]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
e06f00d1f15c53262d1d1b1c831576561a998c04
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affilates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34
35 #include <asm/virtext.h>
36 #include "trace.h"
37
38 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39
40 MODULE_AUTHOR("Qumranet");
41 MODULE_LICENSE("GPL");
42
43 #define IOPM_ALLOC_ORDER 2
44 #define MSRPM_ALLOC_ORDER 1
45
46 #define SEG_TYPE_LDT 2
47 #define SEG_TYPE_BUSY_TSS16 3
48
49 #define SVM_FEATURE_NPT            (1 <<  0)
50 #define SVM_FEATURE_LBRV           (1 <<  1)
51 #define SVM_FEATURE_SVML           (1 <<  2)
52 #define SVM_FEATURE_NRIP           (1 <<  3)
53 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
54
55 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
56 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
57 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
58
59 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
60
61 static bool erratum_383_found __read_mostly;
62
63 static const u32 host_save_user_msrs[] = {
64 #ifdef CONFIG_X86_64
65         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
66         MSR_FS_BASE,
67 #endif
68         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
69 };
70
71 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
72
73 struct kvm_vcpu;
74
75 struct nested_state {
76         struct vmcb *hsave;
77         u64 hsave_msr;
78         u64 vm_cr_msr;
79         u64 vmcb;
80
81         /* These are the merged vectors */
82         u32 *msrpm;
83
84         /* gpa pointers to the real vectors */
85         u64 vmcb_msrpm;
86         u64 vmcb_iopm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /* cache for intercepts of the guest */
92         u16 intercept_cr_read;
93         u16 intercept_cr_write;
94         u16 intercept_dr_read;
95         u16 intercept_dr_write;
96         u32 intercept_exceptions;
97         u64 intercept;
98
99 };
100
101 #define MSRPM_OFFSETS   16
102 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
103
104 struct vcpu_svm {
105         struct kvm_vcpu vcpu;
106         struct vmcb *vmcb;
107         unsigned long vmcb_pa;
108         struct svm_cpu_data *svm_data;
109         uint64_t asid_generation;
110         uint64_t sysenter_esp;
111         uint64_t sysenter_eip;
112
113         u64 next_rip;
114
115         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
116         u64 host_gs_base;
117
118         u32 *msrpm;
119
120         struct nested_state nested;
121
122         bool nmi_singlestep;
123
124         unsigned int3_injected;
125         unsigned long int3_rip;
126 };
127
128 #define MSR_INVALID                     0xffffffffU
129
130 static struct svm_direct_access_msrs {
131         u32 index;   /* Index of the MSR */
132         bool always; /* True if intercept is always on */
133 } direct_access_msrs[] = {
134         { .index = MSR_STAR,                            .always = true  },
135         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
136 #ifdef CONFIG_X86_64
137         { .index = MSR_GS_BASE,                         .always = true  },
138         { .index = MSR_FS_BASE,                         .always = true  },
139         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
140         { .index = MSR_LSTAR,                           .always = true  },
141         { .index = MSR_CSTAR,                           .always = true  },
142         { .index = MSR_SYSCALL_MASK,                    .always = true  },
143 #endif
144         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
145         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
146         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
147         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
148         { .index = MSR_INVALID,                         .always = false },
149 };
150
151 /* enable NPT for AMD64 and X86 with PAE */
152 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
153 static bool npt_enabled = true;
154 #else
155 static bool npt_enabled;
156 #endif
157 static int npt = 1;
158
159 module_param(npt, int, S_IRUGO);
160
161 static int nested = 1;
162 module_param(nested, int, S_IRUGO);
163
164 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
165 static void svm_complete_interrupts(struct vcpu_svm *svm);
166
167 static int nested_svm_exit_handled(struct vcpu_svm *svm);
168 static int nested_svm_intercept(struct vcpu_svm *svm);
169 static int nested_svm_vmexit(struct vcpu_svm *svm);
170 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
171                                       bool has_error_code, u32 error_code);
172
173 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
174 {
175         return container_of(vcpu, struct vcpu_svm, vcpu);
176 }
177
178 static inline bool is_nested(struct vcpu_svm *svm)
179 {
180         return svm->nested.vmcb;
181 }
182
183 static inline void enable_gif(struct vcpu_svm *svm)
184 {
185         svm->vcpu.arch.hflags |= HF_GIF_MASK;
186 }
187
188 static inline void disable_gif(struct vcpu_svm *svm)
189 {
190         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
191 }
192
193 static inline bool gif_set(struct vcpu_svm *svm)
194 {
195         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
196 }
197
198 static unsigned long iopm_base;
199
200 struct kvm_ldttss_desc {
201         u16 limit0;
202         u16 base0;
203         unsigned base1:8, type:5, dpl:2, p:1;
204         unsigned limit1:4, zero0:3, g:1, base2:8;
205         u32 base3;
206         u32 zero1;
207 } __attribute__((packed));
208
209 struct svm_cpu_data {
210         int cpu;
211
212         u64 asid_generation;
213         u32 max_asid;
214         u32 next_asid;
215         struct kvm_ldttss_desc *tss_desc;
216
217         struct page *save_area;
218 };
219
220 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
221 static uint32_t svm_features;
222
223 struct svm_init_data {
224         int cpu;
225         int r;
226 };
227
228 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
229
230 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
231 #define MSRS_RANGE_SIZE 2048
232 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
233
234 static u32 svm_msrpm_offset(u32 msr)
235 {
236         u32 offset;
237         int i;
238
239         for (i = 0; i < NUM_MSR_MAPS; i++) {
240                 if (msr < msrpm_ranges[i] ||
241                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
242                         continue;
243
244                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
245                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
246
247                 /* Now we have the u8 offset - but need the u32 offset */
248                 return offset / 4;
249         }
250
251         /* MSR not in any range */
252         return MSR_INVALID;
253 }
254
255 #define MAX_INST_SIZE 15
256
257 static inline u32 svm_has(u32 feat)
258 {
259         return svm_features & feat;
260 }
261
262 static inline void clgi(void)
263 {
264         asm volatile (__ex(SVM_CLGI));
265 }
266
267 static inline void stgi(void)
268 {
269         asm volatile (__ex(SVM_STGI));
270 }
271
272 static inline void invlpga(unsigned long addr, u32 asid)
273 {
274         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
275 }
276
277 static inline void force_new_asid(struct kvm_vcpu *vcpu)
278 {
279         to_svm(vcpu)->asid_generation--;
280 }
281
282 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
283 {
284         force_new_asid(vcpu);
285 }
286
287 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
288 {
289         vcpu->arch.efer = efer;
290         if (!npt_enabled && !(efer & EFER_LMA))
291                 efer &= ~EFER_LME;
292
293         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
294 }
295
296 static int is_external_interrupt(u32 info)
297 {
298         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
299         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
300 }
301
302 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
303 {
304         struct vcpu_svm *svm = to_svm(vcpu);
305         u32 ret = 0;
306
307         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
308                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
309         return ret & mask;
310 }
311
312 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
313 {
314         struct vcpu_svm *svm = to_svm(vcpu);
315
316         if (mask == 0)
317                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
318         else
319                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
320
321 }
322
323 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
324 {
325         struct vcpu_svm *svm = to_svm(vcpu);
326
327         if (svm->vmcb->control.next_rip != 0)
328                 svm->next_rip = svm->vmcb->control.next_rip;
329
330         if (!svm->next_rip) {
331                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
332                                 EMULATE_DONE)
333                         printk(KERN_DEBUG "%s: NOP\n", __func__);
334                 return;
335         }
336         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
337                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
338                        __func__, kvm_rip_read(vcpu), svm->next_rip);
339
340         kvm_rip_write(vcpu, svm->next_rip);
341         svm_set_interrupt_shadow(vcpu, 0);
342 }
343
344 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
345                                 bool has_error_code, u32 error_code,
346                                 bool reinject)
347 {
348         struct vcpu_svm *svm = to_svm(vcpu);
349
350         /*
351          * If we are within a nested VM we'd better #VMEXIT and let the guest
352          * handle the exception
353          */
354         if (!reinject &&
355             nested_svm_check_exception(svm, nr, has_error_code, error_code))
356                 return;
357
358         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
359                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
360
361                 /*
362                  * For guest debugging where we have to reinject #BP if some
363                  * INT3 is guest-owned:
364                  * Emulate nRIP by moving RIP forward. Will fail if injection
365                  * raises a fault that is not intercepted. Still better than
366                  * failing in all cases.
367                  */
368                 skip_emulated_instruction(&svm->vcpu);
369                 rip = kvm_rip_read(&svm->vcpu);
370                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
371                 svm->int3_injected = rip - old_rip;
372         }
373
374         svm->vmcb->control.event_inj = nr
375                 | SVM_EVTINJ_VALID
376                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
377                 | SVM_EVTINJ_TYPE_EXEPT;
378         svm->vmcb->control.event_inj_err = error_code;
379 }
380
381 static void svm_init_erratum_383(void)
382 {
383         u32 low, high;
384         int err;
385         u64 val;
386
387         if (!cpu_has_amd_erratum(amd_erratum_383))
388                 return;
389
390         /* Use _safe variants to not break nested virtualization */
391         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
392         if (err)
393                 return;
394
395         val |= (1ULL << 47);
396
397         low  = lower_32_bits(val);
398         high = upper_32_bits(val);
399
400         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
401
402         erratum_383_found = true;
403 }
404
405 static int has_svm(void)
406 {
407         const char *msg;
408
409         if (!cpu_has_svm(&msg)) {
410                 printk(KERN_INFO "has_svm: %s\n", msg);
411                 return 0;
412         }
413
414         return 1;
415 }
416
417 static void svm_hardware_disable(void *garbage)
418 {
419         cpu_svm_disable();
420 }
421
422 static int svm_hardware_enable(void *garbage)
423 {
424
425         struct svm_cpu_data *sd;
426         uint64_t efer;
427         struct desc_ptr gdt_descr;
428         struct desc_struct *gdt;
429         int me = raw_smp_processor_id();
430
431         rdmsrl(MSR_EFER, efer);
432         if (efer & EFER_SVME)
433                 return -EBUSY;
434
435         if (!has_svm()) {
436                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
437                        me);
438                 return -EINVAL;
439         }
440         sd = per_cpu(svm_data, me);
441
442         if (!sd) {
443                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
444                        me);
445                 return -EINVAL;
446         }
447
448         sd->asid_generation = 1;
449         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
450         sd->next_asid = sd->max_asid + 1;
451
452         native_store_gdt(&gdt_descr);
453         gdt = (struct desc_struct *)gdt_descr.address;
454         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
455
456         wrmsrl(MSR_EFER, efer | EFER_SVME);
457
458         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
459
460         svm_init_erratum_383();
461
462         return 0;
463 }
464
465 static void svm_cpu_uninit(int cpu)
466 {
467         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
468
469         if (!sd)
470                 return;
471
472         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
473         __free_page(sd->save_area);
474         kfree(sd);
475 }
476
477 static int svm_cpu_init(int cpu)
478 {
479         struct svm_cpu_data *sd;
480         int r;
481
482         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
483         if (!sd)
484                 return -ENOMEM;
485         sd->cpu = cpu;
486         sd->save_area = alloc_page(GFP_KERNEL);
487         r = -ENOMEM;
488         if (!sd->save_area)
489                 goto err_1;
490
491         per_cpu(svm_data, cpu) = sd;
492
493         return 0;
494
495 err_1:
496         kfree(sd);
497         return r;
498
499 }
500
501 static bool valid_msr_intercept(u32 index)
502 {
503         int i;
504
505         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
506                 if (direct_access_msrs[i].index == index)
507                         return true;
508
509         return false;
510 }
511
512 static void set_msr_interception(u32 *msrpm, unsigned msr,
513                                  int read, int write)
514 {
515         u8 bit_read, bit_write;
516         unsigned long tmp;
517         u32 offset;
518
519         /*
520          * If this warning triggers extend the direct_access_msrs list at the
521          * beginning of the file
522          */
523         WARN_ON(!valid_msr_intercept(msr));
524
525         offset    = svm_msrpm_offset(msr);
526         bit_read  = 2 * (msr & 0x0f);
527         bit_write = 2 * (msr & 0x0f) + 1;
528         tmp       = msrpm[offset];
529
530         BUG_ON(offset == MSR_INVALID);
531
532         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
533         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
534
535         msrpm[offset] = tmp;
536 }
537
538 static void svm_vcpu_init_msrpm(u32 *msrpm)
539 {
540         int i;
541
542         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
543
544         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
545                 if (!direct_access_msrs[i].always)
546                         continue;
547
548                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
549         }
550 }
551
552 static void add_msr_offset(u32 offset)
553 {
554         int i;
555
556         for (i = 0; i < MSRPM_OFFSETS; ++i) {
557
558                 /* Offset already in list? */
559                 if (msrpm_offsets[i] == offset)
560                         return;
561
562                 /* Slot used by another offset? */
563                 if (msrpm_offsets[i] != MSR_INVALID)
564                         continue;
565
566                 /* Add offset to list */
567                 msrpm_offsets[i] = offset;
568
569                 return;
570         }
571
572         /*
573          * If this BUG triggers the msrpm_offsets table has an overflow. Just
574          * increase MSRPM_OFFSETS in this case.
