]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
6b6df0c5be3d2760e56aa4ed2a21eedf749d21fd
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70 #else
71
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74
75 #endif
76
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)                                                       \
86         if (!(x)) {                                                     \
87                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
88                        __FILE__, __LINE__, #x);                         \
89         }
90 #endif
91
92 #define PTE_PREFETCH_NUM                8
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_INDEX(address, level)\
103         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LVL_OFFSET_MASK(level) \
112         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT32_LEVEL_BITS))) - 1))
114
115 #define PT32_INDEX(address, level)\
116         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                                 * PT64_LEVEL_BITS))) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137                         | shadow_x_mask | shadow_nx_mask)
138
139 #define ACC_EXEC_MASK    1
140 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
141 #define ACC_USER_MASK    PT_USER_MASK
142 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
144 #include <trace/events/kvm.h>
145
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148
149 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156
157 struct pte_list_desc {
158         u64 *sptes[PTE_LIST_EXT];
159         struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163         u64 addr;
164         hpa_t shadow_addr;
165         u64 *sptep;
166         int level;
167         unsigned index;
168 };
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
172              shadow_walk_okay(&(_walker));                      \
173              shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
176         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
177              shadow_walk_okay(&(_walker)) &&                            \
178                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
179              __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197         shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
201 /*
202  * the low bit of the generation number is always presumed to be zero.
203  * This disables mmio caching during memslot updates.  The concept is
204  * similar to a seqcount but instead of retrying the access we just punt
205  * and ignore the cache.
206  *
207  * spte bits 3-11 are used as bits 1-9 of the generation number,
208  * the bits 52-61 are used as bits 10-19 of the generation number.
209  */
210 #define MMIO_SPTE_GEN_LOW_SHIFT         2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
212
213 #define MMIO_GEN_SHIFT                  20
214 #define MMIO_GEN_LOW_SHIFT              10
215 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
217 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
218
219 static u64 generation_mmio_spte_mask(unsigned int gen)
220 {
221         u64 mask;
222
223         WARN_ON(gen > MMIO_MAX_GEN);
224
225         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227         return mask;
228 }
229
230 static unsigned int get_mmio_spte_generation(u64 spte)
231 {
232         unsigned int gen;
233
234         spte &= ~shadow_mmio_mask;
235
236         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238         return gen;
239 }
240
241 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242 {
243         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
299                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
300 {
301         shadow_user_mask = user_mask;
302         shadow_accessed_mask = accessed_mask;
303         shadow_dirty_mask = dirty_mask;
304         shadow_nx_mask = nx_mask;
305         shadow_x_mask = x_mask;
306 }
307 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308
309 static int is_cpuid_PSE36(void)
310 {
311         return 1;
312 }
313
314 static int is_nx(struct kvm_vcpu *vcpu)
315 {
316         return vcpu->arch.efer & EFER_NX;
317 }
318
319 static int is_shadow_present_pte(u64 pte)
320 {
321         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
322 }
323
324 static int is_large_pte(u64 pte)
325 {
326         return pte & PT_PAGE_SIZE_MASK;
327 }
328
329 static int is_rmap_spte(u64 pte)
330 {
331         return is_shadow_present_pte(pte);
332 }
333
334 static int is_last_spte(u64 pte, int level)
335 {
336         if (level == PT_PAGE_TABLE_LEVEL)
337                 return 1;
338         if (is_large_pte(pte))
339                 return 1;
340         return 0;
341 }
342
343 static pfn_t spte_to_pfn(u64 pte)
344 {
345         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
346 }
347
348 static gfn_t pse36_gfn_delta(u32 gpte)
349 {
350         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351
352         return (gpte & PT32_DIR_PSE36_MASK) << shift;
353 }
354
355 #ifdef CONFIG_X86_64
356 static void __set_spte(u64 *sptep, u64 spte)
357 {
358         *sptep = spte;
359 }
360
361 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362 {
363         *sptep = spte;
364 }
365
366 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367 {
368         return xchg(sptep, spte);
369 }
370
371 static u64 __get_spte_lockless(u64 *sptep)
372 {
373         return ACCESS_ONCE(*sptep);
374 }
375
376 static bool __check_direct_spte_mmio_pf(u64 spte)
377 {
378         /* It is valid if the spte is zapped. */
379         return spte == 0ull;
380 }
381 #else
382 union split_spte {
383         struct {
384                 u32 spte_low;
385                 u32 spte_high;
386         };
387         u64 spte;
388 };
389
390 static void count_spte_clear(u64 *sptep, u64 spte)
391 {
392         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
393
394         if (is_shadow_present_pte(spte))
395                 return;
396
397         /* Ensure the spte is completely set before we increase the count */
398         smp_wmb();
399         sp->clear_spte_count++;
400 }
401
402 static void __set_spte(u64 *sptep, u64 spte)
403 {
404         union split_spte *ssptep, sspte;
405
406         ssptep = (union split_spte *)sptep;
407         sspte = (union split_spte)spte;
408
409         ssptep->spte_high = sspte.spte_high;
410
411         /*
412          * If we map the spte from nonpresent to present, We should store
413          * the high bits firstly, then set present bit, so cpu can not
414          * fetch this spte while we are setting the spte.
415          */
416         smp_wmb();
417
418         ssptep->spte_low = sspte.spte_low;
419 }
420
421 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422 {
423         union split_spte *ssptep, sspte;
424
425         ssptep = (union split_spte *)sptep;
426         sspte = (union split_spte)spte;
427
428         ssptep->spte_low = sspte.spte_low;
429
430         /*
431          * If we map the spte from present to nonpresent, we should clear
432          * present bit firstly to avoid vcpu fetch the old high bits.
433          */
434         smp_wmb();
435
436         ssptep->spte_high = sspte.spte_high;
437         count_spte_clear(sptep, spte);
438 }
439
440 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441 {
442         union split_spte *ssptep, sspte, orig;
443
444         ssptep = (union split_spte *)sptep;
445         sspte = (union split_spte)spte;
446
447         /* xchg acts as a barrier before the setting of the high bits */
448         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
449         orig.spte_high = ssptep->spte_high;
450         ssptep->spte_high = sspte.spte_high;
451         count_spte_clear(sptep, spte);
452
453         return orig.spte;
454 }
455
456 /*
457  * The idea using the light way get the spte on x86_32 guest is from
458  * gup_get_pte(arch/x86/mm/gup.c).
459  *
460  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
461  * coalesces them and we are running out of the MMU lock.  Therefore
462  * we need to protect against in-progress updates of the spte.
463  *
464  * Reading the spte while an update is in progress may get the old value
465  * for the high part of the spte.  The race is fine for a present->non-present
466  * change (because the high part of the spte is ignored for non-present spte),
467  * but for a present->present change we must reread the spte.
468  *
469  * All such changes are done in two steps (present->non-present and
470  * non-present->present), hence it is enough to count the number of
471  * present->non-present updates: if it changed while reading the spte,
472  * we might have hit the race.  This is done using clear_spte_count.
473  */
474 static u64 __get_spte_lockless(u64 *sptep)
475 {
476         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
477         union split_spte spte, *orig = (union split_spte *)sptep;
478         int count;
479
480 retry:
481         count = sp->clear_spte_count;
482         smp_rmb();
483
484         spte.spte_low = orig->spte_low;
485         smp_rmb();
486
487         spte.spte_high = orig->spte_high;
488         smp_rmb();
489
490         if (unlikely(spte.spte_low != orig->spte_low ||
491               count != sp->clear_spte_count))
492                 goto retry;
493
494         return spte.spte;
495 }
496
497 static bool __check_direct_spte_mmio_pf(u64 spte)
498 {
499         union split_spte sspte = (union split_spte)spte;
500         u32 high_mmio_mask = shadow_mmio_mask >> 32;
501
502         /* It is valid if the spte is zapped. */
503         if (spte == 0ull)
504                 return true;
505
506         /* It is valid if the spte is being zapped. */
507         if (sspte.spte_low == 0ull &&
508             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
509                 return true;
510
511         return false;
512 }
513 #endif
514
515 static bool spte_is_locklessly_modifiable(u64 spte)
516 {
517         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
518                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
519 }
520
521 static bool spte_has_volatile_bits(u64 spte)
522 {
523         /*
524          * Always atomicly update spte if it can be updated
525          * out of mmu-lock, it can ensure dirty bit is not lost,
526          * also, it can help us to get a stable is_writable_pte()
527          * to ensure tlb flush is not missed.
528          */
529         if (spte_is_locklessly_modifiable(spte))
530                 return true;
531
532         if (!shadow_accessed_mask)
533                 return false;
534
535         if (!is_shadow_present_pte(spte))
536                 return false;
537
538         if ((spte & shadow_accessed_mask) &&
539               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
540                 return false;
541
542         return true;
543 }
544
545 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546 {
547         return (old_spte & bit_mask) && !(new_spte & bit_mask);
548 }
549
550 /* Rules for using mmu_spte_set:
551  * Set the sptep from nonpresent to present.
552  * Note: the sptep being assigned *must* be either not present
553  * or in a state where the hardware will not attempt to update
554  * the spte.
555  */
556 static void mmu_spte_set(u64 *sptep, u64 new_spte)
557 {
558         WARN_ON(is_shadow_present_pte(*sptep));
559         __set_spte(sptep, new_spte);
560 }
561
562 /* Rules for using mmu_spte_update:
563  * Update the state bits, it means the mapped pfn is not changged.
564  *
565  * Whenever we overwrite a writable spte with a read-only one we
566  * should flush remote TLBs. Otherwise rmap_write_protect
567  * will find a read-only spte, even though the writable spte
568  * might be cached on a CPU's TLB, the return value indicates this
569  * case.
570  */
571 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
572 {
573         u64 old_spte = *sptep;
574         bool ret = false;
575
576         WARN_ON(!is_rmap_spte(new_spte));
577
578         if (!is_shadow_present_pte(old_spte)) {
579                 mmu_spte_set(sptep, new_spte);
580                 return ret;
581         }
582
583         if (!spte_has_volatile_bits(old_spte))
584                 __update_clear_spte_fast(sptep, new_spte);
585         else
586                 old_spte = __update_clear_spte_slow(sptep, new_spte);
587
588         /*
589          * For the spte updated out of mmu-lock is safe, since
590          * we always atomicly update it, see the comments in
591          * spte_has_volatile_bits().
592          */
593         if (spte_is_locklessly_modifiable(old_spte) &&
594               !is_writable_pte(new_spte))
595                 ret = true;
596
597         if (!shadow_accessed_mask)
598                 return ret;
599
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
601                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
602         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
603                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
604
605         return ret;
606 }
607
608 /*
609  * Rules for using mmu_spte_clear_track_bits:
610  * It sets the sptep from present to nonpresent, and track the
611  * state bits, it is used to clear the last level sptep.
612  */
613 static int mmu_spte_clear_track_bits(u64 *sptep)
614 {
615         pfn_t pfn;
616         u64 old_spte = *sptep;
617
618         if (!spte_has_volatile_bits(old_spte))
619                 __update_clear_spte_fast(sptep, 0ull);
620         else
621                 old_spte = __update_clear_spte_slow(sptep, 0ull);
622
623         if (!is_rmap_spte(old_spte))
624                 return 0;
625
626         pfn = spte_to_pfn(old_spte);
627
628         /*
629          * KVM does not hold the refcount of the page used by
630          * kvm mmu, before reclaiming the page, we should
631          * unmap it from mmu first.
632          */
633         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634
635         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
636                 kvm_set_pfn_accessed(pfn);
637         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
638                 kvm_set_pfn_dirty(pfn);
639         return 1;
640 }
641
642 /*
643  * Rules for using mmu_spte_clear_no_track:
644  * Directly clear spte without caring the state bits of sptep,
645  * it is used to set the upper level spte.
646  */
647 static void mmu_spte_clear_no_track(u64 *sptep)
648 {
649         __update_clear_spte_fast(sptep, 0ull);
650 }
651
652 static u64 mmu_spte_get_lockless(u64 *sptep)
653 {
654         return __get_spte_lockless(sptep);
655 }
656
657 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
658 {
659         /*
660          * Prevent page table teardown by making any free-er wait during
661          * kvm_flush_remote_tlbs() IPI to all active vcpus.
662          */
663         local_irq_disable();
664         vcpu->mode = READING_SHADOW_PAGE_TABLES;
665         /*
666          * Make sure a following spte read is not reordered ahead of the write
667          * to vcpu->mode.
668          */
669         smp_mb();
670 }
671
672 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
673 {
674         /*
675          * Make sure the write to vcpu->mode is not reordered in front of
676          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
677          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678          */
679         smp_mb();
680         vcpu->mode = OUTSIDE_GUEST_MODE;
681         local_irq_enable();
682 }
683
684 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
685                                   struct kmem_cache *base_cache, int min)
686 {
687         void *obj;
688
689         if (cache->nobjs >= min)
690                 return 0;
691         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
692                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
693                 if (!obj)
694                         return -ENOMEM;
695                 cache->objects[cache->nobjs++] = obj;
696         }
697         return 0;
698 }
699
700 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701 {
702         return cache->nobjs;
703 }
704
705 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
706                                   struct kmem_cache *cache)
707 {
708         while (mc->nobjs)
709                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
710 }
711
712 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
713                                        int min)
714 {
715         void *page;
716
717         if (cache->nobjs >= min)
718                 return 0;
719         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
720                 page = (void *)__get_free_page(GFP_KERNEL);
721                 if (!page)
722                         return -ENOMEM;
723                 cache->objects[cache->nobjs++] = page;
724         }
725         return 0;
726 }
727
728 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729 {
730         while (mc->nobjs)
731                 free_page((unsigned long)mc->objects[--mc->nobjs]);
732 }
733
734 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
735 {
736         int r;
737
738         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
740         if (r)
741                 goto out;
742         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
743         if (r)
744                 goto out;
745         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
746                                    mmu_page_header_cache, 4);
747 out:
748         return r;
749 }
750
751 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752 {
753         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
754                                 pte_list_desc_cache);
755         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
756         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
757                                 mmu_page_header_cache);
758 }
759
760 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
761 {
762         void *p;
763
764         BUG_ON(!mc->nobjs);
765         p = mc->objects[--mc->nobjs];
766         return p;
767 }
768
769 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
770 {
771         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
772 }
773
774 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
775 {
776         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
777 }
778
779 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780 {
781         if (!sp->role.direct)
782                 return sp->gfns[index];
783
784         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
785 }
786
787 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788 {
789         if (sp->role.direct)
790                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
791         else
792                 sp->gfns[index] = gfn;
793 }
794
795 /*
796  * Return the pointer to the large page information for a given gfn,
797  * handling slots that are not large page aligned.
