]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: let page fault handler be aware tracked page
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomicly update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomicly update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635         vcpu->mode = READING_SHADOW_PAGE_TABLES;
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_mb();
651         vcpu->mode = OUTSIDE_GUEST_MODE;
652         local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656                                   struct kmem_cache *base_cache, int min)
657 {
658         void *obj;
659
660         if (cache->nobjs >= min)
661                 return 0;
662         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664                 if (!obj)
665                         return -ENOMEM;
666                 cache->objects[cache->nobjs++] = obj;
667         }
668         return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673         return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677                                   struct kmem_cache *cache)
678 {
679         while (mc->nobjs)
680                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684                                        int min)
685 {
686         void *page;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 page = (void *)__get_free_page(GFP_KERNEL);
692                 if (!page)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = page;
695         }
696         return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701         while (mc->nobjs)
702                 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         int r;
708
709         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711         if (r)
712                 goto out;
713         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714         if (r)
715                 goto out;
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717                                    mmu_page_header_cache, 4);
718 out:
719         return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725                                 pte_list_desc_cache);
726         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733         void *p;
734
735         BUG_ON(!mc->nobjs);
736         p = mc->objects[--mc->nobjs];
737         return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752         if (!sp->role.direct)
753                 return sp->gfns[index];
754
755         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760         if (sp->role.direct)
761                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762         else
763                 sp->gfns[index] = gfn;
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                                               struct kvm_memory_slot *slot,
772                                               int level)
773 {
774         unsigned long idx;
775
776         idx = gfn_to_index(gfn, slot->base_gfn, level);
777         return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781                                             gfn_t gfn, int count)
782 {
783         struct kvm_lpage_info *linfo;
784         int i;
785
786         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787                 linfo = lpage_info_slot(gfn, slot, i);
788                 linfo->disallow_lpage += count;
789                 WARN_ON(linfo->disallow_lpage < 0);
790         }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795         update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800         update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *slot;
807         gfn_t gfn;
808
809         gfn = sp->gfn;
810         slots = kvm_memslots_for_spte_role(kvm, sp->role);
811         slot = __gfn_to_memslot(slots, gfn);
812         kvm_mmu_gfn_disallow_lpage(slot, gfn);
813         kvm->arch.indirect_shadow_pages++;
814 }
815
816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
817 {
818         struct kvm_memslots *slots;
819         struct kvm_memory_slot *slot;
820         gfn_t gfn;
821
822         gfn = sp->gfn;
823         slots = kvm_memslots_for_spte_role(kvm, sp->role);
824         slot = __gfn_to_memslot(slots, gfn);
825         kvm_mmu_gfn_allow_lpage(slot, gfn);
826         kvm->arch.indirect_shadow_pages--;
827 }
828
829 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
830                                           struct kvm_memory_slot *slot)
831 {
832         struct kvm_lpage_info *linfo;
833
834         if (slot) {
835                 linfo = lpage_info_slot(gfn, slot, level);
836                 return !!linfo->disallow_lpage;
837         }
838
839         return true;
840 }
841
842 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
843                                         int level)
844 {
845         struct kvm_memory_slot *slot;
846
847         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
848         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
849 }
850
851 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
852 {
853         unsigned long page_size;
854         int i, ret = 0;
855
856         page_size = kvm_host_page_size(kvm, gfn);
857
858         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
859                 if (page_size >= KVM_HPAGE_SIZE(i))
860                         ret = i;
861                 else
862                         break;
863         }
864
865         return ret;
866 }
867
868 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
869                                           bool no_dirty_log)
870 {
871         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
872                 return false;
873         if (no_dirty_log && slot->dirty_bitmap)
874                 return false;
875
876         return true;
877 }
878
879 static struct kvm_memory_slot *
880 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
881                             bool no_dirty_log)
882 {
883         struct kvm_memory_slot *slot;
884
885         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
886         if (!memslot_valid_for_gpte(slot, no_dirty_log))
887                 slot = NULL;
888
889         return slot;
890 }
891
892 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
893                          bool *force_pt_level)
894 {
895         int host_level, level, max_level;
896         struct kvm_memory_slot *slot;
897
898         if (unlikely(*force_pt_level))
899                 return PT_PAGE_TABLE_LEVEL;
900
901         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
902         *force_pt_level = !memslot_valid_for_gpte(slot, true);
903         if (unlikely(*force_pt_level))
904                 return PT_PAGE_TABLE_LEVEL;
905
906         host_level = host_mapping_level(vcpu->kvm, large_gfn);
907
908         if (host_level == PT_PAGE_TABLE_LEVEL)
909                 return host_level;
910
911         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
912
913         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
914                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
915                         break;
916
917         return level - 1;
918 }
919
920 /*
921  * About rmap_head encoding:
922  *
923  * If the bit zero of rmap_head->val is clear, then it points to the only spte
924  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
925  * pte_list_desc containing more mappings.
926  */
927
928 /*
929  * Returns the number of pointers in the rmap chain, not counting the new one.
930  */
931 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
932                         struct kvm_rmap_head *rmap_head)
933 {
934         struct pte_list_desc *desc;
935         int i, count = 0;
936
937         if (!rmap_head->val) {
938                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
939                 rmap_head->val = (unsigned long)spte;
940         } else if (!(rmap_head->val & 1)) {
941                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
942                 desc = mmu_alloc_pte_list_desc(vcpu);
943                 desc->sptes[0] = (u64 *)rmap_head->val;
944                 desc->sptes[1] = spte;
945                 rmap_head->val = (unsigned long)desc | 1;
946                 ++count;
947         } else {
948                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
949                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
950                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
951                         desc = desc->more;
952                         count += PTE_LIST_EXT;
953                 }
954                 if (desc->sptes[PTE_LIST_EXT-1]) {
955                         desc->more = mmu_alloc_pte_list_desc(vcpu);
956                         desc = desc->more;
957                 }
958                 for (i = 0; desc->sptes[i]; ++i)
959                         ++count;
960                 desc->sptes[i] = spte;
961         }
962         return count;
963 }
964
965 static void
966 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
967                            struct pte_list_desc *desc, int i,
968                            struct pte_list_desc *prev_desc)
969 {
970         int j;
971
972         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
973                 ;
974         desc->sptes[i] = desc->sptes[j];
975         desc->sptes[j] = NULL;
976         if (j != 0)
977                 return;
978         if (!prev_desc && !desc->more)
979                 rmap_head->val = (unsigned long)desc->sptes[0];
980         else
981                 if (prev_desc)
982                         prev_desc->more = desc->more;
983                 else
984                         rmap_head->val = (unsigned long)desc->more | 1;
985         mmu_free_pte_list_desc(desc);
986 }
987
988 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
989 {
990         struct pte_list_desc *desc;
991         struct pte_list_desc *prev_desc;
992         int i;
993
994         if (!rmap_head->val) {
995                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
996                 BUG();
997         } else if (!(rmap_head->val & 1)) {
998                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
999                 if ((u64 *)rmap_head->val != spte) {
1000                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1001                         BUG();
1002                 }
1003                 rmap_head->val = 0;
1004         } else {
1005                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1006                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1007                 prev_desc = NULL;
1008                 while (desc) {
1009                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1010                                 if (desc->sptes[i] == spte) {
1011                                         pte_list_desc_remove_entry(rmap_head,
1012                                                         desc, i, prev_desc);
1013                                         return;
1014                                 }
1015                         }
1016                         prev_desc = desc;
1017                         desc = desc->more;
1018                 }
1019                 pr_err("pte_list_remove: %p many->many\n", spte);
1020                 BUG();
1021         }
1022 }
1023
1024 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1025                                            struct kvm_memory_slot *slot)
1026 {
1027         unsigned long idx;
1028
1029         idx = gfn_to_index(gfn, slot->base_gfn, level);
1030         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1031 }
1032
1033 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1034                                          struct kvm_mmu_page *sp)
1035 {
1036         struct kvm_memslots *slots;
1037         struct kvm_memory_slot *slot;
1038
1039         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1040         slot = __gfn_to_memslot(slots, gfn);
1041         return __gfn_to_rmap(gfn, sp->role.level, slot);
1042 }
1043
1044 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1045 {
1046         struct kvm_mmu_memory_cache *cache;
1047
1048         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1049         return mmu_memory_cache_free_objects(cache);
1050 }
1051
1052 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1053 {
1054         struct kvm_mmu_page *sp;
1055         struct kvm_rmap_head *rmap_head;
1056
1057         sp = page_header(__pa(spte));
1058         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1059         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1060         return pte_list_add(vcpu, spte, rmap_head);
1061 }
1062
1063 static void rmap_remove(struct kvm *kvm, u64 *spte)
1064 {
1065         struct kvm_mmu_page *sp;
1066         gfn_t gfn;
1067         struct kvm_rmap_head *rmap_head;
1068
1069         sp = page_header(__pa(spte));
1070         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1071         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1072         pte_list_remove(spte, rmap_head);
1073 }
1074
1075 /*
1076  * Used by the following functions to iterate through the sptes linked by a
1077  * rmap.  All fields are private and not assumed to be used outside.
1078  */
1079 struct rmap_iterator {
1080         /* private fields */
1081         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1082         int pos;                        /* index of the sptep */
1083 };
1084
1085 /*
1086  * Iteration must be started by this function.  This should also be used after
1087  * removing/dropping sptes from the rmap link because in such cases the
1088  * information in the itererator may not be valid.
1089  *
1090  * Returns sptep if found, NULL otherwise.
1091  */
1092 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1093                            struct rmap_iterator *iter)
1094 {
1095         u64 *sptep;
1096
1097         if (!rmap_head->val)
1098                 return NULL;
1099
1100         if (!(rmap_head->val & 1)) {
1101                 iter->desc = NULL;
1102                 sptep = (u64 *)rmap_head->val;
1103                 goto out;
1104         }
1105
1106         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1107         iter->pos = 0;
1108         sptep = iter->desc->sptes[iter->pos];
1109 out:
1110         BUG_ON(!is_shadow_present_pte(*sptep));
1111         return sptep;
1112 }
1113
1114 /*
1115  * Must be used with a valid iterator: e.g. after rmap_get_first().
1116  *
1117  * Returns sptep if found, NULL otherwise.
1118  */
1119 static u64 *rmap_get_next(struct rmap_iterator *iter)
1120 {
1121         u64 *sptep;
1122
1123         if (iter->desc) {
1124                 if (iter->pos < PTE_LIST_EXT - 1) {
1125                         ++iter->pos;
1126                         sptep = iter->desc->sptes[iter->pos];
1127                         if (sptep)
1128                                 goto out;
1129                 }
1130
1131                 iter->desc = iter->desc->more;
1132
1133                 if (iter->desc) {
1134                         iter->pos = 0;
1135                         /* desc->sptes[0] cannot be NULL */
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         goto out;
1138                 }
1139         }
1140
1141         return NULL;
1142 out:
1143         BUG_ON(!is_shadow_present_pte(*sptep));
1144         return sptep;
1145 }
1146
1147 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1148         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1149              _spte_; _spte_ = rmap_get_next(_iter_))
1150
1151 static void drop_spte(struct kvm *kvm, u64 *sptep)
1152 {
1153         if (mmu_spte_clear_track_bits(sptep))
1154                 rmap_remove(kvm, sptep);
1155 }
1156
1157
1158 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159 {
1160         if (is_large_pte(*sptep)) {
1161                 WARN_ON(page_header(__pa(sptep))->role.level ==
1162                         PT_PAGE_TABLE_LEVEL);
1163                 drop_spte(kvm, sptep);
1164                 --kvm->stat.lpages;
1165                 return true;
1166         }
1167
1168         return false;
1169 }
1170
1171 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172 {
1173         if (__drop_large_spte(vcpu->kvm, sptep))
1174                 kvm_flush_remote_tlbs(vcpu->kvm);
1175 }
1176
1177 /*
1178  * Write-protect on the specified @sptep, @pt_protect indicates whether
1179  * spte write-protection is caused by protecting shadow page table.
1180  *
1181  * Note: write protection is difference between dirty logging and spte
1182  * protection:
1183  * - for dirty logging, the spte can be set to writable at anytime if
1184  *   its dirty bitmap is properly set.
1185  * - for spte protection, the spte can be writable only after unsync-ing
1186  *   shadow page.
1187  *
1188  * Return true if tlb need be flushed.
1189  */
1190 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1191 {
1192         u64 spte = *sptep;
1193
1194         if (!is_writable_pte(spte) &&
1195               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1196                 return false;
1197
1198         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1199
1200         if (pt_protect)
1201                 spte &= ~SPTE_MMU_WRITEABLE;
1202         spte = spte & ~PT_WRITABLE_MASK;
1203
1204         return mmu_spte_update(sptep, spte);
1205 }
1206
1207 static bool __rmap_write_protect(struct kvm *kvm,
1208                                  struct kvm_rmap_head *rmap_head,
1209                                  bool pt_protect)
1210 {
1211         u64 *sptep;
1212         struct rmap_iterator iter;
1213         bool flush = false;
1214
1215         for_each_rmap_spte(rmap_head, &iter, sptep)
1216                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1217
1218         return flush;
1219 }
1220
1221 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1222 {
1223         u64 spte = *sptep;
1224
1225         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1226
1227         spte &= ~shadow_dirty_mask;
1228
1229         return mmu_spte_update(sptep, spte);
1230 }
1231
1232 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1233 {
1234         u64 *sptep;
1235         struct rmap_iterator iter;
1236         bool flush = false;
1237
1238         for_each_rmap_spte(rmap_head, &iter, sptep)
1239                 flush |= spte_clear_dirty(kvm, sptep);
1240
1241         return flush;
1242 }
1243
1244 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1245 {
1246         u64 spte = *sptep;
1247
1248         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1249
1250         spte |= shadow_dirty_mask;
1251
1252         return mmu_spte_update(sptep, spte);
1253 }
1254
1255 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1256 {
1257         u64 *sptep;
1258         struct rmap_iterator iter;
1259         bool flush = false;
1260
1261         for_each_rmap_spte(rmap_head, &iter, sptep)
1262                 flush |= spte_set_dirty(kvm, sptep);
1263
1264         return flush;
1265 }
1266
1267 /**
1268  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1269  * @kvm: kvm instance
1270  * @slot: slot to protect
1271  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1272  * @mask: indicates which pages we should protect
1273  *
1274  * Used when we do not need to care about huge page mappings: e.g. during dirty
1275  * logging we do not have any such mappings.
