]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: store generation-number into mmio spte
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_LOW_SHIFT              9
209 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
210 #define MMIO_MAX_GEN                    ((1 << 19) - 1)
211
212 static u64 generation_mmio_spte_mask(unsigned int gen)
213 {
214         u64 mask;
215
216         WARN_ON(gen > MMIO_MAX_GEN);
217
218         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
219         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
220         return mask;
221 }
222
223 static unsigned int get_mmio_spte_generation(u64 spte)
224 {
225         unsigned int gen;
226
227         spte &= ~shadow_mmio_mask;
228
229         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
230         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
231         return gen;
232 }
233
234 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
235                            unsigned access)
236 {
237         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
238         u64 mask = generation_mmio_spte_mask(0);
239
240         access &= ACC_WRITE_MASK | ACC_USER_MASK;
241         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
242         sp->mmio_cached = true;
243
244         trace_mark_mmio_spte(sptep, gfn, access, 0);
245         mmu_spte_set(sptep, mask);
246 }
247
248 static bool is_mmio_spte(u64 spte)
249 {
250         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
251 }
252
253 static gfn_t get_mmio_spte_gfn(u64 spte)
254 {
255         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
256         return (spte & ~mask) >> PAGE_SHIFT;
257 }
258
259 static unsigned get_mmio_spte_access(u64 spte)
260 {
261         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
262         return (spte & ~mask) & ~PAGE_MASK;
263 }
264
265 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
266                           pfn_t pfn, unsigned access)
267 {
268         if (unlikely(is_noslot_pfn(pfn))) {
269                 mark_mmio_spte(kvm, sptep, gfn, access);
270                 return true;
271         }
272
273         return false;
274 }
275
276 static inline u64 rsvd_bits(int s, int e)
277 {
278         return ((1ULL << (e - s + 1)) - 1) << s;
279 }
280
281 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
282                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
283 {
284         shadow_user_mask = user_mask;
285         shadow_accessed_mask = accessed_mask;
286         shadow_dirty_mask = dirty_mask;
287         shadow_nx_mask = nx_mask;
288         shadow_x_mask = x_mask;
289 }
290 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
291
292 static int is_cpuid_PSE36(void)
293 {
294         return 1;
295 }
296
297 static int is_nx(struct kvm_vcpu *vcpu)
298 {
299         return vcpu->arch.efer & EFER_NX;
300 }
301
302 static int is_shadow_present_pte(u64 pte)
303 {
304         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
305 }
306
307 static int is_large_pte(u64 pte)
308 {
309         return pte & PT_PAGE_SIZE_MASK;
310 }
311
312 static int is_dirty_gpte(unsigned long pte)
313 {
314         return pte & PT_DIRTY_MASK;
315 }
316
317 static int is_rmap_spte(u64 pte)
318 {
319         return is_shadow_present_pte(pte);
320 }
321
322 static int is_last_spte(u64 pte, int level)
323 {
324         if (level == PT_PAGE_TABLE_LEVEL)
325                 return 1;
326         if (is_large_pte(pte))
327                 return 1;
328         return 0;
329 }
330
331 static pfn_t spte_to_pfn(u64 pte)
332 {
333         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
334 }
335
336 static gfn_t pse36_gfn_delta(u32 gpte)
337 {
338         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
339
340         return (gpte & PT32_DIR_PSE36_MASK) << shift;
341 }
342
343 #ifdef CONFIG_X86_64
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346         *sptep = spte;
347 }
348
349 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
350 {
351         *sptep = spte;
352 }
353
354 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
355 {
356         return xchg(sptep, spte);
357 }
358
359 static u64 __get_spte_lockless(u64 *sptep)
360 {
361         return ACCESS_ONCE(*sptep);
362 }
363
364 static bool __check_direct_spte_mmio_pf(u64 spte)
365 {
366         /* It is valid if the spte is zapped. */
367         return spte == 0ull;
368 }
369 #else
370 union split_spte {
371         struct {
372                 u32 spte_low;
373                 u32 spte_high;
374         };
375         u64 spte;
376 };
377
378 static void count_spte_clear(u64 *sptep, u64 spte)
379 {
380         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
381
382         if (is_shadow_present_pte(spte))
383                 return;
384
385         /* Ensure the spte is completely set before we increase the count */
386         smp_wmb();
387         sp->clear_spte_count++;
388 }
389
390 static void __set_spte(u64 *sptep, u64 spte)
391 {
392         union split_spte *ssptep, sspte;
393
394         ssptep = (union split_spte *)sptep;
395         sspte = (union split_spte)spte;
396
397         ssptep->spte_high = sspte.spte_high;
398
399         /*
400          * If we map the spte from nonpresent to present, We should store
401          * the high bits firstly, then set present bit, so cpu can not
402          * fetch this spte while we are setting the spte.
403          */
404         smp_wmb();
405
406         ssptep->spte_low = sspte.spte_low;
407 }
408
409 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
410 {
411         union split_spte *ssptep, sspte;
412
413         ssptep = (union split_spte *)sptep;
414         sspte = (union split_spte)spte;
415
416         ssptep->spte_low = sspte.spte_low;
417
418         /*
419          * If we map the spte from present to nonpresent, we should clear
420          * present bit firstly to avoid vcpu fetch the old high bits.
421          */
422         smp_wmb();
423
424         ssptep->spte_high = sspte.spte_high;
425         count_spte_clear(sptep, spte);
426 }
427
428 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
429 {
430         union split_spte *ssptep, sspte, orig;
431
432         ssptep = (union split_spte *)sptep;
433         sspte = (union split_spte)spte;
434
435         /* xchg acts as a barrier before the setting of the high bits */
436         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
437         orig.spte_high = ssptep->spte_high;
438         ssptep->spte_high = sspte.spte_high;
439         count_spte_clear(sptep, spte);
440
441         return orig.spte;
442 }
443
444 /*
445  * The idea using the light way get the spte on x86_32 guest is from
446  * gup_get_pte(arch/x86/mm/gup.c).
447  * The difference is we can not catch the spte tlb flush if we leave
448  * guest mode, so we emulate it by increase clear_spte_count when spte
449  * is cleared.
450  */
451 static u64 __get_spte_lockless(u64 *sptep)
452 {
453         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
454         union split_spte spte, *orig = (union split_spte *)sptep;
455         int count;
456
457 retry:
458         count = sp->clear_spte_count;
459         smp_rmb();
460
461         spte.spte_low = orig->spte_low;
462         smp_rmb();
463
464         spte.spte_high = orig->spte_high;
465         smp_rmb();
466
467         if (unlikely(spte.spte_low != orig->spte_low ||
468               count != sp->clear_spte_count))
469                 goto retry;
470
471         return spte.spte;
472 }
473
474 static bool __check_direct_spte_mmio_pf(u64 spte)
475 {
476         union split_spte sspte = (union split_spte)spte;
477         u32 high_mmio_mask = shadow_mmio_mask >> 32;
478
479         /* It is valid if the spte is zapped. */
480         if (spte == 0ull)
481                 return true;
482
483         /* It is valid if the spte is being zapped. */
484         if (sspte.spte_low == 0ull &&
485             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
486                 return true;
487
488         return false;
489 }
490 #endif
491
492 static bool spte_is_locklessly_modifiable(u64 spte)
493 {
494         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
495                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
496 }
497
498 static bool spte_has_volatile_bits(u64 spte)
499 {
500         /*
501          * Always atomicly update spte if it can be updated
502          * out of mmu-lock, it can ensure dirty bit is not lost,
503          * also, it can help us to get a stable is_writable_pte()
504          * to ensure tlb flush is not missed.
505          */
506         if (spte_is_locklessly_modifiable(spte))
507                 return true;
508
509         if (!shadow_accessed_mask)
510                 return false;
511
512         if (!is_shadow_present_pte(spte))
513                 return false;
514
515         if ((spte & shadow_accessed_mask) &&
516               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
517                 return false;
518
519         return true;
520 }
521
522 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
523 {
524         return (old_spte & bit_mask) && !(new_spte & bit_mask);
525 }
526
527 /* Rules for using mmu_spte_set:
528  * Set the sptep from nonpresent to present.
529  * Note: the sptep being assigned *must* be either not present
530  * or in a state where the hardware will not attempt to update
531  * the spte.
532  */
533 static void mmu_spte_set(u64 *sptep, u64 new_spte)
534 {
535         WARN_ON(is_shadow_present_pte(*sptep));
536         __set_spte(sptep, new_spte);
537 }
538
539 /* Rules for using mmu_spte_update:
540  * Update the state bits, it means the mapped pfn is not changged.
541  *
542  * Whenever we overwrite a writable spte with a read-only one we
543  * should flush remote TLBs. Otherwise rmap_write_protect
544  * will find a read-only spte, even though the writable spte
545  * might be cached on a CPU's TLB, the return value indicates this
546  * case.
547  */
548 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
549 {
550         u64 old_spte = *sptep;
551         bool ret = false;
552
553         WARN_ON(!is_rmap_spte(new_spte));
554
555         if (!is_shadow_present_pte(old_spte)) {
556                 mmu_spte_set(sptep, new_spte);
557                 return ret;
558         }
559
560         if (!spte_has_volatile_bits(old_spte))
561                 __update_clear_spte_fast(sptep, new_spte);
562         else
563                 old_spte = __update_clear_spte_slow(sptep, new_spte);
564
565         /*
566          * For the spte updated out of mmu-lock is safe, since
567          * we always atomicly update it, see the comments in
568          * spte_has_volatile_bits().
569          */
570         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
571                 ret = true;
572
573         if (!shadow_accessed_mask)
574                 return ret;
575
576         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
577                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
578         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
579                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
580
581         return ret;
582 }
583
584 /*
585  * Rules for using mmu_spte_clear_track_bits:
586  * It sets the sptep from present to nonpresent, and track the
587  * state bits, it is used to clear the last level sptep.
588  */
589 static int mmu_spte_clear_track_bits(u64 *sptep)
590 {
591         pfn_t pfn;
592         u64 old_spte = *sptep;
593
594         if (!spte_has_volatile_bits(old_spte))
595                 __update_clear_spte_fast(sptep, 0ull);
596         else
597                 old_spte = __update_clear_spte_slow(sptep, 0ull);
598
599         if (!is_rmap_spte(old_spte))
600                 return 0;
601
602         pfn = spte_to_pfn(old_spte);
603
604         /*
605          * KVM does not hold the refcount of the page used by
606          * kvm mmu, before reclaiming the page, we should
607          * unmap it from mmu first.
608          */
609         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
610
611         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
612                 kvm_set_pfn_accessed(pfn);
613         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
614                 kvm_set_pfn_dirty(pfn);
615         return 1;
616 }
617
618 /*
619  * Rules for using mmu_spte_clear_no_track:
620  * Directly clear spte without caring the state bits of sptep,
621  * it is used to set the upper level spte.
622  */
623 static void mmu_spte_clear_no_track(u64 *sptep)
624 {
625         __update_clear_spte_fast(sptep, 0ull);
626 }
627
628 static u64 mmu_spte_get_lockless(u64 *sptep)
629 {
630         return __get_spte_lockless(sptep);
631 }
632
633 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
634 {
635         /*
636          * Prevent page table teardown by making any free-er wait during
637          * kvm_flush_remote_tlbs() IPI to all active vcpus.
638          */
639         local_irq_disable();
640         vcpu->mode = READING_SHADOW_PAGE_TABLES;
641         /*
642          * Make sure a following spte read is not reordered ahead of the write
643          * to vcpu->mode.
644          */
645         smp_mb();
646 }
647
648 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
649 {
650         /*
651          * Make sure the write to vcpu->mode is not reordered in front of
652          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
653          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
654          */
655         smp_mb();
656         vcpu->mode = OUTSIDE_GUEST_MODE;
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
661                                   struct kmem_cache *base_cache, int min)
662 {
663         void *obj;
664
665         if (cache->nobjs >= min)
666                 return 0;
667         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
668                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
669                 if (!obj)
670                         return -ENOMEM;
671                 cache->objects[cache->nobjs++] = obj;
672         }
673         return 0;
674 }
675
676 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
677 {
678         return cache->nobjs;
679 }
680
681 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
682                                   struct kmem_cache *cache)
683 {
684         while (mc->nobjs)
685                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
686 }
687
688 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
689                                        int min)
690 {
691         void *page;
692
693         if (cache->nobjs >= min)
694                 return 0;
695         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696                 page = (void *)__get_free_page(GFP_KERNEL);
697                 if (!page)
698                         return -ENOMEM;
699                 cache->objects[cache->nobjs++] = page;
700         }
701         return 0;
702 }
703
704 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
705 {
706         while (mc->nobjs)
707                 free_page((unsigned long)mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
711 {
712         int r;
713
714         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
715                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
716         if (r)
717                 goto out;
718         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
719         if (r)
720                 goto out;
721         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
722                                    mmu_page_header_cache, 4);
723 out:
724         return r;
725 }
726
727 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
728 {
729         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
730                                 pte_list_desc_cache);
731         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
732         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
733                                 mmu_page_header_cache);
734 }
735
736 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
737 {
738         void *p;
739
740         BUG_ON(!mc->nobjs);
741         p = mc->objects[--mc->nobjs];
742         return p;
743 }
744
745 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
746 {
747         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
748 }
749
750 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
751 {
752         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
753 }
754
755 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
756 {
757         if (!sp->role.direct)
758                 return sp->gfns[index];
759
760         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
761 }
762
763 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
764 {
765         if (sp->role.direct)
766                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
767         else
768                 sp->gfns[index] = gfn;
769 }
770
771 /*
772  * Return the pointer to the large page information for a given gfn,
773  * handling slots that are not large page aligned.