798  */
799 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
800                                               struct kvm_memory_slot *slot,
801                                               int level)
802 {
803         unsigned long idx;
804
805         idx = gfn_to_index(gfn, slot->base_gfn, level);
806         return &slot->arch.lpage_info[level - 2][idx];
807 }
808
809 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810 {
811         struct kvm_memory_slot *slot;
812         struct kvm_lpage_info *linfo;
813         int i;
814
815         slot = gfn_to_memslot(kvm, gfn);
816         for (i = PT_DIRECTORY_LEVEL;
817              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818                 linfo = lpage_info_slot(gfn, slot, i);
819                 linfo->write_count += 1;
820         }
821         kvm->arch.indirect_shadow_pages++;
822 }
823
824 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825 {
826         struct kvm_memory_slot *slot;
827         struct kvm_lpage_info *linfo;
828         int i;
829
830         slot = gfn_to_memslot(kvm, gfn);
831         for (i = PT_DIRECTORY_LEVEL;
832              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
833                 linfo = lpage_info_slot(gfn, slot, i);
834                 linfo->write_count -= 1;
835                 WARN_ON(linfo->write_count < 0);
836         }
837         kvm->arch.indirect_shadow_pages--;
838 }
839
840 static int has_wrprotected_page(struct kvm *kvm,
841                                 gfn_t gfn,
842                                 int level)
843 {
844         struct kvm_memory_slot *slot;
845         struct kvm_lpage_info *linfo;
846
847         slot = gfn_to_memslot(kvm, gfn);
848         if (slot) {
849                 linfo = lpage_info_slot(gfn, slot, level);
850                 return linfo->write_count;
851         }
852
853         return 1;
854 }
855
856 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
857 {
858         unsigned long page_size;
859         int i, ret = 0;
860
861         page_size = kvm_host_page_size(kvm, gfn);
862
863         for (i = PT_PAGE_TABLE_LEVEL;
864              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
865                 if (page_size >= KVM_HPAGE_SIZE(i))
866                         ret = i;
867                 else
868                         break;
869         }
870
871         return ret;
872 }
873
874 static struct kvm_memory_slot *
875 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
876                             bool no_dirty_log)
877 {
878         struct kvm_memory_slot *slot;
879
880         slot = gfn_to_memslot(vcpu->kvm, gfn);
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
882               (no_dirty_log && slot->dirty_bitmap))
883                 slot = NULL;
884
885         return slot;
886 }
887
888 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 {
890         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
891 }
892
893 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894 {
895         int host_level, level, max_level;
896
897         host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899         if (host_level == PT_PAGE_TABLE_LEVEL)
900                 return host_level;
901
902         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
906                         break;
907
908         return level - 1;
909 }
910
911 /*
912  * Pte mapping structures:
913  *
914  * If pte_list bit zero is zero, then pte_list point to the spte.
915  *
916  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917  * pte_list_desc containing more mappings.
918  *
919  * Returns the number of pte entries before the spte was added or zero if
920  * the spte was not added.
921  *
922  */
923 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924                         unsigned long *pte_list)
925 {
926         struct pte_list_desc *desc;
927         int i, count = 0;
928
929         if (!*pte_list) {
930                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931                 *pte_list = (unsigned long)spte;
932         } else if (!(*pte_list & 1)) {
933                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934                 desc = mmu_alloc_pte_list_desc(vcpu);
935                 desc->sptes[0] = (u64 *)*pte_list;
936                 desc->sptes[1] = spte;
937                 *pte_list = (unsigned long)desc | 1;
938                 ++count;
939         } else {
940                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943                         desc = desc->more;
944                         count += PTE_LIST_EXT;
945                 }
946                 if (desc->sptes[PTE_LIST_EXT-1]) {
947                         desc->more = mmu_alloc_pte_list_desc(vcpu);
948                         desc = desc->more;
949                 }
950                 for (i = 0; desc->sptes[i]; ++i)
951                         ++count;
952                 desc->sptes[i] = spte;
953         }
954         return count;
955 }
956
957 static void
958 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959                            int i, struct pte_list_desc *prev_desc)
960 {
961         int j;
962
963         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964                 ;
965         desc->sptes[i] = desc->sptes[j];
966         desc->sptes[j] = NULL;
967         if (j != 0)
968                 return;
969         if (!prev_desc && !desc->more)
970                 *pte_list = (unsigned long)desc->sptes[0];
971         else
972                 if (prev_desc)
973                         prev_desc->more = desc->more;
974                 else
975                         *pte_list = (unsigned long)desc->more | 1;
976         mmu_free_pte_list_desc(desc);
977 }
978
979 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 {
981         struct pte_list_desc *desc;
982         struct pte_list_desc *prev_desc;
983         int i;
984
985         if (!*pte_list) {
986                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987                 BUG();
988         } else if (!(*pte_list & 1)) {
989                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990                 if ((u64 *)*pte_list != spte) {
991                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992                         BUG();
993                 }
994                 *pte_list = 0;
995         } else {
996                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
997                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998                 prev_desc = NULL;
999                 while (desc) {
1000                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001                                 if (desc->sptes[i] == spte) {
1002                                         pte_list_desc_remove_entry(pte_list,
1003                                                                desc, i,
1004                                                                prev_desc);
1005                                         return;
1006                                 }
1007                         prev_desc = desc;
1008                         desc = desc->more;
1009                 }
1010                 pr_err("pte_list_remove: %p many->many\n", spte);
1011                 BUG();
1012         }
1013 }
1014
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
1016 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 {
1018         struct pte_list_desc *desc;
1019         int i;
1020
1021         if (!*pte_list)
1022                 return;
1023
1024         if (!(*pte_list & 1))
1025                 return fn((u64 *)*pte_list);
1026
1027         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028         while (desc) {
1029                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030                         fn(desc->sptes[i]);
1031                 desc = desc->more;
1032         }
1033 }
1034
1035 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036                                     struct kvm_memory_slot *slot)
1037 {
1038         unsigned long idx;
1039
1040         idx = gfn_to_index(gfn, slot->base_gfn, level);
1041         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043
1044 /*
1045  * Take gfn and return the reverse mapping to it.
1046  */
1047 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048 {
1049         struct kvm_memory_slot *slot;
1050
1051         slot = gfn_to_memslot(kvm, gfn);
1052         return __gfn_to_rmap(gfn, level, slot);
1053 }
1054
1055 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056 {
1057         struct kvm_mmu_memory_cache *cache;
1058
1059         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060         return mmu_memory_cache_free_objects(cache);
1061 }
1062
1063 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064 {
1065         struct kvm_mmu_page *sp;
1066         unsigned long *rmapp;
1067
1068         sp = page_header(__pa(spte));
1069         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1071         return pte_list_add(vcpu, spte, rmapp);
1072 }
1073
1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076         struct kvm_mmu_page *sp;
1077         gfn_t gfn;
1078         unsigned long *rmapp;
1079
1080         sp = page_header(__pa(spte));
1081         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1083         pte_list_remove(spte, rmapp);
1084 }
1085
1086 /*
1087  * Used by the following functions to iterate through the sptes linked by a
1088  * rmap.  All fields are private and not assumed to be used outside.
1089  */
1090 struct rmap_iterator {
1091         /* private fields */
1092         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1093         int pos;                        /* index of the sptep */
1094 };
1095
1096 /*
1097  * Iteration must be started by this function.  This should also be used after
1098  * removing/dropping sptes from the rmap link because in such cases the
1099  * information in the itererator may not be valid.
1100  *
1101  * Returns sptep if found, NULL otherwise.
1102  */
1103 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104 {
1105         if (!rmap)
1106                 return NULL;
1107
1108         if (!(rmap & 1)) {
1109                 iter->desc = NULL;
1110                 return (u64 *)rmap;
1111         }
1112
1113         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1114         iter->pos = 0;
1115         return iter->desc->sptes[iter->pos];
1116 }
1117
1118 /*
1119  * Must be used with a valid iterator: e.g. after rmap_get_first().
1120  *
1121  * Returns sptep if found, NULL otherwise.
1122  */
1123 static u64 *rmap_get_next(struct rmap_iterator *iter)
1124 {
1125         if (iter->desc) {
1126                 if (iter->pos < PTE_LIST_EXT - 1) {
1127                         u64 *sptep;
1128
1129                         ++iter->pos;
1130                         sptep = iter->desc->sptes[iter->pos];
1131                         if (sptep)
1132                                 return sptep;
1133                 }
1134
1135                 iter->desc = iter->desc->more;
1136
1137                 if (iter->desc) {
1138                         iter->pos = 0;
1139                         /* desc->sptes[0] cannot be NULL */
1140                         return iter->desc->sptes[iter->pos];
1141                 }
1142         }
1143
1144         return NULL;
1145 }
1146
1147 static void drop_spte(struct kvm *kvm, u64 *sptep)
1148 {
1149         if (mmu_spte_clear_track_bits(sptep))
1150                 rmap_remove(kvm, sptep);
1151 }
1152
1153
1154 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (is_large_pte(*sptep)) {
1157                 WARN_ON(page_header(__pa(sptep))->role.level ==
1158                         PT_PAGE_TABLE_LEVEL);
1159                 drop_spte(kvm, sptep);
1160                 --kvm->stat.lpages;
1161                 return true;
1162         }
1163
1164         return false;
1165 }
1166
1167 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168 {
1169         if (__drop_large_spte(vcpu->kvm, sptep))
1170                 kvm_flush_remote_tlbs(vcpu->kvm);
1171 }
1172
1173 /*
1174  * Write-protect on the specified @sptep, @pt_protect indicates whether
1175  * spte write-protection is caused by protecting shadow page table.
1176  *
1177  * Note: write protection is difference between drity logging and spte
1178  * protection:
1179  * - for dirty logging, the spte can be set to writable at anytime if
1180  *   its dirty bitmap is properly set.
1181  * - for spte protection, the spte can be writable only after unsync-ing
1182  *   shadow page.
1183  *
1184  * Return true if tlb need be flushed.
1185  */
1186 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 {
1188         u64 spte = *sptep;
1189
1190         if (!is_writable_pte(spte) &&
1191               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192                 return false;
1193
1194         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
1196         if (pt_protect)
1197                 spte &= ~SPTE_MMU_WRITEABLE;
1198         spte = spte & ~PT_WRITABLE_MASK;
1199
1200         return mmu_spte_update(sptep, spte);
1201 }
1202
1203 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204                                  bool pt_protect)
1205 {
1206         u64 *sptep;
1207         struct rmap_iterator iter;
1208         bool flush = false;
1209
1210         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1211                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1212
1213                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1214                 sptep = rmap_get_next(&iter);
1215         }
1216
1217         return flush;
1218 }
1219
1220 /**
1221  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1222  * @kvm: kvm instance
1223  * @slot: slot to protect
1224  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1225  * @mask: indicates which pages we should protect
1226  *
1227  * Used when we do not need to care about huge page mappings: e.g. during dirty
1228  * logging we do not have any such mappings.
1229  */
1230 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231                                      struct kvm_memory_slot *slot,
1232                                      gfn_t gfn_offset, unsigned long mask)
1233 {
1234         unsigned long *rmapp;
1235
1236         while (mask) {
1237                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1238                                       PT_PAGE_TABLE_LEVEL, slot);
1239                 __rmap_write_protect(kvm, rmapp, false);
1240
1241                 /* clear the first set bit */
1242                 mask &= mask - 1;
1243         }
1244 }
1245
1246 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1247 {
1248         struct kvm_memory_slot *slot;
1249         unsigned long *rmapp;
1250         int i;
1251         bool write_protected = false;
1252
1253         slot = gfn_to_memslot(kvm, gfn);
1254
1255         for (i = PT_PAGE_TABLE_LEVEL;
1256              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1257                 rmapp = __gfn_to_rmap(gfn, i, slot);
1258                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1259         }
1260
1261         return write_protected;
1262 }
1263
1264 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1265                            struct kvm_memory_slot *slot, unsigned long data)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         int need_tlb_flush = 0;
1270
1271         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1272                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1273                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1274
1275                 drop_spte(kvm, sptep);
1276                 need_tlb_flush = 1;
1277         }
1278
1279         return need_tlb_flush;
1280 }
1281
1282 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1283                              struct kvm_memory_slot *slot, unsigned long data)
1284 {
1285         u64 *sptep;
1286         struct rmap_iterator iter;
1287         int need_flush = 0;
1288         u64 new_spte;
1289         pte_t *ptep = (pte_t *)data;
1290         pfn_t new_pfn;
1291
1292         WARN_ON(pte_huge(*ptep));
1293         new_pfn = pte_pfn(*ptep);
1294
1295         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1296                 BUG_ON(!is_shadow_present_pte(*sptep));
1297                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1298
1299                 need_flush = 1;
1300
1301                 if (pte_write(*ptep)) {
1302                         drop_spte(kvm, sptep);
1303                         sptep = rmap_get_first(*rmapp, &iter);
1304                 } else {
1305                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1306                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1307
1308                         new_spte &= ~PT_WRITABLE_MASK;
1309                         new_spte &= ~SPTE_HOST_WRITEABLE;
1310                         new_spte &= ~shadow_accessed_mask;
1311
1312                         mmu_spte_clear_track_bits(sptep);
1313                         mmu_spte_set(sptep, new_spte);
1314                         sptep = rmap_get_next(&iter);
1315                 }
1316         }
1317
1318         if (need_flush)
1319                 kvm_flush_remote_tlbs(kvm);
1320
1321         return 0;
1322 }
1323
1324 static int kvm_handle_hva_range(struct kvm *kvm,
1325                                 unsigned long start,
1326                                 unsigned long end,
1327                                 unsigned long data,
1328                                 int (*handler)(struct kvm *kvm,
1329                                                unsigned long *rmapp,
1330                                                struct kvm_memory_slot *slot,
1331                                                unsigned long data))
1332 {
1333         int j;
1334         int ret = 0;
1335         struct kvm_memslots *slots;
1336         struct kvm_memory_slot *memslot;
1337
1338         slots = kvm_memslots(kvm);
1339
1340         kvm_for_each_memslot(memslot, slots) {
1341                 unsigned long hva_start, hva_end;
1342                 gfn_t gfn_start, gfn_end;
1343
1344                 hva_start = max(start, memslot->userspace_addr);
1345                 hva_end = min(end, memslot->userspace_addr +
1346                                         (memslot->npages << PAGE_SHIFT));
1347                 if (hva_start >= hva_end)
1348                         continue;
1349                 /*
1350                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1351                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1352                  */
1353                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1354                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1355
1356                 for (j = PT_PAGE_TABLE_LEVEL;
1357                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1358                         unsigned long idx, idx_end;
1359                         unsigned long *rmapp;
1360
1361                         /*
1362                          * {idx(page_j) | page_j intersects with
1363                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1364                          */
1365                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1366                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1367
1368                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1369
1370                         for (; idx <= idx_end; ++idx)
1371                                 ret |= handler(kvm, rmapp++, memslot, data);
1372                 }
1373         }
1374
1375         return ret;
1376 }
1377
1378 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1379                           unsigned long data,
1380                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1381                                          struct kvm_memory_slot *slot,
1382                                          unsigned long data))
1383 {
1384         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1385 }
1386
1387 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1388 {
1389         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1390 }
1391
1392 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1393 {
1394         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1395 }
1396
1397 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1398 {
1399         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1400 }
1401
1402 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1403                          struct kvm_memory_slot *slot, unsigned long data)
1404 {
1405         u64 *sptep;
1406         struct rmap_iterator uninitialized_var(iter);
1407         int young = 0;
1408
1409         /*
1410          * In case of absence of EPT Access and Dirty Bits supports,
1411          * emulate the accessed bit for EPT, by checking if this page has
1412          * an EPT mapping, and clearing it if it does. On the next access,
1413          * a new EPT mapping will be established.