1276  */
1277 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1278                                      struct kvm_memory_slot *slot,
1279                                      gfn_t gfn_offset, unsigned long mask)
1280 {
1281         struct kvm_rmap_head *rmap_head;
1282
1283         while (mask) {
1284                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1285                                           PT_PAGE_TABLE_LEVEL, slot);
1286                 __rmap_write_protect(kvm, rmap_head, false);
1287
1288                 /* clear the first set bit */
1289                 mask &= mask - 1;
1290         }
1291 }
1292
1293 /**
1294  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1295  * @kvm: kvm instance
1296  * @slot: slot to clear D-bit
1297  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1298  * @mask: indicates which pages we should clear D-bit
1299  *
1300  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1301  */
1302 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1303                                      struct kvm_memory_slot *slot,
1304                                      gfn_t gfn_offset, unsigned long mask)
1305 {
1306         struct kvm_rmap_head *rmap_head;
1307
1308         while (mask) {
1309                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1310                                           PT_PAGE_TABLE_LEVEL, slot);
1311                 __rmap_clear_dirty(kvm, rmap_head);
1312
1313                 /* clear the first set bit */
1314                 mask &= mask - 1;
1315         }
1316 }
1317 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1318
1319 /**
1320  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1321  * PT level pages.
1322  *
1323  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1324  * enable dirty logging for them.
1325  *
1326  * Used when we do not need to care about huge page mappings: e.g. during dirty
1327  * logging we do not have any such mappings.
1328  */
1329 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1330                                 struct kvm_memory_slot *slot,
1331                                 gfn_t gfn_offset, unsigned long mask)
1332 {
1333         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1334                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1335                                 mask);
1336         else
1337                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1338 }
1339
1340 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1341                                     struct kvm_memory_slot *slot, u64 gfn)
1342 {
1343         struct kvm_rmap_head *rmap_head;
1344         int i;
1345         bool write_protected = false;
1346
1347         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1348                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1349                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1350         }
1351
1352         return write_protected;
1353 }
1354
1355 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1356 {
1357         struct kvm_memory_slot *slot;
1358
1359         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1360         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1361 }
1362
1363 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1364 {
1365         u64 *sptep;
1366         struct rmap_iterator iter;
1367         bool flush = false;
1368
1369         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1370                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1371
1372                 drop_spte(kvm, sptep);
1373                 flush = true;
1374         }
1375
1376         return flush;
1377 }
1378
1379 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381                            unsigned long data)
1382 {
1383         return kvm_zap_rmapp(kvm, rmap_head);
1384 }
1385
1386 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1387                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388                              unsigned long data)
1389 {
1390         u64 *sptep;
1391         struct rmap_iterator iter;
1392         int need_flush = 0;
1393         u64 new_spte;
1394         pte_t *ptep = (pte_t *)data;
1395         kvm_pfn_t new_pfn;
1396
1397         WARN_ON(pte_huge(*ptep));
1398         new_pfn = pte_pfn(*ptep);
1399
1400 restart:
1401         for_each_rmap_spte(rmap_head, &iter, sptep) {
1402                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1403                              sptep, *sptep, gfn, level);
1404
1405                 need_flush = 1;
1406
1407                 if (pte_write(*ptep)) {
1408                         drop_spte(kvm, sptep);
1409                         goto restart;
1410                 } else {
1411                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1412                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1413
1414                         new_spte &= ~PT_WRITABLE_MASK;
1415                         new_spte &= ~SPTE_HOST_WRITEABLE;
1416                         new_spte &= ~shadow_accessed_mask;
1417
1418                         mmu_spte_clear_track_bits(sptep);
1419                         mmu_spte_set(sptep, new_spte);
1420                 }
1421         }
1422
1423         if (need_flush)
1424                 kvm_flush_remote_tlbs(kvm);
1425
1426         return 0;
1427 }
1428
1429 struct slot_rmap_walk_iterator {
1430         /* input fields. */
1431         struct kvm_memory_slot *slot;
1432         gfn_t start_gfn;
1433         gfn_t end_gfn;
1434         int start_level;
1435         int end_level;
1436
1437         /* output fields. */
1438         gfn_t gfn;
1439         struct kvm_rmap_head *rmap;
1440         int level;
1441
1442         /* private field. */
1443         struct kvm_rmap_head *end_rmap;
1444 };
1445
1446 static void
1447 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1448 {
1449         iterator->level = level;
1450         iterator->gfn = iterator->start_gfn;
1451         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1452         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1453                                            iterator->slot);
1454 }
1455
1456 static void
1457 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1458                     struct kvm_memory_slot *slot, int start_level,
1459                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1460 {
1461         iterator->slot = slot;
1462         iterator->start_level = start_level;
1463         iterator->end_level = end_level;
1464         iterator->start_gfn = start_gfn;
1465         iterator->end_gfn = end_gfn;
1466
1467         rmap_walk_init_level(iterator, iterator->start_level);
1468 }
1469
1470 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1471 {
1472         return !!iterator->rmap;
1473 }
1474
1475 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1476 {
1477         if (++iterator->rmap <= iterator->end_rmap) {
1478                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1479                 return;
1480         }
1481
1482         if (++iterator->level > iterator->end_level) {
1483                 iterator->rmap = NULL;
1484                 return;
1485         }
1486
1487         rmap_walk_init_level(iterator, iterator->level);
1488 }
1489
1490 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1491            _start_gfn, _end_gfn, _iter_)                                \
1492         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1493                                  _end_level_, _start_gfn, _end_gfn);    \
1494              slot_rmap_walk_okay(_iter_);                               \
1495              slot_rmap_walk_next(_iter_))
1496
1497 static int kvm_handle_hva_range(struct kvm *kvm,
1498                                 unsigned long start,
1499                                 unsigned long end,
1500                                 unsigned long data,
1501                                 int (*handler)(struct kvm *kvm,
1502                                                struct kvm_rmap_head *rmap_head,
1503                                                struct kvm_memory_slot *slot,
1504                                                gfn_t gfn,
1505                                                int level,
1506                                                unsigned long data))
1507 {
1508         struct kvm_memslots *slots;
1509         struct kvm_memory_slot *memslot;
1510         struct slot_rmap_walk_iterator iterator;
1511         int ret = 0;
1512         int i;
1513
1514         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1515                 slots = __kvm_memslots(kvm, i);
1516                 kvm_for_each_memslot(memslot, slots) {
1517                         unsigned long hva_start, hva_end;
1518                         gfn_t gfn_start, gfn_end;
1519
1520                         hva_start = max(start, memslot->userspace_addr);
1521                         hva_end = min(end, memslot->userspace_addr +
1522                                       (memslot->npages << PAGE_SHIFT));
1523                         if (hva_start >= hva_end)
1524                                 continue;
1525                         /*
1526                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528                          */
1529                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1530                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1533                                                  PT_MAX_HUGEPAGE_LEVEL,
1534                                                  gfn_start, gfn_end - 1,
1535                                                  &iterator)
1536                                 ret |= handler(kvm, iterator.rmap, memslot,
1537                                                iterator.gfn, iterator.level, data);
1538                 }
1539         }
1540
1541         return ret;
1542 }
1543
1544 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1545                           unsigned long data,
1546                           int (*handler)(struct kvm *kvm,
1547                                          struct kvm_rmap_head *rmap_head,
1548                                          struct kvm_memory_slot *slot,
1549                                          gfn_t gfn, int level,
1550                                          unsigned long data))
1551 {
1552         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1553 }
1554
1555 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1556 {
1557         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1558 }
1559
1560 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1561 {
1562         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1563 }
1564
1565 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1566 {
1567         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1568 }
1569
1570 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1572                          unsigned long data)
1573 {
1574         u64 *sptep;
1575         struct rmap_iterator uninitialized_var(iter);
1576         int young = 0;
1577
1578         BUG_ON(!shadow_accessed_mask);
1579
1580         for_each_rmap_spte(rmap_head, &iter, sptep) {
1581                 if (*sptep & shadow_accessed_mask) {
1582                         young = 1;
1583                         clear_bit((ffs(shadow_accessed_mask) - 1),
1584                                  (unsigned long *)sptep);
1585                 }
1586         }
1587
1588         trace_kvm_age_page(gfn, level, slot, young);
1589         return young;
1590 }
1591
1592 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1593                               struct kvm_memory_slot *slot, gfn_t gfn,
1594                               int level, unsigned long data)
1595 {
1596         u64 *sptep;
1597         struct rmap_iterator iter;
1598         int young = 0;
1599
1600         /*
1601          * If there's no access bit in the secondary pte set by the
1602          * hardware it's up to gup-fast/gup to set the access bit in
1603          * the primary pte or in the page structure.
1604          */
1605         if (!shadow_accessed_mask)
1606                 goto out;
1607
1608         for_each_rmap_spte(rmap_head, &iter, sptep) {
1609                 if (*sptep & shadow_accessed_mask) {
1610                         young = 1;
1611                         break;
1612                 }
1613         }
1614 out:
1615         return young;
1616 }
1617
1618 #define RMAP_RECYCLE_THRESHOLD 1000
1619
1620 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1621 {
1622         struct kvm_rmap_head *rmap_head;
1623         struct kvm_mmu_page *sp;
1624
1625         sp = page_header(__pa(spte));
1626
1627         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1628
1629         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1630         kvm_flush_remote_tlbs(vcpu->kvm);
1631 }
1632
1633 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1634 {
1635         /*
1636          * In case of absence of EPT Access and Dirty Bits supports,
1637          * emulate the accessed bit for EPT, by checking if this page has
1638          * an EPT mapping, and clearing it if it does. On the next access,
1639          * a new EPT mapping will be established.
1640          * This has some overhead, but not as much as the cost of swapping
1641          * out actively used pages or breaking up actively used hugepages.
1642          */
1643         if (!shadow_accessed_mask) {
1644                 /*
1645                  * We are holding the kvm->mmu_lock, and we are blowing up
1646                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1647                  * This is correct as long as we don't decouple the mmu_lock
1648                  * protected regions (like invalidate_range_start|end does).
1649                  */
1650                 kvm->mmu_notifier_seq++;
1651                 return kvm_handle_hva_range(kvm, start, end, 0,
1652                                             kvm_unmap_rmapp);
1653         }
1654
1655         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1656 }
1657
1658 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1659 {
1660         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1661 }
1662
1663 #ifdef MMU_DEBUG
1664 static int is_empty_shadow_page(u64 *spt)
1665 {
1666         u64 *pos;
1667         u64 *end;
1668
1669         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1670                 if (is_shadow_present_pte(*pos)) {
1671                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1672                                pos, *pos);
1673                         return 0;
1674                 }
1675         return 1;
1676 }
1677 #endif
1678
1679 /*
1680  * This value is the sum of all of the kvm instances's
1681  * kvm->arch.n_used_mmu_pages values.  We need a global,
1682  * aggregate version in order to make the slab shrinker
1683  * faster
1684  */
1685 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1686 {
1687         kvm->arch.n_used_mmu_pages += nr;
1688         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1689 }
1690
1691 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1692 {
1693         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1694         hlist_del(&sp->hash_link);
1695         list_del(&sp->link);
1696         free_page((unsigned long)sp->spt);
1697         if (!sp->role.direct)
1698                 free_page((unsigned long)sp->gfns);
1699         kmem_cache_free(mmu_page_header_cache, sp);
1700 }
1701
1702 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1703 {
1704         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1705 }
1706
1707 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1708                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1709 {
1710         if (!parent_pte)
1711                 return;
1712
1713         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1714 }
1715
1716 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1717                                        u64 *parent_pte)
1718 {
1719         pte_list_remove(parent_pte, &sp->parent_ptes);
1720 }
1721
1722 static void drop_parent_pte(struct kvm_mmu_page *sp,
1723                             u64 *parent_pte)
1724 {
1725         mmu_page_remove_parent_pte(sp, parent_pte);
1726         mmu_spte_clear_no_track(parent_pte);
1727 }
1728
1729 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1730 {
1731         struct kvm_mmu_page *sp;
1732
1733         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1734         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735         if (!direct)
1736                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1737         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1738
1739         /*
1740          * The active_mmu_pages list is the FIFO list, do not move the
1741          * page until it is zapped. kvm_zap_obsolete_pages depends on
1742          * this feature. See the comments in kvm_zap_obsolete_pages().
1743          */
1744         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1745         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746         return sp;
1747 }
1748
1749 static void mark_unsync(u64 *spte);
1750 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751 {
1752         u64 *sptep;
1753         struct rmap_iterator iter;
1754
1755         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1756                 mark_unsync(sptep);
1757         }
1758 }
1759
1760 static void mark_unsync(u64 *spte)
1761 {
1762         struct kvm_mmu_page *sp;
1763         unsigned int index;
1764
1765         sp = page_header(__pa(spte));
1766         index = spte - sp->spt;
1767         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1768                 return;
1769         if (sp->unsync_children++)
1770                 return;
1771         kvm_mmu_mark_parents_unsync(sp);
1772 }
1773
1774 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1775                                struct kvm_mmu_page *sp)
1776 {
1777         return 1;
1778 }
1779
1780 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1781 {
1782 }
1783
1784 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1785                                  struct kvm_mmu_page *sp, u64 *spte,
1786                                  const void *pte)
1787 {
1788         WARN_ON(1);
1789 }
1790
1791 #define KVM_PAGE_ARRAY_NR 16
1792
1793 struct kvm_mmu_pages {
1794         struct mmu_page_and_offset {
1795                 struct kvm_mmu_page *sp;
1796                 unsigned int idx;
1797         } page[KVM_PAGE_ARRAY_NR];
1798         unsigned int nr;
1799 };
1800
1801 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1802                          int idx)
1803 {
1804         int i;
1805
1806         if (sp->unsync)
1807                 for (i=0; i < pvec->nr; i++)
1808                         if (pvec->page[i].sp == sp)
1809                                 return 0;
1810
1811         pvec->page[pvec->nr].sp = sp;
1812         pvec->page[pvec->nr].idx = idx;
1813         pvec->nr++;
1814         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1815 }
1816
1817 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1818 {
1819         --sp->unsync_children;
1820         WARN_ON((int)sp->unsync_children < 0);
1821         __clear_bit(idx, sp->unsync_child_bitmap);
1822 }
1823
1824 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1825                            struct kvm_mmu_pages *pvec)
1826 {
1827         int i, ret, nr_unsync_leaf = 0;
1828
1829         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1830                 struct kvm_mmu_page *child;
1831                 u64 ent = sp->spt[i];
1832
1833                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1834                         clear_unsync_child_bit(sp, i);
1835                         continue;
1836                 }
1837
1838                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1839
1840                 if (child->unsync_children) {
1841                         if (mmu_pages_add(pvec, child, i))
1842                                 return -ENOSPC;
1843
1844                         ret = __mmu_unsync_walk(child, pvec);
1845                         if (!ret) {
1846                                 clear_unsync_child_bit(sp, i);
1847                                 continue;
1848                         } else if (ret > 0) {
1849                                 nr_unsync_leaf += ret;
1850                         } else
1851                                 return ret;
1852                 } else if (child->unsync) {
1853                         nr_unsync_leaf++;
1854                         if (mmu_pages_add(pvec, child, i))
1855                                 return -ENOSPC;
1856                 } else
1857                         clear_unsync_child_bit(sp, i);
1858         }
1859
1860         return nr_unsync_leaf;
1861 }
1862
1863 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1864                            struct kvm_mmu_pages *pvec)
1865 {
1866         if (!sp->unsync_children)
1867                 return 0;
1868
1869         mmu_pages_add(pvec, sp, 0);
1870         return __mmu_unsync_walk(sp, pvec);
1871 }
1872
1873 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1874 {
1875         WARN_ON(!sp->unsync);
1876         trace_kvm_mmu_sync_page(sp);
1877         sp->unsync = 0;
1878         --kvm->stat.mmu_unsync;
1879 }
1880
1881 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1882                                     struct list_head *invalid_list);
1883 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1884                                     struct list_head *invalid_list);
1885
1886 /*
1887  * NOTE: we should pay more attention on the zapped-obsolete page
1888  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1889  * since it has been deleted from active_mmu_pages but still can be found
1890  * at hast list.
