]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
KVM: nSVM: Set correct port for IOIO interception evaluation
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret & mask;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void *garbage)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void *garbage)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         WARN_ON(adjustment < 0);
1060         if (host)
1061                 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063         svm->vmcb->control.tsc_offset += adjustment;
1064         if (is_guest_mode(vcpu))
1065                 svm->nested.hsave->control.tsc_offset += adjustment;
1066         else
1067                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068                                      svm->vmcb->control.tsc_offset - adjustment,
1069                                      svm->vmcb->control.tsc_offset);
1070
1071         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076         u64 tsc;
1077
1078         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080         return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099         set_dr_intercepts(svm);
1100
1101         set_exception_intercept(svm, PF_VECTOR);
1102         set_exception_intercept(svm, UD_VECTOR);
1103         set_exception_intercept(svm, MC_VECTOR);
1104
1105         set_intercept(svm, INTERCEPT_INTR);
1106         set_intercept(svm, INTERCEPT_NMI);
1107         set_intercept(svm, INTERCEPT_SMI);
1108         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109         set_intercept(svm, INTERCEPT_RDPMC);
1110         set_intercept(svm, INTERCEPT_CPUID);
1111         set_intercept(svm, INTERCEPT_INVD);
1112         set_intercept(svm, INTERCEPT_HLT);
1113         set_intercept(svm, INTERCEPT_INVLPG);
1114         set_intercept(svm, INTERCEPT_INVLPGA);
1115         set_intercept(svm, INTERCEPT_IOIO_PROT);
1116         set_intercept(svm, INTERCEPT_MSR_PROT);
1117         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118         set_intercept(svm, INTERCEPT_SHUTDOWN);
1119         set_intercept(svm, INTERCEPT_VMRUN);
1120         set_intercept(svm, INTERCEPT_VMMCALL);
1121         set_intercept(svm, INTERCEPT_VMLOAD);
1122         set_intercept(svm, INTERCEPT_VMSAVE);
1123         set_intercept(svm, INTERCEPT_STGI);
1124         set_intercept(svm, INTERCEPT_CLGI);
1125         set_intercept(svm, INTERCEPT_SKINIT);
1126         set_intercept(svm, INTERCEPT_WBINVD);
1127         set_intercept(svm, INTERCEPT_MONITOR);
1128         set_intercept(svm, INTERCEPT_MWAIT);
1129         set_intercept(svm, INTERCEPT_XSETBV);
1130
1131         control->iopm_base_pa = iopm_base;
1132         control->msrpm_base_pa = __pa(svm->msrpm);
1133         control->int_ctl = V_INTR_MASKING_MASK;
1134
1135         init_seg(&save->es);
1136         init_seg(&save->ss);
1137         init_seg(&save->ds);
1138         init_seg(&save->fs);
1139         init_seg(&save->gs);
1140
1141         save->cs.selector = 0xf000;
1142         save->cs.base = 0xffff0000;
1143         /* Executable/Readable Code Segment */
1144         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146         save->cs.limit = 0xffff;
1147
1148         save->gdtr.limit = 0xffff;
1149         save->idtr.limit = 0xffff;
1150
1151         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154         svm_set_efer(&svm->vcpu, 0);
1155         save->dr6 = 0xffff0ff0;
1156         kvm_set_rflags(&svm->vcpu, 2);
1157         save->rip = 0x0000fff0;
1158         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160         /*
1161          * This is the guest-visible cr0 value.
1162          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163          */
1164         svm->vcpu.arch.cr0 = 0;
1165         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167         save->cr4 = X86_CR4_PAE;
1168         /* rdx = ?? */
1169
1170         if (npt_enabled) {
1171                 /* Setup VMCB for Nested Paging */
1172                 control->nested_ctl = 1;
1173                 clr_intercept(svm, INTERCEPT_INVLPG);
1174                 clr_exception_intercept(svm, PF_VECTOR);
1175                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177                 save->g_pat = 0x0007040600070406ULL;
1178                 save->cr3 = 0;
1179                 save->cr4 = 0;
1180         }
1181         svm->asid_generation = 0;
1182
1183         svm->nested.vmcb = 0;
1184         svm->vcpu.arch.hflags = 0;
1185
1186         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187                 control->pause_filter_count = 3000;
1188                 set_intercept(svm, INTERCEPT_PAUSE);
1189         }
1190
1191         mark_all_dirty(svm->vmcb);
1192
1193         enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198         struct vcpu_svm *svm = to_svm(vcpu);
1199         u32 dummy;
1200         u32 eax = 1;
1201
1202         init_vmcb(svm);
1203
1204         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210         struct vcpu_svm *svm;
1211         struct page *page;
1212         struct page *msrpm_pages;
1213         struct page *hsave_page;
1214         struct page *nested_msrpm_pages;
1215         int err;
1216
1217         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218         if (!svm) {
1219                 err = -ENOMEM;
1220                 goto out;
1221         }
1222
1223         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226         if (err)
1227                 goto free_svm;
1228
1229         err = -ENOMEM;
1230         page = alloc_page(GFP_KERNEL);
1231         if (!page)
1232                 goto uninit;
1233
1234         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235         if (!msrpm_pages)
1236                 goto free_page1;
1237
1238         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239         if (!nested_msrpm_pages)
1240                 goto free_page2;
1241
1242         hsave_page = alloc_page(GFP_KERNEL);
1243         if (!hsave_page)
1244                 goto free_page3;
1245
1246         svm->nested.hsave = page_address(hsave_page);
1247
1248         svm->msrpm = page_address(msrpm_pages);
1249         svm_vcpu_init_msrpm(svm->msrpm);
1250
1251         svm->nested.msrpm = page_address(nested_msrpm_pages);
1252         svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254         svm->vmcb = page_address(page);
1255         clear_page(svm->vmcb);
1256         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257         svm->asid_generation = 0;
1258         init_vmcb(svm);
1259
1260         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261         if (kvm_vcpu_is_bsp(&svm->vcpu))
1262                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263
1264         svm_init_osvw(&svm->vcpu);
1265
1266         return &svm->vcpu;
1267
1268 free_page3:
1269         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page2:
1271         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1272 free_page1:
1273         __free_page(page);
1274 uninit:
1275         kvm_vcpu_uninit(&svm->vcpu);
1276 free_svm:
1277         kmem_cache_free(kvm_vcpu_cache, svm);
1278 out:
1279         return ERR_PTR(err);
1280 }
1281
1282 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1283 {
1284         struct vcpu_svm *svm = to_svm(vcpu);
1285
1286         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288         __free_page(virt_to_page(svm->nested.hsave));
1289         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290         kvm_vcpu_uninit(vcpu);
1291         kmem_cache_free(kvm_vcpu_cache, svm);
1292 }
1293
1294 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295 {
1296         struct vcpu_svm *svm = to_svm(vcpu);
1297         int i;
1298
1299         if (unlikely(cpu != vcpu->cpu)) {
1300                 svm->asid_generation = 0;
1301                 mark_all_dirty(svm->vmcb);
1302         }
1303
1304 #ifdef CONFIG_X86_64
1305         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1306 #endif
1307         savesegment(fs, svm->host.fs);
1308         savesegment(gs, svm->host.gs);
1309         svm->host.ldt = kvm_read_ldt();
1310
1311         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313
1314         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1315             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1316                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1317                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1318         }
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323         struct vcpu_svm *svm = to_svm(vcpu);
1324         int i;
1325
1326         ++vcpu->stat.host_state_reload;
1327         kvm_load_ldt(svm->host.ldt);
1328 #ifdef CONFIG_X86_64
1329         loadsegment(fs, svm->host.fs);
1330         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331         load_gs_index(svm->host.gs);
1332 #else
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334         loadsegment(gs, svm->host.gs);
1335 #endif
1336 #endif
1337         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 }
1340
1341 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343         return to_svm(vcpu)->vmcb->save.rflags;
1344 }
1345
1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1347 {
1348        /*
1349         * Any change of EFLAGS.VM is accompained by a reload of SS
1350         * (caused by either a task switch or an inter-privilege IRET),
1351         * so we do not need to update the CPL here.
1352         */
1353         to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358         switch (reg) {
1359         case VCPU_EXREG_PDPTR:
1360                 BUG_ON(!npt_enabled);
1361                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362                 break;
1363         default:
1364                 BUG();
1365         }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370         set_intercept(svm, INTERCEPT_VINTR);
1371 }
1372
1373 static void svm_clear_vintr(struct vcpu_svm *svm)
1374 {
1375         clr_intercept(svm, INTERCEPT_VINTR);
1376 }
1377
1378 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1379 {
1380         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1381
1382         switch (seg) {
1383         case VCPU_SREG_CS: return &save->cs;
1384         case VCPU_SREG_DS: return &save->ds;
1385         case VCPU_SREG_ES: return &save->es;
1386         case VCPU_SREG_FS: return &save->fs;
1387         case VCPU_SREG_GS: return &save->gs;
1388         case VCPU_SREG_SS: return &save->ss;
1389         case VCPU_SREG_TR: return &save->tr;
1390         case VCPU_SREG_LDTR: return &save->ldtr;
1391         }
1392         BUG();
1393         return NULL;
1394 }
1395
1396 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1397 {
1398         struct vmcb_seg *s = svm_seg(vcpu, seg);
1399
1400         return s->base;
1401 }
1402
1403 static void svm_get_segment(struct kvm_vcpu *vcpu,
1404                             struct kvm_segment *var, int seg)
1405 {
1406         struct vmcb_seg *s = svm_seg(vcpu, seg);
1407
1408         var->base = s->base;
1409         var->limit = s->limit;
1410         var->selector = s->selector;
1411         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1412         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1413         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1414         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1415         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1416         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1417         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1418         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1419
1420         /*
1421          * AMD's VMCB does not have an explicit unusable field, so emulate it
1422          * for cross vendor migration purposes by "not present"
1423          */
1424         var->unusable = !var->present || (var->type == 0);
1425
1426         switch (seg) {
1427         case VCPU_SREG_CS:
1428                 /*
1429                  * SVM always stores 0 for the 'G' bit in the CS selector in
1430                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1431                  * Intel's VMENTRY has a check on the 'G' bit.
1432                  */
1433                 var->g = s->limit > 0xfffff;
1434                 break;
1435         case VCPU_SREG_TR:
1436                 /*
1437                  * Work around a bug where the busy flag in the tr selector
1438                  * isn't exposed
1439                  */
1440                 var->type |= 0x2;
1441                 break;
1442         case VCPU_SREG_DS:
1443         case VCPU_SREG_ES:
1444         case VCPU_SREG_FS:
1445         case VCPU_SREG_GS:
1446                 /*
1447                  * The accessed bit must always be set in the segment
1448                  * descriptor cache, although it can be cleared in the
1449                  * descriptor, the cached bit always remains at 1. Since
1450                  * Intel has a check on this, set it here to support
1451                  * cross-vendor migration.
1452                  */
1453                 if (!var->unusable)
1454                         var->type |= 0x1;
1455                 break;
1456         case VCPU_SREG_SS:
1457                 /*
1458                  * On AMD CPUs sometimes the DB bit in the segment
1459                  * descriptor is left as 1, although the whole segment has
1460                  * been made unusable. Clear it here to pass an Intel VMX
1461                  * entry check when cross vendor migrating.
