]> git.karo-electronics.de Git - linux-beck.git/blob - arch/x86/kvm/svm.c
KVM: svm: handle KVM_X86_QUIRK_CD_NW_CLEARED in svm_get_mt_mask
[linux-beck.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
207
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212                                       bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
214
215 enum {
216         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217                             pause filter count */
218         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
219         VMCB_ASID,       /* ASID */
220         VMCB_INTR,       /* int_ctl, int_vector */
221         VMCB_NPT,        /* npt_en, nCR3, gPAT */
222         VMCB_CR,         /* CR0, CR3, CR4, EFER */
223         VMCB_DR,         /* DR6, DR7 */
224         VMCB_DT,         /* GDT, IDT */
225         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
226         VMCB_CR2,        /* CR2 only */
227         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228         VMCB_DIRTY_MAX,
229 };
230
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233
234 static inline void mark_all_dirty(struct vmcb *vmcb)
235 {
236         vmcb->control.clean = 0;
237 }
238
239 static inline void mark_all_clean(struct vmcb *vmcb)
240 {
241         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242                                & ~VMCB_ALWAYS_DIRTY_MASK;
243 }
244
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 {
247         vmcb->control.clean &= ~(1 << bit);
248 }
249
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 {
252         return container_of(vcpu, struct vcpu_svm, vcpu);
253 }
254
255 static void recalc_intercepts(struct vcpu_svm *svm)
256 {
257         struct vmcb_control_area *c, *h;
258         struct nested_state *g;
259
260         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261
262         if (!is_guest_mode(&svm->vcpu))
263                 return;
264
265         c = &svm->vmcb->control;
266         h = &svm->nested.hsave->control;
267         g = &svm->nested;
268
269         c->intercept_cr = h->intercept_cr | g->intercept_cr;
270         c->intercept_dr = h->intercept_dr | g->intercept_dr;
271         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272         c->intercept = h->intercept | g->intercept;
273 }
274
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 {
277         if (is_guest_mode(&svm->vcpu))
278                 return svm->nested.hsave;
279         else
280                 return svm->vmcb;
281 }
282
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         vmcb->control.intercept_cr |= (1U << bit);
288
289         recalc_intercepts(svm);
290 }
291
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 {
294         struct vmcb *vmcb = get_host_vmcb(svm);
295
296         vmcb->control.intercept_cr &= ~(1U << bit);
297
298         recalc_intercepts(svm);
299 }
300
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 {
303         struct vmcb *vmcb = get_host_vmcb(svm);
304
305         return vmcb->control.intercept_cr & (1U << bit);
306 }
307
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313                 | (1 << INTERCEPT_DR1_READ)
314                 | (1 << INTERCEPT_DR2_READ)
315                 | (1 << INTERCEPT_DR3_READ)
316                 | (1 << INTERCEPT_DR4_READ)
317                 | (1 << INTERCEPT_DR5_READ)
318                 | (1 << INTERCEPT_DR6_READ)
319                 | (1 << INTERCEPT_DR7_READ)
320                 | (1 << INTERCEPT_DR0_WRITE)
321                 | (1 << INTERCEPT_DR1_WRITE)
322                 | (1 << INTERCEPT_DR2_WRITE)
323                 | (1 << INTERCEPT_DR3_WRITE)
324                 | (1 << INTERCEPT_DR4_WRITE)
325                 | (1 << INTERCEPT_DR5_WRITE)
326                 | (1 << INTERCEPT_DR6_WRITE)
327                 | (1 << INTERCEPT_DR7_WRITE);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_dr = 0;
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept_exceptions |= (1U << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept_exceptions &= ~(1U << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 {
361         struct vmcb *vmcb = get_host_vmcb(svm);
362
363         vmcb->control.intercept |= (1ULL << bit);
364
365         recalc_intercepts(svm);
366 }
367
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 {
370         struct vmcb *vmcb = get_host_vmcb(svm);
371
372         vmcb->control.intercept &= ~(1ULL << bit);
373
374         recalc_intercepts(svm);
375 }
376
377 static inline void enable_gif(struct vcpu_svm *svm)
378 {
379         svm->vcpu.arch.hflags |= HF_GIF_MASK;
380 }
381
382 static inline void disable_gif(struct vcpu_svm *svm)
383 {
384         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
385 }
386
387 static inline bool gif_set(struct vcpu_svm *svm)
388 {
389         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
390 }
391
392 static unsigned long iopm_base;
393
394 struct kvm_ldttss_desc {
395         u16 limit0;
396         u16 base0;
397         unsigned base1:8, type:5, dpl:2, p:1;
398         unsigned limit1:4, zero0:3, g:1, base2:8;
399         u32 base3;
400         u32 zero1;
401 } __attribute__((packed));
402
403 struct svm_cpu_data {
404         int cpu;
405
406         u64 asid_generation;
407         u32 max_asid;
408         u32 next_asid;
409         struct kvm_ldttss_desc *tss_desc;
410
411         struct page *save_area;
412 };
413
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415
416 struct svm_init_data {
417         int cpu;
418         int r;
419 };
420
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426
427 static u32 svm_msrpm_offset(u32 msr)
428 {
429         u32 offset;
430         int i;
431
432         for (i = 0; i < NUM_MSR_MAPS; i++) {
433                 if (msr < msrpm_ranges[i] ||
434                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435                         continue;
436
437                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
439
440                 /* Now we have the u8 offset - but need the u32 offset */
441                 return offset / 4;
442         }
443
444         /* MSR not in any range */
445         return MSR_INVALID;
446 }
447
448 #define MAX_INST_SIZE 15
449
450 static inline void clgi(void)
451 {
452         asm volatile (__ex(SVM_CLGI));
453 }
454
455 static inline void stgi(void)
456 {
457         asm volatile (__ex(SVM_STGI));
458 }
459
460 static inline void invlpga(unsigned long addr, u32 asid)
461 {
462         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
463 }
464
465 static int get_npt_level(void)
466 {
467 #ifdef CONFIG_X86_64
468         return PT64_ROOT_LEVEL;
469 #else
470         return PT32E_ROOT_LEVEL;
471 #endif
472 }
473
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 {
476         vcpu->arch.efer = efer;
477         if (!npt_enabled && !(efer & EFER_LMA))
478                 efer &= ~EFER_LME;
479
480         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
482 }
483
484 static int is_external_interrupt(u32 info)
485 {
486         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
488 }
489
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 {
492         struct vcpu_svm *svm = to_svm(vcpu);
493         u32 ret = 0;
494
495         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497         return ret;
498 }
499
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 {
502         struct vcpu_svm *svm = to_svm(vcpu);
503
504         if (mask == 0)
505                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506         else
507                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
508
509 }
510
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 {
513         struct vcpu_svm *svm = to_svm(vcpu);
514
515         if (svm->vmcb->control.next_rip != 0) {
516                 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517                 svm->next_rip = svm->vmcb->control.next_rip;
518         }
519
520         if (!svm->next_rip) {
521                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522                                 EMULATE_DONE)
523                         printk(KERN_DEBUG "%s: NOP\n", __func__);
524                 return;
525         }
526         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528                        __func__, kvm_rip_read(vcpu), svm->next_rip);
529
530         kvm_rip_write(vcpu, svm->next_rip);
531         svm_set_interrupt_shadow(vcpu, 0);
532 }
533
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535                                 bool has_error_code, u32 error_code,
536                                 bool reinject)
537 {
538         struct vcpu_svm *svm = to_svm(vcpu);
539
540         /*
541          * If we are within a nested VM we'd better #VMEXIT and let the guest
542          * handle the exception
543          */
544         if (!reinject &&
545             nested_svm_check_exception(svm, nr, has_error_code, error_code))
546                 return;
547
548         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
550
551                 /*
552                  * For guest debugging where we have to reinject #BP if some
553                  * INT3 is guest-owned:
554                  * Emulate nRIP by moving RIP forward. Will fail if injection
555                  * raises a fault that is not intercepted. Still better than
556                  * failing in all cases.
557                  */
558                 skip_emulated_instruction(&svm->vcpu);
559                 rip = kvm_rip_read(&svm->vcpu);
560                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561                 svm->int3_injected = rip - old_rip;
562         }
563
564         svm->vmcb->control.event_inj = nr
565                 | SVM_EVTINJ_VALID
566                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567                 | SVM_EVTINJ_TYPE_EXEPT;
568         svm->vmcb->control.event_inj_err = error_code;
569 }
570
571 static void svm_init_erratum_383(void)
572 {
573         u32 low, high;
574         int err;
575         u64 val;
576
577         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578                 return;
579
580         /* Use _safe variants to not break nested virtualization */
581         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582         if (err)
583                 return;
584
585         val |= (1ULL << 47);
586
587         low  = lower_32_bits(val);
588         high = upper_32_bits(val);
589
590         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591
592         erratum_383_found = true;
593 }
594
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
596 {
597         /*
598          * Guests should see errata 400 and 415 as fixed (assuming that
599          * HLT and IO instructions are intercepted).
600          */
601         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
603
604         /*
605          * By increasing VCPU's osvw.length to 3 we are telling the guest that
606          * all osvw.status bits inside that length, including bit 0 (which is
607          * reserved for erratum 298), are valid. However, if host processor's
608          * osvw_len is 0 then osvw_status[0] carries no information. We need to
609          * be conservative here and therefore we tell the guest that erratum 298
610          * is present (because we really don't know).
611          */
612         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613                 vcpu->arch.osvw.status |= 1;
614 }
615
616 static int has_svm(void)
617 {
618         const char *msg;
619
620         if (!cpu_has_svm(&msg)) {
621                 printk(KERN_INFO "has_svm: %s\n", msg);
622                 return 0;
623         }
624
625         return 1;
626 }
627
628 static void svm_hardware_disable(void)
629 {
630         /* Make sure we clean up behind us */
631         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633
634         cpu_svm_disable();
635
636         amd_pmu_disable_virt();
637 }
638
639 static int svm_hardware_enable(void)
640 {
641
642         struct svm_cpu_data *sd;
643         uint64_t efer;
644         struct desc_ptr gdt_descr;
645         struct desc_struct *gdt;
646         int me = raw_smp_processor_id();
647
648         rdmsrl(MSR_EFER, efer);
649         if (efer & EFER_SVME)
650                 return -EBUSY;
651
652         if (!has_svm()) {
653                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654                 return -EINVAL;
655         }
656         sd = per_cpu(svm_data, me);
657         if (!sd) {
658                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659                 return -EINVAL;
660         }
661
662         sd->asid_generation = 1;
663         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664         sd->next_asid = sd->max_asid + 1;
665
666         native_store_gdt(&gdt_descr);
667         gdt = (struct desc_struct *)gdt_descr.address;
668         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669
670         wrmsrl(MSR_EFER, efer | EFER_SVME);
671
672         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673
674         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
677         }
678
679
680         /*
681          * Get OSVW bits.
682          *
683          * Note that it is possible to have a system with mixed processor
684          * revisions and therefore different OSVW bits. If bits are not the same
685          * on different processors then choose the worst case (i.e. if erratum
686          * is present on one processor and not on another then assume that the
687          * erratum is present everywhere).
688          */
689         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690                 uint64_t len, status = 0;
691                 int err;
692
693                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694                 if (!err)
695                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696                                                       &err);
697
698                 if (err)
699                         osvw_status = osvw_len = 0;
700                 else {
701                         if (len < osvw_len)
702                                 osvw_len = len;
703                         osvw_status |= status;
704                         osvw_status &= (1ULL << osvw_len) - 1;
705                 }
706         } else
707                 osvw_status = osvw_len = 0;
708
709         svm_init_erratum_383();
710
711         amd_pmu_enable_virt();
712
713         return 0;
714 }
715
716 static void svm_cpu_uninit(int cpu)
717 {
718         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719
720         if (!sd)
721                 return;
722
723         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724         __free_page(sd->save_area);
725         kfree(sd);
726 }
727
728 static int svm_cpu_init(int cpu)
729 {
730         struct svm_cpu_data *sd;
731         int r;
732
733         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734         if (!sd)
735                 return -ENOMEM;
736         sd->cpu = cpu;
737         sd->save_area = alloc_page(GFP_KERNEL);
738         r = -ENOMEM;
739         if (!sd->save_area)
740                 goto err_1;
741
742         per_cpu(svm_data, cpu) = sd;
743
744         return 0;
745
746 err_1:
747         kfree(sd);
748         return r;
749
750 }
751
752 static bool valid_msr_intercept(u32 index)
753 {
754         int i;
755
756         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757                 if (direct_access_msrs[i].index == index)
758                         return true;
759
760         return false;
761 }
762
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764                                  int read, int write)
765 {
766         u8 bit_read, bit_write;
767         unsigned long tmp;
768         u32 offset;
769
770         /*
771          * If this warning triggers extend the direct_access_msrs list at the
772          * beginning of the file
773          */
774         WARN_ON(!valid_msr_intercept(msr));
775
776         offset    = svm_msrpm_offset(msr);
777         bit_read  = 2 * (msr & 0x0f);
778         bit_write = 2 * (msr & 0x0f) + 1;
779         tmp       = msrpm[offset];
780
781         BUG_ON(offset == MSR_INVALID);
782
783         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
784         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785
786         msrpm[offset] = tmp;
787 }
788
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 {
791         int i;
792
793         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794
795         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796                 if (!direct_access_msrs[i].always)
797                         continue;
798
799                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
800         }
801 }
802
803 static void add_msr_offset(u32 offset)
804 {
805         int i;
806
807         for (i = 0; i < MSRPM_OFFSETS; ++i) {
808
809                 /* Offset already in list? */
810                 if (msrpm_offsets[i] == offset)
811                         return;
812
813                 /* Slot used by another offset? */
814                 if (msrpm_offsets[i] != MSR_INVALID)
815                         continue;
816
817                 /* Add offset to list */
818                 msrpm_offsets[i] = offset;
819
820                 return;
821         }
822
823         /*
824          * If this BUG triggers the msrpm_offsets table has an overflow. Just
825          * increase MSRPM_OFFSETS in this case.
826          */
827         BUG();
828 }
829
830 static void init_msrpm_offsets(void)
831 {
832         int i;
833
834         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835
836         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837                 u32 offset;
838
839                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840                 BUG_ON(offset == MSR_INVALID);
841
842                 add_msr_offset(offset);
843         }
844 }
845
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 {
848         u32 *msrpm = svm->msrpm;
849
850         svm->vmcb->control.lbr_ctl = 1;
851         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
855 }
856
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 {
859         u32 *msrpm = svm->msrpm;
860
861         svm->vmcb->control.lbr_ctl = 0;
862         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
866 }
867
868 #define MTRR_TYPE_UC_MINUS      7
869 #define MTRR2PROTVAL_INVALID 0xff
870
871 static u8 mtrr2protval[8];
872
873 static u8 fallback_mtrr_type(int mtrr)
874 {
875         /*
876          * WT and WP aren't always available in the host PAT.  Treat
877          * them as UC and UC- respectively.  Everything else should be
878          * there.