1891  *
1892  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1893  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1894  * all the obsolete pages.
1895  */
1896 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1897         hlist_for_each_entry(_sp,                                       \
1898           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1899                 if ((_sp)->gfn != (_gfn)) {} else
1900
1901 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1902         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1903                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1904
1905 /* @sp->gfn should be write-protected at the call site */
1906 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1907                            struct list_head *invalid_list, bool clear_unsync)
1908 {
1909         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1910                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1911                 return 1;
1912         }
1913
1914         if (clear_unsync)
1915                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1916
1917         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1918                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1919                 return 1;
1920         }
1921
1922         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1923         return 0;
1924 }
1925
1926 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1927                                    struct kvm_mmu_page *sp)
1928 {
1929         LIST_HEAD(invalid_list);
1930         int ret;
1931
1932         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1933         if (ret)
1934                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1935
1936         return ret;
1937 }
1938
1939 #ifdef CONFIG_KVM_MMU_AUDIT
1940 #include "mmu_audit.c"
1941 #else
1942 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1943 static void mmu_audit_disable(void) { }
1944 #endif
1945
1946 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1947                          struct list_head *invalid_list)
1948 {
1949         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1950 }
1951
1952 /* @gfn should be write-protected at the call site */
1953 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1954 {
1955         struct kvm_mmu_page *s;
1956         LIST_HEAD(invalid_list);
1957         bool flush = false;
1958
1959         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1960                 if (!s->unsync)
1961                         continue;
1962
1963                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1964                 kvm_unlink_unsync_page(vcpu->kvm, s);
1965                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1966                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1967                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1968                         continue;
1969                 }
1970                 flush = true;
1971         }
1972
1973         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1974         if (flush)
1975                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1976 }
1977
1978 struct mmu_page_path {
1979         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1980         unsigned int idx[PT64_ROOT_LEVEL-1];
1981 };
1982
1983 #define for_each_sp(pvec, sp, parents, i)                       \
1984                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1985                         sp = pvec.page[i].sp;                   \
1986                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1987                         i = mmu_pages_next(&pvec, &parents, i))
1988
1989 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1990                           struct mmu_page_path *parents,
1991                           int i)
1992 {
1993         int n;
1994
1995         for (n = i+1; n < pvec->nr; n++) {
1996                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1997
1998                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1999                         parents->idx[0] = pvec->page[n].idx;
2000                         return n;
2001                 }
2002
2003                 parents->parent[sp->role.level-2] = sp;
2004                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
2005         }
2006
2007         return n;
2008 }
2009
2010 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2011 {
2012         struct kvm_mmu_page *sp;
2013         unsigned int level = 0;
2014
2015         do {
2016                 unsigned int idx = parents->idx[level];
2017
2018                 sp = parents->parent[level];
2019                 if (!sp)
2020                         return;
2021
2022                 clear_unsync_child_bit(sp, idx);
2023                 level++;
2024         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2025 }
2026
2027 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2028                                struct mmu_page_path *parents,
2029                                struct kvm_mmu_pages *pvec)
2030 {
2031         parents->parent[parent->role.level-1] = NULL;
2032         pvec->nr = 0;
2033 }
2034
2035 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2036                               struct kvm_mmu_page *parent)
2037 {
2038         int i;
2039         struct kvm_mmu_page *sp;
2040         struct mmu_page_path parents;
2041         struct kvm_mmu_pages pages;
2042         LIST_HEAD(invalid_list);
2043
2044         kvm_mmu_pages_init(parent, &parents, &pages);
2045         while (mmu_unsync_walk(parent, &pages)) {
2046                 bool protected = false;
2047
2048                 for_each_sp(pages, sp, parents, i)
2049                         protected |= rmap_write_protect(vcpu, sp->gfn);
2050
2051                 if (protected)
2052                         kvm_flush_remote_tlbs(vcpu->kvm);
2053
2054                 for_each_sp(pages, sp, parents, i) {
2055                         kvm_sync_page(vcpu, sp, &invalid_list);
2056                         mmu_pages_clear_parents(&parents);
2057                 }
2058                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2059                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2060                 kvm_mmu_pages_init(parent, &parents, &pages);
2061         }
2062 }
2063
2064 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065 {
2066         sp->write_flooding_count = 0;
2067 }
2068
2069 static void clear_sp_write_flooding_count(u64 *spte)
2070 {
2071         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2072
2073         __clear_sp_write_flooding_count(sp);
2074 }
2075
2076 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077 {
2078         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079 }
2080
2081 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082                                              gfn_t gfn,
2083                                              gva_t gaddr,
2084                                              unsigned level,
2085                                              int direct,
2086                                              unsigned access)
2087 {
2088         union kvm_mmu_page_role role;
2089         unsigned quadrant;
2090         struct kvm_mmu_page *sp;
2091         bool need_sync = false;
2092
2093         role = vcpu->arch.mmu.base_role;
2094         role.level = level;
2095         role.direct = direct;
2096         if (role.direct)
2097                 role.cr4_pae = 0;
2098         role.access = access;
2099         if (!vcpu->arch.mmu.direct_map
2100             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2101                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2102                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2103                 role.quadrant = quadrant;
2104         }
2105         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2106                 if (is_obsolete_sp(vcpu->kvm, sp))
2107                         continue;
2108
2109                 if (!need_sync && sp->unsync)
2110                         need_sync = true;
2111
2112                 if (sp->role.word != role.word)
2113                         continue;
2114
2115                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2116                         break;
2117
2118                 if (sp->unsync_children)
2119                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2120
2121                 __clear_sp_write_flooding_count(sp);
2122                 trace_kvm_mmu_get_page(sp, false);
2123                 return sp;
2124         }
2125
2126         ++vcpu->kvm->stat.mmu_cache_miss;
2127
2128         sp = kvm_mmu_alloc_page(vcpu, direct);
2129
2130         sp->gfn = gfn;
2131         sp->role = role;
2132         hlist_add_head(&sp->hash_link,
2133                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2134         if (!direct) {
2135                 if (rmap_write_protect(vcpu, gfn))
2136                         kvm_flush_remote_tlbs(vcpu->kvm);
2137                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2138                         kvm_sync_pages(vcpu, gfn);
2139
2140                 account_shadowed(vcpu->kvm, sp);
2141         }
2142         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2143         clear_page(sp->spt);
2144         trace_kvm_mmu_get_page(sp, true);
2145         return sp;
2146 }
2147
2148 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2149                              struct kvm_vcpu *vcpu, u64 addr)
2150 {
2151         iterator->addr = addr;
2152         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2153         iterator->level = vcpu->arch.mmu.shadow_root_level;
2154
2155         if (iterator->level == PT64_ROOT_LEVEL &&
2156             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2157             !vcpu->arch.mmu.direct_map)
2158                 --iterator->level;
2159
2160         if (iterator->level == PT32E_ROOT_LEVEL) {
2161                 iterator->shadow_addr
2162                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2163                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2164                 --iterator->level;
2165                 if (!iterator->shadow_addr)
2166                         iterator->level = 0;
2167         }
2168 }
2169
2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171 {
2172         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2173                 return false;
2174
2175         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177         return true;
2178 }
2179
2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181                                u64 spte)
2182 {
2183         if (is_last_spte(spte, iterator->level)) {
2184                 iterator->level = 0;
2185                 return;
2186         }
2187
2188         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189         --iterator->level;
2190 }
2191
2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193 {
2194         return __shadow_walk_next(iterator, *iterator->sptep);
2195 }
2196
2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198                              struct kvm_mmu_page *sp)
2199 {
2200         u64 spte;
2201
2202         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2203                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2204
2205         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2206                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2207
2208         mmu_spte_set(sptep, spte);
2209
2210         mmu_page_add_parent_pte(vcpu, sp, sptep);
2211
2212         if (sp->unsync_children || sp->unsync)
2213                 mark_unsync(sptep);
2214 }
2215
2216 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2217                                    unsigned direct_access)
2218 {
2219         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2220                 struct kvm_mmu_page *child;
2221
2222                 /*
2223                  * For the direct sp, if the guest pte's dirty bit
2224                  * changed form clean to dirty, it will corrupt the
2225                  * sp's access: allow writable in the read-only sp,
2226                  * so we should update the spte at this point to get
2227                  * a new sp with the correct access.
2228                  */
2229                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2230                 if (child->role.access == direct_access)
2231                         return;
2232
2233                 drop_parent_pte(child, sptep);
2234                 kvm_flush_remote_tlbs(vcpu->kvm);
2235         }
2236 }
2237
2238 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2239                              u64 *spte)
2240 {
2241         u64 pte;
2242         struct kvm_mmu_page *child;
2243
2244         pte = *spte;
2245         if (is_shadow_present_pte(pte)) {
2246                 if (is_last_spte(pte, sp->role.level)) {
2247                         drop_spte(kvm, spte);
2248                         if (is_large_pte(pte))
2249                                 --kvm->stat.lpages;
2250                 } else {
2251                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2252                         drop_parent_pte(child, spte);
2253                 }
2254                 return true;
2255         }
2256
2257         if (is_mmio_spte(pte))
2258                 mmu_spte_clear_no_track(spte);
2259
2260         return false;
2261 }
2262
2263 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2264                                          struct kvm_mmu_page *sp)
2265 {
2266         unsigned i;
2267
2268         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2270 }
2271
2272 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273 {
2274         u64 *sptep;
2275         struct rmap_iterator iter;
2276
2277         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278                 drop_parent_pte(sp, sptep);
2279 }
2280
2281 static int mmu_zap_unsync_children(struct kvm *kvm,
2282                                    struct kvm_mmu_page *parent,
2283                                    struct list_head *invalid_list)
2284 {
2285         int i, zapped = 0;
2286         struct mmu_page_path parents;
2287         struct kvm_mmu_pages pages;
2288
2289         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2290                 return 0;
2291
2292         kvm_mmu_pages_init(parent, &parents, &pages);
2293         while (mmu_unsync_walk(parent, &pages)) {
2294                 struct kvm_mmu_page *sp;
2295
2296                 for_each_sp(pages, sp, parents, i) {
2297                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2298                         mmu_pages_clear_parents(&parents);
2299                         zapped++;
2300                 }
2301                 kvm_mmu_pages_init(parent, &parents, &pages);
2302         }
2303
2304         return zapped;
2305 }
2306
2307 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308                                     struct list_head *invalid_list)
2309 {
2310         int ret;
2311
2312         trace_kvm_mmu_prepare_zap_page(sp);
2313         ++kvm->stat.mmu_shadow_zapped;
2314         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315         kvm_mmu_page_unlink_children(kvm, sp);
2316         kvm_mmu_unlink_parents(kvm, sp);
2317
2318         if (!sp->role.invalid && !sp->role.direct)
2319                 unaccount_shadowed(kvm, sp);
2320
2321         if (sp->unsync)
2322                 kvm_unlink_unsync_page(kvm, sp);
2323         if (!sp->root_count) {
2324                 /* Count self */
2325                 ret++;
2326                 list_move(&sp->link, invalid_list);
2327                 kvm_mod_used_mmu_pages(kvm, -1);
2328         } else {
2329                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2330
2331                 /*
2332                  * The obsolete pages can not be used on any vcpus.
2333                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334                  */
2335                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336                         kvm_reload_remote_mmus(kvm);
2337         }
2338
2339         sp->role.invalid = 1;
2340         return ret;
2341 }
2342
2343 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344                                     struct list_head *invalid_list)
2345 {
2346         struct kvm_mmu_page *sp, *nsp;
2347
2348         if (list_empty(invalid_list))
2349                 return;
2350
2351         /*
2352          * wmb: make sure everyone sees our modifications to the page tables
2353          * rmb: make sure we see changes to vcpu->mode
2354          */
2355         smp_mb();
2356
2357         /*
2358          * Wait for all vcpus to exit guest mode and/or lockless shadow
2359          * page table walks.