1414          * This has some overhead, but not as much as the cost of swapping
1415          * out actively used pages or breaking up actively used hugepages.
1416          */
1417         if (!shadow_accessed_mask) {
1418                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1419                 goto out;
1420         }
1421
1422         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1423              sptep = rmap_get_next(&iter)) {
1424                 BUG_ON(!is_shadow_present_pte(*sptep));
1425
1426                 if (*sptep & shadow_accessed_mask) {
1427                         young = 1;
1428                         clear_bit((ffs(shadow_accessed_mask) - 1),
1429                                  (unsigned long *)sptep);
1430                 }
1431         }
1432 out:
1433         /* @data has hva passed to kvm_age_hva(). */
1434         trace_kvm_age_page(data, slot, young);
1435         return young;
1436 }
1437
1438 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1439                               struct kvm_memory_slot *slot, unsigned long data)
1440 {
1441         u64 *sptep;
1442         struct rmap_iterator iter;
1443         int young = 0;
1444
1445         /*
1446          * If there's no access bit in the secondary pte set by the
1447          * hardware it's up to gup-fast/gup to set the access bit in
1448          * the primary pte or in the page structure.
1449          */
1450         if (!shadow_accessed_mask)
1451                 goto out;
1452
1453         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1454              sptep = rmap_get_next(&iter)) {
1455                 BUG_ON(!is_shadow_present_pte(*sptep));
1456
1457                 if (*sptep & shadow_accessed_mask) {
1458                         young = 1;
1459                         break;
1460                 }
1461         }
1462 out:
1463         return young;
1464 }
1465
1466 #define RMAP_RECYCLE_THRESHOLD 1000
1467
1468 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1469 {
1470         unsigned long *rmapp;
1471         struct kvm_mmu_page *sp;
1472
1473         sp = page_header(__pa(spte));
1474
1475         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1476
1477         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1478         kvm_flush_remote_tlbs(vcpu->kvm);
1479 }
1480
1481 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1482 {
1483         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1484 }
1485
1486 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1487 {
1488         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1489 }
1490
1491 #ifdef MMU_DEBUG
1492 static int is_empty_shadow_page(u64 *spt)
1493 {
1494         u64 *pos;
1495         u64 *end;
1496
1497         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1498                 if (is_shadow_present_pte(*pos)) {
1499                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1500                                pos, *pos);
1501                         return 0;
1502                 }
1503         return 1;
1504 }
1505 #endif
1506
1507 /*
1508  * This value is the sum of all of the kvm instances's
1509  * kvm->arch.n_used_mmu_pages values.  We need a global,
1510  * aggregate version in order to make the slab shrinker
1511  * faster
1512  */
1513 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1514 {
1515         kvm->arch.n_used_mmu_pages += nr;
1516         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1517 }
1518
1519 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1520 {
1521         ASSERT(is_empty_shadow_page(sp->spt));
1522         hlist_del(&sp->hash_link);
1523         list_del(&sp->link);
1524         free_page((unsigned long)sp->spt);
1525         if (!sp->role.direct)
1526                 free_page((unsigned long)sp->gfns);
1527         kmem_cache_free(mmu_page_header_cache, sp);
1528 }
1529
1530 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1531 {
1532         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1533 }
1534
1535 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1536                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1537 {
1538         if (!parent_pte)
1539                 return;
1540
1541         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1542 }
1543
1544 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1545                                        u64 *parent_pte)
1546 {
1547         pte_list_remove(parent_pte, &sp->parent_ptes);
1548 }
1549
1550 static void drop_parent_pte(struct kvm_mmu_page *sp,
1551                             u64 *parent_pte)
1552 {
1553         mmu_page_remove_parent_pte(sp, parent_pte);
1554         mmu_spte_clear_no_track(parent_pte);
1555 }
1556
1557 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1558                                                u64 *parent_pte, int direct)
1559 {
1560         struct kvm_mmu_page *sp;
1561
1562         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1563         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1564         if (!direct)
1565                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1566         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1567
1568         /*
1569          * The active_mmu_pages list is the FIFO list, do not move the
1570          * page until it is zapped. kvm_zap_obsolete_pages depends on
1571          * this feature. See the comments in kvm_zap_obsolete_pages().
1572          */
1573         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1574         sp->parent_ptes = 0;
1575         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1576         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1577         return sp;
1578 }
1579
1580 static void mark_unsync(u64 *spte);
1581 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1582 {
1583         pte_list_walk(&sp->parent_ptes, mark_unsync);
1584 }
1585
1586 static void mark_unsync(u64 *spte)
1587 {
1588         struct kvm_mmu_page *sp;
1589         unsigned int index;
1590
1591         sp = page_header(__pa(spte));
1592         index = spte - sp->spt;
1593         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1594                 return;
1595         if (sp->unsync_children++)
1596                 return;
1597         kvm_mmu_mark_parents_unsync(sp);
1598 }
1599
1600 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1601                                struct kvm_mmu_page *sp)
1602 {
1603         return 1;
1604 }
1605
1606 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1607 {
1608 }
1609
1610 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1611                                  struct kvm_mmu_page *sp, u64 *spte,
1612                                  const void *pte)
1613 {
1614         WARN_ON(1);
1615 }
1616
1617 #define KVM_PAGE_ARRAY_NR 16
1618
1619 struct kvm_mmu_pages {
1620         struct mmu_page_and_offset {
1621                 struct kvm_mmu_page *sp;
1622                 unsigned int idx;
1623         } page[KVM_PAGE_ARRAY_NR];
1624         unsigned int nr;
1625 };
1626
1627 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1628                          int idx)
1629 {
1630         int i;
1631
1632         if (sp->unsync)
1633                 for (i=0; i < pvec->nr; i++)
1634                         if (pvec->page[i].sp == sp)
1635                                 return 0;
1636
1637         pvec->page[pvec->nr].sp = sp;
1638         pvec->page[pvec->nr].idx = idx;
1639         pvec->nr++;
1640         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1641 }
1642
1643 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1644                            struct kvm_mmu_pages *pvec)
1645 {
1646         int i, ret, nr_unsync_leaf = 0;
1647
1648         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1649                 struct kvm_mmu_page *child;
1650                 u64 ent = sp->spt[i];
1651
1652                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1653                         goto clear_child_bitmap;
1654
1655                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1656
1657                 if (child->unsync_children) {
1658                         if (mmu_pages_add(pvec, child, i))
1659                                 return -ENOSPC;
1660
1661                         ret = __mmu_unsync_walk(child, pvec);
1662                         if (!ret)
1663                                 goto clear_child_bitmap;
1664                         else if (ret > 0)
1665                                 nr_unsync_leaf += ret;
1666                         else
1667                                 return ret;
1668                 } else if (child->unsync) {
1669                         nr_unsync_leaf++;
1670                         if (mmu_pages_add(pvec, child, i))
1671                                 return -ENOSPC;
1672                 } else
1673                          goto clear_child_bitmap;
1674
1675                 continue;
1676
1677 clear_child_bitmap:
1678                 __clear_bit(i, sp->unsync_child_bitmap);
1679                 sp->unsync_children--;
1680                 WARN_ON((int)sp->unsync_children < 0);
1681         }
1682
1683
1684         return nr_unsync_leaf;
1685 }
1686
1687 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1688                            struct kvm_mmu_pages *pvec)
1689 {
1690         if (!sp->unsync_children)
1691                 return 0;
1692
1693         mmu_pages_add(pvec, sp, 0);
1694         return __mmu_unsync_walk(sp, pvec);
1695 }
1696
1697 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1698 {
1699         WARN_ON(!sp->unsync);
1700         trace_kvm_mmu_sync_page(sp);
1701         sp->unsync = 0;
1702         --kvm->stat.mmu_unsync;
1703 }
1704
1705 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1706                                     struct list_head *invalid_list);
1707 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1708                                     struct list_head *invalid_list);
1709
1710 /*
1711  * NOTE: we should pay more attention on the zapped-obsolete page
1712  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1713  * since it has been deleted from active_mmu_pages but still can be found
1714  * at hast list.
1715  *
1716  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1717  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1718  * all the obsolete pages.
1719  */
1720 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1721         hlist_for_each_entry(_sp,                                       \
1722           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1723                 if ((_sp)->gfn != (_gfn)) {} else
1724
1725 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1726         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1727                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1728
1729 /* @sp->gfn should be write-protected at the call site */
1730 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1731                            struct list_head *invalid_list, bool clear_unsync)
1732 {
1733         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1734                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1735                 return 1;
1736         }
1737
1738         if (clear_unsync)
1739                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1740
1741         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1742                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1743                 return 1;
1744         }
1745
1746         kvm_mmu_flush_tlb(vcpu);
1747         return 0;
1748 }
1749
1750 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1751                                    struct kvm_mmu_page *sp)
1752 {
1753         LIST_HEAD(invalid_list);
1754         int ret;
1755
1756         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1757         if (ret)
1758                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1759
1760         return ret;
1761 }
1762
1763 #ifdef CONFIG_KVM_MMU_AUDIT
1764 #include "mmu_audit.c"
1765 #else
1766 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1767 static void mmu_audit_disable(void) { }
1768 #endif
1769
1770 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1771                          struct list_head *invalid_list)
1772 {
1773         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1774 }
1775
1776 /* @gfn should be write-protected at the call site */
1777 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1778 {
1779         struct kvm_mmu_page *s;
1780         LIST_HEAD(invalid_list);
1781         bool flush = false;
1782
1783         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1784                 if (!s->unsync)
1785                         continue;
1786
1787                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1788                 kvm_unlink_unsync_page(vcpu->kvm, s);
1789                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1790                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1791                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1792                         continue;
1793                 }
1794                 flush = true;
1795         }
1796
1797         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1798         if (flush)
1799                 kvm_mmu_flush_tlb(vcpu);
1800 }
1801
1802 struct mmu_page_path {
1803         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1804         unsigned int idx[PT64_ROOT_LEVEL-1];
1805 };
1806
1807 #define for_each_sp(pvec, sp, parents, i)                       \
1808                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1809                         sp = pvec.page[i].sp;                   \
1810                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1811                         i = mmu_pages_next(&pvec, &parents, i))
1812
1813 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1814                           struct mmu_page_path *parents,
1815                           int i)
1816 {
1817         int n;
1818
1819         for (n = i+1; n < pvec->nr; n++) {
1820                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1821
1822                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1823                         parents->idx[0] = pvec->page[n].idx;
1824                         return n;
1825                 }
1826
1827                 parents->parent[sp->role.level-2] = sp;
1828                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1829         }
1830
1831         return n;
1832 }
1833
1834 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1835 {
1836         struct kvm_mmu_page *sp;
1837         unsigned int level = 0;
1838
1839         do {
1840                 unsigned int idx = parents->idx[level];
1841
1842                 sp = parents->parent[level];
1843                 if (!sp)
1844                         return;
1845
1846                 --sp->unsync_children;
1847                 WARN_ON((int)sp->unsync_children < 0);
1848                 __clear_bit(idx, sp->unsync_child_bitmap);
1849                 level++;
1850         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1851 }
1852
1853 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1854                                struct mmu_page_path *parents,
1855                                struct kvm_mmu_pages *pvec)
1856 {
1857         parents->parent[parent->role.level-1] = NULL;
1858         pvec->nr = 0;
1859 }
1860
1861 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1862                               struct kvm_mmu_page *parent)
1863 {
1864         int i;
1865         struct kvm_mmu_page *sp;
1866         struct mmu_page_path parents;
1867         struct kvm_mmu_pages pages;
1868         LIST_HEAD(invalid_list);
1869
1870         kvm_mmu_pages_init(parent, &parents, &pages);
1871         while (mmu_unsync_walk(parent, &pages)) {
1872                 bool protected = false;
1873
1874                 for_each_sp(pages, sp, parents, i)
1875                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1876
1877                 if (protected)
1878                         kvm_flush_remote_tlbs(vcpu->kvm);
1879
1880                 for_each_sp(pages, sp, parents, i) {
1881                         kvm_sync_page(vcpu, sp, &invalid_list);
1882                         mmu_pages_clear_parents(&parents);
1883                 }
1884                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1885                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1886                 kvm_mmu_pages_init(parent, &parents, &pages);
1887         }
1888 }
1889
1890 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1891 {
1892         int i;
1893
1894         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1895                 sp->spt[i] = 0ull;
1896 }
1897
1898 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1899 {
1900         sp->write_flooding_count = 0;
1901 }
1902
1903 static void clear_sp_write_flooding_count(u64 *spte)
1904 {
1905         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1906
1907         __clear_sp_write_flooding_count(sp);
1908 }
1909
1910 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1911 {
1912         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1913 }
1914
1915 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1916                                              gfn_t gfn,
1917                                              gva_t gaddr,
1918                                              unsigned level,
1919                                              int direct,
1920                                              unsigned access,
1921                                              u64 *parent_pte)
1922 {
1923         union kvm_mmu_page_role role;
1924         unsigned quadrant;
1925         struct kvm_mmu_page *sp;
1926         bool need_sync = false;
1927
1928         role = vcpu->arch.mmu.base_role;
1929         role.level = level;
1930         role.direct = direct;
1931         if (role.direct)
1932                 role.cr4_pae = 0;
1933         role.access = access;
1934         if (!vcpu->arch.mmu.direct_map
1935             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1936                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1937                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1938                 role.quadrant = quadrant;
1939         }
1940         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1941                 if (is_obsolete_sp(vcpu->kvm, sp))
1942                         continue;
1943
1944                 if (!need_sync && sp->unsync)
1945                         need_sync = true;
1946
1947                 if (sp->role.word != role.word)
1948                         continue;
1949
1950                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1951                         break;
1952
1953                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1954                 if (sp->unsync_children) {
1955                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1956                         kvm_mmu_mark_parents_unsync(sp);
1957                 } else if (sp->unsync)
1958                         kvm_mmu_mark_parents_unsync(sp);
1959
1960                 __clear_sp_write_flooding_count(sp);
1961                 trace_kvm_mmu_get_page(sp, false);
1962                 return sp;
1963         }
1964         ++vcpu->kvm->stat.mmu_cache_miss;
1965         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1966         if (!sp)
1967                 return sp;
1968         sp->gfn = gfn;
1969         sp->role = role;
1970         hlist_add_head(&sp->hash_link,
1971                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1972         if (!direct) {
1973                 if (rmap_write_protect(vcpu->kvm, gfn))
1974                         kvm_flush_remote_tlbs(vcpu->kvm);
1975                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1976                         kvm_sync_pages(vcpu, gfn);
1977
1978                 account_shadowed(vcpu->kvm, gfn);
1979         }
1980         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1981         init_shadow_page_table(sp);
1982         trace_kvm_mmu_get_page(sp, true);
1983         return sp;
1984 }
1985
1986 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1987                              struct kvm_vcpu *vcpu, u64 addr)
1988 {
1989         iterator->addr = addr;
1990         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1991         iterator->level = vcpu->arch.mmu.shadow_root_level;
1992
1993         if (iterator->level == PT64_ROOT_LEVEL &&
1994             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1995             !vcpu->arch.mmu.direct_map)
1996                 --iterator->level;
1997
1998         if (iterator->level == PT32E_ROOT_LEVEL) {
1999                 iterator->shadow_addr
2000                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2001                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2002                 --iterator->level;
2003                 if (!iterator->shadow_addr)
2004                         iterator->level = 0;
2005         }
2006 }
2007
2008 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2009 {
2010         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2011                 return false;
2012
2013         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2014         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2015         return true;
2016 }
2017
2018 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2019                                u64 spte)
2020 {
2021         if (is_last_spte(spte, iterator->level)) {
2022                 iterator->level = 0;
2023                 return;
2024         }
2025
2026         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2027         --iterator->level;
2028 }
2029
2030 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2031 {
2032         return __shadow_walk_next(iterator, *iterator->sptep);
2033 }
2034
2035 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2036 {
2037         u64 spte;
2038
2039         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2040                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2041
2042         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2043                shadow_user_mask | shadow_x_mask;
2044
2045         if (accessed)
2046                 spte |= shadow_accessed_mask;
2047
2048         mmu_spte_set(sptep, spte);
2049 }
2050
2051 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2052                                    unsigned direct_access)
2053 {
2054         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2055                 struct kvm_mmu_page *child;
2056
2057                 /*
2058                  * For the direct sp, if the guest pte's dirty bit
2059                  * changed form clean to dirty, it will corrupt the
2060                  * sp's access: allow writable in the read-only sp,
2061                  * so we should update the spte at this point to get
2062                  * a new sp with the correct access.
