]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Emulate next_rip svm feature
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affilates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34
35 #include <asm/virtext.h>
36 #include "trace.h"
37
38 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39
40 MODULE_AUTHOR("Qumranet");
41 MODULE_LICENSE("GPL");
42
43 #define IOPM_ALLOC_ORDER 2
44 #define MSRPM_ALLOC_ORDER 1
45
46 #define SEG_TYPE_LDT 2
47 #define SEG_TYPE_BUSY_TSS16 3
48
49 #define SVM_FEATURE_NPT            (1 <<  0)
50 #define SVM_FEATURE_LBRV           (1 <<  1)
51 #define SVM_FEATURE_SVML           (1 <<  2)
52 #define SVM_FEATURE_NRIP           (1 <<  3)
53 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
54
55 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
56 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
57 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
58
59 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
60
61 static bool erratum_383_found __read_mostly;
62
63 static const u32 host_save_user_msrs[] = {
64 #ifdef CONFIG_X86_64
65         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
66         MSR_FS_BASE,
67 #endif
68         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
69 };
70
71 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
72
73 struct kvm_vcpu;
74
75 struct nested_state {
76         struct vmcb *hsave;
77         u64 hsave_msr;
78         u64 vm_cr_msr;
79         u64 vmcb;
80
81         /* These are the merged vectors */
82         u32 *msrpm;
83
84         /* gpa pointers to the real vectors */
85         u64 vmcb_msrpm;
86         u64 vmcb_iopm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /* cache for intercepts of the guest */
92         u16 intercept_cr_read;
93         u16 intercept_cr_write;
94         u16 intercept_dr_read;
95         u16 intercept_dr_write;
96         u32 intercept_exceptions;
97         u64 intercept;
98
99 };
100
101 #define MSRPM_OFFSETS   16
102 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
103
104 struct vcpu_svm {
105         struct kvm_vcpu vcpu;
106         struct vmcb *vmcb;
107         unsigned long vmcb_pa;
108         struct svm_cpu_data *svm_data;
109         uint64_t asid_generation;
110         uint64_t sysenter_esp;
111         uint64_t sysenter_eip;
112
113         u64 next_rip;
114
115         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
116         u64 host_gs_base;
117
118         u32 *msrpm;
119
120         struct nested_state nested;
121
122         bool nmi_singlestep;
123
124         unsigned int3_injected;
125         unsigned long int3_rip;
126 };
127
128 #define MSR_INVALID                     0xffffffffU
129
130 static struct svm_direct_access_msrs {
131         u32 index;   /* Index of the MSR */
132         bool always; /* True if intercept is always on */
133 } direct_access_msrs[] = {
134         { .index = MSR_STAR,                            .always = true  },
135         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
136 #ifdef CONFIG_X86_64
137         { .index = MSR_GS_BASE,                         .always = true  },
138         { .index = MSR_FS_BASE,                         .always = true  },
139         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
140         { .index = MSR_LSTAR,                           .always = true  },
141         { .index = MSR_CSTAR,                           .always = true  },
142         { .index = MSR_SYSCALL_MASK,                    .always = true  },
143 #endif
144         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
145         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
146         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
147         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
148         { .index = MSR_INVALID,                         .always = false },
149 };
150
151 /* enable NPT for AMD64 and X86 with PAE */
152 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
153 static bool npt_enabled = true;
154 #else
155 static bool npt_enabled;
156 #endif
157 static int npt = 1;
158
159 module_param(npt, int, S_IRUGO);
160
161 static int nested = 1;
162 module_param(nested, int, S_IRUGO);
163
164 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
165 static void svm_complete_interrupts(struct vcpu_svm *svm);
166
167 static int nested_svm_exit_handled(struct vcpu_svm *svm);
168 static int nested_svm_intercept(struct vcpu_svm *svm);
169 static int nested_svm_vmexit(struct vcpu_svm *svm);
170 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
171                                       bool has_error_code, u32 error_code);
172
173 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
174 {
175         return container_of(vcpu, struct vcpu_svm, vcpu);
176 }
177
178 static inline bool is_nested(struct vcpu_svm *svm)
179 {
180         return svm->nested.vmcb;
181 }
182
183 static inline void enable_gif(struct vcpu_svm *svm)
184 {
185         svm->vcpu.arch.hflags |= HF_GIF_MASK;
186 }
187
188 static inline void disable_gif(struct vcpu_svm *svm)
189 {
190         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
191 }
192
193 static inline bool gif_set(struct vcpu_svm *svm)
194 {
195         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