2360          */
2361         kvm_flush_remote_tlbs(kvm);
2362
2363         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364                 WARN_ON(!sp->role.invalid || sp->root_count);
2365                 kvm_mmu_free_page(sp);
2366         }
2367 }
2368
2369 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370                                         struct list_head *invalid_list)
2371 {
2372         struct kvm_mmu_page *sp;
2373
2374         if (list_empty(&kvm->arch.active_mmu_pages))
2375                 return false;
2376
2377         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2378                              struct kvm_mmu_page, link);
2379         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381         return true;
2382 }
2383
2384 /*
2385  * Changing the number of mmu pages allocated to the vm
2386  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2387  */
2388 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2389 {
2390         LIST_HEAD(invalid_list);
2391
2392         spin_lock(&kvm->mmu_lock);
2393
2394         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395                 /* Need to free some mmu pages to achieve the goal. */
2396                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398                                 break;
2399
2400                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2402         }
2403
2404         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2405
2406         spin_unlock(&kvm->mmu_lock);
2407 }
2408
2409 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2410 {
2411         struct kvm_mmu_page *sp;
2412         LIST_HEAD(invalid_list);
2413         int r;
2414
2415         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2416         r = 0;
2417         spin_lock(&kvm->mmu_lock);
2418         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2419                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2420                          sp->role.word);
2421                 r = 1;
2422                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2423         }
2424         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425         spin_unlock(&kvm->mmu_lock);
2426
2427         return r;
2428 }
2429 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2430
2431 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2432 {
2433         trace_kvm_mmu_unsync_page(sp);
2434         ++vcpu->kvm->stat.mmu_unsync;
2435         sp->unsync = 1;
2436
2437         kvm_mmu_mark_parents_unsync(sp);
2438 }
2439
2440 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2441 {
2442         struct kvm_mmu_page *s;
2443
2444         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2445                 if (s->unsync)
2446                         continue;
2447                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2448                 __kvm_unsync_page(vcpu, s);
2449         }
2450 }
2451
2452 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2453                                    bool can_unsync)
2454 {
2455         struct kvm_mmu_page *s;
2456         bool need_unsync = false;
2457
2458         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2459                 return true;
2460
2461         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2462                 if (!can_unsync)
2463                         return true;
2464
2465                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2466                         return true;
2467
2468                 if (!s->unsync)
2469                         need_unsync = true;
2470         }
2471         if (need_unsync)
2472                 kvm_unsync_pages(vcpu, gfn);
2473
2474         return false;
2475 }
2476
2477 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2478 {
2479         if (pfn_valid(pfn))
2480                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2481
2482         return true;
2483 }
2484
2485 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2486                     unsigned pte_access, int level,
2487                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2488                     bool can_unsync, bool host_writable)
2489 {
2490         u64 spte;
2491         int ret = 0;
2492
2493         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2494                 return 0;
2495
2496         spte = PT_PRESENT_MASK;
2497         if (!speculative)
2498                 spte |= shadow_accessed_mask;
2499
2500         if (pte_access & ACC_EXEC_MASK)
2501                 spte |= shadow_x_mask;
2502         else
2503                 spte |= shadow_nx_mask;
2504
2505         if (pte_access & ACC_USER_MASK)
2506                 spte |= shadow_user_mask;
2507
2508         if (level > PT_PAGE_TABLE_LEVEL)
2509                 spte |= PT_PAGE_SIZE_MASK;
2510         if (tdp_enabled)
2511                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2512                         kvm_is_mmio_pfn(pfn));
2513
2514         if (host_writable)
2515                 spte |= SPTE_HOST_WRITEABLE;
2516         else
2517                 pte_access &= ~ACC_WRITE_MASK;
2518
2519         spte |= (u64)pfn << PAGE_SHIFT;
2520
2521         if (pte_access & ACC_WRITE_MASK) {
2522
2523                 /*
2524                  * Other vcpu creates new sp in the window between
2525                  * mapping_level() and acquiring mmu-lock. We can
2526                  * allow guest to retry the access, the mapping can
2527                  * be fixed if guest refault.
2528                  */
2529                 if (level > PT_PAGE_TABLE_LEVEL &&
2530                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2531                         goto done;
2532
2533                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2534
2535                 /*
2536                  * Optimization: for pte sync, if spte was writable the hash
2537                  * lookup is unnecessary (and expensive). Write protection
2538                  * is responsibility of mmu_get_page / kvm_sync_page.
2539                  * Same reasoning can be applied to dirty page accounting.
2540                  */
2541                 if (!can_unsync && is_writable_pte(*sptep))
2542                         goto set_pte;
2543
2544                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2545                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2546                                  __func__, gfn);
2547                         ret = 1;
2548                         pte_access &= ~ACC_WRITE_MASK;
2549                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2550                 }
2551         }
2552
2553         if (pte_access & ACC_WRITE_MASK) {
2554                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2555                 spte |= shadow_dirty_mask;
2556         }
2557
2558 set_pte:
2559         if (mmu_spte_update(sptep, spte))
2560                 kvm_flush_remote_tlbs(vcpu->kvm);
2561 done:
2562         return ret;
2563 }
2564
2565 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2566                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2567                          bool speculative, bool host_writable)
2568 {
2569         int was_rmapped = 0;
2570         int rmap_count;
2571         bool emulate = false;
2572
2573         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2574                  *sptep, write_fault, gfn);
2575
2576         if (is_shadow_present_pte(*sptep)) {
2577                 /*
2578                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2579                  * the parent of the now unreachable PTE.
2580                  */
2581                 if (level > PT_PAGE_TABLE_LEVEL &&
2582                     !is_large_pte(*sptep)) {
2583                         struct kvm_mmu_page *child;
2584                         u64 pte = *sptep;
2585
2586                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2587                         drop_parent_pte(child, sptep);
2588                         kvm_flush_remote_tlbs(vcpu->kvm);
2589                 } else if (pfn != spte_to_pfn(*sptep)) {
2590                         pgprintk("hfn old %llx new %llx\n",
2591                                  spte_to_pfn(*sptep), pfn);
2592                         drop_spte(vcpu->kvm, sptep);
2593                         kvm_flush_remote_tlbs(vcpu->kvm);
2594                 } else
2595                         was_rmapped = 1;
2596         }
2597
2598         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2599               true, host_writable)) {
2600                 if (write_fault)
2601                         emulate = true;
2602                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2603         }
2604
2605         if (unlikely(is_mmio_spte(*sptep)))
2606                 emulate = true;
2607
2608         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2609         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2610                  is_large_pte(*sptep)? "2MB" : "4kB",
2611                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2612                  *sptep, sptep);
2613         if (!was_rmapped && is_large_pte(*sptep))
2614                 ++vcpu->kvm->stat.lpages;
2615
2616         if (is_shadow_present_pte(*sptep)) {
2617                 if (!was_rmapped) {
2618                         rmap_count = rmap_add(vcpu, sptep, gfn);
2619                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2620                                 rmap_recycle(vcpu, sptep, gfn);
2621                 }
2622         }
2623
2624         kvm_release_pfn_clean(pfn);
2625
2626         return emulate;
2627 }
2628
2629 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630                                      bool no_dirty_log)
2631 {
2632         struct kvm_memory_slot *slot;
2633
2634         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635         if (!slot)
2636                 return KVM_PFN_ERR_FAULT;
2637
2638         return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 }
2640
2641 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642                                     struct kvm_mmu_page *sp,
2643                                     u64 *start, u64 *end)
2644 {
2645         struct page *pages[PTE_PREFETCH_NUM];
2646         struct kvm_memory_slot *slot;
2647         unsigned access = sp->role.access;
2648         int i, ret;
2649         gfn_t gfn;
2650
2651         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653         if (!slot)
2654                 return -1;
2655
2656         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657         if (ret <= 0)
2658                 return -1;
2659
2660         for (i = 0; i < ret; i++, gfn++, start++)
2661                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2662                              page_to_pfn(pages[i]), true, true);
2663
2664         return 0;
2665 }
2666
2667 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2668                                   struct kvm_mmu_page *sp, u64 *sptep)
2669 {
2670         u64 *spte, *start = NULL;
2671         int i;
2672
2673         WARN_ON(!sp->role.direct);
2674
2675         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2676         spte = sp->spt + i;
2677
2678         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2679                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2680                         if (!start)
2681                                 continue;
2682                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2683                                 break;
2684                         start = NULL;
2685                 } else if (!start)
2686                         start = spte;
2687         }
2688 }
2689
2690 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2691 {
2692         struct kvm_mmu_page *sp;
2693
2694         /*
2695          * Since it's no accessed bit on EPT, it's no way to
2696          * distinguish between actually accessed translations
2697          * and prefetched, so disable pte prefetch if EPT is
2698          * enabled.
2699          */
2700         if (!shadow_accessed_mask)
2701                 return;
2702
2703         sp = page_header(__pa(sptep));
2704         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2705                 return;
2706
2707         __direct_pte_prefetch(vcpu, sp, sptep);
2708 }
2709
2710 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2711                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2712 {
2713         struct kvm_shadow_walk_iterator iterator;
2714         struct kvm_mmu_page *sp;
2715         int emulate = 0;
2716         gfn_t pseudo_gfn;
2717
2718         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2719                 return 0;
2720
2721         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2722                 if (iterator.level == level) {
2723                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2724                                                write, level, gfn, pfn, prefault,
2725                                                map_writable);
2726                         direct_pte_prefetch(vcpu, iterator.sptep);
2727                         ++vcpu->stat.pf_fixed;
2728                         break;
2729                 }
2730
2731                 drop_large_spte(vcpu, iterator.sptep);
2732                 if (!is_shadow_present_pte(*iterator.sptep)) {
2733                         u64 base_addr = iterator.addr;
2734
2735                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2736                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2737                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2738                                               iterator.level - 1, 1, ACC_ALL);
2739
2740                         link_shadow_page(vcpu, iterator.sptep, sp);
2741                 }
2742         }
2743         return emulate;
2744 }
2745
2746 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2747 {
2748         siginfo_t info;
2749
2750         info.si_signo   = SIGBUS;
2751         info.si_errno   = 0;
2752         info.si_code    = BUS_MCEERR_AR;
2753         info.si_addr    = (void __user *)address;
2754         info.si_addr_lsb = PAGE_SHIFT;
2755
2756         send_sig_info(SIGBUS, &info, tsk);
2757 }
2758
2759 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2760 {
2761         /*
2762          * Do not cache the mmio info caused by writing the readonly gfn
2763          * into the spte otherwise read access on readonly gfn also can
2764          * caused mmio page fault and treat it as mmio access.
2765          * Return 1 to tell kvm to emulate it.
2766          */
2767         if (pfn == KVM_PFN_ERR_RO_FAULT)
2768                 return 1;
2769
2770         if (pfn == KVM_PFN_ERR_HWPOISON) {
2771                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2772                 return 0;
2773         }
2774
2775         return -EFAULT;
2776 }
2777
2778 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2779                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2780                                         int *levelp)
2781 {
2782         kvm_pfn_t pfn = *pfnp;
2783         gfn_t gfn = *gfnp;
2784         int level = *levelp;
2785
2786         /*
2787          * Check if it's a transparent hugepage. If this would be an
2788          * hugetlbfs page, level wouldn't be set to
2789          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2790          * here.
2791          */
2792         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2793             level == PT_PAGE_TABLE_LEVEL &&
2794             PageTransCompound(pfn_to_page(pfn)) &&
2795             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2796                 unsigned long mask;
2797                 /*
2798                  * mmu_notifier_retry was successful and we hold the
2799                  * mmu_lock here, so the pmd can't become splitting
2800                  * from under us, and in turn
2801                  * __split_huge_page_refcount() can't run from under
2802                  * us and we can safely transfer the refcount from
2803                  * PG_tail to PG_head as we switch the pfn to tail to
2804                  * head.
2805                  */
2806                 *levelp = level = PT_DIRECTORY_LEVEL;
2807                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2808                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2809                 if (pfn & mask) {
2810                         gfn &= ~mask;
2811                         *gfnp = gfn;
2812                         kvm_release_pfn_clean(pfn);
2813                         pfn &= ~mask;
2814                         kvm_get_pfn(pfn);
2815                         *pfnp = pfn;
2816                 }
2817         }
2818 }
2819
2820 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2821                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2822 {
2823         bool ret = true;
2824
2825         /* The pfn is invalid, report the error! */
2826         if (unlikely(is_error_pfn(pfn))) {
2827                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2828                 goto exit;
2829         }
2830
2831         if (unlikely(is_noslot_pfn(pfn)))
2832                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2833
2834         ret = false;
2835 exit:
2836         return ret;
2837 }
2838
2839 static bool page_fault_can_be_fast(u32 error_code)
2840 {
2841         /*
2842          * Do not fix the mmio spte with invalid generation number which
2843          * need to be updated by slow page fault path.
2844          */
2845         if (unlikely(error_code & PFERR_RSVD_MASK))
2846                 return false;
2847
2848         /*
2849          * #PF can be fast only if the shadow page table is present and it
2850          * is caused by write-protect, that means we just need change the
2851          * W bit of the spte which can be done out of mmu-lock.
2852          */
2853         if (!(error_code & PFERR_PRESENT_MASK) ||
2854               !(error_code & PFERR_WRITE_MASK))
2855                 return false;
2856
2857         return true;
2858 }
2859
2860 static bool
2861 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2862                         u64 *sptep, u64 spte)
2863 {
2864         gfn_t gfn;
2865
2866         WARN_ON(!sp->role.direct);
2867
2868         /*
2869          * The gfn of direct spte is stable since it is calculated
2870          * by sp->gfn.
2871          */
2872         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2873
2874         /*
2875          * Theoretically we could also set dirty bit (and flush TLB) here in
2876          * order to eliminate unnecessary PML logging. See comments in
2877          * set_spte. But fast_page_fault is very unlikely to happen with PML
2878          * enabled, so we do not do this. This might result in the same GPA
2879          * to be logged in PML buffer again when the write really happens, and
2880          * eventually to be called by mark_page_dirty twice. But it's also no
2881          * harm. This also avoids the TLB flush needed after setting dirty bit
2882          * so non-PML cases won't be impacted.
2883          *
2884          * Compare with set_spte where instead shadow_dirty_mask is set.
2885          */
2886         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2887                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2888
2889         return true;
2890 }
2891
2892 /*
2893  * Return value:
2894  * - true: let the vcpu to access on the same address again.
2895  * - false: let the real page fault path to fix it.
2896  */
2897 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2898                             u32 error_code)
2899 {
2900         struct kvm_shadow_walk_iterator iterator;
2901         struct kvm_mmu_page *sp;
2902         bool ret = false;
2903         u64 spte = 0ull;
2904
2905         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2906                 return false;
2907
2908         if (!page_fault_can_be_fast(error_code))
2909                 return false;
2910
2911         walk_shadow_page_lockless_begin(vcpu);
2912         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2913                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2914                         break;
2915
2916         /*
2917          * If the mapping has been changed, let the vcpu fault on the
2918          * same address again.
2919          */
2920         if (!is_shadow_present_pte(spte)) {
2921                 ret = true;
2922                 goto exit;
2923         }
2924
2925         sp = page_header(__pa(iterator.sptep));
2926         if (!is_last_spte(spte, sp->role.level))
2927                 goto exit;
2928
2929         /*
2930          * Check if it is a spurious fault caused by TLB lazily flushed.
