real-mode segments */
369         tsk->thread.sp0 += 16;
370
371         if (static_cpu_has(X86_FEATURE_SEP))
372                 tsk->thread.sysenter_cs = 0;
373
374         load_sp0(tss, &tsk->thread);
375         put_cpu();
376
377         if (vm86->flags & VM86_SCREEN_BITMAP)
378                 mark_screen_rdonly(tsk->mm);
379
380         memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
381         force_iret();
382         return regs->ax;
383 }
384
385 static inline void set_IF(struct kernel_vm86_regs *regs)
386 {
387         VEFLAGS |= X86_EFLAGS_VIF;
388 }
389
390 static inline void clear_IF(struct kernel_vm86_regs *regs)
391 {
392         VEFLAGS &= ~X86_EFLAGS_VIF;
393 }
394
395 static inline void clear_TF(struct kernel_vm86_regs *regs)
396 {
397         regs->pt.flags &= ~X86_EFLAGS_TF;
398 }
399
400 static inline void clear_AC(struct kernel_vm86_regs *regs)
401 {
402         regs->pt.flags &= ~X86_EFLAGS_AC;
403 }
404
405 /*
406  * It is correct to call set_IF(regs) from the set_vflags_*
407  * functions. However someone forgot to call clear_IF(regs)
408  * in the opposite case.
409  * After the command sequence CLI PUSHF STI POPF you should
410  * end up with interrupts disabled, but you ended up with
411  * interrupts enabled.
412  *  ( I was testing my own changes, but the only bug I
413  *    could find was in a function I had not changed. )
414  * [KD]
415  */
416
417 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
418 {
419         set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
420         set_flags(regs->pt.flags, flags, SAFE_MASK);
421         if (flags & X86_EFLAGS_IF)
422                 set_IF(regs);
423         else
424                 clear_IF(regs);
425 }
426
427 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
428 {
429         set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
430         set_flags(regs->pt.flags, flags, SAFE_MASK);
431         if (flags & X86_EFLAGS_IF)
432                 set_IF(regs);
433         else
434                 clear_IF(regs);
435 }
436
437 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
438 {
439         unsigned long flags = regs->pt.flags & RETURN_MASK;
440
441         if (VEFLAGS & X86_EFLAGS_VIF)
442                 flags |= X86_EFLAGS_IF;
443         flags |= X86_EFLAGS_IOPL;
444         return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
445 }
446
447 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
448 {
449         return test_bit(nr, bitmap->__map);
450 }
451
452 #define val_byte(val, n) (((__u8 *)&val)[n])
453
454 #define pushb(base, ptr, val, err_label) \
455         do { \
456                 __u8 __val = val; \
457                 ptr--; \
458                 if (put_user(__val, base + ptr) < 0) \
459                         goto err_label; \
460         } while (0)
461
462 #define pushw(base, ptr, val, err_label) \
463         do { \
464                 __u16 __val = val; \
465                 ptr--; \
466                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
467                         goto err_label; \
468                 ptr--; \
469                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
470                         goto err_label; \
471         } while (0)
472
473 #define pushl(base, ptr, val, err_label) \
474         do { \
475                 __u32 __val = val; \
476                 ptr--; \
477                 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
478                         goto err_label; \
479                 ptr--; \
480                 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
481                         goto err_label; \
482                 ptr--; \
483                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
484                         goto err_label; \
485                 ptr--; \
486                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
487                         goto err_label; \
488         } while (0)
489
490 #define popb(base, ptr, err_label) \
491         ({ \
492                 __u8 __res; \
493                 if (get_user(__res, base + ptr) < 0) \
494                         goto err_label; \
495                 ptr++; \
496                 __res; \
497         })
498
499 #define popw(base, ptr, err_label) \
500         ({ \
501                 __u16 __res; \
502                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
503                         goto err_label; \
504                 ptr++; \
505                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
506                         goto err_label; \
