]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
scsi: zero per-cmd private driver data for each MQ I/O
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49
50 /*
51  * When setting this variable to true it enables Two-Dimensional-Paging
52  * where the hardware walks 2 page tables:
53  * 1. the guest-virtual to guest-physical
54  * 2. while doing 1. it walks guest-physical to host-physical
55  * If the hardware supports that we don't need to do shadow paging.
56  */
57 bool tdp_enabled = false;
58
59 enum {
60         AUDIT_PRE_PAGE_FAULT,
61         AUDIT_POST_PAGE_FAULT,
62         AUDIT_PRE_PTE_WRITE,
63         AUDIT_POST_PTE_WRITE,
64         AUDIT_PRE_SYNC,
65         AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM                8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104                                                 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
111 #define PT64_DIR_BASE_ADDR_MASK \
112         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
113 #define PT64_LVL_ADDR_MASK(level) \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115                                                 * PT64_LEVEL_BITS))) - 1))
116 #define PT64_LVL_OFFSET_MASK(level) \
117         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118                                                 * PT64_LEVEL_BITS))) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT32_LVL_ADDR_MASK(level) \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                             * PT32_LEVEL_BITS))) - 1))
126
127 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128                         | shadow_x_mask | shadow_nx_mask)
129
130 #define ACC_EXEC_MASK    1
131 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
132 #define ACC_USER_MASK    PT_USER_MASK
133 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
135 /* The mask for the R/X bits in EPT PTEs */
136 #define PT64_EPT_READABLE_MASK                  0x1ull
137 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
138
139 #include <trace/events/kvm.h>
140
141 #define CREATE_TRACE_POINTS
142 #include "mmutrace.h"
143
144 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
146
147 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
149 /* make pte_list_desc fit well in cache line */
150 #define PTE_LIST_EXT 3
151
152 struct pte_list_desc {
153         u64 *sptes[PTE_LIST_EXT];
154         struct pte_list_desc *more;
155 };
156
157 struct kvm_shadow_walk_iterator {
158         u64 addr;
159         hpa_t shadow_addr;
160         u64 *sptep;
161         int level;
162         unsigned index;
163 };
164
165 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
167              shadow_walk_okay(&(_walker));                      \
168              shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
172              shadow_walk_okay(&(_walker)) &&                            \
173                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
174              __shadow_walk_next(&(_walker), spte))
175
176 static struct kmem_cache *pte_list_desc_cache;
177 static struct kmem_cache *mmu_page_header_cache;
178 static struct percpu_counter kvm_total_used_mmu_pages;
179
180 static u64 __read_mostly shadow_nx_mask;
181 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182 static u64 __read_mostly shadow_user_mask;
183 static u64 __read_mostly shadow_accessed_mask;
184 static u64 __read_mostly shadow_dirty_mask;
185 static u64 __read_mostly shadow_mmio_mask;
186 static u64 __read_mostly shadow_present_mask;
187
188 /*
189  * The mask/value to distinguish a PTE that has been marked not-present for
190  * access tracking purposes.
191  * The mask would be either 0 if access tracking is disabled, or
192  * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
193  */
194 static u64 __read_mostly shadow_acc_track_mask;
195 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197 /*
198  * The mask/shift to use for saving the original R/X bits when marking the PTE
199  * as not-present for access tracking purposes. We do not save the W bit as the
200  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201  * restored only when a write is attempted to the page.
202  */
203 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204                                                     PT64_EPT_EXECUTABLE_MASK;
205 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
207 static void mmu_spte_set(u64 *sptep, u64 spte);
208 static void mmu_free_roots(struct kvm_vcpu *vcpu);
209
210 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
211 {
212         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
213 }
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
215
216 static inline bool is_access_track_spte(u64 spte)
217 {
218         /* Always false if shadow_acc_track_mask is zero.  */
219         return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
220 }
221
222 /*
223  * the low bit of the generation number is always presumed to be zero.
224  * This disables mmio caching during memslot updates.  The concept is
225  * similar to a seqcount but instead of retrying the access we just punt
226  * and ignore the cache.
227  *
228  * spte bits 3-11 are used as bits 1-9 of the generation number,
229  * the bits 52-61 are used as bits 10-19 of the generation number.
230  */
231 #define MMIO_SPTE_GEN_LOW_SHIFT         2
232 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
233
234 #define MMIO_GEN_SHIFT                  20
235 #define MMIO_GEN_LOW_SHIFT              10
236 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
237 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
238
239 static u64 generation_mmio_spte_mask(unsigned int gen)
240 {
241         u64 mask;
242
243         WARN_ON(gen & ~MMIO_GEN_MASK);
244
245         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
246         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
247         return mask;
248 }
249
250 static unsigned int get_mmio_spte_generation(u64 spte)
251 {
252         unsigned int gen;
253
254         spte &= ~shadow_mmio_mask;
255
256         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
257         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
258         return gen;
259 }
260
261 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
262 {
263         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
264 }
265
266 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
267                            unsigned access)
268 {
269         unsigned int gen = kvm_current_mmio_generation(vcpu);
270         u64 mask = generation_mmio_spte_mask(gen);
271
272         access &= ACC_WRITE_MASK | ACC_USER_MASK;
273         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
274
275         trace_mark_mmio_spte(sptep, gfn, access, gen);
276         mmu_spte_set(sptep, mask);
277 }
278
279 static bool is_mmio_spte(u64 spte)
280 {
281         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
282 }
283
284 static gfn_t get_mmio_spte_gfn(u64 spte)
285 {
286         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
287         return (spte & ~mask) >> PAGE_SHIFT;
288 }
289
290 static unsigned get_mmio_spte_access(u64 spte)
291 {
292         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
293         return (spte & ~mask) & ~PAGE_MASK;
294 }
295
296 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
297                           kvm_pfn_t pfn, unsigned access)
298 {
299         if (unlikely(is_noslot_pfn(pfn))) {
300                 mark_mmio_spte(vcpu, sptep, gfn, access);
301                 return true;
302         }
303
304         return false;
305 }
306
307 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
308 {
309         unsigned int kvm_gen, spte_gen;
310
311         kvm_gen = kvm_current_mmio_generation(vcpu);
312         spte_gen = get_mmio_spte_generation(spte);
313
314         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
315         return likely(kvm_gen == spte_gen);
316 }
317
318 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
319                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
320                 u64 acc_track_mask)
321 {
322         if (acc_track_mask != 0)
323                 acc_track_mask |= SPTE_SPECIAL_MASK;
324
325         shadow_user_mask = user_mask;
326         shadow_accessed_mask = accessed_mask;
327         shadow_dirty_mask = dirty_mask;
328         shadow_nx_mask = nx_mask;
329         shadow_x_mask = x_mask;
330         shadow_present_mask = p_mask;
331         shadow_acc_track_mask = acc_track_mask;
332         WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
333 }
334 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
335
336 void kvm_mmu_clear_all_pte_masks(void)
337 {
338         shadow_user_mask = 0;
339         shadow_accessed_mask = 0;
340         shadow_dirty_mask = 0;
341         shadow_nx_mask = 0;
342         shadow_x_mask = 0;
343         shadow_mmio_mask = 0;
344         shadow_present_mask = 0;
345         shadow_acc_track_mask = 0;
346 }
347
348 static int is_cpuid_PSE36(void)
349 {
350         return 1;
351 }
352
353 static int is_nx(struct kvm_vcpu *vcpu)
354 {
355         return vcpu->arch.efer & EFER_NX;
356 }
357
358 static int is_shadow_present_pte(u64 pte)
359 {
360         return (pte != 0) && !is_mmio_spte(pte);
361 }
362
363 static int is_large_pte(u64 pte)
364 {
365         return pte & PT_PAGE_SIZE_MASK;
366 }
367
368 static int is_last_spte(u64 pte, int level)
369 {
370         if (level == PT_PAGE_TABLE_LEVEL)
371                 return 1;
372         if (is_large_pte(pte))
373                 return 1;
374         return 0;
375 }
376
377 static bool is_executable_pte(u64 spte)
378 {
379         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
380 }
381
382 static kvm_pfn_t spte_to_pfn(u64 pte)
383 {
384         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
385 }
386
387 static gfn_t pse36_gfn_delta(u32 gpte)
388 {
389         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
390
391         return (gpte & PT32_DIR_PSE36_MASK) << shift;
392 }
393
394 #ifdef CONFIG_X86_64
395 static void __set_spte(u64 *sptep, u64 spte)
396 {
397         WRITE_ONCE(*sptep, spte);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         WRITE_ONCE(*sptep, spte);
403 }
404
405 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
406 {
407         return xchg(sptep, spte);
408 }
409
410 static u64 __get_spte_lockless(u64 *sptep)
411 {
412         return ACCESS_ONCE(*sptep);
413 }
414 #else
415 union split_spte {
416         struct {
417                 u32 spte_low;
418                 u32 spte_high;
419         };
420         u64 spte;
421 };
422
423 static void count_spte_clear(u64 *sptep, u64 spte)
424 {
425         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
426
427         if (is_shadow_present_pte(spte))
428                 return;
429
430         /* Ensure the spte is completely set before we increase the count */
431         smp_wmb();
432         sp->clear_spte_count++;
433 }
434
435 static void __set_spte(u64 *sptep, u64 spte)
436 {
437         union split_spte *ssptep, sspte;
438
439         ssptep = (union split_spte *)sptep;
440         sspte = (union split_spte)spte;
441
442         ssptep->spte_high = sspte.spte_high;
443
444         /*
445          * If we map the spte from nonpresent to present, We should store
446          * the high bits firstly, then set present bit, so cpu can not
447          * fetch this spte while we are setting the spte.
448          */
449         smp_wmb();
450
451         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
452 }
453
454 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
455 {
456         union split_spte *ssptep, sspte;
457
458         ssptep = (union split_spte *)sptep;
459         sspte = (union split_spte)spte;
460
461         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
462
463         /*
464          * If we map the spte from present to nonpresent, we should clear
465          * present bit firstly to avoid vcpu fetch the old high bits.
466          */
467         smp_wmb();
468
469         ssptep->spte_high = sspte.spte_high;
470         count_spte_clear(sptep, spte);
471 }
472
473 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
474 {
475         union split_spte *ssptep, sspte, orig;
476
477         ssptep = (union split_spte *)sptep;
478         sspte = (union split_spte)spte;
479
480         /* xchg acts as a barrier before the setting of the high bits */
481         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
482         orig.spte_high = ssptep->spte_high;
483         ssptep->spte_high = sspte.spte_high;
484         count_spte_clear(sptep, spte);
485
486         return orig.spte;
487 }
488
489 /*
490  * The idea using the light way get the spte on x86_32 guest is from
491  * gup_get_pte(arch/x86/mm/gup.c).
492  *
493  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
494  * coalesces them and we are running out of the MMU lock.  Therefore
495  * we need to protect against in-progress updates of the spte.
496  *
497  * Reading the spte while an update is in progress may get the old value
498  * for the high part of the spte.  The race is fine for a present->non-present
499  * change (because the high part of the spte is ignored for non-present spte),
500  * but for a present->present change we must reread the spte.
501  *
502  * All such changes are done in two steps (present->non-present and
503  * non-present->present), hence it is enough to count the number of
504  * present->non-present updates: if it changed while reading the spte,
505  * we might have hit the race.  This is done using clear_spte_count.
506  */
507 static u64 __get_spte_lockless(u64 *sptep)
508 {
509         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
510         union split_spte spte, *orig = (union split_spte *)sptep;
511         int count;
512
513 retry:
514         count = sp->clear_spte_count;
515         smp_rmb();
516
517         spte.spte_low = orig->spte_low;
518         smp_rmb();
519
520         spte.spte_high = orig->spte_high;
521         smp_rmb();
522
523         if (unlikely(spte.spte_low != orig->spte_low ||
524               count != sp->clear_spte_count))
525                 goto retry;
526
527         return spte.spte;
528 }
529 #endif
530
531 static bool spte_can_locklessly_be_made_writable(u64 spte)
532 {
533         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
534                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
535 }
536
537 static bool spte_has_volatile_bits(u64 spte)
538 {
539         if (!is_shadow_present_pte(spte))
540                 return false;
541
542         /*
543          * Always atomically update spte if it can be updated
544          * out of mmu-lock, it can ensure dirty bit is not lost,
545          * also, it can help us to get a stable is_writable_pte()
546          * to ensure tlb flush is not missed.
547          */
548         if (spte_can_locklessly_be_made_writable(spte) ||
549             is_access_track_spte(spte))
550                 return true;
551
552         if (shadow_accessed_mask) {
553                 if ((spte & shadow_accessed_mask) == 0 ||
554                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
555                         return true;
556         }
557
558         return false;
559 }
560
561 static bool is_accessed_spte(u64 spte)
562 {
563         return shadow_accessed_mask ? spte & shadow_accessed_mask
564                                     : !is_access_track_spte(spte);
565 }
566
567 static bool is_dirty_spte(u64 spte)
568 {
569         return shadow_dirty_mask ? spte & shadow_dirty_mask
570                                  : spte & PT_WRITABLE_MASK;
571 }
572
573 /* Rules for using mmu_spte_set:
574  * Set the sptep from nonpresent to present.
575  * Note: the sptep being assigned *must* be either not present
576  * or in a state where the hardware will not attempt to update
577  * the spte.
578  */
579 static void mmu_spte_set(u64 *sptep, u64 new_spte)
580 {
581         WARN_ON(is_shadow_present_pte(*sptep));
582         __set_spte(sptep, new_spte);
583 }
584
585 /*
586  * Update the SPTE (excluding the PFN), but do not track changes in its
587  * accessed/dirty status.
588  */
589 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
590 {
591         u64 old_spte = *sptep;
592
593         WARN_ON(!is_shadow_present_pte(new_spte));
594
595         if (!is_shadow_present_pte(old_spte)) {
596                 mmu_spte_set(sptep, new_spte);
597                 return old_spte;
598         }
599
600         if (!spte_has_volatile_bits(old_spte))
601                 __update_clear_spte_fast(sptep, new_spte);
602         else
603                 old_spte = __update_clear_spte_slow(sptep, new_spte);
604
605         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
606
607         return old_spte;
608 }
609
610 /* Rules for using mmu_spte_update:
611  * Update the state bits, it means the mapped pfn is not changed.
612  *
613  * Whenever we overwrite a writable spte with a read-only one we
614  * should flush remote TLBs. Otherwise rmap_write_protect
615  * will find a read-only spte, even though the writable spte
616  * might be cached on a CPU's TLB, the return value indicates this
617  * case.
618  *
619  * Returns true if the TLB needs to be flushed
620  */
621 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
622 {
623         bool flush = false;
624         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
625
626         if (!is_shadow_present_pte(old_spte))
627                 return false;
628
629         /*
630          * For the spte updated out of mmu-lock is safe, since
631          * we always atomically update it, see the comments in
632          * spte_has_volatile_bits().
633          */
634         if (spte_can_locklessly_be_made_writable(old_spte) &&
635               !is_writable_pte(new_spte))
636                 flush = true;
637
638         /*
639          * Flush TLB when accessed/dirty states are changed in the page tables,
640          * to guarantee consistency between TLB and page tables.
641          */
642
643         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
644                 flush = true;
645                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
646         }
647
648         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
649                 flush = true;
650                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
651         }
652
653         return flush;
654 }
655
656 /*
657  * Rules for using mmu_spte_clear_track_bits:
658  * It sets the sptep from present to nonpresent, and track the
659  * state bits, it is used to clear the last level sptep.
660  * Returns non-zero if the PTE was previously valid.
661  */
662 static int mmu_spte_clear_track_bits(u64 *sptep)
663 {
664         kvm_pfn_t pfn;
665         u64 old_spte = *sptep;
666
667         if (!spte_has_volatile_bits(old_spte))
668                 __update_clear_spte_fast(sptep, 0ull);
669         else
670                 old_spte = __update_clear_spte_slow(sptep, 0ull);
671
672         if (!is_shadow_present_pte(old_spte))
673                 return 0;
674
675         pfn = spte_to_pfn(old_spte);
676
677         /*
678          * KVM does not hold the refcount of the page used by
679          * kvm mmu, before reclaiming the page, we should
680          * unmap it from mmu first.
681          */
682         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
683
684         if (is_accessed_spte(old_spte))
685                 kvm_set_pfn_accessed(pfn);
686
687         if (is_dirty_spte(old_spte))
688                 kvm_set_pfn_dirty(pfn);
689
690         return 1;
691 }
692
693 /*
694  * Rules for using mmu_spte_clear_no_track:
695  * Directly clear spte without caring the state bits of sptep,
696  * it is used to set the upper level spte.
697  */
698 static void mmu_spte_clear_no_track(u64 *sptep)
699 {
700         __update_clear_spte_fast(sptep, 0ull);
701 }
702
703 static u64 mmu_spte_get_lockless(u64 *sptep)
704 {
705         return __get_spte_lockless(sptep);
706 }
707
708 static u64 mark_spte_for_access_track(u64 spte)
709 {
710         if (shadow_accessed_mask != 0)
711                 return spte & ~shadow_accessed_mask;
712
713         if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
714                 return spte;
715
716         /*
717          * Making an Access Tracking PTE will result in removal of write access
718          * from the PTE. So, verify that we will be able to restore the write
719          * access in the fast page fault path later on.