2931          *
2932          * Need not check the access of upper level table entries since
2933          * they are always ACC_ALL.
2934          */
2935          if (is_writable_pte(spte)) {
2936                 ret = true;
2937                 goto exit;
2938         }
2939
2940         /*
2941          * Currently, to simplify the code, only the spte write-protected
2942          * by dirty-log can be fast fixed.
2943          */
2944         if (!spte_is_locklessly_modifiable(spte))
2945                 goto exit;
2946
2947         /*
2948          * Do not fix write-permission on the large spte since we only dirty
2949          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2950          * that means other pages are missed if its slot is dirty-logged.
2951          *
2952          * Instead, we let the slow page fault path create a normal spte to
2953          * fix the access.
2954          *
2955          * See the comments in kvm_arch_commit_memory_region().
2956          */
2957         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2958                 goto exit;
2959
2960         /*
2961          * Currently, fast page fault only works for direct mapping since
2962          * the gfn is not stable for indirect shadow page.
2963          * See Documentation/virtual/kvm/locking.txt to get more detail.
2964          */
2965         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2966 exit:
2967         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2968                               spte, ret);
2969         walk_shadow_page_lockless_end(vcpu);
2970
2971         return ret;
2972 }
2973
2974 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2975                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2976 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2977
2978 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2979                          gfn_t gfn, bool prefault)
2980 {
2981         int r;
2982         int level;
2983         bool force_pt_level = false;
2984         kvm_pfn_t pfn;
2985         unsigned long mmu_seq;
2986         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2987
2988         level = mapping_level(vcpu, gfn, &force_pt_level);
2989         if (likely(!force_pt_level)) {
2990                 /*
2991                  * This path builds a PAE pagetable - so we can map
2992                  * 2mb pages at maximum. Therefore check if the level
2993                  * is larger than that.
2994                  */
2995                 if (level > PT_DIRECTORY_LEVEL)
2996                         level = PT_DIRECTORY_LEVEL;
2997
2998                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2999         }
3000
3001         if (fast_page_fault(vcpu, v, level, error_code))
3002                 return 0;
3003
3004         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3005         smp_rmb();
3006
3007         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3008                 return 0;
3009
3010         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3011                 return r;
3012
3013         spin_lock(&vcpu->kvm->mmu_lock);
3014         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3015                 goto out_unlock;
3016         make_mmu_pages_available(vcpu);
3017         if (likely(!force_pt_level))
3018                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3019         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3020         spin_unlock(&vcpu->kvm->mmu_lock);
3021
3022         return r;
3023
3024 out_unlock:
3025         spin_unlock(&vcpu->kvm->mmu_lock);
3026         kvm_release_pfn_clean(pfn);
3027         return 0;
3028 }
3029
3030
3031 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3032 {
3033         int i;
3034         struct kvm_mmu_page *sp;
3035         LIST_HEAD(invalid_list);
3036
3037         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3038                 return;
3039
3040         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3041             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3042              vcpu->arch.mmu.direct_map)) {
3043                 hpa_t root = vcpu->arch.mmu.root_hpa;
3044
3045                 spin_lock(&vcpu->kvm->mmu_lock);
3046                 sp = page_header(root);
3047                 --sp->root_count;
3048                 if (!sp->root_count && sp->role.invalid) {
3049                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3050                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3051                 }
3052                 spin_unlock(&vcpu->kvm->mmu_lock);
3053                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3054                 return;
3055         }
3056
3057         spin_lock(&vcpu->kvm->mmu_lock);
3058         for (i = 0; i < 4; ++i) {
3059                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3060
3061                 if (root) {
3062                         root &= PT64_BASE_ADDR_MASK;
3063                         sp = page_header(root);
3064                         --sp->root_count;
3065                         if (!sp->root_count && sp->role.invalid)
3066                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3067                                                          &invalid_list);
3068                 }
3069                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3070         }
3071         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3072         spin_unlock(&vcpu->kvm->mmu_lock);
3073         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3074 }
3075
3076 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3077 {
3078         int ret = 0;
3079
3080         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3081                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3082                 ret = 1;
3083         }
3084
3085         return ret;
3086 }
3087
3088 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3089 {
3090         struct kvm_mmu_page *sp;
3091         unsigned i;
3092
3093         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3094                 spin_lock(&vcpu->kvm->mmu_lock);
3095                 make_mmu_pages_available(vcpu);
3096                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3097                 ++sp->root_count;
3098                 spin_unlock(&vcpu->kvm->mmu_lock);
3099                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3100         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3101                 for (i = 0; i < 4; ++i) {
3102                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3103
3104                         MMU_WARN_ON(VALID_PAGE(root));
3105                         spin_lock(&vcpu->kvm->mmu_lock);
3106                         make_mmu_pages_available(vcpu);
3107                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3108                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3109                         root = __pa(sp->spt);
3110                         ++sp->root_count;
3111                         spin_unlock(&vcpu->kvm->mmu_lock);
3112                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3113                 }
3114                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3115         } else
3116                 BUG();
3117
3118         return 0;
3119 }
3120
3121 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3122 {
3123         struct kvm_mmu_page *sp;
3124         u64 pdptr, pm_mask;
3125         gfn_t root_gfn;
3126         int i;
3127
3128         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3129
3130         if (mmu_check_root(vcpu, root_gfn))
3131                 return 1;
3132
3133         /*
3134          * Do we shadow a long mode page table? If so we need to
3135          * write-protect the guests page table root.
3136          */
3137         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3138                 hpa_t root = vcpu->arch.mmu.root_hpa;
3139
3140                 MMU_WARN_ON(VALID_PAGE(root));
3141
3142                 spin_lock(&vcpu->kvm->mmu_lock);
3143                 make_mmu_pages_available(vcpu);
3144                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3145                                       0, ACC_ALL);
3146                 root = __pa(sp->spt);
3147                 ++sp->root_count;
3148                 spin_unlock(&vcpu->kvm->mmu_lock);
3149                 vcpu->arch.mmu.root_hpa = root;
3150                 return 0;
3151         }
3152
3153         /*
3154          * We shadow a 32 bit page table. This may be a legacy 2-level
3155          * or a PAE 3-level page table. In either case we need to be aware that
3156          * the shadow page table may be a PAE or a long mode page table.
3157          */
3158         pm_mask = PT_PRESENT_MASK;
3159         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3160                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3161
3162         for (i = 0; i < 4; ++i) {
3163                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3164
3165                 MMU_WARN_ON(VALID_PAGE(root));
3166                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3167                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3168                         if (!is_present_gpte(pdptr)) {
3169                                 vcpu->arch.mmu.pae_root[i] = 0;
3170                                 continue;
3171                         }
3172                         root_gfn = pdptr >> PAGE_SHIFT;
3173                         if (mmu_check_root(vcpu, root_gfn))
3174                                 return 1;
3175                 }
3176                 spin_lock(&vcpu->kvm->mmu_lock);
3177                 make_mmu_pages_available(vcpu);
3178                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3179                                       0, ACC_ALL);
3180                 root = __pa(sp->spt);
3181                 ++sp->root_count;
3182                 spin_unlock(&vcpu->kvm->mmu_lock);
3183
3184                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3185         }
3186         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3187
3188         /*
3189          * If we shadow a 32 bit page table with a long mode page
3190          * table we enter this path.
3191          */
3192         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3193                 if (vcpu->arch.mmu.lm_root == NULL) {
3194                         /*
3195                          * The additional page necessary for this is only
3196                          * allocated on demand.
3197                          */
3198
3199                         u64 *lm_root;
3200
3201                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3202                         if (lm_root == NULL)
3203                                 return 1;
3204
3205                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3206
3207                         vcpu->arch.mmu.lm_root = lm_root;
3208                 }
3209
3210                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3211         }
3212
3213         return 0;
3214 }
3215
3216 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3217 {
3218         if (vcpu->arch.mmu.direct_map)
3219                 return mmu_alloc_direct_roots(vcpu);
3220         else
3221                 return mmu_alloc_shadow_roots(vcpu);
3222 }
3223
3224 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3225 {
3226         int i;
3227         struct kvm_mmu_page *sp;
3228
3229         if (vcpu->arch.mmu.direct_map)
3230                 return;
3231
3232         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3233                 return;
3234
3235         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3236         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3237         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3238                 hpa_t root = vcpu->arch.mmu.root_hpa;
3239                 sp = page_header(root);
3240                 mmu_sync_children(vcpu, sp);
3241                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3242                 return;
3243         }
3244         for (i = 0; i < 4; ++i) {
3245                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3246
3247                 if (root && VALID_PAGE(root)) {
3248                         root &= PT64_BASE_ADDR_MASK;
3249                         sp = page_header(root);
3250                         mmu_sync_children(vcpu, sp);
3251                 }
3252         }
3253         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3254 }
3255
3256 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3257 {
3258         spin_lock(&vcpu->kvm->mmu_lock);
3259         mmu_sync_roots(vcpu);
3260         spin_unlock(&vcpu->kvm->mmu_lock);
3261 }
3262 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3263
3264 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3265                                   u32 access, struct x86_exception *exception)
3266 {
3267         if (exception)
3268                 exception->error_code = 0;
3269         return vaddr;
3270 }
3271
3272 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3273                                          u32 access,
3274                                          struct x86_exception *exception)
3275 {
3276         if (exception)
3277                 exception->error_code = 0;
3278         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3279 }
3280
3281 static bool
3282 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3283 {
3284         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3285
3286         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3287                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3288 }
3289
3290 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3291 {
3292         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3293 }
3294
3295 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3296 {
3297         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3298 }
3299
3300 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3301 {
3302         if (direct)
3303                 return vcpu_match_mmio_gpa(vcpu, addr);
3304
3305         return vcpu_match_mmio_gva(vcpu, addr);
3306 }
3307
3308 /* return true if reserved bit is detected on spte. */
3309 static bool
3310 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3311 {
3312         struct kvm_shadow_walk_iterator iterator;
3313         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3314         int root, leaf;
3315         bool reserved = false;
3316
3317         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3318                 goto exit;
3319
3320         walk_shadow_page_lockless_begin(vcpu);
3321
3322         for (shadow_walk_init(&iterator, vcpu, addr),
3323                  leaf = root = iterator.level;
3324              shadow_walk_okay(&iterator);
3325              __shadow_walk_next(&iterator, spte)) {
3326                 spte = mmu_spte_get_lockless(iterator.sptep);
3327
3328                 sptes[leaf - 1] = spte;
3329                 leaf--;
3330
3331                 if (!is_shadow_present_pte(spte))
3332                         break;
3333
3334                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3335                                                     iterator.level);
3336         }
3337
3338         walk_shadow_page_lockless_end(vcpu);
3339
3340         if (reserved) {
3341                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3342                        __func__, addr);
3343                 while (root > leaf) {
3344                         pr_err("------ spte 0x%llx level %d.\n",
3345                                sptes[root - 1], root);
3346                         root--;
3347                 }
3348         }
3349 exit:
3350         *sptep = spte;
3351         return reserved;
3352 }
3353
3354 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3355 {
3356         u64 spte;
3357         bool reserved;
3358
3359         if (mmio_info_in_cache(vcpu, addr, direct))
3360                 return RET_MMIO_PF_EMULATE;
3361
3362         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3363         if (WARN_ON(reserved))
3364                 return RET_MMIO_PF_BUG;
3365
3366         if (is_mmio_spte(spte)) {
3367                 gfn_t gfn = get_mmio_spte_gfn(spte);
3368                 unsigned access = get_mmio_spte_access(spte);
3369
3370                 if (!check_mmio_spte(vcpu, spte))
3371                         return RET_MMIO_PF_INVALID;
3372
3373                 if (direct)
3374                         addr = 0;
3375
3376                 trace_handle_mmio_page_fault(addr, gfn, access);
3377                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3378                 return RET_MMIO_PF_EMULATE;
3379         }
3380
3381         /*
3382          * If the page table is zapped by other cpus, let CPU fault again on
3383          * the address.
3384          */
3385         return RET_MMIO_PF_RETRY;
3386 }
3387 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3388
3389 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3390                                          u32 error_code, gfn_t gfn)
3391 {
3392         if (unlikely(error_code & PFERR_RSVD_MASK))
3393                 return false;
3394
3395         if (!(error_code & PFERR_PRESENT_MASK) ||
3396               !(error_code & PFERR_WRITE_MASK))
3397                 return false;
3398
3399         /*
3400          * guest is writing the page which is write tracked which can
3401          * not be fixed by page fault handler.