1462                  */
1463                 if (var->unusable)
1464                         var->db = 0;
1465                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1466                 break;
1467         }
1468 }
1469
1470 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1471 {
1472         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1473
1474         return save->cpl;
1475 }
1476
1477 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1478 {
1479         struct vcpu_svm *svm = to_svm(vcpu);
1480
1481         dt->size = svm->vmcb->save.idtr.limit;
1482         dt->address = svm->vmcb->save.idtr.base;
1483 }
1484
1485 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1486 {
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         svm->vmcb->save.idtr.limit = dt->size;
1490         svm->vmcb->save.idtr.base = dt->address ;
1491         mark_dirty(svm->vmcb, VMCB_DT);
1492 }
1493
1494 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1495 {
1496         struct vcpu_svm *svm = to_svm(vcpu);
1497
1498         dt->size = svm->vmcb->save.gdtr.limit;
1499         dt->address = svm->vmcb->save.gdtr.base;
1500 }
1501
1502 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504         struct vcpu_svm *svm = to_svm(vcpu);
1505
1506         svm->vmcb->save.gdtr.limit = dt->size;
1507         svm->vmcb->save.gdtr.base = dt->address ;
1508         mark_dirty(svm->vmcb, VMCB_DT);
1509 }
1510
1511 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1512 {
1513 }
1514
1515 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1516 {
1517 }
1518
1519 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522
1523 static void update_cr0_intercept(struct vcpu_svm *svm)
1524 {
1525         ulong gcr0 = svm->vcpu.arch.cr0;
1526         u64 *hcr0 = &svm->vmcb->save.cr0;
1527
1528         if (!svm->vcpu.fpu_active)
1529                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1530         else
1531                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1532                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1533
1534         mark_dirty(svm->vmcb, VMCB_CR);
1535
1536         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1537                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1538                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1539         } else {
1540                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1541                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1542         }
1543 }
1544
1545 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1546 {
1547         struct vcpu_svm *svm = to_svm(vcpu);
1548
1549 #ifdef CONFIG_X86_64
1550         if (vcpu->arch.efer & EFER_LME) {
1551                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1552                         vcpu->arch.efer |= EFER_LMA;
1553                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1554                 }
1555
1556                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1557                         vcpu->arch.efer &= ~EFER_LMA;
1558                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1559                 }
1560         }
1561 #endif
1562         vcpu->arch.cr0 = cr0;
1563
1564         if (!npt_enabled)
1565                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1566
1567         if (!vcpu->fpu_active)
1568                 cr0 |= X86_CR0_TS;
1569         /*
1570          * re-enable caching here because the QEMU bios
1571          * does not do it - this results in some delay at
1572          * reboot
1573          */
1574         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1575         svm->vmcb->save.cr0 = cr0;
1576         mark_dirty(svm->vmcb, VMCB_CR);
1577         update_cr0_intercept(svm);
1578 }
1579
1580 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1581 {
1582         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1583         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1584
1585         if (cr4 & X86_CR4_VMXE)
1586                 return 1;
1587
1588         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1589                 svm_flush_tlb(vcpu);
1590
1591         vcpu->arch.cr4 = cr4;
1592         if (!npt_enabled)
1593                 cr4 |= X86_CR4_PAE;
1594         cr4 |= host_cr4_mce;
1595         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1596         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1597         return 0;
1598 }
1599
1600 static void svm_set_segment(struct kvm_vcpu *vcpu,
1601                             struct kvm_segment *var, int seg)
1602 {
1603         struct vcpu_svm *svm = to_svm(vcpu);
1604         struct vmcb_seg *s = svm_seg(vcpu, seg);
1605
1606         s->base = var->base;
1607         s->limit = var->limit;
1608         s->selector = var->selector;
1609         if (var->unusable)
1610                 s->attrib = 0;
1611         else {
1612                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1613                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1614                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1615                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1616                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1617                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1618                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1619                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1620         }
1621
1622         /*
1623          * This is always accurate, except if SYSRET returned to a segment
1624          * with SS.DPL != 3.  Intel does not have this quirk, and always
1625          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1626          * would entail passing the CPL to userspace and back.
1627          */
1628         if (seg == VCPU_SREG_SS)
1629                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1630
1631         mark_dirty(svm->vmcb, VMCB_SEG);
1632 }
1633
1634 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1635 {
1636         struct vcpu_svm *svm = to_svm(vcpu);
1637
1638         clr_exception_intercept(svm, DB_VECTOR);
1639         clr_exception_intercept(svm, BP_VECTOR);
1640
1641         if (svm->nmi_singlestep)
1642                 set_exception_intercept(svm, DB_VECTOR);
1643
1644         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1645                 if (vcpu->guest_debug &
1646                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1647                         set_exception_intercept(svm, DB_VECTOR);
1648                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1649                         set_exception_intercept(svm, BP_VECTOR);
1650         } else
1651                 vcpu->guest_debug = 0;
1652 }
1653
1654 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1655 {
1656         if (sd->next_asid > sd->max_asid) {
1657                 ++sd->asid_generation;
1658                 sd->next_asid = 1;
1659                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1660         }
1661
1662         svm->asid_generation = sd->asid_generation;
1663         svm->vmcb->control.asid = sd->next_asid++;
1664
1665         mark_dirty(svm->vmcb, VMCB_ASID);
1666 }
1667
1668 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1669 {
1670         return to_svm(vcpu)->vmcb->save.dr6;
1671 }
1672
1673 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1674 {
1675         struct vcpu_svm *svm = to_svm(vcpu);
1676
1677         svm->vmcb->save.dr6 = value;
1678         mark_dirty(svm->vmcb, VMCB_DR);
1679 }
1680
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683         struct vcpu_svm *svm = to_svm(vcpu);
1684
1685         get_debugreg(vcpu->arch.db[0], 0);
1686         get_debugreg(vcpu->arch.db[1], 1);
1687         get_debugreg(vcpu->arch.db[2], 2);
1688         get_debugreg(vcpu->arch.db[3], 3);
1689         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1690         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1691
1692         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1693         set_dr_intercepts(svm);
1694 }
1695
1696 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1697 {
1698         struct vcpu_svm *svm = to_svm(vcpu);
1699
1700         svm->vmcb->save.dr7 = value;
1701         mark_dirty(svm->vmcb, VMCB_DR);
1702 }
1703
1704 static int pf_interception(struct vcpu_svm *svm)
1705 {
1706         u64 fault_address = svm->vmcb->control.exit_info_2;
1707         u32 error_code;
1708         int r = 1;
1709
1710         switch (svm->apf_reason) {
1711         default:
1712                 error_code = svm->vmcb->control.exit_info_1;
1713
1714                 trace_kvm_page_fault(fault_address, error_code);
1715                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1716                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1717                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1718                         svm->vmcb->control.insn_bytes,
1719                         svm->vmcb->control.insn_len);
1720                 break;
1721         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1722                 svm->apf_reason = 0;
1723                 local_irq_disable();
1724                 kvm_async_pf_task_wait(fault_address);
1725                 local_irq_enable();
1726                 break;
1727         case KVM_PV_REASON_PAGE_READY:
1728                 svm->apf_reason = 0;
1729                 local_irq_disable();
1730                 kvm_async_pf_task_wake(fault_address);
1731                 local_irq_enable();
1732                 break;
1733         }
1734         return r;
1735 }
1736
1737 static int db_interception(struct vcpu_svm *svm)
1738 {
1739         struct kvm_run *kvm_run = svm->vcpu.run;
1740
1741         if (!(svm->vcpu.guest_debug &
1742               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1743                 !svm->nmi_singlestep) {
1744                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1745                 return 1;
1746         }
1747
1748         if (svm->nmi_singlestep) {
1749                 svm->nmi_singlestep = false;
1750                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1751                         svm->vmcb->save.rflags &=
1752                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1753                 update_db_bp_intercept(&svm->vcpu);
1754         }
1755
1756         if (svm->vcpu.guest_debug &
1757             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1758                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1759                 kvm_run->debug.arch.pc =
1760                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1761                 kvm_run->debug.arch.exception = DB_VECTOR;
1762                 return 0;
1763         }
1764
1765         return 1;
1766 }
1767
1768 static int bp_interception(struct vcpu_svm *svm)
1769 {
1770         struct kvm_run *kvm_run = svm->vcpu.run;
1771
1772         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1773         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1774         kvm_run->debug.arch.exception = BP_VECTOR;
1775         return 0;
1776 }
1777
1778 static int ud_interception(struct vcpu_svm *svm)
1779 {
1780         int er;
1781
1782         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1783         if (er != EMULATE_DONE)
1784                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1785         return 1;
1786 }
1787
1788 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1789 {
1790         struct vcpu_svm *svm = to_svm(vcpu);
1791
1792         clr_exception_intercept(svm, NM_VECTOR);
1793
1794         svm->vcpu.fpu_active = 1;
1795         update_cr0_intercept(svm);
1796 }
1797
1798 static int nm_interception(struct vcpu_svm *svm)
1799 {
1800         svm_fpu_activate(&svm->vcpu);
1801         return 1;
1802 }
1803
1804 static bool is_erratum_383(void)
1805 {
1806         int err, i;
1807         u64 value;
1808
1809         if (!erratum_383_found)
1810                 return false;
1811
1812         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1813         if (err)
1814                 return false;
1815
1816         /* Bit 62 may or may not be set for this mce */
1817         value &= ~(1ULL << 62);
1818
1819         if (value != 0xb600000000010015ULL)
1820                 return false;
1821
1822         /* Clear MCi_STATUS registers */
1823         for (i = 0; i < 6; ++i)
1824                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1825
1826         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1827         if (!err) {
1828                 u32 low, high;
1829
1830                 value &= ~(1ULL << 2);
1831                 low    = lower_32_bits(value);
1832                 high   = upper_32_bits(value);
1833
1834                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1835         }
1836
1837         /* Flush tlb to evict multi-match entries */
1838         __flush_tlb_all();
1839
1840         return true;
1841 }
1842
1843 static void svm_handle_mce(struct vcpu_svm *svm)
1844 {
1845         if (is_erratum_383()) {
1846                 /*
1847                  * Erratum 383 triggered. Guest state is corrupt so kill the
1848                  * guest.
1849                  */
1850                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1851
1852                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1853
1854                 return;
1855         }
1856
1857         /*
1858          * On an #MC intercept the MCE handler is not called automatically in
1859          * the host. So do it by hand here.
1860          */
1861         asm volatile (
1862                 "int $0x12\n");
1863         /* not sure if we ever come back to this point */
1864
1865         return;
1866 }
1867
1868 static int mc_interception(struct vcpu_svm *svm)
1869 {
1870         return 1;
1871 }
1872
1873 static int shutdown_interception(struct vcpu_svm *svm)
1874 {
1875         struct kvm_run *kvm_run = svm->vcpu.run;
1876
1877         /*
1878          * VMCB is undefined after a SHUTDOWN intercept
1879          * so reinitialize it.