720          */
721         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
722                   !spte_can_locklessly_be_made_writable(spte),
723                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
724
725         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
726                           shadow_acc_track_saved_bits_shift),
727                   "kvm: Access Tracking saved bit locations are not zero\n");
728
729         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
730                 shadow_acc_track_saved_bits_shift;
731         spte &= ~shadow_acc_track_mask;
732         spte |= shadow_acc_track_value;
733
734         return spte;
735 }
736
737 /* Restore an acc-track PTE back to a regular PTE */
738 static u64 restore_acc_track_spte(u64 spte)
739 {
740         u64 new_spte = spte;
741         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
742                          & shadow_acc_track_saved_bits_mask;
743
744         WARN_ON_ONCE(!is_access_track_spte(spte));
745
746         new_spte &= ~shadow_acc_track_mask;
747         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
748                       shadow_acc_track_saved_bits_shift);
749         new_spte |= saved_bits;
750
751         return new_spte;
752 }
753
754 /* Returns the Accessed status of the PTE and resets it at the same time. */
755 static bool mmu_spte_age(u64 *sptep)
756 {
757         u64 spte = mmu_spte_get_lockless(sptep);
758
759         if (!is_accessed_spte(spte))
760                 return false;
761
762         if (shadow_accessed_mask) {
763                 clear_bit((ffs(shadow_accessed_mask) - 1),
764                           (unsigned long *)sptep);
765         } else {
766                 /*
767                  * Capture the dirty status of the page, so that it doesn't get
768                  * lost when the SPTE is marked for access tracking.
769                  */
770                 if (is_writable_pte(spte))
771                         kvm_set_pfn_dirty(spte_to_pfn(spte));
772
773                 spte = mark_spte_for_access_track(spte);
774                 mmu_spte_update_no_track(sptep, spte);
775         }
776
777         return true;
778 }
779
780 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
781 {
782         /*
783          * Prevent page table teardown by making any free-er wait during
784          * kvm_flush_remote_tlbs() IPI to all active vcpus.
785          */
786         local_irq_disable();
787
788         /*
789          * Make sure a following spte read is not reordered ahead of the write
790          * to vcpu->mode.
791          */
792         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
793 }
794
795 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
796 {
797         /*
798          * Make sure the write to vcpu->mode is not reordered in front of
799          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
800          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
801          */
802         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
803         local_irq_enable();
804 }
805
806 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
807                                   struct kmem_cache *base_cache, int min)
808 {
809         void *obj;
810
811         if (cache->nobjs >= min)
812                 return 0;
813         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
814                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
815                 if (!obj)
816                         return -ENOMEM;
817                 cache->objects[cache->nobjs++] = obj;
818         }
819         return 0;
820 }
821
822 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
823 {
824         return cache->nobjs;
825 }
826
827 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
828                                   struct kmem_cache *cache)
829 {
830         while (mc->nobjs)
831                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
832 }
833
834 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
835                                        int min)
836 {
837         void *page;
838
839         if (cache->nobjs >= min)
840                 return 0;
841         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842                 page = (void *)__get_free_page(GFP_KERNEL);
843                 if (!page)
844                         return -ENOMEM;
845                 cache->objects[cache->nobjs++] = page;
846         }
847         return 0;
848 }
849
850 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
851 {
852         while (mc->nobjs)
853                 free_page((unsigned long)mc->objects[--mc->nobjs]);
854 }
855
856 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
857 {
858         int r;
859
860         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
861                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
862         if (r)
863                 goto out;
864         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
865         if (r)
866                 goto out;
867         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
868                                    mmu_page_header_cache, 4);
869 out:
870         return r;
871 }
872
873 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
874 {
875         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
876                                 pte_list_desc_cache);
877         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
878         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
879                                 mmu_page_header_cache);
880 }
881
882 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
883 {
884         void *p;
885
886         BUG_ON(!mc->nobjs);
887         p = mc->objects[--mc->nobjs];
888         return p;
889 }
890
891 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
892 {
893         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
894 }
895
896 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
897 {
898         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
899 }
900
901 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
902 {
903         if (!sp->role.direct)
904                 return sp->gfns[index];
905
906         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
907 }
908
909 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
910 {
911         if (sp->role.direct)
912                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
913         else
914                 sp->gfns[index] = gfn;
915 }
916
917 /*
918  * Return the pointer to the large page information for a given gfn,
919  * handling slots that are not large page aligned.
920  */
921 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
922                                               struct kvm_memory_slot *slot,
923                                               int level)
924 {
925         unsigned long idx;
926
927         idx = gfn_to_index(gfn, slot->base_gfn, level);
928         return &slot->arch.lpage_info[level - 2][idx];
929 }
930
931 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
932                                             gfn_t gfn, int count)
933 {
934         struct kvm_lpage_info *linfo;
935         int i;
936
937         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
938                 linfo = lpage_info_slot(gfn, slot, i);
939                 linfo->disallow_lpage += count;
940                 WARN_ON(linfo->disallow_lpage < 0);
941         }
942 }
943
944 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
945 {
946         update_gfn_disallow_lpage_count(slot, gfn, 1);
947 }
948
949 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
950 {
951         update_gfn_disallow_lpage_count(slot, gfn, -1);
952 }
953
954 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
955 {
956         struct kvm_memslots *slots;
957         struct kvm_memory_slot *slot;
958         gfn_t gfn;
959
960         kvm->arch.indirect_shadow_pages++;
961         gfn = sp->gfn;
962         slots = kvm_memslots_for_spte_role(kvm, sp->role);
963         slot = __gfn_to_memslot(slots, gfn);
964
965         /* the non-leaf shadow pages are keeping readonly. */
966         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
967                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
968                                                     KVM_PAGE_TRACK_WRITE);
969
970         kvm_mmu_gfn_disallow_lpage(slot, gfn);
971 }
972
973 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
974 {
975         struct kvm_memslots *slots;
976         struct kvm_memory_slot *slot;
977         gfn_t gfn;
978
979         kvm->arch.indirect_shadow_pages--;
980         gfn = sp->gfn;
981         slots = kvm_memslots_for_spte_role(kvm, sp->role);
982         slot = __gfn_to_memslot(slots, gfn);
983         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
984                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
985                                                        KVM_PAGE_TRACK_WRITE);
986
987         kvm_mmu_gfn_allow_lpage(slot, gfn);
988 }
989
990 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
991                                           struct kvm_memory_slot *slot)
992 {
993         struct kvm_lpage_info *linfo;
994
995         if (slot) {
996                 linfo = lpage_info_slot(gfn, slot, level);
997                 return !!linfo->disallow_lpage;
998         }
999
1000         return true;
1001 }
1002
1003 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1004                                         int level)
1005 {
1006         struct kvm_memory_slot *slot;
1007
1008         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1009         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1010 }
1011
1012 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1013 {
1014         unsigned long page_size;
1015         int i, ret = 0;
1016
1017         page_size = kvm_host_page_size(kvm, gfn);
1018
1019         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1020                 if (page_size >= KVM_HPAGE_SIZE(i))
1021                         ret = i;
1022                 else
1023                         break;
1024         }
1025
1026         return ret;
1027 }
1028
1029 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1030                                           bool no_dirty_log)
1031 {
1032         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1033                 return false;
1034         if (no_dirty_log && slot->dirty_bitmap)
1035                 return false;
1036
1037         return true;
1038 }
1039
1040 static struct kvm_memory_slot *
1041 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1042                             bool no_dirty_log)
1043 {
1044         struct kvm_memory_slot *slot;
1045
1046         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1047         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1048                 slot = NULL;
1049
1050         return slot;
1051 }
1052
1053 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1054                          bool *force_pt_level)
1055 {
1056         int host_level, level, max_level;
1057         struct kvm_memory_slot *slot;
1058
1059         if (unlikely(*force_pt_level))
1060                 return PT_PAGE_TABLE_LEVEL;
1061
1062         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1063         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1064         if (unlikely(*force_pt_level))
1065                 return PT_PAGE_TABLE_LEVEL;
1066
1067         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1068
1069         if (host_level == PT_PAGE_TABLE_LEVEL)
1070                 return host_level;
1071
1072         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1073
1074         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1075                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1076                         break;
1077
1078         return level - 1;
1079 }
1080
1081 /*
1082  * About rmap_head encoding:
1083  *
1084  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1085  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1086  * pte_list_desc containing more mappings.
1087  */
1088
1089 /*
1090  * Returns the number of pointers in the rmap chain, not counting the new one.
1091  */
1092 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1093                         struct kvm_rmap_head *rmap_head)
1094 {
1095         struct pte_list_desc *desc;
1096         int i, count = 0;
1097
1098         if (!rmap_head->val) {
1099                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1100                 rmap_head->val = (unsigned long)spte;
1101         } else if (!(rmap_head->val & 1)) {
1102                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1103                 desc = mmu_alloc_pte_list_desc(vcpu);
1104                 desc->sptes[0] = (u64 *)rmap_head->val;
1105                 desc->sptes[1] = spte;
1106                 rmap_head->val = (unsigned long)desc | 1;
1107                 ++count;
1108         } else {
1109                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1110                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1111                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1112                         desc = desc->more;
1113                         count += PTE_LIST_EXT;
1114                 }
1115                 if (desc->sptes[PTE_LIST_EXT-1]) {
1116                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1117                         desc = desc->more;
1118                 }
1119                 for (i = 0; desc->sptes[i]; ++i)
1120                         ++count;
1121                 desc->sptes[i] = spte;
1122         }
1123         return count;
1124 }
1125
1126 static void
1127 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1128                            struct pte_list_desc *desc, int i,
1129                            struct pte_list_desc *prev_desc)
1130 {
1131         int j;
1132
1133         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1134                 ;
1135         desc->sptes[i] = desc->sptes[j];
1136         desc->sptes[j] = NULL;
1137         if (j != 0)
1138                 return;
1139         if (!prev_desc && !desc->more)
1140                 rmap_head->val = (unsigned long)desc->sptes[0];
1141         else
1142                 if (prev_desc)
1143                         prev_desc->more = desc->more;
1144                 else
1145                         rmap_head->val = (unsigned long)desc->more | 1;
1146         mmu_free_pte_list_desc(desc);
1147 }
1148
1149 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1150 {
1151         struct pte_list_desc *desc;
1152         struct pte_list_desc *prev_desc;
1153         int i;
1154
1155         if (!rmap_head->val) {
1156                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1157                 BUG();
1158         } else if (!(rmap_head->val & 1)) {
1159                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1160                 if ((u64 *)rmap_head->val != spte) {
1161                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1162                         BUG();
1163                 }
1164                 rmap_head->val = 0;
1165         } else {
1166                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1167                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1168                 prev_desc = NULL;
1169                 while (desc) {
1170                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1171                                 if (desc->sptes[i] == spte) {
1172                                         pte_list_desc_remove_entry(rmap_head,
1173                                                         desc, i, prev_desc);
1174                                         return;
1175                                 }
1176                         }
1177                         prev_desc = desc;
1178                         desc = desc->more;
1179                 }
1180                 pr_err("pte_list_remove: %p many->many\n", spte);
1181                 BUG();
1182         }
1183 }
1184
1185 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1186                                            struct kvm_memory_slot *slot)
1187 {
1188         unsigned long idx;
1189
1190         idx = gfn_to_index(gfn, slot->base_gfn, level);
1191         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1192 }
1193
1194 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1195                                          struct kvm_mmu_page *sp)
1196 {
1197         struct kvm_memslots *slots;
1198         struct kvm_memory_slot *slot;
1199
1200         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201         slot = __gfn_to_memslot(slots, gfn);
1202         return __gfn_to_rmap(gfn, sp->role.level, slot);
1203 }
1204
1205 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1206 {
1207         struct kvm_mmu_memory_cache *cache;
1208
1209         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1210         return mmu_memory_cache_free_objects(cache);
1211 }
1212
1213 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1214 {
1215         struct kvm_mmu_page *sp;
1216         struct kvm_rmap_head *rmap_head;
1217
1218         sp = page_header(__pa(spte));
1219         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1220         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1221         return pte_list_add(vcpu, spte, rmap_head);
1222 }
1223
1224 static void rmap_remove(struct kvm *kvm, u64 *spte)
1225 {
1226         struct kvm_mmu_page *sp;
1227         gfn_t gfn;
1228         struct kvm_rmap_head *rmap_head;
1229
1230         sp = page_header(__pa(spte));
1231         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1232         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1233         pte_list_remove(spte, rmap_head);
1234 }
1235
1236 /*
1237  * Used by the following functions to iterate through the sptes linked by a
1238  * rmap.  All fields are private and not assumed to be used outside.
1239  */
1240 struct rmap_iterator {
1241         /* private fields */
1242         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1243         int pos;                        /* index of the sptep */
1244 };
1245
1246 /*
1247  * Iteration must be started by this function.  This should also be used after
1248  * removing/dropping sptes from the rmap link because in such cases the
1249  * information in the itererator may not be valid.
1250  *
1251  * Returns sptep if found, NULL otherwise.
1252  */
1253 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1254                            struct rmap_iterator *iter)
1255 {
1256         u64 *sptep;
1257
1258         if (!rmap_head->val)
1259                 return NULL;
1260
1261         if (!(rmap_head->val & 1)) {
1262                 iter->desc = NULL;
1263                 sptep = (u64 *)rmap_head->val;
1264                 goto out;
1265         }
1266
1267         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1268         iter->pos = 0;
1269         sptep = iter->desc->sptes[iter->pos];
1270 out:
1271         BUG_ON(!is_shadow_present_pte(*sptep));
1272         return sptep;
1273 }
1274
1275 /*
1276  * Must be used with a valid iterator: e.g. after rmap_get_first().
1277  *
1278  * Returns sptep if found, NULL otherwise.
1279  */
1280 static u64 *rmap_get_next(struct rmap_iterator *iter)
1281 {
1282         u64 *sptep;
1283
1284         if (iter->desc) {
1285                 if (iter->pos < PTE_LIST_EXT - 1) {
1286                         ++iter->pos;
1287                         sptep = iter->desc->sptes[iter->pos];
1288                         if (sptep)
1289                                 goto out;
1290                 }
1291
1292                 iter->desc = iter->desc->more;
1293
1294                 if (iter->desc) {
1295                         iter->pos = 0;
1296                         /* desc->sptes[0] cannot be NULL */
1297                         sptep = iter->desc->sptes[iter->pos];
1298                         goto out;
1299                 }
1300         }
1301
1302         return NULL;
1303 out:
1304         BUG_ON(!is_shadow_present_pte(*sptep));
1305         return sptep;
1306 }
1307
1308 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1309         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1310              _spte_; _spte_ = rmap_get_next(_iter_))
1311
1312 static void drop_spte(struct kvm *kvm, u64 *sptep)
1313 {
1314         if (mmu_spte_clear_track_bits(sptep))
1315                 rmap_remove(kvm, sptep);
1316 }
1317
1318
1319 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1320 {
1321         if (is_large_pte(*sptep)) {
1322                 WARN_ON(page_header(__pa(sptep))->role.level ==
1323                         PT_PAGE_TABLE_LEVEL);
1324                 drop_spte(kvm, sptep);
1325                 --kvm->stat.lpages;
1326                 return true;
1327         }
1328
1329         return false;
1330 }
1331
1332 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1333 {
1334         if (__drop_large_spte(vcpu->kvm, sptep))
1335                 kvm_flush_remote_tlbs(vcpu->kvm);
1336 }
1337
1338 /*
1339  * Write-protect on the specified @sptep, @pt_protect indicates whether
1340  * spte write-protection is caused by protecting shadow page table.
1341  *
1342  * Note: write protection is difference between dirty logging and spte
1343  * protection:
1344  * - for dirty logging, the spte can be set to writable at anytime if
1345  *   its dirty bitmap is properly set.
1346  * - for spte protection, the spte can be writable only after unsync-ing
1347  *   shadow page.
1348  *
1349  * Return true if tlb need be flushed.
1350  */
1351 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1352 {
1353         u64 spte = *sptep;
1354
1355         if (!is_writable_pte(spte) &&
1356               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1357                 return false;
1358
1359         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1360
1361         if (pt_protect)
1362                 spte &= ~SPTE_MMU_WRITEABLE;
1363         spte = spte & ~PT_WRITABLE_MASK;
1364
1365         return mmu_spte_update(sptep, spte);
1366 }
1367
1368 static bool __rmap_write_protect(struct kvm *kvm,
1369                                  struct kvm_rmap_head *rmap_head,
1370                                  bool pt_protect)
1371 {
1372         u64 *sptep;
1373         struct rmap_iterator iter;
1374         bool flush = false;
1375
1376         for_each_rmap_spte(rmap_head, &iter, sptep)
1377                 flush |= spte_write_protect(sptep, pt_protect);
1378
1379         return flush;
1380 }
1381
1382 static bool spte_clear_dirty(u64 *sptep)
1383 {
1384         u64 spte = *sptep;
1385
1386         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1387
1388         spte &= ~shadow_dirty_mask;
1389
1390         return mmu_spte_update(sptep, spte);
1391 }
1392
1393 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1394 {
1395         u64 *sptep;
1396         struct rmap_iterator iter;
1397         bool flush = false;
1398
1399         for_each_rmap_spte(rmap_head, &iter, sptep)
1400                 flush |= spte_clear_dirty(sptep);
1401
1402         return flush;
1403 }
1404
1405 static bool spte_set_dirty(u64 *sptep)
1406 {
1407         u64 spte = *sptep;
1408
1409         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1410
1411         spte |= shadow_dirty_mask;
1412
1413         return mmu_spte_update(sptep, spte);
1414 }
1415
1416 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1417 {
1418         u64 *sptep;
1419         struct rmap_iterator iter;
1420         bool flush = false;
1421
1422         for_each_rmap_spte(rmap_head, &iter, sptep)
1423                 flush |= spte_set_dirty(sptep);
1424
1425         return flush;
1426 }
1427
1428 /**
1429  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1430  * @kvm: kvm instance
1431  * @slot: slot to protect
1432  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1433  * @mask: indicates which pages we should protect
1434  *
1435  * Used when we do not need to care about huge page mappings: e.g. during dirty
1436  * logging we do not have any such mappings.