575          */
576         BUG();
577 }
578
579 static void init_msrpm_offsets(void)
580 {
581         int i;
582
583         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
584
585         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
586                 u32 offset;
587
588                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
589                 BUG_ON(offset == MSR_INVALID);
590
591                 add_msr_offset(offset);
592         }
593 }
594
595 static void svm_enable_lbrv(struct vcpu_svm *svm)
596 {
597         u32 *msrpm = svm->msrpm;
598
599         svm->vmcb->control.lbr_ctl = 1;
600         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
601         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
602         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
603         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
604 }
605
606 static void svm_disable_lbrv(struct vcpu_svm *svm)
607 {
608         u32 *msrpm = svm->msrpm;
609
610         svm->vmcb->control.lbr_ctl = 0;
611         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
612         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
613         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
614         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
615 }
616
617 static __init int svm_hardware_setup(void)
618 {
619         int cpu;
620         struct page *iopm_pages;
621         void *iopm_va;
622         int r;
623
624         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
625
626         if (!iopm_pages)
627                 return -ENOMEM;
628
629         iopm_va = page_address(iopm_pages);
630         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
631         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
632
633         init_msrpm_offsets();
634
635         if (boot_cpu_has(X86_FEATURE_NX))
636                 kvm_enable_efer_bits(EFER_NX);
637
638         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
639                 kvm_enable_efer_bits(EFER_FFXSR);
640
641         if (nested) {
642                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
643                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
644         }
645
646         for_each_possible_cpu(cpu) {
647                 r = svm_cpu_init(cpu);
648                 if (r)
649                         goto err;
650         }
651
652         svm_features = cpuid_edx(SVM_CPUID_FUNC);
653
654         if (!svm_has(SVM_FEATURE_NPT))
655                 npt_enabled = false;
656
657         if (npt_enabled && !npt) {
658                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
659                 npt_enabled = false;
660         }
661
662         if (npt_enabled) {
663                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
664                 kvm_enable_tdp();
665         } else
666                 kvm_disable_tdp();
667
668         return 0;
669
670 err:
671         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
672         iopm_base = 0;
673         return r;
674 }
675
676 static __exit void svm_hardware_unsetup(void)
677 {
678         int cpu;
679
680         for_each_possible_cpu(cpu)
681                 svm_cpu_uninit(cpu);
682
683         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
684         iopm_base = 0;
685 }
686
687 static void init_seg(struct vmcb_seg *seg)
688 {
689         seg->selector = 0;
690         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
691                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
692         seg->limit = 0xffff;
693         seg->base = 0;
694 }
695
696 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
697 {
698         seg->selector = 0;
699         seg->attrib = SVM_SELECTOR_P_MASK | type;
700         seg->limit = 0xffff;
701         seg->base = 0;
702 }
703
704 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
705 {
706         struct vcpu_svm *svm = to_svm(vcpu);
707         u64 g_tsc_offset = 0;
708
709         if (is_nested(svm)) {
710                 g_tsc_offset = svm->vmcb->control.tsc_offset -
711                                svm->nested.hsave->control.tsc_offset;
712                 svm->nested.hsave->control.tsc_offset = offset;
713         }
714
715         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
716 }
717
718 static void init_vmcb(struct vcpu_svm *svm)
719 {
720         struct vmcb_control_area *control = &svm->vmcb->control;
721         struct vmcb_save_area *save = &svm->vmcb->save;
722
723         svm->vcpu.fpu_active = 1;
724
725         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
726                                         INTERCEPT_CR3_MASK |
727                                         INTERCEPT_CR4_MASK;
728
729         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
730                                         INTERCEPT_CR3_MASK |
731                                         INTERCEPT_CR4_MASK |
732                                         INTERCEPT_CR8_MASK;
733
734         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
735                                         INTERCEPT_DR1_MASK |
736                                         INTERCEPT_DR2_MASK |
737                                         INTERCEPT_DR3_MASK |
738                                         INTERCEPT_DR4_MASK |
739                                         INTERCEPT_DR5_MASK |
740                                         INTERCEPT_DR6_MASK |
741                                         INTERCEPT_DR7_MASK;
742
743         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
744                                         INTERCEPT_DR1_MASK |
745                                         INTERCEPT_DR2_MASK |
746                                         INTERCEPT_DR3_MASK |
747                                         INTERCEPT_DR4_MASK |
748                                         INTERCEPT_DR5_MASK |
749                                         INTERCEPT_DR6_MASK |
750                                         INTERCEPT_DR7_MASK;
751
752         control->intercept_exceptions = (1 << PF_VECTOR) |
753                                         (1 << UD_VECTOR) |
754                                         (1 << MC_VECTOR);
755
756
757         control->intercept =    (1ULL << INTERCEPT_INTR) |
758                                 (1ULL << INTERCEPT_NMI) |
759                                 (1ULL << INTERCEPT_SMI) |
760                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
761                                 (1ULL << INTERCEPT_CPUID) |
762                                 (1ULL << INTERCEPT_INVD) |
763                                 (1ULL << INTERCEPT_HLT) |
764                                 (1ULL << INTERCEPT_INVLPG) |
765                                 (1ULL << INTERCEPT_INVLPGA) |
766                                 (1ULL << INTERCEPT_IOIO_PROT) |
767                                 (1ULL << INTERCEPT_MSR_PROT) |
768                                 (1ULL << INTERCEPT_TASK_SWITCH) |
769                                 (1ULL << INTERCEPT_SHUTDOWN) |
770                                 (1ULL << INTERCEPT_VMRUN) |
771                                 (1ULL << INTERCEPT_VMMCALL) |
772                                 (1ULL << INTERCEPT_VMLOAD) |
773                                 (1ULL << INTERCEPT_VMSAVE) |
774                                 (1ULL << INTERCEPT_STGI) |
775                                 (1ULL << INTERCEPT_CLGI) |
776                                 (1ULL << INTERCEPT_SKINIT) |
777                                 (1ULL << INTERCEPT_WBINVD) |
778                                 (1ULL << INTERCEPT_MONITOR) |
779                                 (1ULL << INTERCEPT_MWAIT);
780
781         control->iopm_base_pa = iopm_base;
782         control->msrpm_base_pa = __pa(svm->msrpm);
783         control->int_ctl = V_INTR_MASKING_MASK;
784
785         init_seg(&save->es);
786         init_seg(&save->ss);
787         init_seg(&save->ds);
788         init_seg(&save->fs);
789         init_seg(&save->gs);
790
791         save->cs.selector = 0xf000;
792         /* Executable/Readable Code Segment */
793         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
794                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
795         save->cs.limit = 0xffff;
796         /*
797          * cs.base should really be 0xffff0000, but vmx can't handle that, so
798          * be consistent with it.
799          *
800          * Replace when we have real mode working for vmx.
801          */
802         save->cs.base = 0xf0000;
803
804         save->gdtr.limit = 0xffff;
805         save->idtr.limit = 0xffff;
806
807         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
808         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
809
810         save->efer = EFER_SVME;
811         save->dr6 = 0xffff0ff0;
812         save->dr7 = 0x400;
813         save->rflags = 2;
814         save->rip = 0x0000fff0;
815         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
816
817         /*
818          * This is the guest-visible cr0 value.
819          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
820          */
821         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
822         (void)kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
823
824         save->cr4 = X86_CR4_PAE;
825         /* rdx = ?? */
826
827         if (npt_enabled) {
828                 /* Setup VMCB for Nested Paging */
829                 control->nested_ctl = 1;
830                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
831                                         (1ULL << INTERCEPT_INVLPG));
832                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
833                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
834                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
835                 save->g_pat = 0x0007040600070406ULL;
836                 save->cr3 = 0;
837                 save->cr4 = 0;
838         }
839         force_new_asid(&svm->vcpu);
840
841         svm->nested.vmcb = 0;
842         svm->vcpu.arch.hflags = 0;
843
844         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
845                 control->pause_filter_count = 3000;
846                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
847         }
848
849         enable_gif(svm);
850 }
851
852 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
853 {
854         struct vcpu_svm *svm = to_svm(vcpu);
855
856         init_vmcb(svm);
857
858         if (!kvm_vcpu_is_bsp(vcpu)) {
859                 kvm_rip_write(vcpu, 0);
860                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
861                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
862         }
863         vcpu->arch.regs_avail = ~0;
864         vcpu->arch.regs_dirty = ~0;
865
866         return 0;
867 }
868
869 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
870 {
871         struct vcpu_svm *svm;
872         struct page *page;
873         struct page *msrpm_pages;
874         struct page *hsave_page;
875         struct page *nested_msrpm_pages;
876         int err;
877
878         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
879         if (!svm) {
880                 err = -ENOMEM;
881                 goto out;
882         }
883
884         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
885         if (err)
886                 goto free_svm;
887
888         err = -ENOMEM;
889         page = alloc_page(GFP_KERNEL);
890         if (!page)
891                 goto uninit;
892
893         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
894         if (!msrpm_pages)
895                 goto free_page1;
896
897         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
898         if (!nested_msrpm_pages)
899                 goto free_page2;
900
901         hsave_page = alloc_page(GFP_KERNEL);
902         if (!hsave_page)
903                 goto free_page3;
904
905         svm->nested.hsave = page_address(hsave_page);
906
907         svm->msrpm = page_address(msrpm_pages);
908         svm_vcpu_init_msrpm(svm->msrpm);
909
910         svm->nested.msrpm = page_address(nested_msrpm_pages);
911         svm_vcpu_init_msrpm(svm->nested.msrpm);
912
913         svm->vmcb = page_address(page);
914         clear_page(svm->vmcb);
915         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
916         svm->asid_generation = 0;
917         init_vmcb(svm);
918         svm_write_tsc_offset(&svm->vcpu, 0-native_read_tsc());
919
920         err = fx_init(&svm->vcpu);
921         if (err)
922                 goto free_page4;
923
924         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
925         if (kvm_vcpu_is_bsp(&svm->vcpu))
926                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
927
928         return &svm->vcpu;
929
930 free_page4:
931         __free_page(hsave_page);
932 free_page3:
933         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
934 free_page2:
935         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
936 free_page1:
937         __free_page(page);
938 uninit:
939         kvm_vcpu_uninit(&svm->vcpu);
940 free_svm:
941         kmem_cache_free(kvm_vcpu_cache, svm);
942 out:
943         return ERR_PTR(err);
944 }
945
946 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
947 {
948         struct vcpu_svm *svm = to_svm(vcpu);
949
950         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
951         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
952         __free_page(virt_to_page(svm->nested.hsave));
953         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
954         kvm_vcpu_uninit(vcpu);
955         kmem_cache_free(kvm_vcpu_cache, svm);
956 }
957
958 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
959 {
960         struct vcpu_svm *svm = to_svm(vcpu);
961         int i;
962
963         if (unlikely(cpu != vcpu->cpu)) {
964                 u64 delta;
965
966                 if (check_tsc_unstable()) {
967                         /*
968                          * Make sure that the guest sees a monotonically
969                          * increasing TSC.