774  */
775 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
776                                               struct kvm_memory_slot *slot,
777                                               int level)
778 {
779         unsigned long idx;
780
781         idx = gfn_to_index(gfn, slot->base_gfn, level);
782         return &slot->arch.lpage_info[level - 2][idx];
783 }
784
785 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
786 {
787         struct kvm_memory_slot *slot;
788         struct kvm_lpage_info *linfo;
789         int i;
790
791         slot = gfn_to_memslot(kvm, gfn);
792         for (i = PT_DIRECTORY_LEVEL;
793              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
794                 linfo = lpage_info_slot(gfn, slot, i);
795                 linfo->write_count += 1;
796         }
797         kvm->arch.indirect_shadow_pages++;
798 }
799
800 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
801 {
802         struct kvm_memory_slot *slot;
803         struct kvm_lpage_info *linfo;
804         int i;
805
806         slot = gfn_to_memslot(kvm, gfn);
807         for (i = PT_DIRECTORY_LEVEL;
808              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
809                 linfo = lpage_info_slot(gfn, slot, i);
810                 linfo->write_count -= 1;
811                 WARN_ON(linfo->write_count < 0);
812         }
813         kvm->arch.indirect_shadow_pages--;
814 }
815
816 static int has_wrprotected_page(struct kvm *kvm,
817                                 gfn_t gfn,
818                                 int level)
819 {
820         struct kvm_memory_slot *slot;
821         struct kvm_lpage_info *linfo;
822
823         slot = gfn_to_memslot(kvm, gfn);
824         if (slot) {
825                 linfo = lpage_info_slot(gfn, slot, level);
826                 return linfo->write_count;
827         }
828
829         return 1;
830 }
831
832 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
833 {
834         unsigned long page_size;
835         int i, ret = 0;
836
837         page_size = kvm_host_page_size(kvm, gfn);
838
839         for (i = PT_PAGE_TABLE_LEVEL;
840              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
841                 if (page_size >= KVM_HPAGE_SIZE(i))
842                         ret = i;
843                 else
844                         break;
845         }
846
847         return ret;
848 }
849
850 static struct kvm_memory_slot *
851 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
852                             bool no_dirty_log)
853 {
854         struct kvm_memory_slot *slot;
855
856         slot = gfn_to_memslot(vcpu->kvm, gfn);
857         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
858               (no_dirty_log && slot->dirty_bitmap))
859                 slot = NULL;
860
861         return slot;
862 }
863
864 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
865 {
866         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
867 }
868
869 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
870 {
871         int host_level, level, max_level;
872
873         host_level = host_mapping_level(vcpu->kvm, large_gfn);
874
875         if (host_level == PT_PAGE_TABLE_LEVEL)
876                 return host_level;
877
878         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
879
880         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
881                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
882                         break;
883
884         return level - 1;
885 }
886
887 /*
888  * Pte mapping structures:
889  *
890  * If pte_list bit zero is zero, then pte_list point to the spte.
891  *
892  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
893  * pte_list_desc containing more mappings.
894  *
895  * Returns the number of pte entries before the spte was added or zero if
896  * the spte was not added.
897  *
898  */
899 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
900                         unsigned long *pte_list)
901 {
902         struct pte_list_desc *desc;
903         int i, count = 0;
904
905         if (!*pte_list) {
906                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
907                 *pte_list = (unsigned long)spte;
908         } else if (!(*pte_list & 1)) {
909                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
910                 desc = mmu_alloc_pte_list_desc(vcpu);
911                 desc->sptes[0] = (u64 *)*pte_list;
912                 desc->sptes[1] = spte;
913                 *pte_list = (unsigned long)desc | 1;
914                 ++count;
915         } else {
916                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
917                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
918                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
919                         desc = desc->more;
920                         count += PTE_LIST_EXT;
921                 }
922                 if (desc->sptes[PTE_LIST_EXT-1]) {
923                         desc->more = mmu_alloc_pte_list_desc(vcpu);
924                         desc = desc->more;
925                 }
926                 for (i = 0; desc->sptes[i]; ++i)
927                         ++count;
928                 desc->sptes[i] = spte;
929         }
930         return count;
931 }
932
933 static void
934 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
935                            int i, struct pte_list_desc *prev_desc)
936 {
937         int j;
938
939         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
940                 ;
941         desc->sptes[i] = desc->sptes[j];
942         desc->sptes[j] = NULL;
943         if (j != 0)
944                 return;
945         if (!prev_desc && !desc->more)
946                 *pte_list = (unsigned long)desc->sptes[0];
947         else
948                 if (prev_desc)
949                         prev_desc->more = desc->more;
950                 else
951                         *pte_list = (unsigned long)desc->more | 1;
952         mmu_free_pte_list_desc(desc);
953 }
954
955 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
956 {
957         struct pte_list_desc *desc;
958         struct pte_list_desc *prev_desc;
959         int i;
960
961         if (!*pte_list) {
962                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
963                 BUG();
964         } else if (!(*pte_list & 1)) {
965                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
966                 if ((u64 *)*pte_list != spte) {
967                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
968                         BUG();
969                 }
970                 *pte_list = 0;
971         } else {
972                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
973                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
974                 prev_desc = NULL;
975                 while (desc) {
976                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
977                                 if (desc->sptes[i] == spte) {
978                                         pte_list_desc_remove_entry(pte_list,
979                                                                desc, i,
980                                                                prev_desc);
981                                         return;
982                                 }
983                         prev_desc = desc;
984                         desc = desc->more;
985                 }
986                 pr_err("pte_list_remove: %p many->many\n", spte);
987                 BUG();
988         }
989 }
990
991 typedef void (*pte_list_walk_fn) (u64 *spte);
992 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
993 {
994         struct pte_list_desc *desc;
995         int i;
996
997         if (!*pte_list)
998                 return;
999
1000         if (!(*pte_list & 1))
1001                 return fn((u64 *)*pte_list);
1002
1003         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1004         while (desc) {
1005                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1006                         fn(desc->sptes[i]);
1007                 desc = desc->more;
1008         }
1009 }
1010
1011 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1012                                     struct kvm_memory_slot *slot)
1013 {
1014         unsigned long idx;
1015
1016         idx = gfn_to_index(gfn, slot->base_gfn, level);
1017         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1018 }
1019
1020 /*
1021  * Take gfn and return the reverse mapping to it.
1022  */
1023 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1024 {
1025         struct kvm_memory_slot *slot;
1026
1027         slot = gfn_to_memslot(kvm, gfn);
1028         return __gfn_to_rmap(gfn, level, slot);
1029 }
1030
1031 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1032 {
1033         struct kvm_mmu_memory_cache *cache;
1034
1035         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1036         return mmu_memory_cache_free_objects(cache);
1037 }
1038
1039 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1040 {
1041         struct kvm_mmu_page *sp;
1042         unsigned long *rmapp;
1043
1044         sp = page_header(__pa(spte));
1045         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1046         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1047         return pte_list_add(vcpu, spte, rmapp);
1048 }
1049
1050 static void rmap_remove(struct kvm *kvm, u64 *spte)
1051 {
1052         struct kvm_mmu_page *sp;
1053         gfn_t gfn;
1054         unsigned long *rmapp;
1055
1056         sp = page_header(__pa(spte));
1057         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1058         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1059         pte_list_remove(spte, rmapp);
1060 }
1061
1062 /*
1063  * Used by the following functions to iterate through the sptes linked by a
1064  * rmap.  All fields are private and not assumed to be used outside.
1065  */
1066 struct rmap_iterator {
1067         /* private fields */
1068         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1069         int pos;                        /* index of the sptep */
1070 };
1071
1072 /*
1073  * Iteration must be started by this function.  This should also be used after
1074  * removing/dropping sptes from the rmap link because in such cases the
1075  * information in the itererator may not be valid.
1076  *
1077  * Returns sptep if found, NULL otherwise.
1078  */
1079 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1080 {
1081         if (!rmap)
1082                 return NULL;
1083
1084         if (!(rmap & 1)) {
1085                 iter->desc = NULL;
1086                 return (u64 *)rmap;
1087         }
1088
1089         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1090         iter->pos = 0;
1091         return iter->desc->sptes[iter->pos];
1092 }
1093
1094 /*
1095  * Must be used with a valid iterator: e.g. after rmap_get_first().
1096  *
1097  * Returns sptep if found, NULL otherwise.
1098  */
1099 static u64 *rmap_get_next(struct rmap_iterator *iter)
1100 {
1101         if (iter->desc) {
1102                 if (iter->pos < PTE_LIST_EXT - 1) {
1103                         u64 *sptep;
1104
1105                         ++iter->pos;
1106                         sptep = iter->desc->sptes[iter->pos];
1107                         if (sptep)
1108                                 return sptep;
1109                 }
1110
1111                 iter->desc = iter->desc->more;
1112
1113                 if (iter->desc) {
1114                         iter->pos = 0;
1115                         /* desc->sptes[0] cannot be NULL */
1116                         return iter->desc->sptes[iter->pos];
1117                 }
1118         }
1119
1120         return NULL;
1121 }
1122
1123 static void drop_spte(struct kvm *kvm, u64 *sptep)
1124 {
1125         if (mmu_spte_clear_track_bits(sptep))
1126                 rmap_remove(kvm, sptep);
1127 }
1128
1129
1130 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1131 {
1132         if (is_large_pte(*sptep)) {
1133                 WARN_ON(page_header(__pa(sptep))->role.level ==
1134                         PT_PAGE_TABLE_LEVEL);
1135                 drop_spte(kvm, sptep);
1136                 --kvm->stat.lpages;
1137                 return true;
1138         }
1139
1140         return false;
1141 }
1142
1143 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1144 {
1145         if (__drop_large_spte(vcpu->kvm, sptep))
1146                 kvm_flush_remote_tlbs(vcpu->kvm);
1147 }
1148
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte writ-protection is caused by protecting shadow page table.
1152  * @flush indicates whether tlb need be flushed.
1153  *
1154  * Note: write protection is difference between drity logging and spte
1155  * protection:
1156  * - for dirty logging, the spte can be set to writable at anytime if
1157  *   its dirty bitmap is properly set.
1158  * - for spte protection, the spte can be writable only after unsync-ing
1159  *   shadow page.
1160  *
1161  * Return true if the spte is dropped.
1162  */
1163 static bool
1164 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1165 {
1166         u64 spte = *sptep;
1167
1168         if (!is_writable_pte(spte) &&
1169               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1170                 return false;
1171
1172         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1173
1174         if (__drop_large_spte(kvm, sptep)) {
1175                 *flush |= true;
1176                 return true;
1177         }
1178
1179         if (pt_protect)
1180                 spte &= ~SPTE_MMU_WRITEABLE;
1181         spte = spte & ~PT_WRITABLE_MASK;
1182
1183         *flush |= mmu_spte_update(sptep, spte);
1184         return false;
1185 }
1186
1187 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1188                                  bool pt_protect)
1189 {
1190         u64 *sptep;
1191         struct rmap_iterator iter;
1192         bool flush = false;
1193
1194         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1195                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1196                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1197                         sptep = rmap_get_first(*rmapp, &iter);
1198                         continue;
1199                 }
1200
1201                 sptep = rmap_get_next(&iter);
1202         }
1203
1204         return flush;
1205 }
1206
1207 /**
1208  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1209  * @kvm: kvm instance
1210  * @slot: slot to protect
1211  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1212  * @mask: indicates which pages we should protect
1213  *
1214  * Used when we do not need to care about huge page mappings: e.g. during dirty
1215  * logging we do not have any such mappings.
1216  */
1217 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1218                                      struct kvm_memory_slot *slot,
1219                                      gfn_t gfn_offset, unsigned long mask)
1220 {
1221         unsigned long *rmapp;
1222
1223         while (mask) {
1224                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1225                                       PT_PAGE_TABLE_LEVEL, slot);
1226                 __rmap_write_protect(kvm, rmapp, false);
1227
1228                 /* clear the first set bit */
1229                 mask &= mask - 1;
1230         }
1231 }
1232
1233 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1234 {
1235         struct kvm_memory_slot *slot;
1236         unsigned long *rmapp;
1237         int i;
1238         bool write_protected = false;
1239
1240         slot = gfn_to_memslot(kvm, gfn);
1241
1242         for (i = PT_PAGE_TABLE_LEVEL;
1243              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1244                 rmapp = __gfn_to_rmap(gfn, i, slot);
1245                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1246         }
1247
1248         return write_protected;
1249 }
1250
1251 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1252                            struct kvm_memory_slot *slot, unsigned long data)
1253 {
1254         u64 *sptep;
1255         struct rmap_iterator iter;
1256         int need_tlb_flush = 0;
1257
1258         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1259                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1260                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1261
1262                 drop_spte(kvm, sptep);
1263                 need_tlb_flush = 1;
1264         }
1265
1266         return need_tlb_flush;
1267 }
1268
1269 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270                              struct kvm_memory_slot *slot, unsigned long data)
1271 {
1272         u64 *sptep;
1273         struct rmap_iterator iter;
1274         int need_flush = 0;
1275         u64 new_spte;
1276         pte_t *ptep = (pte_t *)data;
1277         pfn_t new_pfn;
1278
1279         WARN_ON(pte_huge(*ptep));
1280         new_pfn = pte_pfn(*ptep);
1281
1282         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1283                 BUG_ON(!is_shadow_present_pte(*sptep));
1284                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1285
1286                 need_flush = 1;
1287
1288                 if (pte_write(*ptep)) {
1289                         drop_spte(kvm, sptep);
1290                         sptep = rmap_get_first(*rmapp, &iter);
1291                 } else {
1292                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1293                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1294
1295                         new_spte &= ~PT_WRITABLE_MASK;
1296                         new_spte &= ~SPTE_HOST_WRITEABLE;
1297                         new_spte &= ~shadow_accessed_mask;
1298
1299                         mmu_spte_clear_track_bits(sptep);
1300                         mmu_spte_set(sptep, new_spte);
1301                         sptep = rmap_get_next(&iter);
1302                 }
1303         }
1304
1305         if (need_flush)
1306                 kvm_flush_remote_tlbs(kvm);
1307
1308         return 0;
1309 }
1310
1311 static int kvm_handle_hva_range(struct kvm *kvm,
1312                                 unsigned long start,
1313                                 unsigned long end,
1314                                 unsigned long data,
1315                                 int (*handler)(struct kvm *kvm,
1316                                                unsigned long *rmapp,
1317                                                struct kvm_memory_slot *slot,
1318                                                unsigned long data))
1319 {
1320         int j;
1321         int ret = 0;
1322         struct kvm_memslots *slots;
1323         struct kvm_memory_slot *memslot;
1324
1325         slots = kvm_memslots(kvm);
1326
1327         kvm_for_each_memslot(memslot, slots) {
1328                 unsigned long hva_start, hva_end;
1329                 gfn_t gfn_start, gfn_end;
1330
1331                 hva_start = max(start, memslot->userspace_addr);
1332                 hva_end = min(end, memslot->userspace_addr +
1333                                         (memslot->npages << PAGE_SHIFT));
1334                 if (hva_start >= hva_end)
1335                         continue;
1336                 /*
1337                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1338                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1339                  */
1340                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1341                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1342
1343                 for (j = PT_PAGE_TABLE_LEVEL;
1344                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1345                         unsigned long idx, idx_end;
1346                         unsigned long *rmapp;
1347
1348                         /*
1349                          * {idx(page_j) | page_j intersects with
1350                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1351                          */
1352                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1353                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1354
1355                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1356
1357                         for (; idx <= idx_end; ++idx)
1358                                 ret |= handler(kvm, rmapp++, memslot, data);
1359                 }
1360         }
1361
1362         return ret;
1363 }
1364
1365 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1366                           unsigned long data,
1367                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1368                                          struct kvm_memory_slot *slot,
1369                                          unsigned long data))
1370 {
1371         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1372 }
1373
1374 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1375 {
1376         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1377 }
1378
1379 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1380 {
1381         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1382 }
1383
1384 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1385 {
1386         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1387 }
1388
1389 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1390                          struct kvm_memory_slot *slot, unsigned long data)
1391 {
1392         u64 *sptep;
1393         struct rmap_iterator uninitialized_var(iter);
1394         int young = 0;
1395
1396         /*
1397          * In case of absence of EPT Access and Dirty Bits supports,
1398          * emulate the accessed bit for EPT, by checking if this page has
1399          * an EPT mapping, and clearing it if it does. On the next access,
1400          * a new EPT mapping will be established.
