]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/cpuid.c
Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[karo-tx-linux.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 static u32 xstate_required_size(u64 xstate_bv)
27 {
28         int feature_bit = 0;
29         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
30
31         xstate_bv &= XSTATE_EXTEND_MASK;
32         while (xstate_bv) {
33                 if (xstate_bv & 0x1) {
34                         u32 eax, ebx, ecx, edx;
35                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36                         ret = max(ret, eax + ebx);
37                 }
38
39                 xstate_bv >>= 1;
40                 feature_bit++;
41         }
42
43         return ret;
44 }
45
46 u64 kvm_supported_xcr0(void)
47 {
48         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
49
50         if (!kvm_x86_ops->mpx_supported())
51                 xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR);
52
53         return xcr0;
54 }
55
56 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
57 {
58         struct kvm_cpuid_entry2 *best;
59         struct kvm_lapic *apic = vcpu->arch.apic;
60
61         best = kvm_find_cpuid_entry(vcpu, 1, 0);
62         if (!best)
63                 return;
64
65         /* Update OSXSAVE bit */
66         if (cpu_has_xsave && best->function == 0x1) {
67                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
68                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
69                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
70         }
71
72         if (apic) {
73                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
74                         apic->lapic_timer.timer_mode_mask = 3 << 17;
75                 else
76                         apic->lapic_timer.timer_mode_mask = 1 << 17;
77         }
78
79         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
80         if (!best) {
81                 vcpu->arch.guest_supported_xcr0 = 0;
82                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
83         } else {
84                 vcpu->arch.guest_supported_xcr0 =
85                         (best->eax | ((u64)best->edx << 32)) &
86                         kvm_supported_xcr0();
87                 vcpu->arch.guest_xstate_size = best->ebx =
88                         xstate_required_size(vcpu->arch.xcr0);
89         }
90
91         kvm_pmu_cpuid_update(vcpu);
92 }
93
94 static int is_efer_nx(void)
95 {
96         unsigned long long efer = 0;
97
98         rdmsrl_safe(MSR_EFER, &efer);
99         return efer & EFER_NX;
100 }
101
102 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
103 {
104         int i;
105         struct kvm_cpuid_entry2 *e, *entry;
106
107         entry = NULL;
108         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
109                 e = &vcpu->arch.cpuid_entries[i];
110                 if (e->function == 0x80000001) {
111                         entry = e;
112                         break;
113                 }
114         }
115         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
116                 entry->edx &= ~(1 << 20);
117                 printk(KERN_INFO "kvm: guest NX capability removed\n");
118         }
119 }
120
121 /* when an old userspace process fills a new kernel module */
122 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
123                              struct kvm_cpuid *cpuid,
124                              struct kvm_cpuid_entry __user *entries)
125 {
126         int r, i;
127         struct kvm_cpuid_entry *cpuid_entries;
128
129         r = -E2BIG;
130         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131                 goto out;
132         r = -ENOMEM;
133         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
134         if (!cpuid_entries)
135                 goto out;
136         r = -EFAULT;
137         if (copy_from_user(cpuid_entries, entries,
138                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
139                 goto out_free;
140         for (i = 0; i < cpuid->nent; i++) {
141                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
142                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
143                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
144                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
145                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
146                 vcpu->arch.cpuid_entries[i].index = 0;
147                 vcpu->arch.cpuid_entries[i].flags = 0;
148                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
149                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
150                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
151         }
152         vcpu->arch.cpuid_nent = cpuid->nent;
153         cpuid_fix_nx_cap(vcpu);
154         r = 0;
155         kvm_apic_set_version(vcpu);
156         kvm_x86_ops->cpuid_update(vcpu);
157         kvm_update_cpuid(vcpu);
158
159 out_free:
160         vfree(cpuid_entries);
161 out:
162         return r;
163 }
164
165 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
166                               struct kvm_cpuid2 *cpuid,
167                               struct kvm_cpuid_entry2 __user *entries)
168 {
169         int r;
170
171         r = -E2BIG;
172         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
173                 goto out;
174         r = -EFAULT;