1437  */
1438 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1439                                      struct kvm_memory_slot *slot,
1440                                      gfn_t gfn_offset, unsigned long mask)
1441 {
1442         struct kvm_rmap_head *rmap_head;
1443
1444         while (mask) {
1445                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1446                                           PT_PAGE_TABLE_LEVEL, slot);
1447                 __rmap_write_protect(kvm, rmap_head, false);
1448
1449                 /* clear the first set bit */
1450                 mask &= mask - 1;
1451         }
1452 }
1453
1454 /**
1455  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1456  * @kvm: kvm instance
1457  * @slot: slot to clear D-bit
1458  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1459  * @mask: indicates which pages we should clear D-bit
1460  *
1461  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1462  */
1463 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1464                                      struct kvm_memory_slot *slot,
1465                                      gfn_t gfn_offset, unsigned long mask)
1466 {
1467         struct kvm_rmap_head *rmap_head;
1468
1469         while (mask) {
1470                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1471                                           PT_PAGE_TABLE_LEVEL, slot);
1472                 __rmap_clear_dirty(kvm, rmap_head);
1473
1474                 /* clear the first set bit */
1475                 mask &= mask - 1;
1476         }
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1479
1480 /**
1481  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1482  * PT level pages.
1483  *
1484  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1485  * enable dirty logging for them.
1486  *
1487  * Used when we do not need to care about huge page mappings: e.g. during dirty
1488  * logging we do not have any such mappings.
1489  */
1490 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1491                                 struct kvm_memory_slot *slot,
1492                                 gfn_t gfn_offset, unsigned long mask)
1493 {
1494         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1495                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1496                                 mask);
1497         else
1498                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1499 }
1500
1501 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1502                                     struct kvm_memory_slot *slot, u64 gfn)
1503 {
1504         struct kvm_rmap_head *rmap_head;
1505         int i;
1506         bool write_protected = false;
1507
1508         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1509                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1510                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1511         }
1512
1513         return write_protected;
1514 }
1515
1516 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1517 {
1518         struct kvm_memory_slot *slot;
1519
1520         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1521         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1522 }
1523
1524 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1525 {
1526         u64 *sptep;
1527         struct rmap_iterator iter;
1528         bool flush = false;
1529
1530         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1531                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1532
1533                 drop_spte(kvm, sptep);
1534                 flush = true;
1535         }
1536
1537         return flush;
1538 }
1539
1540 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1541                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1542                            unsigned long data)
1543 {
1544         return kvm_zap_rmapp(kvm, rmap_head);
1545 }
1546
1547 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1548                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1549                              unsigned long data)
1550 {
1551         u64 *sptep;
1552         struct rmap_iterator iter;
1553         int need_flush = 0;
1554         u64 new_spte;
1555         pte_t *ptep = (pte_t *)data;
1556         kvm_pfn_t new_pfn;
1557
1558         WARN_ON(pte_huge(*ptep));
1559         new_pfn = pte_pfn(*ptep);
1560
1561 restart:
1562         for_each_rmap_spte(rmap_head, &iter, sptep) {
1563                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1564                             sptep, *sptep, gfn, level);
1565
1566                 need_flush = 1;
1567
1568                 if (pte_write(*ptep)) {
1569                         drop_spte(kvm, sptep);
1570                         goto restart;
1571                 } else {
1572                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1573                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1574
1575                         new_spte &= ~PT_WRITABLE_MASK;
1576                         new_spte &= ~SPTE_HOST_WRITEABLE;
1577
1578                         new_spte = mark_spte_for_access_track(new_spte);
1579
1580                         mmu_spte_clear_track_bits(sptep);
1581                         mmu_spte_set(sptep, new_spte);
1582                 }
1583         }
1584
1585         if (need_flush)
1586                 kvm_flush_remote_tlbs(kvm);
1587
1588         return 0;
1589 }
1590
1591 struct slot_rmap_walk_iterator {
1592         /* input fields. */
1593         struct kvm_memory_slot *slot;
1594         gfn_t start_gfn;
1595         gfn_t end_gfn;
1596         int start_level;
1597         int end_level;
1598
1599         /* output fields. */
1600         gfn_t gfn;
1601         struct kvm_rmap_head *rmap;
1602         int level;
1603
1604         /* private field. */
1605         struct kvm_rmap_head *end_rmap;
1606 };
1607
1608 static void
1609 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1610 {
1611         iterator->level = level;
1612         iterator->gfn = iterator->start_gfn;
1613         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1614         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1615                                            iterator->slot);
1616 }
1617
1618 static void
1619 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1620                     struct kvm_memory_slot *slot, int start_level,
1621                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1622 {
1623         iterator->slot = slot;
1624         iterator->start_level = start_level;
1625         iterator->end_level = end_level;
1626         iterator->start_gfn = start_gfn;
1627         iterator->end_gfn = end_gfn;
1628
1629         rmap_walk_init_level(iterator, iterator->start_level);
1630 }
1631
1632 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1633 {
1634         return !!iterator->rmap;
1635 }
1636
1637 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1638 {
1639         if (++iterator->rmap <= iterator->end_rmap) {
1640                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1641                 return;
1642         }
1643
1644         if (++iterator->level > iterator->end_level) {
1645                 iterator->rmap = NULL;
1646                 return;
1647         }
1648
1649         rmap_walk_init_level(iterator, iterator->level);
1650 }
1651
1652 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1653            _start_gfn, _end_gfn, _iter_)                                \
1654         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1655                                  _end_level_, _start_gfn, _end_gfn);    \
1656              slot_rmap_walk_okay(_iter_);                               \
1657              slot_rmap_walk_next(_iter_))
1658
1659 static int kvm_handle_hva_range(struct kvm *kvm,
1660                                 unsigned long start,
1661                                 unsigned long end,
1662                                 unsigned long data,
1663                                 int (*handler)(struct kvm *kvm,
1664                                                struct kvm_rmap_head *rmap_head,
1665                                                struct kvm_memory_slot *slot,
1666                                                gfn_t gfn,
1667                                                int level,
1668                                                unsigned long data))
1669 {
1670         struct kvm_memslots *slots;
1671         struct kvm_memory_slot *memslot;
1672         struct slot_rmap_walk_iterator iterator;
1673         int ret = 0;
1674         int i;
1675
1676         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1677                 slots = __kvm_memslots(kvm, i);
1678                 kvm_for_each_memslot(memslot, slots) {
1679                         unsigned long hva_start, hva_end;
1680                         gfn_t gfn_start, gfn_end;
1681
1682                         hva_start = max(start, memslot->userspace_addr);
1683                         hva_end = min(end, memslot->userspace_addr +
1684                                       (memslot->npages << PAGE_SHIFT));
1685                         if (hva_start >= hva_end)
1686                                 continue;
1687                         /*
1688                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1689                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1690                          */
1691                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1692                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1693
1694                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1695                                                  PT_MAX_HUGEPAGE_LEVEL,
1696                                                  gfn_start, gfn_end - 1,
1697                                                  &iterator)
1698                                 ret |= handler(kvm, iterator.rmap, memslot,
1699                                                iterator.gfn, iterator.level, data);
1700                 }
1701         }
1702
1703         return ret;
1704 }
1705
1706 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1707                           unsigned long data,
1708                           int (*handler)(struct kvm *kvm,
1709                                          struct kvm_rmap_head *rmap_head,
1710                                          struct kvm_memory_slot *slot,
1711                                          gfn_t gfn, int level,
1712                                          unsigned long data))
1713 {
1714         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1715 }
1716
1717 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1718 {
1719         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1720 }
1721
1722 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1723 {
1724         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1725 }
1726
1727 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1728 {
1729         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1730 }
1731
1732 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1733                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1734                          unsigned long data)
1735 {
1736         u64 *sptep;
1737         struct rmap_iterator uninitialized_var(iter);
1738         int young = 0;
1739
1740         for_each_rmap_spte(rmap_head, &iter, sptep)
1741                 young |= mmu_spte_age(sptep);
1742
1743         trace_kvm_age_page(gfn, level, slot, young);
1744         return young;
1745 }
1746
1747 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748                               struct kvm_memory_slot *slot, gfn_t gfn,
1749                               int level, unsigned long data)
1750 {
1751         u64 *sptep;
1752         struct rmap_iterator iter;
1753
1754         /*
1755          * If there's no access bit in the secondary pte set by the hardware and
1756          * fast access tracking is also not enabled, it's up to gup-fast/gup to
1757          * set the access bit in the primary pte or in the page structure.
1758          */
1759         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1760                 goto out;
1761
1762         for_each_rmap_spte(rmap_head, &iter, sptep)
1763                 if (is_accessed_spte(*sptep))
1764                         return 1;
1765 out:
1766         return 0;
1767 }
1768
1769 #define RMAP_RECYCLE_THRESHOLD 1000
1770
1771 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1772 {
1773         struct kvm_rmap_head *rmap_head;
1774         struct kvm_mmu_page *sp;
1775
1776         sp = page_header(__pa(spte));
1777
1778         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1779
1780         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1781         kvm_flush_remote_tlbs(vcpu->kvm);
1782 }
1783
1784 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1785 {
1786         /*
1787          * In case of absence of EPT Access and Dirty Bits supports,
1788          * emulate the accessed bit for EPT, by checking if this page has
1789          * an EPT mapping, and clearing it if it does. On the next access,
1790          * a new EPT mapping will be established.
1791          * This has some overhead, but not as much as the cost of swapping
1792          * out actively used pages or breaking up actively used hugepages.
1793          */
1794         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1795                 return kvm_handle_hva_range(kvm, start, end, 0,
1796                                             kvm_unmap_rmapp);
1797
1798         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1799 }
1800
1801 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1802 {
1803         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1804 }
1805
1806 #ifdef MMU_DEBUG
1807 static int is_empty_shadow_page(u64 *spt)
1808 {
1809         u64 *pos;
1810         u64 *end;
1811
1812         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1813                 if (is_shadow_present_pte(*pos)) {
1814                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1815                                pos, *pos);
1816                         return 0;
1817                 }
1818         return 1;
1819 }
1820 #endif
1821
1822 /*
1823  * This value is the sum of all of the kvm instances's
1824  * kvm->arch.n_used_mmu_pages values.  We need a global,
1825  * aggregate version in order to make the slab shrinker
1826  * faster
1827  */
1828 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1829 {
1830         kvm->arch.n_used_mmu_pages += nr;
1831         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1832 }
1833
1834 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1835 {
1836         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1837         hlist_del(&sp->hash_link);
1838         list_del(&sp->link);
1839         free_page((unsigned long)sp->spt);
1840         if (!sp->role.direct)
1841                 free_page((unsigned long)sp->gfns);
1842         kmem_cache_free(mmu_page_header_cache, sp);
1843 }
1844
1845 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1846 {
1847         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1848 }
1849
1850 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1851                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1852 {
1853         if (!parent_pte)
1854                 return;
1855
1856         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1857 }
1858
1859 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1860                                        u64 *parent_pte)
1861 {
1862         pte_list_remove(parent_pte, &sp->parent_ptes);
1863 }
1864
1865 static void drop_parent_pte(struct kvm_mmu_page *sp,
1866                             u64 *parent_pte)
1867 {
1868         mmu_page_remove_parent_pte(sp, parent_pte);
1869         mmu_spte_clear_no_track(parent_pte);
1870 }
1871
1872 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1873 {
1874         struct kvm_mmu_page *sp;
1875
1876         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1877         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1878         if (!direct)
1879                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1880         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1881
1882         /*
1883          * The active_mmu_pages list is the FIFO list, do not move the
1884          * page until it is zapped. kvm_zap_obsolete_pages depends on
1885          * this feature. See the comments in kvm_zap_obsolete_pages().
1886          */
1887         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1888         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1889         return sp;
1890 }
1891
1892 static void mark_unsync(u64 *spte);
1893 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1894 {
1895         u64 *sptep;
1896         struct rmap_iterator iter;
1897
1898         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1899                 mark_unsync(sptep);
1900         }
1901 }
1902
1903 static void mark_unsync(u64 *spte)
1904 {
1905         struct kvm_mmu_page *sp;
1906         unsigned int index;
1907
1908         sp = page_header(__pa(spte));
1909         index = spte - sp->spt;
1910         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1911                 return;
1912         if (sp->unsync_children++)
1913                 return;
1914         kvm_mmu_mark_parents_unsync(sp);
1915 }
1916
1917 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1918                                struct kvm_mmu_page *sp)
1919 {
1920         return 0;
1921 }
1922
1923 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1924 {
1925 }
1926
1927 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1928                                  struct kvm_mmu_page *sp, u64 *spte,
1929                                  const void *pte)
1930 {
1931         WARN_ON(1);
1932 }
1933
1934 #define KVM_PAGE_ARRAY_NR 16
1935
1936 struct kvm_mmu_pages {
1937         struct mmu_page_and_offset {
1938                 struct kvm_mmu_page *sp;
1939                 unsigned int idx;
1940         } page[KVM_PAGE_ARRAY_NR];
1941         unsigned int nr;
1942 };
1943
1944 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1945                          int idx)
1946 {
1947         int i;
1948
1949         if (sp->unsync)
1950                 for (i=0; i < pvec->nr; i++)
1951                         if (pvec->page[i].sp == sp)
1952                                 return 0;
1953
1954         pvec->page[pvec->nr].sp = sp;
1955         pvec->page[pvec->nr].idx = idx;
1956         pvec->nr++;
1957         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1958 }
1959
1960 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1961 {
1962         --sp->unsync_children;
1963         WARN_ON((int)sp->unsync_children < 0);
1964         __clear_bit(idx, sp->unsync_child_bitmap);
1965 }
1966
1967 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1968                            struct kvm_mmu_pages *pvec)
1969 {
1970         int i, ret, nr_unsync_leaf = 0;
1971
1972         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1973                 struct kvm_mmu_page *child;
1974                 u64 ent = sp->spt[i];
1975
1976                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1977                         clear_unsync_child_bit(sp, i);
1978                         continue;
1979                 }
1980
1981                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1982
1983                 if (child->unsync_children) {
1984                         if (mmu_pages_add(pvec, child, i))
1985                                 return -ENOSPC;
1986
1987                         ret = __mmu_unsync_walk(child, pvec);
1988                         if (!ret) {
1989                                 clear_unsync_child_bit(sp, i);
1990                                 continue;
1991                         } else if (ret > 0) {
1992                                 nr_unsync_leaf += ret;
1993                         } else
1994                                 return ret;
1995                 } else if (child->unsync) {
1996                         nr_unsync_leaf++;
1997                         if (mmu_pages_add(pvec, child, i))
1998                                 return -ENOSPC;
1999                 } else
2000                         clear_unsync_child_bit(sp, i);
2001         }
2002
2003         return nr_unsync_leaf;
2004 }
2005
2006 #define INVALID_INDEX (-1)
2007
2008 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2009                            struct kvm_mmu_pages *pvec)
2010 {
2011         pvec->nr = 0;
2012         if (!sp->unsync_children)
2013                 return 0;
2014
2015         mmu_pages_add(pvec, sp, INVALID_INDEX);
2016         return __mmu_unsync_walk(sp, pvec);
2017 }
2018
2019 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2020 {
2021         WARN_ON(!sp->unsync);
2022         trace_kvm_mmu_sync_page(sp);
2023         sp->unsync = 0;
2024         --kvm->stat.mmu_unsync;
2025 }
2026
2027 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2028                                     struct list_head *invalid_list);
2029 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2030                                     struct list_head *invalid_list);
2031
2032 /*
2033  * NOTE: we should pay more attention on the zapped-obsolete page
2034  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2035  * since it has been deleted from active_mmu_pages but still can be found
2036  * at hast list.
2037  *
2038  * for_each_valid_sp() has skipped that kind of pages.
2039  */
2040 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2041         hlist_for_each_entry(_sp,                                       \
2042           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2043                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2044                 } else
2045
2046 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2047         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2048                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2049
2050 /* @sp->gfn should be write-protected at the call site */
2051 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2052                             struct list_head *invalid_list)
2053 {
2054         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2055                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2056                 return false;
2057         }
2058
2059         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2060                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2061                 return false;
2062         }
2063
2064         return true;
2065 }
2066
2067 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2068                                  struct list_head *invalid_list,
2069                                  bool remote_flush, bool local_flush)
2070 {
2071         if (!list_empty(invalid_list)) {
2072                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2073                 return;
2074         }
2075
2076         if (remote_flush)
2077                 kvm_flush_remote_tlbs(vcpu->kvm);
2078         else if (local_flush)
2079                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2080 }
2081
2082 #ifdef CONFIG_KVM_MMU_AUDIT
2083 #include "mmu_audit.c"
2084 #else
2085 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2086 static void mmu_audit_disable(void) { }
2087 #endif
2088
2089 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2090 {
2091         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2092 }
2093
2094 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2095                          struct list_head *invalid_list)
2096 {
2097         kvm_unlink_unsync_page(vcpu->kvm, sp);
2098         return __kvm_sync_page(vcpu, sp, invalid_list);
2099 }
2100
2101 /* @gfn should be write-protected at the call site */
2102 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2103                            struct list_head *invalid_list)
2104 {
2105         struct kvm_mmu_page *s;
2106         bool ret = false;
2107
2108         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2109                 if (!s->unsync)
2110                         continue;
2111
2112                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2113                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2114         }
2115
2116         return ret;
2117 }
2118
2119 struct mmu_page_path {
2120         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2121         unsigned int idx[PT64_ROOT_LEVEL];
2122 };
2123
2124 #define for_each_sp(pvec, sp, parents, i)                       \
2125                 for (i = mmu_pages_first(&pvec, &parents);      \
2126                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2127                         i = mmu_pages_next(&pvec, &parents, i))
2128
2129 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2130                           struct mmu_page_path *parents,
2131                           int i)
2132 {
2133         int n;
2134
2135         for (n = i+1; n < pvec->nr; n++) {
2136                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2137                 unsigned idx = pvec->page[n].idx;
2138                 int level = sp->role.level;
2139
2140                 parents->idx[level-1] = idx;
2141                 if (level == PT_PAGE_TABLE_LEVEL)
2142                         break;
2143
2144                 parents->parent[level-2] = sp;
2145         }
2146
2147         return n;
2148 }
2149
2150 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2151                            struct mmu_page_path *parents)
2152 {
2153         struct kvm_mmu_page *sp;
2154         int level;
2155
2156         if (pvec->nr == 0)
2157                 return 0;
2158
2159         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2160
2161         sp = pvec->page[0].sp;
2162         level = sp->role.level;
2163         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2164
2165         parents->parent[level-2] = sp;
2166
2167         /* Also set up a sentinel.  Further entries in pvec are all
2168          * children of sp, so this element is never overwritten.