1401          * This has some overhead, but not as much as the cost of swapping
1402          * out actively used pages or breaking up actively used hugepages.
1403          */
1404         if (!shadow_accessed_mask) {
1405                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1406                 goto out;
1407         }
1408
1409         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1410              sptep = rmap_get_next(&iter)) {
1411                 BUG_ON(!is_shadow_present_pte(*sptep));
1412
1413                 if (*sptep & shadow_accessed_mask) {
1414                         young = 1;
1415                         clear_bit((ffs(shadow_accessed_mask) - 1),
1416                                  (unsigned long *)sptep);
1417                 }
1418         }
1419 out:
1420         /* @data has hva passed to kvm_age_hva(). */
1421         trace_kvm_age_page(data, slot, young);
1422         return young;
1423 }
1424
1425 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1426                               struct kvm_memory_slot *slot, unsigned long data)
1427 {
1428         u64 *sptep;
1429         struct rmap_iterator iter;
1430         int young = 0;
1431
1432         /*
1433          * If there's no access bit in the secondary pte set by the
1434          * hardware it's up to gup-fast/gup to set the access bit in
1435          * the primary pte or in the page structure.
1436          */
1437         if (!shadow_accessed_mask)
1438                 goto out;
1439
1440         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1441              sptep = rmap_get_next(&iter)) {
1442                 BUG_ON(!is_shadow_present_pte(*sptep));
1443
1444                 if (*sptep & shadow_accessed_mask) {
1445                         young = 1;
1446                         break;
1447                 }
1448         }
1449 out:
1450         return young;
1451 }
1452
1453 #define RMAP_RECYCLE_THRESHOLD 1000
1454
1455 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1456 {
1457         unsigned long *rmapp;
1458         struct kvm_mmu_page *sp;
1459
1460         sp = page_header(__pa(spte));
1461
1462         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1463
1464         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1465         kvm_flush_remote_tlbs(vcpu->kvm);
1466 }
1467
1468 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1469 {
1470         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1471 }
1472
1473 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1474 {
1475         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1476 }
1477
1478 #ifdef MMU_DEBUG
1479 static int is_empty_shadow_page(u64 *spt)
1480 {
1481         u64 *pos;
1482         u64 *end;
1483
1484         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1485                 if (is_shadow_present_pte(*pos)) {
1486                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1487                                pos, *pos);
1488                         return 0;
1489                 }
1490         return 1;
1491 }
1492 #endif
1493
1494 /*
1495  * This value is the sum of all of the kvm instances's
1496  * kvm->arch.n_used_mmu_pages values.  We need a global,
1497  * aggregate version in order to make the slab shrinker
1498  * faster
1499  */
1500 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1501 {
1502         kvm->arch.n_used_mmu_pages += nr;
1503         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1504 }
1505
1506 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1507 {
1508         ASSERT(is_empty_shadow_page(sp->spt));
1509         hlist_del(&sp->hash_link);
1510         list_del(&sp->link);
1511         free_page((unsigned long)sp->spt);
1512         if (!sp->role.direct)
1513                 free_page((unsigned long)sp->gfns);
1514         kmem_cache_free(mmu_page_header_cache, sp);
1515 }
1516
1517 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1518 {
1519         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1520 }
1521
1522 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1523                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1524 {
1525         if (!parent_pte)
1526                 return;
1527
1528         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1529 }
1530
1531 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1532                                        u64 *parent_pte)
1533 {
1534         pte_list_remove(parent_pte, &sp->parent_ptes);
1535 }
1536
1537 static void drop_parent_pte(struct kvm_mmu_page *sp,
1538                             u64 *parent_pte)
1539 {
1540         mmu_page_remove_parent_pte(sp, parent_pte);
1541         mmu_spte_clear_no_track(parent_pte);
1542 }
1543
1544 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1545                                                u64 *parent_pte, int direct)
1546 {
1547         struct kvm_mmu_page *sp;
1548
1549         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1550         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1551         if (!direct)
1552                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1553         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1554
1555         /*
1556          * The active_mmu_pages list is the FIFO list, do not move the
1557          * page until it is zapped. kvm_zap_obsolete_pages depends on
1558          * this feature. See the comments in kvm_zap_obsolete_pages().
1559          */
1560         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1561         sp->parent_ptes = 0;
1562         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1563         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1564         return sp;
1565 }
1566
1567 static void mark_unsync(u64 *spte);
1568 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1569 {
1570         pte_list_walk(&sp->parent_ptes, mark_unsync);
1571 }
1572
1573 static void mark_unsync(u64 *spte)
1574 {
1575         struct kvm_mmu_page *sp;
1576         unsigned int index;
1577
1578         sp = page_header(__pa(spte));
1579         index = spte - sp->spt;
1580         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1581                 return;
1582         if (sp->unsync_children++)
1583                 return;
1584         kvm_mmu_mark_parents_unsync(sp);
1585 }
1586
1587 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1588                                struct kvm_mmu_page *sp)
1589 {
1590         return 1;
1591 }
1592
1593 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1594 {
1595 }
1596
1597 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1598                                  struct kvm_mmu_page *sp, u64 *spte,
1599                                  const void *pte)
1600 {
1601         WARN_ON(1);
1602 }
1603
1604 #define KVM_PAGE_ARRAY_NR 16
1605
1606 struct kvm_mmu_pages {
1607         struct mmu_page_and_offset {
1608                 struct kvm_mmu_page *sp;
1609                 unsigned int idx;
1610         } page[KVM_PAGE_ARRAY_NR];
1611         unsigned int nr;
1612 };
1613
1614 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1615                          int idx)
1616 {
1617         int i;
1618
1619         if (sp->unsync)
1620                 for (i=0; i < pvec->nr; i++)
1621                         if (pvec->page[i].sp == sp)
1622                                 return 0;
1623
1624         pvec->page[pvec->nr].sp = sp;
1625         pvec->page[pvec->nr].idx = idx;
1626         pvec->nr++;
1627         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1628 }
1629
1630 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1631                            struct kvm_mmu_pages *pvec)
1632 {
1633         int i, ret, nr_unsync_leaf = 0;
1634
1635         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1636                 struct kvm_mmu_page *child;
1637                 u64 ent = sp->spt[i];
1638
1639                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1640                         goto clear_child_bitmap;
1641
1642                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1643
1644                 if (child->unsync_children) {
1645                         if (mmu_pages_add(pvec, child, i))
1646                                 return -ENOSPC;
1647
1648                         ret = __mmu_unsync_walk(child, pvec);
1649                         if (!ret)
1650                                 goto clear_child_bitmap;
1651                         else if (ret > 0)
1652                                 nr_unsync_leaf += ret;
1653                         else
1654                                 return ret;
1655                 } else if (child->unsync) {
1656                         nr_unsync_leaf++;
1657                         if (mmu_pages_add(pvec, child, i))
1658                                 return -ENOSPC;
1659                 } else
1660                          goto clear_child_bitmap;
1661
1662                 continue;
1663
1664 clear_child_bitmap:
1665                 __clear_bit(i, sp->unsync_child_bitmap);
1666                 sp->unsync_children--;
1667                 WARN_ON((int)sp->unsync_children < 0);
1668         }
1669
1670
1671         return nr_unsync_leaf;
1672 }
1673
1674 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1675                            struct kvm_mmu_pages *pvec)
1676 {
1677         if (!sp->unsync_children)
1678                 return 0;
1679
1680         mmu_pages_add(pvec, sp, 0);
1681         return __mmu_unsync_walk(sp, pvec);
1682 }
1683
1684 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1685 {
1686         WARN_ON(!sp->unsync);
1687         trace_kvm_mmu_sync_page(sp);
1688         sp->unsync = 0;
1689         --kvm->stat.mmu_unsync;
1690 }
1691
1692 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1693                                     struct list_head *invalid_list);
1694 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1695                                     struct list_head *invalid_list);
1696
1697 /*
1698  * NOTE: we should pay more attention on the zapped-obsolete page
1699  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1700  * since it has been deleted from active_mmu_pages but still can be found
1701  * at hast list.
1702  *
1703  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1704  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1705  * all the obsolete pages.
1706  */
1707 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1708         hlist_for_each_entry(_sp,                                       \
1709           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1710                 if ((_sp)->gfn != (_gfn)) {} else
1711
1712 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1713         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1714                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1715
1716 /* @sp->gfn should be write-protected at the call site */
1717 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1718                            struct list_head *invalid_list, bool clear_unsync)
1719 {
1720         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1721                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1722                 return 1;
1723         }
1724
1725         if (clear_unsync)
1726                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1727
1728         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1729                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1730                 return 1;
1731         }
1732
1733         kvm_mmu_flush_tlb(vcpu);
1734         return 0;
1735 }
1736
1737 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1738                                    struct kvm_mmu_page *sp)
1739 {
1740         LIST_HEAD(invalid_list);
1741         int ret;
1742
1743         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1744         if (ret)
1745                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1746
1747         return ret;
1748 }
1749
1750 #ifdef CONFIG_KVM_MMU_AUDIT
1751 #include "mmu_audit.c"
1752 #else
1753 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1754 static void mmu_audit_disable(void) { }
1755 #endif
1756
1757 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1758                          struct list_head *invalid_list)
1759 {
1760         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1761 }
1762
1763 /* @gfn should be write-protected at the call site */
1764 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1765 {
1766         struct kvm_mmu_page *s;
1767         LIST_HEAD(invalid_list);
1768         bool flush = false;
1769
1770         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1771                 if (!s->unsync)
1772                         continue;
1773
1774                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1775                 kvm_unlink_unsync_page(vcpu->kvm, s);
1776                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1777                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1778                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1779                         continue;
1780                 }
1781                 flush = true;
1782         }
1783
1784         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1785         if (flush)
1786                 kvm_mmu_flush_tlb(vcpu);
1787 }
1788
1789 struct mmu_page_path {
1790         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1791         unsigned int idx[PT64_ROOT_LEVEL-1];
1792 };
1793
1794 #define for_each_sp(pvec, sp, parents, i)                       \
1795                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1796                         sp = pvec.page[i].sp;                   \
1797                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1798                         i = mmu_pages_next(&pvec, &parents, i))
1799
1800 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1801                           struct mmu_page_path *parents,
1802                           int i)
1803 {
1804         int n;
1805
1806         for (n = i+1; n < pvec->nr; n++) {
1807                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1808
1809                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1810                         parents->idx[0] = pvec->page[n].idx;
1811                         return n;
1812                 }
1813
1814                 parents->parent[sp->role.level-2] = sp;
1815                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1816         }
1817
1818         return n;
1819 }
1820
1821 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1822 {
1823         struct kvm_mmu_page *sp;
1824         unsigned int level = 0;
1825
1826         do {
1827                 unsigned int idx = parents->idx[level];
1828
1829                 sp = parents->parent[level];
1830                 if (!sp)
1831                         return;
1832
1833                 --sp->unsync_children;
1834                 WARN_ON((int)sp->unsync_children < 0);
1835                 __clear_bit(idx, sp->unsync_child_bitmap);
1836                 level++;
1837         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1838 }
1839
1840 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1841                                struct mmu_page_path *parents,
1842                                struct kvm_mmu_pages *pvec)
1843 {
1844         parents->parent[parent->role.level-1] = NULL;
1845         pvec->nr = 0;
1846 }
1847
1848 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1849                               struct kvm_mmu_page *parent)
1850 {
1851         int i;
1852         struct kvm_mmu_page *sp;
1853         struct mmu_page_path parents;
1854         struct kvm_mmu_pages pages;
1855         LIST_HEAD(invalid_list);
1856
1857         kvm_mmu_pages_init(parent, &parents, &pages);
1858         while (mmu_unsync_walk(parent, &pages)) {
1859                 bool protected = false;
1860
1861                 for_each_sp(pages, sp, parents, i)
1862                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1863
1864                 if (protected)
1865                         kvm_flush_remote_tlbs(vcpu->kvm);
1866
1867                 for_each_sp(pages, sp, parents, i) {
1868                         kvm_sync_page(vcpu, sp, &invalid_list);
1869                         mmu_pages_clear_parents(&parents);
1870                 }
1871                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1872                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1873                 kvm_mmu_pages_init(parent, &parents, &pages);
1874         }
1875 }
1876
1877 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1878 {
1879         int i;
1880
1881         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1882                 sp->spt[i] = 0ull;
1883 }
1884
1885 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1886 {
1887         sp->write_flooding_count = 0;
1888 }
1889
1890 static void clear_sp_write_flooding_count(u64 *spte)
1891 {
1892         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1893
1894         __clear_sp_write_flooding_count(sp);
1895 }
1896
1897 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1898 {
1899         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1900 }
1901
1902 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1903                                              gfn_t gfn,
1904                                              gva_t gaddr,
1905                                              unsigned level,
1906                                              int direct,
1907                                              unsigned access,
1908                                              u64 *parent_pte)
1909 {
1910         union kvm_mmu_page_role role;
1911         unsigned quadrant;
1912         struct kvm_mmu_page *sp;
1913         bool need_sync = false;
1914
1915         role = vcpu->arch.mmu.base_role;
1916         role.level = level;
1917         role.direct = direct;
1918         if (role.direct)
1919                 role.cr4_pae = 0;
1920         role.access = access;
1921         if (!vcpu->arch.mmu.direct_map
1922             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1923                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1924                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1925                 role.quadrant = quadrant;
1926         }
1927         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1928                 if (is_obsolete_sp(vcpu->kvm, sp))
1929                         continue;
1930
1931                 if (!need_sync && sp->unsync)
1932                         need_sync = true;
1933
1934                 if (sp->role.word != role.word)
1935                         continue;
1936
1937                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1938                         break;
1939
1940                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1941                 if (sp->unsync_children) {
1942                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1943                         kvm_mmu_mark_parents_unsync(sp);
1944                 } else if (sp->unsync)
1945                         kvm_mmu_mark_parents_unsync(sp);
1946
1947                 __clear_sp_write_flooding_count(sp);
1948                 trace_kvm_mmu_get_page(sp, false);
1949                 return sp;
1950         }
1951         ++vcpu->kvm->stat.mmu_cache_miss;
1952         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1953         if (!sp)
1954                 return sp;
1955         sp->gfn = gfn;
1956         sp->role = role;
1957         hlist_add_head(&sp->hash_link,
1958                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1959         if (!direct) {
1960                 if (rmap_write_protect(vcpu->kvm, gfn))
1961                         kvm_flush_remote_tlbs(vcpu->kvm);
1962                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1963                         kvm_sync_pages(vcpu, gfn);
1964
1965                 account_shadowed(vcpu->kvm, gfn);
1966         }
1967         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1968         init_shadow_page_table(sp);
1969         trace_kvm_mmu_get_page(sp, true);
1970         return sp;
1971 }
1972
1973 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1974                              struct kvm_vcpu *vcpu, u64 addr)
1975 {
1976         iterator->addr = addr;
1977         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1978         iterator->level = vcpu->arch.mmu.shadow_root_level;
1979
1980         if (iterator->level == PT64_ROOT_LEVEL &&
1981             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1982             !vcpu->arch.mmu.direct_map)
1983                 --iterator->level;
1984
1985         if (iterator->level == PT32E_ROOT_LEVEL) {
1986                 iterator->shadow_addr
1987                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1988                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1989                 --iterator->level;
1990                 if (!iterator->shadow_addr)
1991                         iterator->level = 0;
1992         }
1993 }
1994
1995 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1996 {
1997         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1998                 return false;
1999
2000         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2001         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2002         return true;
2003 }
2004
2005 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2006                                u64 spte)
2007 {
2008         if (is_last_spte(spte, iterator->level)) {
2009                 iterator->level = 0;
2010                 return;
2011         }
2012
2013         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2014         --iterator->level;
2015 }
2016
2017 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2018 {
2019         return __shadow_walk_next(iterator, *iterator->sptep);
2020 }
2021
2022 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2023 {
2024         u64 spte;
2025
2026         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2027                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2028
2029         mmu_spte_set(sptep, spte);
2030 }
2031
2032 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2033                                    unsigned direct_access)
2034 {
2035         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2036                 struct kvm_mmu_page *child;
2037
2038                 /*
2039                  * For the direct sp, if the guest pte's dirty bit
2040                  * changed form clean to dirty, it will corrupt the
2041                  * sp's access: allow writable in the read-only sp,
2042                  * so we should update the spte at this point to get
2043                  * a new sp with the correct access.