175         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
176                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
177                 goto out;
178         vcpu->arch.cpuid_nent = cpuid->nent;
179         kvm_apic_set_version(vcpu);
180         kvm_x86_ops->cpuid_update(vcpu);
181         kvm_update_cpuid(vcpu);
182         return 0;
183
184 out:
185         return r;
186 }
187
188 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
189                               struct kvm_cpuid2 *cpuid,
190                               struct kvm_cpuid_entry2 __user *entries)
191 {
192         int r;
193
194         r = -E2BIG;
195         if (cpuid->nent < vcpu->arch.cpuid_nent)
196                 goto out;
197         r = -EFAULT;
198         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
199                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
200                 goto out;
201         return 0;
202
203 out:
204         cpuid->nent = vcpu->arch.cpuid_nent;
205         return r;
206 }
207
208 static void cpuid_mask(u32 *word, int wordnum)
209 {
210         *word &= boot_cpu_data.x86_capability[wordnum];
211 }
212
213 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
214                            u32 index)
215 {
216         entry->function = function;
217         entry->index = index;
218         cpuid_count(entry->function, entry->index,
219                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
220         entry->flags = 0;
221 }
222
223 #define F(x) bit(X86_FEATURE_##x)
224
225 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
226                                    u32 func, u32 index, int *nent, int maxnent)
227 {
228         switch (func) {
229         case 0:
230                 entry->eax = 1;         /* only one leaf currently */
231                 ++*nent;
232                 break;
233         case 1:
234                 entry->ecx = F(MOVBE);
235                 ++*nent;
236                 break;
237         default:
238                 break;
239         }
240
241         entry->function = func;
242         entry->index = index;
243
244         return 0;
245 }
246
247 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
248                                  u32 index, int *nent, int maxnent)
249 {
250         int r;
251         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
252 #ifdef CONFIG_X86_64
253         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
254                                 ? F(GBPAGES) : 0;
255         unsigned f_lm = F(LM);
256 #else
257         unsigned f_gbpages = 0;
258         unsigned f_lm = 0;
259 #endif
260         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
261         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
262         unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0;
263
264         /* cpuid 1.edx */
265         const u32 kvm_supported_word0_x86_features =
266                 F(FPU) | F(VME) | F(DE) | F(PSE) |
267                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
268                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
269                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
270                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
271                 0 /* Reserved, DS, ACPI */ | F(MMX) |
272                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
273                 0 /* HTT, TM, Reserved, PBE */;
274         /* cpuid 0x80000001.edx */
275         const u32 kvm_supported_word1_x86_features =
276                 F(FPU) | F(VME) | F(DE) | F(PSE) |
277                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
278                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
279                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
280                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
281                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
282                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
283                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
284         /* cpuid 1.ecx */
285         const u32 kvm_supported_word4_x86_features =
286                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
287                 0 /* DS-CPL, VMX, SMX, EST */ |
288                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
289                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
290                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
291                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
292                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
293                 F(F16C) | F(RDRAND);
294         /* cpuid 0x80000001.ecx */
295         const u32 kvm_supported_word6_x86_features =
296                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
297                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
298                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
299                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
300
301         /* cpuid 0xC0000001.edx */
302         const u32 kvm_supported_word5_x86_features =
303                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
304                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
305                 F(PMM) | F(PMM_EN);
306
307         /* cpuid 7.0.ebx */
308         const u32 kvm_supported_word9_x86_features =