970                          */
971                         delta = vcpu->arch.host_tsc - native_read_tsc();
972                         svm->vmcb->control.tsc_offset += delta;
973                         if (is_nested(svm))
974                                 svm->nested.hsave->control.tsc_offset += delta;
975                 }
976                 vcpu->cpu = cpu;
977                 kvm_migrate_timers(vcpu);
978                 svm->asid_generation = 0;
979         }
980
981         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
982                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
983 }
984
985 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
986 {
987         struct vcpu_svm *svm = to_svm(vcpu);
988         int i;
989
990         ++vcpu->stat.host_state_reload;
991         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
992                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
993
994         vcpu->arch.host_tsc = native_read_tsc();
995 }
996
997 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
998 {
999         return to_svm(vcpu)->vmcb->save.rflags;
1000 }
1001
1002 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1003 {
1004         to_svm(vcpu)->vmcb->save.rflags = rflags;
1005 }
1006
1007 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1008 {
1009         switch (reg) {
1010         case VCPU_EXREG_PDPTR:
1011                 BUG_ON(!npt_enabled);
1012                 load_pdptrs(vcpu, vcpu->arch.cr3);
1013                 break;
1014         default:
1015                 BUG();
1016         }
1017 }
1018
1019 static void svm_set_vintr(struct vcpu_svm *svm)
1020 {
1021         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1022 }
1023
1024 static void svm_clear_vintr(struct vcpu_svm *svm)
1025 {
1026         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1027 }
1028
1029 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1030 {
1031         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1032
1033         switch (seg) {
1034         case VCPU_SREG_CS: return &save->cs;
1035         case VCPU_SREG_DS: return &save->ds;
1036         case VCPU_SREG_ES: return &save->es;
1037         case VCPU_SREG_FS: return &save->fs;
1038         case VCPU_SREG_GS: return &save->gs;
1039         case VCPU_SREG_SS: return &save->ss;
1040         case VCPU_SREG_TR: return &save->tr;
1041         case VCPU_SREG_LDTR: return &save->ldtr;
1042         }
1043         BUG();
1044         return NULL;
1045 }
1046
1047 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1048 {
1049         struct vmcb_seg *s = svm_seg(vcpu, seg);
1050
1051         return s->base;
1052 }
1053
1054 static void svm_get_segment(struct kvm_vcpu *vcpu,
1055                             struct kvm_segment *var, int seg)
1056 {
1057         struct vmcb_seg *s = svm_seg(vcpu, seg);
1058
1059         var->base = s->base;
1060         var->limit = s->limit;
1061         var->selector = s->selector;
1062         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1063         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1064         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1065         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1066         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1067         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1068         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1069         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1070
1071         /*
1072          * AMD's VMCB does not have an explicit unusable field, so emulate it
1073          * for cross vendor migration purposes by "not present"
1074          */
1075         var->unusable = !var->present || (var->type == 0);
1076
1077         switch (seg) {
1078         case VCPU_SREG_CS:
1079                 /*
1080                  * SVM always stores 0 for the 'G' bit in the CS selector in
1081                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1082                  * Intel's VMENTRY has a check on the 'G' bit.
1083                  */
1084                 var->g = s->limit > 0xfffff;
1085                 break;
1086         case VCPU_SREG_TR:
1087                 /*
1088                  * Work around a bug where the busy flag in the tr selector
1089                  * isn't exposed
1090                  */
1091                 var->type |= 0x2;
1092                 break;
1093         case VCPU_SREG_DS:
1094         case VCPU_SREG_ES:
1095         case VCPU_SREG_FS:
1096         case VCPU_SREG_GS:
1097                 /*
1098                  * The accessed bit must always be set in the segment
1099                  * descriptor cache, although it can be cleared in the
1100                  * descriptor, the cached bit always remains at 1. Since
1101                  * Intel has a check on this, set it here to support
1102                  * cross-vendor migration.
1103                  */
1104                 if (!var->unusable)
1105                         var->type |= 0x1;
1106                 break;
1107         case VCPU_SREG_SS:
1108                 /*
1109                  * On AMD CPUs sometimes the DB bit in the segment
1110                  * descriptor is left as 1, although the whole segment has
1111                  * been made unusable. Clear it here to pass an Intel VMX
1112                  * entry check when cross vendor migrating.
1113                  */
1114                 if (var->unusable)
1115                         var->db = 0;
1116                 break;
1117         }
1118 }
1119
1120 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1121 {
1122         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1123
1124         return save->cpl;
1125 }
1126
1127 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1128 {
1129         struct vcpu_svm *svm = to_svm(vcpu);
1130
1131         dt->size = svm->vmcb->save.idtr.limit;
1132         dt->address = svm->vmcb->save.idtr.base;
1133 }
1134
1135 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1136 {
1137         struct vcpu_svm *svm = to_svm(vcpu);
1138
1139         svm->vmcb->save.idtr.limit = dt->size;
1140         svm->vmcb->save.idtr.base = dt->address ;
1141 }
1142
1143 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1144 {
1145         struct vcpu_svm *svm = to_svm(vcpu);
1146
1147         dt->size = svm->vmcb->save.gdtr.limit;
1148         dt->address = svm->vmcb->save.gdtr.base;
1149 }
1150
1151 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1152 {
1153         struct vcpu_svm *svm = to_svm(vcpu);
1154
1155         svm->vmcb->save.gdtr.limit = dt->size;
1156         svm->vmcb->save.gdtr.base = dt->address ;
1157 }
1158
1159 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1160 {
1161 }
1162
1163 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1164 {
1165 }
1166
1167 static void update_cr0_intercept(struct vcpu_svm *svm)
1168 {
1169         struct vmcb *vmcb = svm->vmcb;
1170         ulong gcr0 = svm->vcpu.arch.cr0;
1171         u64 *hcr0 = &svm->vmcb->save.cr0;
1172
1173         if (!svm->vcpu.fpu_active)
1174                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1175         else
1176                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1177                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1178
1179
1180         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1181                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1182                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1183                 if (is_nested(svm)) {
1184                         struct vmcb *hsave = svm->nested.hsave;
1185
1186                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1187                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1188                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1189                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1190                 }
1191         } else {
1192                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1193                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1194                 if (is_nested(svm)) {
1195                         struct vmcb *hsave = svm->nested.hsave;
1196
1197                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1198                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1199                 }
1200         }
1201 }
1202
1203 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1204 {
1205         struct vcpu_svm *svm = to_svm(vcpu);
1206
1207         if (is_nested(svm)) {
1208                 /*
1209                  * We are here because we run in nested mode, the host kvm
1210                  * intercepts cr0 writes but the l1 hypervisor does not.
1211                  * But the L1 hypervisor may intercept selective cr0 writes.
1212                  * This needs to be checked here.
1213                  */
1214                 unsigned long old, new;
1215
1216                 /* Remove bits that would trigger a real cr0 write intercept */
1217                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1218                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1219
1220                 if (old == new) {
1221                         /* cr0 write with ts and mp unchanged */
1222                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1223                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
1224                                 return;
1225                 }
1226         }
1227
1228 #ifdef CONFIG_X86_64
1229         if (vcpu->arch.efer & EFER_LME) {
1230                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1231                         vcpu->arch.efer |= EFER_LMA;
1232                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1233                 }
1234
1235                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1236                         vcpu->arch.efer &= ~EFER_LMA;
1237                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1238                 }
1239         }
1240 #endif
1241         vcpu->arch.cr0 = cr0;
1242
1243         if (!npt_enabled)
1244                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1245
1246         if (!vcpu->fpu_active)
1247                 cr0 |= X86_CR0_TS;
1248         /*
1249          * re-enable caching here because the QEMU bios
1250          * does not do it - this results in some delay at
1251          * reboot
1252          */
1253         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1254         svm->vmcb->save.cr0 = cr0;
1255         update_cr0_intercept(svm);
1256 }
1257
1258 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1259 {
1260         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1261         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1262
1263         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1264                 force_new_asid(vcpu);
1265
1266         vcpu->arch.cr4 = cr4;
1267         if (!npt_enabled)
1268                 cr4 |= X86_CR4_PAE;
1269         cr4 |= host_cr4_mce;
1270         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1271 }
1272
1273 static void svm_set_segment(struct kvm_vcpu *vcpu,
1274                             struct kvm_segment *var, int seg)
1275 {
1276         struct vcpu_svm *svm = to_svm(vcpu);
1277         struct vmcb_seg *s = svm_seg(vcpu, seg);
1278
1279         s->base = var->base;
1280         s->limit = var->limit;
1281         s->selector = var->selector;
1282         if (var->unusable)
1283                 s->attrib = 0;
1284         else {
1285                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1286                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1287                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1288                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1289                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1290                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1291                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1292                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1293         }
1294         if (seg == VCPU_SREG_CS)
1295                 svm->vmcb->save.cpl
1296                         = (svm->vmcb->save.cs.attrib
1297                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1298
1299 }
1300
1301 static void update_db_intercept(struct kvm_vcpu *vcpu)
1302 {
1303         struct vcpu_svm *svm = to_svm(vcpu);
1304
1305         svm->vmcb->control.intercept_exceptions &=
1306                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1307
1308         if (svm->nmi_singlestep)
1309                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1310
1311         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1312                 if (vcpu->guest_debug &
1313                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1314                         svm->vmcb->control.intercept_exceptions |=
1315                                 1 << DB_VECTOR;
1316                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1317                         svm->vmcb->control.intercept_exceptions |=
1318                                 1 << BP_VECTOR;
1319         } else
1320                 vcpu->guest_debug = 0;
1321 }
1322
1323 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1324 {
1325         struct vcpu_svm *svm = to_svm(vcpu);
1326
1327         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1328                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1329         else
1330                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1331
1332         update_db_intercept(vcpu);
1333 }
1334
1335 static void load_host_msrs(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1339 #endif
1340 }
1341
1342 static void save_host_msrs(struct kvm_vcpu *vcpu)
1343 {
1344 #ifdef CONFIG_X86_64
1345         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1346 #endif
1347 }
1348
1349 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1350 {
1351         if (sd->next_asid > sd->max_asid) {
1352                 ++sd->asid_generation;
1353                 sd->next_asid = 1;
1354                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1355         }
1356
1357         svm->asid_generation = sd->asid_generation;
1358         svm->vmcb->control.asid = sd->next_asid++;
1359 }
1360
1361 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1362 {
1363         struct vcpu_svm *svm = to_svm(vcpu);
1364
1365         svm->vmcb->save.dr7 = value;
1366 }
1367
1368 static int pf_interception(struct vcpu_svm *svm)
1369 {
1370         u64 fault_address;
1371         u32 error_code;
1372
1373         fault_address  = svm->vmcb->control.exit_info_2;
1374         error_code = svm->vmcb->control.exit_info_1;
1375
1376         trace_kvm_page_fault(fault_address, error_code);
1377         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1378                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1379         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1380 }
1381
1382 static int db_interception(struct vcpu_svm *svm)
1383 {
1384         struct kvm_run *kvm_run = svm->vcpu.run;
1385
1386         if (!(svm->vcpu.guest_debug &
1387               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1388                 !svm->nmi_singlestep) {
1389                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1390                 return 1;
1391         }
1392
1393         if (svm->nmi_singlestep) {
1394                 svm->nmi_singlestep = false;
1395                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1396                         svm->vmcb->save.rflags &=
1397                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1398                 update_db_intercept(&svm->vcpu);
1399         }
1400
1401         if (svm->vcpu.guest_debug &
1402             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1403                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1404                 kvm_run->debug.arch.pc =
1405                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1406                 kvm_run->debug.arch.exception = DB_VECTOR;
1407                 return 0;
1408         }
1409
1410         return 1;
1411 }
1412
1413 static int bp_interception(struct vcpu_svm *svm)
1414 {
1415         struct kvm_run *kvm_run = svm->vcpu.run;
1416
1417         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1418         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1419         kvm_run->debug.arch.exception = BP_VECTOR;
1420         return 0;
1421 }
1422
1423 static int ud_interception(struct vcpu_svm *svm)
1424 {
1425         int er;
1426
1427         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1428         if (er != EMULATE_DONE)
1429                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1430         return 1;
1431 }
1432
1433 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1434 {
1435         struct vcpu_svm *svm = to_svm(vcpu);
1436         u32 excp;
1437
1438         if (is_nested(svm)) {
1439                 u32 h_excp, n_excp;
1440
1441                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1442                 n_excp  = svm->nested.intercept_exceptions;
1443                 h_excp &= ~(1 << NM_VECTOR);
1444                 excp    = h_excp | n_excp;
1445         } else {
1446                 excp  = svm->vmcb->control.intercept_exceptions;
1447                 excp &= ~(1 << NM_VECTOR);
1448         }
1449
1450         svm->vmcb->control.intercept_exceptions = excp;
1451
1452         svm->vcpu.fpu_active = 1;
1453         update_cr0_intercept(svm);
1454 }
1455
1456 static int nm_interception(struct vcpu_svm *svm)
1457 {
1458         svm_fpu_activate(&svm->vcpu);
1459         return 1;
1460 }
1461
1462 static bool is_erratum_383(void)
1463 {
1464         int err, i;
1465         u64 value;
1466
1467         if (!erratum_383_found)
1468                 return false;
1469
1470         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1471         if (err)
1472                 return false;
1473
1474         /* Bit 62 may or may not be set for this mce */
1475         value &= ~(1ULL << 62);
1476
1477         if (value != 0xb600000000010015ULL)
1478                 return false;
1479
1480         /* Clear MCi_STATUS registers */
1481         for (i = 0; i < 6; ++i)
1482                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1483
1484         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1485         if (!err) {
1486                 u32 low, high;
1487
1488                 value &= ~(1ULL << 2);
1489                 low    = lower_32_bits(value);
1490                 high   = upper_32_bits(value);
1491
1492                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1493         }
1494
1495         /* Flush tlb to evict multi-match entries */
1496         __flush_tlb_all();
1497
1498         return true;
1499 }
1500
1501 static void svm_handle_mce(struct vcpu_svm *svm)
1502 {
1503         if (is_erratum_383()) {
1504                 /*
1505                  * Erratum 383 triggered. Guest state is corrupt so kill the
1506                  * guest.