2044                  */
2045                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2046                 if (child->role.access == direct_access)
2047                         return;
2048
2049                 drop_parent_pte(child, sptep);
2050                 kvm_flush_remote_tlbs(vcpu->kvm);
2051         }
2052 }
2053
2054 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2055                              u64 *spte)
2056 {
2057         u64 pte;
2058         struct kvm_mmu_page *child;
2059
2060         pte = *spte;
2061         if (is_shadow_present_pte(pte)) {
2062                 if (is_last_spte(pte, sp->role.level)) {
2063                         drop_spte(kvm, spte);
2064                         if (is_large_pte(pte))
2065                                 --kvm->stat.lpages;
2066                 } else {
2067                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2068                         drop_parent_pte(child, spte);
2069                 }
2070                 return true;
2071         }
2072
2073         if (is_mmio_spte(pte))
2074                 mmu_spte_clear_no_track(spte);
2075
2076         return false;
2077 }
2078
2079 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2080                                          struct kvm_mmu_page *sp)
2081 {
2082         unsigned i;
2083
2084         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2085                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2086 }
2087
2088 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2089 {
2090         mmu_page_remove_parent_pte(sp, parent_pte);
2091 }
2092
2093 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2094 {
2095         u64 *sptep;
2096         struct rmap_iterator iter;
2097
2098         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2099                 drop_parent_pte(sp, sptep);
2100 }
2101
2102 static int mmu_zap_unsync_children(struct kvm *kvm,
2103                                    struct kvm_mmu_page *parent,
2104                                    struct list_head *invalid_list)
2105 {
2106         int i, zapped = 0;
2107         struct mmu_page_path parents;
2108         struct kvm_mmu_pages pages;
2109
2110         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2111                 return 0;
2112
2113         kvm_mmu_pages_init(parent, &parents, &pages);
2114         while (mmu_unsync_walk(parent, &pages)) {
2115                 struct kvm_mmu_page *sp;
2116
2117                 for_each_sp(pages, sp, parents, i) {
2118                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2119                         mmu_pages_clear_parents(&parents);
2120                         zapped++;
2121                 }
2122                 kvm_mmu_pages_init(parent, &parents, &pages);
2123         }
2124
2125         return zapped;
2126 }
2127
2128 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2129                                     struct list_head *invalid_list)
2130 {
2131         int ret;
2132
2133         trace_kvm_mmu_prepare_zap_page(sp);
2134         ++kvm->stat.mmu_shadow_zapped;
2135         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2136         kvm_mmu_page_unlink_children(kvm, sp);
2137         kvm_mmu_unlink_parents(kvm, sp);
2138
2139         if (!sp->role.invalid && !sp->role.direct)
2140                 unaccount_shadowed(kvm, sp->gfn);
2141
2142         if (sp->unsync)
2143                 kvm_unlink_unsync_page(kvm, sp);
2144         if (!sp->root_count) {
2145                 /* Count self */
2146                 ret++;
2147                 list_move(&sp->link, invalid_list);
2148                 kvm_mod_used_mmu_pages(kvm, -1);
2149         } else {
2150                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2151
2152                 /*
2153                  * The obsolete pages can not be used on any vcpus.
2154                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2155                  */
2156                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2157                         kvm_reload_remote_mmus(kvm);
2158         }
2159
2160         sp->role.invalid = 1;
2161         return ret;
2162 }
2163
2164 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2165                                     struct list_head *invalid_list)
2166 {
2167         struct kvm_mmu_page *sp, *nsp;
2168
2169         if (list_empty(invalid_list))
2170                 return;
2171
2172         /*
2173          * wmb: make sure everyone sees our modifications to the page tables
2174          * rmb: make sure we see changes to vcpu->mode
2175          */
2176         smp_mb();
2177
2178         /*
2179          * Wait for all vcpus to exit guest mode and/or lockless shadow
2180          * page table walks.
2181          */
2182         kvm_flush_remote_tlbs(kvm);
2183
2184         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2185                 WARN_ON(!sp->role.invalid || sp->root_count);
2186                 kvm_mmu_free_page(sp);
2187         }
2188 }
2189
2190 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2191                                         struct list_head *invalid_list)
2192 {
2193         struct kvm_mmu_page *sp;
2194
2195         if (list_empty(&kvm->arch.active_mmu_pages))
2196                 return false;
2197
2198         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2199                         struct kvm_mmu_page, link);
2200         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2201
2202         return true;
2203 }
2204
2205 /*
2206  * Changing the number of mmu pages allocated to the vm
2207  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2208  */
2209 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2210 {
2211         LIST_HEAD(invalid_list);
2212
2213         spin_lock(&kvm->mmu_lock);
2214
2215         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2216                 /* Need to free some mmu pages to achieve the goal. */
2217                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2218                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2219                                 break;
2220
2221                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2222                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2223         }
2224
2225         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2226
2227         spin_unlock(&kvm->mmu_lock);
2228 }
2229
2230 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2231 {
2232         struct kvm_mmu_page *sp;
2233         LIST_HEAD(invalid_list);
2234         int r;
2235
2236         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2237         r = 0;
2238         spin_lock(&kvm->mmu_lock);
2239         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2240                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2241                          sp->role.word);
2242                 r = 1;
2243                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2244         }
2245         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2246         spin_unlock(&kvm->mmu_lock);
2247
2248         return r;
2249 }
2250 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2251
2252 /*
2253  * The function is based on mtrr_type_lookup() in
2254  * arch/x86/kernel/cpu/mtrr/generic.c
2255  */
2256 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2257                          u64 start, u64 end)
2258 {
2259         int i;
2260         u64 base, mask;
2261         u8 prev_match, curr_match;
2262         int num_var_ranges = KVM_NR_VAR_MTRR;
2263
2264         if (!mtrr_state->enabled)
2265                 return 0xFF;
2266
2267         /* Make end inclusive end, instead of exclusive */
2268         end--;
2269
2270         /* Look in fixed ranges. Just return the type as per start */
2271         if (mtrr_state->have_fixed && (start < 0x100000)) {
2272                 int idx;
2273
2274                 if (start < 0x80000) {
2275                         idx = 0;
2276                         idx += (start >> 16);
2277                         return mtrr_state->fixed_ranges[idx];
2278                 } else if (start < 0xC0000) {
2279                         idx = 1 * 8;
2280                         idx += ((start - 0x80000) >> 14);
2281                         return mtrr_state->fixed_ranges[idx];
2282                 } else if (start < 0x1000000) {
2283                         idx = 3 * 8;
2284                         idx += ((start - 0xC0000) >> 12);
2285                         return mtrr_state->fixed_ranges[idx];
2286                 }
2287         }
2288
2289         /*
2290          * Look in variable ranges
2291          * Look of multiple ranges matching this address and pick type
2292          * as per MTRR precedence
2293          */
2294         if (!(mtrr_state->enabled & 2))
2295                 return mtrr_state->def_type;
2296
2297         prev_match = 0xFF;
2298         for (i = 0; i < num_var_ranges; ++i) {
2299                 unsigned short start_state, end_state;
2300
2301                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2302                         continue;
2303
2304                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2305                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2306                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2307                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2308
2309                 start_state = ((start & mask) == (base & mask));
2310                 end_state = ((end & mask) == (base & mask));
2311                 if (start_state != end_state)
2312                         return 0xFE;
2313
2314                 if ((start & mask) != (base & mask))
2315                         continue;
2316
2317                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2318                 if (prev_match == 0xFF) {
2319                         prev_match = curr_match;
2320                         continue;
2321                 }
2322
2323                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2324                     curr_match == MTRR_TYPE_UNCACHABLE)
2325                         return MTRR_TYPE_UNCACHABLE;
2326
2327                 if ((prev_match == MTRR_TYPE_WRBACK &&
2328                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2329                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2330                      curr_match == MTRR_TYPE_WRBACK)) {
2331                         prev_match = MTRR_TYPE_WRTHROUGH;
2332                         curr_match = MTRR_TYPE_WRTHROUGH;
2333                 }
2334
2335                 if (prev_match != curr_match)
2336                         return MTRR_TYPE_UNCACHABLE;
2337         }
2338
2339         if (prev_match != 0xFF)
2340                 return prev_match;
2341
2342         return mtrr_state->def_type;
2343 }
2344
2345 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2346 {
2347         u8 mtrr;
2348
2349         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2350                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2351         if (mtrr == 0xfe || mtrr == 0xff)
2352                 mtrr = MTRR_TYPE_WRBACK;
2353         return mtrr;
2354 }
2355 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2356
2357 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2358 {
2359         trace_kvm_mmu_unsync_page(sp);
2360         ++vcpu->kvm->stat.mmu_unsync;
2361         sp->unsync = 1;
2362
2363         kvm_mmu_mark_parents_unsync(sp);
2364 }
2365
2366 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2367 {
2368         struct kvm_mmu_page *s;
2369
2370         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2371                 if (s->unsync)
2372                         continue;
2373                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2374                 __kvm_unsync_page(vcpu, s);
2375         }
2376 }
2377
2378 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2379                                   bool can_unsync)
2380 {
2381         struct kvm_mmu_page *s;
2382         bool need_unsync = false;
2383
2384         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2385                 if (!can_unsync)
2386                         return 1;
2387
2388                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2389                         return 1;
2390
2391                 if (!s->unsync)
2392                         need_unsync = true;
2393         }
2394         if (need_unsync)
2395                 kvm_unsync_pages(vcpu, gfn);
2396         return 0;
2397 }
2398
2399 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2400                     unsigned pte_access, int level,
2401                     gfn_t gfn, pfn_t pfn, bool speculative,
2402                     bool can_unsync, bool host_writable)
2403 {
2404         u64 spte;
2405         int ret = 0;
2406
2407         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2408                 return 0;
2409
2410         spte = PT_PRESENT_MASK;
2411         if (!speculative)
2412                 spte |= shadow_accessed_mask;
2413
2414         if (pte_access & ACC_EXEC_MASK)
2415                 spte |= shadow_x_mask;
2416         else
2417                 spte |= shadow_nx_mask;
2418
2419         if (pte_access & ACC_USER_MASK)
2420                 spte |= shadow_user_mask;
2421
2422         if (level > PT_PAGE_TABLE_LEVEL)
2423                 spte |= PT_PAGE_SIZE_MASK;
2424         if (tdp_enabled)
2425                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2426                         kvm_is_mmio_pfn(pfn));
2427
2428         if (host_writable)
2429                 spte |= SPTE_HOST_WRITEABLE;
2430         else
2431                 pte_access &= ~ACC_WRITE_MASK;
2432
2433         spte |= (u64)pfn << PAGE_SHIFT;
2434
2435         if (pte_access & ACC_WRITE_MASK) {
2436
2437                 /*
2438                  * Other vcpu creates new sp in the window between
2439                  * mapping_level() and acquiring mmu-lock. We can
2440                  * allow guest to retry the access, the mapping can
2441                  * be fixed if guest refault.