2169          */
2170         parents->parent[level-1] = NULL;
2171         return mmu_pages_next(pvec, parents, 0);
2172 }
2173
2174 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2175 {
2176         struct kvm_mmu_page *sp;
2177         unsigned int level = 0;
2178
2179         do {
2180                 unsigned int idx = parents->idx[level];
2181                 sp = parents->parent[level];
2182                 if (!sp)
2183                         return;
2184
2185                 WARN_ON(idx == INVALID_INDEX);
2186                 clear_unsync_child_bit(sp, idx);
2187                 level++;
2188         } while (!sp->unsync_children);
2189 }
2190
2191 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2192                               struct kvm_mmu_page *parent)
2193 {
2194         int i;
2195         struct kvm_mmu_page *sp;
2196         struct mmu_page_path parents;
2197         struct kvm_mmu_pages pages;
2198         LIST_HEAD(invalid_list);
2199         bool flush = false;
2200
2201         while (mmu_unsync_walk(parent, &pages)) {
2202                 bool protected = false;
2203
2204                 for_each_sp(pages, sp, parents, i)
2205                         protected |= rmap_write_protect(vcpu, sp->gfn);
2206
2207                 if (protected) {
2208                         kvm_flush_remote_tlbs(vcpu->kvm);
2209                         flush = false;
2210                 }
2211
2212                 for_each_sp(pages, sp, parents, i) {
2213                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2214                         mmu_pages_clear_parents(&parents);
2215                 }
2216                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2217                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2218                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2219                         flush = false;
2220                 }
2221         }
2222
2223         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2224 }
2225
2226 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2227 {
2228         atomic_set(&sp->write_flooding_count,  0);
2229 }
2230
2231 static void clear_sp_write_flooding_count(u64 *spte)
2232 {
2233         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2234
2235         __clear_sp_write_flooding_count(sp);
2236 }
2237
2238 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2239                                              gfn_t gfn,
2240                                              gva_t gaddr,
2241                                              unsigned level,
2242                                              int direct,
2243                                              unsigned access)
2244 {
2245         union kvm_mmu_page_role role;
2246         unsigned quadrant;
2247         struct kvm_mmu_page *sp;
2248         bool need_sync = false;
2249         bool flush = false;
2250         int collisions = 0;
2251         LIST_HEAD(invalid_list);
2252
2253         role = vcpu->arch.mmu.base_role;
2254         role.level = level;
2255         role.direct = direct;
2256         if (role.direct)
2257                 role.cr4_pae = 0;
2258         role.access = access;
2259         if (!vcpu->arch.mmu.direct_map
2260             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2261                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2262                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2263                 role.quadrant = quadrant;
2264         }
2265         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2266                 if (sp->gfn != gfn) {
2267                         collisions++;
2268                         continue;
2269                 }
2270
2271                 if (!need_sync && sp->unsync)
2272                         need_sync = true;
2273
2274                 if (sp->role.word != role.word)
2275                         continue;
2276
2277                 if (sp->unsync) {
2278                         /* The page is good, but __kvm_sync_page might still end
2279                          * up zapping it.  If so, break in order to rebuild it.
2280                          */
2281                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2282                                 break;
2283
2284                         WARN_ON(!list_empty(&invalid_list));
2285                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2286                 }
2287
2288                 if (sp->unsync_children)
2289                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2290
2291                 __clear_sp_write_flooding_count(sp);
2292                 trace_kvm_mmu_get_page(sp, false);
2293                 goto out;
2294         }
2295
2296         ++vcpu->kvm->stat.mmu_cache_miss;
2297
2298         sp = kvm_mmu_alloc_page(vcpu, direct);
2299
2300         sp->gfn = gfn;
2301         sp->role = role;
2302         hlist_add_head(&sp->hash_link,
2303                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2304         if (!direct) {
2305                 /*
2306                  * we should do write protection before syncing pages
2307                  * otherwise the content of the synced shadow page may
2308                  * be inconsistent with guest page table.
2309                  */
2310                 account_shadowed(vcpu->kvm, sp);
2311                 if (level == PT_PAGE_TABLE_LEVEL &&
2312                       rmap_write_protect(vcpu, gfn))
2313                         kvm_flush_remote_tlbs(vcpu->kvm);
2314
2315                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2316                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2317         }
2318         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2319         clear_page(sp->spt);
2320         trace_kvm_mmu_get_page(sp, true);
2321
2322         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2323 out:
2324         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2325                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2326         return sp;
2327 }
2328
2329 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2330                              struct kvm_vcpu *vcpu, u64 addr)
2331 {
2332         iterator->addr = addr;
2333         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2334         iterator->level = vcpu->arch.mmu.shadow_root_level;
2335
2336         if (iterator->level == PT64_ROOT_LEVEL &&
2337             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2338             !vcpu->arch.mmu.direct_map)
2339                 --iterator->level;
2340
2341         if (iterator->level == PT32E_ROOT_LEVEL) {
2342                 iterator->shadow_addr
2343                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2344                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2345                 --iterator->level;
2346                 if (!iterator->shadow_addr)
2347                         iterator->level = 0;
2348         }
2349 }
2350
2351 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2352 {
2353         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2354                 return false;
2355
2356         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2357         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2358         return true;
2359 }
2360
2361 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2362                                u64 spte)
2363 {
2364         if (is_last_spte(spte, iterator->level)) {
2365                 iterator->level = 0;
2366                 return;
2367         }
2368
2369         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2370         --iterator->level;
2371 }
2372
2373 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2374 {
2375         return __shadow_walk_next(iterator, *iterator->sptep);
2376 }
2377
2378 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2379                              struct kvm_mmu_page *sp)
2380 {
2381         u64 spte;
2382
2383         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2384
2385         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2386                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2387
2388         mmu_spte_set(sptep, spte);
2389
2390         mmu_page_add_parent_pte(vcpu, sp, sptep);
2391
2392         if (sp->unsync_children || sp->unsync)
2393                 mark_unsync(sptep);
2394 }
2395
2396 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2397                                    unsigned direct_access)
2398 {
2399         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2400                 struct kvm_mmu_page *child;
2401
2402                 /*
2403                  * For the direct sp, if the guest pte's dirty bit
2404                  * changed form clean to dirty, it will corrupt the
2405                  * sp's access: allow writable in the read-only sp,
2406                  * so we should update the spte at this point to get
2407                  * a new sp with the correct access.
2408                  */
2409                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2410                 if (child->role.access == direct_access)
2411                         return;
2412
2413                 drop_parent_pte(child, sptep);
2414                 kvm_flush_remote_tlbs(vcpu->kvm);
2415         }
2416 }
2417
2418 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2419                              u64 *spte)
2420 {
2421         u64 pte;
2422         struct kvm_mmu_page *child;
2423
2424         pte = *spte;
2425         if (is_shadow_present_pte(pte)) {
2426                 if (is_last_spte(pte, sp->role.level)) {
2427                         drop_spte(kvm, spte);
2428                         if (is_large_pte(pte))
2429                                 --kvm->stat.lpages;
2430                 } else {
2431                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2432                         drop_parent_pte(child, spte);
2433                 }
2434                 return true;
2435         }
2436
2437         if (is_mmio_spte(pte))
2438                 mmu_spte_clear_no_track(spte);
2439
2440         return false;
2441 }
2442
2443 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2444                                          struct kvm_mmu_page *sp)
2445 {
2446         unsigned i;
2447
2448         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2449                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2450 }
2451
2452 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2453 {
2454         u64 *sptep;
2455         struct rmap_iterator iter;
2456
2457         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2458                 drop_parent_pte(sp, sptep);
2459 }
2460
2461 static int mmu_zap_unsync_children(struct kvm *kvm,
2462                                    struct kvm_mmu_page *parent,
2463                                    struct list_head *invalid_list)
2464 {
2465         int i, zapped = 0;
2466         struct mmu_page_path parents;
2467         struct kvm_mmu_pages pages;
2468
2469         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2470                 return 0;
2471
2472         while (mmu_unsync_walk(parent, &pages)) {
2473                 struct kvm_mmu_page *sp;
2474
2475                 for_each_sp(pages, sp, parents, i) {
2476                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2477                         mmu_pages_clear_parents(&parents);
2478                         zapped++;
2479                 }
2480         }
2481
2482         return zapped;
2483 }
2484
2485 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2486                                     struct list_head *invalid_list)
2487 {
2488         int ret;
2489
2490         trace_kvm_mmu_prepare_zap_page(sp);
2491         ++kvm->stat.mmu_shadow_zapped;
2492         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2493         kvm_mmu_page_unlink_children(kvm, sp);
2494         kvm_mmu_unlink_parents(kvm, sp);
2495
2496         if (!sp->role.invalid && !sp->role.direct)
2497                 unaccount_shadowed(kvm, sp);
2498
2499         if (sp->unsync)
2500                 kvm_unlink_unsync_page(kvm, sp);
2501         if (!sp->root_count) {
2502                 /* Count self */
2503                 ret++;
2504                 list_move(&sp->link, invalid_list);
2505                 kvm_mod_used_mmu_pages(kvm, -1);
2506         } else {
2507                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2508
2509                 /*
2510                  * The obsolete pages can not be used on any vcpus.
2511                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2512                  */
2513                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2514                         kvm_reload_remote_mmus(kvm);
2515         }
2516
2517         sp->role.invalid = 1;
2518         return ret;
2519 }
2520
2521 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2522                                     struct list_head *invalid_list)
2523 {
2524         struct kvm_mmu_page *sp, *nsp;
2525
2526         if (list_empty(invalid_list))
2527                 return;
2528
2529         /*
2530          * We need to make sure everyone sees our modifications to
2531          * the page tables and see changes to vcpu->mode here. The barrier
2532          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2533          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2534          *
2535          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2536          * guest mode and/or lockless shadow page table walks.
2537          */
2538         kvm_flush_remote_tlbs(kvm);
2539
2540         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2541                 WARN_ON(!sp->role.invalid || sp->root_count);
2542                 kvm_mmu_free_page(sp);
2543         }
2544 }
2545
2546 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2547                                         struct list_head *invalid_list)
2548 {
2549         struct kvm_mmu_page *sp;
2550
2551         if (list_empty(&kvm->arch.active_mmu_pages))
2552                 return false;
2553
2554         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2555                              struct kvm_mmu_page, link);
2556         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2557
2558         return true;
2559 }
2560
2561 /*
2562  * Changing the number of mmu pages allocated to the vm
2563  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2564  */
2565 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2566 {
2567         LIST_HEAD(invalid_list);
2568
2569         spin_lock(&kvm->mmu_lock);
2570
2571         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2572                 /* Need to free some mmu pages to achieve the goal. */
2573                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2574                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2575                                 break;
2576
2577                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2578                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2579         }
2580
2581         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2582
2583         spin_unlock(&kvm->mmu_lock);
2584 }
2585
2586 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2587 {
2588         struct kvm_mmu_page *sp;
2589         LIST_HEAD(invalid_list);
2590         int r;
2591
2592         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2593         r = 0;
2594         spin_lock(&kvm->mmu_lock);
2595         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2596                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2597                          sp->role.word);
2598                 r = 1;
2599                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2600         }
2601         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2602         spin_unlock(&kvm->mmu_lock);
2603
2604         return r;
2605 }
2606 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2607
2608 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2609 {
2610         trace_kvm_mmu_unsync_page(sp);
2611         ++vcpu->kvm->stat.mmu_unsync;
2612         sp->unsync = 1;
2613
2614         kvm_mmu_mark_parents_unsync(sp);
2615 }
2616
2617 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2618                                    bool can_unsync)
2619 {
2620         struct kvm_mmu_page *sp;
2621
2622         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2623                 return true;
2624
2625         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2626                 if (!can_unsync)
2627                         return true;
2628
2629                 if (sp->unsync)
2630                         continue;
2631
2632                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2633                 kvm_unsync_page(vcpu, sp);
2634         }
2635
2636         return false;
2637 }
2638
2639 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2640 {
2641         if (pfn_valid(pfn))
2642                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2643
2644         return true;
2645 }
2646
2647 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2648                     unsigned pte_access, int level,
2649                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2650                     bool can_unsync, bool host_writable)
2651 {
2652         u64 spte = 0;
2653         int ret = 0;
2654
2655         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2656                 return 0;
2657
2658         /*
2659          * For the EPT case, shadow_present_mask is 0 if hardware
2660          * supports exec-only page table entries.  In that case,
2661          * ACC_USER_MASK and shadow_user_mask are used to represent
2662          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2663          */
2664         spte |= shadow_present_mask;
2665         if (!speculative)
2666                 spte |= shadow_accessed_mask;
2667
2668         if (pte_access & ACC_EXEC_MASK)
2669                 spte |= shadow_x_mask;
2670         else
2671                 spte |= shadow_nx_mask;
2672
2673         if (pte_access & ACC_USER_MASK)
2674                 spte |= shadow_user_mask;
2675
2676         if (level > PT_PAGE_TABLE_LEVEL)
2677                 spte |= PT_PAGE_SIZE_MASK;
2678         if (tdp_enabled)
2679                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2680                         kvm_is_mmio_pfn(pfn));
2681
2682         if (host_writable)
2683                 spte |= SPTE_HOST_WRITEABLE;
2684         else
2685                 pte_access &= ~ACC_WRITE_MASK;
2686
2687         spte |= (u64)pfn << PAGE_SHIFT;
2688
2689         if (pte_access & ACC_WRITE_MASK) {
2690
2691                 /*
2692                  * Other vcpu creates new sp in the window between
2693                  * mapping_level() and acquiring mmu-lock. We can
2694                  * allow guest to retry the access, the mapping can
2695                  * be fixed if guest refault.
2696                  */
2697                 if (level > PT_PAGE_TABLE_LEVEL &&
2698                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2699                         goto done;
2700
2701                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2702
2703                 /*
2704                  * Optimization: for pte sync, if spte was writable the hash
2705                  * lookup is unnecessary (and expensive). Write protection
2706                  * is responsibility of mmu_get_page / kvm_sync_page.
2707                  * Same reasoning can be applied to dirty page accounting.
2708                  */
2709                 if (!can_unsync && is_writable_pte(*sptep))
2710                         goto set_pte;
2711
2712                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2713                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2714                                  __func__, gfn);
2715                         ret = 1;
2716                         pte_access &= ~ACC_WRITE_MASK;
2717                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2718                 }
2719         }
2720
2721         if (pte_access & ACC_WRITE_MASK) {
2722                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2723                 spte |= shadow_dirty_mask;
2724         }
2725
2726         if (speculative)
2727                 spte = mark_spte_for_access_track(spte);
2728
2729 set_pte:
2730         if (mmu_spte_update(sptep, spte))
2731                 kvm_flush_remote_tlbs(vcpu->kvm);
2732 done:
2733         return ret;
2734 }
2735
2736 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2737                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2738                          bool speculative, bool host_writable)
2739 {
2740         int was_rmapped = 0;
2741         int rmap_count;
2742         bool emulate = false;
2743
2744         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2745                  *sptep, write_fault, gfn);
2746
2747         if (is_shadow_present_pte(*sptep)) {
2748                 /*
2749                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2750                  * the parent of the now unreachable PTE.
2751                  */
2752                 if (level > PT_PAGE_TABLE_LEVEL &&
2753                     !is_large_pte(*sptep)) {
2754                         struct kvm_mmu_page *child;
2755                         u64 pte = *sptep;
2756
2757                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2758                         drop_parent_pte(child, sptep);
2759                         kvm_flush_remote_tlbs(vcpu->kvm);
2760                 } else if (pfn != spte_to_pfn(*sptep)) {
2761                         pgprintk("hfn old %llx new %llx\n",
2762                                  spte_to_pfn(*sptep), pfn);
2763                         drop_spte(vcpu->kvm, sptep);
2764                         kvm_flush_remote_tlbs(vcpu->kvm);
2765                 } else
2766                         was_rmapped = 1;
2767         }
2768
2769         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2770               true, host_writable)) {
2771                 if (write_fault)
2772                         emulate = true;
2773                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2774         }
2775
2776         if (unlikely(is_mmio_spte(*sptep)))
2777                 emulate = true;
2778
2779         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2780         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2781                  is_large_pte(*sptep)? "2MB" : "4kB",
2782                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2783                  *sptep, sptep);
2784         if (!was_rmapped && is_large_pte(*sptep))
2785                 ++vcpu->kvm->stat.lpages;
2786
2787         if (is_shadow_present_pte(*sptep)) {
2788                 if (!was_rmapped) {
2789                         rmap_count = rmap_add(vcpu, sptep, gfn);
2790                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2791                                 rmap_recycle(vcpu, sptep, gfn);
2792                 }
2793         }
2794
2795         kvm_release_pfn_clean(pfn);
2796
2797         return emulate;
2798 }
2799
2800 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2801                                      bool no_dirty_log)
2802 {
2803         struct kvm_memory_slot *slot;
2804
2805         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2806         if (!slot)
2807                 return KVM_PFN_ERR_FAULT;
2808
2809         return gfn_to_pfn_memslot_atomic(slot, gfn);
2810 }
2811
2812 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2813                                     struct kvm_mmu_page *sp,
2814                                     u64 *start, u64 *end)
2815 {
2816         struct page *pages[PTE_PREFETCH_NUM];
2817         struct kvm_memory_slot *slot;
2818         unsigned access = sp->role.access;
2819         int i, ret;
2820         gfn_t gfn;
2821
2822         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2823         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2824         if (!slot)
2825                 return -1;
2826
2827         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2828         if (ret <= 0)
2829                 return -1;
2830
2831         for (i = 0; i < ret; i++, gfn++, start++)
2832                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2833                              page_to_pfn(pages[i]), true, true);
2834
2835         return 0;
2836 }
2837
2838 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2839                                   struct kvm_mmu_page *sp, u64 *sptep)
2840 {
2841         u64 *spte, *start = NULL;
2842         int i;
2843
2844         WARN_ON(!sp->role.direct);
2845
2846         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2847         spte = sp->spt + i;
2848
2849         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2850                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2851                         if (!start)
2852                                 continue;
2853                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2854                                 break;
2855                         start = NULL;
2856                 } else if (!start)
2857                         start = spte;
2858         }
2859 }
2860
2861 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2862 {
2863         struct kvm_mmu_page *sp;
2864
2865         /*
2866          * Since it's no accessed bit on EPT, it's no way to
2867          * distinguish between actually accessed translations
2868          * and prefetched, so disable pte prefetch if EPT is
2869          * enabled.