1880          */
1881         clear_page(svm->vmcb);
1882         init_vmcb(svm);
1883
1884         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1885         return 0;
1886 }
1887
1888 static int io_interception(struct vcpu_svm *svm)
1889 {
1890         struct kvm_vcpu *vcpu = &svm->vcpu;
1891         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1892         int size, in, string;
1893         unsigned port;
1894
1895         ++svm->vcpu.stat.io_exits;
1896         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1897         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1898         if (string || in)
1899                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1900
1901         port = io_info >> 16;
1902         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1903         svm->next_rip = svm->vmcb->control.exit_info_2;
1904         skip_emulated_instruction(&svm->vcpu);
1905
1906         return kvm_fast_pio_out(vcpu, size, port);
1907 }
1908
1909 static int nmi_interception(struct vcpu_svm *svm)
1910 {
1911         return 1;
1912 }
1913
1914 static int intr_interception(struct vcpu_svm *svm)
1915 {
1916         ++svm->vcpu.stat.irq_exits;
1917         return 1;
1918 }
1919
1920 static int nop_on_interception(struct vcpu_svm *svm)
1921 {
1922         return 1;
1923 }
1924
1925 static int halt_interception(struct vcpu_svm *svm)
1926 {
1927         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1928         skip_emulated_instruction(&svm->vcpu);
1929         return kvm_emulate_halt(&svm->vcpu);
1930 }
1931
1932 static int vmmcall_interception(struct vcpu_svm *svm)
1933 {
1934         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1935         skip_emulated_instruction(&svm->vcpu);
1936         kvm_emulate_hypercall(&svm->vcpu);
1937         return 1;
1938 }
1939
1940 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1941 {
1942         struct vcpu_svm *svm = to_svm(vcpu);
1943
1944         return svm->nested.nested_cr3;
1945 }
1946
1947 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1948 {
1949         struct vcpu_svm *svm = to_svm(vcpu);
1950         u64 cr3 = svm->nested.nested_cr3;
1951         u64 pdpte;
1952         int ret;
1953
1954         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1955                                   offset_in_page(cr3) + index * 8, 8);
1956         if (ret)
1957                 return 0;
1958         return pdpte;
1959 }
1960
1961 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1962                                    unsigned long root)
1963 {
1964         struct vcpu_svm *svm = to_svm(vcpu);
1965
1966         svm->vmcb->control.nested_cr3 = root;
1967         mark_dirty(svm->vmcb, VMCB_NPT);
1968         svm_flush_tlb(vcpu);
1969 }
1970
1971 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1972                                        struct x86_exception *fault)
1973 {
1974         struct vcpu_svm *svm = to_svm(vcpu);
1975
1976         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1977         svm->vmcb->control.exit_code_hi = 0;
1978         svm->vmcb->control.exit_info_1 = fault->error_code;
1979         svm->vmcb->control.exit_info_2 = fault->address;
1980
1981         nested_svm_vmexit(svm);
1982 }
1983
1984 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1985 {
1986         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1987
1988         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1989         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1990         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1991         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1992         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1993         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1994 }
1995
1996 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1997 {
1998         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1999 }
2000
2001 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2002 {
2003         if (!(svm->vcpu.arch.efer & EFER_SVME)
2004             || !is_paging(&svm->vcpu)) {
2005                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2006                 return 1;
2007         }
2008
2009         if (svm->vmcb->save.cpl) {
2010                 kvm_inject_gp(&svm->vcpu, 0);
2011                 return 1;
2012         }
2013
2014        return 0;
2015 }
2016
2017 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2018                                       bool has_error_code, u32 error_code)
2019 {
2020         int vmexit;
2021
2022         if (!is_guest_mode(&svm->vcpu))
2023                 return 0;
2024
2025         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2026         svm->vmcb->control.exit_code_hi = 0;
2027         svm->vmcb->control.exit_info_1 = error_code;
2028         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2029
2030         vmexit = nested_svm_intercept(svm);
2031         if (vmexit == NESTED_EXIT_DONE)
2032                 svm->nested.exit_required = true;
2033
2034         return vmexit;
2035 }
2036
2037 /* This function returns true if it is save to enable the irq window */
2038 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2039 {
2040         if (!is_guest_mode(&svm->vcpu))
2041                 return true;
2042
2043         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2044                 return true;
2045
2046         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2047                 return false;
2048
2049         /*
2050          * if vmexit was already requested (by intercepted exception
2051          * for instance) do not overwrite it with "external interrupt"
2052          * vmexit.
2053          */
2054         if (svm->nested.exit_required)
2055                 return false;
2056
2057         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2058         svm->vmcb->control.exit_info_1 = 0;
2059         svm->vmcb->control.exit_info_2 = 0;
2060
2061         if (svm->nested.intercept & 1ULL) {
2062                 /*
2063                  * The #vmexit can't be emulated here directly because this
2064                  * code path runs with irqs and preemption disabled. A
2065                  * #vmexit emulation might sleep. Only signal request for
2066                  * the #vmexit here.
2067                  */
2068                 svm->nested.exit_required = true;
2069                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2070                 return false;
2071         }
2072
2073         return true;
2074 }
2075
2076 /* This function returns true if it is save to enable the nmi window */
2077 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2078 {
2079         if (!is_guest_mode(&svm->vcpu))
2080                 return true;
2081
2082         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2083                 return true;
2084
2085         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2086         svm->nested.exit_required = true;
2087
2088         return false;
2089 }
2090
2091 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2092 {
2093         struct page *page;
2094
2095         might_sleep();
2096
2097         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2098         if (is_error_page(page))
2099                 goto error;
2100
2101         *_page = page;
2102
2103         return kmap(page);
2104
2105 error:
2106         kvm_inject_gp(&svm->vcpu, 0);
2107
2108         return NULL;
2109 }
2110
2111 static void nested_svm_unmap(struct page *page)
2112 {
2113         kunmap(page);
2114         kvm_release_page_dirty(page);
2115 }
2116
2117 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2118 {
2119         unsigned port, size, iopm_len;
2120         u16 val, mask;
2121         u8 start_bit;
2122         u64 gpa;
2123
2124         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2125                 return NESTED_EXIT_HOST;
2126
2127         port = svm->vmcb->control.exit_info_1 >> 16;
2128         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2129                 SVM_IOIO_SIZE_SHIFT;
2130         gpa  = svm->nested.vmcb_iopm + (port / 8);
2131         start_bit = port % 8;
2132         iopm_len = (start_bit + size > 8) ? 2 : 1;
2133         mask = (0xf >> (4 - size)) << start_bit;
2134         val = 0;
2135
2136         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2137                 return NESTED_EXIT_DONE;
2138
2139         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2140 }
2141
2142 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2143 {
2144         u32 offset, msr, value;
2145         int write, mask;
2146
2147         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2148                 return NESTED_EXIT_HOST;
2149
2150         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2151         offset = svm_msrpm_offset(msr);
2152         write  = svm->vmcb->control.exit_info_1 & 1;
2153         mask   = 1 << ((2 * (msr & 0xf)) + write);
2154
2155         if (offset == MSR_INVALID)
2156                 return NESTED_EXIT_DONE;
2157
2158         /* Offset is in 32 bit units but need in 8 bit units */
2159         offset *= 4;
2160
2161         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2162                 return NESTED_EXIT_DONE;
2163
2164         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2165 }
2166
2167 static int nested_svm_exit_special(struct vcpu_svm *svm)
2168 {
2169         u32 exit_code = svm->vmcb->control.exit_code;
2170
2171         switch (exit_code) {
2172         case SVM_EXIT_INTR:
2173         case SVM_EXIT_NMI:
2174         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2175                 return NESTED_EXIT_HOST;
2176         case SVM_EXIT_NPF:
2177                 /* For now we are always handling NPFs when using them */
2178                 if (npt_enabled)
2179                         return NESTED_EXIT_HOST;
2180                 break;
2181         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2182                 /* When we're shadowing, trap PFs, but not async PF */
2183                 if (!npt_enabled && svm->apf_reason == 0)
2184                         return NESTED_EXIT_HOST;
2185                 break;
2186         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2187                 nm_interception(svm);
2188                 break;
2189         default:
2190                 break;
2191         }
2192
2193         return NESTED_EXIT_CONTINUE;
2194 }
2195
2196 /*
2197  * If this function returns true, this #vmexit was already handled
2198  */
2199 static int nested_svm_intercept(struct vcpu_svm *svm)
2200 {
2201         u32 exit_code = svm->vmcb->control.exit_code;
2202         int vmexit = NESTED_EXIT_HOST;
2203
2204         switch (exit_code) {
2205         case SVM_EXIT_MSR:
2206                 vmexit = nested_svm_exit_handled_msr(svm);
2207                 break;
2208         case SVM_EXIT_IOIO:
2209                 vmexit = nested_svm_intercept_ioio(svm);
2210                 break;
2211         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2212                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2213                 if (svm->nested.intercept_cr & bit)
2214                         vmexit = NESTED_EXIT_DONE;
2215                 break;
2216         }
2217         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2218                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2219                 if (svm->nested.intercept_dr & bit)
2220                         vmexit = NESTED_EXIT_DONE;
2221                 break;
2222         }
2223         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2224                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2225                 if (svm->nested.intercept_exceptions & excp_bits)
2226                         vmexit = NESTED_EXIT_DONE;
2227                 /* async page fault always cause vmexit */
2228                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2229                          svm->apf_reason != 0)
2230                         vmexit = NESTED_EXIT_DONE;
2231                 break;
2232         }
2233         case SVM_EXIT_ERR: {
2234                 vmexit = NESTED_EXIT_DONE;
2235                 break;
2236         }
2237         default: {
2238                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2239                 if (svm->nested.intercept & exit_bits)
2240                         vmexit = NESTED_EXIT_DONE;
2241         }
2242         }
2243
2244         return vmexit;
2245 }
2246
2247 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2248 {
2249         int vmexit;
2250
2251         vmexit = nested_svm_intercept(svm);
2252
2253         if (vmexit == NESTED_EXIT_DONE)
2254                 nested_svm_vmexit(svm);
2255
2256         return vmexit;
2257 }
2258
2259 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2260 {
2261         struct vmcb_control_area *dst  = &dst_vmcb->control;
2262         struct vmcb_control_area *from = &from_vmcb->control;
2263
2264         dst->intercept_cr         = from->intercept_cr;
2265         dst->intercept_dr         = from->intercept_dr;
2266         dst->intercept_exceptions = from->intercept_exceptions;
2267         dst->intercept            = from->intercept;
2268         dst->iopm_base_pa         = from->iopm_base_pa;
2269         dst->msrpm_base_pa        = from->msrpm_base_pa;
2270         dst->tsc_offset           = from->tsc_offset;
2271         dst->asid                 = from->asid;
2272         dst->tlb_ctl              = from->tlb_ctl;
2273         dst->int_ctl              = from->int_ctl;
2274         dst->int_vector           = from->int_vector;
2275         dst->int_state            = from->int_state;
2276         dst->exit_code            = from->exit_code;
2277         dst->exit_code_hi         = from->exit_code_hi;
2278         dst->exit_info_1          = from->exit_info_1;
2279         dst->exit_info_2          = from->exit_info_2;
2280         dst->exit_int_info        = from->exit_int_info;
2281         dst->exit_int_info_err    = from->exit_int_info_err;
2282         dst->nested_ctl           = from->nested_ctl;
2283         dst->event_inj            = from->event_inj;
2284         dst->event_inj_err        = from->event_inj_err;
2285         dst->nested_cr3           = from->nested_cr3;
2286         dst->lbr_ctl              = from->lbr_ctl;
2287 }
2288
2289 static int nested_svm_vmexit(struct vcpu_svm *svm)
2290 {
2291         struct vmcb *nested_vmcb;
2292         struct vmcb *hsave = svm->nested.hsave;
2293         struct vmcb *vmcb = svm->vmcb;
2294         struct page *page;
2295
2296         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2297                                        vmcb->control.exit_info_1,
2298                                        vmcb->control.exit_info_2,
2299                                        vmcb->control.exit_int_info,
2300                                        vmcb->control.exit_int_info_err,
2301                                        KVM_ISA_SVM);
2302
2303         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2304         if (!nested_vmcb)
2305                 return 1;
2306
2307         /* Exit Guest-Mode */
2308         leave_guest_mode(&svm->vcpu);
2309         svm->nested.vmcb = 0;
2310
2311         /* Give the current vmcb to the guest */
2312         disable_gif(svm);
2313
2314         nested_vmcb->save.es     = vmcb->save.es;
2315         nested_vmcb->save.cs     = vmcb->save.cs;
2316         nested_vmcb->save.ss     = vmcb->save.ss;
2317         nested_vmcb->save.ds     = vmcb->save.ds;
2318         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2319         nested_vmcb->save.idtr   = vmcb->save.idtr;
2320         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2321         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2322         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2323         nested_vmcb->save.cr2    = vmcb->save.cr2;
2324         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2325         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2326         nested_vmcb->save.rip    = vmcb->save.rip;
2327         nested_vmcb->save.rsp    = vmcb->save.rsp;
2328         nested_vmcb->save.rax    = vmcb->save.rax;
2329         nested_vmcb->save.dr7    = vmcb->save.dr7;
2330         nested_vmcb->save.dr6    = vmcb->save.dr6;
2331         nested_vmcb->save.cpl    = vmcb->save.cpl;
2332
2333         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2334         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2335         nested_vmcb->control.int_state         = vmcb->control.int_state;
2336         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2337         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2338         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2339         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2340         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2341         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2342         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2343
2344         /*
2345          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2346          * to make sure that we do not lose injected events. So check event_inj
2347          * here and copy it to exit_int_info if it is valid.
2348          * Exit_int_info and event_inj can't be both valid because the case
2349          * below only happens on a VMRUN instruction intercept which has
2350          * no valid exit_int_info set.