879          */
880         switch (mtrr)
881         {
882         case MTRR_TYPE_WRTHROUGH:
883                 return MTRR_TYPE_UNCACHABLE;
884         case MTRR_TYPE_WRPROT:
885                 return MTRR_TYPE_UC_MINUS;
886         default:
887                 BUG();
888         }
889 }
890
891 static void build_mtrr2protval(void)
892 {
893         int i;
894         u64 pat;
895
896         for (i = 0; i < 8; i++)
897                 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
898
899         /* Ignore the invalid MTRR types.  */
900         mtrr2protval[2] = 0;
901         mtrr2protval[3] = 0;
902
903         /*
904          * Use host PAT value to figure out the mapping from guest MTRR
905          * values to nested page table PAT/PCD/PWT values.  We do not
906          * want to change the host PAT value every time we enter the
907          * guest.
908          */
909         rdmsrl(MSR_IA32_CR_PAT, pat);
910         for (i = 0; i < 8; i++) {
911                 u8 mtrr = pat >> (8 * i);
912
913                 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
914                         mtrr2protval[mtrr] = __cm_idx2pte(i);
915         }
916
917         for (i = 0; i < 8; i++) {
918                 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
919                         u8 fallback = fallback_mtrr_type(i);
920                         mtrr2protval[i] = mtrr2protval[fallback];
921                         BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
922                 }
923         }
924 }
925
926 static __init int svm_hardware_setup(void)
927 {
928         int cpu;
929         struct page *iopm_pages;
930         void *iopm_va;
931         int r;
932
933         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
934
935         if (!iopm_pages)
936                 return -ENOMEM;
937
938         iopm_va = page_address(iopm_pages);
939         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
940         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
941
942         init_msrpm_offsets();
943
944         if (boot_cpu_has(X86_FEATURE_NX))
945                 kvm_enable_efer_bits(EFER_NX);
946
947         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
948                 kvm_enable_efer_bits(EFER_FFXSR);
949
950         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
951                 u64 max;
952
953                 kvm_has_tsc_control = true;
954
955                 /*
956                  * Make sure the user can only configure tsc_khz values that
957                  * fit into a signed integer.
958                  * A min value is not calculated needed because it will always
959                  * be 1 on all machines and a value of 0 is used to disable
960                  * tsc-scaling for the vcpu.
961                  */
962                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
963
964                 kvm_max_guest_tsc_khz = max;
965         }
966
967         if (nested) {
968                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
970         }
971
972         for_each_possible_cpu(cpu) {
973                 r = svm_cpu_init(cpu);
974                 if (r)
975                         goto err;
976         }
977
978         if (!boot_cpu_has(X86_FEATURE_NPT))
979                 npt_enabled = false;
980
981         if (npt_enabled && !npt) {
982                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
983                 npt_enabled = false;
984         }
985
986         if (npt_enabled) {
987                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
988                 kvm_enable_tdp();
989         } else
990                 kvm_disable_tdp();
991
992         build_mtrr2protval();
993         return 0;
994
995 err:
996         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
997         iopm_base = 0;
998         return r;
999 }
1000
1001 static __exit void svm_hardware_unsetup(void)
1002 {
1003         int cpu;
1004
1005         for_each_possible_cpu(cpu)
1006                 svm_cpu_uninit(cpu);
1007
1008         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1009         iopm_base = 0;
1010 }
1011
1012 static void init_seg(struct vmcb_seg *seg)
1013 {
1014         seg->selector = 0;
1015         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1016                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1017         seg->limit = 0xffff;
1018         seg->base = 0;
1019 }
1020
1021 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1022 {
1023         seg->selector = 0;
1024         seg->attrib = SVM_SELECTOR_P_MASK | type;
1025         seg->limit = 0xffff;
1026         seg->base = 0;
1027 }
1028
1029 static u64 __scale_tsc(u64 ratio, u64 tsc)
1030 {
1031         u64 mult, frac, _tsc;
1032
1033         mult  = ratio >> 32;
1034         frac  = ratio & ((1ULL << 32) - 1);
1035
1036         _tsc  = tsc;
1037         _tsc *= mult;
1038         _tsc += (tsc >> 32) * frac;
1039         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1040
1041         return _tsc;
1042 }
1043
1044 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1045 {
1046         struct vcpu_svm *svm = to_svm(vcpu);
1047         u64 _tsc = tsc;
1048
1049         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1050                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1051
1052         return _tsc;
1053 }
1054
1055 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058         u64 ratio;
1059         u64 khz;
1060
1061         /* Guest TSC same frequency as host TSC? */
1062         if (!scale) {
1063                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1064                 return;
1065         }
1066
1067         /* TSC scaling supported? */
1068         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1069                 if (user_tsc_khz > tsc_khz) {
1070                         vcpu->arch.tsc_catchup = 1;
1071                         vcpu->arch.tsc_always_catchup = 1;
1072                 } else
1073                         WARN(1, "user requested TSC rate below hardware speed\n");
1074                 return;
1075         }
1076
1077         khz = user_tsc_khz;
1078
1079         /* TSC scaling required  - calculate ratio */
1080         ratio = khz << 32;
1081         do_div(ratio, tsc_khz);
1082
1083         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1084                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1085                                 user_tsc_khz);
1086                 return;
1087         }
1088         svm->tsc_ratio             = ratio;
1089 }
1090
1091 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1092 {
1093         struct vcpu_svm *svm = to_svm(vcpu);
1094
1095         return svm->vmcb->control.tsc_offset;
1096 }
1097
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100         struct vcpu_svm *svm = to_svm(vcpu);
1101         u64 g_tsc_offset = 0;
1102
1103         if (is_guest_mode(vcpu)) {
1104                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1105                                svm->nested.hsave->control.tsc_offset;
1106                 svm->nested.hsave->control.tsc_offset = offset;
1107         } else
1108                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1109                                            svm->vmcb->control.tsc_offset,
1110                                            offset);
1111
1112         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1113
1114         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1115 }
1116
1117 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1118 {
1119         struct vcpu_svm *svm = to_svm(vcpu);
1120
1121         if (host) {
1122                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1123                         WARN_ON(adjustment < 0);
1124                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1125         }
1126
1127         svm->vmcb->control.tsc_offset += adjustment;
1128         if (is_guest_mode(vcpu))
1129                 svm->nested.hsave->control.tsc_offset += adjustment;
1130         else
1131                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1132                                      svm->vmcb->control.tsc_offset - adjustment,
1133                                      svm->vmcb->control.tsc_offset);
1134
1135         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1136 }
1137
1138 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1139 {
1140         u64 tsc;
1141
1142         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1143
1144         return target_tsc - tsc;
1145 }
1146
1147 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1148 {
1149         struct kvm_vcpu *vcpu = &svm->vcpu;
1150
1151         /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1152          *
1153          * AMD does not have IPAT.  To emulate it for the case of guests
1154          * with no assigned devices, just set everything to WB.  If guests
1155          * have assigned devices, however, we cannot force WB for RAM
1156          * pages only, so use the guest PAT directly.
1157          */
1158         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1159                 *g_pat = 0x0606060606060606;
1160         else
1161                 *g_pat = vcpu->arch.pat;
1162 }
1163
1164 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1165 {
1166         u8 mtrr;
1167
1168         /*
1169          * 1. MMIO: trust guest MTRR, so same as item 3.
1170          * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1171          * 3. Passthrough: can't guarantee the result, try to trust guest.
1172          */
1173         if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm))
1174                 return 0;
1175
1176         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED) &&
1177             kvm_read_cr0(vcpu) & X86_CR0_CD)
1178                 return _PAGE_NOCACHE;
1179
1180         mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1181         return mtrr2protval[mtrr];
1182 }
1183
1184 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1185 {
1186         struct vmcb_control_area *control = &svm->vmcb->control;
1187         struct vmcb_save_area *save = &svm->vmcb->save;
1188
1189         svm->vcpu.fpu_active = 1;
1190         svm->vcpu.arch.hflags = 0;
1191
1192         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1193         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1194         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1195         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1196         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1197         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1198         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1199
1200         set_dr_intercepts(svm);
1201
1202         set_exception_intercept(svm, PF_VECTOR);
1203         set_exception_intercept(svm, UD_VECTOR);
1204         set_exception_intercept(svm, MC_VECTOR);
1205
1206         set_intercept(svm, INTERCEPT_INTR);
1207         set_intercept(svm, INTERCEPT_NMI);
1208         set_intercept(svm, INTERCEPT_SMI);
1209         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210         set_intercept(svm, INTERCEPT_RDPMC);
1211         set_intercept(svm, INTERCEPT_CPUID);
1212         set_intercept(svm, INTERCEPT_INVD);
1213         set_intercept(svm, INTERCEPT_HLT);
1214         set_intercept(svm, INTERCEPT_INVLPG);
1215         set_intercept(svm, INTERCEPT_INVLPGA);
1216         set_intercept(svm, INTERCEPT_IOIO_PROT);
1217         set_intercept(svm, INTERCEPT_MSR_PROT);
1218         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219         set_intercept(svm, INTERCEPT_SHUTDOWN);
1220         set_intercept(svm, INTERCEPT_VMRUN);
1221         set_intercept(svm, INTERCEPT_VMMCALL);
1222         set_intercept(svm, INTERCEPT_VMLOAD);
1223         set_intercept(svm, INTERCEPT_VMSAVE);
1224         set_intercept(svm, INTERCEPT_STGI);
1225         set_intercept(svm, INTERCEPT_CLGI);
1226         set_intercept(svm, INTERCEPT_SKINIT);
1227         set_intercept(svm, INTERCEPT_WBINVD);
1228         set_intercept(svm, INTERCEPT_MONITOR);
1229         set_intercept(svm, INTERCEPT_MWAIT);
1230         set_intercept(svm, INTERCEPT_XSETBV);
1231
1232         control->iopm_base_pa = iopm_base;
1233         control->msrpm_base_pa = __pa(svm->msrpm);
1234         control->int_ctl = V_INTR_MASKING_MASK;
1235
1236         init_seg(&save->es);
1237         init_seg(&save->ss);
1238         init_seg(&save->ds);
1239         init_seg(&save->fs);
1240         init_seg(&save->gs);
1241
1242         save->cs.selector = 0xf000;
1243         save->cs.base = 0xffff0000;
1244         /* Executable/Readable Code Segment */
1245         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1246                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1247         save->cs.limit = 0xffff;
1248
1249         save->gdtr.limit = 0xffff;
1250         save->idtr.limit = 0xffff;
1251
1252         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1253         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1254
1255         if (!init_event)
1256                 svm_set_efer(&svm->vcpu, 0);
1257         save->dr6 = 0xffff0ff0;
1258         kvm_set_rflags(&svm->vcpu, 2);
1259         save->rip = 0x0000fff0;
1260         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1261
1262         /*
1263          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1264          * It also updates the guest-visible cr0 value.
1265          */
1266         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1267
1268         save->cr4 = X86_CR4_PAE;
1269         /* rdx = ?? */
1270
1271         if (npt_enabled) {
1272                 /* Setup VMCB for Nested Paging */
1273                 control->nested_ctl = 1;
1274                 clr_intercept(svm, INTERCEPT_INVLPG);
1275                 clr_exception_intercept(svm, PF_VECTOR);
1276                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1277                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1278                 save->g_pat = svm->vcpu.arch.pat;
1279                 svm_set_guest_pat(svm, &save->g_pat);
1280                 save->cr3 = 0;
1281                 save->cr4 = 0;
1282         }
1283         svm->asid_generation = 0;
1284
1285         svm->nested.vmcb = 0;
1286         svm->vcpu.arch.hflags = 0;
1287
1288         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1289                 control->pause_filter_count = 3000;
1290                 set_intercept(svm, INTERCEPT_PAUSE);
1291         }
1292
1293         mark_all_dirty(svm->vmcb);
1294
1295         enable_gif(svm);
1296 }
1297
1298 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1299 {
1300         struct vcpu_svm *svm = to_svm(vcpu);
1301         u32 dummy;
1302         u32 eax = 1;
1303
1304         if (!init_event) {
1305                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1306                                            MSR_IA32_APICBASE_ENABLE;
1307                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1308                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1309         }
1310         init_vmcb(svm, init_event);
1311
1312         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1313         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1314 }
1315
1316 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1317 {
1318         struct vcpu_svm *svm;
1319         struct page *page;
1320         struct page *msrpm_pages;
1321         struct page *hsave_page;
1322         struct page *nested_msrpm_pages;
1323         int err;
1324
1325         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1326         if (!svm) {
1327                 err = -ENOMEM;
1328                 goto out;
1329         }
1330
1331         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1332
1333         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1334         if (err)
1335                 goto free_svm;
1336
1337         err = -ENOMEM;
1338         page = alloc_page(GFP_KERNEL);
1339         if (!page)
1340                 goto uninit;
1341
1342         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1343         if (!msrpm_pages)
1344                 goto free_page1;
1345
1346         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1347         if (!nested_msrpm_pages)
1348                 goto free_page2;
1349
1350         hsave_page = alloc_page(GFP_KERNEL);
1351         if (!hsave_page)
1352                 goto free_page3;
1353
1354         svm->nested.hsave = page_address(hsave_page);
1355
1356         svm->msrpm = page_address(msrpm_pages);
1357         svm_vcpu_init_msrpm(svm->msrpm);
1358
1359         svm->nested.msrpm = page_address(nested_msrpm_pages);
1360         svm_vcpu_init_msrpm(svm->nested.msrpm);
1361
1362         svm->vmcb = page_address(page);
1363         clear_page(svm->vmcb);
1364         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1365         svm->asid_generation = 0;
1366         init_vmcb(svm, false);
1367
1368         svm_init_osvw(&svm->vcpu);
1369
1370         return &svm->vcpu;
1371
1372 free_page3:
1373         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1374 free_page2:
1375         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1376 free_page1:
1377         __free_page(page);
1378 uninit:
1379         kvm_vcpu_uninit(&svm->vcpu);
1380 free_svm:
1381         kmem_cache_free(kvm_vcpu_cache, svm);
1382 out:
1383         return ERR_PTR(err);
1384 }
1385
1386 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1387 {
1388         struct vcpu_svm *svm = to_svm(vcpu);
1389
1390         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1391         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1392         __free_page(virt_to_page(svm->nested.hsave));
1393         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1394         kvm_vcpu_uninit(vcpu);
1395         kmem_cache_free(kvm_vcpu_cache, svm);
1396 }
1397
1398 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1399 {
1400         struct vcpu_svm *svm = to_svm(vcpu);
1401         int i;
1402
1403         if (unlikely(cpu != vcpu->cpu)) {
1404                 svm->asid_generation = 0;
1405                 mark_all_dirty(svm->vmcb);
1406         }
1407
1408 #ifdef CONFIG_X86_64
1409         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1410 #endif
1411         savesegment(fs, svm->host.fs);
1412         savesegment(gs, svm->host.gs);
1413         svm->host.ldt = kvm_read_ldt();
1414
1415         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1416                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1417
1418         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1419             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1420                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1421                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1422         }
1423 }
1424
1425 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1426 {
1427         struct vcpu_svm *svm = to_svm(vcpu);
1428         int i;
1429
1430         ++vcpu->stat.host_state_reload;
1431         kvm_load_ldt(svm->host.ldt);
1432 #ifdef CONFIG_X86_64
1433         loadsegment(fs, svm->host.fs);
1434         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1435         load_gs_index(svm->host.gs);
1436 #else
1437 #ifdef CONFIG_X86_32_LAZY_GS
1438         loadsegment(gs, svm->host.gs);
1439 #endif
1440 #endif
1441         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1442                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1443 }
1444
1445 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1446 {
1447         return to_svm(vcpu)->vmcb->save.rflags;
1448 }
1449
1450 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1451 {
1452        /*
1453         * Any change of EFLAGS.VM is accompained by a reload of SS
1454         * (caused by either a task switch or an inter-privilege IRET),
1455         * so we do not need to update the CPL here.