2870          */
2871         if (!shadow_accessed_mask)
2872                 return;
2873
2874         sp = page_header(__pa(sptep));
2875         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2876                 return;
2877
2878         __direct_pte_prefetch(vcpu, sp, sptep);
2879 }
2880
2881 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2882                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2883 {
2884         struct kvm_shadow_walk_iterator iterator;
2885         struct kvm_mmu_page *sp;
2886         int emulate = 0;
2887         gfn_t pseudo_gfn;
2888
2889         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890                 return 0;
2891
2892         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2893                 if (iterator.level == level) {
2894                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2895                                                write, level, gfn, pfn, prefault,
2896                                                map_writable);
2897                         direct_pte_prefetch(vcpu, iterator.sptep);
2898                         ++vcpu->stat.pf_fixed;
2899                         break;
2900                 }
2901
2902                 drop_large_spte(vcpu, iterator.sptep);
2903                 if (!is_shadow_present_pte(*iterator.sptep)) {
2904                         u64 base_addr = iterator.addr;
2905
2906                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2907                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2908                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2909                                               iterator.level - 1, 1, ACC_ALL);
2910
2911                         link_shadow_page(vcpu, iterator.sptep, sp);
2912                 }
2913         }
2914         return emulate;
2915 }
2916
2917 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2918 {
2919         siginfo_t info;
2920
2921         info.si_signo   = SIGBUS;
2922         info.si_errno   = 0;
2923         info.si_code    = BUS_MCEERR_AR;
2924         info.si_addr    = (void __user *)address;
2925         info.si_addr_lsb = PAGE_SHIFT;
2926
2927         send_sig_info(SIGBUS, &info, tsk);
2928 }
2929
2930 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2931 {
2932         /*
2933          * Do not cache the mmio info caused by writing the readonly gfn
2934          * into the spte otherwise read access on readonly gfn also can
2935          * caused mmio page fault and treat it as mmio access.
2936          * Return 1 to tell kvm to emulate it.
2937          */
2938         if (pfn == KVM_PFN_ERR_RO_FAULT)
2939                 return 1;
2940
2941         if (pfn == KVM_PFN_ERR_HWPOISON) {
2942                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943                 return 0;
2944         }
2945
2946         return -EFAULT;
2947 }
2948
2949 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2950                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2951                                         int *levelp)
2952 {
2953         kvm_pfn_t pfn = *pfnp;
2954         gfn_t gfn = *gfnp;
2955         int level = *levelp;
2956
2957         /*
2958          * Check if it's a transparent hugepage. If this would be an
2959          * hugetlbfs page, level wouldn't be set to
2960          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2961          * here.
2962          */
2963         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2964             level == PT_PAGE_TABLE_LEVEL &&
2965             PageTransCompoundMap(pfn_to_page(pfn)) &&
2966             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2967                 unsigned long mask;
2968                 /*
2969                  * mmu_notifier_retry was successful and we hold the
2970                  * mmu_lock here, so the pmd can't become splitting
2971                  * from under us, and in turn
2972                  * __split_huge_page_refcount() can't run from under
2973                  * us and we can safely transfer the refcount from
2974                  * PG_tail to PG_head as we switch the pfn to tail to
2975                  * head.
2976                  */
2977                 *levelp = level = PT_DIRECTORY_LEVEL;
2978                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2979                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2980                 if (pfn & mask) {
2981                         gfn &= ~mask;
2982                         *gfnp = gfn;
2983                         kvm_release_pfn_clean(pfn);
2984                         pfn &= ~mask;
2985                         kvm_get_pfn(pfn);
2986                         *pfnp = pfn;
2987                 }
2988         }
2989 }
2990
2991 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2992                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2993 {
2994         /* The pfn is invalid, report the error! */
2995         if (unlikely(is_error_pfn(pfn))) {
2996                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2997                 return true;
2998         }
2999
3000         if (unlikely(is_noslot_pfn(pfn)))
3001                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3002
3003         return false;
3004 }
3005
3006 static bool page_fault_can_be_fast(u32 error_code)
3007 {
3008         /*
3009          * Do not fix the mmio spte with invalid generation number which
3010          * need to be updated by slow page fault path.
3011          */
3012         if (unlikely(error_code & PFERR_RSVD_MASK))
3013                 return false;
3014
3015         /* See if the page fault is due to an NX violation */
3016         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3017                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3018                 return false;
3019
3020         /*
3021          * #PF can be fast if:
3022          * 1. The shadow page table entry is not present, which could mean that
3023          *    the fault is potentially caused by access tracking (if enabled).
3024          * 2. The shadow page table entry is present and the fault
3025          *    is caused by write-protect, that means we just need change the W
3026          *    bit of the spte which can be done out of mmu-lock.
3027          *
3028          * However, if access tracking is disabled we know that a non-present
3029          * page must be a genuine page fault where we have to create a new SPTE.
3030          * So, if access tracking is disabled, we return true only for write
3031          * accesses to a present page.
3032          */
3033
3034         return shadow_acc_track_mask != 0 ||
3035                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3036                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3037 }
3038
3039 /*
3040  * Returns true if the SPTE was fixed successfully. Otherwise,
3041  * someone else modified the SPTE from its original value.
3042  */
3043 static bool
3044 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3045                         u64 *sptep, u64 old_spte, u64 new_spte)
3046 {
3047         gfn_t gfn;
3048
3049         WARN_ON(!sp->role.direct);
3050
3051         /*
3052          * Theoretically we could also set dirty bit (and flush TLB) here in
3053          * order to eliminate unnecessary PML logging. See comments in
3054          * set_spte. But fast_page_fault is very unlikely to happen with PML
3055          * enabled, so we do not do this. This might result in the same GPA
3056          * to be logged in PML buffer again when the write really happens, and
3057          * eventually to be called by mark_page_dirty twice. But it's also no
3058          * harm. This also avoids the TLB flush needed after setting dirty bit
3059          * so non-PML cases won't be impacted.
3060          *
3061          * Compare with set_spte where instead shadow_dirty_mask is set.
3062          */
3063         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3064                 return false;
3065
3066         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3067                 /*
3068                  * The gfn of direct spte is stable since it is
3069                  * calculated by sp->gfn.
3070                  */
3071                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3072                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3073         }
3074
3075         return true;
3076 }
3077
3078 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3079 {
3080         if (fault_err_code & PFERR_FETCH_MASK)
3081                 return is_executable_pte(spte);
3082
3083         if (fault_err_code & PFERR_WRITE_MASK)
3084                 return is_writable_pte(spte);
3085
3086         /* Fault was on Read access */
3087         return spte & PT_PRESENT_MASK;
3088 }
3089
3090 /*
3091  * Return value:
3092  * - true: let the vcpu to access on the same address again.
3093  * - false: let the real page fault path to fix it.
3094  */
3095 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3096                             u32 error_code)
3097 {
3098         struct kvm_shadow_walk_iterator iterator;
3099         struct kvm_mmu_page *sp;
3100         bool fault_handled = false;
3101         u64 spte = 0ull;
3102         uint retry_count = 0;
3103
3104         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3105                 return false;
3106
3107         if (!page_fault_can_be_fast(error_code))
3108                 return false;
3109
3110         walk_shadow_page_lockless_begin(vcpu);
3111
3112         do {
3113                 u64 new_spte;
3114
3115                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3116                         if (!is_shadow_present_pte(spte) ||
3117                             iterator.level < level)
3118                                 break;
3119
3120                 sp = page_header(__pa(iterator.sptep));
3121                 if (!is_last_spte(spte, sp->role.level))
3122                         break;
3123
3124                 /*
3125                  * Check whether the memory access that caused the fault would
3126                  * still cause it if it were to be performed right now. If not,
3127                  * then this is a spurious fault caused by TLB lazily flushed,
3128                  * or some other CPU has already fixed the PTE after the
3129                  * current CPU took the fault.
3130                  *
3131                  * Need not check the access of upper level table entries since
3132                  * they are always ACC_ALL.
3133                  */
3134                 if (is_access_allowed(error_code, spte)) {
3135                         fault_handled = true;
3136                         break;
3137                 }
3138
3139                 new_spte = spte;
3140
3141                 if (is_access_track_spte(spte))
3142                         new_spte = restore_acc_track_spte(new_spte);
3143
3144                 /*
3145                  * Currently, to simplify the code, write-protection can
3146                  * be removed in the fast path only if the SPTE was
3147                  * write-protected for dirty-logging or access tracking.
3148                  */
3149                 if ((error_code & PFERR_WRITE_MASK) &&
3150                     spte_can_locklessly_be_made_writable(spte))
3151                 {
3152                         new_spte |= PT_WRITABLE_MASK;
3153
3154                         /*
3155                          * Do not fix write-permission on the large spte.  Since
3156                          * we only dirty the first page into the dirty-bitmap in
3157                          * fast_pf_fix_direct_spte(), other pages are missed
3158                          * if its slot has dirty logging enabled.
3159                          *
3160                          * Instead, we let the slow page fault path create a
3161                          * normal spte to fix the access.
3162                          *
3163                          * See the comments in kvm_arch_commit_memory_region().
3164                          */
3165                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3166                                 break;
3167                 }
3168
3169                 /* Verify that the fault can be handled in the fast path */
3170                 if (new_spte == spte ||
3171                     !is_access_allowed(error_code, new_spte))
3172                         break;
3173
3174                 /*
3175                  * Currently, fast page fault only works for direct mapping
3176                  * since the gfn is not stable for indirect shadow page. See
3177                  * Documentation/virtual/kvm/locking.txt to get more detail.
3178                  */
3179                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3180                                                         iterator.sptep, spte,
3181                                                         new_spte);
3182                 if (fault_handled)
3183                         break;
3184
3185                 if (++retry_count > 4) {
3186                         printk_once(KERN_WARNING
3187                                 "kvm: Fast #PF retrying more than 4 times.\n");
3188                         break;
3189                 }
3190
3191         } while (true);
3192
3193         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3194                               spte, fault_handled);
3195         walk_shadow_page_lockless_end(vcpu);
3196
3197         return fault_handled;
3198 }
3199
3200 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3201                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3202 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3203
3204 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3205                          gfn_t gfn, bool prefault)
3206 {
3207         int r;
3208         int level;
3209         bool force_pt_level = false;
3210         kvm_pfn_t pfn;
3211         unsigned long mmu_seq;
3212         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3213
3214         level = mapping_level(vcpu, gfn, &force_pt_level);
3215         if (likely(!force_pt_level)) {
3216                 /*
3217                  * This path builds a PAE pagetable - so we can map
3218                  * 2mb pages at maximum. Therefore check if the level
3219                  * is larger than that.
3220                  */
3221                 if (level > PT_DIRECTORY_LEVEL)
3222                         level = PT_DIRECTORY_LEVEL;
3223
3224                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3225         }
3226
3227         if (fast_page_fault(vcpu, v, level, error_code))
3228                 return 0;
3229
3230         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3231         smp_rmb();
3232
3233         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3234                 return 0;
3235
3236         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3237                 return r;
3238
3239         spin_lock(&vcpu->kvm->mmu_lock);
3240         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3241                 goto out_unlock;
3242         make_mmu_pages_available(vcpu);
3243         if (likely(!force_pt_level))
3244                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3245         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3246         spin_unlock(&vcpu->kvm->mmu_lock);
3247
3248         return r;
3249
3250 out_unlock:
3251         spin_unlock(&vcpu->kvm->mmu_lock);
3252         kvm_release_pfn_clean(pfn);
3253         return 0;
3254 }
3255
3256
3257 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3258 {
3259         int i;
3260         struct kvm_mmu_page *sp;
3261         LIST_HEAD(invalid_list);
3262
3263         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3264                 return;
3265
3266         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3267             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3268              vcpu->arch.mmu.direct_map)) {
3269                 hpa_t root = vcpu->arch.mmu.root_hpa;
3270
3271                 spin_lock(&vcpu->kvm->mmu_lock);
3272                 sp = page_header(root);
3273                 --sp->root_count;
3274                 if (!sp->root_count && sp->role.invalid) {
3275                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3276                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3277                 }
3278                 spin_unlock(&vcpu->kvm->mmu_lock);
3279                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3280                 return;
3281         }
3282
3283         spin_lock(&vcpu->kvm->mmu_lock);
3284         for (i = 0; i < 4; ++i) {
3285                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3286
3287                 if (root) {
3288                         root &= PT64_BASE_ADDR_MASK;
3289                         sp = page_header(root);
3290                         --sp->root_count;
3291                         if (!sp->root_count && sp->role.invalid)
3292                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3293                                                          &invalid_list);
3294                 }
3295                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3296         }
3297         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3298         spin_unlock(&vcpu->kvm->mmu_lock);
3299         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3300 }
3301
3302 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3303 {
3304         int ret = 0;
3305
3306         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3307                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3308                 ret = 1;
3309         }
3310
3311         return ret;
3312 }
3313
3314 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3315 {
3316         struct kvm_mmu_page *sp;
3317         unsigned i;
3318
3319         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3320                 spin_lock(&vcpu->kvm->mmu_lock);
3321                 make_mmu_pages_available(vcpu);
3322                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3323                 ++sp->root_count;
3324                 spin_unlock(&vcpu->kvm->mmu_lock);
3325                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3326         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3327                 for (i = 0; i < 4; ++i) {
3328                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3329
3330                         MMU_WARN_ON(VALID_PAGE(root));
3331                         spin_lock(&vcpu->kvm->mmu_lock);
3332                         make_mmu_pages_available(vcpu);
3333                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3334                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3335                         root = __pa(sp->spt);
3336                         ++sp->root_count;
3337                         spin_unlock(&vcpu->kvm->mmu_lock);
3338                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3339                 }
3340                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3341         } else
3342                 BUG();
3343
3344         return 0;
3345 }
3346
3347 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3348 {
3349         struct kvm_mmu_page *sp;
3350         u64 pdptr, pm_mask;
3351         gfn_t root_gfn;
3352         int i;
3353
3354         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3355
3356         if (mmu_check_root(vcpu, root_gfn))
3357                 return 1;
3358
3359         /*
3360          * Do we shadow a long mode page table? If so we need to
3361          * write-protect the guests page table root.
3362          */
3363         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3364                 hpa_t root = vcpu->arch.mmu.root_hpa;
3365
3366                 MMU_WARN_ON(VALID_PAGE(root));
3367
3368                 spin_lock(&vcpu->kvm->mmu_lock);
3369                 make_mmu_pages_available(vcpu);
3370                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3371                                       0, ACC_ALL);
3372                 root = __pa(sp->spt);
3373                 ++sp->root_count;
3374                 spin_unlock(&vcpu->kvm->mmu_lock);
3375                 vcpu->arch.mmu.root_hpa = root;
3376                 return 0;
3377         }
3378
3379         /*
3380          * We shadow a 32 bit page table. This may be a legacy 2-level
3381          * or a PAE 3-level page table. In either case we need to be aware that
3382          * the shadow page table may be a PAE or a long mode page table.
3383          */
3384         pm_mask = PT_PRESENT_MASK;
3385         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3386                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3387
3388         for (i = 0; i < 4; ++i) {
3389                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3390
3391                 MMU_WARN_ON(VALID_PAGE(root));
3392                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3393                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3394                         if (!(pdptr & PT_PRESENT_MASK)) {
3395                                 vcpu->arch.mmu.pae_root[i] = 0;
3396                                 continue;
3397                         }
3398                         root_gfn = pdptr >> PAGE_SHIFT;
3399                         if (mmu_check_root(vcpu, root_gfn))
3400                                 return 1;
3401                 }
3402                 spin_lock(&vcpu->kvm->mmu_lock);
3403                 make_mmu_pages_available(vcpu);
3404                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3405                                       0, ACC_ALL);
3406                 root = __pa(sp->spt);
3407                 ++sp->root_count;
3408                 spin_unlock(&vcpu->kvm->mmu_lock);
3409
3410                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3411         }
3412         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3413
3414         /*
3415          * If we shadow a 32 bit page table with a long mode page
3416          * table we enter this path.
3417          */
3418         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3419                 if (vcpu->arch.mmu.lm_root == NULL) {
3420                         /*
3421                          * The additional page necessary for this is only
3422                          * allocated on demand.