2351          */
2352         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2353                 struct vmcb_control_area *nc = &nested_vmcb->control;
2354
2355                 nc->exit_int_info     = vmcb->control.event_inj;
2356                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2357         }
2358
2359         nested_vmcb->control.tlb_ctl           = 0;
2360         nested_vmcb->control.event_inj         = 0;
2361         nested_vmcb->control.event_inj_err     = 0;
2362
2363         /* We always set V_INTR_MASKING and remember the old value in hflags */
2364         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2365                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2366
2367         /* Restore the original control entries */
2368         copy_vmcb_control_area(vmcb, hsave);
2369
2370         kvm_clear_exception_queue(&svm->vcpu);
2371         kvm_clear_interrupt_queue(&svm->vcpu);
2372
2373         svm->nested.nested_cr3 = 0;
2374
2375         /* Restore selected save entries */
2376         svm->vmcb->save.es = hsave->save.es;
2377         svm->vmcb->save.cs = hsave->save.cs;
2378         svm->vmcb->save.ss = hsave->save.ss;
2379         svm->vmcb->save.ds = hsave->save.ds;
2380         svm->vmcb->save.gdtr = hsave->save.gdtr;
2381         svm->vmcb->save.idtr = hsave->save.idtr;
2382         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2383         svm_set_efer(&svm->vcpu, hsave->save.efer);
2384         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2385         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2386         if (npt_enabled) {
2387                 svm->vmcb->save.cr3 = hsave->save.cr3;
2388                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2389         } else {
2390                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2391         }
2392         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2393         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2394         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2395         svm->vmcb->save.dr7 = 0;
2396         svm->vmcb->save.cpl = 0;
2397         svm->vmcb->control.exit_int_info = 0;
2398
2399         mark_all_dirty(svm->vmcb);
2400
2401         nested_svm_unmap(page);
2402
2403         nested_svm_uninit_mmu_context(&svm->vcpu);
2404         kvm_mmu_reset_context(&svm->vcpu);
2405         kvm_mmu_load(&svm->vcpu);
2406
2407         return 0;
2408 }
2409
2410 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2411 {
2412         /*
2413          * This function merges the msr permission bitmaps of kvm and the
2414          * nested vmcb. It is optimized in that it only merges the parts where
2415          * the kvm msr permission bitmap may contain zero bits
2416          */
2417         int i;
2418
2419         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2420                 return true;
2421
2422         for (i = 0; i < MSRPM_OFFSETS; i++) {
2423                 u32 value, p;
2424                 u64 offset;
2425
2426                 if (msrpm_offsets[i] == 0xffffffff)
2427                         break;
2428
2429                 p      = msrpm_offsets[i];
2430                 offset = svm->nested.vmcb_msrpm + (p * 4);
2431
2432                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2433                         return false;
2434
2435                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2436         }
2437
2438         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2439
2440         return true;
2441 }
2442
2443 static bool nested_vmcb_checks(struct vmcb *vmcb)
2444 {
2445         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2446                 return false;
2447
2448         if (vmcb->control.asid == 0)
2449                 return false;
2450
2451         if (vmcb->control.nested_ctl && !npt_enabled)
2452                 return false;
2453
2454         return true;
2455 }
2456
2457 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2458 {
2459         struct vmcb *nested_vmcb;
2460         struct vmcb *hsave = svm->nested.hsave;
2461         struct vmcb *vmcb = svm->vmcb;
2462         struct page *page;
2463         u64 vmcb_gpa;
2464
2465         vmcb_gpa = svm->vmcb->save.rax;
2466
2467         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2468         if (!nested_vmcb)
2469                 return false;
2470
2471         if (!nested_vmcb_checks(nested_vmcb)) {
2472                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2473                 nested_vmcb->control.exit_code_hi = 0;
2474                 nested_vmcb->control.exit_info_1  = 0;
2475                 nested_vmcb->control.exit_info_2  = 0;
2476
2477                 nested_svm_unmap(page);
2478
2479                 return false;
2480         }
2481
2482         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2483                                nested_vmcb->save.rip,
2484                                nested_vmcb->control.int_ctl,
2485                                nested_vmcb->control.event_inj,
2486                                nested_vmcb->control.nested_ctl);
2487
2488         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2489                                     nested_vmcb->control.intercept_cr >> 16,
2490                                     nested_vmcb->control.intercept_exceptions,
2491                                     nested_vmcb->control.intercept);
2492
2493         /* Clear internal status */
2494         kvm_clear_exception_queue(&svm->vcpu);
2495         kvm_clear_interrupt_queue(&svm->vcpu);
2496
2497         /*
2498          * Save the old vmcb, so we don't need to pick what we save, but can
2499          * restore everything when a VMEXIT occurs
2500          */
2501         hsave->save.es     = vmcb->save.es;
2502         hsave->save.cs     = vmcb->save.cs;
2503         hsave->save.ss     = vmcb->save.ss;
2504         hsave->save.ds     = vmcb->save.ds;
2505         hsave->save.gdtr   = vmcb->save.gdtr;
2506         hsave->save.idtr   = vmcb->save.idtr;
2507         hsave->save.efer   = svm->vcpu.arch.efer;
2508         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2509         hsave->save.cr4    = svm->vcpu.arch.cr4;
2510         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2511         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2512         hsave->save.rsp    = vmcb->save.rsp;
2513         hsave->save.rax    = vmcb->save.rax;
2514         if (npt_enabled)
2515                 hsave->save.cr3    = vmcb->save.cr3;
2516         else
2517                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2518
2519         copy_vmcb_control_area(hsave, vmcb);
2520
2521         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2522                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2523         else
2524                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2525
2526         if (nested_vmcb->control.nested_ctl) {
2527                 kvm_mmu_unload(&svm->vcpu);
2528                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2529                 nested_svm_init_mmu_context(&svm->vcpu);
2530         }
2531
2532         /* Load the nested guest state */
2533         svm->vmcb->save.es = nested_vmcb->save.es;
2534         svm->vmcb->save.cs = nested_vmcb->save.cs;
2535         svm->vmcb->save.ss = nested_vmcb->save.ss;
2536         svm->vmcb->save.ds = nested_vmcb->save.ds;
2537         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2538         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2539         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2540         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2541         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2542         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2543         if (npt_enabled) {
2544                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2545                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2546         } else
2547                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2548
2549         /* Guest paging mode is active - reset mmu */
2550         kvm_mmu_reset_context(&svm->vcpu);
2551
2552         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2553         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2554         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2555         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2556
2557         /* In case we don't even reach vcpu_run, the fields are not updated */
2558         svm->vmcb->save.rax = nested_vmcb->save.rax;
2559         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2560         svm->vmcb->save.rip = nested_vmcb->save.rip;
2561         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2562         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2563         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2564
2565         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2566         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2567
2568         /* cache intercepts */
2569         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2570         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2571         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2572         svm->nested.intercept            = nested_vmcb->control.intercept;
2573
2574         svm_flush_tlb(&svm->vcpu);
2575         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2576         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2577                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2578         else
2579                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2580
2581         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2582                 /* We only want the cr8 intercept bits of the guest */
2583                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2584                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2585         }
2586
2587         /* We don't want to see VMMCALLs from a nested guest */
2588         clr_intercept(svm, INTERCEPT_VMMCALL);
2589
2590         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2591         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2592         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2593         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2594         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2595         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2596
2597         nested_svm_unmap(page);
2598
2599         /* Enter Guest-Mode */
2600         enter_guest_mode(&svm->vcpu);
2601
2602         /*
2603          * Merge guest and host intercepts - must be called  with vcpu in
2604          * guest-mode to take affect here
2605          */
2606         recalc_intercepts(svm);
2607
2608         svm->nested.vmcb = vmcb_gpa;
2609
2610         enable_gif(svm);
2611
2612         mark_all_dirty(svm->vmcb);
2613
2614         return true;
2615 }
2616
2617 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2618 {
2619         to_vmcb->save.fs = from_vmcb->save.fs;
2620         to_vmcb->save.gs = from_vmcb->save.gs;
2621         to_vmcb->save.tr = from_vmcb->save.tr;
2622         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2623         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2624         to_vmcb->save.star = from_vmcb->save.star;
2625         to_vmcb->save.lstar = from_vmcb->save.lstar;
2626         to_vmcb->save.cstar = from_vmcb->save.cstar;
2627         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2628         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2629         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2630         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2631 }
2632
2633 static int vmload_interception(struct vcpu_svm *svm)
2634 {
2635         struct vmcb *nested_vmcb;
2636         struct page *page;
2637
2638         if (nested_svm_check_permissions(svm))
2639                 return 1;
2640
2641         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2642         if (!nested_vmcb)
2643                 return 1;
2644
2645         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2646         skip_emulated_instruction(&svm->vcpu);
2647
2648         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2649         nested_svm_unmap(page);
2650
2651         return 1;
2652 }
2653
2654 static int vmsave_interception(struct vcpu_svm *svm)
2655 {
2656         struct vmcb *nested_vmcb;
2657         struct page *page;
2658
2659         if (nested_svm_check_permissions(svm))
2660                 return 1;
2661
2662         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2663         if (!nested_vmcb)
2664                 return 1;
2665
2666         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2667         skip_emulated_instruction(&svm->vcpu);
2668
2669         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2670         nested_svm_unmap(page);
2671
2672         return 1;
2673 }
2674
2675 static int vmrun_interception(struct vcpu_svm *svm)
2676 {
2677         if (nested_svm_check_permissions(svm))
2678                 return 1;
2679
2680         /* Save rip after vmrun instruction */
2681         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2682
2683         if (!nested_svm_vmrun(svm))
2684                 return 1;
2685
2686         if (!nested_svm_vmrun_msrpm(svm))
2687                 goto failed;
2688
2689         return 1;
2690
2691 failed:
2692
2693         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2694         svm->vmcb->control.exit_code_hi = 0;
2695         svm->vmcb->control.exit_info_1  = 0;
2696         svm->vmcb->control.exit_info_2  = 0;
2697
2698         nested_svm_vmexit(svm);
2699
2700         return 1;
2701 }