1456         */
1457         to_svm(vcpu)->vmcb->save.rflags = rflags;
1458 }
1459
1460 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1461 {
1462         switch (reg) {
1463         case VCPU_EXREG_PDPTR:
1464                 BUG_ON(!npt_enabled);
1465                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1466                 break;
1467         default:
1468                 BUG();
1469         }
1470 }
1471
1472 static void svm_set_vintr(struct vcpu_svm *svm)
1473 {
1474         set_intercept(svm, INTERCEPT_VINTR);
1475 }
1476
1477 static void svm_clear_vintr(struct vcpu_svm *svm)
1478 {
1479         clr_intercept(svm, INTERCEPT_VINTR);
1480 }
1481
1482 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1483 {
1484         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1485
1486         switch (seg) {
1487         case VCPU_SREG_CS: return &save->cs;
1488         case VCPU_SREG_DS: return &save->ds;
1489         case VCPU_SREG_ES: return &save->es;
1490         case VCPU_SREG_FS: return &save->fs;
1491         case VCPU_SREG_GS: return &save->gs;
1492         case VCPU_SREG_SS: return &save->ss;
1493         case VCPU_SREG_TR: return &save->tr;
1494         case VCPU_SREG_LDTR: return &save->ldtr;
1495         }
1496         BUG();
1497         return NULL;
1498 }
1499
1500 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1501 {
1502         struct vmcb_seg *s = svm_seg(vcpu, seg);
1503
1504         return s->base;
1505 }
1506
1507 static void svm_get_segment(struct kvm_vcpu *vcpu,
1508                             struct kvm_segment *var, int seg)
1509 {
1510         struct vmcb_seg *s = svm_seg(vcpu, seg);
1511
1512         var->base = s->base;
1513         var->limit = s->limit;
1514         var->selector = s->selector;
1515         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1516         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1517         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1518         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1519         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1520         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1521         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1522
1523         /*
1524          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1525          * However, the SVM spec states that the G bit is not observed by the
1526          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1527          * So let's synthesize a legal G bit for all segments, this helps
1528          * running KVM nested. It also helps cross-vendor migration, because
1529          * Intel's vmentry has a check on the 'G' bit.
1530          */
1531         var->g = s->limit > 0xfffff;
1532
1533         /*
1534          * AMD's VMCB does not have an explicit unusable field, so emulate it
1535          * for cross vendor migration purposes by "not present"
1536          */
1537         var->unusable = !var->present || (var->type == 0);
1538
1539         switch (seg) {
1540         case VCPU_SREG_TR:
1541                 /*
1542                  * Work around a bug where the busy flag in the tr selector
1543                  * isn't exposed
1544                  */
1545                 var->type |= 0x2;
1546                 break;
1547         case VCPU_SREG_DS:
1548         case VCPU_SREG_ES:
1549         case VCPU_SREG_FS:
1550         case VCPU_SREG_GS:
1551                 /*
1552                  * The accessed bit must always be set in the segment
1553                  * descriptor cache, although it can be cleared in the
1554                  * descriptor, the cached bit always remains at 1. Since
1555                  * Intel has a check on this, set it here to support
1556                  * cross-vendor migration.
1557                  */
1558                 if (!var->unusable)
1559                         var->type |= 0x1;
1560                 break;
1561         case VCPU_SREG_SS:
1562                 /*
1563                  * On AMD CPUs sometimes the DB bit in the segment
1564                  * descriptor is left as 1, although the whole segment has
1565                  * been made unusable. Clear it here to pass an Intel VMX
1566                  * entry check when cross vendor migrating.
1567                  */
1568                 if (var->unusable)
1569                         var->db = 0;
1570                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1571                 break;
1572         }
1573 }
1574
1575 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1576 {
1577         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1578
1579         return save->cpl;
1580 }
1581
1582 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1583 {
1584         struct vcpu_svm *svm = to_svm(vcpu);
1585
1586         dt->size = svm->vmcb->save.idtr.limit;
1587         dt->address = svm->vmcb->save.idtr.base;
1588 }
1589
1590 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1591 {
1592         struct vcpu_svm *svm = to_svm(vcpu);
1593
1594         svm->vmcb->save.idtr.limit = dt->size;
1595         svm->vmcb->save.idtr.base = dt->address ;
1596         mark_dirty(svm->vmcb, VMCB_DT);
1597 }
1598
1599 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1600 {
1601         struct vcpu_svm *svm = to_svm(vcpu);
1602
1603         dt->size = svm->vmcb->save.gdtr.limit;
1604         dt->address = svm->vmcb->save.gdtr.base;
1605 }
1606
1607 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1608 {
1609         struct vcpu_svm *svm = to_svm(vcpu);
1610
1611         svm->vmcb->save.gdtr.limit = dt->size;
1612         svm->vmcb->save.gdtr.base = dt->address ;
1613         mark_dirty(svm->vmcb, VMCB_DT);
1614 }
1615
1616 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1617 {
1618 }
1619
1620 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1621 {
1622 }
1623
1624 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1625 {
1626 }
1627
1628 static void update_cr0_intercept(struct vcpu_svm *svm)
1629 {
1630         ulong gcr0 = svm->vcpu.arch.cr0;
1631         u64 *hcr0 = &svm->vmcb->save.cr0;
1632
1633         if (!svm->vcpu.fpu_active)
1634                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1635         else
1636                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1637                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1638
1639         mark_dirty(svm->vmcb, VMCB_CR);
1640
1641         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1642                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1643                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1644         } else {
1645                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1646                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1647         }
1648 }
1649
1650 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1651 {
1652         struct vcpu_svm *svm = to_svm(vcpu);
1653
1654 #ifdef CONFIG_X86_64
1655         if (vcpu->arch.efer & EFER_LME) {
1656                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1657                         vcpu->arch.efer |= EFER_LMA;
1658                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1659                 }
1660
1661                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1662                         vcpu->arch.efer &= ~EFER_LMA;
1663                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1664                 }
1665         }
1666 #endif
1667         vcpu->arch.cr0 = cr0;
1668
1669         if (!npt_enabled)
1670                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1671
1672         if (!vcpu->fpu_active)
1673                 cr0 |= X86_CR0_TS;
1674
1675         /* These are emulated via page tables.  */
1676         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1677
1678         svm->vmcb->save.cr0 = cr0;
1679         mark_dirty(svm->vmcb, VMCB_CR);
1680         update_cr0_intercept(svm);
1681 }
1682
1683 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1684 {
1685         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1686         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1687
1688         if (cr4 & X86_CR4_VMXE)
1689                 return 1;
1690
1691         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1692                 svm_flush_tlb(vcpu);
1693
1694         vcpu->arch.cr4 = cr4;
1695         if (!npt_enabled)
1696                 cr4 |= X86_CR4_PAE;
1697         cr4 |= host_cr4_mce;
1698         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1699         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1700         return 0;
1701 }
1702
1703 static void svm_set_segment(struct kvm_vcpu *vcpu,
1704                             struct kvm_segment *var, int seg)
1705 {
1706         struct vcpu_svm *svm = to_svm(vcpu);
1707         struct vmcb_seg *s = svm_seg(vcpu, seg);
1708
1709         s->base = var->base;
1710         s->limit = var->limit;
1711         s->selector = var->selector;
1712         if (var->unusable)
1713                 s->attrib = 0;
1714         else {
1715                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1716                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1717                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1718                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1719                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1720                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1721                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1722                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1723         }
1724
1725         /*
1726          * This is always accurate, except if SYSRET returned to a segment
1727          * with SS.DPL != 3.  Intel does not have this quirk, and always
1728          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1729          * would entail passing the CPL to userspace and back.
1730          */
1731         if (seg == VCPU_SREG_SS)
1732                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1733
1734         mark_dirty(svm->vmcb, VMCB_SEG);
1735 }
1736
1737 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1738 {
1739         struct vcpu_svm *svm = to_svm(vcpu);
1740
1741         clr_exception_intercept(svm, DB_VECTOR);
1742         clr_exception_intercept(svm, BP_VECTOR);
1743
1744         if (svm->nmi_singlestep)
1745                 set_exception_intercept(svm, DB_VECTOR);
1746
1747         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1748                 if (vcpu->guest_debug &
1749                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1750                         set_exception_intercept(svm, DB_VECTOR);
1751                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1752                         set_exception_intercept(svm, BP_VECTOR);
1753         } else
1754                 vcpu->guest_debug = 0;
1755 }
1756
1757 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1758 {
1759         if (sd->next_asid > sd->max_asid) {
1760                 ++sd->asid_generation;
1761                 sd->next_asid = 1;
1762                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1763         }
1764
1765         svm->asid_generation = sd->asid_generation;
1766         svm->vmcb->control.asid = sd->next_asid++;
1767
1768         mark_dirty(svm->vmcb, VMCB_ASID);
1769 }
1770
1771 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1772 {
1773         return to_svm(vcpu)->vmcb->save.dr6;
1774 }
1775
1776 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1777 {
1778         struct vcpu_svm *svm = to_svm(vcpu);
1779
1780         svm->vmcb->save.dr6 = value;
1781         mark_dirty(svm->vmcb, VMCB_DR);
1782 }
1783
1784 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1785 {
1786         struct vcpu_svm *svm = to_svm(vcpu);
1787
1788         get_debugreg(vcpu->arch.db[0], 0);
1789         get_debugreg(vcpu->arch.db[1], 1);
1790         get_debugreg(vcpu->arch.db[2], 2);
1791         get_debugreg(vcpu->arch.db[3], 3);
1792         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1793         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1794
1795         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1796         set_dr_intercepts(svm);
1797 }
1798
1799 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1800 {
1801         struct vcpu_svm *svm = to_svm(vcpu);
1802
1803         svm->vmcb->save.dr7 = value;
1804         mark_dirty(svm->vmcb, VMCB_DR);
1805 }
1806
1807 static int pf_interception(struct vcpu_svm *svm)
1808 {
1809         u64 fault_address = svm->vmcb->control.exit_info_2;
1810         u32 error_code;
1811         int r = 1;
1812
1813         switch (svm->apf_reason) {
1814         default:
1815                 error_code = svm->vmcb->control.exit_info_1;
1816
1817                 trace_kvm_page_fault(fault_address, error_code);
1818                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1819                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1820                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1821                         svm->vmcb->control.insn_bytes,
1822                         svm->vmcb->control.insn_len);
1823                 break;
1824         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1825                 svm->apf_reason = 0;
1826                 local_irq_disable();
1827                 kvm_async_pf_task_wait(fault_address);
1828                 local_irq_enable();
1829                 break;
1830         case KVM_PV_REASON_PAGE_READY:
1831                 svm->apf_reason = 0;
1832                 local_irq_disable();
1833                 kvm_async_pf_task_wake(fault_address);
1834                 local_irq_enable();
1835                 break;
1836         }
1837         return r;
1838 }
1839
1840 static int db_interception(struct vcpu_svm *svm)
1841 {
1842         struct kvm_run *kvm_run = svm->vcpu.run;
1843
1844         if (!(svm->vcpu.guest_debug &
1845               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1846                 !svm->nmi_singlestep) {
1847                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1848                 return 1;
1849         }
1850
1851         if (svm->nmi_singlestep) {
1852                 svm->nmi_singlestep = false;
1853                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1854                         svm->vmcb->save.rflags &=
1855                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1856                 update_db_bp_intercept(&svm->vcpu);
1857         }
1858
1859         if (svm->vcpu.guest_debug &
1860             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1861                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1862                 kvm_run->debug.arch.pc =
1863                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1864                 kvm_run->debug.arch.exception = DB_VECTOR;
1865                 return 0;
1866         }
1867
1868         return 1;
1869 }
1870
1871 static int bp_interception(struct vcpu_svm *svm)
1872 {
1873         struct kvm_run *kvm_run = svm->vcpu.run;
1874
1875         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1876         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1877         kvm_run->debug.arch.exception = BP_VECTOR;
1878         return 0;
1879 }
1880
1881 static int ud_interception(struct vcpu_svm *svm)
1882 {
1883         int er;
1884
1885         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1886         if (er != EMULATE_DONE)
1887                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1888         return 1;
1889 }
1890
1891 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1892 {
1893         struct vcpu_svm *svm = to_svm(vcpu);
1894
1895         clr_exception_intercept(svm, NM_VECTOR);
1896
1897         svm->vcpu.fpu_active = 1;
1898         update_cr0_intercept(svm);
1899 }
1900
1901 static int nm_interception(struct vcpu_svm *svm)
1902 {
1903         svm_fpu_activate(&svm->vcpu);
1904         return 1;
1905 }
1906
1907 static bool is_erratum_383(void)
1908 {
1909         int err, i;
1910         u64 value;
1911
1912         if (!erratum_383_found)
1913                 return false;
1914
1915         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1916         if (err)
1917                 return false;
1918
1919         /* Bit 62 may or may not be set for this mce */
1920         value &= ~(1ULL << 62);
1921
1922         if (value != 0xb600000000010015ULL)
1923                 return false;
1924
1925         /* Clear MCi_STATUS registers */
1926         for (i = 0; i < 6; ++i)
1927                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1928
1929         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1930         if (!err) {
1931                 u32 low, high;
1932
1933                 value &= ~(1ULL << 2);
1934                 low    = lower_32_bits(value);
1935                 high   = upper_32_bits(value);
1936
1937                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1938         }
1939
1940         /* Flush tlb to evict multi-match entries */
1941         __flush_tlb_all();
1942
1943         return true;
1944 }
1945
1946 static void svm_handle_mce(struct vcpu_svm *svm)
1947 {
1948         if (is_erratum_383()) {
1949                 /*
1950                  * Erratum 383 triggered. Guest state is corrupt so kill the
1951                  * guest.
1952                  */
1953                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1954
1955                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1956
1957                 return;
1958         }
1959
1960         /*
1961          * On an #MC intercept the MCE handler is not called automatically in
1962          * the host. So do it by hand here.
1963          */
1964         asm volatile (
1965                 "int $0x12\n");
1966         /* not sure if we ever come back to this point */
1967
1968         return;
1969 }
1970
1971 static int mc_interception(struct vcpu_svm *svm)
1972 {
1973         return 1;
1974 }
1975
1976 static int shutdown_interception(struct vcpu_svm *svm)
1977 {
1978         struct kvm_run *kvm_run = svm->vcpu.run;
1979
1980         /*
1981          * VMCB is undefined after a SHUTDOWN intercept
1982          * so reinitialize it.