196 }
197
198 static unsigned long iopm_base;
199
200 struct kvm_ldttss_desc {
201         u16 limit0;
202         u16 base0;
203         unsigned base1:8, type:5, dpl:2, p:1;
204         unsigned limit1:4, zero0:3, g:1, base2:8;
205         u32 base3;
206         u32 zero1;
207 } __attribute__((packed));
208
209 struct svm_cpu_data {
210         int cpu;
211
212         u64 asid_generation;
213         u32 max_asid;
214         u32 next_asid;
215         struct kvm_ldttss_desc *tss_desc;
216
217         struct page *save_area;
218 };
219
220 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
221 static uint32_t svm_features;
222
223 struct svm_init_data {
224         int cpu;
225         int r;
226 };
227
228 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
229
230 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
231 #define MSRS_RANGE_SIZE 2048
232 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
233
234 static u32 svm_msrpm_offset(u32 msr)
235 {
236         u32 offset;
237         int i;
238
239         for (i = 0; i < NUM_MSR_MAPS; i++) {
240                 if (msr < msrpm_ranges[i] ||
241                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
242                         continue;
243
244                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
245                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
246
247                 /* Now we have the u8 offset - but need the u32 offset */
248                 return offset / 4;
249         }
250
251         /* MSR not in any range */
252         return MSR_INVALID;
253 }
254
255 #define MAX_INST_SIZE 15
256
257 static inline u32 svm_has(u32 feat)
258 {
259         return svm_features & feat;
260 }
261
262 static inline void clgi(void)
263 {
264         asm volatile (__ex(SVM_CLGI));
265 }
266
267 static inline void stgi(void)
268 {
269         asm volatile (__ex(SVM_STGI));
270 }
271
272 static inline void invlpga(unsigned long addr, u32 asid)
273 {
274         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
275 }
276
277 static inline void force_new_asid(struct kvm_vcpu *vcpu)
278 {
279         to_svm(vcpu)->asid_generation--;
280 }
281
282 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
283 {
284         force_new_asid(vcpu);
285 }
286
287 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
288 {
289         vcpu->arch.efer = efer;
290         if (!npt_enabled && !(efer & EFER_LMA))
291                 efer &= ~EFER_LME;
292
293         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
294 }
295
296 static int is_external_interrupt(u32 info)
297 {
298         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
299         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
300 }
301
302 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
303 {
304         struct vcpu_svm *svm = to_svm(vcpu);
305         u32 ret = 0;
306
307         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
308                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
309         return ret & mask;
310 }
311
312 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
313 {
314         struct vcpu_svm *svm = to_svm(vcpu);
315
316         if (mask == 0)
317                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
318         else
319                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
320
321 }
322
323 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
324 {
325         struct vcpu_svm *svm = to_svm(vcpu);
326
327         if (svm->vmcb->control.next_rip != 0)
328                 svm->next_rip = svm->vmcb->control.next_rip;
329
330         if (!svm->next_rip) {
331                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
332                                 EMULATE_DONE)
333                         printk(KERN_DEBUG "%s: NOP\n", __func__);
334                 return;
335         }
336         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
337                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
338                        __func__, kvm_rip_read(vcpu), svm->next_rip);
339
340         kvm_rip_write(vcpu, svm->next_rip);
341         svm_set_interrupt_shadow(vcpu, 0);
342 }
343
344 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
345                                 bool has_error_code, u32 error_code,
346                                 bool reinject)
347 {
348         struct vcpu_svm *svm = to_svm(vcpu);
349
350         /*
351          * If we are within a nested VM we'd better #VMEXIT and let the guest
352          * handle the exception
353          */
354         if (!reinject &&
355             nested_svm_check_exception(svm, nr, has_error_code, error_code))
356                 return;
357
358         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
359                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
360
361                 /*
362                  * For guest debugging where we have to reinject #BP if some
363                  * INT3 is guest-owned:
364                  * Emulate nRIP by moving RIP forward. Will fail if injection
365                  * raises a fault that is not intercepted. Still better than
366                  * failing in all cases.