2702
2703 static int stgi_interception(struct vcpu_svm *svm)
2704 {
2705         if (nested_svm_check_permissions(svm))
2706                 return 1;
2707
2708         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2709         skip_emulated_instruction(&svm->vcpu);
2710         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2711
2712         enable_gif(svm);
2713
2714         return 1;
2715 }
2716
2717 static int clgi_interception(struct vcpu_svm *svm)
2718 {
2719         if (nested_svm_check_permissions(svm))
2720                 return 1;
2721
2722         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2723         skip_emulated_instruction(&svm->vcpu);
2724
2725         disable_gif(svm);
2726
2727         /* After a CLGI no interrupts should come */
2728         svm_clear_vintr(svm);
2729         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2730
2731         mark_dirty(svm->vmcb, VMCB_INTR);
2732
2733         return 1;
2734 }
2735
2736 static int invlpga_interception(struct vcpu_svm *svm)
2737 {
2738         struct kvm_vcpu *vcpu = &svm->vcpu;
2739
2740         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2741                           vcpu->arch.regs[VCPU_REGS_RAX]);
2742
2743         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2744         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2745
2746         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2747         skip_emulated_instruction(&svm->vcpu);
2748         return 1;
2749 }
2750
2751 static int skinit_interception(struct vcpu_svm *svm)
2752 {
2753         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2754
2755         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2756         return 1;
2757 }
2758
2759 static int xsetbv_interception(struct vcpu_svm *svm)
2760 {
2761         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2762         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2763
2764         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2765                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2766                 skip_emulated_instruction(&svm->vcpu);
2767         }
2768
2769         return 1;
2770 }
2771
2772 static int task_switch_interception(struct vcpu_svm *svm)
2773 {
2774         u16 tss_selector;
2775         int reason;
2776         int int_type = svm->vmcb->control.exit_int_info &
2777                 SVM_EXITINTINFO_TYPE_MASK;
2778         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2779         uint32_t type =
2780                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2781         uint32_t idt_v =
2782                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2783         bool has_error_code = false;
2784         u32 error_code = 0;
2785
2786         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2787
2788         if (svm->vmcb->control.exit_info_2 &
2789             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2790                 reason = TASK_SWITCH_IRET;
2791         else if (svm->vmcb->control.exit_info_2 &
2792                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2793                 reason = TASK_SWITCH_JMP;
2794         else if (idt_v)
2795                 reason = TASK_SWITCH_GATE;
2796         else
2797                 reason = TASK_SWITCH_CALL;
2798
2799         if (reason == TASK_SWITCH_GATE) {
2800                 switch (type) {
2801                 case SVM_EXITINTINFO_TYPE_NMI:
2802                         svm->vcpu.arch.nmi_injected = false;
2803                         break;
2804                 case SVM_EXITINTINFO_TYPE_EXEPT:
2805                         if (svm->vmcb->control.exit_info_2 &
2806                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2807                                 has_error_code = true;
2808                                 error_code =
2809                                         (u32)svm->vmcb->control.exit_info_2;
2810                         }
2811                         kvm_clear_exception_queue(&svm->vcpu);
2812                         break;
2813                 case SVM_EXITINTINFO_TYPE_INTR:
2814                         kvm_clear_interrupt_queue(&svm->vcpu);
2815                         break;
2816                 default:
2817                         break;
2818                 }
2819         }
2820
2821         if (reason != TASK_SWITCH_GATE ||
2822             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2823             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2824              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2825                 skip_emulated_instruction(&svm->vcpu);
2826
2827         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2828                 int_vec = -1;
2829
2830         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2831                                 has_error_code, error_code) == EMULATE_FAIL) {
2832                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2833                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2834                 svm->vcpu.run->internal.ndata = 0;
2835                 return 0;
2836         }
2837         return 1;
2838 }
2839
2840 static int cpuid_interception(struct vcpu_svm *svm)
2841 {
2842         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2843         kvm_emulate_cpuid(&svm->vcpu);
2844         return 1;
2845 }
2846
2847 static int iret_interception(struct vcpu_svm *svm)
2848 {
2849         ++svm->vcpu.stat.nmi_window_exits;
2850         clr_intercept(svm, INTERCEPT_IRET);
2851         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2852         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2853         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2854         return 1;
2855 }
2856
2857 static int invlpg_interception(struct vcpu_svm *svm)
2858 {
2859         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2860                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2861
2862         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2863         skip_emulated_instruction(&svm->vcpu);
2864         return 1;
2865 }
2866
2867 static int emulate_on_interception(struct vcpu_svm *svm)
2868 {
2869         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2870 }
2871
2872 static int rdpmc_interception(struct vcpu_svm *svm)
2873 {
2874         int err;
2875
2876         if (!static_cpu_has(X86_FEATURE_NRIPS))
2877                 return emulate_on_interception(svm);
2878
2879         err = kvm_rdpmc(&svm->vcpu);
2880         kvm_complete_insn_gp(&svm->vcpu, err);
2881
2882         return 1;
2883 }
2884
2885 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2886 {
2887         unsigned long cr0 = svm->vcpu.arch.cr0;
2888         bool ret = false;
2889         u64 intercept;
2890
2891         intercept = svm->nested.intercept;
2892
2893         if (!is_guest_mode(&svm->vcpu) ||
2894             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2895                 return false;
2896
2897         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2898         val &= ~SVM_CR0_SELECTIVE_MASK;
2899
2900         if (cr0 ^ val) {
2901                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2902                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2903         }
2904
2905         return ret;
2906 }
2907
2908 #define CR_VALID (1ULL << 63)
2909
2910 static int cr_interception(struct vcpu_svm *svm)
2911 {
2912         int reg, cr;
2913         unsigned long val;
2914         int err;
2915
2916         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2917                 return emulate_on_interception(svm);
2918
2919         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2920                 return emulate_on_interception(svm);
2921
2922         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2923         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2924
2925         err = 0;
2926         if (cr >= 16) { /* mov to cr */
2927                 cr -= 16;
2928                 val = kvm_register_read(&svm->vcpu, reg);
2929                 switch (cr) {
2930                 case 0:
2931                         if (!check_selective_cr0_intercepted(svm, val))
2932                                 err = kvm_set_cr0(&svm->vcpu, val);
2933                         else
2934                                 return 1;
2935
2936                         break;
2937                 case 3:
2938                         err = kvm_set_cr3(&svm->vcpu, val);
2939                         break;
2940                 case 4:
2941                         err = kvm_set_cr4(&svm->vcpu, val);
2942                         break;
2943                 case 8:
2944                         err = kvm_set_cr8(&svm->vcpu, val);
2945                         break;
2946                 default:
2947                         WARN(1, "unhandled write to CR%d", cr);
2948                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2949                         return 1;
2950                 }
2951         } else { /* mov from cr */
2952                 switch (cr) {
2953                 case 0:
2954                         val = kvm_read_cr0(&svm->vcpu);
2955                         break;
2956                 case 2:
2957                         val = svm->vcpu.arch.cr2;
2958                         break;
2959                 case 3:
2960                         val = kvm_read_cr3(&svm->vcpu);
2961                         break;
2962                 case 4:
2963                         val = kvm_read_cr4(&svm->vcpu);
2964                         break;
2965                 case 8:
2966                         val = kvm_get_cr8(&svm->vcpu);
2967                         break;
2968                 default:
2969                         WARN(1, "unhandled read from CR%d", cr);
2970                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2971                         return 1;
2972                 }
2973                 kvm_register_write(&svm->vcpu, reg, val);
2974         }
2975         kvm_complete_insn_gp(&svm->vcpu, err);
2976
2977         return 1;
2978 }
2979
2980 static int dr_interception(struct vcpu_svm *svm)
2981 {
2982         int reg, dr;
2983         unsigned long val;
2984         int err;
2985
2986         if (svm->vcpu.guest_debug == 0) {
2987                 /*
2988                  * No more DR vmexits; force a reload of the debug registers
2989                  * and reenter on this instruction.  The next vmexit will
2990                  * retrieve the full state of the debug registers.
2991                  */
2992                 clr_dr_intercepts(svm);
2993                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2994                 return 1;
2995         }
2996
2997         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2998                 return emulate_on_interception(svm);
2999
3000         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3001         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3002
3003         if (dr >= 16) { /* mov to DRn */
3004                 val = kvm_register_read(&svm->vcpu, reg);
3005                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3006         } else {
3007                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3008                 if (!err)
3009                         kvm_register_write(&svm->vcpu, reg, val);
3010         }
3011
3012         skip_emulated_instruction(&svm->vcpu);
3013
3014         return 1;
3015 }
3016
3017 static int cr8_write_interception(struct vcpu_svm *svm)
3018 {
3019         struct kvm_run *kvm_run = svm->vcpu.run;
3020         int r;
3021
3022         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3023         /* instruction emulation calls kvm_set_cr8() */
3024         r = cr_interception(svm);
3025         if (irqchip_in_kernel(svm->vcpu.kvm))
3026                 return r;
3027         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3028                 return r;
3029         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3030         return 0;
3031 }
3032
3033 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3034 {
3035         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3036         return vmcb->control.tsc_offset +
3037                 svm_scale_tsc(vcpu, host_tsc);
3038 }
3039
3040 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3041 {
3042         struct vcpu_svm *svm = to_svm(vcpu);
3043
3044         switch (ecx) {
3045         case MSR_IA32_TSC: {
3046                 *data = svm->vmcb->control.tsc_offset +
3047                         svm_scale_tsc(vcpu, native_read_tsc());
3048
3049                 break;
3050         }
3051         case MSR_STAR:
3052                 *data = svm->vmcb->save.star;
3053                 break;
3054 #ifdef CONFIG_X86_64
3055         case MSR_LSTAR:
3056                 *data = svm->vmcb->save.lstar;
3057                 break;
3058         case MSR_CSTAR:
3059                 *data = svm->vmcb->save.cstar;
3060                 break;
3061         case MSR_KERNEL_GS_BASE:
3062                 *data = svm->vmcb->save.kernel_gs_base;
3063                 break;
3064         case MSR_SYSCALL_MASK:
3065                 *data = svm->vmcb->save.sfmask;
3066                 break;
3067 #endif
3068         case MSR_IA32_SYSENTER_CS:
3069                 *data = svm->vmcb->save.sysenter_cs;
3070                 break;
3071         case MSR_IA32_SYSENTER_EIP:
3072                 *data = svm->sysenter_eip;
3073                 break;
3074         case MSR_IA32_SYSENTER_ESP:
3075                 *data = svm->sysenter_esp;
3076                 break;
3077         /*
3078          * Nobody will change the following 5 values in the VMCB so we can
3079          * safely return them on rdmsr. They will always be 0 until LBRV is
3080          * implemented.