1507                  */
1508                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1509
1510                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1511
1512                 return;
1513         }
1514
1515         /*
1516          * On an #MC intercept the MCE handler is not called automatically in
1517          * the host. So do it by hand here.
1518          */
1519         asm volatile (
1520                 "int $0x12\n");
1521         /* not sure if we ever come back to this point */
1522
1523         return;
1524 }
1525
1526 static int mc_interception(struct vcpu_svm *svm)
1527 {
1528         return 1;
1529 }
1530
1531 static int shutdown_interception(struct vcpu_svm *svm)
1532 {
1533         struct kvm_run *kvm_run = svm->vcpu.run;
1534
1535         /*
1536          * VMCB is undefined after a SHUTDOWN intercept
1537          * so reinitialize it.
1538          */
1539         clear_page(svm->vmcb);
1540         init_vmcb(svm);
1541
1542         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1543         return 0;
1544 }
1545
1546 static int io_interception(struct vcpu_svm *svm)
1547 {
1548         struct kvm_vcpu *vcpu = &svm->vcpu;
1549         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1550         int size, in, string;
1551         unsigned port;
1552
1553         ++svm->vcpu.stat.io_exits;
1554         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1555         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1556         if (string || in)
1557                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1558
1559         port = io_info >> 16;
1560         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1561         svm->next_rip = svm->vmcb->control.exit_info_2;
1562         skip_emulated_instruction(&svm->vcpu);
1563
1564         return kvm_fast_pio_out(vcpu, size, port);
1565 }
1566
1567 static int nmi_interception(struct vcpu_svm *svm)
1568 {
1569         return 1;
1570 }
1571
1572 static int intr_interception(struct vcpu_svm *svm)
1573 {
1574         ++svm->vcpu.stat.irq_exits;
1575         return 1;
1576 }
1577
1578 static int nop_on_interception(struct vcpu_svm *svm)
1579 {
1580         return 1;
1581 }
1582
1583 static int halt_interception(struct vcpu_svm *svm)
1584 {
1585         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1586         skip_emulated_instruction(&svm->vcpu);
1587         return kvm_emulate_halt(&svm->vcpu);
1588 }
1589
1590 static int vmmcall_interception(struct vcpu_svm *svm)
1591 {
1592         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1593         skip_emulated_instruction(&svm->vcpu);
1594         kvm_emulate_hypercall(&svm->vcpu);
1595         return 1;
1596 }
1597
1598 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1599 {
1600         if (!(svm->vcpu.arch.efer & EFER_SVME)
1601             || !is_paging(&svm->vcpu)) {
1602                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1603                 return 1;
1604         }
1605
1606         if (svm->vmcb->save.cpl) {
1607                 kvm_inject_gp(&svm->vcpu, 0);
1608                 return 1;
1609         }
1610
1611        return 0;
1612 }
1613
1614 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1615                                       bool has_error_code, u32 error_code)
1616 {
1617         int vmexit;
1618
1619         if (!is_nested(svm))
1620                 return 0;
1621
1622         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1623         svm->vmcb->control.exit_code_hi = 0;
1624         svm->vmcb->control.exit_info_1 = error_code;
1625         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1626
1627         vmexit = nested_svm_intercept(svm);
1628         if (vmexit == NESTED_EXIT_DONE)
1629                 svm->nested.exit_required = true;
1630
1631         return vmexit;
1632 }
1633
1634 /* This function returns true if it is save to enable the irq window */
1635 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1636 {
1637         if (!is_nested(svm))
1638                 return true;
1639
1640         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1641                 return true;
1642
1643         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1644                 return false;
1645
1646         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1647         svm->vmcb->control.exit_info_1 = 0;
1648         svm->vmcb->control.exit_info_2 = 0;
1649
1650         if (svm->nested.intercept & 1ULL) {
1651                 /*
1652                  * The #vmexit can't be emulated here directly because this
1653                  * code path runs with irqs and preemtion disabled. A
1654                  * #vmexit emulation might sleep. Only signal request for
1655                  * the #vmexit here.
1656                  */
1657                 svm->nested.exit_required = true;
1658                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1659                 return false;
1660         }
1661
1662         return true;
1663 }
1664
1665 /* This function returns true if it is save to enable the nmi window */
1666 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1667 {
1668         if (!is_nested(svm))
1669                 return true;
1670
1671         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1672                 return true;
1673
1674         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1675         svm->nested.exit_required = true;
1676
1677         return false;
1678 }
1679
1680 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1681 {
1682         struct page *page;
1683
1684         might_sleep();
1685
1686         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1687         if (is_error_page(page))
1688                 goto error;
1689
1690         *_page = page;
1691
1692         return kmap(page);
1693
1694 error:
1695         kvm_release_page_clean(page);
1696         kvm_inject_gp(&svm->vcpu, 0);
1697
1698         return NULL;
1699 }
1700
1701 static void nested_svm_unmap(struct page *page)
1702 {
1703         kunmap(page);
1704         kvm_release_page_dirty(page);
1705 }
1706
1707 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1708 {
1709         unsigned port;
1710         u8 val, bit;
1711         u64 gpa;
1712
1713         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1714                 return NESTED_EXIT_HOST;
1715
1716         port = svm->vmcb->control.exit_info_1 >> 16;
1717         gpa  = svm->nested.vmcb_iopm + (port / 8);
1718         bit  = port % 8;
1719         val  = 0;
1720
1721         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1722                 val &= (1 << bit);
1723
1724         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1725 }
1726
1727 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1728 {
1729         u32 offset, msr, value;
1730         int write, mask;
1731
1732         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1733                 return NESTED_EXIT_HOST;
1734
1735         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1736         offset = svm_msrpm_offset(msr);
1737         write  = svm->vmcb->control.exit_info_1 & 1;
1738         mask   = 1 << ((2 * (msr & 0xf)) + write);
1739
1740         if (offset == MSR_INVALID)
1741                 return NESTED_EXIT_DONE;
1742
1743         /* Offset is in 32 bit units but need in 8 bit units */
1744         offset *= 4;
1745
1746         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1747                 return NESTED_EXIT_DONE;
1748
1749         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1750 }
1751
1752 static int nested_svm_exit_special(struct vcpu_svm *svm)
1753 {
1754         u32 exit_code = svm->vmcb->control.exit_code;
1755
1756         switch (exit_code) {
1757         case SVM_EXIT_INTR:
1758         case SVM_EXIT_NMI:
1759         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1760                 return NESTED_EXIT_HOST;
1761         case SVM_EXIT_NPF:
1762                 /* For now we are always handling NPFs when using them */
1763                 if (npt_enabled)
1764                         return NESTED_EXIT_HOST;
1765                 break;
1766         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1767                 /* When we're shadowing, trap PFs */
1768                 if (!npt_enabled)
1769                         return NESTED_EXIT_HOST;
1770                 break;
1771         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1772                 nm_interception(svm);
1773                 break;
1774         default:
1775                 break;
1776         }
1777
1778         return NESTED_EXIT_CONTINUE;
1779 }
1780
1781 /*
1782  * If this function returns true, this #vmexit was already handled
1783  */
1784 static int nested_svm_intercept(struct vcpu_svm *svm)
1785 {
1786         u32 exit_code = svm->vmcb->control.exit_code;
1787         int vmexit = NESTED_EXIT_HOST;
1788
1789         switch (exit_code) {
1790         case SVM_EXIT_MSR:
1791                 vmexit = nested_svm_exit_handled_msr(svm);
1792                 break;
1793         case SVM_EXIT_IOIO:
1794                 vmexit = nested_svm_intercept_ioio(svm);
1795                 break;
1796         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1797                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1798                 if (svm->nested.intercept_cr_read & cr_bits)
1799                         vmexit = NESTED_EXIT_DONE;
1800                 break;
1801         }
1802         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1803                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1804                 if (svm->nested.intercept_cr_write & cr_bits)
1805                         vmexit = NESTED_EXIT_DONE;
1806                 break;
1807         }
1808         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1809                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1810                 if (svm->nested.intercept_dr_read & dr_bits)
1811                         vmexit = NESTED_EXIT_DONE;
1812                 break;
1813         }
1814         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1815                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1816                 if (svm->nested.intercept_dr_write & dr_bits)
1817                         vmexit = NESTED_EXIT_DONE;
1818                 break;
1819         }
1820         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1821                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1822                 if (svm->nested.intercept_exceptions & excp_bits)
1823                         vmexit = NESTED_EXIT_DONE;
1824                 break;
1825         }
1826         case SVM_EXIT_ERR: {
1827                 vmexit = NESTED_EXIT_DONE;
1828                 break;
1829         }
1830         default: {
1831                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1832                 if (svm->nested.intercept & exit_bits)
1833                         vmexit = NESTED_EXIT_DONE;
1834         }
1835         }
1836
1837         return vmexit;
1838 }
1839
1840 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1841 {
1842         int vmexit;
1843
1844         vmexit = nested_svm_intercept(svm);
1845
1846         if (vmexit == NESTED_EXIT_DONE)
1847                 nested_svm_vmexit(svm);
1848
1849         return vmexit;
1850 }
1851
1852 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1853 {
1854         struct vmcb_control_area *dst  = &dst_vmcb->control;
1855         struct vmcb_control_area *from = &from_vmcb->control;
1856
1857         dst->intercept_cr_read    = from->intercept_cr_read;
1858         dst->intercept_cr_write   = from->intercept_cr_write;
1859         dst->intercept_dr_read    = from->intercept_dr_read;
1860         dst->intercept_dr_write   = from->intercept_dr_write;
1861         dst->intercept_exceptions = from->intercept_exceptions;
1862         dst->intercept            = from->intercept;
1863         dst->iopm_base_pa         = from->iopm_base_pa;
1864         dst->msrpm_base_pa        = from->msrpm_base_pa;
1865         dst->tsc_offset           = from->tsc_offset;
1866         dst->asid                 = from->asid;
1867         dst->tlb_ctl              = from->tlb_ctl;
1868         dst->int_ctl              = from->int_ctl;
1869         dst->int_vector           = from->int_vector;
1870         dst->int_state            = from->int_state;
1871         dst->exit_code            = from->exit_code;
1872         dst->exit_code_hi         = from->exit_code_hi;
1873         dst->exit_info_1          = from->exit_info_1;
1874         dst->exit_info_2          = from->exit_info_2;
1875         dst->exit_int_info        = from->exit_int_info;
1876         dst->exit_int_info_err    = from->exit_int_info_err;
1877         dst->nested_ctl           = from->nested_ctl;
1878         dst->event_inj            = from->event_inj;
1879         dst->event_inj_err        = from->event_inj_err;
1880         dst->nested_cr3           = from->nested_cr3;
1881         dst->lbr_ctl              = from->lbr_ctl;
1882 }
1883
1884 static int nested_svm_vmexit(struct vcpu_svm *svm)
1885 {
1886         struct vmcb *nested_vmcb;
1887         struct vmcb *hsave = svm->nested.hsave;
1888         struct vmcb *vmcb = svm->vmcb;
1889         struct page *page;
1890
1891         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1892                                        vmcb->control.exit_info_1,
1893                                        vmcb->control.exit_info_2,
1894                                        vmcb->control.exit_int_info,
1895                                        vmcb->control.exit_int_info_err);
1896
1897         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1898         if (!nested_vmcb)
1899                 return 1;
1900
1901         /* Exit nested SVM mode */
1902         svm->nested.vmcb = 0;
1903
1904         /* Give the current vmcb to the guest */
1905         disable_gif(svm);
1906
1907         nested_vmcb->save.es     = vmcb->save.es;
1908         nested_vmcb->save.cs     = vmcb->save.cs;
1909         nested_vmcb->save.ss     = vmcb->save.ss;
1910         nested_vmcb->save.ds     = vmcb->save.ds;
1911         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1912         nested_vmcb->save.idtr   = vmcb->save.idtr;
1913         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
1914         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1915         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1916         nested_vmcb->save.cr2    = vmcb->save.cr2;
1917         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1918         nested_vmcb->save.rflags = vmcb->save.rflags;
1919         nested_vmcb->save.rip    = vmcb->save.rip;
1920         nested_vmcb->save.rsp    = vmcb->save.rsp;
1921         nested_vmcb->save.rax    = vmcb->save.rax;
1922         nested_vmcb->save.dr7    = vmcb->save.dr7;
1923         nested_vmcb->save.dr6    = vmcb->save.dr6;
1924         nested_vmcb->save.cpl    = vmcb->save.cpl;
1925
1926         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1927         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1928         nested_vmcb->control.int_state         = vmcb->control.int_state;
1929         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1930         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1931         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1932         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1933         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1934         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1935         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
1936
1937         /*
1938          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1939          * to make sure that we do not lose injected events. So check event_inj
1940          * here and copy it to exit_int_info if it is valid.