2442                  */
2443                 if (level > PT_PAGE_TABLE_LEVEL &&
2444                     has_wrprotected_page(vcpu->kvm, gfn, level))
2445                         goto done;
2446
2447                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2448
2449                 /*
2450                  * Optimization: for pte sync, if spte was writable the hash
2451                  * lookup is unnecessary (and expensive). Write protection
2452                  * is responsibility of mmu_get_page / kvm_sync_page.
2453                  * Same reasoning can be applied to dirty page accounting.
2454                  */
2455                 if (!can_unsync && is_writable_pte(*sptep))
2456                         goto set_pte;
2457
2458                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2459                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2460                                  __func__, gfn);
2461                         ret = 1;
2462                         pte_access &= ~ACC_WRITE_MASK;
2463                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2464                 }
2465         }
2466
2467         if (pte_access & ACC_WRITE_MASK)
2468                 mark_page_dirty(vcpu->kvm, gfn);
2469
2470 set_pte:
2471         if (mmu_spte_update(sptep, spte))
2472                 kvm_flush_remote_tlbs(vcpu->kvm);
2473 done:
2474         return ret;
2475 }
2476
2477 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2478                          unsigned pte_access, int write_fault, int *emulate,
2479                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2480                          bool host_writable)
2481 {
2482         int was_rmapped = 0;
2483         int rmap_count;
2484
2485         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2486                  *sptep, write_fault, gfn);
2487
2488         if (is_rmap_spte(*sptep)) {
2489                 /*
2490                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2491                  * the parent of the now unreachable PTE.
2492                  */
2493                 if (level > PT_PAGE_TABLE_LEVEL &&
2494                     !is_large_pte(*sptep)) {
2495                         struct kvm_mmu_page *child;
2496                         u64 pte = *sptep;
2497
2498                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2499                         drop_parent_pte(child, sptep);
2500                         kvm_flush_remote_tlbs(vcpu->kvm);
2501                 } else if (pfn != spte_to_pfn(*sptep)) {
2502                         pgprintk("hfn old %llx new %llx\n",
2503                                  spte_to_pfn(*sptep), pfn);
2504                         drop_spte(vcpu->kvm, sptep);
2505                         kvm_flush_remote_tlbs(vcpu->kvm);
2506                 } else
2507                         was_rmapped = 1;
2508         }
2509
2510         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2511               true, host_writable)) {
2512                 if (write_fault)
2513                         *emulate = 1;
2514                 kvm_mmu_flush_tlb(vcpu);
2515         }
2516
2517         if (unlikely(is_mmio_spte(*sptep) && emulate))
2518                 *emulate = 1;
2519
2520         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2521         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2522                  is_large_pte(*sptep)? "2MB" : "4kB",
2523                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2524                  *sptep, sptep);
2525         if (!was_rmapped && is_large_pte(*sptep))
2526                 ++vcpu->kvm->stat.lpages;
2527
2528         if (is_shadow_present_pte(*sptep)) {
2529                 if (!was_rmapped) {
2530                         rmap_count = rmap_add(vcpu, sptep, gfn);
2531                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2532                                 rmap_recycle(vcpu, sptep, gfn);
2533                 }
2534         }
2535
2536         kvm_release_pfn_clean(pfn);
2537 }
2538
2539 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2540 {
2541         mmu_free_roots(vcpu);
2542 }
2543
2544 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2545 {
2546         int bit7;
2547
2548         bit7 = (gpte >> 7) & 1;
2549         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2550 }
2551
2552 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2553                                      bool no_dirty_log)
2554 {
2555         struct kvm_memory_slot *slot;
2556
2557         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2558         if (!slot)
2559                 return KVM_PFN_ERR_FAULT;
2560
2561         return gfn_to_pfn_memslot_atomic(slot, gfn);
2562 }
2563
2564 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2565                                   struct kvm_mmu_page *sp, u64 *spte,
2566                                   u64 gpte)
2567 {
2568         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2569                 goto no_present;
2570
2571         if (!is_present_gpte(gpte))
2572                 goto no_present;
2573
2574         if (!(gpte & PT_ACCESSED_MASK))
2575                 goto no_present;
2576
2577         return false;
2578
2579 no_present:
2580         drop_spte(vcpu->kvm, spte);
2581         return true;
2582 }
2583
2584 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2585                                     struct kvm_mmu_page *sp,
2586                                     u64 *start, u64 *end)
2587 {
2588         struct page *pages[PTE_PREFETCH_NUM];
2589         unsigned access = sp->role.access;
2590         int i, ret;
2591         gfn_t gfn;
2592
2593         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2594         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2595                 return -1;
2596
2597         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2598         if (ret <= 0)
2599                 return -1;
2600
2601         for (i = 0; i < ret; i++, gfn++, start++)
2602                 mmu_set_spte(vcpu, start, access, 0, NULL,
2603                              sp->role.level, gfn, page_to_pfn(pages[i]),
2604                              true, true);
2605
2606         return 0;
2607 }
2608
2609 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2610                                   struct kvm_mmu_page *sp, u64 *sptep)
2611 {
2612         u64 *spte, *start = NULL;
2613         int i;
2614
2615         WARN_ON(!sp->role.direct);
2616
2617         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2618         spte = sp->spt + i;
2619
2620         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2621                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2622                         if (!start)
2623                                 continue;
2624                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2625                                 break;
2626                         start = NULL;
2627                 } else if (!start)
2628                         start = spte;
2629         }
2630 }
2631
2632 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2633 {
2634         struct kvm_mmu_page *sp;
2635
2636         /*
2637          * Since it's no accessed bit on EPT, it's no way to
2638          * distinguish between actually accessed translations
2639          * and prefetched, so disable pte prefetch if EPT is
2640          * enabled.
2641          */
2642         if (!shadow_accessed_mask)
2643                 return;
2644
2645         sp = page_header(__pa(sptep));
2646         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2647                 return;
2648
2649         __direct_pte_prefetch(vcpu, sp, sptep);
2650 }
2651
2652 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2653                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2654                         bool prefault)
2655 {
2656         struct kvm_shadow_walk_iterator iterator;
2657         struct kvm_mmu_page *sp;
2658         int emulate = 0;
2659         gfn_t pseudo_gfn;
2660
2661         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2662                 if (iterator.level == level) {
2663                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2664                                      write, &emulate, level, gfn, pfn,
2665                                      prefault, map_writable);
2666                         direct_pte_prefetch(vcpu, iterator.sptep);
2667                         ++vcpu->stat.pf_fixed;
2668                         break;
2669                 }
2670
2671                 if (!is_shadow_present_pte(*iterator.sptep)) {
2672                         u64 base_addr = iterator.addr;
2673
2674                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2675                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2676                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2677                                               iterator.level - 1,
2678                                               1, ACC_ALL, iterator.sptep);
2679
2680                         link_shadow_page(iterator.sptep, sp);
2681                 }
2682         }
2683         return emulate;
2684 }
2685
2686 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2687 {
2688         siginfo_t info;
2689
2690         info.si_signo   = SIGBUS;
2691         info.si_errno   = 0;
2692         info.si_code    = BUS_MCEERR_AR;
2693         info.si_addr    = (void __user *)address;
2694         info.si_addr_lsb = PAGE_SHIFT;
2695
2696         send_sig_info(SIGBUS, &info, tsk);
2697 }
2698
2699 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2700 {
2701         /*
2702          * Do not cache the mmio info caused by writing the readonly gfn
2703          * into the spte otherwise read access on readonly gfn also can
2704          * caused mmio page fault and treat it as mmio access.
2705          * Return 1 to tell kvm to emulate it.
2706          */
2707         if (pfn == KVM_PFN_ERR_RO_FAULT)
2708                 return 1;
2709
2710         if (pfn == KVM_PFN_ERR_HWPOISON) {
2711                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2712                 return 0;
2713         }
2714
2715         return -EFAULT;
2716 }
2717
2718 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2719                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2720 {
2721         pfn_t pfn = *pfnp;
2722         gfn_t gfn = *gfnp;
2723         int level = *levelp;
2724
2725         /*
2726          * Check if it's a transparent hugepage. If this would be an
2727          * hugetlbfs page, level wouldn't be set to
2728          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2729          * here.
2730          */
2731         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2732             level == PT_PAGE_TABLE_LEVEL &&
2733             PageTransCompound(pfn_to_page(pfn)) &&
2734             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2735                 unsigned long mask;
2736                 /*
2737                  * mmu_notifier_retry was successful and we hold the
2738                  * mmu_lock here, so the pmd can't become splitting
2739                  * from under us, and in turn
2740                  * __split_huge_page_refcount() can't run from under
2741                  * us and we can safely transfer the refcount from
2742                  * PG_tail to PG_head as we switch the pfn to tail to
2743                  * head.
2744                  */
2745                 *levelp = level = PT_DIRECTORY_LEVEL;
2746                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2747                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2748                 if (pfn & mask) {
2749                         gfn &= ~mask;
2750                         *gfnp = gfn;
2751                         kvm_release_pfn_clean(pfn);
2752                         pfn &= ~mask;
2753                         kvm_get_pfn(pfn);
2754                         *pfnp = pfn;
2755                 }
2756         }
2757 }
2758
2759 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2760                                 pfn_t pfn, unsigned access, int *ret_val)
2761 {
2762         bool ret = true;
2763
2764         /* The pfn is invalid, report the error! */
2765         if (unlikely(is_error_pfn(pfn))) {
2766                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2767                 goto exit;
2768         }
2769
2770         if (unlikely(is_noslot_pfn(pfn)))
2771                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2772
2773         ret = false;
2774 exit:
2775         return ret;
2776 }
2777
2778 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2779 {
2780         /*
2781          * #PF can be fast only if the shadow page table is present and it
2782          * is caused by write-protect, that means we just need change the
2783          * W bit of the spte which can be done out of mmu-lock.
2784          */
2785         if (!(error_code & PFERR_PRESENT_MASK) ||
2786               !(error_code & PFERR_WRITE_MASK))
2787                 return false;
2788
2789         return true;
2790 }
2791
2792 static bool
2793 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2794 {
2795         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2796         gfn_t gfn;
2797
2798         WARN_ON(!sp->role.direct);
2799
2800         /*
2801          * The gfn of direct spte is stable since it is calculated
2802          * by sp->gfn.
2803          */
2804         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2805
2806         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2807                 mark_page_dirty(vcpu->kvm, gfn);
2808
2809         return true;
2810 }
2811
2812 /*
2813  * Return value:
2814  * - true: let the vcpu to access on the same address again.
2815  * - false: let the real page fault path to fix it.
2816  */
2817 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2818                             u32 error_code)
2819 {
2820         struct kvm_shadow_walk_iterator iterator;
2821         bool ret = false;
2822         u64 spte = 0ull;
2823
2824         if (!page_fault_can_be_fast(vcpu, error_code))
2825                 return false;
2826
2827         walk_shadow_page_lockless_begin(vcpu);
2828         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2829                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2830                         break;
2831
2832         /*
2833          * If the mapping has been changed, let the vcpu fault on the
2834          * same address again.
2835          */
2836         if (!is_rmap_spte(spte)) {
2837                 ret = true;
2838                 goto exit;
2839         }
2840
2841         if (!is_last_spte(spte, level))
2842                 goto exit;
2843
2844         /*
2845          * Check if it is a spurious fault caused by TLB lazily flushed.
2846          *
2847          * Need not check the access of upper level table entries since
2848          * they are always ACC_ALL.
2849          */
2850          if (is_writable_pte(spte)) {
2851                 ret = true;
2852                 goto exit;
2853         }
2854
2855         /*
2856          * Currently, to simplify the code, only the spte write-protected
2857          * by dirty-log can be fast fixed.
2858          */
2859         if (!spte_is_locklessly_modifiable(spte))
2860                 goto exit;
2861
2862         /*
2863          * Currently, fast page fault only works for direct mapping since
2864          * the gfn is not stable for indirect shadow page.
2865          * See Documentation/virtual/kvm/locking.txt to get more detail.
2866          */
2867         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2868 exit:
2869         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2870                               spte, ret);
2871         walk_shadow_page_lockless_end(vcpu);
2872
2873         return ret;
2874 }
2875
2876 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2877                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2878 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2879
2880 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2881                          gfn_t gfn, bool prefault)
2882 {
2883         int r;
2884         int level;
2885         int force_pt_level;
2886         pfn_t pfn;
2887         unsigned long mmu_seq;
2888         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2889
2890         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2891         if (likely(!force_pt_level)) {
2892                 level = mapping_level(vcpu, gfn);
2893                 /*
2894                  * This path builds a PAE pagetable - so we can map
2895                  * 2mb pages at maximum. Therefore check if the level
2896                  * is larger than that.