507                 ptr++; \
508                 __res; \
509         })
510
511 #define popl(base, ptr, err_label) \
512         ({ \
513                 __u32 __res; \
514                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
515                         goto err_label; \
516                 ptr++; \
517                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
518                         goto err_label; \
519                 ptr++; \
520                 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
521                         goto err_label; \
522                 ptr++; \
523                 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
524                         goto err_label; \
525                 ptr++; \
526                 __res; \
527         })
528
529 /* There are so many possible reasons for this function to return
530  * VM86_INTx, so adding another doesn't bother me. We can expect
531  * userspace programs to be able to handle it. (Getting a problem
532  * in userspace is always better than an Oops anyway.) [KD]
533  */
534 static void do_int(struct kernel_vm86_regs *regs, int i,
535     unsigned char __user *ssp, unsigned short sp)
536 {
537         unsigned long __user *intr_ptr;
538         unsigned long segoffs;
539         struct vm86 *vm86 = current->thread.vm86;
540
541         if (regs->pt.cs == BIOSSEG)
542                 goto cannot_handle;
543         if (is_revectored(i, &vm86->int_revectored))
544                 goto cannot_handle;
545         if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
546                 goto cannot_handle;
547         intr_ptr = (unsigned long __user *) (i << 2);
548         if (get_user(segoffs, intr_ptr))
549                 goto cannot_handle;
550         if ((segoffs >> 16) == BIOSSEG)
551                 goto cannot_handle;
552         pushw(ssp, sp, get_vflags(regs), cannot_handle);
553         pushw(ssp, sp, regs->pt.cs, cannot_handle);
554         pushw(ssp, sp, IP(regs), cannot_handle);
555         regs->pt.cs = segoffs >> 16;
556         SP(regs) -= 6;
557         IP(regs) = segoffs & 0xffff;
558         clear_TF(regs);
559         clear_IF(regs);
560         clear_AC(regs);
561         return;
562
563 cannot_handle:
564         save_v86_state(regs, VM86_INTx + (i << 8));
565 }
566
567 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
568 {
569         struct vm86 *vm86 = current->thread.vm86;
570
571         if (vm86->vm86plus.is_vm86pus) {
572                 if ((trapno == 3) || (trapno == 1)) {
573                         save_v86_state(regs, VM86_TRAP + (trapno << 8));
574                         return 0;
575                 }
576                 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
577                 return 0;
578         }
579         if (trapno != 1)
580                 return 1; /* we let this handle by the calling routine */
581         current->thread.trap_nr = trapno;
582         current->thread.error_code = error_code;
583         force_sig(SIGTRAP, current);
584         return 0;
585 }
586
587 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
588 {
589         unsigned char opcode;
590         unsigned char __user *csp;
591         unsigned char __user *ssp;
592         unsigned short ip, sp, orig_flags;
593         int data32, pref_done;
594         struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
595
596 #define CHECK_IF_IN_TRAP \
597         if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
598                 newflags |= X86_EFLAGS_TF
599
600         orig_flags = *(unsigned short *)&regs->pt.flags;
601
602         csp = (unsigned char __user *) (regs->pt.cs << 4);
603         ssp = (unsigned char __user *) (regs->pt.ss << 4);
604         sp = SP(regs);
605         ip = IP(regs);
606
607         data32 = 0;
608         pref_done = 0;
609         do {
610                 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
611                 case 0x66:      /* 32-bit data */     data32 = 1; break;
612                 case 0x67:      /* 32-bit address */  break;
613                 case 0x2e:      /* CS */              break;
614                 case 0x3e:      /* DS */              break;
615                 case 0x26:      /* ES */              break;
616                 case 0x36:      /* SS */              break;
617                 case 0x65:      /* GS */              break;
618                 case 0x64:      /* FS */              break;
619                 case 0xf2:      /* repnz */       break;
620                 case 0xf3:      /* rep */             break;
621                 default: pref_done = 1;