367                  */
368                 skip_emulated_instruction(&svm->vcpu);
369                 rip = kvm_rip_read(&svm->vcpu);
370                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
371                 svm->int3_injected = rip - old_rip;
372         }
373
374         svm->vmcb->control.event_inj = nr
375                 | SVM_EVTINJ_VALID
376                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
377                 | SVM_EVTINJ_TYPE_EXEPT;
378         svm->vmcb->control.event_inj_err = error_code;
379 }
380
381 static void svm_init_erratum_383(void)
382 {
383         u32 low, high;
384         int err;
385         u64 val;
386
387         if (!cpu_has_amd_erratum(amd_erratum_383))
388                 return;
389
390         /* Use _safe variants to not break nested virtualization */
391         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
392         if (err)
393                 return;
394
395         val |= (1ULL << 47);
396
397         low  = lower_32_bits(val);
398         high = upper_32_bits(val);
399
400         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
401
402         erratum_383_found = true;
403 }
404
405 static int has_svm(void)
406 {
407         const char *msg;
408
409         if (!cpu_has_svm(&msg)) {
410                 printk(KERN_INFO "has_svm: %s\n", msg);
411                 return 0;
412         }
413
414         return 1;
415 }
416
417 static void svm_hardware_disable(void *garbage)
418 {
419         cpu_svm_disable();
420 }
421
422 static int svm_hardware_enable(void *garbage)
423 {
424
425         struct svm_cpu_data *sd;
426         uint64_t efer;
427         struct desc_ptr gdt_descr;
428         struct desc_struct *gdt;
429         int me = raw_smp_processor_id();
430
431         rdmsrl(MSR_EFER, efer);
432         if (efer & EFER_SVME)
433                 return -EBUSY;
434
435         if (!has_svm()) {
436                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
437                        me);
438                 return -EINVAL;
439         }
440         sd = per_cpu(svm_data, me);
441
442         if (!sd) {
443                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
444                        me);
445                 return -EINVAL;
446         }
447
448         sd->asid_generation = 1;
449         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
450         sd->next_asid = sd->max_asid + 1;
451
452         native_store_gdt(&gdt_descr);
453         gdt = (struct desc_struct *)gdt_descr.address;
454         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
455
456         wrmsrl(MSR_EFER, efer | EFER_SVME);
457
458         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
459
460         svm_init_erratum_383();
461
462         return 0;
463 }
464
465 static void svm_cpu_uninit(int cpu)
466 {
467         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
468
469         if (!sd)
470                 return;
471
472         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
473         __free_page(sd->save_area);
474         kfree(sd);
475 }
476
477 static int svm_cpu_init(int cpu)
478 {
479         struct svm_cpu_data *sd;
480         int r;
481
482         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
483         if (!sd)
484                 return -ENOMEM;
485         sd->cpu = cpu;
486         sd->save_area = alloc_page(GFP_KERNEL);
487         r = -ENOMEM;
488         if (!sd->save_area)
489                 goto err_1;
490
491         per_cpu(svm_data, cpu) = sd;
492
493         return 0;
494
495 err_1:
496         kfree(sd);
497         return r;
498
499 }
500
501 static bool valid_msr_intercept(u32 index)
502 {
503         int i;
504
505         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
506                 if (direct_access_msrs[i].index == index)
507                         return true;
508
509         return false;
510 }
511
512 static void set_msr_interception(u32 *msrpm, unsigned msr,
513                                  int read, int write)
514 {
515         u8 bit_read, bit_write;
516         unsigned long tmp;
517         u32 offset;
518
519         /*
520          * If this warning triggers extend the direct_access_msrs list at the
521          * beginning of the file
522          */
523         WARN_ON(!valid_msr_intercept(msr));
524
525         offset    = svm_msrpm_offset(msr);
526         bit_read  = 2 * (msr & 0x0f);
527         bit_write = 2 * (msr & 0x0f) + 1;
528         tmp       = msrpm[offset];
529
530         BUG_ON(offset == MSR_INVALID);
531
532         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