3402          */
3403         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3404                 return true;
3405
3406         return false;
3407 }
3408
3409 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3410                                 u32 error_code, bool prefault)
3411 {
3412         gfn_t gfn = gva >> PAGE_SHIFT;
3413         int r;
3414
3415         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3416
3417         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3418                 return 1;
3419
3420         r = mmu_topup_memory_caches(vcpu);
3421         if (r)
3422                 return r;
3423
3424         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3425
3426
3427         return nonpaging_map(vcpu, gva & PAGE_MASK,
3428                              error_code, gfn, prefault);
3429 }
3430
3431 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3432 {
3433         struct kvm_arch_async_pf arch;
3434
3435         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3436         arch.gfn = gfn;
3437         arch.direct_map = vcpu->arch.mmu.direct_map;
3438         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3439
3440         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3441 }
3442
3443 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3444 {
3445         if (unlikely(!lapic_in_kernel(vcpu) ||
3446                      kvm_event_needs_reinjection(vcpu)))
3447                 return false;
3448
3449         return kvm_x86_ops->interrupt_allowed(vcpu);
3450 }
3451
3452 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3453                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3454 {
3455         struct kvm_memory_slot *slot;
3456         bool async;
3457
3458         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3459         async = false;
3460         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3461         if (!async)
3462                 return false; /* *pfn has correct page already */
3463
3464         if (!prefault && can_do_async_pf(vcpu)) {
3465                 trace_kvm_try_async_get_page(gva, gfn);
3466                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3467                         trace_kvm_async_pf_doublefault(gva, gfn);
3468                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3469                         return true;
3470                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3471                         return true;
3472         }
3473
3474         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3475         return false;
3476 }
3477
3478 static bool
3479 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3480 {
3481         int page_num = KVM_PAGES_PER_HPAGE(level);
3482
3483         gfn &= ~(page_num - 1);
3484
3485         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3486 }
3487
3488 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3489                           bool prefault)
3490 {
3491         kvm_pfn_t pfn;
3492         int r;
3493         int level;
3494         bool force_pt_level;
3495         gfn_t gfn = gpa >> PAGE_SHIFT;
3496         unsigned long mmu_seq;
3497         int write = error_code & PFERR_WRITE_MASK;
3498         bool map_writable;
3499
3500         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3501
3502         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3503                 return 1;
3504
3505         r = mmu_topup_memory_caches(vcpu);
3506         if (r)
3507                 return r;
3508
3509         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3510                                                            PT_DIRECTORY_LEVEL);
3511         level = mapping_level(vcpu, gfn, &force_pt_level);
3512         if (likely(!force_pt_level)) {
3513                 if (level > PT_DIRECTORY_LEVEL &&
3514                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3515                         level = PT_DIRECTORY_LEVEL;
3516                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3517         }
3518
3519         if (fast_page_fault(vcpu, gpa, level, error_code))
3520                 return 0;
3521
3522         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3523         smp_rmb();
3524
3525         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3526                 return 0;
3527
3528         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3529                 return r;
3530
3531         spin_lock(&vcpu->kvm->mmu_lock);
3532         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3533                 goto out_unlock;
3534         make_mmu_pages_available(vcpu);
3535         if (likely(!force_pt_level))
3536                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3537         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3538         spin_unlock(&vcpu->kvm->mmu_lock);
3539
3540         return r;
3541
3542 out_unlock:
3543         spin_unlock(&vcpu->kvm->mmu_lock);
3544         kvm_release_pfn_clean(pfn);
3545         return 0;
3546 }
3547
3548 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3549                                    struct kvm_mmu *context)
3550 {
3551         context->page_fault = nonpaging_page_fault;
3552         context->gva_to_gpa = nonpaging_gva_to_gpa;
3553         context->sync_page = nonpaging_sync_page;
3554         context->invlpg = nonpaging_invlpg;
3555         context->update_pte = nonpaging_update_pte;
3556         context->root_level = 0;
3557         context->shadow_root_level = PT32E_ROOT_LEVEL;
3558         context->root_hpa = INVALID_PAGE;
3559         context->direct_map = true;
3560         context->nx = false;
3561 }
3562
3563 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3564 {
3565         mmu_free_roots(vcpu);
3566 }
3567
3568 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3569 {
3570         return kvm_read_cr3(vcpu);
3571 }
3572
3573 static void inject_page_fault(struct kvm_vcpu *vcpu,
3574                               struct x86_exception *fault)
3575 {
3576         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3577 }
3578
3579 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3580                            unsigned access, int *nr_present)
3581 {
3582         if (unlikely(is_mmio_spte(*sptep))) {
3583                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3584                         mmu_spte_clear_no_track(sptep);
3585                         return true;
3586                 }
3587
3588                 (*nr_present)++;
3589                 mark_mmio_spte(vcpu, sptep, gfn, access);
3590                 return true;
3591         }
3592
3593         return false;
3594 }
3595
3596 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3597 {
3598         unsigned index;
3599
3600         index = level - 1;
3601         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3602         return mmu->last_pte_bitmap & (1 << index);
3603 }
3604
3605 #define PTTYPE_EPT 18 /* arbitrary */
3606 #define PTTYPE PTTYPE_EPT
3607 #include "paging_tmpl.h"
3608 #undef PTTYPE
3609
3610 #define PTTYPE 64
3611 #include "paging_tmpl.h"
3612 #undef PTTYPE
3613
3614 #define PTTYPE 32
3615 #include "paging_tmpl.h"
3616 #undef PTTYPE
3617
3618 static void
3619 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3620                         struct rsvd_bits_validate *rsvd_check,
3621                         int maxphyaddr, int level, bool nx, bool gbpages,
3622                         bool pse, bool amd)
3623 {
3624         u64 exb_bit_rsvd = 0;
3625         u64 gbpages_bit_rsvd = 0;
3626         u64 nonleaf_bit8_rsvd = 0;
3627
3628         rsvd_check->bad_mt_xwr = 0;
3629
3630         if (!nx)
3631                 exb_bit_rsvd = rsvd_bits(63, 63);
3632         if (!gbpages)
3633                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3634
3635         /*
3636          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3637          * leaf entries) on AMD CPUs only.
3638          */
3639         if (amd)
3640                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3641
3642         switch (level) {
3643         case PT32_ROOT_LEVEL:
3644                 /* no rsvd bits for 2 level 4K page table entries */
3645                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3646                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3647                 rsvd_check->rsvd_bits_mask[1][0] =
3648                         rsvd_check->rsvd_bits_mask[0][0];
3649
3650                 if (!pse) {
3651                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3652                         break;
3653                 }
3654
3655                 if (is_cpuid_PSE36())
3656                         /* 36bits PSE 4MB page */
3657                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3658                 else
3659                         /* 32 bits PSE 4MB page */
3660                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3661                 break;
3662         case PT32E_ROOT_LEVEL:
3663                 rsvd_check->rsvd_bits_mask[0][2] =
3664                         rsvd_bits(maxphyaddr, 63) |
3665                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3666                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3667                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3668                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3669                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3670                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3671                         rsvd_bits(maxphyaddr, 62) |
3672                         rsvd_bits(13, 20);              /* large page */
3673                 rsvd_check->rsvd_bits_mask[1][0] =
3674                         rsvd_check->rsvd_bits_mask[0][0];
3675                 break;
3676         case PT64_ROOT_LEVEL:
3677                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3678                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3679                         rsvd_bits(maxphyaddr, 51);
3680                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3681                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3682                         rsvd_bits(maxphyaddr, 51);
3683                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3684                         rsvd_bits(maxphyaddr, 51);
3685                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3686                         rsvd_bits(maxphyaddr, 51);
3687                 rsvd_check->rsvd_bits_mask[1][3] =
3688                         rsvd_check->rsvd_bits_mask[0][3];
3689                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3690                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3691                         rsvd_bits(13, 29);
3692                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3693                         rsvd_bits(maxphyaddr, 51) |
3694                         rsvd_bits(13, 20);              /* large page */
3695                 rsvd_check->rsvd_bits_mask[1][0] =
3696                         rsvd_check->rsvd_bits_mask[0][0];
3697                 break;
3698         }
3699 }
3700
3701 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3702                                   struct kvm_mmu *context)
3703 {
3704         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3705                                 cpuid_maxphyaddr(vcpu), context->root_level,
3706                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3707                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3708 }
3709
3710 static void
3711 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3712                             int maxphyaddr, bool execonly)
3713 {
3714         u64 bad_mt_xwr;
3715
3716         rsvd_check->rsvd_bits_mask[0][3] =
3717                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3718         rsvd_check->rsvd_bits_mask[0][2] =
3719                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3720         rsvd_check->rsvd_bits_mask[0][1] =
3721                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3722         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3723
3724         /* large page */
3725         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3726         rsvd_check->rsvd_bits_mask[1][2] =
3727                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3728         rsvd_check->rsvd_bits_mask[1][1] =
3729                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3730         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3731
3732         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3733         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3734         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3735         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3736         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3737         if (!execonly) {
3738                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3739                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3740         }
3741         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3742 }
3743
3744 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3745                 struct kvm_mmu *context, bool execonly)
3746 {
3747         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3748                                     cpuid_maxphyaddr(vcpu), execonly);
3749 }
3750
3751 /*
3752  * the page table on host is the shadow page table for the page
3753  * table in guest or amd nested guest, its mmu features completely
3754  * follow the features in guest.
3755  */
3756 void
3757 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3758 {
3759         /*
3760          * Passing "true" to the last argument is okay; it adds a check
3761          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3762          */
3763         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3764                                 boot_cpu_data.x86_phys_bits,
3765                                 context->shadow_root_level, context->nx,
3766                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3767                                 true);
3768 }
3769 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3770
3771 static inline bool boot_cpu_is_amd(void)
3772 {
3773         WARN_ON_ONCE(!tdp_enabled);
3774         return shadow_x_mask == 0;
3775 }
3776
3777 /*
3778  * the direct page table on host, use as much mmu features as
3779  * possible, however, kvm currently does not do execution-protection.
3780  */
3781 static void
3782 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3783                                 struct kvm_mmu *context)
3784 {
3785         if (boot_cpu_is_amd())
3786                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3787                                         boot_cpu_data.x86_phys_bits,
3788                                         context->shadow_root_level, false,
3789                                         cpu_has_gbpages, true, true);
3790         else
3791                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3792                                             boot_cpu_data.x86_phys_bits,
3793                                             false);
3794
3795 }
3796
3797 /*
3798  * as the comments in reset_shadow_zero_bits_mask() except it
3799  * is the shadow page table for intel nested guest.
3800  */
3801 static void
3802 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3803                                 struct kvm_mmu *context, bool execonly)
3804 {
3805         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3806                                     boot_cpu_data.x86_phys_bits, execonly);
3807 }
3808
3809 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3810                                       struct kvm_mmu *mmu, bool ept)
3811 {
3812         unsigned bit, byte, pfec;
3813         u8 map;
3814         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3815
3816         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3817         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3818         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3819                 pfec = byte << 1;
3820                 map = 0;
3821                 wf = pfec & PFERR_WRITE_MASK;
3822                 uf = pfec & PFERR_USER_MASK;
3823                 ff = pfec & PFERR_FETCH_MASK;
3824                 /*
3825                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3826                  * subject to SMAP restrictions, and cleared otherwise. The
3827                  * bit is only meaningful if the SMAP bit is set in CR4.
3828                  */
3829                 smapf = !(pfec & PFERR_RSVD_MASK);
3830                 for (bit = 0; bit < 8; ++bit) {
3831                         x = bit & ACC_EXEC_MASK;
3832                         w = bit & ACC_WRITE_MASK;
3833                         u = bit & ACC_USER_MASK;
3834
3835                         if (!ept) {
3836                                 /* Not really needed: !nx will cause pte.nx to fault */
3837                                 x |= !mmu->nx;
3838                                 /* Allow supervisor writes if !cr0.wp */
3839                                 w |= !is_write_protection(vcpu) && !uf;
3840                                 /* Disallow supervisor fetches of user code if cr4.smep */
3841                                 x &= !(cr4_smep && u && !uf);
3842
3843                                 /*
3844                                  * SMAP:kernel-mode data accesses from user-mode
3845                                  * mappings should fault. A fault is considered
3846                                  * as a SMAP violation if all of the following
3847                                  * conditions are ture:
3848                                  *   - X86_CR4_SMAP is set in CR4
3849                                  *   - An user page is accessed
3850                                  *   - Page fault in kernel mode
3851                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3852                                  *
3853                                  *   Here, we cover the first three conditions.
3854                                  *   The fourth is computed dynamically in
3855                                  *   permission_fault() and is in smapf.
3856                                  *
3857                                  *   Also, SMAP does not affect instruction
3858                                  *   fetches, add the !ff check here to make it
3859                                  *   clearer.