2897                  */
2898                 if (level > PT_DIRECTORY_LEVEL)
2899                         level = PT_DIRECTORY_LEVEL;
2900
2901                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2902         } else
2903                 level = PT_PAGE_TABLE_LEVEL;
2904
2905         if (fast_page_fault(vcpu, v, level, error_code))
2906                 return 0;
2907
2908         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2909         smp_rmb();
2910
2911         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2912                 return 0;
2913
2914         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2915                 return r;
2916
2917         spin_lock(&vcpu->kvm->mmu_lock);
2918         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2919                 goto out_unlock;
2920         make_mmu_pages_available(vcpu);
2921         if (likely(!force_pt_level))
2922                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2923         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2924                          prefault);
2925         spin_unlock(&vcpu->kvm->mmu_lock);
2926
2927
2928         return r;
2929
2930 out_unlock:
2931         spin_unlock(&vcpu->kvm->mmu_lock);
2932         kvm_release_pfn_clean(pfn);
2933         return 0;
2934 }
2935
2936
2937 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2938 {
2939         int i;
2940         struct kvm_mmu_page *sp;
2941         LIST_HEAD(invalid_list);
2942
2943         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2944                 return;
2945
2946         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2947             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2948              vcpu->arch.mmu.direct_map)) {
2949                 hpa_t root = vcpu->arch.mmu.root_hpa;
2950
2951                 spin_lock(&vcpu->kvm->mmu_lock);
2952                 sp = page_header(root);
2953                 --sp->root_count;
2954                 if (!sp->root_count && sp->role.invalid) {
2955                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2956                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2957                 }
2958                 spin_unlock(&vcpu->kvm->mmu_lock);
2959                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2960                 return;
2961         }
2962
2963         spin_lock(&vcpu->kvm->mmu_lock);
2964         for (i = 0; i < 4; ++i) {
2965                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2966
2967                 if (root) {
2968                         root &= PT64_BASE_ADDR_MASK;
2969                         sp = page_header(root);
2970                         --sp->root_count;
2971                         if (!sp->root_count && sp->role.invalid)
2972                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2973                                                          &invalid_list);
2974                 }
2975                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2976         }
2977         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2978         spin_unlock(&vcpu->kvm->mmu_lock);
2979         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2980 }
2981
2982 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2983 {
2984         int ret = 0;
2985
2986         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2987                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2988                 ret = 1;
2989         }
2990
2991         return ret;
2992 }
2993
2994 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2995 {
2996         struct kvm_mmu_page *sp;
2997         unsigned i;
2998
2999         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3000                 spin_lock(&vcpu->kvm->mmu_lock);
3001                 make_mmu_pages_available(vcpu);
3002                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3003                                       1, ACC_ALL, NULL);
3004                 ++sp->root_count;
3005                 spin_unlock(&vcpu->kvm->mmu_lock);
3006                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3007         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3008                 for (i = 0; i < 4; ++i) {
3009                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3010
3011                         ASSERT(!VALID_PAGE(root));
3012                         spin_lock(&vcpu->kvm->mmu_lock);
3013                         make_mmu_pages_available(vcpu);
3014                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3015                                               i << 30,
3016                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3017                                               NULL);
3018                         root = __pa(sp->spt);
3019                         ++sp->root_count;
3020                         spin_unlock(&vcpu->kvm->mmu_lock);
3021                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3022                 }
3023                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3024         } else
3025                 BUG();
3026
3027         return 0;
3028 }
3029
3030 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3031 {
3032         struct kvm_mmu_page *sp;
3033         u64 pdptr, pm_mask;
3034         gfn_t root_gfn;
3035         int i;
3036
3037         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3038
3039         if (mmu_check_root(vcpu, root_gfn))
3040                 return 1;
3041
3042         /*
3043          * Do we shadow a long mode page table? If so we need to
3044          * write-protect the guests page table root.
3045          */
3046         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3047                 hpa_t root = vcpu->arch.mmu.root_hpa;
3048
3049                 ASSERT(!VALID_PAGE(root));
3050
3051                 spin_lock(&vcpu->kvm->mmu_lock);
3052                 make_mmu_pages_available(vcpu);
3053                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3054                                       0, ACC_ALL, NULL);
3055                 root = __pa(sp->spt);
3056                 ++sp->root_count;
3057                 spin_unlock(&vcpu->kvm->mmu_lock);
3058                 vcpu->arch.mmu.root_hpa = root;
3059                 return 0;
3060         }
3061
3062         /*
3063          * We shadow a 32 bit page table. This may be a legacy 2-level
3064          * or a PAE 3-level page table. In either case we need to be aware that
3065          * the shadow page table may be a PAE or a long mode page table.
3066          */
3067         pm_mask = PT_PRESENT_MASK;
3068         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3069                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3070
3071         for (i = 0; i < 4; ++i) {
3072                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3073
3074                 ASSERT(!VALID_PAGE(root));
3075                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3076                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3077                         if (!is_present_gpte(pdptr)) {
3078                                 vcpu->arch.mmu.pae_root[i] = 0;
3079                                 continue;
3080                         }
3081                         root_gfn = pdptr >> PAGE_SHIFT;
3082                         if (mmu_check_root(vcpu, root_gfn))
3083                                 return 1;
3084                 }
3085                 spin_lock(&vcpu->kvm->mmu_lock);
3086                 make_mmu_pages_available(vcpu);
3087                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3088                                       PT32_ROOT_LEVEL, 0,
3089                                       ACC_ALL, NULL);
3090                 root = __pa(sp->spt);
3091                 ++sp->root_count;
3092                 spin_unlock(&vcpu->kvm->mmu_lock);
3093
3094                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3095         }
3096         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3097
3098         /*
3099          * If we shadow a 32 bit page table with a long mode page
3100          * table we enter this path.
3101          */
3102         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3103                 if (vcpu->arch.mmu.lm_root == NULL) {
3104                         /*
3105                          * The additional page necessary for this is only
3106                          * allocated on demand.
3107                          */
3108
3109                         u64 *lm_root;
3110
3111                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3112                         if (lm_root == NULL)
3113                                 return 1;
3114
3115                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3116
3117                         vcpu->arch.mmu.lm_root = lm_root;
3118                 }
3119
3120                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3121         }
3122
3123         return 0;
3124 }
3125
3126 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3127 {
3128         if (vcpu->arch.mmu.direct_map)
3129                 return mmu_alloc_direct_roots(vcpu);
3130         else
3131                 return mmu_alloc_shadow_roots(vcpu);
3132 }
3133
3134 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3135 {
3136         int i;
3137         struct kvm_mmu_page *sp;
3138
3139         if (vcpu->arch.mmu.direct_map)
3140                 return;
3141
3142         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3143                 return;
3144
3145         vcpu_clear_mmio_info(vcpu, ~0ul);
3146         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3147         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3148                 hpa_t root = vcpu->arch.mmu.root_hpa;
3149                 sp = page_header(root);
3150                 mmu_sync_children(vcpu, sp);
3151                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3152                 return;
3153         }
3154         for (i = 0; i < 4; ++i) {
3155                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3156
3157                 if (root && VALID_PAGE(root)) {
3158                         root &= PT64_BASE_ADDR_MASK;
3159                         sp = page_header(root);
3160                         mmu_sync_children(vcpu, sp);
3161                 }
3162         }
3163         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3164 }
3165
3166 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3167 {
3168         spin_lock(&vcpu->kvm->mmu_lock);
3169         mmu_sync_roots(vcpu);
3170         spin_unlock(&vcpu->kvm->mmu_lock);
3171 }
3172
3173 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3174                                   u32 access, struct x86_exception *exception)
3175 {
3176         if (exception)
3177                 exception->error_code = 0;
3178         return vaddr;
3179 }
3180
3181 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3182                                          u32 access,
3183                                          struct x86_exception *exception)
3184 {
3185         if (exception)
3186                 exception->error_code = 0;
3187         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3188 }
3189
3190 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3191 {
3192         if (direct)
3193                 return vcpu_match_mmio_gpa(vcpu, addr);
3194
3195         return vcpu_match_mmio_gva(vcpu, addr);
3196 }
3197
3198
3199 /*
3200  * On direct hosts, the last spte is only allows two states
3201  * for mmio page fault:
3202  *   - It is the mmio spte
3203  *   - It is zapped or it is being zapped.
3204  *
3205  * This function completely checks the spte when the last spte
3206  * is not the mmio spte.
3207  */
3208 static bool check_direct_spte_mmio_pf(u64 spte)
3209 {
3210         return __check_direct_spte_mmio_pf(spte);
3211 }
3212
3213 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3214 {
3215         struct kvm_shadow_walk_iterator iterator;
3216         u64 spte = 0ull;
3217
3218         walk_shadow_page_lockless_begin(vcpu);
3219         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3220                 if (!is_shadow_present_pte(spte))
3221                         break;
3222         walk_shadow_page_lockless_end(vcpu);
3223
3224         return spte;
3225 }
3226
3227 /*
3228  * If it is a real mmio page fault, return 1 and emulat the instruction
3229  * directly, return 0 to let CPU fault again on the address, -1 is
3230  * returned if bug is detected.
3231  */
3232 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3233 {
3234         u64 spte;
3235
3236         if (quickly_check_mmio_pf(vcpu, addr, direct))
3237                 return 1;
3238
3239         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3240
3241         if (is_mmio_spte(spte)) {
3242                 gfn_t gfn = get_mmio_spte_gfn(spte);
3243                 unsigned access = get_mmio_spte_access(spte);
3244
3245                 if (direct)
3246                         addr = 0;
3247
3248                 trace_handle_mmio_page_fault(addr, gfn, access);
3249                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3250                 return 1;
3251         }
3252
3253         /*
3254          * It's ok if the gva is remapped by other cpus on shadow guest,
3255          * it's a BUG if the gfn is not a mmio page.
3256          */
3257         if (direct && !check_direct_spte_mmio_pf(spte))
3258                 return -1;
3259
3260         /*
3261          * If the page table is zapped by other cpus, let CPU fault again on
3262          * the address.
3263          */
3264         return 0;
3265 }
3266 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3267
3268 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3269                                   u32 error_code, bool direct)
3270 {
3271         int ret;
3272
3273         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3274         WARN_ON(ret < 0);
3275         return ret;
3276 }
3277
3278 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3279                                 u32 error_code, bool prefault)
3280 {
3281         gfn_t gfn;
3282         int r;
3283
3284         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3285
3286         if (unlikely(error_code & PFERR_RSVD_MASK))
3287                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3288
3289         r = mmu_topup_memory_caches(vcpu);
3290         if (r)
3291                 return r;
3292
3293         ASSERT(vcpu);
3294         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3295
3296         gfn = gva >> PAGE_SHIFT;
3297
3298         return nonpaging_map(vcpu, gva & PAGE_MASK,
3299                              error_code, gfn, prefault);
3300 }
3301
3302 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3303 {
3304         struct kvm_arch_async_pf arch;
3305
3306         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3307         arch.gfn = gfn;
3308         arch.direct_map = vcpu->arch.mmu.direct_map;
3309         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3310
3311         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3312 }
3313
3314 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3315 {
3316         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3317                      kvm_event_needs_reinjection(vcpu)))
3318                 return false;
3319
3320         return kvm_x86_ops->interrupt_allowed(vcpu);
3321 }
3322
3323 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3324                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3325 {
3326         bool async;
3327
3328         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3329
3330         if (!async)
3331                 return false; /* *pfn has correct page already */
3332
3333         if (!prefault && can_do_async_pf(vcpu)) {
3334                 trace_kvm_try_async_get_page(gva, gfn);
3335                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3336                         trace_kvm_async_pf_doublefault(gva, gfn);
3337                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3338                         return true;
3339                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3340                         return true;
3341         }
3342
3343         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3344
3345         return false;
3346 }
3347
3348 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3349                           bool prefault)
3350 {
3351         pfn_t pfn;
3352         int r;
3353         int level;
3354         int force_pt_level;
3355         gfn_t gfn = gpa >> PAGE_SHIFT;
3356         unsigned long mmu_seq;
3357         int write = error_code & PFERR_WRITE_MASK;
3358         bool map_writable;
3359
3360         ASSERT(vcpu);
3361         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3362
3363         if (unlikely(error_code & PFERR_RSVD_MASK))
3364                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3365
3366         r = mmu_topup_memory_caches(vcpu);
3367         if (r)
3368                 return r;
3369
3370         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3371         if (likely(!force_pt_level)) {
3372                 level = mapping_level(vcpu, gfn);
3373                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3374         } else
3375                 level = PT_PAGE_TABLE_LEVEL;
3376
3377         if (fast_page_fault(vcpu, gpa, level, error_code))
3378                 return 0;
3379
3380         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3381         smp_rmb();
3382
3383         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3384                 return 0;
3385
3386         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3387                 return r;
3388
3389         spin_lock(&vcpu->kvm->mmu_lock);
3390         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3391                 goto out_unlock;
3392         make_mmu_pages_available(vcpu);
3393         if (likely(!force_pt_level))
3394                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3395         r = __direct_map(vcpu, gpa, write, map_writable,
3396                          level, gfn, pfn, prefault);
3397         spin_unlock(&vcpu->kvm->mmu_lock);
3398
3399         return r;
3400
3401 out_unlock:
3402         spin_unlock(&vcpu->kvm->mmu_lock);
3403         kvm_release_pfn_clean(pfn);
3404         return 0;
3405 }
3406
3407 static void nonpaging_free(struct kvm_vcpu *vcpu)
3408 {
3409         mmu_free_roots(vcpu);
3410 }
3411
3412 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3413                                   struct kvm_mmu *context)
3414 {
3415         context->new_cr3 = nonpaging_new_cr3;
3416         context->page_fault = nonpaging_page_fault;
3417         context->gva_to_gpa = nonpaging_gva_to_gpa;
3418         context->free = nonpaging_free;
3419         context->sync_page = nonpaging_sync_page;
3420         context->invlpg = nonpaging_invlpg;
3421         context->update_pte = nonpaging_update_pte;
3422         context->root_level = 0;
3423         context->shadow_root_level = PT32E_ROOT_LEVEL;
3424         context->root_hpa = INVALID_PAGE;
3425         context->direct_map = true;
3426         context->nx = false;
3427         return 0;
3428 }
3429
3430 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3431 {
3432         ++vcpu->stat.tlb_flush;
3433         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3434 }
3435
3436 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3437 {
3438         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3439         mmu_free_roots(vcpu);
3440 }
3441
3442 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3443 {
3444         return kvm_read_cr3(vcpu);
3445 }
3446
3447 static void inject_page_fault(struct kvm_vcpu *vcpu,
3448                               struct x86_exception *fault)