622                 }
623         } while (!pref_done);
624
625         switch (opcode) {
626
627         /* pushf */
628         case 0x9c:
629                 if (data32) {
630                         pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
631                         SP(regs) -= 4;
632                 } else {
633                         pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
634                         SP(regs) -= 2;
635                 }
636                 IP(regs) = ip;
637                 goto vm86_fault_return;
638
639         /* popf */
640         case 0x9d:
641                 {
642                 unsigned long newflags;
643                 if (data32) {
644                         newflags = popl(ssp, sp, simulate_sigsegv);
645                         SP(regs) += 4;
646                 } else {
647                         newflags = popw(ssp, sp, simulate_sigsegv);
648                         SP(regs) += 2;
649                 }
650                 IP(regs) = ip;
651                 CHECK_IF_IN_TRAP;
652                 if (data32)
653                         set_vflags_long(newflags, regs);
654                 else
655                         set_vflags_short(newflags, regs);
656
657                 goto check_vip;
658                 }
659
660         /* int xx */
661         case 0xcd: {
662                 int intno = popb(csp, ip, simulate_sigsegv);
663                 IP(regs) = ip;
664                 if (vmpi->vm86dbg_active) {
665                         if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
666                                 save_v86_state(regs, VM86_INTx + (intno << 8));
667                                 return;
668                         }
669                 }
670                 do_int(regs, intno, ssp, sp);
671                 return;
672         }
673
674         /* iret */
675         case 0xcf:
676                 {
677                 unsigned long newip;
678                 unsigned long newcs;
679                 unsigned long newflags;
680                 if (data32) {
681                         newip = popl(ssp, sp, simulate_sigsegv);
682                         newcs = popl(ssp, sp, simulate_sigsegv);
683                         newflags = popl(ssp, sp, simulate_sigsegv);
684                         SP(regs) += 12;
685                 } else {
686                         newip = popw(ssp, sp, simulate_sigsegv);
687                         newcs = popw(ssp, sp, simulate_sigsegv);
688                         newflags = popw(ssp, sp, simulate_sigsegv);
689                         SP(regs) += 6;
690                 }
691                 IP(regs) = newip;
692                 regs->pt.cs = newcs;
693                 CHECK_IF_IN_TRAP;
694                 if (data32) {
695                         set_vflags_long(newflags, regs);
696                 } else {
697                         set_vflags_short(newflags, regs);
698                 }
699                 goto check_vip;
700                 }
701
702         /* cli */
703         case 0xfa:
704                 IP(regs) = ip;
705                 clear_IF(regs);
706                 goto vm86_fault_return;
707
708         /* sti */
709         /*
710          * Damn. This is incorrect: the 'sti' instruction should actually
711          * enable interrupts after the /next/ instruction. Not good.
712          *
713          * Probably needs some horsing around with the TF flag. Aiee..
714          */
715         case 0xfb:
716                 IP(regs) = ip;
717                 set_IF(regs);
718                 goto check_vip;
719
720         default:
721                 save_v86_state(regs, VM86_UNKNOWN);
722         }
723
724         return;
725
726 check_vip:
727         if (VEFLAGS & X86_EFLAGS_VIP) {
728                 save_v86_state(regs, VM86_STI);
729                 return;
730         }
731
732 vm86_fault_return:
733         if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
734                 save_v86_state(regs, VM86_PICRETURN);
735                 return;
736         }
737         if (orig_flags & X86_EFLAGS_TF)
738                 handle_vm86_trap(regs, 0, X86_TRAP_DB);
739         return;
740
741 simulate_sigsegv:
742         /* FIXME: After a long discussion with Stas we finally
743          *        agreed, that this is wrong. Here we should
744          *        really send a SIGSEGV to the user program.
745          *        But how do we create the correct context? We
746          *        are inside a general protection fault handler
747          *        and has just returned from a page fault handler.