3081          */
3082         case MSR_IA32_DEBUGCTLMSR:
3083                 *data = svm->vmcb->save.dbgctl;
3084                 break;
3085         case MSR_IA32_LASTBRANCHFROMIP:
3086                 *data = svm->vmcb->save.br_from;
3087                 break;
3088         case MSR_IA32_LASTBRANCHTOIP:
3089                 *data = svm->vmcb->save.br_to;
3090                 break;
3091         case MSR_IA32_LASTINTFROMIP:
3092                 *data = svm->vmcb->save.last_excp_from;
3093                 break;
3094         case MSR_IA32_LASTINTTOIP:
3095                 *data = svm->vmcb->save.last_excp_to;
3096                 break;
3097         case MSR_VM_HSAVE_PA:
3098                 *data = svm->nested.hsave_msr;
3099                 break;
3100         case MSR_VM_CR:
3101                 *data = svm->nested.vm_cr_msr;
3102                 break;
3103         case MSR_IA32_UCODE_REV:
3104                 *data = 0x01000065;
3105                 break;
3106         default:
3107                 return kvm_get_msr_common(vcpu, ecx, data);
3108         }
3109         return 0;
3110 }
3111
3112 static int rdmsr_interception(struct vcpu_svm *svm)
3113 {
3114         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3115         u64 data;
3116
3117         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3118                 trace_kvm_msr_read_ex(ecx);
3119                 kvm_inject_gp(&svm->vcpu, 0);
3120         } else {
3121                 trace_kvm_msr_read(ecx, data);
3122
3123                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3124                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3125                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3126                 skip_emulated_instruction(&svm->vcpu);
3127         }
3128         return 1;
3129 }
3130
3131 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3132 {
3133         struct vcpu_svm *svm = to_svm(vcpu);
3134         int svm_dis, chg_mask;
3135
3136         if (data & ~SVM_VM_CR_VALID_MASK)
3137                 return 1;
3138
3139         chg_mask = SVM_VM_CR_VALID_MASK;
3140
3141         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3142                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3143
3144         svm->nested.vm_cr_msr &= ~chg_mask;
3145         svm->nested.vm_cr_msr |= (data & chg_mask);
3146
3147         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3148
3149         /* check for svm_disable while efer.svme is set */
3150         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3151                 return 1;
3152
3153         return 0;
3154 }
3155
3156 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3157 {
3158         struct vcpu_svm *svm = to_svm(vcpu);
3159
3160         u32 ecx = msr->index;
3161         u64 data = msr->data;
3162         switch (ecx) {
3163         case MSR_IA32_TSC:
3164                 kvm_write_tsc(vcpu, msr);
3165                 break;
3166         case MSR_STAR:
3167                 svm->vmcb->save.star = data;
3168                 break;
3169 #ifdef CONFIG_X86_64
3170         case MSR_LSTAR:
3171                 svm->vmcb->save.lstar = data;
3172                 break;
3173         case MSR_CSTAR:
3174                 svm->vmcb->save.cstar = data;
3175                 break;
3176         case MSR_KERNEL_GS_BASE:
3177                 svm->vmcb->save.kernel_gs_base = data;
3178                 break;
3179         case MSR_SYSCALL_MASK:
3180                 svm->vmcb->save.sfmask = data;
3181                 break;
3182 #endif
3183         case MSR_IA32_SYSENTER_CS:
3184                 svm->vmcb->save.sysenter_cs = data;
3185                 break;
3186         case MSR_IA32_SYSENTER_EIP:
3187                 svm->sysenter_eip = data;
3188                 svm->vmcb->save.sysenter_eip = data;
3189                 break;
3190         case MSR_IA32_SYSENTER_ESP:
3191                 svm->sysenter_esp = data;
3192                 svm->vmcb->save.sysenter_esp = data;
3193                 break;
3194         case MSR_IA32_DEBUGCTLMSR:
3195                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3196                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3197                                     __func__, data);
3198                         break;
3199                 }
3200                 if (data & DEBUGCTL_RESERVED_BITS)
3201                         return 1;
3202
3203                 svm->vmcb->save.dbgctl = data;
3204                 mark_dirty(svm->vmcb, VMCB_LBR);
3205                 if (data & (1ULL<<0))
3206                         svm_enable_lbrv(svm);
3207                 else
3208                         svm_disable_lbrv(svm);
3209                 break;
3210         case MSR_VM_HSAVE_PA:
3211                 svm->nested.hsave_msr = data;
3212                 break;
3213         case MSR_VM_CR:
3214                 return svm_set_vm_cr(vcpu, data);
3215         case MSR_VM_IGNNE:
3216                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3217                 break;
3218         default:
3219                 return kvm_set_msr_common(vcpu, msr);
3220         }
3221         return 0;
3222 }
3223
3224 static int wrmsr_interception(struct vcpu_svm *svm)
3225 {
3226         struct msr_data msr;
3227         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3228         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3229                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3230
3231         msr.data = data;
3232         msr.index = ecx;
3233         msr.host_initiated = false;
3234
3235         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3236         if (svm_set_msr(&svm->vcpu, &msr)) {
3237                 trace_kvm_msr_write_ex(ecx, data);
3238                 kvm_inject_gp(&svm->vcpu, 0);
3239         } else {
3240                 trace_kvm_msr_write(ecx, data);
3241                 skip_emulated_instruction(&svm->vcpu);
3242         }
3243         return 1;
3244 }
3245
3246 static int msr_interception(struct vcpu_svm *svm)
3247 {
3248         if (svm->vmcb->control.exit_info_1)
3249                 return wrmsr_interception(svm);
3250         else
3251                 return rdmsr_interception(svm);
3252 }
3253
3254 static int interrupt_window_interception(struct vcpu_svm *svm)
3255 {
3256         struct kvm_run *kvm_run = svm->vcpu.run;
3257
3258         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3259         svm_clear_vintr(svm);
3260         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3261         mark_dirty(svm->vmcb, VMCB_INTR);
3262         ++svm->vcpu.stat.irq_window_exits;
3263         /*
3264          * If the user space waits to inject interrupts, exit as soon as
3265          * possible
3266          */
3267         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3268             kvm_run->request_interrupt_window &&
3269             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3270                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3271                 return 0;
3272         }
3273
3274         return 1;
3275 }
3276
3277 static int pause_interception(struct vcpu_svm *svm)
3278 {
3279         kvm_vcpu_on_spin(&(svm->vcpu));
3280         return 1;
3281 }
3282
3283 static int nop_interception(struct vcpu_svm *svm)
3284 {
3285         skip_emulated_instruction(&(svm->vcpu));
3286         return 1;
3287 }
3288
3289 static int monitor_interception(struct vcpu_svm *svm)
3290 {
3291         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3292         return nop_interception(svm);
3293 }
3294
3295 static int mwait_interception(struct vcpu_svm *svm)
3296 {
3297         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3298         return nop_interception(svm);
3299 }
3300
3301 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3302         [SVM_EXIT_READ_CR0]                     = cr_interception,
3303         [SVM_EXIT_READ_CR3]                     = cr_interception,
3304         [SVM_EXIT_READ_CR4]                     = cr_interception,
3305         [SVM_EXIT_READ_CR8]                     = cr_interception,
3306         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3307         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3308         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3309         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3310         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3311         [SVM_EXIT_READ_DR0]                     = dr_interception,
3312         [SVM_EXIT_READ_DR1]                     = dr_interception,
3313         [SVM_EXIT_READ_DR2]                     = dr_interception,
3314         [SVM_EXIT_READ_DR3]                     = dr_interception,
3315         [SVM_EXIT_READ_DR4]                     = dr_interception,
3316         [SVM_EXIT_READ_DR5]                     = dr_interception,
3317         [SVM_EXIT_READ_DR6]                     = dr_interception,
3318         [SVM_EXIT_READ_DR7]                     = dr_interception,
3319         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3320         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3321         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3322         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3323         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3324         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3325         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3326         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3327         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3328         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3329         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3330         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3331         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3332         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3333         [SVM_EXIT_INTR]                         = intr_interception,
3334         [SVM_EXIT_NMI]                          = nmi_interception,
3335         [SVM_EXIT_SMI]                          = nop_on_interception,
3336         [SVM_EXIT_INIT]                         = nop_on_interception,
3337         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3338         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3339         [SVM_EXIT_CPUID]                        = cpuid_interception,
3340         [SVM_EXIT_IRET]                         = iret_interception,
3341         [SVM_EXIT_INVD]                         = emulate_on_interception,
3342         [SVM_EXIT_PAUSE]                        = pause_interception,
3343         [SVM_EXIT_HLT]                          = halt_interception,
3344         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3345         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3346         [SVM_EXIT_IOIO]                         = io_interception,
3347         [SVM_EXIT_MSR]                          = msr_interception,
3348         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3349         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3350         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3351         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3352         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3353         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3354         [SVM_EXIT_STGI]                         = stgi_interception,
3355         [SVM_EXIT_CLGI]                         = clgi_interception,
3356         [SVM_EXIT_SKINIT]                       = skinit_interception,
3357         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3358         [SVM_EXIT_MONITOR]                      = monitor_interception,
3359         [SVM_EXIT_MWAIT]                        = mwait_interception,
3360         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3361         [SVM_EXIT_NPF]                          = pf_interception,
3362 };
3363
3364 static void dump_vmcb(struct kvm_vcpu *vcpu)
3365 {
3366         struct vcpu_svm *svm = to_svm(vcpu);
3367         struct vmcb_control_area *control = &svm->vmcb->control;
3368         struct vmcb_save_area *save = &svm->vmcb->save;
3369
3370         pr_err("VMCB Control Area:\n");
3371         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3372         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3373         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3374         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3375         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3376         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3377         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3378         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3379         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3380         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3381         pr_err("%-20s%d\n", "asid:", control->asid);
3382         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3383         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3384         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3385         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3386         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3387         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3388         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3389         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3390         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3391         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3392         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3393         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3394         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3395         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3396         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3397         pr_err("VMCB State Save Area:\n");
3398         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399                "es:",
3400                save->es.selector, save->es.attrib,
3401                save->es.limit, save->es.base);
3402         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3403                "cs:",
3404                save->cs.selector, save->cs.attrib,
3405                save->cs.limit, save->cs.base);
3406         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3407                "ss:",
3408                save->ss.selector, save->ss.attrib,
3409                save->ss.limit, save->ss.base);
3410         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3411                "ds:",
3412                save->ds.selector, save->ds.attrib,
3413                save->ds.limit, save->ds.base);
3414         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415                "fs:",
3416                save->fs.selector, save->fs.attrib,
3417                save->fs.limit, save->fs.base);
3418         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3419                "gs:",
3420                save->gs.selector, save->gs.attrib,
3421                save->gs.limit, save->gs.base);
3422         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3423                "gdtr:",
3424                save->gdtr.selector, save->gdtr.attrib,
3425                save->gdtr.limit, save->gdtr.base);
3426         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3427                "ldtr:",
3428                save->ldtr.selector, save->ldtr.attrib,
3429                save->ldtr.limit, save->ldtr.base);
3430         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431                "idtr:",
3432                save->idtr.selector, save->idtr.attrib,
3433                save->idtr.limit, save->idtr.base);
3434         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435                "tr:",
3436                save->tr.selector, save->tr.attrib,
3437                save->tr.limit, save->tr.base);
3438         pr_err("cpl:            %d                efer:         %016llx\n",
3439                 save->cpl, save->efer);
3440         pr_err("%-15s %016llx %-13s %016llx\n",
3441                "cr0:", save->cr0, "cr2:", save->cr2);
3442         pr_err("%-15s %016llx %-13s %016llx\n",
3443                "cr3:", save->cr3, "cr4:", save->cr4);
3444         pr_err("%-15s %016llx %-13s %016llx\n",
3445                "dr6:", save->dr6, "dr7:", save->dr7);
3446         pr_err("%-15s %016llx %-13s %016llx\n",
3447                "rip:", save->rip, "rflags:", save->rflags);
3448         pr_err("%-15s %016llx %-13s %016llx\n",
3449                "rsp:", save->rsp, "rax:", save->rax);
3450         pr_err("%-15s %016llx %-13s %016llx\n",
3451                "star:", save->star, "lstar:", save->lstar);
3452         pr_err("%-15s %016llx %-13s %016llx\n",
3453                "cstar:", save->cstar, "sfmask:", save->sfmask);
3454         pr_err("%-15s %016llx %-13s %016llx\n",
3455                "kernel_gs_base:", save->kernel_gs_base,
3456                "sysenter_cs:", save->sysenter_cs);
3457         pr_err("%-15s %016llx %-13s %016llx\n",
3458                "sysenter_esp:", save->sysenter_esp,
3459                "sysenter_eip:", save->sysenter_eip);
3460         pr_err("%-15s %016llx %-13s %016llx\n",
3461                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3462         pr_err("%-15s %016llx %-13s %016llx\n",
3463                "br_from:", save->br_from, "br_to:", save->br_to);
3464         pr_err("%-15s %016llx %-13s %016llx\n",
3465                "excp_from:", save->last_excp_from,
3466                "excp_to:", save->last_excp_to);
3467 }
3468
3469 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3470 {
3471         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3472
3473         *info1 = control->exit_info_1;
3474         *info2 = control->exit_info_2;
3475 }
3476
3477 static int handle_exit(struct kvm_vcpu *vcpu)
3478 {
3479         struct vcpu_svm *svm = to_svm(vcpu);
3480         struct kvm_run *kvm_run = vcpu->run;
3481         u32 exit_code = svm->vmcb->control.exit_code;
3482
3483         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3484                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3485         if (npt_enabled)
3486                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3487
3488         if (unlikely(svm->nested.exit_required)) {
3489                 nested_svm_vmexit(svm);
3490                 svm->nested.exit_required = false;
3491
3492                 return 1;
3493         }
3494
3495         if (is_guest_mode(vcpu)) {
3496                 int vmexit;
3497
3498                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3499                                         svm->vmcb->control.exit_info_1,
3500                                         svm->vmcb->control.exit_info_2,
3501                                         svm->vmcb->control.exit_int_info,
3502                                         svm->vmcb->control.exit_int_info_err,
3503                                         KVM_ISA_SVM);
3504
3505                 vmexit = nested_svm_exit_special(svm);
3506
3507                 if (vmexit == NESTED_EXIT_CONTINUE)
3508                         vmexit = nested_svm_exit_handled(svm);
3509
3510                 if (vmexit == NESTED_EXIT_DONE)
3511                         return 1;
3512         }
3513
3514         svm_complete_interrupts(svm);
3515
3516         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3517                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3518                 kvm_run->fail_entry.hardware_entry_failure_reason
3519                         = svm->vmcb->control.exit_code;
3520                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3521                 dump_vmcb(vcpu);
3522                 return 0;
3523         }
3524
3525         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3526             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3527             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3528             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3529                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3530                        "exit_code 0x%x\n",
3531                        __func__, svm->vmcb->control.exit_int_info,
3532                        exit_code);
3533
3534         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3535             || !svm_exit_handlers[exit_code]) {
3536                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3537                 kvm_run->hw.hardware_exit_reason = exit_code;
3538                 return 0;
3539         }
3540
3541         return svm_exit_handlers[exit_code](svm);
3542 }
3543
3544 static void reload_tss(struct kvm_vcpu *vcpu)
3545 {
3546         int cpu = raw_smp_processor_id();
3547
3548         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3549         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3550         load_TR_desc();
3551 }
3552
3553 static void pre_svm_run(struct vcpu_svm *svm)
3554 {
3555         int cpu = raw_smp_processor_id();
3556
3557         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3558
3559         /* FIXME: handle wraparound of asid_generation */
3560         if (svm->asid_generation != sd->asid_generation)
3561                 new_asid(svm, sd);
3562 }
3563
3564 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3565 {
3566         struct vcpu_svm *svm = to_svm(vcpu);
3567
3568         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3569         vcpu->arch.hflags |= HF_NMI_MASK;
3570         set_intercept(svm, INTERCEPT_IRET);
3571         ++vcpu->stat.nmi_injections;
3572 }
3573
3574 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3575 {
3576         struct vmcb_control_area *control;
3577
3578         control = &svm->vmcb->control;
3579         control->int_vector = irq;
3580         control->int_ctl &= ~V_INTR_PRIO_MASK;
3581         control->int_ctl |= V_IRQ_MASK |
3582                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3583         mark_dirty(svm->vmcb, VMCB_INTR);
3584 }
3585
3586 static void svm_set_irq(struct kvm_vcpu *vcpu)
3587 {
3588         struct vcpu_svm *svm = to_svm(vcpu);
3589
3590         BUG_ON(!(gif_set(svm)));
3591
3592         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3593         ++vcpu->stat.irq_injections;
3594
3595         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3596                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3597 }
3598
3599 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3600 {
3601         struct vcpu_svm *svm = to_svm(vcpu);
3602
3603         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3604                 return;
3605
3606         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3607
3608         if (irr == -1)
3609                 return;
3610
3611         if (tpr >= irr)
3612                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3613 }
3614
3615 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3616 {
3617         return;
3618 }
3619
3620 static int svm_vm_has_apicv(struct kvm *kvm)
3621 {
3622         return 0;
3623 }
3624
3625 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3626 {
3627         return;
3628 }
3629
3630 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3631 {
3632         return;
3633 }
3634
3635 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3636 {
3637         return;
3638 }
3639
3640 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3641 {
3642         struct vcpu_svm *svm = to_svm(vcpu);
3643         struct vmcb *vmcb = svm->vmcb;
3644         int ret;
3645         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3646               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3647         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3648
3649         return ret;
3650 }
3651
3652 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3653 {
3654         struct vcpu_svm *svm = to_svm(vcpu);
3655
3656         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3657 }
3658
3659 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3660 {
3661         struct vcpu_svm *svm = to_svm(vcpu);
3662
3663         if (masked) {
3664                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3665                 set_intercept(svm, INTERCEPT_IRET);
3666         } else {
3667                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3668                 clr_intercept(svm, INTERCEPT_IRET);
3669         }
3670 }
3671
3672 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3673 {
3674         struct vcpu_svm *svm = to_svm(vcpu);
3675         struct vmcb *vmcb = svm->vmcb;
3676         int ret;
3677
3678         if (!gif_set(svm) ||
3679              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3680                 return 0;
3681
3682         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3683
3684         if (is_guest_mode(vcpu))
3685                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3686
3687         return ret;
3688 }
3689
3690 static void enable_irq_window(struct kvm_vcpu *vcpu)
3691 {
3692         struct vcpu_svm *svm = to_svm(vcpu);
3693
3694         /*
3695          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3696          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3697          * get that intercept, this function will be called again though and
3698          * we'll get the vintr intercept.