1941          * Exit_int_info and event_inj can't be both valid because the case
1942          * below only happens on a VMRUN instruction intercept which has
1943          * no valid exit_int_info set.
1944          */
1945         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1946                 struct vmcb_control_area *nc = &nested_vmcb->control;
1947
1948                 nc->exit_int_info     = vmcb->control.event_inj;
1949                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1950         }
1951
1952         nested_vmcb->control.tlb_ctl           = 0;
1953         nested_vmcb->control.event_inj         = 0;
1954         nested_vmcb->control.event_inj_err     = 0;
1955
1956         /* We always set V_INTR_MASKING and remember the old value in hflags */
1957         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1958                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1959
1960         /* Restore the original control entries */
1961         copy_vmcb_control_area(vmcb, hsave);
1962
1963         kvm_clear_exception_queue(&svm->vcpu);
1964         kvm_clear_interrupt_queue(&svm->vcpu);
1965
1966         /* Restore selected save entries */
1967         svm->vmcb->save.es = hsave->save.es;
1968         svm->vmcb->save.cs = hsave->save.cs;
1969         svm->vmcb->save.ss = hsave->save.ss;
1970         svm->vmcb->save.ds = hsave->save.ds;
1971         svm->vmcb->save.gdtr = hsave->save.gdtr;
1972         svm->vmcb->save.idtr = hsave->save.idtr;
1973         svm->vmcb->save.rflags = hsave->save.rflags;
1974         svm_set_efer(&svm->vcpu, hsave->save.efer);
1975         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1976         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1977         if (npt_enabled) {
1978                 svm->vmcb->save.cr3 = hsave->save.cr3;
1979                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1980         } else {
1981                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1982         }
1983         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1984         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1985         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1986         svm->vmcb->save.dr7 = 0;
1987         svm->vmcb->save.cpl = 0;
1988         svm->vmcb->control.exit_int_info = 0;
1989
1990         nested_svm_unmap(page);
1991
1992         kvm_mmu_reset_context(&svm->vcpu);
1993         kvm_mmu_load(&svm->vcpu);
1994
1995         return 0;
1996 }
1997
1998 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1999 {
2000         /*
2001          * This function merges the msr permission bitmaps of kvm and the
2002          * nested vmcb. It is omptimized in that it only merges the parts where
2003          * the kvm msr permission bitmap may contain zero bits
2004          */
2005         int i;
2006
2007         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2008                 return true;
2009
2010         for (i = 0; i < MSRPM_OFFSETS; i++) {
2011                 u32 value, p;
2012                 u64 offset;
2013
2014                 if (msrpm_offsets[i] == 0xffffffff)
2015                         break;
2016
2017                 p      = msrpm_offsets[i];
2018                 offset = svm->nested.vmcb_msrpm + (p * 4);
2019
2020                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2021                         return false;
2022
2023                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2024         }
2025
2026         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2027
2028         return true;
2029 }
2030
2031 static bool nested_vmcb_checks(struct vmcb *vmcb)
2032 {
2033         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2034                 return false;
2035
2036         if (vmcb->control.asid == 0)
2037                 return false;
2038
2039         return true;
2040 }
2041
2042 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2043 {
2044         struct vmcb *nested_vmcb;
2045         struct vmcb *hsave = svm->nested.hsave;
2046         struct vmcb *vmcb = svm->vmcb;
2047         struct page *page;
2048         u64 vmcb_gpa;
2049
2050         vmcb_gpa = svm->vmcb->save.rax;
2051
2052         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2053         if (!nested_vmcb)
2054                 return false;
2055
2056         if (!nested_vmcb_checks(nested_vmcb)) {
2057                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2058                 nested_vmcb->control.exit_code_hi = 0;
2059                 nested_vmcb->control.exit_info_1  = 0;
2060                 nested_vmcb->control.exit_info_2  = 0;
2061
2062                 nested_svm_unmap(page);
2063
2064                 return false;
2065         }
2066
2067         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
2068                                nested_vmcb->save.rip,
2069                                nested_vmcb->control.int_ctl,
2070                                nested_vmcb->control.event_inj,
2071                                nested_vmcb->control.nested_ctl);
2072
2073         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2074                                     nested_vmcb->control.intercept_cr_write,
2075                                     nested_vmcb->control.intercept_exceptions,
2076                                     nested_vmcb->control.intercept);
2077
2078         /* Clear internal status */
2079         kvm_clear_exception_queue(&svm->vcpu);
2080         kvm_clear_interrupt_queue(&svm->vcpu);
2081
2082         /*
2083          * Save the old vmcb, so we don't need to pick what we save, but can
2084          * restore everything when a VMEXIT occurs
2085          */
2086         hsave->save.es     = vmcb->save.es;
2087         hsave->save.cs     = vmcb->save.cs;
2088         hsave->save.ss     = vmcb->save.ss;
2089         hsave->save.ds     = vmcb->save.ds;
2090         hsave->save.gdtr   = vmcb->save.gdtr;
2091         hsave->save.idtr   = vmcb->save.idtr;
2092         hsave->save.efer   = svm->vcpu.arch.efer;
2093         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2094         hsave->save.cr4    = svm->vcpu.arch.cr4;
2095         hsave->save.rflags = vmcb->save.rflags;
2096         hsave->save.rip    = svm->next_rip;
2097         hsave->save.rsp    = vmcb->save.rsp;
2098         hsave->save.rax    = vmcb->save.rax;
2099         if (npt_enabled)
2100                 hsave->save.cr3    = vmcb->save.cr3;
2101         else
2102                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2103
2104         copy_vmcb_control_area(hsave, vmcb);
2105
2106         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2107                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2108         else
2109                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2110
2111         /* Load the nested guest state */
2112         svm->vmcb->save.es = nested_vmcb->save.es;
2113         svm->vmcb->save.cs = nested_vmcb->save.cs;
2114         svm->vmcb->save.ss = nested_vmcb->save.ss;
2115         svm->vmcb->save.ds = nested_vmcb->save.ds;
2116         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2117         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2118         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2119         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2120         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2121         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2122         if (npt_enabled) {
2123                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2124                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2125         } else
2126                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2127
2128         /* Guest paging mode is active - reset mmu */
2129         kvm_mmu_reset_context(&svm->vcpu);
2130
2131         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2132         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2133         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2134         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2135
2136         /* In case we don't even reach vcpu_run, the fields are not updated */
2137         svm->vmcb->save.rax = nested_vmcb->save.rax;
2138         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2139         svm->vmcb->save.rip = nested_vmcb->save.rip;
2140         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2141         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2142         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2143
2144         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2145         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2146
2147         /* cache intercepts */
2148         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2149         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2150         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2151         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2152         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2153         svm->nested.intercept            = nested_vmcb->control.intercept;
2154
2155         force_new_asid(&svm->vcpu);
2156         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2157         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2158                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2159         else
2160                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2161
2162         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2163                 /* We only want the cr8 intercept bits of the guest */
2164                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2165                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2166         }
2167
2168         /* We don't want to see VMMCALLs from a nested guest */
2169         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2170
2171         /*
2172          * We don't want a nested guest to be more powerful than the guest, so
2173          * all intercepts are ORed
2174          */
2175         svm->vmcb->control.intercept_cr_read |=
2176                 nested_vmcb->control.intercept_cr_read;
2177         svm->vmcb->control.intercept_cr_write |=
2178                 nested_vmcb->control.intercept_cr_write;
2179         svm->vmcb->control.intercept_dr_read |=
2180                 nested_vmcb->control.intercept_dr_read;
2181         svm->vmcb->control.intercept_dr_write |=
2182                 nested_vmcb->control.intercept_dr_write;
2183         svm->vmcb->control.intercept_exceptions |=
2184                 nested_vmcb->control.intercept_exceptions;
2185
2186         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2187
2188         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2189         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2190         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2191         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2192         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2193         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2194
2195         nested_svm_unmap(page);
2196
2197         /* nested_vmcb is our indicator if nested SVM is activated */
2198         svm->nested.vmcb = vmcb_gpa;
2199
2200         enable_gif(svm);
2201
2202         return true;
2203 }
2204
2205 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2206 {
2207         to_vmcb->save.fs = from_vmcb->save.fs;
2208         to_vmcb->save.gs = from_vmcb->save.gs;
2209         to_vmcb->save.tr = from_vmcb->save.tr;
2210         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2211         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2212         to_vmcb->save.star = from_vmcb->save.star;
2213         to_vmcb->save.lstar = from_vmcb->save.lstar;
2214         to_vmcb->save.cstar = from_vmcb->save.cstar;
2215         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2216         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2217         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2218         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2219 }
2220
2221 static int vmload_interception(struct vcpu_svm *svm)
2222 {
2223         struct vmcb *nested_vmcb;
2224         struct page *page;
2225
2226         if (nested_svm_check_permissions(svm))
2227                 return 1;
2228
2229         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2230         skip_emulated_instruction(&svm->vcpu);
2231
2232         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2233         if (!nested_vmcb)
2234                 return 1;
2235
2236         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2237         nested_svm_unmap(page);
2238
2239         return 1;
2240 }
2241
2242 static int vmsave_interception(struct vcpu_svm *svm)
2243 {
2244         struct vmcb *nested_vmcb;
2245         struct page *page;
2246
2247         if (nested_svm_check_permissions(svm))
2248                 return 1;
2249
2250         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2251         skip_emulated_instruction(&svm->vcpu);
2252
2253         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2254         if (!nested_vmcb)
2255                 return 1;
2256
2257         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2258         nested_svm_unmap(page);
2259
2260         return 1;
2261 }
2262
2263 static int vmrun_interception(struct vcpu_svm *svm)
2264 {
2265         if (nested_svm_check_permissions(svm))
2266                 return 1;
2267
2268         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2269         skip_emulated_instruction(&svm->vcpu);
2270
2271         if (!nested_svm_vmrun(svm))
2272                 return 1;
2273
2274         if (!nested_svm_vmrun_msrpm(svm))
2275                 goto failed;
2276
2277         return 1;
2278
2279 failed:
2280
2281         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2282         svm->vmcb->control.exit_code_hi = 0;
2283         svm->vmcb->control.exit_info_1  = 0;
2284         svm->vmcb->control.exit_info_2  = 0;
2285
2286         nested_svm_vmexit(svm);
2287
2288         return 1;
2289 }
2290
2291 static int stgi_interception(struct vcpu_svm *svm)
2292 {
2293         if (nested_svm_check_permissions(svm))
2294                 return 1;
2295
2296         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2297         skip_emulated_instruction(&svm->vcpu);
2298
2299         enable_gif(svm);
2300
2301         return 1;
2302 }
2303
2304 static int clgi_interception(struct vcpu_svm *svm)
2305 {
2306         if (nested_svm_check_permissions(svm))
2307                 return 1;
2308
2309         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2310         skip_emulated_instruction(&svm->vcpu);
2311
2312         disable_gif(svm);
2313
2314         /* After a CLGI no interrupts should come */
2315         svm_clear_vintr(svm);
2316         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2317
2318         return 1;
2319 }
2320
2321 static int invlpga_interception(struct vcpu_svm *svm)
2322 {
2323         struct kvm_vcpu *vcpu = &svm->vcpu;
2324
2325         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2326                           vcpu->arch.regs[VCPU_REGS_RAX]);
2327
2328         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2329         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2330
2331         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2332         skip_emulated_instruction(&svm->vcpu);
2333         return 1;
2334 }
2335
2336 static int skinit_interception(struct vcpu_svm *svm)
2337 {
2338         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2339
2340         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2341         return 1;
2342 }
2343
2344 static int invalid_op_interception(struct vcpu_svm *svm)
2345 {
2346         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2347         return 1;
2348 }
2349
2350 static int task_switch_interception(struct vcpu_svm *svm)
2351 {
2352         u16 tss_selector;
2353         int reason;
2354         int int_type = svm->vmcb->control.exit_int_info &
2355                 SVM_EXITINTINFO_TYPE_MASK;
2356         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2357         uint32_t type =
2358                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2359         uint32_t idt_v =
2360                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2361         bool has_error_code = false;
2362         u32 error_code = 0;
2363
2364         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2365
2366         if (svm->vmcb->control.exit_info_2 &