533         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
534
535         msrpm[offset] = tmp;
536 }
537
538 static void svm_vcpu_init_msrpm(u32 *msrpm)
539 {
540         int i;
541
542         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
543
544         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
545                 if (!direct_access_msrs[i].always)
546                         continue;
547
548                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
549         }
550 }
551
552 static void add_msr_offset(u32 offset)
553 {
554         int i;
555
556         for (i = 0; i < MSRPM_OFFSETS; ++i) {
557
558                 /* Offset already in list? */
559                 if (msrpm_offsets[i] == offset)
560                         return;
561
562                 /* Slot used by another offset? */
563                 if (msrpm_offsets[i] != MSR_INVALID)
564                         continue;
565
566                 /* Add offset to list */
567                 msrpm_offsets[i] = offset;
568
569                 return;
570         }
571
572         /*
573          * If this BUG triggers the msrpm_offsets table has an overflow. Just
574          * increase MSRPM_OFFSETS in this case.
575          */
576         BUG();
577 }
578
579 static void init_msrpm_offsets(void)
580 {
581         int i;
582
583         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
584
585         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
586                 u32 offset;
587
588                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
589                 BUG_ON(offset == MSR_INVALID);
590
591                 add_msr_offset(offset);
592         }
593 }
594
595 static void svm_enable_lbrv(struct vcpu_svm *svm)
596 {
597         u32 *msrpm = svm->msrpm;
598
599         svm->vmcb->control.lbr_ctl = 1;
600         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
601         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
602         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
603         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
604 }
605
606 static void svm_disable_lbrv(struct vcpu_svm *svm)
607 {
608         u32 *msrpm = svm->msrpm;
609
610         svm->vmcb->control.lbr_ctl = 0;
611         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
612         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
613         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
614         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
615 }
616
617 static __init int svm_hardware_setup(void)
618 {
619         int cpu;
620         struct page *iopm_pages;
621         void *iopm_va;
622         int r;
623
624         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
625
626         if (!iopm_pages)
627                 return -ENOMEM;
628
629         iopm_va = page_address(iopm_pages);
630         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
631         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
632
633         init_msrpm_offsets();
634
635         if (boot_cpu_has(X86_FEATURE_NX))
636                 kvm_enable_efer_bits(EFER_NX);
637
638         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
639                 kvm_enable_efer_bits(EFER_FFXSR);
640
641         if (nested) {
642                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
643                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
644         }
645
646         for_each_possible_cpu(cpu) {
647                 r = svm_cpu_init(cpu);
648                 if (r)
649                         goto err;
650         }
651
652         svm_features = cpuid_edx(SVM_CPUID_FUNC);
653
654         if (!svm_has(SVM_FEATURE_NPT))
655                 npt_enabled = false;
656
657         if (npt_enabled && !npt) {
658                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
659                 npt_enabled = false;
660         }
661
662         if (npt_enabled) {
663                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
664                 kvm_enable_tdp();
665         } else
666                 kvm_disable_tdp();
667
668         return 0;
669
670 err:
671         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
672         iopm_base = 0;
673         return r;
674 }
675
676 static __exit void svm_hardware_unsetup(void)
677 {
678         int cpu;
679
680         for_each_possible_cpu(cpu)
681                 svm_cpu_uninit(cpu);
682
683         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
684         iopm_base = 0;
685 }
686
687 static void init_seg(struct vmcb_seg *seg)