3423                          */
3424
3425                         u64 *lm_root;
3426
3427                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3428                         if (lm_root == NULL)
3429                                 return 1;
3430
3431                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3432
3433                         vcpu->arch.mmu.lm_root = lm_root;
3434                 }
3435
3436                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3437         }
3438
3439         return 0;
3440 }
3441
3442 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3443 {
3444         if (vcpu->arch.mmu.direct_map)
3445                 return mmu_alloc_direct_roots(vcpu);
3446         else
3447                 return mmu_alloc_shadow_roots(vcpu);
3448 }
3449
3450 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3451 {
3452         int i;
3453         struct kvm_mmu_page *sp;
3454
3455         if (vcpu->arch.mmu.direct_map)
3456                 return;
3457
3458         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3459                 return;
3460
3461         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3462         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3463         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3464                 hpa_t root = vcpu->arch.mmu.root_hpa;
3465                 sp = page_header(root);
3466                 mmu_sync_children(vcpu, sp);
3467                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3468                 return;
3469         }
3470         for (i = 0; i < 4; ++i) {
3471                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3472
3473                 if (root && VALID_PAGE(root)) {
3474                         root &= PT64_BASE_ADDR_MASK;
3475                         sp = page_header(root);
3476                         mmu_sync_children(vcpu, sp);
3477                 }
3478         }
3479         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3480 }
3481
3482 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3483 {
3484         spin_lock(&vcpu->kvm->mmu_lock);
3485         mmu_sync_roots(vcpu);
3486         spin_unlock(&vcpu->kvm->mmu_lock);
3487 }
3488 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3489
3490 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3491                                   u32 access, struct x86_exception *exception)
3492 {
3493         if (exception)
3494                 exception->error_code = 0;
3495         return vaddr;
3496 }
3497
3498 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3499                                          u32 access,
3500                                          struct x86_exception *exception)
3501 {
3502         if (exception)
3503                 exception->error_code = 0;
3504         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3505 }
3506
3507 static bool
3508 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3509 {
3510         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3511
3512         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3513                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3514 }
3515
3516 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3517 {
3518         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3519 }
3520
3521 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3522 {
3523         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3524 }
3525
3526 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3527 {
3528         if (direct)
3529                 return vcpu_match_mmio_gpa(vcpu, addr);
3530
3531         return vcpu_match_mmio_gva(vcpu, addr);
3532 }
3533
3534 /* return true if reserved bit is detected on spte. */
3535 static bool
3536 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3537 {
3538         struct kvm_shadow_walk_iterator iterator;
3539         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3540         int root, leaf;
3541         bool reserved = false;
3542
3543         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3544                 goto exit;
3545
3546         walk_shadow_page_lockless_begin(vcpu);
3547
3548         for (shadow_walk_init(&iterator, vcpu, addr),
3549                  leaf = root = iterator.level;
3550              shadow_walk_okay(&iterator);
3551              __shadow_walk_next(&iterator, spte)) {
3552                 spte = mmu_spte_get_lockless(iterator.sptep);
3553
3554                 sptes[leaf - 1] = spte;
3555                 leaf--;
3556
3557                 if (!is_shadow_present_pte(spte))
3558                         break;
3559
3560                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3561                                                     iterator.level);
3562         }
3563
3564         walk_shadow_page_lockless_end(vcpu);
3565
3566         if (reserved) {
3567                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3568                        __func__, addr);
3569                 while (root > leaf) {
3570                         pr_err("------ spte 0x%llx level %d.\n",
3571                                sptes[root - 1], root);
3572                         root--;
3573                 }
3574         }
3575 exit:
3576         *sptep = spte;
3577         return reserved;
3578 }
3579
3580 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3581 {
3582         u64 spte;
3583         bool reserved;
3584
3585         if (mmio_info_in_cache(vcpu, addr, direct))
3586                 return RET_MMIO_PF_EMULATE;
3587
3588         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3589         if (WARN_ON(reserved))
3590                 return RET_MMIO_PF_BUG;
3591
3592         if (is_mmio_spte(spte)) {
3593                 gfn_t gfn = get_mmio_spte_gfn(spte);
3594                 unsigned access = get_mmio_spte_access(spte);
3595
3596                 if (!check_mmio_spte(vcpu, spte))
3597                         return RET_MMIO_PF_INVALID;
3598
3599                 if (direct)
3600                         addr = 0;
3601
3602                 trace_handle_mmio_page_fault(addr, gfn, access);
3603                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3604                 return RET_MMIO_PF_EMULATE;
3605         }
3606
3607         /*
3608          * If the page table is zapped by other cpus, let CPU fault again on
3609          * the address.
3610          */
3611         return RET_MMIO_PF_RETRY;
3612 }
3613 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3614
3615 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3616                                          u32 error_code, gfn_t gfn)
3617 {
3618         if (unlikely(error_code & PFERR_RSVD_MASK))
3619                 return false;
3620
3621         if (!(error_code & PFERR_PRESENT_MASK) ||
3622               !(error_code & PFERR_WRITE_MASK))
3623                 return false;
3624
3625         /*
3626          * guest is writing the page which is write tracked which can
3627          * not be fixed by page fault handler.
3628          */
3629         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3630                 return true;
3631
3632         return false;
3633 }
3634
3635 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3636 {
3637         struct kvm_shadow_walk_iterator iterator;
3638         u64 spte;
3639
3640         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3641                 return;
3642
3643         walk_shadow_page_lockless_begin(vcpu);
3644         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3645                 clear_sp_write_flooding_count(iterator.sptep);
3646                 if (!is_shadow_present_pte(spte))
3647                         break;
3648         }
3649         walk_shadow_page_lockless_end(vcpu);
3650 }
3651
3652 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3653                                 u32 error_code, bool prefault)
3654 {
3655         gfn_t gfn = gva >> PAGE_SHIFT;
3656         int r;
3657
3658         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3659
3660         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3661                 return 1;
3662
3663         r = mmu_topup_memory_caches(vcpu);
3664         if (r)
3665                 return r;
3666
3667         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3668
3669
3670         return nonpaging_map(vcpu, gva & PAGE_MASK,
3671                              error_code, gfn, prefault);
3672 }
3673
3674 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3675 {
3676         struct kvm_arch_async_pf arch;
3677
3678         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3679         arch.gfn = gfn;
3680         arch.direct_map = vcpu->arch.mmu.direct_map;
3681         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3682
3683         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3684 }
3685
3686 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3687 {
3688         if (unlikely(!lapic_in_kernel(vcpu) ||
3689                      kvm_event_needs_reinjection(vcpu)))
3690                 return false;
3691
3692         return kvm_x86_ops->interrupt_allowed(vcpu);
3693 }
3694
3695 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3696                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3697 {
3698         struct kvm_memory_slot *slot;
3699         bool async;
3700
3701         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3702         async = false;
3703         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3704         if (!async)
3705                 return false; /* *pfn has correct page already */
3706
3707         if (!prefault && can_do_async_pf(vcpu)) {
3708                 trace_kvm_try_async_get_page(gva, gfn);
3709                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3710                         trace_kvm_async_pf_doublefault(gva, gfn);
3711                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3712                         return true;
3713                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3714                         return true;
3715         }
3716
3717         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3718         return false;
3719 }
3720
3721 static bool
3722 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3723 {
3724         int page_num = KVM_PAGES_PER_HPAGE(level);
3725
3726         gfn &= ~(page_num - 1);
3727
3728         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3729 }
3730
3731 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3732                           bool prefault)
3733 {
3734         kvm_pfn_t pfn;
3735         int r;
3736         int level;
3737         bool force_pt_level;
3738         gfn_t gfn = gpa >> PAGE_SHIFT;
3739         unsigned long mmu_seq;
3740         int write = error_code & PFERR_WRITE_MASK;
3741         bool map_writable;
3742
3743         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3744
3745         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3746                 return 1;
3747
3748         r = mmu_topup_memory_caches(vcpu);
3749         if (r)
3750                 return r;
3751
3752         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3753                                                            PT_DIRECTORY_LEVEL);
3754         level = mapping_level(vcpu, gfn, &force_pt_level);
3755         if (likely(!force_pt_level)) {
3756                 if (level > PT_DIRECTORY_LEVEL &&
3757                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3758                         level = PT_DIRECTORY_LEVEL;
3759                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3760         }
3761
3762         if (fast_page_fault(vcpu, gpa, level, error_code))
3763                 return 0;
3764
3765         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3766         smp_rmb();
3767
3768         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3769                 return 0;
3770
3771         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3772                 return r;
3773
3774         spin_lock(&vcpu->kvm->mmu_lock);
3775         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3776                 goto out_unlock;
3777         make_mmu_pages_available(vcpu);
3778         if (likely(!force_pt_level))
3779                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3780         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3781         spin_unlock(&vcpu->kvm->mmu_lock);
3782
3783         return r;
3784
3785 out_unlock:
3786         spin_unlock(&vcpu->kvm->mmu_lock);
3787         kvm_release_pfn_clean(pfn);
3788         return 0;
3789 }
3790
3791 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3792                                    struct kvm_mmu *context)
3793 {
3794         context->page_fault = nonpaging_page_fault;
3795         context->gva_to_gpa = nonpaging_gva_to_gpa;
3796         context->sync_page = nonpaging_sync_page;
3797         context->invlpg = nonpaging_invlpg;
3798         context->update_pte = nonpaging_update_pte;
3799         context->root_level = 0;
3800         context->shadow_root_level = PT32E_ROOT_LEVEL;
3801         context->root_hpa = INVALID_PAGE;
3802         context->direct_map = true;
3803         context->nx = false;
3804 }
3805
3806 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3807 {
3808         mmu_free_roots(vcpu);
3809 }
3810
3811 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3812 {
3813         return kvm_read_cr3(vcpu);
3814 }
3815
3816 static void inject_page_fault(struct kvm_vcpu *vcpu,
3817                               struct x86_exception *fault)
3818 {
3819         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3820 }
3821
3822 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3823                            unsigned access, int *nr_present)
3824 {
3825         if (unlikely(is_mmio_spte(*sptep))) {
3826                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3827                         mmu_spte_clear_no_track(sptep);
3828                         return true;
3829                 }
3830
3831                 (*nr_present)++;
3832                 mark_mmio_spte(vcpu, sptep, gfn, access);
3833                 return true;
3834         }
3835
3836         return false;
3837 }
3838
3839 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3840                                 unsigned level, unsigned gpte)
3841 {
3842         /*
3843          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3844          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3845          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3846          */
3847         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3848
3849         /*
3850          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3851          * If it is clear, there are no large pages at this level, so clear
3852          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3853          */
3854         gpte &= level - mmu->last_nonleaf_level;
3855
3856         return gpte & PT_PAGE_SIZE_MASK;
3857 }
3858
3859 #define PTTYPE_EPT 18 /* arbitrary */
3860 #define PTTYPE PTTYPE_EPT
3861 #include "paging_tmpl.h"
3862 #undef PTTYPE
3863
3864 #define PTTYPE 64
3865 #include "paging_tmpl.h"
3866 #undef PTTYPE
3867
3868 #define PTTYPE 32
3869 #include "paging_tmpl.h"
3870 #undef PTTYPE
3871
3872 static void
3873 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3874                         struct rsvd_bits_validate *rsvd_check,
3875                         int maxphyaddr, int level, bool nx, bool gbpages,
3876                         bool pse, bool amd)
3877 {
3878         u64 exb_bit_rsvd = 0;
3879         u64 gbpages_bit_rsvd = 0;
3880         u64 nonleaf_bit8_rsvd = 0;
3881
3882         rsvd_check->bad_mt_xwr = 0;
3883
3884         if (!nx)
3885                 exb_bit_rsvd = rsvd_bits(63, 63);
3886         if (!gbpages)
3887                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3888
3889         /*
3890          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3891          * leaf entries) on AMD CPUs only.
3892          */
3893         if (amd)
3894                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3895
3896         switch (level) {
3897         case PT32_ROOT_LEVEL:
3898                 /* no rsvd bits for 2 level 4K page table entries */
3899                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3900                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3901                 rsvd_check->rsvd_bits_mask[1][0] =
3902                         rsvd_check->rsvd_bits_mask[0][0];
3903
3904                 if (!pse) {
3905                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3906                         break;
3907                 }
3908
3909                 if (is_cpuid_PSE36())
3910                         /* 36bits PSE 4MB page */
3911                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3912                 else
3913                         /* 32 bits PSE 4MB page */
3914                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3915                 break;
3916         case PT32E_ROOT_LEVEL:
3917                 rsvd_check->rsvd_bits_mask[0][2] =
3918                         rsvd_bits(maxphyaddr, 63) |
3919                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3920                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3921                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3922                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3923                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3924                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3925                         rsvd_bits(maxphyaddr, 62) |
3926                         rsvd_bits(13, 20);              /* large page */
3927                 rsvd_check->rsvd_bits_mask[1][0] =
3928                         rsvd_check->rsvd_bits_mask[0][0];
3929                 break;
3930         case PT64_ROOT_LEVEL:
3931                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3932                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3933                         rsvd_bits(maxphyaddr, 51);
3934                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3935                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3936                         rsvd_bits(maxphyaddr, 51);
3937                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3938                         rsvd_bits(maxphyaddr, 51);
3939                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3940                         rsvd_bits(maxphyaddr, 51);
3941                 rsvd_check->rsvd_bits_mask[1][3] =
3942                         rsvd_check->rsvd_bits_mask[0][3];
3943                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3944                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3945                         rsvd_bits(13, 29);
3946                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3947                         rsvd_bits(maxphyaddr, 51) |
3948                         rsvd_bits(13, 20);              /* large page */
3949                 rsvd_check->rsvd_bits_mask[1][0] =
3950                         rsvd_check->rsvd_bits_mask[0][0];
3951                 break;
3952         }
3953 }
3954
3955 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3956                                   struct kvm_mmu *context)
3957 {
3958         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3959                                 cpuid_maxphyaddr(vcpu), context->root_level,
3960                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3961                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3962 }
3963
3964 static void
3965 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3966                             int maxphyaddr, bool execonly)
3967 {
3968         u64 bad_mt_xwr;
3969
3970         rsvd_check->rsvd_bits_mask[0][3] =
3971                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3972         rsvd_check->rsvd_bits_mask[0][2] =
3973                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3974         rsvd_check->rsvd_bits_mask[0][1] =
3975                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3976         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3977
3978         /* large page */
3979         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3980         rsvd_check->rsvd_bits_mask[1][2] =
3981                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3982         rsvd_check->rsvd_bits_mask[1][1] =
3983                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3984         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3985
3986         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3987         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3988         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3989         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3990         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3991         if (!execonly) {
3992                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3993                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3994         }
3995         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3996 }
3997
3998 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3999                 struct kvm_mmu *context, bool execonly)
4000 {
4001         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4002                                     cpuid_maxphyaddr(vcpu), execonly);
4003 }
4004
4005 /*
4006  * the page table on host is the shadow page table for the page
4007  * table in guest or amd nested guest, its mmu features completely
4008  * follow the features in guest.
4009  */
4010 void
4011 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4012 {
4013         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4014
4015         /*
4016          * Passing "true" to the last argument is okay; it adds a check
4017          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4018          */
4019         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4020                                 boot_cpu_data.x86_phys_bits,
4021                                 context->shadow_root_level, uses_nx,
4022                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4023                                 true);
4024 }
4025 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4026
4027 static inline bool boot_cpu_is_amd(void)
4028 {
4029         WARN_ON_ONCE(!tdp_enabled);
4030         return shadow_x_mask == 0;
4031 }
4032
4033 /*
4034  * the direct page table on host, use as much mmu features as
4035  * possible, however, kvm currently does not do execution-protection.
4036  */
4037 static void
4038 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4039                                 struct kvm_mmu *context)
4040 {
4041         if (boot_cpu_is_amd())
4042                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4043                                         boot_cpu_data.x86_phys_bits,
4044                                         context->shadow_root_level, false,
4045                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4046                                         true, true);
4047         else
4048                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4049                                             boot_cpu_data.x86_phys_bits,
4050                                             false);
4051
4052 }
4053
4054 /*
4055  * as the comments in reset_shadow_zero_bits_mask() except it
4056  * is the shadow page table for intel nested guest.
4057  */
4058 static void
4059 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4060                                 struct kvm_mmu *context, bool execonly)
4061 {
4062         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4063                                     boot_cpu_data.x86_phys_bits, execonly);
4064 }
4065
4066 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4067                                       struct kvm_mmu *mmu, bool ept)
4068 {
4069         unsigned bit, byte, pfec;
4070         u8 map;
4071         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4072
4073         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4074         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4075         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4076                 pfec = byte << 1;
4077                 map = 0;
4078                 wf = pfec & PFERR_WRITE_MASK;
4079                 uf = pfec & PFERR_USER_MASK;
4080                 ff = pfec & PFERR_FETCH_MASK;
4081                 /*
4082                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4083                  * subject to SMAP restrictions, and cleared otherwise. The
4084                  * bit is only meaningful if the SMAP bit is set in CR4.
4085                  */
4086                 smapf = !(pfec & PFERR_RSVD_MASK);
4087                 for (bit = 0; bit < 8; ++bit) {
4088                         x = bit & ACC_EXEC_MASK;
4089                         w = bit & ACC_WRITE_MASK;
4090                         u = bit & ACC_USER_MASK;
4091
4092                         if (!ept) {
4093                                 /* Not really needed: !nx will cause pte.nx to fault */
4094                                 x |= !mmu->nx;
4095                                 /* Allow supervisor writes if !cr0.wp */
4096                                 w |= !is_write_protection(vcpu) && !uf;
4097                                 /* Disallow supervisor fetches of user code if cr4.smep */
4098                                 x &= !(cr4_smep && u && !uf);
4099
4100                                 /*
4101                                  * SMAP:kernel-mode data accesses from user-mode
4102                                  * mappings should fault. A fault is considered
4103                                  * as a SMAP violation if all of the following
4104                                  * conditions are ture:
4105                                  *   - X86_CR4_SMAP is set in CR4
4106                                  *   - A user page is accessed
4107                                  *   - Page fault in kernel mode
4108                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
4109                                  *
4110                                  *   Here, we cover the first three conditions.
4111                                  *   The fourth is computed dynamically in
4112                                  *   permission_fault() and is in smapf.