2063                  */
2064                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2065                 if (child->role.access == direct_access)
2066                         return;
2067
2068                 drop_parent_pte(child, sptep);
2069                 kvm_flush_remote_tlbs(vcpu->kvm);
2070         }
2071 }
2072
2073 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2074                              u64 *spte)
2075 {
2076         u64 pte;
2077         struct kvm_mmu_page *child;
2078
2079         pte = *spte;
2080         if (is_shadow_present_pte(pte)) {
2081                 if (is_last_spte(pte, sp->role.level)) {
2082                         drop_spte(kvm, spte);
2083                         if (is_large_pte(pte))
2084                                 --kvm->stat.lpages;
2085                 } else {
2086                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2087                         drop_parent_pte(child, spte);
2088                 }
2089                 return true;
2090         }
2091
2092         if (is_mmio_spte(pte))
2093                 mmu_spte_clear_no_track(spte);
2094
2095         return false;
2096 }
2097
2098 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2099                                          struct kvm_mmu_page *sp)
2100 {
2101         unsigned i;
2102
2103         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2104                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2105 }
2106
2107 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2108 {
2109         mmu_page_remove_parent_pte(sp, parent_pte);
2110 }
2111
2112 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2113 {
2114         u64 *sptep;
2115         struct rmap_iterator iter;
2116
2117         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2118                 drop_parent_pte(sp, sptep);
2119 }
2120
2121 static int mmu_zap_unsync_children(struct kvm *kvm,
2122                                    struct kvm_mmu_page *parent,
2123                                    struct list_head *invalid_list)
2124 {
2125         int i, zapped = 0;
2126         struct mmu_page_path parents;
2127         struct kvm_mmu_pages pages;
2128
2129         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2130                 return 0;
2131
2132         kvm_mmu_pages_init(parent, &parents, &pages);
2133         while (mmu_unsync_walk(parent, &pages)) {
2134                 struct kvm_mmu_page *sp;
2135
2136                 for_each_sp(pages, sp, parents, i) {
2137                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2138                         mmu_pages_clear_parents(&parents);
2139                         zapped++;
2140                 }
2141                 kvm_mmu_pages_init(parent, &parents, &pages);
2142         }
2143
2144         return zapped;
2145 }
2146
2147 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2148                                     struct list_head *invalid_list)
2149 {
2150         int ret;
2151
2152         trace_kvm_mmu_prepare_zap_page(sp);
2153         ++kvm->stat.mmu_shadow_zapped;
2154         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2155         kvm_mmu_page_unlink_children(kvm, sp);
2156         kvm_mmu_unlink_parents(kvm, sp);
2157
2158         if (!sp->role.invalid && !sp->role.direct)
2159                 unaccount_shadowed(kvm, sp->gfn);
2160
2161         if (sp->unsync)
2162                 kvm_unlink_unsync_page(kvm, sp);
2163         if (!sp->root_count) {
2164                 /* Count self */
2165                 ret++;
2166                 list_move(&sp->link, invalid_list);
2167                 kvm_mod_used_mmu_pages(kvm, -1);
2168         } else {
2169                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2170
2171                 /*
2172                  * The obsolete pages can not be used on any vcpus.
2173                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2174                  */
2175                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2176                         kvm_reload_remote_mmus(kvm);
2177         }
2178
2179         sp->role.invalid = 1;
2180         return ret;
2181 }
2182
2183 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2184                                     struct list_head *invalid_list)
2185 {
2186         struct kvm_mmu_page *sp, *nsp;
2187
2188         if (list_empty(invalid_list))
2189                 return;
2190
2191         /*
2192          * wmb: make sure everyone sees our modifications to the page tables
2193          * rmb: make sure we see changes to vcpu->mode
2194          */
2195         smp_mb();
2196
2197         /*
2198          * Wait for all vcpus to exit guest mode and/or lockless shadow
2199          * page table walks.
2200          */
2201         kvm_flush_remote_tlbs(kvm);
2202
2203         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2204                 WARN_ON(!sp->role.invalid || sp->root_count);
2205                 kvm_mmu_free_page(sp);
2206         }
2207 }
2208
2209 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2210                                         struct list_head *invalid_list)
2211 {
2212         struct kvm_mmu_page *sp;
2213
2214         if (list_empty(&kvm->arch.active_mmu_pages))
2215                 return false;
2216
2217         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2218                         struct kvm_mmu_page, link);
2219         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2220
2221         return true;
2222 }
2223
2224 /*
2225  * Changing the number of mmu pages allocated to the vm
2226  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2227  */
2228 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2229 {
2230         LIST_HEAD(invalid_list);
2231
2232         spin_lock(&kvm->mmu_lock);
2233
2234         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2235                 /* Need to free some mmu pages to achieve the goal. */
2236                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2237                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2238                                 break;
2239
2240                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2241                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2242         }
2243
2244         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2245
2246         spin_unlock(&kvm->mmu_lock);
2247 }
2248
2249 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2250 {
2251         struct kvm_mmu_page *sp;
2252         LIST_HEAD(invalid_list);
2253         int r;
2254
2255         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2256         r = 0;
2257         spin_lock(&kvm->mmu_lock);
2258         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2259                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2260                          sp->role.word);
2261                 r = 1;
2262                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2263         }
2264         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2265         spin_unlock(&kvm->mmu_lock);
2266
2267         return r;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2270
2271 /*
2272  * The function is based on mtrr_type_lookup() in
2273  * arch/x86/kernel/cpu/mtrr/generic.c
2274  */
2275 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2276                          u64 start, u64 end)
2277 {
2278         int i;
2279         u64 base, mask;
2280         u8 prev_match, curr_match;
2281         int num_var_ranges = KVM_NR_VAR_MTRR;
2282
2283         if (!mtrr_state->enabled)
2284                 return 0xFF;
2285
2286         /* Make end inclusive end, instead of exclusive */
2287         end--;
2288
2289         /* Look in fixed ranges. Just return the type as per start */
2290         if (mtrr_state->have_fixed && (start < 0x100000)) {
2291                 int idx;
2292
2293                 if (start < 0x80000) {
2294                         idx = 0;
2295                         idx += (start >> 16);
2296                         return mtrr_state->fixed_ranges[idx];
2297                 } else if (start < 0xC0000) {
2298                         idx = 1 * 8;
2299                         idx += ((start - 0x80000) >> 14);
2300                         return mtrr_state->fixed_ranges[idx];
2301                 } else if (start < 0x1000000) {
2302                         idx = 3 * 8;
2303                         idx += ((start - 0xC0000) >> 12);
2304                         return mtrr_state->fixed_ranges[idx];
2305                 }
2306         }
2307
2308         /*
2309          * Look in variable ranges
2310          * Look of multiple ranges matching this address and pick type
2311          * as per MTRR precedence
2312          */
2313         if (!(mtrr_state->enabled & 2))
2314                 return mtrr_state->def_type;
2315
2316         prev_match = 0xFF;
2317         for (i = 0; i < num_var_ranges; ++i) {
2318                 unsigned short start_state, end_state;
2319
2320                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2321                         continue;
2322
2323                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2324                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2325                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2326                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2327
2328                 start_state = ((start & mask) == (base & mask));
2329                 end_state = ((end & mask) == (base & mask));
2330                 if (start_state != end_state)
2331                         return 0xFE;
2332
2333                 if ((start & mask) != (base & mask))
2334                         continue;
2335
2336                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2337                 if (prev_match == 0xFF) {
2338                         prev_match = curr_match;
2339                         continue;
2340                 }
2341
2342                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2343                     curr_match == MTRR_TYPE_UNCACHABLE)
2344                         return MTRR_TYPE_UNCACHABLE;
2345
2346                 if ((prev_match == MTRR_TYPE_WRBACK &&
2347                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2348                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2349                      curr_match == MTRR_TYPE_WRBACK)) {
2350                         prev_match = MTRR_TYPE_WRTHROUGH;
2351                         curr_match = MTRR_TYPE_WRTHROUGH;
2352                 }
2353
2354                 if (prev_match != curr_match)
2355                         return MTRR_TYPE_UNCACHABLE;
2356         }
2357
2358         if (prev_match != 0xFF)
2359                 return prev_match;
2360
2361         return mtrr_state->def_type;
2362 }
2363
2364 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2365 {
2366         u8 mtrr;
2367
2368         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2369                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2370         if (mtrr == 0xfe || mtrr == 0xff)
2371                 mtrr = MTRR_TYPE_WRBACK;
2372         return mtrr;
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2375
2376 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2377 {
2378         trace_kvm_mmu_unsync_page(sp);
2379         ++vcpu->kvm->stat.mmu_unsync;
2380         sp->unsync = 1;
2381
2382         kvm_mmu_mark_parents_unsync(sp);
2383 }
2384
2385 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2386 {
2387         struct kvm_mmu_page *s;
2388
2389         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2390                 if (s->unsync)
2391                         continue;
2392                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2393                 __kvm_unsync_page(vcpu, s);
2394         }
2395 }
2396
2397 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2398                                   bool can_unsync)
2399 {
2400         struct kvm_mmu_page *s;
2401         bool need_unsync = false;
2402
2403         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404                 if (!can_unsync)
2405                         return 1;
2406
2407                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2408                         return 1;
2409
2410                 if (!s->unsync)
2411                         need_unsync = true;
2412         }
2413         if (need_unsync)
2414                 kvm_unsync_pages(vcpu, gfn);
2415         return 0;
2416 }
2417
2418 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2419                     unsigned pte_access, int level,
2420                     gfn_t gfn, pfn_t pfn, bool speculative,
2421                     bool can_unsync, bool host_writable)
2422 {
2423         u64 spte;
2424         int ret = 0;
2425
2426         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2427                 return 0;
2428
2429         spte = PT_PRESENT_MASK;
2430         if (!speculative)
2431                 spte |= shadow_accessed_mask;
2432
2433         if (pte_access & ACC_EXEC_MASK)
2434                 spte |= shadow_x_mask;
2435         else
2436                 spte |= shadow_nx_mask;
2437
2438         if (pte_access & ACC_USER_MASK)
2439                 spte |= shadow_user_mask;
2440
2441         if (level > PT_PAGE_TABLE_LEVEL)
2442                 spte |= PT_PAGE_SIZE_MASK;
2443         if (tdp_enabled)
2444                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2445                         kvm_is_mmio_pfn(pfn));
2446
2447         if (host_writable)
2448                 spte |= SPTE_HOST_WRITEABLE;
2449         else
2450                 pte_access &= ~ACC_WRITE_MASK;
2451
2452         spte |= (u64)pfn << PAGE_SHIFT;
2453
2454         if (pte_access & ACC_WRITE_MASK) {
2455
2456                 /*
2457                  * Other vcpu creates new sp in the window between
2458                  * mapping_level() and acquiring mmu-lock. We can
2459                  * allow guest to retry the access, the mapping can
2460                  * be fixed if guest refault.
2461                  */
2462                 if (level > PT_PAGE_TABLE_LEVEL &&
2463                     has_wrprotected_page(vcpu->kvm, gfn, level))
2464                         goto done;
2465
2466                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2467
2468                 /*
2469                  * Optimization: for pte sync, if spte was writable the hash
2470                  * lookup is unnecessary (and expensive). Write protection
2471                  * is responsibility of mmu_get_page / kvm_sync_page.
2472                  * Same reasoning can be applied to dirty page accounting.
2473                  */
2474                 if (!can_unsync && is_writable_pte(*sptep))
2475                         goto set_pte;
2476
2477                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2478                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2479                                  __func__, gfn);
2480                         ret = 1;
2481                         pte_access &= ~ACC_WRITE_MASK;
2482                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2483                 }
2484         }
2485
2486         if (pte_access & ACC_WRITE_MASK)
2487                 mark_page_dirty(vcpu->kvm, gfn);
2488
2489 set_pte:
2490         if (mmu_spte_update(sptep, spte))
2491                 kvm_flush_remote_tlbs(vcpu->kvm);
2492 done:
2493         return ret;
2494 }
2495
2496 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2497                          unsigned pte_access, int write_fault, int *emulate,
2498                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2499                          bool host_writable)
2500 {
2501         int was_rmapped = 0;
2502         int rmap_count;
2503
2504         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2505                  *sptep, write_fault, gfn);
2506
2507         if (is_rmap_spte(*sptep)) {
2508                 /*
2509                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2510                  * the parent of the now unreachable PTE.