2367             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2368                 reason = TASK_SWITCH_IRET;
2369         else if (svm->vmcb->control.exit_info_2 &
2370                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2371                 reason = TASK_SWITCH_JMP;
2372         else if (idt_v)
2373                 reason = TASK_SWITCH_GATE;
2374         else
2375                 reason = TASK_SWITCH_CALL;
2376
2377         if (reason == TASK_SWITCH_GATE) {
2378                 switch (type) {
2379                 case SVM_EXITINTINFO_TYPE_NMI:
2380                         svm->vcpu.arch.nmi_injected = false;
2381                         break;
2382                 case SVM_EXITINTINFO_TYPE_EXEPT:
2383                         if (svm->vmcb->control.exit_info_2 &
2384                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2385                                 has_error_code = true;
2386                                 error_code =
2387                                         (u32)svm->vmcb->control.exit_info_2;
2388                         }
2389                         kvm_clear_exception_queue(&svm->vcpu);
2390                         break;
2391                 case SVM_EXITINTINFO_TYPE_INTR:
2392                         kvm_clear_interrupt_queue(&svm->vcpu);
2393                         break;
2394                 default:
2395                         break;
2396                 }
2397         }
2398
2399         if (reason != TASK_SWITCH_GATE ||
2400             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2401             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2402              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2403                 skip_emulated_instruction(&svm->vcpu);
2404
2405         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2406                                 has_error_code, error_code) == EMULATE_FAIL) {
2407                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2408                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2409                 svm->vcpu.run->internal.ndata = 0;
2410                 return 0;
2411         }
2412         return 1;
2413 }
2414
2415 static int cpuid_interception(struct vcpu_svm *svm)
2416 {
2417         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2418         kvm_emulate_cpuid(&svm->vcpu);
2419         return 1;
2420 }
2421
2422 static int iret_interception(struct vcpu_svm *svm)
2423 {
2424         ++svm->vcpu.stat.nmi_window_exits;
2425         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2426         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2427         return 1;
2428 }
2429
2430 static int invlpg_interception(struct vcpu_svm *svm)
2431 {
2432         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2433 }
2434
2435 static int emulate_on_interception(struct vcpu_svm *svm)
2436 {
2437         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2438 }
2439
2440 static int cr8_write_interception(struct vcpu_svm *svm)
2441 {
2442         struct kvm_run *kvm_run = svm->vcpu.run;
2443
2444         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2445         /* instruction emulation calls kvm_set_cr8() */
2446         emulate_instruction(&svm->vcpu, 0, 0, 0);
2447         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2448                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2449                 return 1;
2450         }
2451         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2452                 return 1;
2453         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2454         return 0;
2455 }
2456
2457 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2458 {
2459         struct vcpu_svm *svm = to_svm(vcpu);
2460
2461         switch (ecx) {
2462         case MSR_IA32_TSC: {
2463                 u64 tsc_offset;
2464
2465                 if (is_nested(svm))
2466                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2467                 else
2468                         tsc_offset = svm->vmcb->control.tsc_offset;
2469
2470                 *data = tsc_offset + native_read_tsc();
2471                 break;
2472         }
2473         case MSR_STAR:
2474                 *data = svm->vmcb->save.star;
2475                 break;
2476 #ifdef CONFIG_X86_64
2477         case MSR_LSTAR:
2478                 *data = svm->vmcb->save.lstar;
2479                 break;
2480         case MSR_CSTAR:
2481                 *data = svm->vmcb->save.cstar;
2482                 break;
2483         case MSR_KERNEL_GS_BASE:
2484                 *data = svm->vmcb->save.kernel_gs_base;
2485                 break;
2486         case MSR_SYSCALL_MASK:
2487                 *data = svm->vmcb->save.sfmask;
2488                 break;
2489 #endif
2490         case MSR_IA32_SYSENTER_CS:
2491                 *data = svm->vmcb->save.sysenter_cs;
2492                 break;
2493         case MSR_IA32_SYSENTER_EIP:
2494                 *data = svm->sysenter_eip;
2495                 break;
2496         case MSR_IA32_SYSENTER_ESP:
2497                 *data = svm->sysenter_esp;
2498                 break;
2499         /*
2500          * Nobody will change the following 5 values in the VMCB so we can
2501          * safely return them on rdmsr. They will always be 0 until LBRV is
2502          * implemented.
2503          */
2504         case MSR_IA32_DEBUGCTLMSR:
2505                 *data = svm->vmcb->save.dbgctl;
2506                 break;
2507         case MSR_IA32_LASTBRANCHFROMIP:
2508                 *data = svm->vmcb->save.br_from;
2509                 break;
2510         case MSR_IA32_LASTBRANCHTOIP:
2511                 *data = svm->vmcb->save.br_to;
2512                 break;
2513         case MSR_IA32_LASTINTFROMIP:
2514                 *data = svm->vmcb->save.last_excp_from;
2515                 break;
2516         case MSR_IA32_LASTINTTOIP:
2517                 *data = svm->vmcb->save.last_excp_to;
2518                 break;
2519         case MSR_VM_HSAVE_PA:
2520                 *data = svm->nested.hsave_msr;
2521                 break;
2522         case MSR_VM_CR:
2523                 *data = svm->nested.vm_cr_msr;
2524                 break;
2525         case MSR_IA32_UCODE_REV:
2526                 *data = 0x01000065;
2527                 break;
2528         default:
2529                 return kvm_get_msr_common(vcpu, ecx, data);
2530         }
2531         return 0;
2532 }
2533
2534 static int rdmsr_interception(struct vcpu_svm *svm)
2535 {
2536         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2537         u64 data;
2538
2539         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2540                 trace_kvm_msr_read_ex(ecx);
2541                 kvm_inject_gp(&svm->vcpu, 0);
2542         } else {
2543                 trace_kvm_msr_read(ecx, data);
2544
2545                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2546                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2547                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2548                 skip_emulated_instruction(&svm->vcpu);
2549         }
2550         return 1;
2551 }
2552
2553 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2554 {
2555         struct vcpu_svm *svm = to_svm(vcpu);
2556         int svm_dis, chg_mask;
2557
2558         if (data & ~SVM_VM_CR_VALID_MASK)
2559                 return 1;
2560
2561         chg_mask = SVM_VM_CR_VALID_MASK;
2562
2563         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2564                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2565
2566         svm->nested.vm_cr_msr &= ~chg_mask;
2567         svm->nested.vm_cr_msr |= (data & chg_mask);
2568
2569         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2570
2571         /* check for svm_disable while efer.svme is set */
2572         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2573                 return 1;
2574
2575         return 0;
2576 }
2577
2578 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2579 {
2580         struct vcpu_svm *svm = to_svm(vcpu);
2581
2582         switch (ecx) {
2583         case MSR_IA32_TSC:
2584                 svm_write_tsc_offset(vcpu, data - native_read_tsc());
2585                 break;
2586         case MSR_STAR:
2587                 svm->vmcb->save.star = data;
2588                 break;
2589 #ifdef CONFIG_X86_64
2590         case MSR_LSTAR:
2591                 svm->vmcb->save.lstar = data;
2592                 break;
2593         case MSR_CSTAR:
2594                 svm->vmcb->save.cstar = data;
2595                 break;
2596         case MSR_KERNEL_GS_BASE:
2597                 svm->vmcb->save.kernel_gs_base = data;
2598                 break;
2599         case MSR_SYSCALL_MASK:
2600                 svm->vmcb->save.sfmask = data;
2601                 break;
2602 #endif
2603         case MSR_IA32_SYSENTER_CS:
2604                 svm->vmcb->save.sysenter_cs = data;
2605                 break;
2606         case MSR_IA32_SYSENTER_EIP:
2607                 svm->sysenter_eip = data;
2608                 svm->vmcb->save.sysenter_eip = data;
2609                 break;
2610         case MSR_IA32_SYSENTER_ESP:
2611                 svm->sysenter_esp = data;
2612                 svm->vmcb->save.sysenter_esp = data;
2613                 break;
2614         case MSR_IA32_DEBUGCTLMSR:
2615                 if (!svm_has(SVM_FEATURE_LBRV)) {
2616                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2617                                         __func__, data);
2618                         break;
2619                 }
2620                 if (data & DEBUGCTL_RESERVED_BITS)
2621                         return 1;
2622
2623                 svm->vmcb->save.dbgctl = data;
2624                 if (data & (1ULL<<0))
2625                         svm_enable_lbrv(svm);
2626                 else
2627                         svm_disable_lbrv(svm);
2628                 break;
2629         case MSR_VM_HSAVE_PA:
2630                 svm->nested.hsave_msr = data;
2631                 break;
2632         case MSR_VM_CR:
2633                 return svm_set_vm_cr(vcpu, data);
2634         case MSR_VM_IGNNE:
2635                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2636                 break;
2637         default:
2638                 return kvm_set_msr_common(vcpu, ecx, data);
2639         }
2640         return 0;
2641 }
2642
2643 static int wrmsr_interception(struct vcpu_svm *svm)
2644 {
2645         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2646         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2647                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2648
2649
2650         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2651         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2652                 trace_kvm_msr_write_ex(ecx, data);
2653                 kvm_inject_gp(&svm->vcpu, 0);
2654         } else {
2655                 trace_kvm_msr_write(ecx, data);
2656                 skip_emulated_instruction(&svm->vcpu);
2657         }
2658         return 1;
2659 }
2660
2661 static int msr_interception(struct vcpu_svm *svm)
2662 {
2663         if (svm->vmcb->control.exit_info_1)
2664                 return wrmsr_interception(svm);
2665         else
2666                 return rdmsr_interception(svm);
2667 }
2668
2669 static int interrupt_window_interception(struct vcpu_svm *svm)
2670 {
2671         struct kvm_run *kvm_run = svm->vcpu.run;
2672
2673         svm_clear_vintr(svm);
2674         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2675         /*
2676          * If the user space waits to inject interrupts, exit as soon as
2677          * possible
2678          */
2679         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2680             kvm_run->request_interrupt_window &&
2681             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2682                 ++svm->vcpu.stat.irq_window_exits;
2683                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2684                 return 0;
2685         }
2686
2687         return 1;
2688 }
2689
2690 static int pause_interception(struct vcpu_svm *svm)
2691 {
2692         kvm_vcpu_on_spin(&(svm->vcpu));
2693         return 1;
2694 }
2695
2696 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2697         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2698         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2699         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2700         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2701         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2702         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2703         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2704         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2705         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2706         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2707         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2708         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2709         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2710         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2711         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2712         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2713         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2714         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2715         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2716         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2717         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2718         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2719         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2720         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2721         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2722         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2723         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2724         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2725         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2726         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2727         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2728         [SVM_EXIT_INTR]                         = intr_interception,
2729         [SVM_EXIT_NMI]                          = nmi_interception,
2730         [SVM_EXIT_SMI]                          = nop_on_interception,
2731         [SVM_EXIT_INIT]                         = nop_on_interception,
2732         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2733         [SVM_EXIT_CPUID]                        = cpuid_interception,
2734         [SVM_EXIT_IRET]                         = iret_interception,
2735         [SVM_EXIT_INVD]                         = emulate_on_interception,
2736         [SVM_EXIT_PAUSE]                        = pause_interception,
2737         [SVM_EXIT_HLT]                          = halt_interception,
2738         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2739         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2740         [SVM_EXIT_IOIO]                         = io_interception,
2741         [SVM_EXIT_MSR]                          = msr_interception,
2742         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2743         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2744         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2745         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2746         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2747         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2748         [SVM_EXIT_STGI]                         = stgi_interception,
2749         [SVM_EXIT_CLGI]                         = clgi_interception,
2750         [SVM_EXIT_SKINIT]                       = skinit_interception,
2751         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2752         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2753         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2754         [SVM_EXIT_NPF]                          = pf_interception,
2755 };
2756
2757 void dump_vmcb(struct kvm_vcpu *vcpu)
2758 {
2759         struct vcpu_svm *svm = to_svm(vcpu);
2760         struct vmcb_control_area *control = &svm->vmcb->control;
2761         struct vmcb_save_area *save = &svm->vmcb->save;
2762
2763         pr_err("VMCB Control Area:\n");
2764         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2765         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2766         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2767         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2768         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2769         pr_err("intercepts:         %016llx\n", control->intercept);