309                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
310                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
311                 F(ADX) | F(SMAP);
312
313         /* all calls to cpuid_count() should be made on the same cpu */
314         get_cpu();
315
316         r = -E2BIG;
317
318         if (*nent >= maxnent)
319                 goto out;
320
321         do_cpuid_1_ent(entry, function, index);
322         ++*nent;
323
324         switch (function) {
325         case 0:
326                 entry->eax = min(entry->eax, (u32)0xd);
327                 break;
328         case 1:
329                 entry->edx &= kvm_supported_word0_x86_features;
330                 cpuid_mask(&entry->edx, 0);
331                 entry->ecx &= kvm_supported_word4_x86_features;
332                 cpuid_mask(&entry->ecx, 4);
333                 /* we support x2apic emulation even if host does not support
334                  * it since we emulate x2apic in software */
335                 entry->ecx |= F(X2APIC);
336                 break;
337         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
338          * may return different values. This forces us to get_cpu() before
339          * issuing the first command, and also to emulate this annoying behavior
340          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
341         case 2: {
342                 int t, times = entry->eax & 0xff;
343
344                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
345                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
346                 for (t = 1; t < times; ++t) {
347                         if (*nent >= maxnent)
348                                 goto out;
349
350                         do_cpuid_1_ent(&entry[t], function, 0);
351                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
352                         ++*nent;
353                 }
354                 break;
355         }
356         /* function 4 has additional index. */
357         case 4: {
358                 int i, cache_type;
359
360                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
361                 /* read more entries until cache_type is zero */
362                 for (i = 1; ; ++i) {
363                         if (*nent >= maxnent)
364                                 goto out;
365
366                         cache_type = entry[i - 1].eax & 0x1f;
367                         if (!cache_type)
368                                 break;
369                         do_cpuid_1_ent(&entry[i], function, i);
370                         entry[i].flags |=
371                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
372                         ++*nent;
373                 }
374                 break;
375         }
376         case 7: {
377                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
378                 /* Mask ebx against host capability word 9 */
379                 if (index == 0) {
380                         entry->ebx &= kvm_supported_word9_x86_features;
381                         cpuid_mask(&entry->ebx, 9);
382                         // TSC_ADJUST is emulated
383                         entry->ebx |= F(TSC_ADJUST);
384                 } else
385                         entry->ebx = 0;
386                 entry->eax = 0;
387                 entry->ecx = 0;
388                 entry->edx = 0;
389                 break;
390         }
391         case 9:
392                 break;
393         case 0xa: { /* Architectural Performance Monitoring */
394                 struct x86_pmu_capability cap;
395                 union cpuid10_eax eax;
396                 union cpuid10_edx edx;
397
398                 perf_get_x86_pmu_capability(&cap);
399
400                 /*
401                  * Only support guest architectural pmu on a host
402                  * with architectural pmu.
403                  */
404                 if (!cap.version)
405                         memset(&cap, 0, sizeof(cap));
406
407                 eax.split.version_id = min(cap.version, 2);
408                 eax.split.num_counters = cap.num_counters_gp;
409                 eax.split.bit_width = cap.bit_width_gp;
410                 eax.split.mask_length = cap.events_mask_len;
411
412                 edx.split.num_counters_fixed = cap.num_counters_fixed;
413                 edx.split.bit_width_fixed = cap.bit_width_fixed;
414                 edx.split.reserved = 0;
415
416                 entry->eax = eax.full;
417                 entry->ebx = cap.events_mask;
418                 entry->ecx = 0;
419                 entry->edx = edx.full;
420                 break;
421         }
422         /* function 0xb has additional index. */
423         case 0xb: {
424                 int i, level_type;
425
426                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427                 /* read more entries until level_type is zero */
428                 for (i = 1; ; ++i) {
429                         if (*nent >= maxnent)
430                                 goto out;
431
432                         level_type = entry[i - 1].ecx & 0xff00;
433                         if (!level_type)
434                                 break;
435                         do_cpuid_1_ent(&entry[i], function, i);
436                         entry[i].flags |=
437                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
438                         ++*nent;
439                 }
440                 break;