3860                                  */
3861                                 smap = cr4_smap && u && !uf && !ff;
3862                         } else
3863                                 /* Not really needed: no U/S accesses on ept  */
3864                                 u = 1;
3865
3866                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3867                                 (smapf && smap);
3868                         map |= fault << bit;
3869                 }
3870                 mmu->permissions[byte] = map;
3871         }
3872 }
3873
3874 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3875 {
3876         u8 map;
3877         unsigned level, root_level = mmu->root_level;
3878         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3879
3880         if (root_level == PT32E_ROOT_LEVEL)
3881                 --root_level;
3882         /* PT_PAGE_TABLE_LEVEL always terminates */
3883         map = 1 | (1 << ps_set_index);
3884         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3885                 if (level <= PT_PDPE_LEVEL
3886                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3887                         map |= 1 << (ps_set_index | (level - 1));
3888         }
3889         mmu->last_pte_bitmap = map;
3890 }
3891
3892 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3893                                          struct kvm_mmu *context,
3894                                          int level)
3895 {
3896         context->nx = is_nx(vcpu);
3897         context->root_level = level;
3898
3899         reset_rsvds_bits_mask(vcpu, context);
3900         update_permission_bitmask(vcpu, context, false);
3901         update_last_pte_bitmap(vcpu, context);
3902
3903         MMU_WARN_ON(!is_pae(vcpu));
3904         context->page_fault = paging64_page_fault;
3905         context->gva_to_gpa = paging64_gva_to_gpa;
3906         context->sync_page = paging64_sync_page;
3907         context->invlpg = paging64_invlpg;
3908         context->update_pte = paging64_update_pte;
3909         context->shadow_root_level = level;
3910         context->root_hpa = INVALID_PAGE;
3911         context->direct_map = false;
3912 }
3913
3914 static void paging64_init_context(struct kvm_vcpu *vcpu,
3915                                   struct kvm_mmu *context)
3916 {
3917         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3918 }
3919
3920 static void paging32_init_context(struct kvm_vcpu *vcpu,
3921                                   struct kvm_mmu *context)
3922 {
3923         context->nx = false;
3924         context->root_level = PT32_ROOT_LEVEL;
3925
3926         reset_rsvds_bits_mask(vcpu, context);
3927         update_permission_bitmask(vcpu, context, false);
3928         update_last_pte_bitmap(vcpu, context);
3929
3930         context->page_fault = paging32_page_fault;
3931         context->gva_to_gpa = paging32_gva_to_gpa;
3932         context->sync_page = paging32_sync_page;
3933         context->invlpg = paging32_invlpg;
3934         context->update_pte = paging32_update_pte;
3935         context->shadow_root_level = PT32E_ROOT_LEVEL;
3936         context->root_hpa = INVALID_PAGE;
3937         context->direct_map = false;
3938 }
3939
3940 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3941                                    struct kvm_mmu *context)
3942 {
3943         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3944 }
3945
3946 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3947 {
3948         struct kvm_mmu *context = &vcpu->arch.mmu;
3949
3950         context->base_role.word = 0;
3951         context->base_role.smm = is_smm(vcpu);
3952         context->page_fault = tdp_page_fault;
3953         context->sync_page = nonpaging_sync_page;
3954         context->invlpg = nonpaging_invlpg;
3955         context->update_pte = nonpaging_update_pte;
3956         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3957         context->root_hpa = INVALID_PAGE;
3958         context->direct_map = true;
3959         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3960         context->get_cr3 = get_cr3;
3961         context->get_pdptr = kvm_pdptr_read;
3962         context->inject_page_fault = kvm_inject_page_fault;
3963
3964         if (!is_paging(vcpu)) {
3965                 context->nx = false;
3966                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3967                 context->root_level = 0;
3968         } else if (is_long_mode(vcpu)) {
3969                 context->nx = is_nx(vcpu);
3970                 context->root_level = PT64_ROOT_LEVEL;
3971                 reset_rsvds_bits_mask(vcpu, context);
3972                 context->gva_to_gpa = paging64_gva_to_gpa;
3973         } else if (is_pae(vcpu)) {
3974                 context->nx = is_nx(vcpu);
3975                 context->root_level = PT32E_ROOT_LEVEL;
3976                 reset_rsvds_bits_mask(vcpu, context);
3977                 context->gva_to_gpa = paging64_gva_to_gpa;
3978         } else {
3979                 context->nx = false;
3980                 context->root_level = PT32_ROOT_LEVEL;
3981                 reset_rsvds_bits_mask(vcpu, context);
3982                 context->gva_to_gpa = paging32_gva_to_gpa;
3983         }
3984
3985         update_permission_bitmask(vcpu, context, false);
3986         update_last_pte_bitmap(vcpu, context);
3987         reset_tdp_shadow_zero_bits_mask(vcpu, context);
3988 }
3989
3990 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3991 {
3992         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3993         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3994         struct kvm_mmu *context = &vcpu->arch.mmu;
3995
3996         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3997
3998         if (!is_paging(vcpu))
3999                 nonpaging_init_context(vcpu, context);
4000         else if (is_long_mode(vcpu))
4001                 paging64_init_context(vcpu, context);
4002         else if (is_pae(vcpu))
4003                 paging32E_init_context(vcpu, context);
4004         else
4005                 paging32_init_context(vcpu, context);
4006
4007         context->base_role.nxe = is_nx(vcpu);
4008         context->base_role.cr4_pae = !!is_pae(vcpu);
4009         context->base_role.cr0_wp  = is_write_protection(vcpu);
4010         context->base_role.smep_andnot_wp
4011                 = smep && !is_write_protection(vcpu);
4012         context->base_role.smap_andnot_wp
4013                 = smap && !is_write_protection(vcpu);
4014         context->base_role.smm = is_smm(vcpu);
4015         reset_shadow_zero_bits_mask(vcpu, context);
4016 }
4017 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4018
4019 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4020 {
4021         struct kvm_mmu *context = &vcpu->arch.mmu;
4022
4023         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4024
4025         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4026
4027         context->nx = true;
4028         context->page_fault = ept_page_fault;
4029         context->gva_to_gpa = ept_gva_to_gpa;
4030         context->sync_page = ept_sync_page;
4031         context->invlpg = ept_invlpg;
4032         context->update_pte = ept_update_pte;
4033         context->root_level = context->shadow_root_level;
4034         context->root_hpa = INVALID_PAGE;
4035         context->direct_map = false;
4036
4037         update_permission_bitmask(vcpu, context, true);
4038         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4039         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4042
4043 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4044 {
4045         struct kvm_mmu *context = &vcpu->arch.mmu;
4046
4047         kvm_init_shadow_mmu(vcpu);
4048         context->set_cr3           = kvm_x86_ops->set_cr3;
4049         context->get_cr3           = get_cr3;
4050         context->get_pdptr         = kvm_pdptr_read;
4051         context->inject_page_fault = kvm_inject_page_fault;
4052 }
4053
4054 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4055 {
4056         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4057
4058         g_context->get_cr3           = get_cr3;
4059         g_context->get_pdptr         = kvm_pdptr_read;
4060         g_context->inject_page_fault = kvm_inject_page_fault;
4061
4062         /*
4063          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4064          * L1's nested page tables (e.g. EPT12). The nested translation
4065          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4066          * L2's page tables as the first level of translation and L1's
4067          * nested page tables as the second level of translation. Basically
4068          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4069          */
4070         if (!is_paging(vcpu)) {
4071                 g_context->nx = false;
4072                 g_context->root_level = 0;
4073                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4074         } else if (is_long_mode(vcpu)) {
4075                 g_context->nx = is_nx(vcpu);
4076                 g_context->root_level = PT64_ROOT_LEVEL;
4077                 reset_rsvds_bits_mask(vcpu, g_context);
4078                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4079         } else if (is_pae(vcpu)) {
4080                 g_context->nx = is_nx(vcpu);
4081                 g_context->root_level = PT32E_ROOT_LEVEL;
4082                 reset_rsvds_bits_mask(vcpu, g_context);
4083                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4084         } else {
4085                 g_context->nx = false;
4086                 g_context->root_level = PT32_ROOT_LEVEL;
4087                 reset_rsvds_bits_mask(vcpu, g_context);
4088                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4089         }
4090
4091         update_permission_bitmask(vcpu, g_context, false);
4092         update_last_pte_bitmap(vcpu, g_context);
4093 }
4094
4095 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4096 {
4097         if (mmu_is_nested(vcpu))
4098                 init_kvm_nested_mmu(vcpu);
4099         else if (tdp_enabled)
4100                 init_kvm_tdp_mmu(vcpu);
4101         else
4102                 init_kvm_softmmu(vcpu);
4103 }
4104
4105 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4106 {
4107         kvm_mmu_unload(vcpu);
4108         init_kvm_mmu(vcpu);
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4111
4112 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4113 {
4114         int r;
4115
4116         r = mmu_topup_memory_caches(vcpu);
4117         if (r)
4118                 goto out;
4119         r = mmu_alloc_roots(vcpu);
4120         kvm_mmu_sync_roots(vcpu);
4121         if (r)
4122                 goto out;
4123         /* set_cr3() should ensure TLB has been flushed */
4124         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4125 out:
4126         return r;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4129
4130 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4131 {
4132         mmu_free_roots(vcpu);
4133         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4134 }
4135 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4136
4137 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4138                                   struct kvm_mmu_page *sp, u64 *spte,
4139                                   const void *new)
4140 {
4141         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4142                 ++vcpu->kvm->stat.mmu_pde_zapped;
4143                 return;
4144         }
4145
4146         ++vcpu->kvm->stat.mmu_pte_updated;
4147         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4148 }
4149
4150 static bool need_remote_flush(u64 old, u64 new)
4151 {
4152         if (!is_shadow_present_pte(old))
4153                 return false;
4154         if (!is_shadow_present_pte(new))
4155                 return true;
4156         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4157                 return true;
4158         old ^= shadow_nx_mask;
4159         new ^= shadow_nx_mask;
4160         return (old & ~new & PT64_PERM_MASK) != 0;
4161 }
4162
4163 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4164                                     bool remote_flush, bool local_flush)
4165 {
4166         if (zap_page)
4167                 return;
4168
4169         if (remote_flush)
4170                 kvm_flush_remote_tlbs(vcpu->kvm);
4171         else if (local_flush)
4172                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4173 }
4174
4175 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4176                                     const u8 *new, int *bytes)
4177 {
4178         u64 gentry;
4179         int r;
4180
4181         /*
4182          * Assume that the pte write on a page table of the same type
4183          * as the current vcpu paging mode since we update the sptes only
4184          * when they have the same mode.
4185          */
4186         if (is_pae(vcpu) && *bytes == 4) {
4187                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4188                 *gpa &= ~(gpa_t)7;
4189                 *bytes = 8;
4190                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4191                 if (r)
4192                         gentry = 0;
4193                 new = (const u8 *)&gentry;
4194         }
4195
4196         switch (*bytes) {
4197         case 4:
4198                 gentry = *(const u32 *)new;
4199                 break;
4200         case 8:
4201                 gentry = *(const u64 *)new;
4202                 break;
4203         default:
4204                 gentry = 0;
4205                 break;
4206         }
4207
4208         return gentry;
4209 }
4210
4211 /*
4212  * If we're seeing too many writes to a page, it may no longer be a page table,
4213  * or we may be forking, in which case it is better to unmap the page.
4214  */
4215 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4216 {
4217         /*
4218          * Skip write-flooding detected for the sp whose level is 1, because
4219          * it can become unsync, then the guest page is not write-protected.
4220          */
4221         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4222                 return false;
4223
4224         return ++sp->write_flooding_count >= 3;
4225 }
4226
4227 /*
4228  * Misaligned accesses are too much trouble to fix up; also, they usually
4229  * indicate a page is not used as a page table.
4230  */
4231 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4232                                     int bytes)
4233 {
4234         unsigned offset, pte_size, misaligned;
4235
4236         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4237                  gpa, bytes, sp->role.word);
4238
4239         offset = offset_in_page(gpa);
4240         pte_size = sp->role.cr4_pae ? 8 : 4;
4241
4242         /*
4243          * Sometimes, the OS only writes the last one bytes to update status
4244          * bits, for example, in linux, andb instruction is used in clear_bit().
4245          */
4246         if (!(offset & (pte_size - 1)) && bytes == 1)
4247                 return false;
4248
4249         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4250         misaligned |= bytes < 4;
4251
4252         return misaligned;
4253 }
4254
4255 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4256 {
4257         unsigned page_offset, quadrant;
4258         u64 *spte;
4259         int level;
4260
4261         page_offset = offset_in_page(gpa);
4262         level = sp->role.level;
4263         *nspte = 1;
4264         if (!sp->role.cr4_pae) {
4265                 page_offset <<= 1;      /* 32->64 */
4266                 /*
4267                  * A 32-bit pde maps 4MB while the shadow pdes map
4268                  * only 2MB.  So we need to double the offset again
4269                  * and zap two pdes instead of one.
4270                  */
4271                 if (level == PT32_ROOT_LEVEL) {
4272                         page_offset &= ~7; /* kill rounding error */
4273                         page_offset <<= 1;
4274                         *nspte = 2;
4275                 }
4276                 quadrant = page_offset >> PAGE_SHIFT;
4277                 page_offset &= ~PAGE_MASK;
4278                 if (quadrant != sp->role.quadrant)
4279                         return NULL;
4280         }
4281
4282         spte = &sp->spt[page_offset / sizeof(*spte)];
4283         return spte;
4284 }
4285
4286 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4287                        const u8 *new, int bytes)
4288 {
4289         gfn_t gfn = gpa >> PAGE_SHIFT;
4290         struct kvm_mmu_page *sp;
4291         LIST_HEAD(invalid_list);
4292         u64 entry, gentry, *spte;
4293         int npte;
4294         bool remote_flush, local_flush, zap_page;
4295         union kvm_mmu_page_role mask = { };
4296
4297         mask.cr0_wp = 1;
4298         mask.cr4_pae = 1;
4299         mask.nxe = 1;
4300         mask.smep_andnot_wp = 1;
4301         mask.smap_andnot_wp = 1;
4302         mask.smm = 1;
4303
4304         /*
4305          * If we don't have indirect shadow pages, it means no page is
4306          * write-protected, so we can exit simply.
4307          */
4308         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4309                 return;
4310
4311         zap_page = remote_flush = local_flush = false;
4312
4313         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4314
4315         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4316
4317         /*
4318          * No need to care whether allocation memory is successful
4319          * or not since pte prefetch is skiped if it does not have
4320          * enough objects in the cache.
4321          */
4322         mmu_topup_memory_caches(vcpu);
4323
4324         spin_lock(&vcpu->kvm->mmu_lock);
4325         ++vcpu->kvm->stat.mmu_pte_write;
4326         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4327
4328         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4329                 if (detect_write_misaligned(sp, gpa, bytes) ||
4330                       detect_write_flooding(sp)) {
4331                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4332                                                      &invalid_list);
4333                         ++vcpu->kvm->stat.mmu_flooded;
4334                         continue;
4335                 }
4336
4337                 spte = get_written_sptes(sp, gpa, &npte);
4338                 if (!spte)
4339                         continue;
4340
4341                 local_flush = true;
4342                 while (npte--) {
4343                         entry = *spte;
4344                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4345                         if (gentry &&
4346                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4347                               & mask.word) && rmap_can_add(vcpu))
4348                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4349                         if (need_remote_flush(entry, *spte))
4350                                 remote_flush = true;
4351                         ++spte;
4352                 }
4353         }
4354         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4355         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4356         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4357         spin_unlock(&vcpu->kvm->mmu_lock);
4358 }
4359
4360 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4361 {
4362         gpa_t gpa;
4363         int r;
4364
4365         if (vcpu->arch.mmu.direct_map)
4366                 return 0;
4367
4368         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4369
4370         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4371
4372         return r;
4373 }
4374 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4375
4376 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4377 {
4378         LIST_HEAD(invalid_list);
4379
4380         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4381                 return;
4382
4383         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4384                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4385                         break;
4386
4387                 ++vcpu->kvm->stat.mmu_recycled;
4388         }
4389         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4390 }
4391
4392 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4393                        void *insn, int insn_len)
4394 {
4395         int r, emulation_type = EMULTYPE_RETRY;
4396         enum emulation_result er;
4397         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4398
4399         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4400                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4401                 if (r == RET_MMIO_PF_EMULATE) {
4402                         emulation_type = 0;
4403                         goto emulate;
4404                 }
4405                 if (r == RET_MMIO_PF_RETRY)
4406                         return 1;
4407                 if (r < 0)
4408                         return r;
4409         }
4410
4411         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4412         if (r < 0)
4413                 return r;
4414         if (!r)
4415                 return 1;
4416
4417         if (mmio_info_in_cache(vcpu, cr2, direct))
4418                 emulation_type = 0;
4419 emulate:
4420         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4421
4422         switch (er) {
4423         case EMULATE_DONE:
4424                 return 1;
4425         case EMULATE_USER_EXIT:
4426                 ++vcpu->stat.mmio_exits;
4427                 /* fall through */
4428         case EMULATE_FAIL:
4429                 return 0;
4430         default:
4431                 BUG();
4432         }
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4435
4436 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4437 {
4438         vcpu->arch.mmu.invlpg(vcpu, gva);
4439         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4440         ++vcpu->stat.invlpg;
4441 }
4442 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4443
4444 void kvm_enable_tdp(void)
4445 {
4446         tdp_enabled = true;
4447 }
4448 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4449
4450 void kvm_disable_tdp(void)
4451 {
4452         tdp_enabled = false;
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4455
4456 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4457 {
4458         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4459         if (vcpu->arch.mmu.lm_root != NULL)
4460                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4461 }
4462
4463 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4464 {
4465         struct page *page;
4466         int i;
4467
4468         /*
4469          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4470          * Therefore we need to allocate shadow page tables in the first
4471          * 4GB of memory, which happens to fit the DMA32 zone.