688 {
689         seg->selector = 0;
690         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
691                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
692         seg->limit = 0xffff;
693         seg->base = 0;
694 }
695
696 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
697 {
698         seg->selector = 0;
699         seg->attrib = SVM_SELECTOR_P_MASK | type;
700         seg->limit = 0xffff;
701         seg->base = 0;
702 }
703
704 static void init_vmcb(struct vcpu_svm *svm)
705 {
706         struct vmcb_control_area *control = &svm->vmcb->control;
707         struct vmcb_save_area *save = &svm->vmcb->save;
708
709         svm->vcpu.fpu_active = 1;
710
711         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
712                                         INTERCEPT_CR3_MASK |
713                                         INTERCEPT_CR4_MASK;
714
715         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
716                                         INTERCEPT_CR3_MASK |
717                                         INTERCEPT_CR4_MASK |
718                                         INTERCEPT_CR8_MASK;
719
720         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
721                                         INTERCEPT_DR1_MASK |
722                                         INTERCEPT_DR2_MASK |
723                                         INTERCEPT_DR3_MASK |
724                                         INTERCEPT_DR4_MASK |
725                                         INTERCEPT_DR5_MASK |
726                                         INTERCEPT_DR6_MASK |
727                                         INTERCEPT_DR7_MASK;
728
729         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
730                                         INTERCEPT_DR1_MASK |
731                                         INTERCEPT_DR2_MASK |
732                                         INTERCEPT_DR3_MASK |
733                                         INTERCEPT_DR4_MASK |
734                                         INTERCEPT_DR5_MASK |
735                                         INTERCEPT_DR6_MASK |
736                                         INTERCEPT_DR7_MASK;
737
738         control->intercept_exceptions = (1 << PF_VECTOR) |
739                                         (1 << UD_VECTOR) |
740                                         (1 << MC_VECTOR);
741
742
743         control->intercept =    (1ULL << INTERCEPT_INTR) |
744                                 (1ULL << INTERCEPT_NMI) |
745                                 (1ULL << INTERCEPT_SMI) |
746                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
747                                 (1ULL << INTERCEPT_CPUID) |
748                                 (1ULL << INTERCEPT_INVD) |
749                                 (1ULL << INTERCEPT_HLT) |
750                                 (1ULL << INTERCEPT_INVLPG) |
751                                 (1ULL << INTERCEPT_INVLPGA) |
752                                 (1ULL << INTERCEPT_IOIO_PROT) |
753                                 (1ULL << INTERCEPT_MSR_PROT) |
754                                 (1ULL << INTERCEPT_TASK_SWITCH) |
755                                 (1ULL << INTERCEPT_SHUTDOWN) |
756                                 (1ULL << INTERCEPT_VMRUN) |
757                                 (1ULL << INTERCEPT_VMMCALL) |
758                                 (1ULL << INTERCEPT_VMLOAD) |
759                                 (1ULL << INTERCEPT_VMSAVE) |
760                                 (1ULL << INTERCEPT_STGI) |
761                                 (1ULL << INTERCEPT_CLGI) |
762                                 (1ULL << INTERCEPT_SKINIT) |
763                                 (1ULL << INTERCEPT_WBINVD) |
764                                 (1ULL << INTERCEPT_MONITOR) |
765                                 (1ULL << INTERCEPT_MWAIT);
766
767         control->iopm_base_pa = iopm_base;
768         control->msrpm_base_pa = __pa(svm->msrpm);
769         control->int_ctl = V_INTR_MASKING_MASK;
770
771         init_seg(&save->es);
772         init_seg(&save->ss);
773         init_seg(&save->ds);
774         init_seg(&save->fs);
775         init_seg(&save->gs);
776
777         save->cs.selector = 0xf000;
778         /* Executable/Readable Code Segment */
779         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
780                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
781         save->cs.limit = 0xffff;
782         /*
783          * cs.base should really be 0xffff0000, but vmx can't handle that, so
784          * be consistent with it.