4113                                  *
4114                                  *   Also, SMAP does not affect instruction
4115                                  *   fetches, add the !ff check here to make it
4116                                  *   clearer.
4117                                  */
4118                                 smap = cr4_smap && u && !uf && !ff;
4119                         }
4120
4121                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4122                                 (smapf && smap);
4123                         map |= fault << bit;
4124                 }
4125                 mmu->permissions[byte] = map;
4126         }
4127 }
4128
4129 /*
4130 * PKU is an additional mechanism by which the paging controls access to
4131 * user-mode addresses based on the value in the PKRU register.  Protection
4132 * key violations are reported through a bit in the page fault error code.
4133 * Unlike other bits of the error code, the PK bit is not known at the
4134 * call site of e.g. gva_to_gpa; it must be computed directly in
4135 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4136 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4137 *
4138 * In particular the following conditions come from the error code, the
4139 * page tables and the machine state:
4140 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4141 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4142 * - PK is always zero if U=0 in the page tables
4143 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4144 *
4145 * The PKRU bitmask caches the result of these four conditions.  The error
4146 * code (minus the P bit) and the page table's U bit form an index into the
4147 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4148 * with the two bits of the PKRU register corresponding to the protection key.
4149 * For the first three conditions above the bits will be 00, thus masking
4150 * away both AD and WD.  For all reads or if the last condition holds, WD
4151 * only will be masked away.
4152 */
4153 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4154                                 bool ept)
4155 {
4156         unsigned bit;
4157         bool wp;
4158
4159         if (ept) {
4160                 mmu->pkru_mask = 0;
4161                 return;
4162         }
4163
4164         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4165         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4166                 mmu->pkru_mask = 0;
4167                 return;
4168         }
4169
4170         wp = is_write_protection(vcpu);
4171
4172         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4173                 unsigned pfec, pkey_bits;
4174                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4175
4176                 pfec = bit << 1;
4177                 ff = pfec & PFERR_FETCH_MASK;
4178                 uf = pfec & PFERR_USER_MASK;
4179                 wf = pfec & PFERR_WRITE_MASK;
4180
4181                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4182                 pte_user = pfec & PFERR_RSVD_MASK;
4183
4184                 /*
4185                  * Only need to check the access which is not an
4186                  * instruction fetch and is to a user page.
4187                  */
4188                 check_pkey = (!ff && pte_user);
4189                 /*
4190                  * write access is controlled by PKRU if it is a
4191                  * user access or CR0.WP = 1.
4192                  */
4193                 check_write = check_pkey && wf && (uf || wp);
4194
4195                 /* PKRU.AD stops both read and write access. */
4196                 pkey_bits = !!check_pkey;
4197                 /* PKRU.WD stops write access. */
4198                 pkey_bits |= (!!check_write) << 1;
4199
4200                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4201         }
4202 }
4203
4204 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4205 {
4206         unsigned root_level = mmu->root_level;
4207
4208         mmu->last_nonleaf_level = root_level;
4209         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4210                 mmu->last_nonleaf_level++;
4211 }
4212
4213 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4214                                          struct kvm_mmu *context,
4215                                          int level)
4216 {
4217         context->nx = is_nx(vcpu);
4218         context->root_level = level;
4219
4220         reset_rsvds_bits_mask(vcpu, context);
4221         update_permission_bitmask(vcpu, context, false);
4222         update_pkru_bitmask(vcpu, context, false);
4223         update_last_nonleaf_level(vcpu, context);
4224
4225         MMU_WARN_ON(!is_pae(vcpu));
4226         context->page_fault = paging64_page_fault;
4227         context->gva_to_gpa = paging64_gva_to_gpa;
4228         context->sync_page = paging64_sync_page;
4229         context->invlpg = paging64_invlpg;
4230         context->update_pte = paging64_update_pte;
4231         context->shadow_root_level = level;
4232         context->root_hpa = INVALID_PAGE;
4233         context->direct_map = false;
4234 }
4235
4236 static void paging64_init_context(struct kvm_vcpu *vcpu,
4237                                   struct kvm_mmu *context)
4238 {
4239         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4240 }
4241
4242 static void paging32_init_context(struct kvm_vcpu *vcpu,
4243                                   struct kvm_mmu *context)
4244 {
4245         context->nx = false;
4246         context->root_level = PT32_ROOT_LEVEL;
4247
4248         reset_rsvds_bits_mask(vcpu, context);
4249         update_permission_bitmask(vcpu, context, false);
4250         update_pkru_bitmask(vcpu, context, false);
4251         update_last_nonleaf_level(vcpu, context);
4252
4253         context->page_fault = paging32_page_fault;
4254         context->gva_to_gpa = paging32_gva_to_gpa;
4255         context->sync_page = paging32_sync_page;
4256         context->invlpg = paging32_invlpg;
4257         context->update_pte = paging32_update_pte;
4258         context->shadow_root_level = PT32E_ROOT_LEVEL;
4259         context->root_hpa = INVALID_PAGE;
4260         context->direct_map = false;
4261 }
4262
4263 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4264                                    struct kvm_mmu *context)
4265 {
4266         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4267 }
4268
4269 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4270 {
4271         struct kvm_mmu *context = &vcpu->arch.mmu;
4272
4273         context->base_role.word = 0;
4274         context->base_role.smm = is_smm(vcpu);
4275         context->page_fault = tdp_page_fault;
4276         context->sync_page = nonpaging_sync_page;
4277         context->invlpg = nonpaging_invlpg;
4278         context->update_pte = nonpaging_update_pte;
4279         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4280         context->root_hpa = INVALID_PAGE;
4281         context->direct_map = true;
4282         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4283         context->get_cr3 = get_cr3;
4284         context->get_pdptr = kvm_pdptr_read;
4285         context->inject_page_fault = kvm_inject_page_fault;
4286
4287         if (!is_paging(vcpu)) {
4288                 context->nx = false;
4289                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4290                 context->root_level = 0;
4291         } else if (is_long_mode(vcpu)) {
4292                 context->nx = is_nx(vcpu);
4293                 context->root_level = PT64_ROOT_LEVEL;
4294                 reset_rsvds_bits_mask(vcpu, context);
4295                 context->gva_to_gpa = paging64_gva_to_gpa;
4296         } else if (is_pae(vcpu)) {
4297                 context->nx = is_nx(vcpu);
4298                 context->root_level = PT32E_ROOT_LEVEL;
4299                 reset_rsvds_bits_mask(vcpu, context);
4300                 context->gva_to_gpa = paging64_gva_to_gpa;
4301         } else {
4302                 context->nx = false;
4303                 context->root_level = PT32_ROOT_LEVEL;
4304                 reset_rsvds_bits_mask(vcpu, context);
4305                 context->gva_to_gpa = paging32_gva_to_gpa;
4306         }
4307
4308         update_permission_bitmask(vcpu, context, false);
4309         update_pkru_bitmask(vcpu, context, false);
4310         update_last_nonleaf_level(vcpu, context);
4311         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4312 }
4313
4314 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4315 {
4316         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4317         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4318         struct kvm_mmu *context = &vcpu->arch.mmu;
4319
4320         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4321
4322         if (!is_paging(vcpu))
4323                 nonpaging_init_context(vcpu, context);
4324         else if (is_long_mode(vcpu))
4325                 paging64_init_context(vcpu, context);
4326         else if (is_pae(vcpu))
4327                 paging32E_init_context(vcpu, context);
4328         else
4329                 paging32_init_context(vcpu, context);
4330
4331         context->base_role.nxe = is_nx(vcpu);
4332         context->base_role.cr4_pae = !!is_pae(vcpu);
4333         context->base_role.cr0_wp  = is_write_protection(vcpu);
4334         context->base_role.smep_andnot_wp
4335                 = smep && !is_write_protection(vcpu);
4336         context->base_role.smap_andnot_wp
4337                 = smap && !is_write_protection(vcpu);
4338         context->base_role.smm = is_smm(vcpu);
4339         reset_shadow_zero_bits_mask(vcpu, context);
4340 }
4341 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4342
4343 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4344                              bool accessed_dirty)
4345 {
4346         struct kvm_mmu *context = &vcpu->arch.mmu;
4347
4348         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4349
4350         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4351
4352         context->nx = true;
4353         context->ept_ad = accessed_dirty;
4354         context->page_fault = ept_page_fault;
4355         context->gva_to_gpa = ept_gva_to_gpa;
4356         context->sync_page = ept_sync_page;
4357         context->invlpg = ept_invlpg;
4358         context->update_pte = ept_update_pte;
4359         context->root_level = context->shadow_root_level;
4360         context->root_hpa = INVALID_PAGE;
4361         context->direct_map = false;
4362
4363         update_permission_bitmask(vcpu, context, true);
4364         update_pkru_bitmask(vcpu, context, true);
4365         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4366         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4367 }
4368 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4369
4370 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4371 {
4372         struct kvm_mmu *context = &vcpu->arch.mmu;
4373
4374         kvm_init_shadow_mmu(vcpu);
4375         context->set_cr3           = kvm_x86_ops->set_cr3;
4376         context->get_cr3           = get_cr3;
4377         context->get_pdptr         = kvm_pdptr_read;
4378         context->inject_page_fault = kvm_inject_page_fault;
4379 }
4380
4381 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4382 {
4383         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4384
4385         g_context->get_cr3           = get_cr3;
4386         g_context->get_pdptr         = kvm_pdptr_read;
4387         g_context->inject_page_fault = kvm_inject_page_fault;
4388
4389         /*
4390          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4391          * L1's nested page tables (e.g. EPT12). The nested translation
4392          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4393          * L2's page tables as the first level of translation and L1's
4394          * nested page tables as the second level of translation. Basically
4395          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4396          */
4397         if (!is_paging(vcpu)) {
4398                 g_context->nx = false;
4399                 g_context->root_level = 0;
4400                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4401         } else if (is_long_mode(vcpu)) {
4402                 g_context->nx = is_nx(vcpu);
4403                 g_context->root_level = PT64_ROOT_LEVEL;
4404                 reset_rsvds_bits_mask(vcpu, g_context);
4405                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4406         } else if (is_pae(vcpu)) {
4407                 g_context->nx = is_nx(vcpu);
4408                 g_context->root_level = PT32E_ROOT_LEVEL;
4409                 reset_rsvds_bits_mask(vcpu, g_context);
4410                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4411         } else {
4412                 g_context->nx = false;
4413                 g_context->root_level = PT32_ROOT_LEVEL;
4414                 reset_rsvds_bits_mask(vcpu, g_context);
4415                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4416         }
4417
4418         update_permission_bitmask(vcpu, g_context, false);
4419         update_pkru_bitmask(vcpu, g_context, false);
4420         update_last_nonleaf_level(vcpu, g_context);
4421 }
4422
4423 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4424 {
4425         if (mmu_is_nested(vcpu))
4426                 init_kvm_nested_mmu(vcpu);
4427         else if (tdp_enabled)
4428                 init_kvm_tdp_mmu(vcpu);
4429         else
4430                 init_kvm_softmmu(vcpu);
4431 }
4432
4433 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4434 {
4435         kvm_mmu_unload(vcpu);
4436         init_kvm_mmu(vcpu);
4437 }
4438 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4439
4440 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4441 {
4442         int r;
4443
4444         r = mmu_topup_memory_caches(vcpu);
4445         if (r)
4446                 goto out;
4447         r = mmu_alloc_roots(vcpu);
4448         kvm_mmu_sync_roots(vcpu);
4449         if (r)
4450                 goto out;
4451         /* set_cr3() should ensure TLB has been flushed */
4452         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4453 out:
4454         return r;
4455 }
4456 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4457
4458 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4459 {
4460         mmu_free_roots(vcpu);
4461         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4462 }
4463 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4464
4465 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4466                                   struct kvm_mmu_page *sp, u64 *spte,
4467                                   const void *new)
4468 {
4469         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4470                 ++vcpu->kvm->stat.mmu_pde_zapped;
4471                 return;
4472         }
4473
4474         ++vcpu->kvm->stat.mmu_pte_updated;
4475         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4476 }
4477
4478 static bool need_remote_flush(u64 old, u64 new)
4479 {
4480         if (!is_shadow_present_pte(old))
4481                 return false;
4482         if (!is_shadow_present_pte(new))
4483                 return true;
4484         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4485                 return true;
4486         old ^= shadow_nx_mask;
4487         new ^= shadow_nx_mask;
4488         return (old & ~new & PT64_PERM_MASK) != 0;
4489 }
4490
4491 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4492                                     const u8 *new, int *bytes)
4493 {
4494         u64 gentry;
4495         int r;
4496
4497         /*
4498          * Assume that the pte write on a page table of the same type
4499          * as the current vcpu paging mode since we update the sptes only
4500          * when they have the same mode.
4501          */
4502         if (is_pae(vcpu) && *bytes == 4) {
4503                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4504                 *gpa &= ~(gpa_t)7;
4505                 *bytes = 8;
4506                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4507                 if (r)
4508                         gentry = 0;
4509                 new = (const u8 *)&gentry;
4510         }
4511
4512         switch (*bytes) {
4513         case 4:
4514                 gentry = *(const u32 *)new;
4515                 break;
4516         case 8:
4517                 gentry = *(const u64 *)new;
4518                 break;
4519         default:
4520                 gentry = 0;
4521                 break;
4522         }
4523
4524         return gentry;
4525 }
4526
4527 /*
4528  * If we're seeing too many writes to a page, it may no longer be a page table,
4529  * or we may be forking, in which case it is better to unmap the page.
4530  */
4531 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4532 {
4533         /*
4534          * Skip write-flooding detected for the sp whose level is 1, because
4535          * it can become unsync, then the guest page is not write-protected.
4536          */
4537         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4538                 return false;
4539
4540         atomic_inc(&sp->write_flooding_count);
4541         return atomic_read(&sp->write_flooding_count) >= 3;
4542 }
4543
4544 /*
4545  * Misaligned accesses are too much trouble to fix up; also, they usually
4546  * indicate a page is not used as a page table.
4547  */
4548 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4549                                     int bytes)
4550 {
4551         unsigned offset, pte_size, misaligned;
4552
4553         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4554                  gpa, bytes, sp->role.word);
4555
4556         offset = offset_in_page(gpa);
4557         pte_size = sp->role.cr4_pae ? 8 : 4;
4558
4559         /*
4560          * Sometimes, the OS only writes the last one bytes to update status
4561          * bits, for example, in linux, andb instruction is used in clear_bit().
4562          */
4563         if (!(offset & (pte_size - 1)) && bytes == 1)
4564                 return false;
4565
4566         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4567         misaligned |= bytes < 4;
4568
4569         return misaligned;
4570 }
4571
4572 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4573 {
4574         unsigned page_offset, quadrant;
4575         u64 *spte;
4576         int level;
4577
4578         page_offset = offset_in_page(gpa);
4579         level = sp->role.level;
4580         *nspte = 1;
4581         if (!sp->role.cr4_pae) {
4582                 page_offset <<= 1;      /* 32->64 */
4583                 /*
4584                  * A 32-bit pde maps 4MB while the shadow pdes map
4585                  * only 2MB.  So we need to double the offset again
4586                  * and zap two pdes instead of one.
4587                  */
4588                 if (level == PT32_ROOT_LEVEL) {
4589                         page_offset &= ~7; /* kill rounding error */
4590                         page_offset <<= 1;
4591                         *nspte = 2;
4592                 }
4593                 quadrant = page_offset >> PAGE_SHIFT;
4594                 page_offset &= ~PAGE_MASK;
4595                 if (quadrant != sp->role.quadrant)
4596                         return NULL;
4597         }
4598
4599         spte = &sp->spt[page_offset / sizeof(*spte)];
4600         return spte;
4601 }
4602
4603 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4604                               const u8 *new, int bytes,
4605                               struct kvm_page_track_notifier_node *node)
4606 {
4607         gfn_t gfn = gpa >> PAGE_SHIFT;
4608         struct kvm_mmu_page *sp;
4609         LIST_HEAD(invalid_list);
4610         u64 entry, gentry, *spte;
4611         int npte;
4612         bool remote_flush, local_flush;
4613         union kvm_mmu_page_role mask = { };
4614
4615         mask.cr0_wp = 1;
4616         mask.cr4_pae = 1;
4617         mask.nxe = 1;
4618         mask.smep_andnot_wp = 1;
4619         mask.smap_andnot_wp = 1;
4620         mask.smm = 1;
4621
4622         /*
4623          * If we don't have indirect shadow pages, it means no page is
4624          * write-protected, so we can exit simply.
4625          */
4626         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4627                 return;
4628
4629         remote_flush = local_flush = false;
4630
4631         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4632
4633         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4634
4635         /*
4636          * No need to care whether allocation memory is successful
4637          * or not since pte prefetch is skiped if it does not have
4638          * enough objects in the cache.
4639          */
4640         mmu_topup_memory_caches(vcpu);
4641
4642         spin_lock(&vcpu->kvm->mmu_lock);
4643         ++vcpu->kvm->stat.mmu_pte_write;
4644         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4645
4646         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4647                 if (detect_write_misaligned(sp, gpa, bytes) ||
4648                       detect_write_flooding(sp)) {
4649                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4650                         ++vcpu->kvm->stat.mmu_flooded;
4651                         continue;
4652                 }
4653
4654                 spte = get_written_sptes(sp, gpa, &npte);
4655                 if (!spte)
4656                         continue;
4657
4658                 local_flush = true;
4659                 while (npte--) {
4660                         entry = *spte;
4661                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4662                         if (gentry &&
4663                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4664                               & mask.word) && rmap_can_add(vcpu))
4665                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4666                         if (need_remote_flush(entry, *spte))
4667                                 remote_flush = true;
4668                         ++spte;
4669                 }
4670         }
4671         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4672         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4673         spin_unlock(&vcpu->kvm->mmu_lock);
4674 }
4675
4676 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4677 {
4678         gpa_t gpa;
4679         int r;
4680
4681         if (vcpu->arch.mmu.direct_map)
4682                 return 0;
4683
4684         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4685
4686         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4687
4688         return r;
4689 }
4690 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4691
4692 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4693 {
4694         LIST_HEAD(invalid_list);
4695
4696         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4697                 return;
4698
4699         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4700                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4701                         break;
4702
4703                 ++vcpu->kvm->stat.mmu_recycled;
4704         }
4705         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4706 }
4707
4708 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4709                        void *insn, int insn_len)
4710 {
4711         int r, emulation_type = EMULTYPE_RETRY;
4712         enum emulation_result er;
4713         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4714
4715         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4716                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4717                 if (r == RET_MMIO_PF_EMULATE) {
4718                         emulation_type = 0;
4719                         goto emulate;
4720                 }
4721                 if (r == RET_MMIO_PF_RETRY)
4722                         return 1;
4723                 if (r < 0)
4724                         return r;
4725         }
4726
4727         r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4728                                       false);
4729         if (r < 0)
4730                 return r;
4731         if (!r)
4732                 return 1;
4733
4734         /*
4735          * Before emulating the instruction, check if the error code
4736          * was due to a RO violation while translating the guest page.