4472          */
4473         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4474         if (!page)
4475                 return -ENOMEM;
4476
4477         vcpu->arch.mmu.pae_root = page_address(page);
4478         for (i = 0; i < 4; ++i)
4479                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4480
4481         return 0;
4482 }
4483
4484 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4485 {
4486         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4487         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4488         vcpu->arch.mmu.translate_gpa = translate_gpa;
4489         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4490
4491         return alloc_mmu_pages(vcpu);
4492 }
4493
4494 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4495 {
4496         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4497
4498         init_kvm_mmu(vcpu);
4499 }
4500
4501 /* The return value indicates if tlb flush on all vcpus is needed. */
4502 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4503
4504 /* The caller should hold mmu-lock before calling this function. */
4505 static bool
4506 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4507                         slot_level_handler fn, int start_level, int end_level,
4508                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4509 {
4510         struct slot_rmap_walk_iterator iterator;
4511         bool flush = false;
4512
4513         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4514                         end_gfn, &iterator) {
4515                 if (iterator.rmap)
4516                         flush |= fn(kvm, iterator.rmap);
4517
4518                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4519                         if (flush && lock_flush_tlb) {
4520                                 kvm_flush_remote_tlbs(kvm);
4521                                 flush = false;
4522                         }
4523                         cond_resched_lock(&kvm->mmu_lock);
4524                 }
4525         }
4526
4527         if (flush && lock_flush_tlb) {
4528                 kvm_flush_remote_tlbs(kvm);
4529                 flush = false;
4530         }
4531
4532         return flush;
4533 }
4534
4535 static bool
4536 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4537                   slot_level_handler fn, int start_level, int end_level,
4538                   bool lock_flush_tlb)
4539 {
4540         return slot_handle_level_range(kvm, memslot, fn, start_level,
4541                         end_level, memslot->base_gfn,
4542                         memslot->base_gfn + memslot->npages - 1,
4543                         lock_flush_tlb);
4544 }
4545
4546 static bool
4547 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548                       slot_level_handler fn, bool lock_flush_tlb)
4549 {
4550         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4551                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552 }
4553
4554 static bool
4555 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556                         slot_level_handler fn, bool lock_flush_tlb)
4557 {
4558         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4559                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4560 }
4561
4562 static bool
4563 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4564                  slot_level_handler fn, bool lock_flush_tlb)
4565 {
4566         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4567                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4568 }
4569
4570 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4571 {
4572         struct kvm_memslots *slots;
4573         struct kvm_memory_slot *memslot;
4574         int i;
4575
4576         spin_lock(&kvm->mmu_lock);
4577         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4578                 slots = __kvm_memslots(kvm, i);
4579                 kvm_for_each_memslot(memslot, slots) {
4580                         gfn_t start, end;
4581
4582                         start = max(gfn_start, memslot->base_gfn);
4583                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4584                         if (start >= end)
4585                                 continue;
4586
4587                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4588                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4589                                                 start, end - 1, true);
4590                 }
4591         }
4592
4593         spin_unlock(&kvm->mmu_lock);
4594 }
4595
4596 static bool slot_rmap_write_protect(struct kvm *kvm,
4597                                     struct kvm_rmap_head *rmap_head)
4598 {
4599         return __rmap_write_protect(kvm, rmap_head, false);
4600 }
4601
4602 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4603                                       struct kvm_memory_slot *memslot)
4604 {
4605         bool flush;
4606
4607         spin_lock(&kvm->mmu_lock);
4608         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4609                                       false);
4610         spin_unlock(&kvm->mmu_lock);
4611
4612         /*
4613          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4614          * which do tlb flush out of mmu-lock should be serialized by
4615          * kvm->slots_lock otherwise tlb flush would be missed.
4616          */
4617         lockdep_assert_held(&kvm->slots_lock);
4618
4619         /*
4620          * We can flush all the TLBs out of the mmu lock without TLB
4621          * corruption since we just change the spte from writable to
4622          * readonly so that we only need to care the case of changing
4623          * spte from present to present (changing the spte from present
4624          * to nonpresent will flush all the TLBs immediately), in other
4625          * words, the only case we care is mmu_spte_update() where we
4626          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4627          * instead of PT_WRITABLE_MASK, that means it does not depend
4628          * on PT_WRITABLE_MASK anymore.
4629          */
4630         if (flush)
4631                 kvm_flush_remote_tlbs(kvm);
4632 }
4633
4634 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4635                                          struct kvm_rmap_head *rmap_head)
4636 {
4637         u64 *sptep;
4638         struct rmap_iterator iter;
4639         int need_tlb_flush = 0;
4640         kvm_pfn_t pfn;
4641         struct kvm_mmu_page *sp;
4642
4643 restart:
4644         for_each_rmap_spte(rmap_head, &iter, sptep) {
4645                 sp = page_header(__pa(sptep));
4646                 pfn = spte_to_pfn(*sptep);
4647
4648                 /*
4649                  * We cannot do huge page mapping for indirect shadow pages,
4650                  * which are found on the last rmap (level = 1) when not using
4651                  * tdp; such shadow pages are synced with the page table in
4652                  * the guest, and the guest page table is using 4K page size
4653                  * mapping if the indirect sp has level = 1.
4654                  */
4655                 if (sp->role.direct &&
4656                         !kvm_is_reserved_pfn(pfn) &&
4657                         PageTransCompound(pfn_to_page(pfn))) {
4658                         drop_spte(kvm, sptep);
4659                         need_tlb_flush = 1;
4660                         goto restart;
4661                 }
4662         }
4663
4664         return need_tlb_flush;
4665 }
4666
4667 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4668                                    const struct kvm_memory_slot *memslot)
4669 {
4670         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4671         spin_lock(&kvm->mmu_lock);
4672         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4673                          kvm_mmu_zap_collapsible_spte, true);
4674         spin_unlock(&kvm->mmu_lock);
4675 }
4676
4677 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4678                                    struct kvm_memory_slot *memslot)
4679 {
4680         bool flush;
4681
4682         spin_lock(&kvm->mmu_lock);
4683         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4684         spin_unlock(&kvm->mmu_lock);
4685
4686         lockdep_assert_held(&kvm->slots_lock);
4687
4688         /*
4689          * It's also safe to flush TLBs out of mmu lock here as currently this
4690          * function is only used for dirty logging, in which case flushing TLB
4691          * out of mmu lock also guarantees no dirty pages will be lost in
4692          * dirty_bitmap.
4693          */
4694         if (flush)
4695                 kvm_flush_remote_tlbs(kvm);
4696 }
4697 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4698
4699 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4700                                         struct kvm_memory_slot *memslot)
4701 {
4702         bool flush;
4703
4704         spin_lock(&kvm->mmu_lock);
4705         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4706                                         false);
4707         spin_unlock(&kvm->mmu_lock);
4708
4709         /* see kvm_mmu_slot_remove_write_access */
4710         lockdep_assert_held(&kvm->slots_lock);
4711
4712         if (flush)
4713                 kvm_flush_remote_tlbs(kvm);
4714 }
4715 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4716
4717 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4718                             struct kvm_memory_slot *memslot)
4719 {
4720         bool flush;
4721
4722         spin_lock(&kvm->mmu_lock);
4723         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4724         spin_unlock(&kvm->mmu_lock);
4725
4726         lockdep_assert_held(&kvm->slots_lock);
4727
4728         /* see kvm_mmu_slot_leaf_clear_dirty */
4729         if (flush)
4730                 kvm_flush_remote_tlbs(kvm);
4731 }
4732 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4733
4734 #define BATCH_ZAP_PAGES 10
4735 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4736 {
4737         struct kvm_mmu_page *sp, *node;
4738         int batch = 0;
4739
4740 restart:
4741         list_for_each_entry_safe_reverse(sp, node,
4742               &kvm->arch.active_mmu_pages, link) {
4743                 int ret;
4744
4745                 /*
4746                  * No obsolete page exists before new created page since
4747                  * active_mmu_pages is the FIFO list.
4748                  */
4749                 if (!is_obsolete_sp(kvm, sp))
4750                         break;
4751
4752                 /*
4753                  * Since we are reversely walking the list and the invalid
4754                  * list will be moved to the head, skip the invalid page
4755                  * can help us to avoid the infinity list walking.
4756                  */
4757                 if (sp->role.invalid)
4758                         continue;
4759
4760                 /*
4761                  * Need not flush tlb since we only zap the sp with invalid
4762                  * generation number.
4763                  */
4764                 if (batch >= BATCH_ZAP_PAGES &&
4765                       cond_resched_lock(&kvm->mmu_lock)) {
4766                         batch = 0;
4767                         goto restart;
4768                 }
4769
4770                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4771                                 &kvm->arch.zapped_obsolete_pages);
4772                 batch += ret;
4773
4774                 if (ret)
4775                         goto restart;
4776         }
4777
4778         /*
4779          * Should flush tlb before free page tables since lockless-walking
4780          * may use the pages.
4781          */
4782         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4783 }
4784
4785 /*
4786  * Fast invalidate all shadow pages and use lock-break technique
4787  * to zap obsolete pages.
4788  *
4789  * It's required when memslot is being deleted or VM is being
4790  * destroyed, in these cases, we should ensure that KVM MMU does
4791  * not use any resource of the being-deleted slot or all slots
4792  * after calling the function.
4793  */
4794 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4795 {
4796         spin_lock(&kvm->mmu_lock);
4797         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4798         kvm->arch.mmu_valid_gen++;
4799
4800         /*
4801          * Notify all vcpus to reload its shadow page table
4802          * and flush TLB. Then all vcpus will switch to new
4803          * shadow page table with the new mmu_valid_gen.
4804          *
4805          * Note: we should do this under the protection of
4806          * mmu-lock, otherwise, vcpu would purge shadow page
4807          * but miss tlb flush.
4808          */
4809         kvm_reload_remote_mmus(kvm);
4810
4811         kvm_zap_obsolete_pages(kvm);
4812         spin_unlock(&kvm->mmu_lock);
4813 }
4814
4815 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4816 {
4817         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4818 }
4819
4820 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4821 {
4822         /*
4823          * The very rare case: if the generation-number is round,
4824          * zap all shadow pages.
4825          */
4826         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4827                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4828                 kvm_mmu_invalidate_zap_all_pages(kvm);
4829         }
4830 }
4831
4832 static unsigned long
4833 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4834 {
4835         struct kvm *kvm;
4836         int nr_to_scan = sc->nr_to_scan;
4837         unsigned long freed = 0;
4838
4839         spin_lock(&kvm_lock);
4840
4841         list_for_each_entry(kvm, &vm_list, vm_list) {
4842                 int idx;
4843                 LIST_HEAD(invalid_list);
4844
4845                 /*
4846                  * Never scan more than sc->nr_to_scan VM instances.
4847                  * Will not hit this condition practically since we do not try
4848                  * to shrink more than one VM and it is very unlikely to see
4849                  * !n_used_mmu_pages so many times.
4850                  */
4851                 if (!nr_to_scan--)
4852                         break;
4853                 /*
4854                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4855                  * here. We may skip a VM instance errorneosly, but we do not
4856                  * want to shrink a VM that only started to populate its MMU
4857                  * anyway.
4858                  */
4859                 if (!kvm->arch.n_used_mmu_pages &&
4860                       !kvm_has_zapped_obsolete_pages(kvm))
4861                         continue;
4862
4863                 idx = srcu_read_lock(&kvm->srcu);
4864                 spin_lock(&kvm->mmu_lock);
4865
4866                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4867                         kvm_mmu_commit_zap_page(kvm,
4868                               &kvm->arch.zapped_obsolete_pages);
4869                         goto unlock;
4870                 }
4871
4872                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4873                         freed++;
4874                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4875
4876 unlock:
4877                 spin_unlock(&kvm->mmu_lock);
4878                 srcu_read_unlock(&kvm->srcu, idx);
4879
4880                 /*
4881                  * unfair on small ones
4882                  * per-vm shrinkers cry out
4883                  * sadness comes quickly
4884                  */
4885                 list_move_tail(&kvm->vm_list, &vm_list);
4886                 break;
4887         }
4888
4889         spin_unlock(&kvm_lock);
4890         return freed;
4891 }
4892
4893 static unsigned long
4894 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4895 {
4896         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4897 }
4898
4899 static struct shrinker mmu_shrinker = {
4900         .count_objects = mmu_shrink_count,
4901         .scan_objects = mmu_shrink_scan,
4902         .seeks = DEFAULT_SEEKS * 10,
4903 };
4904
4905 static void mmu_destroy_caches(void)
4906 {
4907         if (pte_list_desc_cache)
4908                 kmem_cache_destroy(pte_list_desc_cache);
4909         if (mmu_page_header_cache)
4910                 kmem_cache_destroy(mmu_page_header_cache);
4911 }
4912
4913 int kvm_mmu_module_init(void)
4914 {
4915         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4916                                             sizeof(struct pte_list_desc),
4917                                             0, 0, NULL);
4918         if (!pte_list_desc_cache)
4919                 goto nomem;
4920
4921         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4922                                                   sizeof(struct kvm_mmu_page),
4923                                                   0, 0, NULL);
4924         if (!mmu_page_header_cache)
4925                 goto nomem;
4926
4927         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4928                 goto nomem;
4929
4930         register_shrinker(&mmu_shrinker);
4931
4932         return 0;
4933
4934 nomem:
4935         mmu_destroy_caches();
4936         return -ENOMEM;
4937 }
4938
4939 /*
4940  * Caculate mmu pages needed for kvm.
4941  */
4942 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4943 {
4944         unsigned int nr_mmu_pages;
4945         unsigned int  nr_pages = 0;
4946         struct kvm_memslots *slots;
4947         struct kvm_memory_slot *memslot;
4948         int i;
4949
4950         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4951                 slots = __kvm_memslots(kvm, i);
4952
4953                 kvm_for_each_memslot(memslot, slots)
4954                         nr_pages += memslot->npages;
4955         }
4956
4957         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4958         nr_mmu_pages = max(nr_mmu_pages,
4959                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4960
4961         return nr_mmu_pages;
4962 }
4963
4964 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4965 {
4966         kvm_mmu_unload(vcpu);
4967         free_mmu_pages(vcpu);
4968         mmu_free_memory_caches(vcpu);
4969 }
4970
4971 void kvm_mmu_module_exit(void)
4972 {
4973         mmu_destroy_caches();
4974         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4975         unregister_shrinker(&mmu_shrinker);
4976         mmu_audit_disable();
4977 }