2770         pr_err("pause filter count: %d\n", control->pause_filter_count);
2771         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2772         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2773         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2774         pr_err("asid:               %d\n", control->asid);
2775         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2776         pr_err("int_ctl:            %08x\n", control->int_ctl);
2777         pr_err("int_vector:         %08x\n", control->int_vector);
2778         pr_err("int_state:          %08x\n", control->int_state);
2779         pr_err("exit_code:          %08x\n", control->exit_code);
2780         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2781         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2782         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2783         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2784         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2785         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2786         pr_err("event_inj:          %08x\n", control->event_inj);
2787         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2788         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2789         pr_err("next_rip:           %016llx\n", control->next_rip);
2790         pr_err("VMCB State Save Area:\n");
2791         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2792                 save->es.selector, save->es.attrib,
2793                 save->es.limit, save->es.base);
2794         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2795                 save->cs.selector, save->cs.attrib,
2796                 save->cs.limit, save->cs.base);
2797         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2798                 save->ss.selector, save->ss.attrib,
2799                 save->ss.limit, save->ss.base);
2800         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2801                 save->ds.selector, save->ds.attrib,
2802                 save->ds.limit, save->ds.base);
2803         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2804                 save->fs.selector, save->fs.attrib,
2805                 save->fs.limit, save->fs.base);
2806         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2807                 save->gs.selector, save->gs.attrib,
2808                 save->gs.limit, save->gs.base);
2809         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2810                 save->gdtr.selector, save->gdtr.attrib,
2811                 save->gdtr.limit, save->gdtr.base);
2812         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2813                 save->ldtr.selector, save->ldtr.attrib,
2814                 save->ldtr.limit, save->ldtr.base);
2815         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2816                 save->idtr.selector, save->idtr.attrib,
2817                 save->idtr.limit, save->idtr.base);
2818         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2819                 save->tr.selector, save->tr.attrib,
2820                 save->tr.limit, save->tr.base);
2821         pr_err("cpl:            %d                efer:         %016llx\n",
2822                 save->cpl, save->efer);
2823         pr_err("cr0:            %016llx cr2:          %016llx\n",
2824                 save->cr0, save->cr2);
2825         pr_err("cr3:            %016llx cr4:          %016llx\n",
2826                 save->cr3, save->cr4);
2827         pr_err("dr6:            %016llx dr7:          %016llx\n",
2828                 save->dr6, save->dr7);
2829         pr_err("rip:            %016llx rflags:       %016llx\n",
2830                 save->rip, save->rflags);
2831         pr_err("rsp:            %016llx rax:          %016llx\n",
2832                 save->rsp, save->rax);
2833         pr_err("star:           %016llx lstar:        %016llx\n",
2834                 save->star, save->lstar);
2835         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2836                 save->cstar, save->sfmask);
2837         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2838                 save->kernel_gs_base, save->sysenter_cs);
2839         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2840                 save->sysenter_esp, save->sysenter_eip);
2841         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2842                 save->g_pat, save->dbgctl);
2843         pr_err("br_from:        %016llx br_to:        %016llx\n",
2844                 save->br_from, save->br_to);
2845         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2846                 save->last_excp_from, save->last_excp_to);
2847
2848 }
2849
2850 static int handle_exit(struct kvm_vcpu *vcpu)
2851 {
2852         struct vcpu_svm *svm = to_svm(vcpu);
2853         struct kvm_run *kvm_run = vcpu->run;
2854         u32 exit_code = svm->vmcb->control.exit_code;
2855
2856         trace_kvm_exit(exit_code, vcpu);
2857
2858         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2859                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2860         if (npt_enabled)
2861                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2862
2863         if (unlikely(svm->nested.exit_required)) {
2864                 nested_svm_vmexit(svm);
2865                 svm->nested.exit_required = false;
2866
2867                 return 1;
2868         }
2869
2870         if (is_nested(svm)) {
2871                 int vmexit;
2872
2873                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2874                                         svm->vmcb->control.exit_info_1,
2875                                         svm->vmcb->control.exit_info_2,
2876                                         svm->vmcb->control.exit_int_info,
2877                                         svm->vmcb->control.exit_int_info_err);
2878
2879                 vmexit = nested_svm_exit_special(svm);
2880
2881                 if (vmexit == NESTED_EXIT_CONTINUE)
2882                         vmexit = nested_svm_exit_handled(svm);
2883
2884                 if (vmexit == NESTED_EXIT_DONE)
2885                         return 1;
2886         }
2887
2888         svm_complete_interrupts(svm);
2889
2890         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2891                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2892                 kvm_run->fail_entry.hardware_entry_failure_reason
2893                         = svm->vmcb->control.exit_code;
2894                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
2895                 dump_vmcb(vcpu);
2896                 return 0;
2897         }
2898
2899         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2900             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2901             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2902                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2903                        "exit_code 0x%x\n",
2904                        __func__, svm->vmcb->control.exit_int_info,
2905                        exit_code);
2906
2907         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2908             || !svm_exit_handlers[exit_code]) {
2909                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2910                 kvm_run->hw.hardware_exit_reason = exit_code;
2911                 return 0;
2912         }
2913
2914         return svm_exit_handlers[exit_code](svm);
2915 }
2916
2917 static void reload_tss(struct kvm_vcpu *vcpu)
2918 {
2919         int cpu = raw_smp_processor_id();
2920
2921         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2922         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2923         load_TR_desc();
2924 }
2925
2926 static void pre_svm_run(struct vcpu_svm *svm)
2927 {
2928         int cpu = raw_smp_processor_id();
2929
2930         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2931
2932         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2933         /* FIXME: handle wraparound of asid_generation */
2934         if (svm->asid_generation != sd->asid_generation)
2935                 new_asid(svm, sd);
2936 }
2937
2938 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2939 {
2940         struct vcpu_svm *svm = to_svm(vcpu);
2941
2942         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2943         vcpu->arch.hflags |= HF_NMI_MASK;
2944         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2945         ++vcpu->stat.nmi_injections;
2946 }
2947
2948 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2949 {
2950         struct vmcb_control_area *control;
2951
2952         control = &svm->vmcb->control;
2953         control->int_vector = irq;
2954         control->int_ctl &= ~V_INTR_PRIO_MASK;
2955         control->int_ctl |= V_IRQ_MASK |
2956                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2957 }
2958
2959 static void svm_set_irq(struct kvm_vcpu *vcpu)
2960 {
2961         struct vcpu_svm *svm = to_svm(vcpu);
2962
2963         BUG_ON(!(gif_set(svm)));
2964
2965         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
2966         ++vcpu->stat.irq_injections;
2967
2968         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2969                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2970 }
2971
2972 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2973 {
2974         struct vcpu_svm *svm = to_svm(vcpu);
2975
2976         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2977                 return;
2978
2979         if (irr == -1)
2980                 return;
2981
2982         if (tpr >= irr)
2983                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2984 }
2985
2986 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2987 {
2988         struct vcpu_svm *svm = to_svm(vcpu);
2989         struct vmcb *vmcb = svm->vmcb;
2990         int ret;
2991         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2992               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2993         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
2994
2995         return ret;
2996 }
2997
2998 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2999 {
3000         struct vcpu_svm *svm = to_svm(vcpu);
3001
3002         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3003 }
3004
3005 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3006 {
3007         struct vcpu_svm *svm = to_svm(vcpu);
3008
3009         if (masked) {
3010                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3011                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3012         } else {
3013                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3014                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3015         }
3016 }
3017
3018 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3019 {
3020         struct vcpu_svm *svm = to_svm(vcpu);
3021         struct vmcb *vmcb = svm->vmcb;
3022         int ret;
3023
3024         if (!gif_set(svm) ||
3025              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3026                 return 0;
3027
3028         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3029
3030         if (is_nested(svm))
3031                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3032
3033         return ret;
3034 }
3035
3036 static void enable_irq_window(struct kvm_vcpu *vcpu)
3037 {
3038         struct vcpu_svm *svm = to_svm(vcpu);
3039
3040         /*
3041          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3042          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3043          * get that intercept, this function will be called again though and
3044          * we'll get the vintr intercept.
3045          */
3046         if (gif_set(svm) && nested_svm_intr(svm)) {
3047                 svm_set_vintr(svm);
3048                 svm_inject_irq(svm, 0x0);
3049         }
3050 }
3051
3052 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3053 {
3054         struct vcpu_svm *svm = to_svm(vcpu);
3055
3056         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3057             == HF_NMI_MASK)
3058                 return; /* IRET will cause a vm exit */
3059
3060         /*
3061          * Something prevents NMI from been injected. Single step over possible
3062          * problem (IRET or exception injection or interrupt shadow)
3063          */
3064         svm->nmi_singlestep = true;
3065         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3066         update_db_intercept(vcpu);
3067 }
3068
3069 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3070 {
3071         return 0;
3072 }
3073
3074 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3075 {
3076         force_new_asid(vcpu);
3077 }
3078
3079 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3080 {
3081 }
3082
3083 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3084 {
3085         struct vcpu_svm *svm = to_svm(vcpu);
3086
3087         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3088                 return;
3089
3090         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3091                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3092                 kvm_set_cr8(vcpu, cr8);
3093         }
3094 }
3095
3096 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3097 {
3098         struct vcpu_svm *svm = to_svm(vcpu);
3099         u64 cr8;
3100
3101         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3102                 return;
3103
3104         cr8 = kvm_get_cr8(vcpu);
3105         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3106         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3107 }
3108
3109 static void svm_complete_interrupts(struct vcpu_svm *svm)
3110 {
3111         u8 vector;
3112         int type;
3113         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3114         unsigned int3_injected = svm->int3_injected;
3115
3116         svm->int3_injected = 0;
3117
3118         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
3119                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3120
3121         svm->vcpu.arch.nmi_injected = false;
3122         kvm_clear_exception_queue(&svm->vcpu);
3123         kvm_clear_interrupt_queue(&svm->vcpu);
3124
3125         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3126                 return;
3127
3128         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3129         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3130
3131         switch (type) {
3132         case SVM_EXITINTINFO_TYPE_NMI:
3133                 svm->vcpu.arch.nmi_injected = true;
3134                 break;
3135         case SVM_EXITINTINFO_TYPE_EXEPT:
3136                 /*
3137                  * In case of software exceptions, do not reinject the vector,
3138                  * but re-execute the instruction instead. Rewind RIP first
3139                  * if we emulated INT3 before.
3140                  */
3141                 if (kvm_exception_is_soft(vector)) {
3142                         if (vector == BP_VECTOR && int3_injected &&
3143                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3144                                 kvm_rip_write(&svm->vcpu,
3145                                               kvm_rip_read(&svm->vcpu) -
3146                                               int3_injected);
3147                         break;
3148                 }
3149                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3150                         u32 err = svm->vmcb->control.exit_int_info_err;
3151                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3152
3153                 } else
3154                         kvm_requeue_exception(&svm->vcpu, vector);
3155                 break;
3156         case SVM_EXITINTINFO_TYPE_INTR:
3157                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3158                 break;
3159         default:
3160                 break;
3161         }
3162 }
3163
3164 #ifdef CONFIG_X86_64
3165 #define R "r"
3166 #else
3167 #define R "e"
3168 #endif
3169
3170 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3171 {
3172         struct vcpu_svm *svm = to_svm(vcpu);
3173         u16 fs_selector;
3174         u16 gs_selector;
3175         u16 ldt_selector;
3176
3177         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3178         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3179         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3180
3181         /*
3182          * A vmexit emulation is required before the vcpu can be executed
3183          * again.