2511                  */
2512                 if (level > PT_PAGE_TABLE_LEVEL &&
2513                     !is_large_pte(*sptep)) {
2514                         struct kvm_mmu_page *child;
2515                         u64 pte = *sptep;
2516
2517                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2518                         drop_parent_pte(child, sptep);
2519                         kvm_flush_remote_tlbs(vcpu->kvm);
2520                 } else if (pfn != spte_to_pfn(*sptep)) {
2521                         pgprintk("hfn old %llx new %llx\n",
2522                                  spte_to_pfn(*sptep), pfn);
2523                         drop_spte(vcpu->kvm, sptep);
2524                         kvm_flush_remote_tlbs(vcpu->kvm);
2525                 } else
2526                         was_rmapped = 1;
2527         }
2528
2529         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2530               true, host_writable)) {
2531                 if (write_fault)
2532                         *emulate = 1;
2533                 kvm_mmu_flush_tlb(vcpu);
2534         }
2535
2536         if (unlikely(is_mmio_spte(*sptep) && emulate))
2537                 *emulate = 1;
2538
2539         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2540         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2541                  is_large_pte(*sptep)? "2MB" : "4kB",
2542                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2543                  *sptep, sptep);
2544         if (!was_rmapped && is_large_pte(*sptep))
2545                 ++vcpu->kvm->stat.lpages;
2546
2547         if (is_shadow_present_pte(*sptep)) {
2548                 if (!was_rmapped) {
2549                         rmap_count = rmap_add(vcpu, sptep, gfn);
2550                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2551                                 rmap_recycle(vcpu, sptep, gfn);
2552                 }
2553         }
2554
2555         kvm_release_pfn_clean(pfn);
2556 }
2557
2558 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2559                                      bool no_dirty_log)
2560 {
2561         struct kvm_memory_slot *slot;
2562
2563         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2564         if (!slot)
2565                 return KVM_PFN_ERR_FAULT;
2566
2567         return gfn_to_pfn_memslot_atomic(slot, gfn);
2568 }
2569
2570 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2571                                     struct kvm_mmu_page *sp,
2572                                     u64 *start, u64 *end)
2573 {
2574         struct page *pages[PTE_PREFETCH_NUM];
2575         unsigned access = sp->role.access;
2576         int i, ret;
2577         gfn_t gfn;
2578
2579         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2580         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2581                 return -1;
2582
2583         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2584         if (ret <= 0)
2585                 return -1;
2586
2587         for (i = 0; i < ret; i++, gfn++, start++)
2588                 mmu_set_spte(vcpu, start, access, 0, NULL,
2589                              sp->role.level, gfn, page_to_pfn(pages[i]),
2590                              true, true);
2591
2592         return 0;
2593 }
2594
2595 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2596                                   struct kvm_mmu_page *sp, u64 *sptep)
2597 {
2598         u64 *spte, *start = NULL;
2599         int i;
2600
2601         WARN_ON(!sp->role.direct);
2602
2603         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2604         spte = sp->spt + i;
2605
2606         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2607                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2608                         if (!start)
2609                                 continue;
2610                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2611                                 break;
2612                         start = NULL;
2613                 } else if (!start)
2614                         start = spte;
2615         }
2616 }
2617
2618 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2619 {
2620         struct kvm_mmu_page *sp;
2621
2622         /*
2623          * Since it's no accessed bit on EPT, it's no way to
2624          * distinguish between actually accessed translations
2625          * and prefetched, so disable pte prefetch if EPT is
2626          * enabled.
2627          */
2628         if (!shadow_accessed_mask)
2629                 return;
2630
2631         sp = page_header(__pa(sptep));
2632         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2633                 return;
2634
2635         __direct_pte_prefetch(vcpu, sp, sptep);
2636 }
2637
2638 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2639                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2640                         bool prefault)
2641 {
2642         struct kvm_shadow_walk_iterator iterator;
2643         struct kvm_mmu_page *sp;
2644         int emulate = 0;
2645         gfn_t pseudo_gfn;
2646
2647         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2648                 return 0;
2649
2650         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2651                 if (iterator.level == level) {
2652                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2653                                      write, &emulate, level, gfn, pfn,
2654                                      prefault, map_writable);
2655                         direct_pte_prefetch(vcpu, iterator.sptep);
2656                         ++vcpu->stat.pf_fixed;
2657                         break;
2658                 }
2659
2660                 drop_large_spte(vcpu, iterator.sptep);
2661                 if (!is_shadow_present_pte(*iterator.sptep)) {
2662                         u64 base_addr = iterator.addr;
2663
2664                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2665                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2666                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2667                                               iterator.level - 1,
2668                                               1, ACC_ALL, iterator.sptep);
2669
2670                         link_shadow_page(iterator.sptep, sp, true);
2671                 }
2672         }
2673         return emulate;
2674 }
2675
2676 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2677 {
2678         siginfo_t info;
2679
2680         info.si_signo   = SIGBUS;
2681         info.si_errno   = 0;
2682         info.si_code    = BUS_MCEERR_AR;
2683         info.si_addr    = (void __user *)address;
2684         info.si_addr_lsb = PAGE_SHIFT;
2685
2686         send_sig_info(SIGBUS, &info, tsk);
2687 }
2688
2689 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2690 {
2691         /*
2692          * Do not cache the mmio info caused by writing the readonly gfn
2693          * into the spte otherwise read access on readonly gfn also can
2694          * caused mmio page fault and treat it as mmio access.
2695          * Return 1 to tell kvm to emulate it.
2696          */
2697         if (pfn == KVM_PFN_ERR_RO_FAULT)
2698                 return 1;
2699
2700         if (pfn == KVM_PFN_ERR_HWPOISON) {
2701                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2702                 return 0;
2703         }
2704
2705         return -EFAULT;
2706 }
2707
2708 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2709                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2710 {
2711         pfn_t pfn = *pfnp;
2712         gfn_t gfn = *gfnp;
2713         int level = *levelp;
2714
2715         /*
2716          * Check if it's a transparent hugepage. If this would be an
2717          * hugetlbfs page, level wouldn't be set to
2718          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2719          * here.
2720          */
2721         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2722             level == PT_PAGE_TABLE_LEVEL &&
2723             PageTransCompound(pfn_to_page(pfn)) &&
2724             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2725                 unsigned long mask;
2726                 /*
2727                  * mmu_notifier_retry was successful and we hold the
2728                  * mmu_lock here, so the pmd can't become splitting
2729                  * from under us, and in turn
2730                  * __split_huge_page_refcount() can't run from under
2731                  * us and we can safely transfer the refcount from
2732                  * PG_tail to PG_head as we switch the pfn to tail to
2733                  * head.
2734                  */
2735                 *levelp = level = PT_DIRECTORY_LEVEL;
2736                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2737                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2738                 if (pfn & mask) {
2739                         gfn &= ~mask;
2740                         *gfnp = gfn;
2741                         kvm_release_pfn_clean(pfn);
2742                         pfn &= ~mask;
2743                         kvm_get_pfn(pfn);
2744                         *pfnp = pfn;
2745                 }
2746         }
2747 }
2748
2749 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2750                                 pfn_t pfn, unsigned access, int *ret_val)
2751 {
2752         bool ret = true;
2753
2754         /* The pfn is invalid, report the error! */
2755         if (unlikely(is_error_pfn(pfn))) {
2756                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2757                 goto exit;
2758         }
2759
2760         if (unlikely(is_noslot_pfn(pfn)))
2761                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2762
2763         ret = false;
2764 exit:
2765         return ret;
2766 }
2767
2768 static bool page_fault_can_be_fast(u32 error_code)
2769 {
2770         /*
2771          * Do not fix the mmio spte with invalid generation number which
2772          * need to be updated by slow page fault path.
2773          */
2774         if (unlikely(error_code & PFERR_RSVD_MASK))
2775                 return false;
2776
2777         /*
2778          * #PF can be fast only if the shadow page table is present and it
2779          * is caused by write-protect, that means we just need change the
2780          * W bit of the spte which can be done out of mmu-lock.
2781          */
2782         if (!(error_code & PFERR_PRESENT_MASK) ||
2783               !(error_code & PFERR_WRITE_MASK))
2784                 return false;
2785
2786         return true;
2787 }
2788
2789 static bool
2790 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2791                         u64 *sptep, u64 spte)
2792 {
2793         gfn_t gfn;
2794
2795         WARN_ON(!sp->role.direct);
2796
2797         /*
2798          * The gfn of direct spte is stable since it is calculated
2799          * by sp->gfn.
2800          */
2801         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2802
2803         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2804                 mark_page_dirty(vcpu->kvm, gfn);
2805
2806         return true;
2807 }
2808
2809 /*
2810  * Return value:
2811  * - true: let the vcpu to access on the same address again.
2812  * - false: let the real page fault path to fix it.
2813  */
2814 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2815                             u32 error_code)
2816 {
2817         struct kvm_shadow_walk_iterator iterator;
2818         struct kvm_mmu_page *sp;
2819         bool ret = false;
2820         u64 spte = 0ull;
2821
2822         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2823                 return false;
2824
2825         if (!page_fault_can_be_fast(error_code))
2826                 return false;
2827
2828         walk_shadow_page_lockless_begin(vcpu);
2829         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2830                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2831                         break;
2832
2833         /*
2834          * If the mapping has been changed, let the vcpu fault on the
2835          * same address again.
2836          */
2837         if (!is_rmap_spte(spte)) {
2838                 ret = true;
2839                 goto exit;
2840         }
2841
2842         sp = page_header(__pa(iterator.sptep));
2843         if (!is_last_spte(spte, sp->role.level))
2844                 goto exit;
2845
2846         /*
2847          * Check if it is a spurious fault caused by TLB lazily flushed.
2848          *
2849          * Need not check the access of upper level table entries since
2850          * they are always ACC_ALL.
2851          */
2852          if (is_writable_pte(spte)) {
2853                 ret = true;
2854                 goto exit;
2855         }
2856
2857         /*
2858          * Currently, to simplify the code, only the spte write-protected
2859          * by dirty-log can be fast fixed.
2860          */
2861         if (!spte_is_locklessly_modifiable(spte))
2862                 goto exit;
2863
2864         /*
2865          * Do not fix write-permission on the large spte since we only dirty
2866          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2867          * that means other pages are missed if its slot is dirty-logged.
2868          *
2869          * Instead, we let the slow page fault path create a normal spte to
2870          * fix the access.
2871          *
2872          * See the comments in kvm_arch_commit_memory_region().
2873          */
2874         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2875                 goto exit;
2876
2877         /*
2878          * Currently, fast page fault only works for direct mapping since
2879          * the gfn is not stable for indirect shadow page.
2880          * See Documentation/virtual/kvm/locking.txt to get more detail.
2881          */
2882         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2883 exit:
2884         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2885                               spte, ret);
2886         walk_shadow_page_lockless_end(vcpu);
2887
2888         return ret;
2889 }
2890
2891 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2892                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2893 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2894
2895 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2896                          gfn_t gfn, bool prefault)
2897 {
2898         int r;
2899         int level;
2900         int force_pt_level;
2901         pfn_t pfn;
2902         unsigned long mmu_seq;
2903         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2904
2905         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2906         if (likely(!force_pt_level)) {
2907                 level = mapping_level(vcpu, gfn);
2908                 /*
2909                  * This path builds a PAE pagetable - so we can map
2910                  * 2mb pages at maximum. Therefore check if the level
2911                  * is larger than that.
2912                  */
2913                 if (level > PT_DIRECTORY_LEVEL)
2914                         level = PT_DIRECTORY_LEVEL;
2915
2916                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2917         } else
2918                 level = PT_PAGE_TABLE_LEVEL;
2919
2920         if (fast_page_fault(vcpu, v, level, error_code))
2921                 return 0;
2922
2923         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2924         smp_rmb();
2925
2926         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2927                 return 0;
2928
2929         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2930                 return r;
2931
2932         spin_lock(&vcpu->kvm->mmu_lock);
2933         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2934                 goto out_unlock;
2935         make_mmu_pages_available(vcpu);
2936         if (likely(!force_pt_level))
2937                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2938         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2939                          prefault);
2940         spin_unlock(&vcpu->kvm->mmu_lock);
2941
2942
2943         return r;
2944
2945 out_unlock:
2946         spin_unlock(&vcpu->kvm->mmu_lock);
2947         kvm_release_pfn_clean(pfn);
2948         return 0;
2949 }
2950
2951
2952 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2953 {
2954         int i;
2955         struct kvm_mmu_page *sp;
2956         LIST_HEAD(invalid_list);
2957
2958         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2959                 return;
2960
2961         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2962             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2963              vcpu->arch.mmu.direct_map)) {
2964                 hpa_t root = vcpu->arch.mmu.root_hpa;
2965
2966                 spin_lock(&vcpu->kvm->mmu_lock);
2967                 sp = page_header(root);
2968                 --sp->root_count;
2969                 if (!sp->root_count && sp->role.invalid) {
2970                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2971                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2972                 }
2973                 spin_unlock(&vcpu->kvm->mmu_lock);
2974                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2975                 return;
2976         }
2977
2978         spin_lock(&vcpu->kvm->mmu_lock);
2979         for (i = 0; i < 4; ++i) {
2980                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2981
2982                 if (root) {
2983                         root &= PT64_BASE_ADDR_MASK;
2984                         sp = page_header(root);
2985                         --sp->root_count;
2986                         if (!sp->root_count && sp->role.invalid)
2987                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2988                                                          &invalid_list);
2989                 }
2990                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2991         }
2992         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2993         spin_unlock(&vcpu->kvm->mmu_lock);
2994         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2995 }
2996
2997 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2998 {
2999         int ret = 0;
3000
3001         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3002                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3003                 ret = 1;
3004         }
3005
3006         return ret;
3007 }
3008
3009 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3010 {
3011         struct kvm_mmu_page *sp;
3012         unsigned i;
3013
3014         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3015                 spin_lock(&vcpu->kvm->mmu_lock);
3016                 make_mmu_pages_available(vcpu);
3017                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3018                                       1, ACC_ALL, NULL);
3019                 ++sp->root_count;
3020                 spin_unlock(&vcpu->kvm->mmu_lock);
3021                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3022         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3023                 for (i = 0; i < 4; ++i) {
3024                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3025
3026                         ASSERT(!VALID_PAGE(root));
3027                         spin_lock(&vcpu->kvm->mmu_lock);
3028                         make_mmu_pages_available(vcpu);
3029                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3030                                               i << 30,
3031                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3032                                               NULL);
3033                         root = __pa(sp->spt);
3034                         ++sp->root_count;
3035                         spin_unlock(&vcpu->kvm->mmu_lock);
3036                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3037                 }
3038                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3039         } else
3040                 BUG();
3041
3042         return 0;
3043 }
3044
3045 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3046 {
3047         struct kvm_mmu_page *sp;
3048         u64 pdptr, pm_mask;
3049         gfn_t root_gfn;
3050         int i;
3051
3052         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3053
3054         if (mmu_check_root(vcpu, root_gfn))
3055                 return 1;
3056
3057         /*
3058          * Do we shadow a long mode page table? If so we need to
3059          * write-protect the guests page table root.