785          *
786          * Replace when we have real mode working for vmx.
787          */
788         save->cs.base = 0xf0000;
789
790         save->gdtr.limit = 0xffff;
791         save->idtr.limit = 0xffff;
792
793         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
794         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
795
796         save->efer = EFER_SVME;
797         save->dr6 = 0xffff0ff0;
798         save->dr7 = 0x400;
799         save->rflags = 2;
800         save->rip = 0x0000fff0;
801         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
802
803         /*
804          * This is the guest-visible cr0 value.
805          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
806          */
807         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
808         (void)kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
809
810         save->cr4 = X86_CR4_PAE;
811         /* rdx = ?? */
812
813         if (npt_enabled) {
814                 /* Setup VMCB for Nested Paging */
815                 control->nested_ctl = 1;
816                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
817                                         (1ULL << INTERCEPT_INVLPG));
818                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
819                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
820                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
821                 save->g_pat = 0x0007040600070406ULL;
822                 save->cr3 = 0;
823                 save->cr4 = 0;
824         }
825         force_new_asid(&svm->vcpu);
826
827         svm->nested.vmcb = 0;
828         svm->vcpu.arch.hflags = 0;
829
830         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
831                 control->pause_filter_count = 3000;
832                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
833         }
834
835         enable_gif(svm);
836 }
837
838 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
839 {
840         struct vcpu_svm *svm = to_svm(vcpu);
841
842         init_vmcb(svm);
843
844         if (!kvm_vcpu_is_bsp(vcpu)) {
845                 kvm_rip_write(vcpu, 0);
846                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
847                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
848         }
849         vcpu->arch.regs_avail = ~0;
850         vcpu->arch.regs_dirty = ~0;
851
852         return 0;
853 }
854
855 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
856 {
857         struct vcpu_svm *svm;
858         struct page *page;
859         struct page *msrpm_pages;
860         struct page *hsave_page;
861         struct page *nested_msrpm_pages;
862         int err;
863
864         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
865         if (!svm) {
866                 err = -ENOMEM;
867                 goto out;
868         }
869
870         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
871         if (err)
872                 goto free_svm;
873
874         err = -ENOMEM;
875         page = alloc_page(GFP_KERNEL);
876         if (!page)
877                 goto uninit;
878
879         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
880         if (!msrpm_pages)
881                 goto free_page1;
882
883         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
884         if (!nested_msrpm_pages)
885                 goto free_page2;
886
887         hsave_page = alloc_page(GFP_KERNEL);
888         if (!hsave_page)
889                 goto free_page3;
890
891         svm->nested.hsave = page_address(hsave_page);
892
893         svm->msrpm = page_address(msrpm_pages);
894         svm_vcpu_init_msrpm(svm->msrpm);
895
896         svm->nested.msrpm = page_address(nested_msrpm_pages);
897         svm_vcpu_init_msrpm(svm->nested.msrpm);
898
899         svm->vmcb = page_address(page);
900         clear_page(svm->vmcb);
901         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
902         svm->asid_generation = 0;
903         init_vmcb(svm);
904         svm->vmcb->control.tsc_offset = 0-native_read_tsc();
905
906         err = fx_init(&svm->vcpu);
907         if (err)
908                 goto free_page4;
909
910         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
911         if (kvm_vcpu_is_bsp(&svm->vcpu))
912                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
913
914         return &svm->vcpu;
915
916 free_page4:
917         __free_page(hsave_page);
918 free_page3:
919         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
920 free_page2:
921         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
922 free_page1:
923         __free_page(page);
924 uninit:
925         kvm_vcpu_uninit(&svm->vcpu);
926 free_svm:
927         kmem_cache_free(kvm_vcpu_cache, svm);
928 out:
929         return ERR_PTR(err);
930 }
931
932 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
933 {
934         struct vcpu_svm *svm = to_svm(vcpu);
935
936         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
937         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
938         __free_page(virt_to_page(svm->nested.hsave));
939         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
940         kvm_vcpu_uninit(vcpu);
941         kmem_cache_free(kvm_vcpu_cache, svm);
942 }
943
944 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
945 {
946         struct vcpu_svm *svm = to_svm(vcpu);
947         int i;
948
949         if (unlikely(cpu != vcpu->cpu)) {
950                 u64 delta;
951
952                 if (check_tsc_unstable()) {
953                         /*
954                          * Make sure that the guest sees a monotonically
955                          * increasing TSC.