3184          */
3185         if (unlikely(svm->nested.exit_required))
3186                 return;
3187
3188         pre_svm_run(svm);
3189
3190         sync_lapic_to_cr8(vcpu);
3191
3192         save_host_msrs(vcpu);
3193         savesegment(fs, fs_selector);
3194         savesegment(gs, gs_selector);
3195         ldt_selector = kvm_read_ldt();
3196         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3197         /* required for live migration with NPT */
3198         if (npt_enabled)
3199                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3200
3201         clgi();
3202
3203         local_irq_enable();
3204
3205         asm volatile (
3206                 "push %%"R"bp; \n\t"
3207                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3208                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3209                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3210                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3211                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3212                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3213 #ifdef CONFIG_X86_64
3214                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3215                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3216                 "mov %c[r10](%[svm]), %%r10 \n\t"
3217                 "mov %c[r11](%[svm]), %%r11 \n\t"
3218                 "mov %c[r12](%[svm]), %%r12 \n\t"
3219                 "mov %c[r13](%[svm]), %%r13 \n\t"
3220                 "mov %c[r14](%[svm]), %%r14 \n\t"
3221                 "mov %c[r15](%[svm]), %%r15 \n\t"
3222 #endif
3223
3224                 /* Enter guest mode */
3225                 "push %%"R"ax \n\t"
3226                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3227                 __ex(SVM_VMLOAD) "\n\t"
3228                 __ex(SVM_VMRUN) "\n\t"
3229                 __ex(SVM_VMSAVE) "\n\t"
3230                 "pop %%"R"ax \n\t"
3231
3232                 /* Save guest registers, load host registers */
3233                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3234                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3235                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3236                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3237                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3238                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3239 #ifdef CONFIG_X86_64
3240                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3241                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3242                 "mov %%r10, %c[r10](%[svm]) \n\t"
3243                 "mov %%r11, %c[r11](%[svm]) \n\t"
3244                 "mov %%r12, %c[r12](%[svm]) \n\t"
3245                 "mov %%r13, %c[r13](%[svm]) \n\t"
3246                 "mov %%r14, %c[r14](%[svm]) \n\t"
3247                 "mov %%r15, %c[r15](%[svm]) \n\t"
3248 #endif
3249                 "pop %%"R"bp"
3250                 :
3251                 : [svm]"a"(svm),
3252                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3253                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3254                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3255                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3256                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3257                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3258                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3259 #ifdef CONFIG_X86_64
3260                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3261                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3262                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3263                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3264                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3265                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3266                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3267                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3268 #endif
3269                 : "cc", "memory"
3270                 , R"bx", R"cx", R"dx", R"si", R"di"
3271 #ifdef CONFIG_X86_64
3272                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3273 #endif
3274                 );
3275
3276         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3277         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3278         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3279         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3280
3281         load_host_msrs(vcpu);
3282         loadsegment(fs, fs_selector);
3283 #ifdef CONFIG_X86_64
3284         load_gs_index(gs_selector);
3285         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3286 #else
3287         loadsegment(gs, gs_selector);
3288 #endif
3289         kvm_load_ldt(ldt_selector);
3290
3291         reload_tss(vcpu);
3292
3293         local_irq_disable();
3294
3295         stgi();
3296
3297         sync_cr8_to_lapic(vcpu);
3298
3299         svm->next_rip = 0;
3300
3301         if (npt_enabled) {
3302                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3303                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3304         }
3305
3306         /*
3307          * We need to handle MC intercepts here before the vcpu has a chance to
3308          * change the physical cpu
3309          */
3310         if (unlikely(svm->vmcb->control.exit_code ==
3311                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3312                 svm_handle_mce(svm);
3313 }
3314
3315 #undef R
3316
3317 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3318 {
3319         struct vcpu_svm *svm = to_svm(vcpu);
3320
3321         if (npt_enabled) {
3322                 svm->vmcb->control.nested_cr3 = root;
3323                 force_new_asid(vcpu);
3324                 return;
3325         }
3326
3327         svm->vmcb->save.cr3 = root;
3328         force_new_asid(vcpu);
3329 }
3330
3331 static int is_disabled(void)
3332 {
3333         u64 vm_cr;
3334
3335         rdmsrl(MSR_VM_CR, vm_cr);
3336         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3337                 return 1;
3338
3339         return 0;
3340 }
3341
3342 static void
3343 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3344 {
3345         /*
3346          * Patch in the VMMCALL instruction:
3347          */
3348         hypercall[0] = 0x0f;
3349         hypercall[1] = 0x01;
3350         hypercall[2] = 0xd9;
3351 }
3352
3353 static void svm_check_processor_compat(void *rtn)
3354 {
3355         *(int *)rtn = 0;
3356 }
3357
3358 static bool svm_cpu_has_accelerated_tpr(void)
3359 {
3360         return false;
3361 }
3362
3363 static int get_npt_level(void)
3364 {
3365 #ifdef CONFIG_X86_64
3366         return PT64_ROOT_LEVEL;
3367 #else
3368         return PT32E_ROOT_LEVEL;
3369 #endif
3370 }
3371
3372 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3373 {
3374         return 0;
3375 }
3376
3377 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3378 {
3379 }
3380
3381 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3382 {
3383         switch (func) {
3384         case 0x8000000A:
3385                 entry->eax = 1; /* SVM revision 1 */
3386                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3387                                    ASID emulation to nested SVM */
3388                 entry->ecx = 0; /* Reserved */
3389                 entry->edx = 0; /* Per default do not support any
3390                                    additional features */
3391
3392                 /* Support next_rip if host supports it */
3393                 if (svm_has(SVM_FEATURE_NRIP))
3394                         entry->edx |= SVM_FEATURE_NRIP;
3395
3396                 break;
3397         }
3398 }
3399
3400 static const struct trace_print_flags svm_exit_reasons_str[] = {
3401         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3402         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3403         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3404         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3405         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3406         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3407         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3408         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3409         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3410         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3411         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3412         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3413         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3414         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3415         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3416         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3417         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3418         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3419         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3420         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3421         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3422         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3423         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3424         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3425         { SVM_EXIT_INTR,                        "interrupt" },
3426         { SVM_EXIT_NMI,                         "nmi" },
3427         { SVM_EXIT_SMI,                         "smi" },
3428         { SVM_EXIT_INIT,                        "init" },
3429         { SVM_EXIT_VINTR,                       "vintr" },
3430         { SVM_EXIT_CPUID,                       "cpuid" },
3431         { SVM_EXIT_INVD,                        "invd" },
3432         { SVM_EXIT_HLT,                         "hlt" },
3433         { SVM_EXIT_INVLPG,                      "invlpg" },
3434         { SVM_EXIT_INVLPGA,                     "invlpga" },
3435         { SVM_EXIT_IOIO,                        "io" },
3436         { SVM_EXIT_MSR,                         "msr" },
3437         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3438         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3439         { SVM_EXIT_VMRUN,                       "vmrun" },
3440         { SVM_EXIT_VMMCALL,                     "hypercall" },
3441         { SVM_EXIT_VMLOAD,                      "vmload" },
3442         { SVM_EXIT_VMSAVE,                      "vmsave" },
3443         { SVM_EXIT_STGI,                        "stgi" },
3444         { SVM_EXIT_CLGI,                        "clgi" },
3445         { SVM_EXIT_SKINIT,                      "skinit" },
3446         { SVM_EXIT_WBINVD,                      "wbinvd" },
3447         { SVM_EXIT_MONITOR,                     "monitor" },
3448         { SVM_EXIT_MWAIT,                       "mwait" },
3449         { SVM_EXIT_NPF,                         "npf" },
3450         { -1, NULL }
3451 };
3452
3453 static int svm_get_lpage_level(void)
3454 {
3455         return PT_PDPE_LEVEL;
3456 }
3457
3458 static bool svm_rdtscp_supported(void)
3459 {
3460         return false;
3461 }
3462
3463 static bool svm_has_wbinvd_exit(void)
3464 {
3465         return true;
3466 }
3467
3468 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3469 {
3470         struct vcpu_svm *svm = to_svm(vcpu);
3471
3472         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3473         if (is_nested(svm))
3474                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3475         update_cr0_intercept(svm);
3476 }
3477
3478 static struct kvm_x86_ops svm_x86_ops = {
3479         .cpu_has_kvm_support = has_svm,
3480         .disabled_by_bios = is_disabled,
3481         .hardware_setup = svm_hardware_setup,
3482         .hardware_unsetup = svm_hardware_unsetup,
3483         .check_processor_compatibility = svm_check_processor_compat,
3484         .hardware_enable = svm_hardware_enable,
3485         .hardware_disable = svm_hardware_disable,
3486         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3487
3488         .vcpu_create = svm_create_vcpu,
3489         .vcpu_free = svm_free_vcpu,
3490         .vcpu_reset = svm_vcpu_reset,
3491
3492         .prepare_guest_switch = svm_prepare_guest_switch,
3493         .vcpu_load = svm_vcpu_load,
3494         .vcpu_put = svm_vcpu_put,
3495
3496         .set_guest_debug = svm_guest_debug,
3497         .get_msr = svm_get_msr,
3498         .set_msr = svm_set_msr,
3499         .get_segment_base = svm_get_segment_base,
3500         .get_segment = svm_get_segment,
3501         .set_segment = svm_set_segment,
3502         .get_cpl = svm_get_cpl,
3503         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3504         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3505         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3506         .set_cr0 = svm_set_cr0,
3507         .set_cr3 = svm_set_cr3,
3508         .set_cr4 = svm_set_cr4,
3509         .set_efer = svm_set_efer,
3510         .get_idt = svm_get_idt,
3511         .set_idt = svm_set_idt,
3512         .get_gdt = svm_get_gdt,
3513         .set_gdt = svm_set_gdt,
3514         .set_dr7 = svm_set_dr7,
3515         .cache_reg = svm_cache_reg,
3516         .get_rflags = svm_get_rflags,
3517         .set_rflags = svm_set_rflags,
3518         .fpu_activate = svm_fpu_activate,
3519         .fpu_deactivate = svm_fpu_deactivate,
3520
3521         .tlb_flush = svm_flush_tlb,
3522
3523         .run = svm_vcpu_run,
3524         .handle_exit = handle_exit,
3525         .skip_emulated_instruction = skip_emulated_instruction,
3526         .set_interrupt_shadow = svm_set_interrupt_shadow,
3527         .get_interrupt_shadow = svm_get_interrupt_shadow,
3528         .patch_hypercall = svm_patch_hypercall,
3529         .set_irq = svm_set_irq,
3530         .set_nmi = svm_inject_nmi,
3531         .queue_exception = svm_queue_exception,
3532         .interrupt_allowed = svm_interrupt_allowed,
3533         .nmi_allowed = svm_nmi_allowed,
3534         .get_nmi_mask = svm_get_nmi_mask,
3535         .set_nmi_mask = svm_set_nmi_mask,
3536         .enable_nmi_window = enable_nmi_window,
3537         .enable_irq_window = enable_irq_window,
3538         .update_cr8_intercept = update_cr8_intercept,
3539
3540         .set_tss_addr = svm_set_tss_addr,
3541         .get_tdp_level = get_npt_level,
3542         .get_mt_mask = svm_get_mt_mask,
3543
3544         .exit_reasons_str = svm_exit_reasons_str,
3545         .get_lpage_level = svm_get_lpage_level,
3546
3547         .cpuid_update = svm_cpuid_update,
3548
3549         .rdtscp_supported = svm_rdtscp_supported,
3550
3551         .set_supported_cpuid = svm_set_supported_cpuid,
3552
3553         .has_wbinvd_exit = svm_has_wbinvd_exit,
3554 };
3555
3556 static int __init svm_init(void)
3557 {
3558         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3559                         __alignof__(struct vcpu_svm), THIS_MODULE);
3560 }
3561
3562 static void __exit svm_exit(void)
3563 {
3564         kvm_exit();
3565 }
3566
3567 module_init(svm_init)
3568 module_exit(svm_exit)