3449 {
3450         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3451 }
3452
3453 static void paging_free(struct kvm_vcpu *vcpu)
3454 {
3455         nonpaging_free(vcpu);
3456 }
3457
3458 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3459 {
3460         unsigned mask;
3461
3462         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3463
3464         mask = (unsigned)~ACC_WRITE_MASK;
3465         /* Allow write access to dirty gptes */
3466         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3467         *access &= mask;
3468 }
3469
3470 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3471                            unsigned access, int *nr_present)
3472 {
3473         if (unlikely(is_mmio_spte(*sptep))) {
3474                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3475                         mmu_spte_clear_no_track(sptep);
3476                         return true;
3477                 }
3478
3479                 (*nr_present)++;
3480                 mark_mmio_spte(kvm, sptep, gfn, access);
3481                 return true;
3482         }
3483
3484         return false;
3485 }
3486
3487 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3488 {
3489         unsigned access;
3490
3491         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3492         access &= ~(gpte >> PT64_NX_SHIFT);
3493
3494         return access;
3495 }
3496
3497 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3498 {
3499         unsigned index;
3500
3501         index = level - 1;
3502         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3503         return mmu->last_pte_bitmap & (1 << index);
3504 }
3505
3506 #define PTTYPE 64
3507 #include "paging_tmpl.h"
3508 #undef PTTYPE
3509
3510 #define PTTYPE 32
3511 #include "paging_tmpl.h"
3512 #undef PTTYPE
3513
3514 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3515                                   struct kvm_mmu *context)
3516 {
3517         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3518         u64 exb_bit_rsvd = 0;
3519
3520         if (!context->nx)
3521                 exb_bit_rsvd = rsvd_bits(63, 63);
3522         switch (context->root_level) {
3523         case PT32_ROOT_LEVEL:
3524                 /* no rsvd bits for 2 level 4K page table entries */
3525                 context->rsvd_bits_mask[0][1] = 0;
3526                 context->rsvd_bits_mask[0][0] = 0;
3527                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3528
3529                 if (!is_pse(vcpu)) {
3530                         context->rsvd_bits_mask[1][1] = 0;
3531                         break;
3532                 }
3533
3534                 if (is_cpuid_PSE36())
3535                         /* 36bits PSE 4MB page */
3536                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3537                 else
3538                         /* 32 bits PSE 4MB page */
3539                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3540                 break;
3541         case PT32E_ROOT_LEVEL:
3542                 context->rsvd_bits_mask[0][2] =
3543                         rsvd_bits(maxphyaddr, 63) |
3544                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3545                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3546                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3547                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3548                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3549                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3550                         rsvd_bits(maxphyaddr, 62) |
3551                         rsvd_bits(13, 20);              /* large page */
3552                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3553                 break;
3554         case PT64_ROOT_LEVEL:
3555                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3556                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3557                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3558                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3559                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3560                         rsvd_bits(maxphyaddr, 51);
3561                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3562                         rsvd_bits(maxphyaddr, 51);
3563                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3564                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3565                         rsvd_bits(maxphyaddr, 51) |
3566                         rsvd_bits(13, 29);
3567                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3568                         rsvd_bits(maxphyaddr, 51) |
3569                         rsvd_bits(13, 20);              /* large page */
3570                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3571                 break;
3572         }
3573 }
3574
3575 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3576 {
3577         unsigned bit, byte, pfec;
3578         u8 map;
3579         bool fault, x, w, u, wf, uf, ff, smep;
3580
3581         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3582         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3583                 pfec = byte << 1;
3584                 map = 0;
3585                 wf = pfec & PFERR_WRITE_MASK;
3586                 uf = pfec & PFERR_USER_MASK;
3587                 ff = pfec & PFERR_FETCH_MASK;
3588                 for (bit = 0; bit < 8; ++bit) {
3589                         x = bit & ACC_EXEC_MASK;
3590                         w = bit & ACC_WRITE_MASK;
3591                         u = bit & ACC_USER_MASK;
3592
3593                         /* Not really needed: !nx will cause pte.nx to fault */
3594                         x |= !mmu->nx;
3595                         /* Allow supervisor writes if !cr0.wp */
3596                         w |= !is_write_protection(vcpu) && !uf;
3597                         /* Disallow supervisor fetches of user code if cr4.smep */
3598                         x &= !(smep && u && !uf);
3599
3600                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3601                         map |= fault << bit;
3602                 }
3603                 mmu->permissions[byte] = map;
3604         }
3605 }
3606
3607 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3608 {
3609         u8 map;
3610         unsigned level, root_level = mmu->root_level;
3611         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3612
3613         if (root_level == PT32E_ROOT_LEVEL)
3614                 --root_level;
3615         /* PT_PAGE_TABLE_LEVEL always terminates */
3616         map = 1 | (1 << ps_set_index);
3617         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3618                 if (level <= PT_PDPE_LEVEL
3619                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3620                         map |= 1 << (ps_set_index | (level - 1));
3621         }
3622         mmu->last_pte_bitmap = map;
3623 }
3624
3625 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3626                                         struct kvm_mmu *context,
3627                                         int level)
3628 {
3629         context->nx = is_nx(vcpu);
3630         context->root_level = level;
3631
3632         reset_rsvds_bits_mask(vcpu, context);
3633         update_permission_bitmask(vcpu, context);
3634         update_last_pte_bitmap(vcpu, context);
3635
3636         ASSERT(is_pae(vcpu));
3637         context->new_cr3 = paging_new_cr3;
3638         context->page_fault = paging64_page_fault;
3639         context->gva_to_gpa = paging64_gva_to_gpa;
3640         context->sync_page = paging64_sync_page;
3641         context->invlpg = paging64_invlpg;
3642         context->update_pte = paging64_update_pte;
3643         context->free = paging_free;
3644         context->shadow_root_level = level;
3645         context->root_hpa = INVALID_PAGE;
3646         context->direct_map = false;
3647         return 0;
3648 }
3649
3650 static int paging64_init_context(struct kvm_vcpu *vcpu,
3651                                  struct kvm_mmu *context)
3652 {
3653         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3654 }
3655
3656 static int paging32_init_context(struct kvm_vcpu *vcpu,
3657                                  struct kvm_mmu *context)
3658 {
3659         context->nx = false;
3660         context->root_level = PT32_ROOT_LEVEL;
3661
3662         reset_rsvds_bits_mask(vcpu, context);
3663         update_permission_bitmask(vcpu, context);
3664         update_last_pte_bitmap(vcpu, context);
3665
3666         context->new_cr3 = paging_new_cr3;
3667         context->page_fault = paging32_page_fault;
3668         context->gva_to_gpa = paging32_gva_to_gpa;
3669         context->free = paging_free;
3670         context->sync_page = paging32_sync_page;
3671         context->invlpg = paging32_invlpg;
3672         context->update_pte = paging32_update_pte;
3673         context->shadow_root_level = PT32E_ROOT_LEVEL;
3674         context->root_hpa = INVALID_PAGE;
3675         context->direct_map = false;
3676         return 0;
3677 }
3678
3679 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3680                                   struct kvm_mmu *context)
3681 {
3682         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3683 }
3684
3685 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3686 {
3687         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3688
3689         context->base_role.word = 0;
3690         context->new_cr3 = nonpaging_new_cr3;
3691         context->page_fault = tdp_page_fault;
3692         context->free = nonpaging_free;
3693         context->sync_page = nonpaging_sync_page;
3694         context->invlpg = nonpaging_invlpg;
3695         context->update_pte = nonpaging_update_pte;
3696         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3697         context->root_hpa = INVALID_PAGE;
3698         context->direct_map = true;
3699         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3700         context->get_cr3 = get_cr3;
3701         context->get_pdptr = kvm_pdptr_read;
3702         context->inject_page_fault = kvm_inject_page_fault;
3703
3704         if (!is_paging(vcpu)) {
3705                 context->nx = false;
3706                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3707                 context->root_level = 0;
3708         } else if (is_long_mode(vcpu)) {
3709                 context->nx = is_nx(vcpu);
3710                 context->root_level = PT64_ROOT_LEVEL;
3711                 reset_rsvds_bits_mask(vcpu, context);
3712                 context->gva_to_gpa = paging64_gva_to_gpa;
3713         } else if (is_pae(vcpu)) {
3714                 context->nx = is_nx(vcpu);
3715                 context->root_level = PT32E_ROOT_LEVEL;
3716                 reset_rsvds_bits_mask(vcpu, context);
3717                 context->gva_to_gpa = paging64_gva_to_gpa;
3718         } else {
3719                 context->nx = false;
3720                 context->root_level = PT32_ROOT_LEVEL;
3721                 reset_rsvds_bits_mask(vcpu, context);
3722                 context->gva_to_gpa = paging32_gva_to_gpa;
3723         }
3724
3725         update_permission_bitmask(vcpu, context);
3726         update_last_pte_bitmap(vcpu, context);
3727
3728         return 0;
3729 }
3730
3731 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3732 {
3733         int r;
3734         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3735         ASSERT(vcpu);
3736         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3737
3738         if (!is_paging(vcpu))
3739                 r = nonpaging_init_context(vcpu, context);
3740         else if (is_long_mode(vcpu))
3741                 r = paging64_init_context(vcpu, context);
3742         else if (is_pae(vcpu))
3743                 r = paging32E_init_context(vcpu, context);
3744         else
3745                 r = paging32_init_context(vcpu, context);
3746
3747         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3748         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3749         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3750         vcpu->arch.mmu.base_role.smep_andnot_wp
3751                 = smep && !is_write_protection(vcpu);
3752
3753         return r;
3754 }
3755 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3756
3757 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3758 {
3759         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3760
3761         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3762         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3763         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3764         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3765
3766         return r;
3767 }
3768
3769 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3770 {
3771         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3772
3773         g_context->get_cr3           = get_cr3;
3774         g_context->get_pdptr         = kvm_pdptr_read;
3775         g_context->inject_page_fault = kvm_inject_page_fault;
3776
3777         /*
3778          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3779          * translation of l2_gpa to l1_gpa addresses is done using the
3780          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3781          * functions between mmu and nested_mmu are swapped.
3782          */
3783         if (!is_paging(vcpu)) {
3784                 g_context->nx = false;
3785                 g_context->root_level = 0;
3786                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3787         } else if (is_long_mode(vcpu)) {
3788                 g_context->nx = is_nx(vcpu);
3789                 g_context->root_level = PT64_ROOT_LEVEL;
3790                 reset_rsvds_bits_mask(vcpu, g_context);
3791                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3792         } else if (is_pae(vcpu)) {
3793                 g_context->nx = is_nx(vcpu);
3794                 g_context->root_level = PT32E_ROOT_LEVEL;
3795                 reset_rsvds_bits_mask(vcpu, g_context);
3796                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3797         } else {
3798                 g_context->nx = false;
3799                 g_context->root_level = PT32_ROOT_LEVEL;
3800                 reset_rsvds_bits_mask(vcpu, g_context);
3801                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3802         }
3803
3804         update_permission_bitmask(vcpu, g_context);
3805         update_last_pte_bitmap(vcpu, g_context);
3806
3807         return 0;
3808 }
3809
3810 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3811 {
3812         if (mmu_is_nested(vcpu))
3813                 return init_kvm_nested_mmu(vcpu);
3814         else if (tdp_enabled)
3815                 return init_kvm_tdp_mmu(vcpu);
3816         else
3817                 return init_kvm_softmmu(vcpu);
3818 }
3819
3820 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3821 {
3822         ASSERT(vcpu);
3823         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3824                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3825                 vcpu->arch.mmu.free(vcpu);
3826 }
3827
3828 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3829 {
3830         destroy_kvm_mmu(vcpu);
3831         return init_kvm_mmu(vcpu);
3832 }
3833 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3834
3835 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3836 {
3837         int r;
3838
3839         r = mmu_topup_memory_caches(vcpu);
3840         if (r)
3841                 goto out;
3842         r = mmu_alloc_roots(vcpu);
3843         kvm_mmu_sync_roots(vcpu);
3844         if (r)
3845                 goto out;
3846         /* set_cr3() should ensure TLB has been flushed */
3847         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3848 out:
3849         return r;
3850 }
3851 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3852
3853 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3854 {
3855         mmu_free_roots(vcpu);
3856 }
3857 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3858
3859 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3860                                   struct kvm_mmu_page *sp, u64 *spte,
3861                                   const void *new)
3862 {
3863         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3864                 ++vcpu->kvm->stat.mmu_pde_zapped;
3865                 return;
3866         }
3867
3868         ++vcpu->kvm->stat.mmu_pte_updated;
3869         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3870 }
3871
3872 static bool need_remote_flush(u64 old, u64 new)
3873 {
3874         if (!is_shadow_present_pte(old))
3875                 return false;
3876         if (!is_shadow_present_pte(new))
3877                 return true;
3878         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3879                 return true;
3880         old ^= PT64_NX_MASK;
3881         new ^= PT64_NX_MASK;
3882         return (old & ~new & PT64_PERM_MASK) != 0;
3883 }
3884
3885 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3886                                     bool remote_flush, bool local_flush)
3887 {
3888         if (zap_page)
3889                 return;
3890
3891         if (remote_flush)
3892                 kvm_flush_remote_tlbs(vcpu->kvm);
3893         else if (local_flush)
3894                 kvm_mmu_flush_tlb(vcpu);
3895 }
3896
3897 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3898                                     const u8 *new, int *bytes)
3899 {
3900         u64 gentry;
3901         int r;
3902
3903         /*
3904          * Assume that the pte write on a page table of the same type
3905          * as the current vcpu paging mode since we update the sptes only
3906          * when they have the same mode.
3907          */
3908         if (is_pae(vcpu) && *bytes == 4) {
3909                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3910                 *gpa &= ~(gpa_t)7;
3911                 *bytes = 8;
3912                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3913                 if (r)
3914                         gentry = 0;
3915                 new = (const u8 *)&gentry;
3916         }
3917
3918         switch (*bytes) {
3919         case 4:
3920                 gentry = *(const u32 *)new;
3921                 break;
3922         case 8:
3923                 gentry = *(const u64 *)new;
3924                 break;
3925         default:
3926                 gentry = 0;
3927                 break;
3928         }
3929
3930         return gentry;
3931 }
3932
3933 /*
3934  * If we're seeing too many writes to a page, it may no longer be a page table,
3935  * or we may be forking, in which case it is better to unmap the page.
3936  */
3937 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3938 {
3939         /*
3940          * Skip write-flooding detected for the sp whose level is 1, because
3941          * it can become unsync, then the guest page is not write-protected.
3942          */
3943         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3944                 return false;
3945
3946         return ++sp->write_flooding_count >= 3;
3947 }
3948
3949 /*
3950  * Misaligned accesses are too much trouble to fix up; also, they usually
3951  * indicate a page is not used as a page table.
3952  */
3953 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3954                                     int bytes)
3955 {
3956         unsigned offset, pte_size, misaligned;
3957
3958         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3959                  gpa, bytes, sp->role.word);
3960
3961         offset = offset_in_page(gpa);
3962         pte_size = sp->role.cr4_pae ? 8 : 4;
3963
3964         /*
3965          * Sometimes, the OS only writes the last one bytes to update status
3966          * bits, for example, in linux, andb instruction is used in clear_bit().