748          *        The correct context for the signal handler
749          *        should be a mixture of the two, but how do we
750          *        get the information? [KD]
751          */
752         save_v86_state(regs, VM86_UNKNOWN);
753 }
754
755 /* ---------------- vm86 special IRQ passing stuff ----------------- */
756
757 #define VM86_IRQNAME            "vm86irq"
758
759 static struct vm86_irqs {
760         struct task_struct *tsk;
761         int sig;
762 } vm86_irqs[16];
763
764 static DEFINE_SPINLOCK(irqbits_lock);
765 static int irqbits;
766
767 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
768         | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
769         | (1 << SIGUNUSED))
770
771 static irqreturn_t irq_handler(int intno, void *dev_id)
772 {
773         int irq_bit;
774         unsigned long flags;
775
776         spin_lock_irqsave(&irqbits_lock, flags);
777         irq_bit = 1 << intno;
778         if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
779                 goto out;
780         irqbits |= irq_bit;
781         if (vm86_irqs[intno].sig)
782                 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
783         /*
784          * IRQ will be re-enabled when user asks for the irq (whether
785          * polling or as a result of the signal)
786          */
787         disable_irq_nosync(intno);
788         spin_unlock_irqrestore(&irqbits_lock, flags);
789         return IRQ_HANDLED;
790
791 out:
792         spin_unlock_irqrestore(&irqbits_lock, flags);
793         return IRQ_NONE;
794 }
795
796 static inline void free_vm86_irq(int irqnumber)
797 {
798         unsigned long flags;
799
800         free_irq(irqnumber, NULL);
801         vm86_irqs[irqnumber].tsk = NULL;
802
803         spin_lock_irqsave(&irqbits_lock, flags);
804         irqbits &= ~(1 << irqnumber);
805         spin_unlock_irqrestore(&irqbits_lock, flags);
806 }
807
808 void release_vm86_irqs(struct task_struct *task)
809 {
810         int i;
811         for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
812             if (vm86_irqs[i].tsk == task)
813                 free_vm86_irq(i);
814 }
815
816 static inline int get_and_reset_irq(int irqnumber)
817 {
818         int bit;
819         unsigned long flags;
820         int ret = 0;
821
822         if (invalid_vm86_irq(irqnumber)) return 0;
823         if (vm86_irqs[irqnumber].tsk != current) return 0;
824         spin_lock_irqsave(&irqbits_lock, flags);
825         bit = irqbits & (1 << irqnumber);
826         irqbits &= ~bit;
827         if (bit) {
828                 enable_irq(irqnumber);
829                 ret = 1;
830         }
831
832         spin_unlock_irqrestore(&irqbits_lock, flags);
833         return ret;
834 }
835
836
837 static int do_vm86_irq_handling(int subfunction, int irqnumber)
838 {
839         int ret;
840         switch (subfunction) {
841                 case VM86_GET_AND_RESET_IRQ: {
842                         return get_and_reset_irq(irqnumber);
843                 }
844                 case VM86_GET_IRQ_BITS: {
845                         return irqbits;
846                 }
847                 case VM86_REQUEST_IRQ: {
848                         int sig = irqnumber >> 8;
849                         int irq = irqnumber & 255;
850                         if (!capable(CAP_SYS_ADMIN)) return -EPERM;
851                         if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
852                         if (invalid_vm86_irq(irq)) return -EPERM;
853                         if (vm86_irqs[irq].tsk) return -EPERM;
854                         ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
855                         if (ret) return ret;
856                         vm86_irqs[irq].sig = sig;
857                         vm86_irqs[irq].tsk = current;
858                         return irq;
859                 }
860                 case  VM86_FREE_IRQ: {
861                         if (invalid_vm86_irq(irqnumber)) return -EPERM;
862                         if (!vm86_irqs[irqnumber].tsk) return 0;
863                         if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
864                         free_vm86_irq(irqnumber);
865                         return 0;
866                 }
867         }
868         return -EINVAL;
869 }
870