1983          */
1984         clear_page(svm->vmcb);
1985         init_vmcb(svm, false);
1986
1987         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1988         return 0;
1989 }
1990
1991 static int io_interception(struct vcpu_svm *svm)
1992 {
1993         struct kvm_vcpu *vcpu = &svm->vcpu;
1994         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1995         int size, in, string;
1996         unsigned port;
1997
1998         ++svm->vcpu.stat.io_exits;
1999         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2000         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2001         if (string || in)
2002                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2003
2004         port = io_info >> 16;
2005         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2006         svm->next_rip = svm->vmcb->control.exit_info_2;
2007         skip_emulated_instruction(&svm->vcpu);
2008
2009         return kvm_fast_pio_out(vcpu, size, port);
2010 }
2011
2012 static int nmi_interception(struct vcpu_svm *svm)
2013 {
2014         return 1;
2015 }
2016
2017 static int intr_interception(struct vcpu_svm *svm)
2018 {
2019         ++svm->vcpu.stat.irq_exits;
2020         return 1;
2021 }
2022
2023 static int nop_on_interception(struct vcpu_svm *svm)
2024 {
2025         return 1;
2026 }
2027
2028 static int halt_interception(struct vcpu_svm *svm)
2029 {
2030         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2031         return kvm_emulate_halt(&svm->vcpu);
2032 }
2033
2034 static int vmmcall_interception(struct vcpu_svm *svm)
2035 {
2036         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2037         kvm_emulate_hypercall(&svm->vcpu);
2038         return 1;
2039 }
2040
2041 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2042 {
2043         struct vcpu_svm *svm = to_svm(vcpu);
2044
2045         return svm->nested.nested_cr3;
2046 }
2047
2048 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2049 {
2050         struct vcpu_svm *svm = to_svm(vcpu);
2051         u64 cr3 = svm->nested.nested_cr3;
2052         u64 pdpte;
2053         int ret;
2054
2055         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2056                                        offset_in_page(cr3) + index * 8, 8);
2057         if (ret)
2058                 return 0;
2059         return pdpte;
2060 }
2061
2062 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2063                                    unsigned long root)
2064 {
2065         struct vcpu_svm *svm = to_svm(vcpu);
2066
2067         svm->vmcb->control.nested_cr3 = root;
2068         mark_dirty(svm->vmcb, VMCB_NPT);
2069         svm_flush_tlb(vcpu);
2070 }
2071
2072 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2073                                        struct x86_exception *fault)
2074 {
2075         struct vcpu_svm *svm = to_svm(vcpu);
2076
2077         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2078                 /*
2079                  * TODO: track the cause of the nested page fault, and
2080                  * correctly fill in the high bits of exit_info_1.
2081                  */
2082                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2083                 svm->vmcb->control.exit_code_hi = 0;
2084                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2085                 svm->vmcb->control.exit_info_2 = fault->address;
2086         }
2087
2088         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2089         svm->vmcb->control.exit_info_1 |= fault->error_code;
2090
2091         /*
2092          * The present bit is always zero for page structure faults on real
2093          * hardware.
2094          */
2095         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2096                 svm->vmcb->control.exit_info_1 &= ~1;
2097
2098         nested_svm_vmexit(svm);
2099 }
2100
2101 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2102 {
2103         WARN_ON(mmu_is_nested(vcpu));
2104         kvm_init_shadow_mmu(vcpu);
2105         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2106         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2107         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2108         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2109         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2110         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2111 }
2112
2113 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2114 {
2115         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2116 }
2117
2118 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2119 {
2120         if (!(svm->vcpu.arch.efer & EFER_SVME)
2121             || !is_paging(&svm->vcpu)) {
2122                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2123                 return 1;
2124         }
2125
2126         if (svm->vmcb->save.cpl) {
2127                 kvm_inject_gp(&svm->vcpu, 0);
2128                 return 1;
2129         }
2130
2131        return 0;
2132 }
2133
2134 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2135                                       bool has_error_code, u32 error_code)
2136 {
2137         int vmexit;
2138
2139         if (!is_guest_mode(&svm->vcpu))
2140                 return 0;
2141
2142         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2143         svm->vmcb->control.exit_code_hi = 0;
2144         svm->vmcb->control.exit_info_1 = error_code;
2145         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2146
2147         vmexit = nested_svm_intercept(svm);
2148         if (vmexit == NESTED_EXIT_DONE)
2149                 svm->nested.exit_required = true;
2150
2151         return vmexit;
2152 }
2153
2154 /* This function returns true if it is save to enable the irq window */
2155 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2156 {
2157         if (!is_guest_mode(&svm->vcpu))
2158                 return true;
2159
2160         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2161                 return true;
2162
2163         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2164                 return false;
2165
2166         /*
2167          * if vmexit was already requested (by intercepted exception
2168          * for instance) do not overwrite it with "external interrupt"
2169          * vmexit.
2170          */
2171         if (svm->nested.exit_required)
2172                 return false;
2173
2174         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2175         svm->vmcb->control.exit_info_1 = 0;
2176         svm->vmcb->control.exit_info_2 = 0;
2177
2178         if (svm->nested.intercept & 1ULL) {
2179                 /*
2180                  * The #vmexit can't be emulated here directly because this
2181                  * code path runs with irqs and preemption disabled. A
2182                  * #vmexit emulation might sleep. Only signal request for
2183                  * the #vmexit here.
2184                  */
2185                 svm->nested.exit_required = true;
2186                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2187                 return false;
2188         }
2189
2190         return true;
2191 }
2192
2193 /* This function returns true if it is save to enable the nmi window */
2194 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2195 {
2196         if (!is_guest_mode(&svm->vcpu))
2197                 return true;
2198
2199         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2200                 return true;
2201
2202         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2203         svm->nested.exit_required = true;
2204
2205         return false;
2206 }
2207
2208 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2209 {
2210         struct page *page;
2211
2212         might_sleep();
2213
2214         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2215         if (is_error_page(page))
2216                 goto error;
2217
2218         *_page = page;
2219
2220         return kmap(page);
2221
2222 error:
2223         kvm_inject_gp(&svm->vcpu, 0);
2224
2225         return NULL;
2226 }
2227
2228 static void nested_svm_unmap(struct page *page)
2229 {
2230         kunmap(page);
2231         kvm_release_page_dirty(page);
2232 }
2233
2234 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2235 {
2236         unsigned port, size, iopm_len;
2237         u16 val, mask;
2238         u8 start_bit;
2239         u64 gpa;
2240
2241         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2242                 return NESTED_EXIT_HOST;
2243
2244         port = svm->vmcb->control.exit_info_1 >> 16;
2245         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2246                 SVM_IOIO_SIZE_SHIFT;
2247         gpa  = svm->nested.vmcb_iopm + (port / 8);
2248         start_bit = port % 8;
2249         iopm_len = (start_bit + size > 8) ? 2 : 1;
2250         mask = (0xf >> (4 - size)) << start_bit;
2251         val = 0;
2252
2253         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2254                 return NESTED_EXIT_DONE;
2255
2256         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2257 }
2258
2259 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2260 {
2261         u32 offset, msr, value;
2262         int write, mask;
2263
2264         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2265                 return NESTED_EXIT_HOST;
2266
2267         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2268         offset = svm_msrpm_offset(msr);
2269         write  = svm->vmcb->control.exit_info_1 & 1;
2270         mask   = 1 << ((2 * (msr & 0xf)) + write);
2271
2272         if (offset == MSR_INVALID)
2273                 return NESTED_EXIT_DONE;
2274
2275         /* Offset is in 32 bit units but need in 8 bit units */
2276         offset *= 4;
2277
2278         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2279                 return NESTED_EXIT_DONE;
2280
2281         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2282 }
2283
2284 static int nested_svm_exit_special(struct vcpu_svm *svm)
2285 {
2286         u32 exit_code = svm->vmcb->control.exit_code;
2287
2288         switch (exit_code) {
2289         case SVM_EXIT_INTR:
2290         case SVM_EXIT_NMI:
2291         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2292                 return NESTED_EXIT_HOST;
2293         case SVM_EXIT_NPF:
2294                 /* For now we are always handling NPFs when using them */
2295                 if (npt_enabled)
2296                         return NESTED_EXIT_HOST;
2297                 break;
2298         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2299                 /* When we're shadowing, trap PFs, but not async PF */
2300                 if (!npt_enabled && svm->apf_reason == 0)
2301                         return NESTED_EXIT_HOST;
2302                 break;
2303         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2304                 nm_interception(svm);
2305                 break;
2306         default:
2307                 break;
2308         }
2309
2310         return NESTED_EXIT_CONTINUE;
2311 }
2312
2313 /*
2314  * If this function returns true, this #vmexit was already handled
2315  */
2316 static int nested_svm_intercept(struct vcpu_svm *svm)
2317 {
2318         u32 exit_code = svm->vmcb->control.exit_code;
2319         int vmexit = NESTED_EXIT_HOST;
2320
2321         switch (exit_code) {
2322         case SVM_EXIT_MSR:
2323                 vmexit = nested_svm_exit_handled_msr(svm);
2324                 break;
2325         case SVM_EXIT_IOIO:
2326                 vmexit = nested_svm_intercept_ioio(svm);
2327                 break;
2328         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2329                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2330                 if (svm->nested.intercept_cr & bit)
2331                         vmexit = NESTED_EXIT_DONE;
2332                 break;
2333         }
2334         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2335                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2336                 if (svm->nested.intercept_dr & bit)
2337                         vmexit = NESTED_EXIT_DONE;
2338                 break;
2339         }
2340         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2341                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2342                 if (svm->nested.intercept_exceptions & excp_bits)
2343                         vmexit = NESTED_EXIT_DONE;
2344                 /* async page fault always cause vmexit */
2345                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2346                          svm->apf_reason != 0)
2347                         vmexit = NESTED_EXIT_DONE;
2348                 break;
2349         }
2350         case SVM_EXIT_ERR: {
2351                 vmexit = NESTED_EXIT_DONE;
2352                 break;
2353         }
2354         default: {
2355                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2356                 if (svm->nested.intercept & exit_bits)
2357                         vmexit = NESTED_EXIT_DONE;
2358         }
2359         }
2360
2361         return vmexit;
2362 }
2363
2364 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2365 {
2366         int vmexit;
2367
2368         vmexit = nested_svm_intercept(svm);
2369
2370         if (vmexit == NESTED_EXIT_DONE)
2371                 nested_svm_vmexit(svm);
2372
2373         return vmexit;
2374 }
2375
2376 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2377 {
2378         struct vmcb_control_area *dst  = &dst_vmcb->control;
2379         struct vmcb_control_area *from = &from_vmcb->control;
2380
2381         dst->intercept_cr         = from->intercept_cr;
2382         dst->intercept_dr         = from->intercept_dr;
2383         dst->intercept_exceptions = from->intercept_exceptions;
2384         dst->intercept            = from->intercept;
2385         dst->iopm_base_pa         = from->iopm_base_pa;
2386         dst->msrpm_base_pa        = from->msrpm_base_pa;
2387         dst->tsc_offset           = from->tsc_offset;
2388         dst->asid                 = from->asid;
2389         dst->tlb_ctl              = from->tlb_ctl;
2390         dst->int_ctl              = from->int_ctl;
2391         dst->int_vector           = from->int_vector;
2392         dst->int_state            = from->int_state;
2393         dst->exit_code            = from->exit_code;
2394         dst->exit_code_hi         = from->exit_code_hi;
2395         dst->exit_info_1          = from->exit_info_1;
2396         dst->exit_info_2          = from->exit_info_2;
2397         dst->exit_int_info        = from->exit_int_info;
2398         dst->exit_int_info_err    = from->exit_int_info_err;
2399         dst->nested_ctl           = from->nested_ctl;
2400         dst->event_inj            = from->event_inj;
2401         dst->event_inj_err        = from->event_inj_err;
2402         dst->nested_cr3           = from->nested_cr3;
2403         dst->lbr_ctl              = from->lbr_ctl;
2404 }
2405
2406 static int nested_svm_vmexit(struct vcpu_svm *svm)
2407 {
2408         struct vmcb *nested_vmcb;
2409         struct vmcb *hsave = svm->nested.hsave;
2410         struct vmcb *vmcb = svm->vmcb;
2411         struct page *page;
2412
2413         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2414                                        vmcb->control.exit_info_1,
2415                                        vmcb->control.exit_info_2,
2416                                        vmcb->control.exit_int_info,
2417                                        vmcb->control.exit_int_info_err,
2418                                        KVM_ISA_SVM);
2419
2420         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2421         if (!nested_vmcb)
2422                 return 1;
2423
2424         /* Exit Guest-Mode */
2425         leave_guest_mode(&svm->vcpu);
2426         svm->nested.vmcb = 0;
2427
2428         /* Give the current vmcb to the guest */
2429         disable_gif(svm);
2430
2431         nested_vmcb->save.es     = vmcb->save.es;
2432         nested_vmcb->save.cs     = vmcb->save.cs;
2433         nested_vmcb->save.ss     = vmcb->save.ss;
2434         nested_vmcb->save.ds     = vmcb->save.ds;
2435         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2436         nested_vmcb->save.idtr   = vmcb->save.idtr;
2437         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2438         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2439         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2440         nested_vmcb->save.cr2    = vmcb->save.cr2;
2441         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2442         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2443         nested_vmcb->save.rip    = vmcb->save.rip;
2444         nested_vmcb->save.rsp    = vmcb->save.rsp;
2445         nested_vmcb->save.rax    = vmcb->save.rax;
2446         nested_vmcb->save.dr7    = vmcb->save.dr7;
2447         nested_vmcb->save.dr6    = vmcb->save.dr6;
2448         nested_vmcb->save.cpl    = vmcb->save.cpl;
2449
2450         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2451         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2452         nested_vmcb->control.int_state         = vmcb->control.int_state;
2453         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2454         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2455         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2456         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2457         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2458         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2459         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2460
2461         /*
2462          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2463          * to make sure that we do not lose injected events. So check event_inj
2464          * here and copy it to exit_int_info if it is valid.
2465          * Exit_int_info and event_inj can't be both valid because the case
2466          * below only happens on a VMRUN instruction intercept which has
2467          * no valid exit_int_info set.