3060          */
3061         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3062                 hpa_t root = vcpu->arch.mmu.root_hpa;
3063
3064                 ASSERT(!VALID_PAGE(root));
3065
3066                 spin_lock(&vcpu->kvm->mmu_lock);
3067                 make_mmu_pages_available(vcpu);
3068                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3069                                       0, ACC_ALL, NULL);
3070                 root = __pa(sp->spt);
3071                 ++sp->root_count;
3072                 spin_unlock(&vcpu->kvm->mmu_lock);
3073                 vcpu->arch.mmu.root_hpa = root;
3074                 return 0;
3075         }
3076
3077         /*
3078          * We shadow a 32 bit page table. This may be a legacy 2-level
3079          * or a PAE 3-level page table. In either case we need to be aware that
3080          * the shadow page table may be a PAE or a long mode page table.
3081          */
3082         pm_mask = PT_PRESENT_MASK;
3083         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3084                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3085
3086         for (i = 0; i < 4; ++i) {
3087                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3088
3089                 ASSERT(!VALID_PAGE(root));
3090                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3091                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3092                         if (!is_present_gpte(pdptr)) {
3093                                 vcpu->arch.mmu.pae_root[i] = 0;
3094                                 continue;
3095                         }
3096                         root_gfn = pdptr >> PAGE_SHIFT;
3097                         if (mmu_check_root(vcpu, root_gfn))
3098                                 return 1;
3099                 }
3100                 spin_lock(&vcpu->kvm->mmu_lock);
3101                 make_mmu_pages_available(vcpu);
3102                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3103                                       PT32_ROOT_LEVEL, 0,
3104                                       ACC_ALL, NULL);
3105                 root = __pa(sp->spt);
3106                 ++sp->root_count;
3107                 spin_unlock(&vcpu->kvm->mmu_lock);
3108
3109                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3110         }
3111         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3112
3113         /*
3114          * If we shadow a 32 bit page table with a long mode page
3115          * table we enter this path.
3116          */
3117         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118                 if (vcpu->arch.mmu.lm_root == NULL) {
3119                         /*
3120                          * The additional page necessary for this is only
3121                          * allocated on demand.
3122                          */
3123
3124                         u64 *lm_root;
3125
3126                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3127                         if (lm_root == NULL)
3128                                 return 1;
3129
3130                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3131
3132                         vcpu->arch.mmu.lm_root = lm_root;
3133                 }
3134
3135                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3136         }
3137
3138         return 0;
3139 }
3140
3141 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3142 {
3143         if (vcpu->arch.mmu.direct_map)
3144                 return mmu_alloc_direct_roots(vcpu);
3145         else
3146                 return mmu_alloc_shadow_roots(vcpu);
3147 }
3148
3149 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3150 {
3151         int i;
3152         struct kvm_mmu_page *sp;
3153
3154         if (vcpu->arch.mmu.direct_map)
3155                 return;
3156
3157         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3158                 return;
3159
3160         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3161         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3162         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3163                 hpa_t root = vcpu->arch.mmu.root_hpa;
3164                 sp = page_header(root);
3165                 mmu_sync_children(vcpu, sp);
3166                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3167                 return;
3168         }
3169         for (i = 0; i < 4; ++i) {
3170                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172                 if (root && VALID_PAGE(root)) {
3173                         root &= PT64_BASE_ADDR_MASK;
3174                         sp = page_header(root);
3175                         mmu_sync_children(vcpu, sp);
3176                 }
3177         }
3178         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3179 }
3180
3181 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3182 {
3183         spin_lock(&vcpu->kvm->mmu_lock);
3184         mmu_sync_roots(vcpu);
3185         spin_unlock(&vcpu->kvm->mmu_lock);
3186 }
3187 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3188
3189 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3190                                   u32 access, struct x86_exception *exception)
3191 {
3192         if (exception)
3193                 exception->error_code = 0;
3194         return vaddr;
3195 }
3196
3197 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3198                                          u32 access,
3199                                          struct x86_exception *exception)
3200 {
3201         if (exception)
3202                 exception->error_code = 0;
3203         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3204 }
3205
3206 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3207 {
3208         if (direct)
3209                 return vcpu_match_mmio_gpa(vcpu, addr);
3210
3211         return vcpu_match_mmio_gva(vcpu, addr);
3212 }
3213
3214
3215 /*
3216  * On direct hosts, the last spte is only allows two states
3217  * for mmio page fault:
3218  *   - It is the mmio spte
3219  *   - It is zapped or it is being zapped.
3220  *
3221  * This function completely checks the spte when the last spte
3222  * is not the mmio spte.
3223  */
3224 static bool check_direct_spte_mmio_pf(u64 spte)
3225 {
3226         return __check_direct_spte_mmio_pf(spte);
3227 }
3228
3229 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3230 {
3231         struct kvm_shadow_walk_iterator iterator;
3232         u64 spte = 0ull;
3233
3234         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3235                 return spte;
3236
3237         walk_shadow_page_lockless_begin(vcpu);
3238         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3239                 if (!is_shadow_present_pte(spte))
3240                         break;
3241         walk_shadow_page_lockless_end(vcpu);
3242
3243         return spte;
3244 }
3245
3246 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3247 {
3248         u64 spte;
3249
3250         if (quickly_check_mmio_pf(vcpu, addr, direct))
3251                 return RET_MMIO_PF_EMULATE;
3252
3253         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3254
3255         if (is_mmio_spte(spte)) {
3256                 gfn_t gfn = get_mmio_spte_gfn(spte);
3257                 unsigned access = get_mmio_spte_access(spte);
3258
3259                 if (!check_mmio_spte(vcpu->kvm, spte))
3260                         return RET_MMIO_PF_INVALID;
3261
3262                 if (direct)
3263                         addr = 0;
3264
3265                 trace_handle_mmio_page_fault(addr, gfn, access);
3266                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3267                 return RET_MMIO_PF_EMULATE;
3268         }
3269
3270         /*
3271          * It's ok if the gva is remapped by other cpus on shadow guest,
3272          * it's a BUG if the gfn is not a mmio page.
3273          */
3274         if (direct && !check_direct_spte_mmio_pf(spte))
3275                 return RET_MMIO_PF_BUG;
3276
3277         /*
3278          * If the page table is zapped by other cpus, let CPU fault again on
3279          * the address.
3280          */
3281         return RET_MMIO_PF_RETRY;
3282 }
3283 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3284
3285 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3286                                   u32 error_code, bool direct)
3287 {
3288         int ret;
3289
3290         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3291         WARN_ON(ret == RET_MMIO_PF_BUG);
3292         return ret;
3293 }
3294
3295 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3296                                 u32 error_code, bool prefault)
3297 {
3298         gfn_t gfn;
3299         int r;
3300
3301         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3302
3303         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3304                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3305
3306                 if (likely(r != RET_MMIO_PF_INVALID))
3307                         return r;
3308         }
3309
3310         r = mmu_topup_memory_caches(vcpu);
3311         if (r)
3312                 return r;
3313
3314         ASSERT(vcpu);
3315         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3316
3317         gfn = gva >> PAGE_SHIFT;
3318
3319         return nonpaging_map(vcpu, gva & PAGE_MASK,
3320                              error_code, gfn, prefault);
3321 }
3322
3323 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3324 {
3325         struct kvm_arch_async_pf arch;
3326
3327         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3328         arch.gfn = gfn;
3329         arch.direct_map = vcpu->arch.mmu.direct_map;
3330         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3331
3332         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3333 }
3334
3335 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3336 {
3337         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3338                      kvm_event_needs_reinjection(vcpu)))
3339                 return false;
3340
3341         return kvm_x86_ops->interrupt_allowed(vcpu);
3342 }
3343
3344 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3345                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3346 {
3347         bool async;
3348
3349         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3350
3351         if (!async)
3352                 return false; /* *pfn has correct page already */
3353
3354         if (!prefault && can_do_async_pf(vcpu)) {
3355                 trace_kvm_try_async_get_page(gva, gfn);
3356                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3357                         trace_kvm_async_pf_doublefault(gva, gfn);
3358                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3359                         return true;
3360                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3361                         return true;
3362         }
3363
3364         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3365
3366         return false;
3367 }
3368
3369 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3370                           bool prefault)
3371 {
3372         pfn_t pfn;
3373         int r;
3374         int level;
3375         int force_pt_level;
3376         gfn_t gfn = gpa >> PAGE_SHIFT;
3377         unsigned long mmu_seq;
3378         int write = error_code & PFERR_WRITE_MASK;
3379         bool map_writable;
3380
3381         ASSERT(vcpu);
3382         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3383
3384         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3385                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3386
3387                 if (likely(r != RET_MMIO_PF_INVALID))
3388                         return r;
3389         }
3390
3391         r = mmu_topup_memory_caches(vcpu);
3392         if (r)
3393                 return r;
3394
3395         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3396         if (likely(!force_pt_level)) {
3397                 level = mapping_level(vcpu, gfn);
3398                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3399         } else
3400                 level = PT_PAGE_TABLE_LEVEL;
3401
3402         if (fast_page_fault(vcpu, gpa, level, error_code))
3403                 return 0;
3404
3405         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3406         smp_rmb();
3407
3408         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3409                 return 0;
3410
3411         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3412                 return r;
3413
3414         spin_lock(&vcpu->kvm->mmu_lock);
3415         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3416                 goto out_unlock;
3417         make_mmu_pages_available(vcpu);
3418         if (likely(!force_pt_level))
3419                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3420         r = __direct_map(vcpu, gpa, write, map_writable,
3421                          level, gfn, pfn, prefault);
3422         spin_unlock(&vcpu->kvm->mmu_lock);
3423
3424         return r;
3425
3426 out_unlock:
3427         spin_unlock(&vcpu->kvm->mmu_lock);
3428         kvm_release_pfn_clean(pfn);
3429         return 0;
3430 }
3431
3432 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3433                                    struct kvm_mmu *context)
3434 {
3435         context->page_fault = nonpaging_page_fault;
3436         context->gva_to_gpa = nonpaging_gva_to_gpa;
3437         context->sync_page = nonpaging_sync_page;
3438         context->invlpg = nonpaging_invlpg;
3439         context->update_pte = nonpaging_update_pte;
3440         context->root_level = 0;
3441         context->shadow_root_level = PT32E_ROOT_LEVEL;
3442         context->root_hpa = INVALID_PAGE;
3443         context->direct_map = true;
3444         context->nx = false;
3445 }
3446
3447 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3448 {
3449         ++vcpu->stat.tlb_flush;
3450         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3451 }
3452 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3453
3454 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3455 {
3456         mmu_free_roots(vcpu);
3457 }
3458
3459 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3460 {
3461         return kvm_read_cr3(vcpu);
3462 }
3463
3464 static void inject_page_fault(struct kvm_vcpu *vcpu,
3465                               struct x86_exception *fault)
3466 {
3467         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3468 }
3469
3470 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3471                            unsigned access, int *nr_present)
3472 {
3473         if (unlikely(is_mmio_spte(*sptep))) {
3474                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3475                         mmu_spte_clear_no_track(sptep);
3476                         return true;
3477                 }
3478
3479                 (*nr_present)++;
3480                 mark_mmio_spte(kvm, sptep, gfn, access);
3481                 return true;
3482         }
3483
3484         return false;
3485 }
3486
3487 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3488 {
3489         unsigned index;
3490
3491         index = level - 1;
3492         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3493         return mmu->last_pte_bitmap & (1 << index);
3494 }
3495
3496 #define PTTYPE_EPT 18 /* arbitrary */
3497 #define PTTYPE PTTYPE_EPT
3498 #include "paging_tmpl.h"
3499 #undef PTTYPE
3500
3501 #define PTTYPE 64
3502 #include "paging_tmpl.h"
3503 #undef PTTYPE
3504
3505 #define PTTYPE 32
3506 #include "paging_tmpl.h"
3507 #undef PTTYPE
3508
3509 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3510                                   struct kvm_mmu *context)
3511 {
3512         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3513         u64 exb_bit_rsvd = 0;
3514         u64 gbpages_bit_rsvd = 0;
3515
3516         context->bad_mt_xwr = 0;
3517
3518         if (!context->nx)
3519                 exb_bit_rsvd = rsvd_bits(63, 63);
3520         if (!guest_cpuid_has_gbpages(vcpu))
3521                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3522         switch (context->root_level) {
3523         case PT32_ROOT_LEVEL:
3524                 /* no rsvd bits for 2 level 4K page table entries */
3525                 context->rsvd_bits_mask[0][1] = 0;
3526                 context->rsvd_bits_mask[0][0] = 0;
3527                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3528
3529                 if (!is_pse(vcpu)) {
3530                         context->rsvd_bits_mask[1][1] = 0;
3531                         break;
3532                 }
3533
3534                 if (is_cpuid_PSE36())
3535                         /* 36bits PSE 4MB page */
3536                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3537                 else
3538                         /* 32 bits PSE 4MB page */
3539                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3540                 break;
3541         case PT32E_ROOT_LEVEL:
3542                 context->rsvd_bits_mask[0][2] =
3543                         rsvd_bits(maxphyaddr, 63) |
3544                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3545                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3546                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3547                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3548                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3549                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3550                         rsvd_bits(maxphyaddr, 62) |
3551                         rsvd_bits(13, 20);              /* large page */
3552                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3553                 break;
3554         case PT64_ROOT_LEVEL:
3555                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3556                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3557                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3558                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3559                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3560                         rsvd_bits(maxphyaddr, 51);
3561                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3562                         rsvd_bits(maxphyaddr, 51);
3563                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3564                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3565                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3566                         rsvd_bits(13, 29);
3567                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3568                         rsvd_bits(maxphyaddr, 51) |
3569                         rsvd_bits(13, 20);              /* large page */
3570                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3571                 break;
3572         }
3573 }
3574
3575 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3576                 struct kvm_mmu *context, bool execonly)
3577 {
3578         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3579         int pte;
3580
3581         context->rsvd_bits_mask[0][3] =
3582                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3583         context->rsvd_bits_mask[0][2] =
3584                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3585         context->rsvd_bits_mask[0][1] =
3586                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3587         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3588
3589         /* large page */
3590         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3591         context->rsvd_bits_mask[1][2] =
3592                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3593         context->rsvd_bits_mask[1][1] =
3594                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3595         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3596
3597         for (pte = 0; pte < 64; pte++) {
3598                 int rwx_bits = pte & 7;
3599                 int mt = pte >> 3;
3600                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3601                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3602                                 (rwx_bits == 0x4 && !execonly))
3603                         context->bad_mt_xwr |= (1ull << pte);
3604         }
3605 }
3606
3607 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3608                 struct kvm_mmu *mmu, bool ept)
3609 {
3610         unsigned bit, byte, pfec;
3611         u8 map;
3612         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3613
3614         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3615         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3616         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3617                 pfec = byte << 1;
3618                 map = 0;
3619                 wf = pfec & PFERR_WRITE_MASK;
3620                 uf = pfec & PFERR_USER_MASK;
3621                 ff = pfec & PFERR_FETCH_MASK;
3622                 /*
3623                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3624                  * subject to SMAP restrictions, and cleared otherwise. The
3625                  * bit is only meaningful if the SMAP bit is set in CR4.