956                          */
957                         delta = vcpu->arch.host_tsc - native_read_tsc();
958                         svm->vmcb->control.tsc_offset += delta;
959                         if (is_nested(svm))
960                                 svm->nested.hsave->control.tsc_offset += delta;
961                 }
962                 vcpu->cpu = cpu;
963                 kvm_migrate_timers(vcpu);
964                 svm->asid_generation = 0;
965         }
966
967         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
968                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
969 }
970
971 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
972 {
973         struct vcpu_svm *svm = to_svm(vcpu);
974         int i;
975
976         ++vcpu->stat.host_state_reload;
977         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
978                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
979
980         vcpu->arch.host_tsc = native_read_tsc();
981 }
982
983 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
984 {
985         return to_svm(vcpu)->vmcb->save.rflags;
986 }
987
988 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
989 {
990         to_svm(vcpu)->vmcb->save.rflags = rflags;
991 }
992
993 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
994 {
995         switch (reg) {
996         case VCPU_EXREG_PDPTR:
997                 BUG_ON(!npt_enabled);
998                 load_pdptrs(vcpu, vcpu->arch.cr3);
999                 break;
1000         default:
1001                 BUG();
1002         }
1003 }
1004
1005 static void svm_set_vintr(struct vcpu_svm *svm)
1006 {
1007         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1008 }
1009
1010 static void svm_clear_vintr(struct vcpu_svm *svm)
1011 {
1012         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1013 }
1014
1015 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1016 {
1017         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1018
1019         switch (seg) {
1020         case VCPU_SREG_CS: return &save->cs;
1021         case VCPU_SREG_DS: return &save->ds;
1022         case VCPU_SREG_ES: return &save->es;
1023         case VCPU_SREG_FS: return &save->fs;
1024         case VCPU_SREG_GS: return &save->gs;
1025         case VCPU_SREG_SS: return &save->ss;
1026         case VCPU_SREG_TR: return &save->tr;
1027         case VCPU_SREG_LDTR: return &save->ldtr;
1028         }
1029         BUG();
1030         return NULL;
1031 }
1032
1033 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1034 {
1035         struct vmcb_seg *s = svm_seg(vcpu, seg);
1036
1037         return s->base;
1038 }
1039
1040 static void svm_get_segment(struct kvm_vcpu *vcpu,
1041                             struct kvm_segment *var, int seg)
1042 {
1043         struct vmcb_seg *s = svm_seg(vcpu, seg);
1044
1045         var->base = s->base;
1046         var->limit = s->limit;
1047         var->selector = s->selector;
1048         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1049         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1050         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1051         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1052         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1053         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1054         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1055         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1056
1057         /*
1058          * AMD's VMCB does not have an explicit unusable field, so emulate it
1059          * for cross vendor migration purposes by "not present"
1060          */
1061         var->unusable = !var->present || (var->type == 0);
1062
1063         switch (seg) {
1064         case VCPU_SREG_CS:
1065                 /*
1066                  * SVM always stores 0 for the 'G' bit in the CS selector in
1067                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1068                  * Intel's VMENTRY has a check on the 'G' bit.
1069                  */
1070                 var->g = s->limit > 0xfffff;
1071                 break;
1072         case VCPU_SREG_TR:
1073                 /*
1074                  * Work around a bug where the busy flag in the tr selector
1075                  * isn't exposed
1076                  */
1077                 var->type |= 0x2;
1078                 break;
1079         case VCPU_SREG_DS:
1080         case VCPU_SREG_ES:
1081         case VCPU_SREG_FS:
1082         case VCPU_SREG_GS:
1083                 /*
1084                  * The accessed bit must always be set in the segment
1085                  * descriptor cache, although it can be cleared in the
1086                  * descriptor, the cached bit always remains at 1. Since
1087                  * Intel has a check on this, set it here to support
1088                  * cross-vendor migration.