2468          */
2469         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2470                 struct vmcb_control_area *nc = &nested_vmcb->control;
2471
2472                 nc->exit_int_info     = vmcb->control.event_inj;
2473                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2474         }
2475
2476         nested_vmcb->control.tlb_ctl           = 0;
2477         nested_vmcb->control.event_inj         = 0;
2478         nested_vmcb->control.event_inj_err     = 0;
2479
2480         /* We always set V_INTR_MASKING and remember the old value in hflags */
2481         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2482                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2483
2484         /* Restore the original control entries */
2485         copy_vmcb_control_area(vmcb, hsave);
2486
2487         kvm_clear_exception_queue(&svm->vcpu);
2488         kvm_clear_interrupt_queue(&svm->vcpu);
2489
2490         svm->nested.nested_cr3 = 0;
2491
2492         /* Restore selected save entries */
2493         svm->vmcb->save.es = hsave->save.es;
2494         svm->vmcb->save.cs = hsave->save.cs;
2495         svm->vmcb->save.ss = hsave->save.ss;
2496         svm->vmcb->save.ds = hsave->save.ds;
2497         svm->vmcb->save.gdtr = hsave->save.gdtr;
2498         svm->vmcb->save.idtr = hsave->save.idtr;
2499         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2500         svm_set_efer(&svm->vcpu, hsave->save.efer);
2501         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2502         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2503         if (npt_enabled) {
2504                 svm->vmcb->save.cr3 = hsave->save.cr3;
2505                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2506         } else {
2507                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2508         }
2509         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2510         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2511         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2512         svm->vmcb->save.dr7 = 0;
2513         svm->vmcb->save.cpl = 0;
2514         svm->vmcb->control.exit_int_info = 0;
2515
2516         mark_all_dirty(svm->vmcb);
2517
2518         nested_svm_unmap(page);
2519
2520         nested_svm_uninit_mmu_context(&svm->vcpu);
2521         kvm_mmu_reset_context(&svm->vcpu);
2522         kvm_mmu_load(&svm->vcpu);
2523
2524         return 0;
2525 }
2526
2527 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2528 {
2529         /*
2530          * This function merges the msr permission bitmaps of kvm and the
2531          * nested vmcb. It is optimized in that it only merges the parts where
2532          * the kvm msr permission bitmap may contain zero bits
2533          */
2534         int i;
2535
2536         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2537                 return true;
2538
2539         for (i = 0; i < MSRPM_OFFSETS; i++) {
2540                 u32 value, p;
2541                 u64 offset;
2542
2543                 if (msrpm_offsets[i] == 0xffffffff)
2544                         break;
2545
2546                 p      = msrpm_offsets[i];
2547                 offset = svm->nested.vmcb_msrpm + (p * 4);
2548
2549                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2550                         return false;
2551
2552                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2553         }
2554
2555         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2556
2557         return true;
2558 }
2559
2560 static bool nested_vmcb_checks(struct vmcb *vmcb)
2561 {
2562         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2563                 return false;
2564
2565         if (vmcb->control.asid == 0)
2566                 return false;
2567
2568         if (vmcb->control.nested_ctl && !npt_enabled)
2569                 return false;
2570
2571         return true;
2572 }
2573
2574 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2575 {
2576         struct vmcb *nested_vmcb;
2577         struct vmcb *hsave = svm->nested.hsave;
2578         struct vmcb *vmcb = svm->vmcb;
2579         struct page *page;
2580         u64 vmcb_gpa;
2581
2582         vmcb_gpa = svm->vmcb->save.rax;
2583
2584         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2585         if (!nested_vmcb)
2586                 return false;
2587
2588         if (!nested_vmcb_checks(nested_vmcb)) {
2589                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2590                 nested_vmcb->control.exit_code_hi = 0;
2591                 nested_vmcb->control.exit_info_1  = 0;
2592                 nested_vmcb->control.exit_info_2  = 0;
2593
2594                 nested_svm_unmap(page);
2595
2596                 return false;
2597         }
2598
2599         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2600                                nested_vmcb->save.rip,
2601                                nested_vmcb->control.int_ctl,
2602                                nested_vmcb->control.event_inj,
2603                                nested_vmcb->control.nested_ctl);
2604
2605         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2606                                     nested_vmcb->control.intercept_cr >> 16,
2607                                     nested_vmcb->control.intercept_exceptions,
2608                                     nested_vmcb->control.intercept);
2609
2610         /* Clear internal status */
2611         kvm_clear_exception_queue(&svm->vcpu);
2612         kvm_clear_interrupt_queue(&svm->vcpu);
2613
2614         /*
2615          * Save the old vmcb, so we don't need to pick what we save, but can
2616          * restore everything when a VMEXIT occurs
2617          */
2618         hsave->save.es     = vmcb->save.es;
2619         hsave->save.cs     = vmcb->save.cs;
2620         hsave->save.ss     = vmcb->save.ss;
2621         hsave->save.ds     = vmcb->save.ds;
2622         hsave->save.gdtr   = vmcb->save.gdtr;
2623         hsave->save.idtr   = vmcb->save.idtr;
2624         hsave->save.efer   = svm->vcpu.arch.efer;
2625         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2626         hsave->save.cr4    = svm->vcpu.arch.cr4;
2627         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2628         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2629         hsave->save.rsp    = vmcb->save.rsp;
2630         hsave->save.rax    = vmcb->save.rax;
2631         if (npt_enabled)
2632                 hsave->save.cr3    = vmcb->save.cr3;
2633         else
2634                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2635
2636         copy_vmcb_control_area(hsave, vmcb);
2637
2638         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2639                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2640         else
2641                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2642
2643         if (nested_vmcb->control.nested_ctl) {
2644                 kvm_mmu_unload(&svm->vcpu);
2645                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2646                 nested_svm_init_mmu_context(&svm->vcpu);
2647         }
2648
2649         /* Load the nested guest state */
2650         svm->vmcb->save.es = nested_vmcb->save.es;
2651         svm->vmcb->save.cs = nested_vmcb->save.cs;
2652         svm->vmcb->save.ss = nested_vmcb->save.ss;
2653         svm->vmcb->save.ds = nested_vmcb->save.ds;
2654         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2655         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2656         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2657         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2658         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2659         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2660         if (npt_enabled) {
2661                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2662                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2663         } else
2664                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2665
2666         /* Guest paging mode is active - reset mmu */
2667         kvm_mmu_reset_context(&svm->vcpu);
2668
2669         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2670         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2671         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2672         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2673
2674         /* In case we don't even reach vcpu_run, the fields are not updated */
2675         svm->vmcb->save.rax = nested_vmcb->save.rax;
2676         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2677         svm->vmcb->save.rip = nested_vmcb->save.rip;
2678         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2679         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2680         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2681
2682         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2683         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2684
2685         /* cache intercepts */
2686         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2687         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2688         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2689         svm->nested.intercept            = nested_vmcb->control.intercept;
2690
2691         svm_flush_tlb(&svm->vcpu);
2692         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2693         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2694                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2695         else
2696                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2697
2698         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2699                 /* We only want the cr8 intercept bits of the guest */
2700                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2701                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2702         }
2703
2704         /* We don't want to see VMMCALLs from a nested guest */
2705         clr_intercept(svm, INTERCEPT_VMMCALL);
2706
2707         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2708         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2709         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2710         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2711         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2712         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2713
2714         nested_svm_unmap(page);
2715
2716         /* Enter Guest-Mode */
2717         enter_guest_mode(&svm->vcpu);
2718
2719         /*
2720          * Merge guest and host intercepts - must be called  with vcpu in
2721          * guest-mode to take affect here
2722          */
2723         recalc_intercepts(svm);
2724
2725         svm->nested.vmcb = vmcb_gpa;
2726
2727         enable_gif(svm);
2728
2729         mark_all_dirty(svm->vmcb);
2730
2731         return true;
2732 }
2733
2734 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2735 {
2736         to_vmcb->save.fs = from_vmcb->save.fs;
2737         to_vmcb->save.gs = from_vmcb->save.gs;
2738         to_vmcb->save.tr = from_vmcb->save.tr;
2739         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2740         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2741         to_vmcb->save.star = from_vmcb->save.star;
2742         to_vmcb->save.lstar = from_vmcb->save.lstar;
2743         to_vmcb->save.cstar = from_vmcb->save.cstar;
2744         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2745         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2746         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2747         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2748 }
2749
2750 static int vmload_interception(struct vcpu_svm *svm)
2751 {
2752         struct vmcb *nested_vmcb;
2753         struct page *page;
2754
2755         if (nested_svm_check_permissions(svm))
2756                 return 1;
2757
2758         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2759         if (!nested_vmcb)
2760                 return 1;
2761
2762         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2763         skip_emulated_instruction(&svm->vcpu);
2764
2765         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2766         nested_svm_unmap(page);
2767
2768         return 1;
2769 }
2770
2771 static int vmsave_interception(struct vcpu_svm *svm)
2772 {
2773         struct vmcb *nested_vmcb;
2774         struct page *page;
2775
2776         if (nested_svm_check_permissions(svm))
2777                 return 1;
2778
2779         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2780         if (!nested_vmcb)
2781                 return 1;
2782
2783         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2784         skip_emulated_instruction(&svm->vcpu);
2785
2786         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2787         nested_svm_unmap(page);
2788
2789         return 1;
2790 }
2791
2792 static int vmrun_interception(struct vcpu_svm *svm)
2793 {
2794         if (nested_svm_check_permissions(svm))
2795                 return 1;
2796
2797         /* Save rip after vmrun instruction */
2798         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2799
2800         if (!nested_svm_vmrun(svm))
2801                 return 1;
2802
2803         if (!nested_svm_vmrun_msrpm(svm))
2804                 goto failed;
2805
2806         return 1;
2807
2808 failed:
2809
2810         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2811         svm->vmcb->control.exit_code_hi = 0;
2812         svm->vmcb->control.exit_info_1  = 0;
2813         svm->vmcb->control.exit_info_2  = 0;
2814
2815         nested_svm_vmexit(svm);
2816
2817         return 1;
2818 }
2819
2820 static int stgi_interception(struct vcpu_svm *svm)
2821 {
2822         if (nested_svm_check_permissions(svm))
2823                 return 1;
2824
2825         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2826         skip_emulated_instruction(&svm->vcpu);
2827         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2828
2829         enable_gif(svm);
2830
2831         return 1;
2832 }
2833
2834 static int clgi_interception(struct vcpu_svm *svm)
2835 {
2836         if (nested_svm_check_permissions(svm))
2837                 return 1;
2838
2839         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2840         skip_emulated_instruction(&svm->vcpu);
2841
2842         disable_gif(svm);
2843
2844         /* After a CLGI no interrupts should come */
2845         svm_clear_vintr(svm);
2846         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2847
2848         mark_dirty(svm->vmcb, VMCB_INTR);
2849
2850         return 1;
2851 }
2852
2853 static int invlpga_interception(struct vcpu_svm *svm)
2854 {
2855         struct kvm_vcpu *vcpu = &svm->vcpu;
2856
2857         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2858                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2859
2860         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2861         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2862
2863         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2864         skip_emulated_instruction(&svm->vcpu);
2865         return 1;
2866 }
2867
2868 static int skinit_interception(struct vcpu_svm *svm)
2869 {
2870         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2871
2872         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2873         return 1;
2874 }
2875
2876 static int wbinvd_interception(struct vcpu_svm *svm)
2877 {
2878         kvm_emulate_wbinvd(&svm->vcpu);
2879         return 1;
2880 }
2881
2882 static int xsetbv_interception(struct vcpu_svm *svm)
2883 {
2884         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2885         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2886
2887         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2888                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2889                 skip_emulated_instruction(&svm->vcpu);
2890         }
2891
2892         return 1;
2893 }
2894
2895 static int task_switch_interception(struct vcpu_svm *svm)
2896 {
2897         u16 tss_selector;
2898         int reason;
2899         int int_type = svm->vmcb->control.exit_int_info &
2900                 SVM_EXITINTINFO_TYPE_MASK;
2901         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2902         uint32_t type =
2903                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2904         uint32_t idt_v =
2905                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2906         bool has_error_code = false;
2907         u32 error_code = 0;
2908
2909         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2910
2911         if (svm->vmcb->control.exit_info_2 &
2912             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2913                 reason = TASK_SWITCH_IRET;
2914         else if (svm->vmcb->control.exit_info_2 &
2915                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2916                 reason = TASK_SWITCH_JMP;
2917         else if (idt_v)
2918                 reason = TASK_SWITCH_GATE;
2919         else
2920                 reason = TASK_SWITCH_CALL;
2921
2922         if (reason == TASK_SWITCH_GATE) {
2923                 switch (type) {
2924                 case SVM_EXITINTINFO_TYPE_NMI:
2925                         svm->vcpu.arch.nmi_injected = false;
2926                         break;
2927                 case SVM_EXITINTINFO_TYPE_EXEPT:
2928                         if (svm->vmcb->control.exit_info_2 &
2929                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2930                                 has_error_code = true;
2931                                 error_code =
2932                                         (u32)svm->vmcb->control.exit_info_2;
2933                         }
2934                         kvm_clear_exception_queue(&svm->vcpu);
2935                         break;
2936                 case SVM_EXITINTINFO_TYPE_INTR:
2937                         kvm_clear_interrupt_queue(&svm->vcpu);
2938                         break;
2939                 default:
2940                         break;
2941                 }
2942         }
2943
2944         if (reason != TASK_SWITCH_GATE ||
2945             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2946             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2947              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2948                 skip_emulated_instruction(&svm->vcpu);
2949
2950         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2951                 int_vec = -1;
2952
2953         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2954                                 has_error_code, error_code) == EMULATE_FAIL) {
2955                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2956                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2957                 svm->vcpu.run->internal.ndata = 0;
2958                 return 0;
2959         }
2960         return 1;
2961 }
2962
2963 static int cpuid_interception(struct vcpu_svm *svm)
2964 {
2965         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2966         kvm_emulate_cpuid(&svm->vcpu);
2967         return 1;
2968 }
2969
2970 static int iret_interception(struct vcpu_svm *svm)
2971 {
2972         ++svm->vcpu.stat.nmi_window_exits;
2973         clr_intercept(svm, INTERCEPT_IRET);
2974         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2975         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2976         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2977         return 1;
2978 }
2979
2980 static int invlpg_interception(struct vcpu_svm *svm)
2981 {
2982         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2983                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2984
2985         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2986         skip_emulated_instruction(&svm->vcpu);
2987         return 1;
2988 }
2989
2990 static int emulate_on_interception(struct vcpu_svm *svm)
2991 {
2992         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2993 }
2994
2995 static int rdpmc_interception(struct vcpu_svm *svm)
2996 {
2997         int err;
2998
2999         if (!static_cpu_has(X86_FEATURE_NRIPS))
3000                 return emulate_on_interception(svm);
3001
3002         err = kvm_rdpmc(&svm->vcpu);
3003         kvm_complete_insn_gp(&svm->vcpu, err);
3004
3005         return 1;
3006 }
3007
3008 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3009                                             unsigned long val)
3010 {
3011         unsigned long cr0 = svm->vcpu.arch.cr0;
3012         bool ret = false;
3013         u64 intercept;
3014
3015         intercept = svm->nested.intercept;
3016
3017         if (!is_guest_mode(&svm->vcpu) ||
3018             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3019                 return false;
3020
3021         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3022         val &= ~SVM_CR0_SELECTIVE_MASK;
3023
3024         if (cr0 ^ val) {
3025                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3026                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3027         }
3028
3029         return ret;
3030 }
3031
3032 #define CR_VALID (1ULL << 63)
3033
3034 static int cr_interception(struct vcpu_svm *svm)
3035 {
3036         int reg, cr;
3037         unsigned long val;
3038         int err;
3039
3040         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3041                 return emulate_on_interception(svm);
3042
3043         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3044                 return emulate_on_interception(svm);
3045
3046         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3047         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3048                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3049         else
3050                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3051
3052         err = 0;
3053         if (cr >= 16) { /* mov to cr */
3054                 cr -= 16;
3055                 val = kvm_register_read(&svm->vcpu, reg);
3056                 switch (cr) {
3057                 case 0:
3058                         if (!check_selective_cr0_intercepted(svm, val))
3059                                 err = kvm_set_cr0(&svm->vcpu, val);
3060                         else
3061                                 return 1;
3062
3063                         break;
3064                 case 3:
3065                         err = kvm_set_cr3(&svm->vcpu, val);
3066                         break;
3067                 case 4:
3068                         err = kvm_set_cr4(&svm->vcpu, val);
3069                         break;
3070                 case 8:
3071                         err = kvm_set_cr8(&svm->vcpu, val);
3072                         break;
3073                 default:
3074                         WARN(1, "unhandled write to CR%d", cr);
3075                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3076                         return 1;
3077                 }
3078         } else { /* mov from cr */
3079                 switch (cr) {
3080                 case 0:
3081                         val = kvm_read_cr0(&svm->vcpu);
3082                         break;
3083                 case 2:
3084                         val = svm->vcpu.arch.cr2;
3085                         break;
3086                 case 3:
3087                         val = kvm_read_cr3(&svm->vcpu);
3088                         break;
3089                 case 4:
3090                         val = kvm_read_cr4(&svm->vcpu);
3091                         break;
3092                 case 8:
3093                         val = kvm_get_cr8(&svm->vcpu);
3094                         break;
3095                 default:
3096                         WARN(1, "unhandled read from CR%d", cr);
3097                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3098                         return 1;
3099                 }
3100                 kvm_register_write(&svm->vcpu, reg, val);
3101         }
3102         kvm_complete_insn_gp(&svm->vcpu, err);
3103
3104         return 1;
3105 }
3106
3107 static int dr_interception(struct vcpu_svm *svm)
3108 {
3109         int reg, dr;
3110         unsigned long val;
3111
3112         if (svm->vcpu.guest_debug == 0) {
3113                 /*
3114                  * No more DR vmexits; force a reload of the debug registers
3115                  * and reenter on this instruction.  The next vmexit will
3116                  * retrieve the full state of the debug registers.