3626                  */
3627                 smapf = !(pfec & PFERR_RSVD_MASK);
3628                 for (bit = 0; bit < 8; ++bit) {
3629                         x = bit & ACC_EXEC_MASK;
3630                         w = bit & ACC_WRITE_MASK;
3631                         u = bit & ACC_USER_MASK;
3632
3633                         if (!ept) {
3634                                 /* Not really needed: !nx will cause pte.nx to fault */
3635                                 x |= !mmu->nx;
3636                                 /* Allow supervisor writes if !cr0.wp */
3637                                 w |= !is_write_protection(vcpu) && !uf;
3638                                 /* Disallow supervisor fetches of user code if cr4.smep */
3639                                 x &= !(cr4_smep && u && !uf);
3640
3641                                 /*
3642                                  * SMAP:kernel-mode data accesses from user-mode
3643                                  * mappings should fault. A fault is considered
3644                                  * as a SMAP violation if all of the following
3645                                  * conditions are ture:
3646                                  *   - X86_CR4_SMAP is set in CR4
3647                                  *   - An user page is accessed
3648                                  *   - Page fault in kernel mode
3649                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3650                                  *
3651                                  *   Here, we cover the first three conditions.
3652                                  *   The fourth is computed dynamically in
3653                                  *   permission_fault() and is in smapf.
3654                                  *
3655                                  *   Also, SMAP does not affect instruction
3656                                  *   fetches, add the !ff check here to make it
3657                                  *   clearer.
3658                                  */
3659                                 smap = cr4_smap && u && !uf && !ff;
3660                         } else
3661                                 /* Not really needed: no U/S accesses on ept  */
3662                                 u = 1;
3663
3664                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3665                                 (smapf && smap);
3666                         map |= fault << bit;
3667                 }
3668                 mmu->permissions[byte] = map;
3669         }
3670 }
3671
3672 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3673 {
3674         u8 map;
3675         unsigned level, root_level = mmu->root_level;
3676         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3677
3678         if (root_level == PT32E_ROOT_LEVEL)
3679                 --root_level;
3680         /* PT_PAGE_TABLE_LEVEL always terminates */
3681         map = 1 | (1 << ps_set_index);
3682         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3683                 if (level <= PT_PDPE_LEVEL
3684                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3685                         map |= 1 << (ps_set_index | (level - 1));
3686         }
3687         mmu->last_pte_bitmap = map;
3688 }
3689
3690 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3691                                          struct kvm_mmu *context,
3692                                          int level)
3693 {
3694         context->nx = is_nx(vcpu);
3695         context->root_level = level;
3696
3697         reset_rsvds_bits_mask(vcpu, context);
3698         update_permission_bitmask(vcpu, context, false);
3699         update_last_pte_bitmap(vcpu, context);
3700
3701         ASSERT(is_pae(vcpu));
3702         context->page_fault = paging64_page_fault;
3703         context->gva_to_gpa = paging64_gva_to_gpa;
3704         context->sync_page = paging64_sync_page;
3705         context->invlpg = paging64_invlpg;
3706         context->update_pte = paging64_update_pte;
3707         context->shadow_root_level = level;
3708         context->root_hpa = INVALID_PAGE;
3709         context->direct_map = false;
3710 }
3711
3712 static void paging64_init_context(struct kvm_vcpu *vcpu,
3713                                   struct kvm_mmu *context)
3714 {
3715         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3716 }
3717
3718 static void paging32_init_context(struct kvm_vcpu *vcpu,
3719                                   struct kvm_mmu *context)
3720 {
3721         context->nx = false;
3722         context->root_level = PT32_ROOT_LEVEL;
3723
3724         reset_rsvds_bits_mask(vcpu, context);
3725         update_permission_bitmask(vcpu, context, false);
3726         update_last_pte_bitmap(vcpu, context);
3727
3728         context->page_fault = paging32_page_fault;
3729         context->gva_to_gpa = paging32_gva_to_gpa;
3730         context->sync_page = paging32_sync_page;
3731         context->invlpg = paging32_invlpg;
3732         context->update_pte = paging32_update_pte;
3733         context->shadow_root_level = PT32E_ROOT_LEVEL;
3734         context->root_hpa = INVALID_PAGE;
3735         context->direct_map = false;
3736 }
3737
3738 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3739                                    struct kvm_mmu *context)
3740 {
3741         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3742 }
3743
3744 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3745 {
3746         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3747
3748         context->base_role.word = 0;
3749         context->page_fault = tdp_page_fault;
3750         context->sync_page = nonpaging_sync_page;
3751         context->invlpg = nonpaging_invlpg;
3752         context->update_pte = nonpaging_update_pte;
3753         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3754         context->root_hpa = INVALID_PAGE;
3755         context->direct_map = true;
3756         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3757         context->get_cr3 = get_cr3;
3758         context->get_pdptr = kvm_pdptr_read;
3759         context->inject_page_fault = kvm_inject_page_fault;
3760
3761         if (!is_paging(vcpu)) {
3762                 context->nx = false;
3763                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3764                 context->root_level = 0;
3765         } else if (is_long_mode(vcpu)) {
3766                 context->nx = is_nx(vcpu);
3767                 context->root_level = PT64_ROOT_LEVEL;
3768                 reset_rsvds_bits_mask(vcpu, context);
3769                 context->gva_to_gpa = paging64_gva_to_gpa;
3770         } else if (is_pae(vcpu)) {
3771                 context->nx = is_nx(vcpu);
3772                 context->root_level = PT32E_ROOT_LEVEL;
3773                 reset_rsvds_bits_mask(vcpu, context);
3774                 context->gva_to_gpa = paging64_gva_to_gpa;
3775         } else {
3776                 context->nx = false;
3777                 context->root_level = PT32_ROOT_LEVEL;
3778                 reset_rsvds_bits_mask(vcpu, context);
3779                 context->gva_to_gpa = paging32_gva_to_gpa;
3780         }
3781
3782         update_permission_bitmask(vcpu, context, false);
3783         update_last_pte_bitmap(vcpu, context);
3784 }
3785
3786 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3787 {
3788         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3789         ASSERT(vcpu);
3790         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3791
3792         if (!is_paging(vcpu))
3793                 nonpaging_init_context(vcpu, context);
3794         else if (is_long_mode(vcpu))
3795                 paging64_init_context(vcpu, context);
3796         else if (is_pae(vcpu))
3797                 paging32E_init_context(vcpu, context);
3798         else
3799                 paging32_init_context(vcpu, context);
3800
3801         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3802         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3803         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3804         vcpu->arch.mmu.base_role.smep_andnot_wp
3805                 = smep && !is_write_protection(vcpu);
3806 }
3807 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3808
3809 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3810                 bool execonly)
3811 {
3812         ASSERT(vcpu);
3813         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3814
3815         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3816
3817         context->nx = true;
3818         context->page_fault = ept_page_fault;
3819         context->gva_to_gpa = ept_gva_to_gpa;
3820         context->sync_page = ept_sync_page;
3821         context->invlpg = ept_invlpg;
3822         context->update_pte = ept_update_pte;
3823         context->root_level = context->shadow_root_level;
3824         context->root_hpa = INVALID_PAGE;
3825         context->direct_map = false;
3826
3827         update_permission_bitmask(vcpu, context, true);
3828         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3829 }
3830 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3831
3832 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3833 {
3834         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3835         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3836         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3837         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3838         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3839 }
3840
3841 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3842 {
3843         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3844
3845         g_context->get_cr3           = get_cr3;
3846         g_context->get_pdptr         = kvm_pdptr_read;
3847         g_context->inject_page_fault = kvm_inject_page_fault;
3848
3849         /*
3850          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3851          * translation of l2_gpa to l1_gpa addresses is done using the
3852          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3853          * functions between mmu and nested_mmu are swapped.
3854          */
3855         if (!is_paging(vcpu)) {
3856                 g_context->nx = false;
3857                 g_context->root_level = 0;
3858                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3859         } else if (is_long_mode(vcpu)) {
3860                 g_context->nx = is_nx(vcpu);
3861                 g_context->root_level = PT64_ROOT_LEVEL;
3862                 reset_rsvds_bits_mask(vcpu, g_context);
3863                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3864         } else if (is_pae(vcpu)) {
3865                 g_context->nx = is_nx(vcpu);
3866                 g_context->root_level = PT32E_ROOT_LEVEL;
3867                 reset_rsvds_bits_mask(vcpu, g_context);
3868                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3869         } else {
3870                 g_context->nx = false;
3871                 g_context->root_level = PT32_ROOT_LEVEL;
3872                 reset_rsvds_bits_mask(vcpu, g_context);
3873                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3874         }
3875
3876         update_permission_bitmask(vcpu, g_context, false);
3877         update_last_pte_bitmap(vcpu, g_context);
3878 }
3879
3880 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3881 {
3882         if (mmu_is_nested(vcpu))
3883                 return init_kvm_nested_mmu(vcpu);
3884         else if (tdp_enabled)
3885                 return init_kvm_tdp_mmu(vcpu);
3886         else
3887                 return init_kvm_softmmu(vcpu);
3888 }
3889
3890 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3891 {
3892         ASSERT(vcpu);
3893
3894         kvm_mmu_unload(vcpu);
3895         init_kvm_mmu(vcpu);
3896 }
3897 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3898
3899 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3900 {
3901         int r;
3902
3903         r = mmu_topup_memory_caches(vcpu);
3904         if (r)
3905                 goto out;
3906         r = mmu_alloc_roots(vcpu);
3907         kvm_mmu_sync_roots(vcpu);
3908         if (r)
3909                 goto out;
3910         /* set_cr3() should ensure TLB has been flushed */
3911         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3912 out:
3913         return r;
3914 }
3915 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3916
3917 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3918 {
3919         mmu_free_roots(vcpu);
3920         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3921 }
3922 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3923
3924 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3925                                   struct kvm_mmu_page *sp, u64 *spte,
3926                                   const void *new)
3927 {
3928         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3929                 ++vcpu->kvm->stat.mmu_pde_zapped;
3930                 return;
3931         }
3932
3933         ++vcpu->kvm->stat.mmu_pte_updated;
3934         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3935 }
3936
3937 static bool need_remote_flush(u64 old, u64 new)
3938 {
3939         if (!is_shadow_present_pte(old))
3940                 return false;
3941         if (!is_shadow_present_pte(new))
3942                 return true;
3943         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3944                 return true;
3945         old ^= shadow_nx_mask;
3946         new ^= shadow_nx_mask;
3947         return (old & ~new & PT64_PERM_MASK) != 0;
3948 }
3949
3950 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3951                                     bool remote_flush, bool local_flush)
3952 {
3953         if (zap_page)
3954                 return;
3955
3956         if (remote_flush)
3957                 kvm_flush_remote_tlbs(vcpu->kvm);
3958         else if (local_flush)
3959                 kvm_mmu_flush_tlb(vcpu);
3960 }
3961
3962 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3963                                     const u8 *new, int *bytes)
3964 {
3965         u64 gentry;
3966         int r;
3967
3968         /*
3969          * Assume that the pte write on a page table of the same type
3970          * as the current vcpu paging mode since we update the sptes only
3971          * when they have the same mode.
3972          */
3973         if (is_pae(vcpu) && *bytes == 4) {
3974                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3975                 *gpa &= ~(gpa_t)7;
3976                 *bytes = 8;
3977                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3978                 if (r)
3979                         gentry = 0;
3980                 new = (const u8 *)&gentry;
3981         }
3982
3983         switch (*bytes) {
3984         case 4:
3985                 gentry = *(const u32 *)new;
3986                 break;
3987         case 8:
3988                 gentry = *(const u64 *)new;
3989                 break;
3990         default:
3991                 gentry = 0;
3992                 break;
3993         }
3994
3995         return gentry;
3996 }
3997
3998 /*
3999  * If we're seeing too many writes to a page, it may no longer be a page table,
4000  * or we may be forking, in which case it is better to unmap the page.
4001  */
4002 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4003 {
4004         /*
4005          * Skip write-flooding detected for the sp whose level is 1, because
4006          * it can become unsync, then the guest page is not write-protected.
4007          */
4008         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4009                 return false;
4010
4011         return ++sp->write_flooding_count >= 3;
4012 }
4013
4014 /*
4015  * Misaligned accesses are too much trouble to fix up; also, they usually
4016  * indicate a page is not used as a page table.
4017  */
4018 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4019                                     int bytes)
4020 {
4021         unsigned offset, pte_size, misaligned;
4022
4023         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4024                  gpa, bytes, sp->role.word);
4025
4026         offset = offset_in_page(gpa);
4027         pte_size = sp->role.cr4_pae ? 8 : 4;
4028
4029         /*
4030          * Sometimes, the OS only writes the last one bytes to update status
4031          * bits, for example, in linux, andb instruction is used in clear_bit().
4032          */
4033         if (!(offset & (pte_size - 1)) && bytes == 1)
4034                 return false;
4035
4036         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4037         misaligned |= bytes < 4;
4038
4039         return misaligned;
4040 }
4041
4042 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4043 {
4044         unsigned page_offset, quadrant;
4045         u64 *spte;
4046         int level;
4047
4048         page_offset = offset_in_page(gpa);
4049         level = sp->role.level;
4050         *nspte = 1;
4051         if (!sp->role.cr4_pae) {
4052                 page_offset <<= 1;      /* 32->64 */
4053                 /*
4054                  * A 32-bit pde maps 4MB while the shadow pdes map
4055                  * only 2MB.  So we need to double the offset again
4056                  * and zap two pdes instead of one.