441         }
442         case 0xd: {
443                 int idx, i;
444                 u64 supported = kvm_supported_xcr0();
445
446                 entry->eax &= supported;
447                 entry->edx &= supported >> 32;
448                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
449                 for (idx = 1, i = 1; idx < 64; ++idx) {
450                         u64 mask = ((u64)1 << idx);
451                         if (*nent >= maxnent)
452                                 goto out;
453
454                         do_cpuid_1_ent(&entry[i], function, idx);
455                         if (entry[i].eax == 0 || !(supported & mask))
456                                 continue;
457                         entry[i].flags |=
458                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
459                         ++*nent;
460                         ++i;
461                 }
462                 break;
463         }
464         case KVM_CPUID_SIGNATURE: {
465                 static const char signature[12] = "KVMKVMKVM\0\0";
466                 const u32 *sigptr = (const u32 *)signature;
467                 entry->eax = KVM_CPUID_FEATURES;
468                 entry->ebx = sigptr[0];
469                 entry->ecx = sigptr[1];
470                 entry->edx = sigptr[2];
471                 break;
472         }
473         case KVM_CPUID_FEATURES:
474                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
475                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
476                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
477                              (1 << KVM_FEATURE_ASYNC_PF) |
478                              (1 << KVM_FEATURE_PV_EOI) |
479                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
480                              (1 << KVM_FEATURE_PV_UNHALT);
481
482                 if (sched_info_on())
483                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
484
485                 entry->ebx = 0;
486                 entry->ecx = 0;
487                 entry->edx = 0;
488                 break;
489         case 0x80000000:
490                 entry->eax = min(entry->eax, 0x8000001a);
491                 break;
492         case 0x80000001:
493                 entry->edx &= kvm_supported_word1_x86_features;
494                 cpuid_mask(&entry->edx, 1);
495                 entry->ecx &= kvm_supported_word6_x86_features;
496                 cpuid_mask(&entry->ecx, 6);
497                 break;
498         case 0x80000008: {
499                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
500                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
501                 unsigned phys_as = entry->eax & 0xff;
502
503                 if (!g_phys_as)
504                         g_phys_as = phys_as;
505                 entry->eax = g_phys_as | (virt_as << 8);
506                 entry->ebx = entry->edx = 0;
507                 break;
508         }
509         case 0x80000019:
510                 entry->ecx = entry->edx = 0;
511                 break;
512         case 0x8000001a:
513                 break;
514         case 0x8000001d:
515                 break;
516         /*Add support for Centaur's CPUID instruction*/
517         case 0xC0000000:
518                 /*Just support up to 0xC0000004 now*/
519                 entry->eax = min(entry->eax, 0xC0000004);
520                 break;
521         case 0xC0000001:
522                 entry->edx &= kvm_supported_word5_x86_features;
523                 cpuid_mask(&entry->edx, 5);
524                 break;
525         case 3: /* Processor serial number */
526         case 5: /* MONITOR/MWAIT */
527         case 6: /* Thermal management */
528         case 0x80000007: /* Advanced power management */
529         case 0xC0000002:
530         case 0xC0000003:
531         case 0xC0000004:
532         default:
533                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
534                 break;
535         }
536
537         kvm_x86_ops->set_supported_cpuid(function, entry);
538
539         r = 0;
540
541 out:
542         put_cpu();
543
544         return r;
545 }
546
547 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
548                         u32 idx, int *nent, int maxnent, unsigned int type)
549 {
550         if (type == KVM_GET_EMULATED_CPUID)
551                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
552
553         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
554 }
555
556 #undef F
557
558 struct kvm_cpuid_param {
559         u32 func;
560         u32 idx;
561         bool has_leaf_count;
562         bool (*qualifier)(const struct kvm_cpuid_param *param);
563 };
564
565 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
566 {
567         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
568 }
569
570 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
571                                  __u32 num_entries, unsigned int ioctl_type)
572 {
573         int i;
574         __u32 pad[3];
575
576         if (ioctl_type != KVM_GET_EMULATED_CPUID)
577                 return false;
578
579         /*
580          * We want to make sure that ->padding is being passed clean from
581          * userspace in case we want to use it for something in the future.
582          *
583          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
584          * have to give ourselves satisfied only with the emulated side. /me
585          * sheds a tear.