3117                  */
3118                 clr_dr_intercepts(svm);
3119                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3120                 return 1;
3121         }
3122
3123         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3124                 return emulate_on_interception(svm);
3125
3126         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3127         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3128
3129         if (dr >= 16) { /* mov to DRn */
3130                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3131                         return 1;
3132                 val = kvm_register_read(&svm->vcpu, reg);
3133                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3134         } else {
3135                 if (!kvm_require_dr(&svm->vcpu, dr))
3136                         return 1;
3137                 kvm_get_dr(&svm->vcpu, dr, &val);
3138                 kvm_register_write(&svm->vcpu, reg, val);
3139         }
3140
3141         skip_emulated_instruction(&svm->vcpu);
3142
3143         return 1;
3144 }
3145
3146 static int cr8_write_interception(struct vcpu_svm *svm)
3147 {
3148         struct kvm_run *kvm_run = svm->vcpu.run;
3149         int r;
3150
3151         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3152         /* instruction emulation calls kvm_set_cr8() */
3153         r = cr_interception(svm);
3154         if (irqchip_in_kernel(svm->vcpu.kvm))
3155                 return r;
3156         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3157                 return r;
3158         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3159         return 0;
3160 }
3161
3162 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3163 {
3164         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3165         return vmcb->control.tsc_offset +
3166                 svm_scale_tsc(vcpu, host_tsc);
3167 }
3168
3169 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3170 {
3171         struct vcpu_svm *svm = to_svm(vcpu);
3172
3173         switch (msr_info->index) {
3174         case MSR_IA32_TSC: {
3175                 msr_info->data = svm->vmcb->control.tsc_offset +
3176                         svm_scale_tsc(vcpu, native_read_tsc());
3177
3178                 break;
3179         }
3180         case MSR_STAR:
3181                 msr_info->data = svm->vmcb->save.star;
3182                 break;
3183 #ifdef CONFIG_X86_64
3184         case MSR_LSTAR:
3185                 msr_info->data = svm->vmcb->save.lstar;
3186                 break;
3187         case MSR_CSTAR:
3188                 msr_info->data = svm->vmcb->save.cstar;
3189                 break;
3190         case MSR_KERNEL_GS_BASE:
3191                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3192                 break;
3193         case MSR_SYSCALL_MASK:
3194                 msr_info->data = svm->vmcb->save.sfmask;
3195                 break;
3196 #endif
3197         case MSR_IA32_SYSENTER_CS:
3198                 msr_info->data = svm->vmcb->save.sysenter_cs;
3199                 break;
3200         case MSR_IA32_SYSENTER_EIP:
3201                 msr_info->data = svm->sysenter_eip;
3202                 break;
3203         case MSR_IA32_SYSENTER_ESP:
3204                 msr_info->data = svm->sysenter_esp;
3205                 break;
3206         /*
3207          * Nobody will change the following 5 values in the VMCB so we can
3208          * safely return them on rdmsr. They will always be 0 until LBRV is
3209          * implemented.
3210          */
3211         case MSR_IA32_DEBUGCTLMSR:
3212                 msr_info->data = svm->vmcb->save.dbgctl;
3213                 break;
3214         case MSR_IA32_LASTBRANCHFROMIP:
3215                 msr_info->data = svm->vmcb->save.br_from;
3216                 break;
3217         case MSR_IA32_LASTBRANCHTOIP:
3218                 msr_info->data = svm->vmcb->save.br_to;
3219                 break;
3220         case MSR_IA32_LASTINTFROMIP:
3221                 msr_info->data = svm->vmcb->save.last_excp_from;
3222                 break;
3223         case MSR_IA32_LASTINTTOIP:
3224                 msr_info->data = svm->vmcb->save.last_excp_to;
3225                 break;
3226         case MSR_VM_HSAVE_PA:
3227                 msr_info->data = svm->nested.hsave_msr;
3228                 break;
3229         case MSR_VM_CR:
3230                 msr_info->data = svm->nested.vm_cr_msr;
3231                 break;
3232         case MSR_IA32_UCODE_REV:
3233                 msr_info->data = 0x01000065;
3234                 break;
3235         default:
3236                 return kvm_get_msr_common(vcpu, msr_info);
3237         }
3238         return 0;
3239 }
3240
3241 static int rdmsr_interception(struct vcpu_svm *svm)
3242 {
3243         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3244         struct msr_data msr_info;
3245
3246         msr_info.index = ecx;
3247         msr_info.host_initiated = false;
3248         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3249                 trace_kvm_msr_read_ex(ecx);
3250                 kvm_inject_gp(&svm->vcpu, 0);
3251         } else {
3252                 trace_kvm_msr_read(ecx, msr_info.data);
3253
3254                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3255                                    msr_info.data & 0xffffffff);
3256                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3257                                    msr_info.data >> 32);
3258                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3259                 skip_emulated_instruction(&svm->vcpu);
3260         }
3261         return 1;
3262 }
3263
3264 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3265 {
3266         struct vcpu_svm *svm = to_svm(vcpu);
3267         int svm_dis, chg_mask;
3268
3269         if (data & ~SVM_VM_CR_VALID_MASK)
3270                 return 1;
3271
3272         chg_mask = SVM_VM_CR_VALID_MASK;
3273
3274         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3275                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3276
3277         svm->nested.vm_cr_msr &= ~chg_mask;
3278         svm->nested.vm_cr_msr |= (data & chg_mask);
3279
3280         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3281
3282         /* check for svm_disable while efer.svme is set */
3283         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3284                 return 1;
3285
3286         return 0;
3287 }
3288
3289 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3290 {
3291         struct vcpu_svm *svm = to_svm(vcpu);
3292
3293         u32 ecx = msr->index;
3294         u64 data = msr->data;
3295         switch (ecx) {
3296         case MSR_IA32_TSC:
3297                 kvm_write_tsc(vcpu, msr);
3298                 break;
3299         case MSR_STAR:
3300                 svm->vmcb->save.star = data;
3301                 break;
3302 #ifdef CONFIG_X86_64
3303         case MSR_LSTAR:
3304                 svm->vmcb->save.lstar = data;
3305                 break;
3306         case MSR_CSTAR:
3307                 svm->vmcb->save.cstar = data;
3308                 break;
3309         case MSR_KERNEL_GS_BASE:
3310                 svm->vmcb->save.kernel_gs_base = data;
3311                 break;
3312         case MSR_SYSCALL_MASK:
3313                 svm->vmcb->save.sfmask = data;
3314                 break;
3315 #endif
3316         case MSR_IA32_SYSENTER_CS:
3317                 svm->vmcb->save.sysenter_cs = data;
3318                 break;
3319         case MSR_IA32_SYSENTER_EIP:
3320                 svm->sysenter_eip = data;
3321                 svm->vmcb->save.sysenter_eip = data;
3322                 break;
3323         case MSR_IA32_SYSENTER_ESP:
3324                 svm->sysenter_esp = data;
3325                 svm->vmcb->save.sysenter_esp = data;
3326                 break;
3327         case MSR_IA32_DEBUGCTLMSR:
3328                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3329                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3330                                     __func__, data);
3331                         break;
3332                 }
3333                 if (data & DEBUGCTL_RESERVED_BITS)
3334                         return 1;
3335
3336                 svm->vmcb->save.dbgctl = data;
3337                 mark_dirty(svm->vmcb, VMCB_LBR);
3338                 if (data & (1ULL<<0))
3339                         svm_enable_lbrv(svm);
3340                 else
3341                         svm_disable_lbrv(svm);
3342                 break;
3343         case MSR_VM_HSAVE_PA:
3344                 svm->nested.hsave_msr = data;
3345                 break;
3346         case MSR_VM_CR:
3347                 return svm_set_vm_cr(vcpu, data);
3348         case MSR_VM_IGNNE:
3349                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3350                 break;
3351         case MSR_IA32_CR_PAT:
3352                 if (npt_enabled) {
3353                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3354                                 return 1;
3355                         vcpu->arch.pat = data;
3356                         svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3357                         mark_dirty(svm->vmcb, VMCB_NPT);
3358                         break;
3359                 }
3360                 /* fall through */
3361         default:
3362                 return kvm_set_msr_common(vcpu, msr);
3363         }
3364         return 0;
3365 }
3366
3367 static int wrmsr_interception(struct vcpu_svm *svm)
3368 {
3369         struct msr_data msr;
3370         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3371         u64 data = kvm_read_edx_eax(&svm->vcpu);
3372
3373         msr.data = data;
3374         msr.index = ecx;
3375         msr.host_initiated = false;
3376
3377         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3378         if (kvm_set_msr(&svm->vcpu, &msr)) {
3379                 trace_kvm_msr_write_ex(ecx, data);
3380                 kvm_inject_gp(&svm->vcpu, 0);
3381         } else {
3382                 trace_kvm_msr_write(ecx, data);
3383                 skip_emulated_instruction(&svm->vcpu);
3384         }
3385         return 1;
3386 }
3387
3388 static int msr_interception(struct vcpu_svm *svm)
3389 {
3390         if (svm->vmcb->control.exit_info_1)
3391                 return wrmsr_interception(svm);
3392         else
3393                 return rdmsr_interception(svm);
3394 }
3395
3396 static int interrupt_window_interception(struct vcpu_svm *svm)
3397 {
3398         struct kvm_run *kvm_run = svm->vcpu.run;
3399
3400         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3401         svm_clear_vintr(svm);
3402         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3403         mark_dirty(svm->vmcb, VMCB_INTR);
3404         ++svm->vcpu.stat.irq_window_exits;
3405         /*
3406          * If the user space waits to inject interrupts, exit as soon as
3407          * possible
3408          */
3409         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3410             kvm_run->request_interrupt_window &&
3411             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3412                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3413                 return 0;
3414         }
3415
3416         return 1;
3417 }
3418
3419 static int pause_interception(struct vcpu_svm *svm)
3420 {
3421         kvm_vcpu_on_spin(&(svm->vcpu));
3422         return 1;
3423 }
3424
3425 static int nop_interception(struct vcpu_svm *svm)
3426 {
3427         skip_emulated_instruction(&(svm->vcpu));
3428         return 1;
3429 }
3430
3431 static int monitor_interception(struct vcpu_svm *svm)
3432 {
3433         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3434         return nop_interception(svm);
3435 }
3436
3437 static int mwait_interception(struct vcpu_svm *svm)
3438 {
3439         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3440         return nop_interception(svm);
3441 }
3442
3443 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3444         [SVM_EXIT_READ_CR0]                     = cr_interception,
3445         [SVM_EXIT_READ_CR3]                     = cr_interception,
3446         [SVM_EXIT_READ_CR4]                     = cr_interception,
3447         [SVM_EXIT_READ_CR8]                     = cr_interception,
3448         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3449         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3450         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3451         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3452         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3453         [SVM_EXIT_READ_DR0]                     = dr_interception,
3454         [SVM_EXIT_READ_DR1]                     = dr_interception,
3455         [SVM_EXIT_READ_DR2]                     = dr_interception,
3456         [SVM_EXIT_READ_DR3]                     = dr_interception,
3457         [SVM_EXIT_READ_DR4]                     = dr_interception,
3458         [SVM_EXIT_READ_DR5]                     = dr_interception,
3459         [SVM_EXIT_READ_DR6]                     = dr_interception,
3460         [SVM_EXIT_READ_DR7]                     = dr_interception,
3461         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3462         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3463         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3464         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3465         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3466         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3467         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3468         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3469         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3470         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3471         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3472         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3473         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3474         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3475         [SVM_EXIT_INTR]                         = intr_interception,
3476         [SVM_EXIT_NMI]                          = nmi_interception,
3477         [SVM_EXIT_SMI]                          = nop_on_interception,
3478         [SVM_EXIT_INIT]                         = nop_on_interception,
3479         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3480         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3481         [SVM_EXIT_CPUID]                        = cpuid_interception,
3482         [SVM_EXIT_IRET]                         = iret_interception,
3483         [SVM_EXIT_INVD]                         = emulate_on_interception,
3484         [SVM_EXIT_PAUSE]                        = pause_interception,
3485         [SVM_EXIT_HLT]                          = halt_interception,
3486         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3487         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3488         [SVM_EXIT_IOIO]                         = io_interception,
3489         [SVM_EXIT_MSR]                          = msr_interception,
3490         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3491         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3492         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3493         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3494         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3495         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3496         [SVM_EXIT_STGI]                         = stgi_interception,
3497         [SVM_EXIT_CLGI]                         = clgi_interception,
3498         [SVM_EXIT_SKINIT]                       = skinit_interception,
3499         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3500         [SVM_EXIT_MONITOR]                      = monitor_interception,
3501         [SVM_EXIT_MWAIT]                        = mwait_interception,
3502         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3503         [SVM_EXIT_NPF]                          = pf_interception,
3504         [SVM_EXIT_RSM]                          = emulate_on_interception,
3505 };
3506
3507 static void dump_vmcb(struct kvm_vcpu *vcpu)
3508 {
3509         struct vcpu_svm *svm = to_svm(vcpu);
3510         struct vmcb_control_area *control = &svm->vmcb->control;
3511         struct vmcb_save_area *save = &svm->vmcb->save;
3512
3513         pr_err("VMCB Control Area:\n");
3514         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3515         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3516         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3517         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3518         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3519         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3520         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3521         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3522         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3523         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3524         pr_err("%-20s%d\n", "asid:", control->asid);