4057                  */
4058                 if (level == PT32_ROOT_LEVEL) {
4059                         page_offset &= ~7; /* kill rounding error */
4060                         page_offset <<= 1;
4061                         *nspte = 2;
4062                 }
4063                 quadrant = page_offset >> PAGE_SHIFT;
4064                 page_offset &= ~PAGE_MASK;
4065                 if (quadrant != sp->role.quadrant)
4066                         return NULL;
4067         }
4068
4069         spte = &sp->spt[page_offset / sizeof(*spte)];
4070         return spte;
4071 }
4072
4073 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4074                        const u8 *new, int bytes)
4075 {
4076         gfn_t gfn = gpa >> PAGE_SHIFT;
4077         union kvm_mmu_page_role mask = { .word = 0 };
4078         struct kvm_mmu_page *sp;
4079         LIST_HEAD(invalid_list);
4080         u64 entry, gentry, *spte;
4081         int npte;
4082         bool remote_flush, local_flush, zap_page;
4083
4084         /*
4085          * If we don't have indirect shadow pages, it means no page is
4086          * write-protected, so we can exit simply.
4087          */
4088         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4089                 return;
4090
4091         zap_page = remote_flush = local_flush = false;
4092
4093         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4094
4095         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4096
4097         /*
4098          * No need to care whether allocation memory is successful
4099          * or not since pte prefetch is skiped if it does not have
4100          * enough objects in the cache.
4101          */
4102         mmu_topup_memory_caches(vcpu);
4103
4104         spin_lock(&vcpu->kvm->mmu_lock);
4105         ++vcpu->kvm->stat.mmu_pte_write;
4106         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4107
4108         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4109         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4110                 if (detect_write_misaligned(sp, gpa, bytes) ||
4111                       detect_write_flooding(sp)) {
4112                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4113                                                      &invalid_list);
4114                         ++vcpu->kvm->stat.mmu_flooded;
4115                         continue;
4116                 }
4117
4118                 spte = get_written_sptes(sp, gpa, &npte);
4119                 if (!spte)
4120                         continue;
4121
4122                 local_flush = true;
4123                 while (npte--) {
4124                         entry = *spte;
4125                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4126                         if (gentry &&
4127                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4128                               & mask.word) && rmap_can_add(vcpu))
4129                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4130                         if (need_remote_flush(entry, *spte))
4131                                 remote_flush = true;
4132                         ++spte;
4133                 }
4134         }
4135         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4136         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4137         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4138         spin_unlock(&vcpu->kvm->mmu_lock);
4139 }
4140
4141 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4142 {
4143         gpa_t gpa;
4144         int r;
4145
4146         if (vcpu->arch.mmu.direct_map)
4147                 return 0;
4148
4149         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4150
4151         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4152
4153         return r;
4154 }
4155 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4156
4157 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4158 {
4159         LIST_HEAD(invalid_list);
4160
4161         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4162                 return;
4163
4164         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4165                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4166                         break;
4167
4168                 ++vcpu->kvm->stat.mmu_recycled;
4169         }
4170         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4171 }
4172
4173 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4174 {
4175         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4176                 return vcpu_match_mmio_gpa(vcpu, addr);
4177
4178         return vcpu_match_mmio_gva(vcpu, addr);
4179 }
4180
4181 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4182                        void *insn, int insn_len)
4183 {
4184         int r, emulation_type = EMULTYPE_RETRY;
4185         enum emulation_result er;
4186
4187         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4188         if (r < 0)
4189                 goto out;
4190
4191         if (!r) {
4192                 r = 1;
4193                 goto out;
4194         }
4195
4196         if (is_mmio_page_fault(vcpu, cr2))
4197                 emulation_type = 0;
4198
4199         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4200
4201         switch (er) {
4202         case EMULATE_DONE:
4203                 return 1;
4204         case EMULATE_USER_EXIT:
4205                 ++vcpu->stat.mmio_exits;
4206                 /* fall through */
4207         case EMULATE_FAIL:
4208                 return 0;
4209         default:
4210                 BUG();
4211         }
4212 out:
4213         return r;
4214 }
4215 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4216
4217 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4218 {
4219         vcpu->arch.mmu.invlpg(vcpu, gva);
4220         kvm_mmu_flush_tlb(vcpu);
4221         ++vcpu->stat.invlpg;
4222 }
4223 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4224
4225 void kvm_enable_tdp(void)
4226 {
4227         tdp_enabled = true;
4228 }
4229 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4230
4231 void kvm_disable_tdp(void)
4232 {
4233         tdp_enabled = false;
4234 }
4235 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4236
4237 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4238 {
4239         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4240         if (vcpu->arch.mmu.lm_root != NULL)
4241                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4242 }
4243
4244 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4245 {
4246         struct page *page;
4247         int i;
4248
4249         ASSERT(vcpu);
4250
4251         /*
4252          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4253          * Therefore we need to allocate shadow page tables in the first
4254          * 4GB of memory, which happens to fit the DMA32 zone.
4255          */
4256         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4257         if (!page)
4258                 return -ENOMEM;
4259
4260         vcpu->arch.mmu.pae_root = page_address(page);
4261         for (i = 0; i < 4; ++i)
4262                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4263
4264         return 0;
4265 }
4266
4267 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4268 {
4269         ASSERT(vcpu);
4270
4271         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4272         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4273         vcpu->arch.mmu.translate_gpa = translate_gpa;
4274         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4275
4276         return alloc_mmu_pages(vcpu);
4277 }
4278
4279 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4280 {
4281         ASSERT(vcpu);
4282         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4283
4284         init_kvm_mmu(vcpu);
4285 }
4286
4287 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4288 {
4289         struct kvm_memory_slot *memslot;
4290         gfn_t last_gfn;
4291         int i;
4292
4293         memslot = id_to_memslot(kvm->memslots, slot);
4294         last_gfn = memslot->base_gfn + memslot->npages - 1;
4295
4296         spin_lock(&kvm->mmu_lock);
4297
4298         for (i = PT_PAGE_TABLE_LEVEL;
4299              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4300                 unsigned long *rmapp;
4301                 unsigned long last_index, index;
4302
4303                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4304                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4305
4306                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4307                         if (*rmapp)
4308                                 __rmap_write_protect(kvm, rmapp, false);
4309
4310                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4311                                 cond_resched_lock(&kvm->mmu_lock);
4312                 }
4313         }
4314
4315         spin_unlock(&kvm->mmu_lock);
4316
4317         /*
4318          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4319          * which do tlb flush out of mmu-lock should be serialized by
4320          * kvm->slots_lock otherwise tlb flush would be missed.
4321          */
4322         lockdep_assert_held(&kvm->slots_lock);
4323
4324         /*
4325          * We can flush all the TLBs out of the mmu lock without TLB
4326          * corruption since we just change the spte from writable to
4327          * readonly so that we only need to care the case of changing
4328          * spte from present to present (changing the spte from present
4329          * to nonpresent will flush all the TLBs immediately), in other
4330          * words, the only case we care is mmu_spte_update() where we
4331          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4332          * instead of PT_WRITABLE_MASK, that means it does not depend
4333          * on PT_WRITABLE_MASK anymore.
4334          */
4335         kvm_flush_remote_tlbs(kvm);
4336 }
4337
4338 #define BATCH_ZAP_PAGES 10
4339 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4340 {
4341         struct kvm_mmu_page *sp, *node;
4342         int batch = 0;
4343
4344 restart:
4345         list_for_each_entry_safe_reverse(sp, node,
4346               &kvm->arch.active_mmu_pages, link) {
4347                 int ret;
4348
4349                 /*
4350                  * No obsolete page exists before new created page since
4351                  * active_mmu_pages is the FIFO list.
4352                  */
4353                 if (!is_obsolete_sp(kvm, sp))
4354                         break;
4355
4356                 /*
4357                  * Since we are reversely walking the list and the invalid
4358                  * list will be moved to the head, skip the invalid page
4359                  * can help us to avoid the infinity list walking.
4360                  */
4361                 if (sp->role.invalid)
4362                         continue;
4363
4364                 /*
4365                  * Need not flush tlb since we only zap the sp with invalid
4366                  * generation number.
4367                  */
4368                 if (batch >= BATCH_ZAP_PAGES &&
4369                       cond_resched_lock(&kvm->mmu_lock)) {
4370                         batch = 0;
4371                         goto restart;
4372                 }
4373
4374                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4375                                 &kvm->arch.zapped_obsolete_pages);
4376                 batch += ret;
4377
4378                 if (ret)
4379                         goto restart;
4380         }
4381
4382         /*
4383          * Should flush tlb before free page tables since lockless-walking
4384          * may use the pages.
4385          */
4386         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4387 }
4388
4389 /*
4390  * Fast invalidate all shadow pages and use lock-break technique
4391  * to zap obsolete pages.
4392  *
4393  * It's required when memslot is being deleted or VM is being
4394  * destroyed, in these cases, we should ensure that KVM MMU does
4395  * not use any resource of the being-deleted slot or all slots
4396  * after calling the function.
4397  */
4398 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4399 {
4400         spin_lock(&kvm->mmu_lock);
4401         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4402         kvm->arch.mmu_valid_gen++;
4403
4404         /*
4405          * Notify all vcpus to reload its shadow page table
4406          * and flush TLB. Then all vcpus will switch to new
4407          * shadow page table with the new mmu_valid_gen.
4408          *
4409          * Note: we should do this under the protection of
4410          * mmu-lock, otherwise, vcpu would purge shadow page
4411          * but miss tlb flush.
4412          */
4413         kvm_reload_remote_mmus(kvm);
4414
4415         kvm_zap_obsolete_pages(kvm);
4416         spin_unlock(&kvm->mmu_lock);
4417 }
4418
4419 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4420 {
4421         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4422 }
4423
4424 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4425 {
4426         /*
4427          * The very rare case: if the generation-number is round,
4428          * zap all shadow pages.
4429          */
4430         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4431                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4432                 kvm_mmu_invalidate_zap_all_pages(kvm);
4433         }
4434 }
4435
4436 static unsigned long
4437 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4438 {
4439         struct kvm *kvm;
4440         int nr_to_scan = sc->nr_to_scan;
4441         unsigned long freed = 0;
4442
4443         spin_lock(&kvm_lock);
4444
4445         list_for_each_entry(kvm, &vm_list, vm_list) {
4446                 int idx;
4447                 LIST_HEAD(invalid_list);
4448
4449                 /*
4450                  * Never scan more than sc->nr_to_scan VM instances.
4451                  * Will not hit this condition practically since we do not try
4452                  * to shrink more than one VM and it is very unlikely to see
4453                  * !n_used_mmu_pages so many times.
4454                  */
4455                 if (!nr_to_scan--)
4456                         break;
4457                 /*
4458                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4459                  * here. We may skip a VM instance errorneosly, but we do not
4460                  * want to shrink a VM that only started to populate its MMU
4461                  * anyway.
4462                  */
4463                 if (!kvm->arch.n_used_mmu_pages &&
4464                       !kvm_has_zapped_obsolete_pages(kvm))
4465                         continue;
4466
4467                 idx = srcu_read_lock(&kvm->srcu);
4468                 spin_lock(&kvm->mmu_lock);
4469
4470                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4471                         kvm_mmu_commit_zap_page(kvm,
4472                               &kvm->arch.zapped_obsolete_pages);
4473                         goto unlock;
4474                 }
4475
4476                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4477                         freed++;
4478                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4479
4480 unlock:
4481                 spin_unlock(&kvm->mmu_lock);
4482                 srcu_read_unlock(&kvm->srcu, idx);
4483
4484                 /*
4485                  * unfair on small ones
4486                  * per-vm shrinkers cry out
4487                  * sadness comes quickly
4488                  */
4489                 list_move_tail(&kvm->vm_list, &vm_list);
4490                 break;
4491         }
4492
4493         spin_unlock(&kvm_lock);
4494         return freed;
4495 }
4496
4497 static unsigned long
4498 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4499 {
4500         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4501 }
4502
4503 static struct shrinker mmu_shrinker = {
4504         .count_objects = mmu_shrink_count,
4505         .scan_objects = mmu_shrink_scan,
4506         .seeks = DEFAULT_SEEKS * 10,
4507 };
4508
4509 static void mmu_destroy_caches(void)
4510 {
4511         if (pte_list_desc_cache)
4512                 kmem_cache_destroy(pte_list_desc_cache);
4513         if (mmu_page_header_cache)
4514                 kmem_cache_destroy(mmu_page_header_cache);
4515 }
4516
4517 int kvm_mmu_module_init(void)
4518 {
4519         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4520                                             sizeof(struct pte_list_desc),
4521                                             0, 0, NULL);
4522         if (!pte_list_desc_cache)
4523                 goto nomem;
4524
4525         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4526                                                   sizeof(struct kvm_mmu_page),
4527                                                   0, 0, NULL);
4528         if (!mmu_page_header_cache)
4529                 goto nomem;
4530
4531         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4532                 goto nomem;
4533
4534         register_shrinker(&mmu_shrinker);
4535
4536         return 0;
4537
4538 nomem:
4539         mmu_destroy_caches();
4540         return -ENOMEM;
4541 }
4542
4543 /*
4544  * Caculate mmu pages needed for kvm.
4545  */
4546 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4547 {
4548         unsigned int nr_mmu_pages;
4549         unsigned int  nr_pages = 0;
4550         struct kvm_memslots *slots;
4551         struct kvm_memory_slot *memslot;
4552
4553         slots = kvm_memslots(kvm);
4554
4555         kvm_for_each_memslot(memslot, slots)
4556                 nr_pages += memslot->npages;
4557
4558         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4559         nr_mmu_pages = max(nr_mmu_pages,
4560                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4561
4562         return nr_mmu_pages;
4563 }
4564
4565 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4566 {
4567         struct kvm_shadow_walk_iterator iterator;
4568         u64 spte;
4569         int nr_sptes = 0;
4570
4571         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4572                 return nr_sptes;
4573
4574         walk_shadow_page_lockless_begin(vcpu);
4575         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4576                 sptes[iterator.level-1] = spte;
4577                 nr_sptes++;
4578                 if (!is_shadow_present_pte(spte))
4579                         break;
4580         }
4581         walk_shadow_page_lockless_end(vcpu);
4582
4583         return nr_sptes;
4584 }
4585 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4586
4587 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4588 {
4589         ASSERT(vcpu);
4590
4591         kvm_mmu_unload(vcpu);
4592         free_mmu_pages(vcpu);
4593         mmu_free_memory_caches(vcpu);
4594 }
4595
4596 void kvm_mmu_module_exit(void)
4597 {
4598         mmu_destroy_caches();
4599         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4600         unregister_shrinker(&mmu_shrinker);
4601         mmu_audit_disable();
4602 }