3699          */
3700         if (gif_set(svm) && nested_svm_intr(svm)) {
3701                 svm_set_vintr(svm);
3702                 svm_inject_irq(svm, 0x0);
3703         }
3704 }
3705
3706 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3707 {
3708         struct vcpu_svm *svm = to_svm(vcpu);
3709
3710         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3711             == HF_NMI_MASK)
3712                 return; /* IRET will cause a vm exit */
3713
3714         /*
3715          * Something prevents NMI from been injected. Single step over possible
3716          * problem (IRET or exception injection or interrupt shadow)
3717          */
3718         svm->nmi_singlestep = true;
3719         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3720         update_db_bp_intercept(vcpu);
3721 }
3722
3723 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3724 {
3725         return 0;
3726 }
3727
3728 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3729 {
3730         struct vcpu_svm *svm = to_svm(vcpu);
3731
3732         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3733                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3734         else
3735                 svm->asid_generation--;
3736 }
3737
3738 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3739 {
3740 }
3741
3742 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3743 {
3744         struct vcpu_svm *svm = to_svm(vcpu);
3745
3746         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3747                 return;
3748
3749         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3750                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3751                 kvm_set_cr8(vcpu, cr8);
3752         }
3753 }
3754
3755 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3756 {
3757         struct vcpu_svm *svm = to_svm(vcpu);
3758         u64 cr8;
3759
3760         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3761                 return;
3762
3763         cr8 = kvm_get_cr8(vcpu);
3764         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3765         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3766 }
3767
3768 static void svm_complete_interrupts(struct vcpu_svm *svm)
3769 {
3770         u8 vector;
3771         int type;
3772         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3773         unsigned int3_injected = svm->int3_injected;
3774
3775         svm->int3_injected = 0;
3776
3777         /*
3778          * If we've made progress since setting HF_IRET_MASK, we've
3779          * executed an IRET and can allow NMI injection.
3780          */
3781         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3782             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3783                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3784                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3785         }
3786
3787         svm->vcpu.arch.nmi_injected = false;
3788         kvm_clear_exception_queue(&svm->vcpu);
3789         kvm_clear_interrupt_queue(&svm->vcpu);
3790
3791         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3792                 return;
3793
3794         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3795
3796         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3797         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3798
3799         switch (type) {
3800         case SVM_EXITINTINFO_TYPE_NMI:
3801                 svm->vcpu.arch.nmi_injected = true;
3802                 break;
3803         case SVM_EXITINTINFO_TYPE_EXEPT:
3804                 /*
3805                  * In case of software exceptions, do not reinject the vector,
3806                  * but re-execute the instruction instead. Rewind RIP first
3807                  * if we emulated INT3 before.
3808                  */
3809                 if (kvm_exception_is_soft(vector)) {
3810                         if (vector == BP_VECTOR && int3_injected &&
3811                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3812                                 kvm_rip_write(&svm->vcpu,
3813                                               kvm_rip_read(&svm->vcpu) -
3814                                               int3_injected);
3815                         break;
3816                 }
3817                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3818                         u32 err = svm->vmcb->control.exit_int_info_err;
3819                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3820
3821                 } else
3822                         kvm_requeue_exception(&svm->vcpu, vector);
3823                 break;
3824         case SVM_EXITINTINFO_TYPE_INTR:
3825                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3826                 break;
3827         default:
3828                 break;
3829         }
3830 }
3831
3832 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3833 {
3834         struct vcpu_svm *svm = to_svm(vcpu);
3835         struct vmcb_control_area *control = &svm->vmcb->control;
3836
3837         control->exit_int_info = control->event_inj;
3838         control->exit_int_info_err = control->event_inj_err;
3839         control->event_inj = 0;
3840         svm_complete_interrupts(svm);
3841 }
3842
3843 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3844 {
3845         struct vcpu_svm *svm = to_svm(vcpu);
3846
3847         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3848         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3849         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3850
3851         /*
3852          * A vmexit emulation is required before the vcpu can be executed
3853          * again.
3854          */
3855         if (unlikely(svm->nested.exit_required))
3856                 return;
3857
3858         pre_svm_run(svm);
3859
3860         sync_lapic_to_cr8(vcpu);
3861
3862         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3863
3864         clgi();
3865
3866         local_irq_enable();
3867
3868         asm volatile (
3869                 "push %%" _ASM_BP "; \n\t"
3870                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3871                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3872                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3873                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3874                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3875                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3876 #ifdef CONFIG_X86_64
3877                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3878                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3879                 "mov %c[r10](%[svm]), %%r10 \n\t"
3880                 "mov %c[r11](%[svm]), %%r11 \n\t"
3881                 "mov %c[r12](%[svm]), %%r12 \n\t"
3882                 "mov %c[r13](%[svm]), %%r13 \n\t"
3883                 "mov %c[r14](%[svm]), %%r14 \n\t"
3884                 "mov %c[r15](%[svm]), %%r15 \n\t"
3885 #endif
3886
3887                 /* Enter guest mode */
3888                 "push %%" _ASM_AX " \n\t"
3889                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3890                 __ex(SVM_VMLOAD) "\n\t"
3891                 __ex(SVM_VMRUN) "\n\t"
3892                 __ex(SVM_VMSAVE) "\n\t"
3893                 "pop %%" _ASM_AX " \n\t"
3894
3895                 /* Save guest registers, load host registers */
3896                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3897                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3898                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3899                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3900                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3901                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3902 #ifdef CONFIG_X86_64
3903                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3904                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3905                 "mov %%r10, %c[r10](%[svm]) \n\t"
3906                 "mov %%r11, %c[r11](%[svm]) \n\t"
3907                 "mov %%r12, %c[r12](%[svm]) \n\t"
3908                 "mov %%r13, %c[r13](%[svm]) \n\t"
3909                 "mov %%r14, %c[r14](%[svm]) \n\t"
3910                 "mov %%r15, %c[r15](%[svm]) \n\t"
3911 #endif
3912                 "pop %%" _ASM_BP
3913                 :
3914                 : [svm]"a"(svm),
3915                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3916                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3917                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3918                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3919                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3920                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3921                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3922 #ifdef CONFIG_X86_64
3923                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3924                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3925                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3926                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3927                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3928                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3929                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3930                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3931 #endif
3932                 : "cc", "memory"
3933 #ifdef CONFIG_X86_64
3934                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3935                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3936 #else
3937                 , "ebx", "ecx", "edx", "esi", "edi"
3938 #endif
3939                 );
3940
3941 #ifdef CONFIG_X86_64
3942         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3943 #else
3944         loadsegment(fs, svm->host.fs);
3945 #ifndef CONFIG_X86_32_LAZY_GS
3946         loadsegment(gs, svm->host.gs);
3947 #endif
3948 #endif
3949
3950         reload_tss(vcpu);
3951
3952         local_irq_disable();
3953
3954         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3955         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3956         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3957         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3958
3959         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3960
3961         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3962                 kvm_before_handle_nmi(&svm->vcpu);
3963
3964         stgi();
3965
3966         /* Any pending NMI will happen here */
3967
3968         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3969                 kvm_after_handle_nmi(&svm->vcpu);
3970
3971         sync_cr8_to_lapic(vcpu);
3972
3973         svm->next_rip = 0;
3974
3975         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3976
3977         /* if exit due to PF check for async PF */
3978         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3979                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3980
3981         if (npt_enabled) {
3982                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3983                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3984         }
3985
3986         /*
3987          * We need to handle MC intercepts here before the vcpu has a chance to
3988          * change the physical cpu
3989          */
3990         if (unlikely(svm->vmcb->control.exit_code ==
3991                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3992                 svm_handle_mce(svm);
3993
3994         mark_all_clean(svm->vmcb);
3995 }
3996
3997 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3998 {
3999         struct vcpu_svm *svm = to_svm(vcpu);
4000
4001         svm->vmcb->save.cr3 = root;
4002         mark_dirty(svm->vmcb, VMCB_CR);
4003         svm_flush_tlb(vcpu);
4004 }
4005
4006 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4007 {
4008         struct vcpu_svm *svm = to_svm(vcpu);
4009
4010         svm->vmcb->control.nested_cr3 = root;
4011         mark_dirty(svm->vmcb, VMCB_NPT);
4012
4013         /* Also sync guest cr3 here in case we live migrate */
4014         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4015         mark_dirty(svm->vmcb, VMCB_CR);
4016
4017         svm_flush_tlb(vcpu);
4018 }
4019
4020 static int is_disabled(void)
4021 {
4022         u64 vm_cr;
4023
4024         rdmsrl(MSR_VM_CR, vm_cr);
4025         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4026                 return 1;
4027
4028         return 0;
4029 }
4030
4031 static void
4032 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4033 {
4034         /*
4035          * Patch in the VMMCALL instruction:
4036          */
4037         hypercall[0] = 0x0f;
4038         hypercall[1] = 0x01;
4039         hypercall[2] = 0xd9;
4040 }
4041
4042 static void svm_check_processor_compat(void *rtn)
4043 {
4044         *(int *)rtn = 0;
4045 }
4046
4047 static bool svm_cpu_has_accelerated_tpr(void)
4048 {
4049         return false;
4050 }
4051
4052 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4053 {
4054         return 0;
4055 }
4056
4057 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4058 {
4059 }
4060
4061 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4062 {
4063         switch (func) {
4064         case 0x80000001:
4065                 if (nested)
4066                         entry->ecx |= (1 << 2); /* Set SVM bit */
4067                 break;
4068         case 0x8000000A:
4069                 entry->eax = 1; /* SVM revision 1 */
4070                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4071                                    ASID emulation to nested SVM */
4072                 entry->ecx = 0; /* Reserved */
4073                 entry->edx = 0; /* Per default do not support any