586          */
587         for (i = 0; i < num_entries; i++) {
588                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
589                         return true;
590
591                 if (pad[0] || pad[1] || pad[2])
592                         return true;
593         }
594         return false;
595 }
596
597 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
598                             struct kvm_cpuid_entry2 __user *entries,
599                             unsigned int type)
600 {
601         struct kvm_cpuid_entry2 *cpuid_entries;
602         int limit, nent = 0, r = -E2BIG, i;
603         u32 func;
604         static const struct kvm_cpuid_param param[] = {
605                 { .func = 0, .has_leaf_count = true },
606                 { .func = 0x80000000, .has_leaf_count = true },
607                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
608                 { .func = KVM_CPUID_SIGNATURE },
609                 { .func = KVM_CPUID_FEATURES },
610         };
611
612         if (cpuid->nent < 1)
613                 goto out;
614         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
615                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
616
617         if (sanity_check_entries(entries, cpuid->nent, type))
618                 return -EINVAL;
619
620         r = -ENOMEM;
621         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
622         if (!cpuid_entries)
623                 goto out;
624
625         r = 0;
626         for (i = 0; i < ARRAY_SIZE(param); i++) {
627                 const struct kvm_cpuid_param *ent = &param[i];
628
629                 if (ent->qualifier && !ent->qualifier(ent))
630                         continue;
631
632                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
633                                 &nent, cpuid->nent, type);
634
635                 if (r)
636                         goto out_free;
637
638                 if (!ent->has_leaf_count)
639                         continue;
640
641                 limit = cpuid_entries[nent - 1].eax;
642                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
643                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
644                                      &nent, cpuid->nent, type);
645
646                 if (r)
647                         goto out_free;
648         }
649
650         r = -EFAULT;
651         if (copy_to_user(entries, cpuid_entries,
652                          nent * sizeof(struct kvm_cpuid_entry2)))
653                 goto out_free;
654         cpuid->nent = nent;
655         r = 0;
656
657 out_free:
658         vfree(cpuid_entries);
659 out:
660         return r;
661 }
662
663 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
664 {
665         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
666         int j, nent = vcpu->arch.cpuid_nent;
667
668         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
669         /* when no next entry is found, the current entry[i] is reselected */
670         for (j = i + 1; ; j = (j + 1) % nent) {
671                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
672                 if (ej->function == e->function) {
673                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
674                         return j;
675                 }
676         }
677         return 0; /* silence gcc, even though control never reaches here */
678 }
679
680 /* find an entry with matching function, matching index (if needed), and that
681  * should be read next (if it's stateful) */
682 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
683         u32 function, u32 index)
684 {
685         if (e->function != function)
686                 return 0;
687         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
688                 return 0;
689         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
690             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
691                 return 0;
692         return 1;
693 }
694
695 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
696                                               u32 function, u32 index)
697 {
698         int i;
699         struct kvm_cpuid_entry2 *best = NULL;
700
701         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
702                 struct kvm_cpuid_entry2 *e;
703
704                 e = &vcpu->arch.cpuid_entries[i];
705                 if (is_matching_cpuid_entry(e, function, index)) {
706                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
707                                 move_to_next_stateful_cpuid_entry(vcpu, i);
708                         best = e;
709                         break;
710                 }
711         }
712         return best;
713 }
714 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
715
716 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
717 {
718         struct kvm_cpuid_entry2 *best;
719
720         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
721         if (!best || best->eax < 0x80000008)
722                 goto not_found;
723         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
724         if (best)
725                 return best->eax & 0xff;
726 not_found:
727         return 36;
728 }
729
730 /*
731  * If no match is found, check whether we exceed the vCPU's limit
732  * and return the content of the highest valid _standard_ leaf instead.
733  * This is to satisfy the CPUID specification.
734  */
735 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
736                                                   u32 function, u32 index)
737 {
738         struct kvm_cpuid_entry2 *maxlevel;
739
740         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
741         if (!maxlevel || maxlevel->eax >= function)
742                 return NULL;
743         if (function & 0x80000000) {
744                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
745                 if (!maxlevel)
746                         return NULL;
747         }
748         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
749 }
750
751 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
752 {
753         u32 function = *eax, index = *ecx;
754         struct kvm_cpuid_entry2 *best;
755
756         best = kvm_find_cpuid_entry(vcpu, function, index);
757
758         if (!best)
759                 best = check_cpuid_limit(vcpu, function, index);
760
761         if (best) {
762                 *eax = best->eax;
763                 *ebx = best->ebx;
764                 *ecx = best->ecx;
765                 *edx = best->edx;
766         } else
767                 *eax = *ebx = *ecx = *edx = 0;
768         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
769 }
770 EXPORT_SYMBOL_GPL(kvm_cpuid);
771
772 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
773 {
774         u32 function, eax, ebx, ecx, edx;
775
776         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
777         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
778         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
779         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
780         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
781         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
782         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
783         kvm_x86_ops->skip_emulated_instruction(vcpu);
784 }
785 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);