3967          */
3968         if (!(offset & (pte_size - 1)) && bytes == 1)
3969                 return false;
3970
3971         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3972         misaligned |= bytes < 4;
3973
3974         return misaligned;
3975 }
3976
3977 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3978 {
3979         unsigned page_offset, quadrant;
3980         u64 *spte;
3981         int level;
3982
3983         page_offset = offset_in_page(gpa);
3984         level = sp->role.level;
3985         *nspte = 1;
3986         if (!sp->role.cr4_pae) {
3987                 page_offset <<= 1;      /* 32->64 */
3988                 /*
3989                  * A 32-bit pde maps 4MB while the shadow pdes map
3990                  * only 2MB.  So we need to double the offset again
3991                  * and zap two pdes instead of one.
3992                  */
3993                 if (level == PT32_ROOT_LEVEL) {
3994                         page_offset &= ~7; /* kill rounding error */
3995                         page_offset <<= 1;
3996                         *nspte = 2;
3997                 }
3998                 quadrant = page_offset >> PAGE_SHIFT;
3999                 page_offset &= ~PAGE_MASK;
4000                 if (quadrant != sp->role.quadrant)
4001                         return NULL;
4002         }
4003
4004         spte = &sp->spt[page_offset / sizeof(*spte)];
4005         return spte;
4006 }
4007
4008 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4009                        const u8 *new, int bytes)
4010 {
4011         gfn_t gfn = gpa >> PAGE_SHIFT;
4012         union kvm_mmu_page_role mask = { .word = 0 };
4013         struct kvm_mmu_page *sp;
4014         LIST_HEAD(invalid_list);
4015         u64 entry, gentry, *spte;
4016         int npte;
4017         bool remote_flush, local_flush, zap_page;
4018
4019         /*
4020          * If we don't have indirect shadow pages, it means no page is
4021          * write-protected, so we can exit simply.
4022          */
4023         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4024                 return;
4025
4026         zap_page = remote_flush = local_flush = false;
4027
4028         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4029
4030         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4031
4032         /*
4033          * No need to care whether allocation memory is successful
4034          * or not since pte prefetch is skiped if it does not have
4035          * enough objects in the cache.
4036          */
4037         mmu_topup_memory_caches(vcpu);
4038
4039         spin_lock(&vcpu->kvm->mmu_lock);
4040         ++vcpu->kvm->stat.mmu_pte_write;
4041         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4042
4043         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4044         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4045                 if (detect_write_misaligned(sp, gpa, bytes) ||
4046                       detect_write_flooding(sp)) {
4047                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4048                                                      &invalid_list);
4049                         ++vcpu->kvm->stat.mmu_flooded;
4050                         continue;
4051                 }
4052
4053                 spte = get_written_sptes(sp, gpa, &npte);
4054                 if (!spte)
4055                         continue;
4056
4057                 local_flush = true;
4058                 while (npte--) {
4059                         entry = *spte;
4060                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4061                         if (gentry &&
4062                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4063                               & mask.word) && rmap_can_add(vcpu))
4064                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4065                         if (need_remote_flush(entry, *spte))
4066                                 remote_flush = true;
4067                         ++spte;
4068                 }
4069         }
4070         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4071         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4072         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4073         spin_unlock(&vcpu->kvm->mmu_lock);
4074 }
4075
4076 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4077 {
4078         gpa_t gpa;
4079         int r;
4080
4081         if (vcpu->arch.mmu.direct_map)
4082                 return 0;
4083
4084         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4085
4086         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4087
4088         return r;
4089 }
4090 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4091
4092 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4093 {
4094         LIST_HEAD(invalid_list);
4095
4096         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4097                 return;
4098
4099         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4100                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4101                         break;
4102
4103                 ++vcpu->kvm->stat.mmu_recycled;
4104         }
4105         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4106 }
4107
4108 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4109 {
4110         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4111                 return vcpu_match_mmio_gpa(vcpu, addr);
4112
4113         return vcpu_match_mmio_gva(vcpu, addr);
4114 }
4115
4116 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4117                        void *insn, int insn_len)
4118 {
4119         int r, emulation_type = EMULTYPE_RETRY;
4120         enum emulation_result er;
4121
4122         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4123         if (r < 0)
4124                 goto out;
4125
4126         if (!r) {
4127                 r = 1;
4128                 goto out;
4129         }
4130
4131         if (is_mmio_page_fault(vcpu, cr2))
4132                 emulation_type = 0;
4133
4134         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4135
4136         switch (er) {
4137         case EMULATE_DONE:
4138                 return 1;
4139         case EMULATE_DO_MMIO:
4140                 ++vcpu->stat.mmio_exits;
4141                 /* fall through */
4142         case EMULATE_FAIL:
4143                 return 0;
4144         default:
4145                 BUG();
4146         }
4147 out:
4148         return r;
4149 }
4150 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4151
4152 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4153 {
4154         vcpu->arch.mmu.invlpg(vcpu, gva);
4155         kvm_mmu_flush_tlb(vcpu);
4156         ++vcpu->stat.invlpg;
4157 }
4158 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4159
4160 void kvm_enable_tdp(void)
4161 {
4162         tdp_enabled = true;
4163 }
4164 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4165
4166 void kvm_disable_tdp(void)
4167 {
4168         tdp_enabled = false;
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4171
4172 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4173 {
4174         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4175         if (vcpu->arch.mmu.lm_root != NULL)
4176                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4177 }
4178
4179 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4180 {
4181         struct page *page;
4182         int i;
4183
4184         ASSERT(vcpu);
4185
4186         /*
4187          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4188          * Therefore we need to allocate shadow page tables in the first
4189          * 4GB of memory, which happens to fit the DMA32 zone.
4190          */
4191         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4192         if (!page)
4193                 return -ENOMEM;
4194
4195         vcpu->arch.mmu.pae_root = page_address(page);
4196         for (i = 0; i < 4; ++i)
4197                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4198
4199         return 0;
4200 }
4201
4202 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4203 {
4204         ASSERT(vcpu);
4205
4206         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4207         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4208         vcpu->arch.mmu.translate_gpa = translate_gpa;
4209         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4210
4211         return alloc_mmu_pages(vcpu);
4212 }
4213
4214 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4215 {
4216         ASSERT(vcpu);
4217         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4218
4219         return init_kvm_mmu(vcpu);
4220 }
4221
4222 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4223 {
4224         struct kvm_memory_slot *memslot;
4225         gfn_t last_gfn;
4226         int i;
4227
4228         memslot = id_to_memslot(kvm->memslots, slot);
4229         last_gfn = memslot->base_gfn + memslot->npages - 1;
4230
4231         spin_lock(&kvm->mmu_lock);
4232
4233         for (i = PT_PAGE_TABLE_LEVEL;
4234              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4235                 unsigned long *rmapp;
4236                 unsigned long last_index, index;
4237
4238                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4239                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4240
4241                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4242                         if (*rmapp)
4243                                 __rmap_write_protect(kvm, rmapp, false);
4244
4245                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4246                                 kvm_flush_remote_tlbs(kvm);
4247                                 cond_resched_lock(&kvm->mmu_lock);
4248                         }
4249                 }
4250         }
4251
4252         kvm_flush_remote_tlbs(kvm);
4253         spin_unlock(&kvm->mmu_lock);
4254 }
4255
4256 #define BATCH_ZAP_PAGES 10
4257 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4258 {
4259         struct kvm_mmu_page *sp, *node;
4260         int batch = 0;
4261
4262 restart:
4263         list_for_each_entry_safe_reverse(sp, node,
4264               &kvm->arch.active_mmu_pages, link) {
4265                 int ret;
4266
4267                 /*
4268                  * No obsolete page exists before new created page since
4269                  * active_mmu_pages is the FIFO list.
4270                  */
4271                 if (!is_obsolete_sp(kvm, sp))
4272                         break;
4273
4274                 /*
4275                  * Since we are reversely walking the list and the invalid
4276                  * list will be moved to the head, skip the invalid page
4277                  * can help us to avoid the infinity list walking.
4278                  */
4279                 if (sp->role.invalid)
4280                         continue;
4281
4282                 /*
4283                  * Need not flush tlb since we only zap the sp with invalid
4284                  * generation number.
4285                  */
4286                 if (batch >= BATCH_ZAP_PAGES &&
4287                       cond_resched_lock(&kvm->mmu_lock)) {
4288                         batch = 0;
4289                         goto restart;
4290                 }
4291
4292                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4293                                 &kvm->arch.zapped_obsolete_pages);
4294                 batch += ret;
4295
4296                 if (ret)
4297                         goto restart;
4298         }
4299
4300         /*
4301          * Should flush tlb before free page tables since lockless-walking
4302          * may use the pages.
4303          */
4304         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4305 }
4306
4307 /*
4308  * Fast invalidate all shadow pages and use lock-break technique
4309  * to zap obsolete pages.
4310  *
4311  * It's required when memslot is being deleted or VM is being
4312  * destroyed, in these cases, we should ensure that KVM MMU does
4313  * not use any resource of the being-deleted slot or all slots
4314  * after calling the function.
4315  */
4316 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4317 {
4318         spin_lock(&kvm->mmu_lock);
4319         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4320         kvm->arch.mmu_valid_gen++;
4321
4322         /*
4323          * Notify all vcpus to reload its shadow page table
4324          * and flush TLB. Then all vcpus will switch to new
4325          * shadow page table with the new mmu_valid_gen.
4326          *
4327          * Note: we should do this under the protection of
4328          * mmu-lock, otherwise, vcpu would purge shadow page
4329          * but miss tlb flush.
4330          */
4331         kvm_reload_remote_mmus(kvm);
4332
4333         kvm_zap_obsolete_pages(kvm);
4334         spin_unlock(&kvm->mmu_lock);
4335 }
4336
4337 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4338 {
4339         struct kvm_mmu_page *sp, *node;
4340         LIST_HEAD(invalid_list);
4341
4342         spin_lock(&kvm->mmu_lock);
4343 restart:
4344         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4345                 if (!sp->mmio_cached)
4346                         continue;
4347                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4348                         goto restart;
4349         }
4350
4351         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4352         spin_unlock(&kvm->mmu_lock);
4353 }
4354
4355 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4356 {
4357         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4358 }
4359
4360 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4361 {
4362         struct kvm *kvm;
4363         int nr_to_scan = sc->nr_to_scan;
4364
4365         if (nr_to_scan == 0)
4366                 goto out;
4367
4368         raw_spin_lock(&kvm_lock);
4369
4370         list_for_each_entry(kvm, &vm_list, vm_list) {
4371                 int idx;
4372                 LIST_HEAD(invalid_list);
4373
4374                 /*
4375                  * Never scan more than sc->nr_to_scan VM instances.
4376                  * Will not hit this condition practically since we do not try
4377                  * to shrink more than one VM and it is very unlikely to see
4378                  * !n_used_mmu_pages so many times.
4379                  */
4380                 if (!nr_to_scan--)
4381                         break;
4382                 /*
4383                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4384                  * here. We may skip a VM instance errorneosly, but we do not
4385                  * want to shrink a VM that only started to populate its MMU
4386                  * anyway.
4387                  */
4388                 if (!kvm->arch.n_used_mmu_pages &&
4389                       !kvm_has_zapped_obsolete_pages(kvm))
4390                         continue;
4391
4392                 idx = srcu_read_lock(&kvm->srcu);
4393                 spin_lock(&kvm->mmu_lock);
4394
4395                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4396                         kvm_mmu_commit_zap_page(kvm,
4397                               &kvm->arch.zapped_obsolete_pages);
4398                         goto unlock;
4399                 }
4400
4401                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4402                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4403
4404 unlock:
4405                 spin_unlock(&kvm->mmu_lock);
4406                 srcu_read_unlock(&kvm->srcu, idx);
4407
4408                 list_move_tail(&kvm->vm_list, &vm_list);
4409                 break;
4410         }
4411
4412         raw_spin_unlock(&kvm_lock);
4413
4414 out:
4415         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4416 }
4417
4418 static struct shrinker mmu_shrinker = {
4419         .shrink = mmu_shrink,
4420         .seeks = DEFAULT_SEEKS * 10,
4421 };
4422
4423 static void mmu_destroy_caches(void)
4424 {
4425         if (pte_list_desc_cache)
4426                 kmem_cache_destroy(pte_list_desc_cache);
4427         if (mmu_page_header_cache)
4428                 kmem_cache_destroy(mmu_page_header_cache);
4429 }
4430
4431 int kvm_mmu_module_init(void)
4432 {
4433         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4434                                             sizeof(struct pte_list_desc),
4435                                             0, 0, NULL);
4436         if (!pte_list_desc_cache)
4437                 goto nomem;
4438
4439         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4440                                                   sizeof(struct kvm_mmu_page),
4441                                                   0, 0, NULL);
4442         if (!mmu_page_header_cache)
4443                 goto nomem;
4444
4445         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4446                 goto nomem;
4447
4448         register_shrinker(&mmu_shrinker);
4449
4450         return 0;
4451
4452 nomem:
4453         mmu_destroy_caches();
4454         return -ENOMEM;
4455 }
4456
4457 /*
4458  * Caculate mmu pages needed for kvm.
4459  */
4460 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4461 {
4462         unsigned int nr_mmu_pages;
4463         unsigned int  nr_pages = 0;
4464         struct kvm_memslots *slots;
4465         struct kvm_memory_slot *memslot;
4466
4467         slots = kvm_memslots(kvm);
4468
4469         kvm_for_each_memslot(memslot, slots)
4470                 nr_pages += memslot->npages;
4471
4472         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4473         nr_mmu_pages = max(nr_mmu_pages,
4474                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4475
4476         return nr_mmu_pages;
4477 }
4478
4479 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4480 {
4481         struct kvm_shadow_walk_iterator iterator;
4482         u64 spte;
4483         int nr_sptes = 0;
4484
4485         walk_shadow_page_lockless_begin(vcpu);
4486         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4487                 sptes[iterator.level-1] = spte;
4488                 nr_sptes++;
4489                 if (!is_shadow_present_pte(spte))
4490                         break;
4491         }
4492         walk_shadow_page_lockless_end(vcpu);
4493
4494         return nr_sptes;
4495 }
4496 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4497
4498 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4499 {
4500         ASSERT(vcpu);
4501
4502         destroy_kvm_mmu(vcpu);
4503         free_mmu_pages(vcpu);
4504         mmu_free_memory_caches(vcpu);
4505 }
4506
4507 void kvm_mmu_module_exit(void)
4508 {
4509         mmu_destroy_caches();
4510         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4511         unregister_shrinker(&mmu_shrinker);
4512         mmu_audit_disable();
4513 }