4074                                    additional features */
4075
4076                 /* Support next_rip if host supports it */
4077                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4078                         entry->edx |= SVM_FEATURE_NRIP;
4079
4080                 /* Support NPT for the guest if enabled */
4081                 if (npt_enabled)
4082                         entry->edx |= SVM_FEATURE_NPT;
4083
4084                 break;
4085         }
4086 }
4087
4088 static int svm_get_lpage_level(void)
4089 {
4090         return PT_PDPE_LEVEL;
4091 }
4092
4093 static bool svm_rdtscp_supported(void)
4094 {
4095         return false;
4096 }
4097
4098 static bool svm_invpcid_supported(void)
4099 {
4100         return false;
4101 }
4102
4103 static bool svm_mpx_supported(void)
4104 {
4105         return false;
4106 }
4107
4108 static bool svm_has_wbinvd_exit(void)
4109 {
4110         return true;
4111 }
4112
4113 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4114 {
4115         struct vcpu_svm *svm = to_svm(vcpu);
4116
4117         set_exception_intercept(svm, NM_VECTOR);
4118         update_cr0_intercept(svm);
4119 }
4120
4121 #define PRE_EX(exit)  { .exit_code = (exit), \
4122                         .stage = X86_ICPT_PRE_EXCEPT, }
4123 #define POST_EX(exit) { .exit_code = (exit), \
4124                         .stage = X86_ICPT_POST_EXCEPT, }
4125 #define POST_MEM(exit) { .exit_code = (exit), \
4126                         .stage = X86_ICPT_POST_MEMACCESS, }
4127
4128 static const struct __x86_intercept {
4129         u32 exit_code;
4130         enum x86_intercept_stage stage;
4131 } x86_intercept_map[] = {
4132         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4133         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4134         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4135         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4136         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4137         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4138         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4139         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4140         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4141         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4142         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4143         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4144         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4145         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4146         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4147         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4148         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4149         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4150         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4151         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4152         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4153         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4154         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4155         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4156         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4157         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4158         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4159         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4160         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4161         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4162         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4163         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4164         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4165         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4166         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4167         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4168         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4169         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4170         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4171         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4172         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4173         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4174         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4175         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4176         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4177         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4178 };
4179
4180 #undef PRE_EX
4181 #undef POST_EX
4182 #undef POST_MEM
4183
4184 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4185                                struct x86_instruction_info *info,
4186                                enum x86_intercept_stage stage)
4187 {
4188         struct vcpu_svm *svm = to_svm(vcpu);
4189         int vmexit, ret = X86EMUL_CONTINUE;
4190         struct __x86_intercept icpt_info;
4191         struct vmcb *vmcb = svm->vmcb;
4192
4193         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4194                 goto out;
4195
4196         icpt_info = x86_intercept_map[info->intercept];
4197
4198         if (stage != icpt_info.stage)
4199                 goto out;
4200
4201         switch (icpt_info.exit_code) {
4202         case SVM_EXIT_READ_CR0:
4203                 if (info->intercept == x86_intercept_cr_read)
4204                         icpt_info.exit_code += info->modrm_reg;
4205                 break;
4206         case SVM_EXIT_WRITE_CR0: {
4207                 unsigned long cr0, val;
4208                 u64 intercept;
4209
4210                 if (info->intercept == x86_intercept_cr_write)
4211                         icpt_info.exit_code += info->modrm_reg;
4212
4213                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4214                     info->intercept == x86_intercept_clts)
4215                         break;
4216
4217                 intercept = svm->nested.intercept;
4218
4219                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4220                         break;
4221
4222                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4223                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4224
4225                 if (info->intercept == x86_intercept_lmsw) {
4226                         cr0 &= 0xfUL;
4227                         val &= 0xfUL;
4228                         /* lmsw can't clear PE - catch this here */
4229                         if (cr0 & X86_CR0_PE)
4230                                 val |= X86_CR0_PE;
4231                 }
4232
4233                 if (cr0 ^ val)
4234                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4235
4236                 break;
4237         }
4238         case SVM_EXIT_READ_DR0:
4239         case SVM_EXIT_WRITE_DR0:
4240                 icpt_info.exit_code += info->modrm_reg;
4241                 break;
4242         case SVM_EXIT_MSR:
4243                 if (info->intercept == x86_intercept_wrmsr)
4244                         vmcb->control.exit_info_1 = 1;
4245                 else
4246                         vmcb->control.exit_info_1 = 0;
4247                 break;
4248         case SVM_EXIT_PAUSE:
4249                 /*
4250                  * We get this for NOP only, but pause
4251                  * is rep not, check this here
4252                  */
4253                 if (info->rep_prefix != REPE_PREFIX)
4254                         goto out;
4255         case SVM_EXIT_IOIO: {
4256                 u64 exit_info;
4257                 u32 bytes;
4258
4259                 if (info->intercept == x86_intercept_in ||
4260                     info->intercept == x86_intercept_ins) {
4261                         exit_info = ((info->src_val & 0xffff) << 16) |
4262                                 SVM_IOIO_TYPE_MASK;
4263                         bytes = info->dst_bytes;
4264                 } else {
4265                         exit_info = (info->dst_val & 0xffff) << 16;
4266                         bytes = info->src_bytes;
4267                 }
4268
4269                 if (info->intercept == x86_intercept_outs ||
4270                     info->intercept == x86_intercept_ins)
4271                         exit_info |= SVM_IOIO_STR_MASK;
4272
4273                 if (info->rep_prefix)
4274                         exit_info |= SVM_IOIO_REP_MASK;
4275
4276                 bytes = min(bytes, 4u);
4277
4278                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4279
4280                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4281
4282                 vmcb->control.exit_info_1 = exit_info;
4283                 vmcb->control.exit_info_2 = info->next_rip;
4284
4285                 break;
4286         }
4287         default:
4288                 break;
4289         }
4290
4291         vmcb->control.next_rip  = info->next_rip;
4292         vmcb->control.exit_code = icpt_info.exit_code;
4293         vmexit = nested_svm_exit_handled(svm);
4294
4295         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4296                                            : X86EMUL_CONTINUE;
4297
4298 out:
4299         return ret;
4300 }
4301
4302 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4303 {
4304         local_irq_enable();
4305 }
4306
4307 static struct kvm_x86_ops svm_x86_ops = {
4308         .cpu_has_kvm_support = has_svm,
4309         .disabled_by_bios = is_disabled,
4310         .hardware_setup = svm_hardware_setup,
4311         .hardware_unsetup = svm_hardware_unsetup,
4312         .check_processor_compatibility = svm_check_processor_compat,
4313         .hardware_enable = svm_hardware_enable,
4314         .hardware_disable = svm_hardware_disable,
4315         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4316
4317         .vcpu_create = svm_create_vcpu,
4318         .vcpu_free = svm_free_vcpu,
4319         .vcpu_reset = svm_vcpu_reset,
4320
4321         .prepare_guest_switch = svm_prepare_guest_switch,
4322         .vcpu_load = svm_vcpu_load,
4323         .vcpu_put = svm_vcpu_put,
4324
4325         .update_db_bp_intercept = update_db_bp_intercept,
4326         .get_msr = svm_get_msr,
4327         .set_msr = svm_set_msr,
4328         .get_segment_base = svm_get_segment_base,
4329         .get_segment = svm_get_segment,
4330         .set_segment = svm_set_segment,
4331         .get_cpl = svm_get_cpl,
4332         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4333         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4334         .decache_cr3 = svm_decache_cr3,
4335         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4336         .set_cr0 = svm_set_cr0,
4337         .set_cr3 = svm_set_cr3,
4338         .set_cr4 = svm_set_cr4,
4339         .set_efer = svm_set_efer,
4340         .get_idt = svm_get_idt,
4341         .set_idt = svm_set_idt,
4342         .get_gdt = svm_get_gdt,
4343         .set_gdt = svm_set_gdt,
4344         .get_dr6 = svm_get_dr6,
4345         .set_dr6 = svm_set_dr6,
4346         .set_dr7 = svm_set_dr7,
4347         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4348         .cache_reg = svm_cache_reg,
4349         .get_rflags = svm_get_rflags,
4350         .set_rflags = svm_set_rflags,
4351         .fpu_activate = svm_fpu_activate,
4352         .fpu_deactivate = svm_fpu_deactivate,
4353
4354         .tlb_flush = svm_flush_tlb,
4355
4356         .run = svm_vcpu_run,
4357         .handle_exit = handle_exit,
4358         .skip_emulated_instruction = skip_emulated_instruction,
4359         .set_interrupt_shadow = svm_set_interrupt_shadow,
4360         .get_interrupt_shadow = svm_get_interrupt_shadow,
4361         .patch_hypercall = svm_patch_hypercall,
4362         .set_irq = svm_set_irq,
4363         .set_nmi = svm_inject_nmi,
4364         .queue_exception = svm_queue_exception,
4365         .cancel_injection = svm_cancel_injection,
4366         .interrupt_allowed = svm_interrupt_allowed,
4367         .nmi_allowed = svm_nmi_allowed,
4368         .get_nmi_mask = svm_get_nmi_mask,
4369         .set_nmi_mask = svm_set_nmi_mask,
4370         .enable_nmi_window = enable_nmi_window,
4371         .enable_irq_window = enable_irq_window,
4372         .update_cr8_intercept = update_cr8_intercept,
4373         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4374         .vm_has_apicv = svm_vm_has_apicv,
4375         .load_eoi_exitmap = svm_load_eoi_exitmap,
4376         .hwapic_isr_update = svm_hwapic_isr_update,
4377         .sync_pir_to_irr = svm_sync_pir_to_irr,
4378
4379         .set_tss_addr = svm_set_tss_addr,
4380         .get_tdp_level = get_npt_level,
4381         .get_mt_mask = svm_get_mt_mask,
4382
4383         .get_exit_info = svm_get_exit_info,
4384
4385         .get_lpage_level = svm_get_lpage_level,
4386
4387         .cpuid_update = svm_cpuid_update,
4388
4389         .rdtscp_supported = svm_rdtscp_supported,
4390         .invpcid_supported = svm_invpcid_supported,
4391         .mpx_supported = svm_mpx_supported,
4392
4393         .set_supported_cpuid = svm_set_supported_cpuid,
4394
4395         .has_wbinvd_exit = svm_has_wbinvd_exit,
4396
4397         .set_tsc_khz = svm_set_tsc_khz,
4398         .read_tsc_offset = svm_read_tsc_offset,
4399         .write_tsc_offset = svm_write_tsc_offset,
4400         .adjust_tsc_offset = svm_adjust_tsc_offset,
4401         .compute_tsc_offset = svm_compute_tsc_offset,
4402         .read_l1_tsc = svm_read_l1_tsc,
4403
4404         .set_tdp_cr3 = set_tdp_cr3,
4405
4406         .check_intercept = svm_check_intercept,
4407         .handle_external_intr = svm_handle_external_intr,
4408 };
4409
4410 static int __init svm_init(void)
4411 {
4412         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4413                         __alignof__(struct vcpu_svm), THIS_MODULE);
4414 }
4415
4416 static void __exit svm_exit(void)
4417 {
4418         kvm_exit();
4419 }
4420
4421 module_init(svm_init)
4422 module_exit(svm_exit)