4737          * This can occur when using nested virtualization with nested
4738          * paging in both guests. If true, we simply unprotect the page
4739          * and resume the guest.
4740          *
4741          * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4742          *       in PFERR_NEXT_GUEST_PAGE)
4743          */
4744         if (error_code == PFERR_NESTED_GUEST_PAGE) {
4745                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4746                 return 1;
4747         }
4748
4749         if (mmio_info_in_cache(vcpu, cr2, direct))
4750                 emulation_type = 0;
4751 emulate:
4752         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4753
4754         switch (er) {
4755         case EMULATE_DONE:
4756                 return 1;
4757         case EMULATE_USER_EXIT:
4758                 ++vcpu->stat.mmio_exits;
4759                 /* fall through */
4760         case EMULATE_FAIL:
4761                 return 0;
4762         default:
4763                 BUG();
4764         }
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4767
4768 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4769 {
4770         vcpu->arch.mmu.invlpg(vcpu, gva);
4771         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4772         ++vcpu->stat.invlpg;
4773 }
4774 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4775
4776 void kvm_enable_tdp(void)
4777 {
4778         tdp_enabled = true;
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4781
4782 void kvm_disable_tdp(void)
4783 {
4784         tdp_enabled = false;
4785 }
4786 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4787
4788 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4789 {
4790         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4791         if (vcpu->arch.mmu.lm_root != NULL)
4792                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4793 }
4794
4795 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4796 {
4797         struct page *page;
4798         int i;
4799
4800         /*
4801          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4802          * Therefore we need to allocate shadow page tables in the first
4803          * 4GB of memory, which happens to fit the DMA32 zone.
4804          */
4805         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4806         if (!page)
4807                 return -ENOMEM;
4808
4809         vcpu->arch.mmu.pae_root = page_address(page);
4810         for (i = 0; i < 4; ++i)
4811                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4812
4813         return 0;
4814 }
4815
4816 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4817 {
4818         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4819         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4820         vcpu->arch.mmu.translate_gpa = translate_gpa;
4821         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4822
4823         return alloc_mmu_pages(vcpu);
4824 }
4825
4826 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4827 {
4828         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4829
4830         init_kvm_mmu(vcpu);
4831 }
4832
4833 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4834                         struct kvm_memory_slot *slot,
4835                         struct kvm_page_track_notifier_node *node)
4836 {
4837         kvm_mmu_invalidate_zap_all_pages(kvm);
4838 }
4839
4840 void kvm_mmu_init_vm(struct kvm *kvm)
4841 {
4842         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4843
4844         node->track_write = kvm_mmu_pte_write;
4845         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4846         kvm_page_track_register_notifier(kvm, node);
4847 }
4848
4849 void kvm_mmu_uninit_vm(struct kvm *kvm)
4850 {
4851         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4852
4853         kvm_page_track_unregister_notifier(kvm, node);
4854 }
4855
4856 /* The return value indicates if tlb flush on all vcpus is needed. */
4857 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4858
4859 /* The caller should hold mmu-lock before calling this function. */
4860 static bool
4861 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4862                         slot_level_handler fn, int start_level, int end_level,
4863                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4864 {
4865         struct slot_rmap_walk_iterator iterator;
4866         bool flush = false;
4867
4868         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4869                         end_gfn, &iterator) {
4870                 if (iterator.rmap)
4871                         flush |= fn(kvm, iterator.rmap);
4872
4873                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4874                         if (flush && lock_flush_tlb) {
4875                                 kvm_flush_remote_tlbs(kvm);
4876                                 flush = false;
4877                         }
4878                         cond_resched_lock(&kvm->mmu_lock);
4879                 }
4880         }
4881
4882         if (flush && lock_flush_tlb) {
4883                 kvm_flush_remote_tlbs(kvm);
4884                 flush = false;
4885         }
4886
4887         return flush;
4888 }
4889
4890 static bool
4891 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4892                   slot_level_handler fn, int start_level, int end_level,
4893                   bool lock_flush_tlb)
4894 {
4895         return slot_handle_level_range(kvm, memslot, fn, start_level,
4896                         end_level, memslot->base_gfn,
4897                         memslot->base_gfn + memslot->npages - 1,
4898                         lock_flush_tlb);
4899 }
4900
4901 static bool
4902 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4903                       slot_level_handler fn, bool lock_flush_tlb)
4904 {
4905         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4906                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4907 }
4908
4909 static bool
4910 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4911                         slot_level_handler fn, bool lock_flush_tlb)
4912 {
4913         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4914                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4915 }
4916
4917 static bool
4918 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4919                  slot_level_handler fn, bool lock_flush_tlb)
4920 {
4921         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4922                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4923 }
4924
4925 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4926 {
4927         struct kvm_memslots *slots;
4928         struct kvm_memory_slot *memslot;
4929         int i;
4930
4931         spin_lock(&kvm->mmu_lock);
4932         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4933                 slots = __kvm_memslots(kvm, i);
4934                 kvm_for_each_memslot(memslot, slots) {
4935                         gfn_t start, end;
4936
4937                         start = max(gfn_start, memslot->base_gfn);
4938                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4939                         if (start >= end)
4940                                 continue;
4941
4942                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4943                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4944                                                 start, end - 1, true);
4945                 }
4946         }
4947
4948         spin_unlock(&kvm->mmu_lock);
4949 }
4950
4951 static bool slot_rmap_write_protect(struct kvm *kvm,
4952                                     struct kvm_rmap_head *rmap_head)
4953 {
4954         return __rmap_write_protect(kvm, rmap_head, false);
4955 }
4956
4957 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4958                                       struct kvm_memory_slot *memslot)
4959 {
4960         bool flush;
4961
4962         spin_lock(&kvm->mmu_lock);
4963         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4964                                       false);
4965         spin_unlock(&kvm->mmu_lock);
4966
4967         /*
4968          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4969          * which do tlb flush out of mmu-lock should be serialized by
4970          * kvm->slots_lock otherwise tlb flush would be missed.
4971          */
4972         lockdep_assert_held(&kvm->slots_lock);
4973
4974         /*
4975          * We can flush all the TLBs out of the mmu lock without TLB
4976          * corruption since we just change the spte from writable to
4977          * readonly so that we only need to care the case of changing
4978          * spte from present to present (changing the spte from present
4979          * to nonpresent will flush all the TLBs immediately), in other
4980          * words, the only case we care is mmu_spte_update() where we
4981          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4982          * instead of PT_WRITABLE_MASK, that means it does not depend
4983          * on PT_WRITABLE_MASK anymore.
4984          */
4985         if (flush)
4986                 kvm_flush_remote_tlbs(kvm);
4987 }
4988
4989 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4990                                          struct kvm_rmap_head *rmap_head)
4991 {
4992         u64 *sptep;
4993         struct rmap_iterator iter;
4994         int need_tlb_flush = 0;
4995         kvm_pfn_t pfn;
4996         struct kvm_mmu_page *sp;
4997
4998 restart:
4999         for_each_rmap_spte(rmap_head, &iter, sptep) {
5000                 sp = page_header(__pa(sptep));
5001                 pfn = spte_to_pfn(*sptep);
5002
5003                 /*
5004                  * We cannot do huge page mapping for indirect shadow pages,
5005                  * which are found on the last rmap (level = 1) when not using
5006                  * tdp; such shadow pages are synced with the page table in
5007                  * the guest, and the guest page table is using 4K page size
5008                  * mapping if the indirect sp has level = 1.
5009                  */
5010                 if (sp->role.direct &&
5011                         !kvm_is_reserved_pfn(pfn) &&
5012                         PageTransCompoundMap(pfn_to_page(pfn))) {
5013                         drop_spte(kvm, sptep);
5014                         need_tlb_flush = 1;
5015                         goto restart;
5016                 }
5017         }
5018
5019         return need_tlb_flush;
5020 }
5021
5022 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5023                                    const struct kvm_memory_slot *memslot)
5024 {
5025         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5026         spin_lock(&kvm->mmu_lock);
5027         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5028                          kvm_mmu_zap_collapsible_spte, true);
5029         spin_unlock(&kvm->mmu_lock);
5030 }
5031
5032 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5033                                    struct kvm_memory_slot *memslot)
5034 {
5035         bool flush;
5036
5037         spin_lock(&kvm->mmu_lock);
5038         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5039         spin_unlock(&kvm->mmu_lock);
5040
5041         lockdep_assert_held(&kvm->slots_lock);
5042
5043         /*
5044          * It's also safe to flush TLBs out of mmu lock here as currently this
5045          * function is only used for dirty logging, in which case flushing TLB
5046          * out of mmu lock also guarantees no dirty pages will be lost in
5047          * dirty_bitmap.
5048          */
5049         if (flush)
5050                 kvm_flush_remote_tlbs(kvm);
5051 }
5052 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5053
5054 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5055                                         struct kvm_memory_slot *memslot)
5056 {
5057         bool flush;
5058
5059         spin_lock(&kvm->mmu_lock);
5060         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5061                                         false);
5062         spin_unlock(&kvm->mmu_lock);
5063
5064         /* see kvm_mmu_slot_remove_write_access */
5065         lockdep_assert_held(&kvm->slots_lock);
5066
5067         if (flush)
5068                 kvm_flush_remote_tlbs(kvm);
5069 }
5070 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5071
5072 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5073                             struct kvm_memory_slot *memslot)
5074 {
5075         bool flush;
5076
5077         spin_lock(&kvm->mmu_lock);
5078         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5079         spin_unlock(&kvm->mmu_lock);
5080
5081         lockdep_assert_held(&kvm->slots_lock);
5082
5083         /* see kvm_mmu_slot_leaf_clear_dirty */
5084         if (flush)
5085                 kvm_flush_remote_tlbs(kvm);
5086 }
5087 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5088
5089 #define BATCH_ZAP_PAGES 10
5090 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5091 {
5092         struct kvm_mmu_page *sp, *node;
5093         int batch = 0;
5094
5095 restart:
5096         list_for_each_entry_safe_reverse(sp, node,
5097               &kvm->arch.active_mmu_pages, link) {
5098                 int ret;
5099
5100                 /*
5101                  * No obsolete page exists before new created page since
5102                  * active_mmu_pages is the FIFO list.
5103                  */
5104                 if (!is_obsolete_sp(kvm, sp))
5105                         break;
5106
5107                 /*
5108                  * Since we are reversely walking the list and the invalid
5109                  * list will be moved to the head, skip the invalid page
5110                  * can help us to avoid the infinity list walking.
5111                  */
5112                 if (sp->role.invalid)
5113                         continue;
5114
5115                 /*
5116                  * Need not flush tlb since we only zap the sp with invalid
5117                  * generation number.
5118                  */
5119                 if (batch >= BATCH_ZAP_PAGES &&
5120                       cond_resched_lock(&kvm->mmu_lock)) {
5121                         batch = 0;
5122                         goto restart;
5123                 }
5124
5125                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5126                                 &kvm->arch.zapped_obsolete_pages);
5127                 batch += ret;
5128
5129                 if (ret)
5130                         goto restart;
5131         }
5132
5133         /*
5134          * Should flush tlb before free page tables since lockless-walking
5135          * may use the pages.
5136          */
5137         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5138 }
5139
5140 /*
5141  * Fast invalidate all shadow pages and use lock-break technique
5142  * to zap obsolete pages.
5143  *
5144  * It's required when memslot is being deleted or VM is being
5145  * destroyed, in these cases, we should ensure that KVM MMU does
5146  * not use any resource of the being-deleted slot or all slots
5147  * after calling the function.
5148  */
5149 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5150 {
5151         spin_lock(&kvm->mmu_lock);
5152         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5153         kvm->arch.mmu_valid_gen++;
5154
5155         /*
5156          * Notify all vcpus to reload its shadow page table
5157          * and flush TLB. Then all vcpus will switch to new
5158          * shadow page table with the new mmu_valid_gen.
5159          *
5160          * Note: we should do this under the protection of
5161          * mmu-lock, otherwise, vcpu would purge shadow page
5162          * but miss tlb flush.
5163          */
5164         kvm_reload_remote_mmus(kvm);
5165
5166         kvm_zap_obsolete_pages(kvm);
5167         spin_unlock(&kvm->mmu_lock);
5168 }
5169
5170 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5171 {
5172         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5173 }
5174
5175 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5176 {
5177         /*
5178          * The very rare case: if the generation-number is round,
5179          * zap all shadow pages.
5180          */
5181         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5182                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5183                 kvm_mmu_invalidate_zap_all_pages(kvm);
5184         }
5185 }
5186
5187 static unsigned long
5188 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5189 {
5190         struct kvm *kvm;
5191         int nr_to_scan = sc->nr_to_scan;
5192         unsigned long freed = 0;
5193
5194         spin_lock(&kvm_lock);
5195
5196         list_for_each_entry(kvm, &vm_list, vm_list) {
5197                 int idx;
5198                 LIST_HEAD(invalid_list);
5199
5200                 /*
5201                  * Never scan more than sc->nr_to_scan VM instances.
5202                  * Will not hit this condition practically since we do not try
5203                  * to shrink more than one VM and it is very unlikely to see
5204                  * !n_used_mmu_pages so many times.
5205                  */
5206                 if (!nr_to_scan--)
5207                         break;
5208                 /*
5209                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5210                  * here. We may skip a VM instance errorneosly, but we do not
5211                  * want to shrink a VM that only started to populate its MMU
5212                  * anyway.
5213                  */
5214                 if (!kvm->arch.n_used_mmu_pages &&
5215                       !kvm_has_zapped_obsolete_pages(kvm))
5216                         continue;
5217
5218                 idx = srcu_read_lock(&kvm->srcu);
5219                 spin_lock(&kvm->mmu_lock);
5220
5221                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5222                         kvm_mmu_commit_zap_page(kvm,
5223                               &kvm->arch.zapped_obsolete_pages);
5224                         goto unlock;
5225                 }
5226
5227                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5228                         freed++;
5229                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5230
5231 unlock:
5232                 spin_unlock(&kvm->mmu_lock);
5233                 srcu_read_unlock(&kvm->srcu, idx);
5234
5235                 /*
5236                  * unfair on small ones
5237                  * per-vm shrinkers cry out
5238                  * sadness comes quickly
5239                  */
5240                 list_move_tail(&kvm->vm_list, &vm_list);
5241                 break;
5242         }
5243
5244         spin_unlock(&kvm_lock);
5245         return freed;
5246 }
5247
5248 static unsigned long
5249 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5250 {
5251         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5252 }
5253
5254 static struct shrinker mmu_shrinker = {
5255         .count_objects = mmu_shrink_count,
5256         .scan_objects = mmu_shrink_scan,
5257         .seeks = DEFAULT_SEEKS * 10,
5258 };
5259
5260 static void mmu_destroy_caches(void)
5261 {
5262         if (pte_list_desc_cache)
5263                 kmem_cache_destroy(pte_list_desc_cache);
5264         if (mmu_page_header_cache)
5265                 kmem_cache_destroy(mmu_page_header_cache);
5266 }
5267
5268 int kvm_mmu_module_init(void)
5269 {
5270         kvm_mmu_clear_all_pte_masks();
5271
5272         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5273                                             sizeof(struct pte_list_desc),
5274                                             0, 0, NULL);
5275         if (!pte_list_desc_cache)
5276                 goto nomem;
5277
5278         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5279                                                   sizeof(struct kvm_mmu_page),
5280                                                   0, 0, NULL);
5281         if (!mmu_page_header_cache)
5282                 goto nomem;
5283
5284         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5285                 goto nomem;
5286
5287         register_shrinker(&mmu_shrinker);
5288
5289         return 0;
5290
5291 nomem:
5292         mmu_destroy_caches();
5293         return -ENOMEM;
5294 }
5295
5296 /*
5297  * Caculate mmu pages needed for kvm.
5298  */
5299 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5300 {
5301         unsigned int nr_mmu_pages;
5302         unsigned int  nr_pages = 0;
5303         struct kvm_memslots *slots;
5304         struct kvm_memory_slot *memslot;
5305         int i;
5306
5307         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5308                 slots = __kvm_memslots(kvm, i);
5309
5310                 kvm_for_each_memslot(memslot, slots)
5311                         nr_pages += memslot->npages;
5312         }
5313
5314         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5315         nr_mmu_pages = max(nr_mmu_pages,
5316                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5317
5318         return nr_mmu_pages;
5319 }
5320
5321 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5322 {
5323         kvm_mmu_unload(vcpu);
5324         free_mmu_pages(vcpu);
5325         mmu_free_memory_caches(vcpu);
5326 }
5327
5328 void kvm_mmu_module_exit(void)
5329 {
5330         mmu_destroy_caches();
5331         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5332         unregister_shrinker(&mmu_shrinker);
5333         mmu_audit_disable();
5334 }