3525         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3526         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3527         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3528         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3529         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3530         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3531         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3532         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3533         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3534         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3535         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3536         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3537         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3538         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3539         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3540         pr_err("VMCB State Save Area:\n");
3541         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3542                "es:",
3543                save->es.selector, save->es.attrib,
3544                save->es.limit, save->es.base);
3545         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3546                "cs:",
3547                save->cs.selector, save->cs.attrib,
3548                save->cs.limit, save->cs.base);
3549         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3550                "ss:",
3551                save->ss.selector, save->ss.attrib,
3552                save->ss.limit, save->ss.base);
3553         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3554                "ds:",
3555                save->ds.selector, save->ds.attrib,
3556                save->ds.limit, save->ds.base);
3557         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3558                "fs:",
3559                save->fs.selector, save->fs.attrib,
3560                save->fs.limit, save->fs.base);
3561         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3562                "gs:",
3563                save->gs.selector, save->gs.attrib,
3564                save->gs.limit, save->gs.base);
3565         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3566                "gdtr:",
3567                save->gdtr.selector, save->gdtr.attrib,
3568                save->gdtr.limit, save->gdtr.base);
3569         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3570                "ldtr:",
3571                save->ldtr.selector, save->ldtr.attrib,
3572                save->ldtr.limit, save->ldtr.base);
3573         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3574                "idtr:",
3575                save->idtr.selector, save->idtr.attrib,
3576                save->idtr.limit, save->idtr.base);
3577         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3578                "tr:",
3579                save->tr.selector, save->tr.attrib,
3580                save->tr.limit, save->tr.base);
3581         pr_err("cpl:            %d                efer:         %016llx\n",
3582                 save->cpl, save->efer);
3583         pr_err("%-15s %016llx %-13s %016llx\n",
3584                "cr0:", save->cr0, "cr2:", save->cr2);
3585         pr_err("%-15s %016llx %-13s %016llx\n",
3586                "cr3:", save->cr3, "cr4:", save->cr4);
3587         pr_err("%-15s %016llx %-13s %016llx\n",
3588                "dr6:", save->dr6, "dr7:", save->dr7);
3589         pr_err("%-15s %016llx %-13s %016llx\n",
3590                "rip:", save->rip, "rflags:", save->rflags);
3591         pr_err("%-15s %016llx %-13s %016llx\n",
3592                "rsp:", save->rsp, "rax:", save->rax);
3593         pr_err("%-15s %016llx %-13s %016llx\n",
3594                "star:", save->star, "lstar:", save->lstar);
3595         pr_err("%-15s %016llx %-13s %016llx\n",
3596                "cstar:", save->cstar, "sfmask:", save->sfmask);
3597         pr_err("%-15s %016llx %-13s %016llx\n",
3598                "kernel_gs_base:", save->kernel_gs_base,
3599                "sysenter_cs:", save->sysenter_cs);
3600         pr_err("%-15s %016llx %-13s %016llx\n",
3601                "sysenter_esp:", save->sysenter_esp,
3602                "sysenter_eip:", save->sysenter_eip);
3603         pr_err("%-15s %016llx %-13s %016llx\n",
3604                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3605         pr_err("%-15s %016llx %-13s %016llx\n",
3606                "br_from:", save->br_from, "br_to:", save->br_to);
3607         pr_err("%-15s %016llx %-13s %016llx\n",
3608                "excp_from:", save->last_excp_from,
3609                "excp_to:", save->last_excp_to);
3610 }
3611
3612 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3613 {
3614         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3615
3616         *info1 = control->exit_info_1;
3617         *info2 = control->exit_info_2;
3618 }
3619
3620 static int handle_exit(struct kvm_vcpu *vcpu)
3621 {
3622         struct vcpu_svm *svm = to_svm(vcpu);
3623         struct kvm_run *kvm_run = vcpu->run;
3624         u32 exit_code = svm->vmcb->control.exit_code;
3625
3626         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3627                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3628         if (npt_enabled)
3629                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3630
3631         if (unlikely(svm->nested.exit_required)) {
3632                 nested_svm_vmexit(svm);
3633                 svm->nested.exit_required = false;
3634
3635                 return 1;
3636         }
3637
3638         if (is_guest_mode(vcpu)) {
3639                 int vmexit;
3640
3641                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3642                                         svm->vmcb->control.exit_info_1,
3643                                         svm->vmcb->control.exit_info_2,
3644                                         svm->vmcb->control.exit_int_info,
3645                                         svm->vmcb->control.exit_int_info_err,
3646                                         KVM_ISA_SVM);
3647
3648                 vmexit = nested_svm_exit_special(svm);
3649
3650                 if (vmexit == NESTED_EXIT_CONTINUE)
3651                         vmexit = nested_svm_exit_handled(svm);
3652
3653                 if (vmexit == NESTED_EXIT_DONE)
3654                         return 1;
3655         }
3656
3657         svm_complete_interrupts(svm);
3658
3659         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3660                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3661                 kvm_run->fail_entry.hardware_entry_failure_reason
3662                         = svm->vmcb->control.exit_code;
3663                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3664                 dump_vmcb(vcpu);
3665                 return 0;
3666         }
3667
3668         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3669             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3670             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3671             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3672                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3673                        "exit_code 0x%x\n",
3674                        __func__, svm->vmcb->control.exit_int_info,
3675                        exit_code);
3676
3677         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3678             || !svm_exit_handlers[exit_code]) {
3679                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3680                 kvm_queue_exception(vcpu, UD_VECTOR);
3681                 return 1;
3682         }
3683
3684         return svm_exit_handlers[exit_code](svm);
3685 }
3686
3687 static void reload_tss(struct kvm_vcpu *vcpu)
3688 {
3689         int cpu = raw_smp_processor_id();
3690
3691         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3692         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3693         load_TR_desc();
3694 }
3695
3696 static void pre_svm_run(struct vcpu_svm *svm)
3697 {
3698         int cpu = raw_smp_processor_id();
3699
3700         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3701
3702         /* FIXME: handle wraparound of asid_generation */
3703         if (svm->asid_generation != sd->asid_generation)
3704                 new_asid(svm, sd);
3705 }
3706
3707 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3708 {
3709         struct vcpu_svm *svm = to_svm(vcpu);
3710
3711         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3712         vcpu->arch.hflags |= HF_NMI_MASK;
3713         set_intercept(svm, INTERCEPT_IRET);
3714         ++vcpu->stat.nmi_injections;
3715 }
3716
3717 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3718 {
3719         struct vmcb_control_area *control;
3720
3721         control = &svm->vmcb->control;
3722         control->int_vector = irq;
3723         control->int_ctl &= ~V_INTR_PRIO_MASK;
3724         control->int_ctl |= V_IRQ_MASK |
3725                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3726         mark_dirty(svm->vmcb, VMCB_INTR);
3727 }
3728
3729 static void svm_set_irq(struct kvm_vcpu *vcpu)
3730 {
3731         struct vcpu_svm *svm = to_svm(vcpu);
3732
3733         BUG_ON(!(gif_set(svm)));
3734
3735         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3736         ++vcpu->stat.irq_injections;
3737
3738         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3739                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3740 }
3741
3742 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3743 {
3744         struct vcpu_svm *svm = to_svm(vcpu);
3745
3746         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3747                 return;
3748
3749         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3750
3751         if (irr == -1)
3752                 return;
3753
3754         if (tpr >= irr)
3755                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3756 }
3757
3758 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3759 {
3760         return;
3761 }
3762
3763 static int svm_vm_has_apicv(struct kvm *kvm)
3764 {
3765         return 0;
3766 }
3767
3768 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3769 {
3770         return;
3771 }
3772
3773 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3774 {
3775         return;
3776 }
3777
3778 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3779 {
3780         struct vcpu_svm *svm = to_svm(vcpu);
3781         struct vmcb *vmcb = svm->vmcb;
3782         int ret;
3783         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3784               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3785         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3786
3787         return ret;
3788 }
3789
3790 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3791 {
3792         struct vcpu_svm *svm = to_svm(vcpu);
3793
3794         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3795 }
3796
3797 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3798 {
3799         struct vcpu_svm *svm = to_svm(vcpu);
3800
3801         if (masked) {
3802                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3803                 set_intercept(svm, INTERCEPT_IRET);
3804         } else {
3805                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3806                 clr_intercept(svm, INTERCEPT_IRET);
3807         }
3808 }
3809
3810 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3811 {
3812         struct vcpu_svm *svm = to_svm(vcpu);
3813         struct vmcb *vmcb = svm->vmcb;
3814         int ret;
3815
3816         if (!gif_set(svm) ||
3817              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3818                 return 0;
3819
3820         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3821
3822         if (is_guest_mode(vcpu))
3823                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3824
3825         return ret;
3826 }
3827
3828 static void enable_irq_window(struct kvm_vcpu *vcpu)
3829 {
3830         struct vcpu_svm *svm = to_svm(vcpu);
3831
3832         /*
3833          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3834          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3835          * get that intercept, this function will be called again though and
3836          * we'll get the vintr intercept.
3837          */
3838         if (gif_set(svm) && nested_svm_intr(svm)) {
3839                 svm_set_vintr(svm);
3840                 svm_inject_irq(svm, 0x0);
3841         }
3842 }
3843
3844 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3845 {
3846         struct vcpu_svm *svm = to_svm(vcpu);
3847
3848         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3849             == HF_NMI_MASK)
3850                 return; /* IRET will cause a vm exit */
3851
3852         /*
3853          * Something prevents NMI from been injected. Single step over possible
3854          * problem (IRET or exception injection or interrupt shadow)
3855          */
3856         svm->nmi_singlestep = true;
3857         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3858         update_db_bp_intercept(vcpu);
3859 }
3860
3861 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3862 {
3863         return 0;
3864 }
3865
3866 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3867 {
3868         struct vcpu_svm *svm = to_svm(vcpu);
3869
3870         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3871                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3872         else
3873                 svm->asid_generation--;
3874 }
3875
3876 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3877 {
3878 }
3879
3880 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3881 {
3882         struct vcpu_svm *svm = to_svm(vcpu);
3883
3884         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3885                 return;
3886
3887         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3888                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3889                 kvm_set_cr8(vcpu, cr8);
3890         }
3891 }
3892
3893 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3894 {
3895         struct vcpu_svm *svm = to_svm(vcpu);
3896         u64 cr8;
3897
3898         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3899                 return;
3900
3901         cr8 = kvm_get_cr8(vcpu);
3902         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3903         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3904 }
3905
3906 static void svm_complete_interrupts(struct vcpu_svm *svm)
3907 {
3908         u8 vector;
3909         int type;
3910         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3911         unsigned int3_injected = svm->int3_injected;
3912
3913         svm->int3_injected = 0;
3914
3915         /*
3916          * If we've made progress since setting HF_IRET_MASK, we've
3917          * executed an IRET and can allow NMI injection.
3918          */
3919         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3920             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3921                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3922                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3923         }
3924
3925         svm->vcpu.arch.nmi_injected = false;
3926         kvm_clear_exception_queue(&svm->vcpu);
3927         kvm_clear_interrupt_queue(&svm->vcpu);
3928
3929         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3930                 return;
3931
3932         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3933
3934         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3935         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3936
3937         switch (type) {
3938         case SVM_EXITINTINFO_TYPE_NMI:
3939                 svm->vcpu.arch.nmi_injected = true;
3940                 break;
3941         case SVM_EXITINTINFO_TYPE_EXEPT:
3942                 /*
3943                  * In case of software exceptions, do not reinject the vector,
3944                  * but re-execute the instruction instead. Rewind RIP first
3945                  * if we emulated INT3 before.
3946                  */
3947                 if (kvm_exception_is_soft(vector)) {
3948                         if (vector == BP_VECTOR && int3_injected &&
3949                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3950                                 kvm_rip_write(&svm->vcpu,
3951                                               kvm_rip_read(&svm->vcpu) -
3952                                               int3_injected);
3953                         break;
3954                 }
3955                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3956                         u32 err = svm->vmcb->control.exit_int_info_err;
3957                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3958
3959                 } else
3960                         kvm_requeue_exception(&svm->vcpu, vector);
3961                 break;
3962         case SVM_EXITINTINFO_TYPE_INTR:
3963                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3964                 break;
3965         default:
3966                 break;
3967         }
3968 }
3969
3970 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3971 {
3972         struct vcpu_svm *svm = to_svm(vcpu);
3973         struct vmcb_control_area *control = &svm->vmcb->control;
3974
3975         control->exit_int_info = control->event_inj;
3976         control->exit_int_info_err = control->event_inj_err;
3977         control->event_inj = 0;
3978         svm_complete_interrupts(svm);
3979 }
3980
3981 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3982 {
3983         struct vcpu_svm *svm = to_svm(vcpu);
3984
3985         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3986         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3987         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3988
3989         /*
3990          * A vmexit emulation is required before the vcpu can be executed
3991          * again.
3992          */
3993         if (unlikely(svm->nested.exit_required))
3994                 return;
3995
3996         pre_svm_run(svm);
3997
3998         sync_lapic_to_cr8(vcpu);
3999
4000         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4001
4002         clgi();
4003
4004         local_irq_enable();
4005
4006         asm volatile (
4007                 "push %%" _ASM_BP "; \n\t"
4008                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4009                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4010                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4011                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4012                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4013                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4014 #ifdef CONFIG_X86_64
4015                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4016                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4017                 "mov %c[r10](%[svm]), %%r10 \n\t"
4018                 "mov %c[r11](%[svm]), %%r11 \n\t"
4019                 "mov %c[r12](%[svm]), %%r12 \n\t"
4020                 "mov %c[r13](%[svm]), %%r13 \n\t"
4021                 "mov %c[r14](%[svm]), %%r14 \n\t"
4022                 "mov %c[r15](%[svm]), %%r15 \n\t"
4023 #endif
4024
4025                 /* Enter guest mode */
4026                 "push %%" _ASM_AX " \n\t"
4027                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4028                 __ex(SVM_VMLOAD) "\n\t"
4029                 __ex(SVM_VMRUN) "\n\t"
4030                 __ex(SVM_VMSAVE) "\n\t"
4031                 "pop %%" _ASM_AX " \n\t"
4032
4033                 /* Save guest registers, load host registers */
4034                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4035                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4036                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4037                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4038                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4039                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4040 #ifdef CONFIG_X86_64
4041                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4042                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4043                 "mov %%r10, %c[r10](%[svm]) \n\t"
4044                 "mov %%r11, %c[r11](%[svm]) \n\t"
4045                 "mov %%r12, %c[r12](%[svm]) \n\t"
4046                 "mov %%r13, %c[r13](%[svm]) \n\t"
4047                 "mov %%r14, %c[r14](%[svm]) \n\t"
4048                 "mov %%r15, %c[r15](%[svm]) \n\t"
4049 #endif
4050                 "pop %%" _ASM_BP
4051                 :
4052                 : [svm]"a"(svm),
4053                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4054                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4055                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4056                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4057                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4058                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4059                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4060 #ifdef CONFIG_X86_64
4061                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4062                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4063                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4064                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4065                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4066                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4067                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4068                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4069 #endif
4070                 : "cc", "memory"
4071 #ifdef CONFIG_X86_64
4072                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4073                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4074 #else
4075                 , "ebx", "ecx", "edx", "esi", "edi"
4076 #endif
4077                 );
4078
4079 #ifdef CONFIG_X86_64
4080         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4081 #else
4082         loadsegment(fs, svm->host.fs);
4083 #ifndef CONFIG_X86_32_LAZY_GS
4084         loadsegment(gs, svm->host.gs);
4085 #endif
4086 #endif
4087
4088         reload_tss(vcpu);
4089
4090         local_irq_disable();
4091
4092         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4093         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4094         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4095         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4096
4097         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4098
4099         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4100                 kvm_before_handle_nmi(&svm->vcpu);
4101
4102         stgi();
4103
4104         /* Any pending NMI will happen here */
4105
4106         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4107                 kvm_after_handle_nmi(&svm->vcpu);
4108
4109         sync_cr8_to_lapic(vcpu);
4110
4111         svm->next_rip = 0;
4112
4113         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4114
4115         /* if exit due to PF check for async PF */
4116         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4117                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4118
4119         if (npt_enabled) {
4120                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4121                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4122         }
4123
4124         /*
4125          * We need to handle MC intercepts here before the vcpu has a chance to
4126          * change the physical cpu
4127          */
4128         if (unlikely(svm->vmcb->control.exit_code ==
4129                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4130                 svm_handle_mce(svm);
4131
4132         mark_all_clean(svm->vmcb);
4133 }
4134
4135 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4136 {
4137         struct vcpu_svm *svm = to_svm(vcpu);
4138
4139         svm->vmcb->save.cr3 = root;
4140         mark_dirty(svm->vmcb, VMCB_CR);
4141         svm_flush_tlb(vcpu);
4142 }
4143
4144 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4145 {
4146         struct vcpu_svm *svm = to_svm(vcpu);
4147
4148         svm->vmcb->control.nested_cr3 = root;
4149         mark_dirty(svm->vmcb, VMCB_NPT);
4150
4151         /* Also sync guest cr3 here in case we live migrate */
4152         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4153         mark_dirty(svm->vmcb, VMCB_CR);
4154
4155         svm_flush_tlb(vcpu);
4156 }
4157
4158 static int is_disabled(void)
4159 {
4160         u64 vm_cr;
4161
4162         rdmsrl(MSR_VM_CR, vm_cr);
4163         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4164                 return 1;
4165
4166         return 0;
4167 }
4168
4169 static void
4170 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4171 {
4172         /*
4173          * Patch in the VMMCALL instruction:
4174          */
4175         hypercall[0] = 0x0f;
4176         hypercall[1] = 0x01;
4177         hypercall[2] = 0xd9;
4178 }
4179
4180 static void svm_check_processor_compat(void *rtn)
4181 {
4182         *(int *)rtn = 0;
4183 }
4184
4185 static bool svm_cpu_has_accelerated_tpr(void)
4186 {
4187         return false;
4188 }
4189
4190 static bool svm_has_high_real_mode_segbase(void)
4191 {
4192         return true;
4193 }
4194
4195 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4196 {
4197 }
4198
4199 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4200 {
4201         switch (func) {
4202         case 0x80000001:
4203                 if (nested)
4204                         entry->ecx |= (1 << 2); /* Set SVM bit */
4205                 break;
4206         case 0x8000000A:
4207                 entry->eax = 1; /* SVM revision 1 */
4208                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4209                                    ASID emulation to nested SVM */
4210                 entry->ecx = 0; /* Reserved */
4211                 entry->edx = 0; /* Per default do not support any
4212                                    additional features */
4213
4214                 /* Support next_rip if host supports it */
4215                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4216                         entry->edx |= SVM_FEATURE_NRIP;
4217
4218                 /* Support NPT for the guest if enabled */
4219                 if (npt_enabled)
4220                         entry->edx |= SVM_FEATURE_NPT;
4221
4222                 break;
4223         }
4224 }
4225
4226 static int svm_get_lpage_level(void)
4227 {
4228         return PT_PDPE_LEVEL;
4229 }
4230
4231 static bool svm_rdtscp_supported(void)
4232 {
4233         return false;
4234 }
4235
4236 static bool svm_invpcid_supported(void)
4237 {
4238         return false;
4239 }
4240
4241 static bool svm_mpx_supported(void)
4242 {
4243         return false;
4244 }
4245
4246 static bool svm_xsaves_supported(void)
4247 {
4248         return false;
4249 }
4250
4251 static bool svm_has_wbinvd_exit(void)
4252 {
4253         return true;
4254 }
4255
4256 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4257 {
4258         struct vcpu_svm *svm = to_svm(vcpu);
4259
4260         set_exception_intercept(svm, NM_VECTOR);
4261         update_cr0_intercept(svm);
4262 }
4263
4264 #define PRE_EX(exit)  { .exit_code = (exit), \
4265                         .stage = X86_ICPT_PRE_EXCEPT, }
4266 #define POST_EX(exit) { .exit_code = (exit), \
4267                         .stage = X86_ICPT_POST_EXCEPT, }
4268 #define POST_MEM(exit) { .exit_code = (exit), \
4269                         .stage = X86_ICPT_POST_MEMACCESS, }
4270
4271 static const struct __x86_intercept {
4272         u32 exit_code;
4273         enum x86_intercept_stage stage;
4274 } x86_intercept_map[] = {
4275         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4276         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4277         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4278         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4279         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4280         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4281         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4282         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4283         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4284         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4285         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4286         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4287         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4288         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4289         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4290         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4291         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4292         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4293         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4294         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4295         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4296         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4297         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4298         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4299         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4300         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4301         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4302         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4303         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4304         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4305         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4306         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4307         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4308         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4309         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4310         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4311         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4312         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4313         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4314         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4315         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4316         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4317         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4318         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4319         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4320         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4321 };
4322
4323 #undef PRE_EX
4324 #undef POST_EX
4325 #undef POST_MEM
4326
4327 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4328                                struct x86_instruction_info *info,
4329                                enum x86_intercept_stage stage)
4330 {
4331         struct vcpu_svm *svm = to_svm(vcpu);
4332         int vmexit, ret = X86EMUL_CONTINUE;
4333         struct __x86_intercept icpt_info;
4334         struct vmcb *vmcb = svm->vmcb;
4335
4336         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4337                 goto out;
4338
4339         icpt_info = x86_intercept_map[info->intercept];
4340
4341         if (stage != icpt_info.stage)
4342                 goto out;
4343
4344         switch (icpt_info.exit_code) {
4345         case SVM_EXIT_READ_CR0:
4346                 if (info->intercept == x86_intercept_cr_read)
4347                         icpt_info.exit_code += info->modrm_reg;
4348                 break;
4349         case SVM_EXIT_WRITE_CR0: {
4350                 unsigned long cr0, val;
4351                 u64 intercept;
4352
4353                 if (info->intercept == x86_intercept_cr_write)
4354                         icpt_info.exit_code += info->modrm_reg;
4355
4356                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4357                     info->intercept == x86_intercept_clts)
4358                         break;
4359
4360                 intercept = svm->nested.intercept;
4361
4362                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4363                         break;
4364
4365                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4366                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4367
4368                 if (info->intercept == x86_intercept_lmsw) {
4369                         cr0 &= 0xfUL;
4370                         val &= 0xfUL;
4371                         /* lmsw can't clear PE - catch this here */
4372                         if (cr0 & X86_CR0_PE)
4373                                 val |= X86_CR0_PE;
4374                 }
4375
4376                 if (cr0 ^ val)
4377                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4378
4379                 break;
4380         }
4381         case SVM_EXIT_READ_DR0:
4382         case SVM_EXIT_WRITE_DR0:
4383                 icpt_info.exit_code += info->modrm_reg;
4384                 break;
4385         case SVM_EXIT_MSR:
4386                 if (info->intercept == x86_intercept_wrmsr)
4387                         vmcb->control.exit_info_1 = 1;
4388                 else
4389                         vmcb->control.exit_info_1 = 0;
4390                 break;
4391         case SVM_EXIT_PAUSE:
4392                 /*
4393                  * We get this for NOP only, but pause
4394                  * is rep not, check this here
4395                  */
4396                 if (info->rep_prefix != REPE_PREFIX)
4397                         goto out;
4398         case SVM_EXIT_IOIO: {
4399                 u64 exit_info;
4400                 u32 bytes;
4401
4402                 if (info->intercept == x86_intercept_in ||
4403                     info->intercept == x86_intercept_ins) {
4404                         exit_info = ((info->src_val & 0xffff) << 16) |
4405                                 SVM_IOIO_TYPE_MASK;
4406                         bytes = info->dst_bytes;
4407                 } else {
4408                         exit_info = (info->dst_val & 0xffff) << 16;
4409                         bytes = info->src_bytes;
4410                 }
4411
4412                 if (info->intercept == x86_intercept_outs ||
4413                     info->intercept == x86_intercept_ins)
4414                         exit_info |= SVM_IOIO_STR_MASK;
4415
4416                 if (info->rep_prefix)
4417                         exit_info |= SVM_IOIO_REP_MASK;
4418
4419                 bytes = min(bytes, 4u);
4420
4421                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4422
4423                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4424
4425                 vmcb->control.exit_info_1 = exit_info;
4426                 vmcb->control.exit_info_2 = info->next_rip;
4427
4428                 break;
4429         }
4430         default:
4431                 break;
4432         }
4433
4434         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4435         if (static_cpu_has(X86_FEATURE_NRIPS))
4436                 vmcb->control.next_rip  = info->next_rip;
4437         vmcb->control.exit_code = icpt_info.exit_code;
4438         vmexit = nested_svm_exit_handled(svm);
4439
4440         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4441                                            : X86EMUL_CONTINUE;
4442
4443 out:
4444         return ret;
4445 }
4446
4447 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4448 {
4449         local_irq_enable();
4450 }
4451
4452 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4453 {
4454 }
4455
4456 static struct kvm_x86_ops svm_x86_ops = {
4457         .cpu_has_kvm_support = has_svm,
4458         .disabled_by_bios = is_disabled,
4459         .hardware_setup = svm_hardware_setup,
4460         .hardware_unsetup = svm_hardware_unsetup,
4461         .check_processor_compatibility = svm_check_processor_compat,
4462         .hardware_enable = svm_hardware_enable,
4463         .hardware_disable = svm_hardware_disable,
4464         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4465         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4466
4467         .vcpu_create = svm_create_vcpu,
4468         .vcpu_free = svm_free_vcpu,
4469         .vcpu_reset = svm_vcpu_reset,
4470
4471         .prepare_guest_switch = svm_prepare_guest_switch,
4472         .vcpu_load = svm_vcpu_load,
4473         .vcpu_put = svm_vcpu_put,
4474
4475         .update_db_bp_intercept = update_db_bp_intercept,
4476         .get_msr = svm_get_msr,
4477         .set_msr = svm_set_msr,
4478         .get_segment_base = svm_get_segment_base,
4479         .get_segment = svm_get_segment,
4480         .set_segment = svm_set_segment,
4481         .get_cpl = svm_get_cpl,
4482         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4483         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4484         .decache_cr3 = svm_decache_cr3,
4485         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4486         .set_cr0 = svm_set_cr0,
4487         .set_cr3 = svm_set_cr3,
4488         .set_cr4 = svm_set_cr4,
4489         .set_efer = svm_set_efer,
4490         .get_idt = svm_get_idt,
4491         .set_idt = svm_set_idt,
4492         .get_gdt = svm_get_gdt,
4493         .set_gdt = svm_set_gdt,
4494         .get_dr6 = svm_get_dr6,
4495         .set_dr6 = svm_set_dr6,
4496         .set_dr7 = svm_set_dr7,
4497         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4498         .cache_reg = svm_cache_reg,
4499         .get_rflags = svm_get_rflags,
4500         .set_rflags = svm_set_rflags,
4501         .fpu_activate = svm_fpu_activate,
4502         .fpu_deactivate = svm_fpu_deactivate,
4503
4504         .tlb_flush = svm_flush_tlb,
4505
4506         .run = svm_vcpu_run,
4507         .handle_exit = handle_exit,
4508         .skip_emulated_instruction = skip_emulated_instruction,
4509         .set_interrupt_shadow = svm_set_interrupt_shadow,
4510         .get_interrupt_shadow = svm_get_interrupt_shadow,
4511         .patch_hypercall = svm_patch_hypercall,
4512         .set_irq = svm_set_irq,
4513         .set_nmi = svm_inject_nmi,
4514         .queue_exception = svm_queue_exception,
4515         .cancel_injection = svm_cancel_injection,
4516         .interrupt_allowed = svm_interrupt_allowed,
4517         .nmi_allowed = svm_nmi_allowed,
4518         .get_nmi_mask = svm_get_nmi_mask,
4519         .set_nmi_mask = svm_set_nmi_mask,
4520         .enable_nmi_window = enable_nmi_window,
4521         .enable_irq_window = enable_irq_window,
4522         .update_cr8_intercept = update_cr8_intercept,
4523         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4524         .vm_has_apicv = svm_vm_has_apicv,
4525         .load_eoi_exitmap = svm_load_eoi_exitmap,
4526         .sync_pir_to_irr = svm_sync_pir_to_irr,
4527
4528         .set_tss_addr = svm_set_tss_addr,
4529         .get_tdp_level = get_npt_level,
4530         .get_mt_mask = svm_get_mt_mask,
4531
4532         .get_exit_info = svm_get_exit_info,
4533
4534         .get_lpage_level = svm_get_lpage_level,
4535
4536         .cpuid_update = svm_cpuid_update,
4537
4538         .rdtscp_supported = svm_rdtscp_supported,
4539         .invpcid_supported = svm_invpcid_supported,
4540         .mpx_supported = svm_mpx_supported,
4541         .xsaves_supported = svm_xsaves_supported,
4542
4543         .set_supported_cpuid = svm_set_supported_cpuid,
4544
4545         .has_wbinvd_exit = svm_has_wbinvd_exit,
4546
4547         .set_tsc_khz = svm_set_tsc_khz,
4548         .read_tsc_offset = svm_read_tsc_offset,
4549         .write_tsc_offset = svm_write_tsc_offset,
4550         .adjust_tsc_offset = svm_adjust_tsc_offset,
4551         .compute_tsc_offset = svm_compute_tsc_offset,
4552         .read_l1_tsc = svm_read_l1_tsc,
4553
4554         .set_tdp_cr3 = set_tdp_cr3,
4555
4556         .check_intercept = svm_check_intercept,
4557         .handle_external_intr = svm_handle_external_intr,
4558
4559         .sched_in = svm_sched_in,
4560
4561         .pmu_ops = &amd_pmu_ops,
4562 };
4563
4564 static int __init svm_init(void)
4565 {
4566         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4567                         __alignof__(struct vcpu_svm), THIS_MODULE);
4568 }
4569
4570 static void __exit svm_exit(void)
4571 {
4572         kvm_exit();
4573 }
4574
4575 module_init(svm_init)
4576 module_exit(svm_exit)