1089                  */
1090                 if (!var->unusable)
1091                         var->type |= 0x1;
1092                 break;
1093         case VCPU_SREG_SS:
1094                 /*
1095                  * On AMD CPUs sometimes the DB bit in the segment
1096                  * descriptor is left as 1, although the whole segment has
1097                  * been made unusable. Clear it here to pass an Intel VMX
1098                  * entry check when cross vendor migrating.
1099                  */
1100                 if (var->unusable)
1101                         var->db = 0;
1102                 break;
1103         }
1104 }
1105
1106 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1107 {
1108         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1109
1110         return save->cpl;
1111 }
1112
1113 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1114 {
1115         struct vcpu_svm *svm = to_svm(vcpu);
1116
1117         dt->size = svm->vmcb->save.idtr.limit;
1118         dt->address = svm->vmcb->save.idtr.base;
1119 }
1120
1121 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1122 {
1123         struct vcpu_svm *svm = to_svm(vcpu);
1124
1125         svm->vmcb->save.idtr.limit = dt->size;
1126         svm->vmcb->save.idtr.base = dt->address ;
1127 }
1128
1129 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1130 {
1131         struct vcpu_svm *svm = to_svm(vcpu);
1132
1133         dt->size = svm->vmcb->save.gdtr.limit;
1134         dt->address = svm->vmcb->save.gdtr.base;
1135 }
1136
1137 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1138 {
1139         struct vcpu_svm *svm = to_svm(vcpu);
1140
1141         svm->vmcb->save.gdtr.limit = dt->size;
1142         svm->vmcb->save.gdtr.base = dt->address ;
1143 }
1144
1145 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1146 {
1147 }
1148
1149 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1150 {
1151 }
1152
1153 static void update_cr0_intercept(struct vcpu_svm *svm)
1154 {
1155         struct vmcb *vmcb = svm->vmcb;
1156         ulong gcr0 = svm->vcpu.arch.cr0;
1157         u64 *hcr0 = &svm->vmcb->save.cr0;
1158
1159         if (!svm->vcpu.fpu_active)
1160                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1161         else
1162                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1163                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1164
1165
1166         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1167                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1168                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1169                 if (is_nested(svm)) {
1170                         struct vmcb *hsave = svm->nested.hsave;
1171
1172                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1173                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1174                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1175                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1176                 }
1177         } else {
1178                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1179                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1180                 if (is_nested(svm)) {
1181                         struct vmcb *hsave = svm->nested.hsave;
1182
1183                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1184                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1185                 }
1186         }
1187 }
1188
1189 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1190 {
1191         struct vcpu_svm *svm = to_svm(vcpu);
1192
1193         if (is_nested(svm)) {
1194                 /*
1195                  * We are here because we run in nested mode, the host kvm
1196                  * intercepts cr0 writes but the l1 hypervisor does not.
1197                  * But the L1 hypervisor may intercept selective cr0 writes.
1198                  * This needs to be checked here.
1199                  */
1200                 unsigned long old, new;
1201
1202                 /* Remove bits that would trigger a real cr0 write intercept */
1203                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1204                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1205
1206                 if (old == new) {
1207                         /* cr0 write with ts and mp unchanged */
1208                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1209                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
1210                                 return;
1211                 }
1212         }
1213
1214 #ifdef CONFIG_X86_64
1215         if (vcpu->arch.efer & EFER_LME) {
1216                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1217                         vcpu->arch.efer |= EFER_LMA;
1218                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1219                 }
1220
1221                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1222                         vcpu->arch.efer &= ~EFER_LMA;
1223                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1224                 }
1225         }
1226 #endif
1227         vcpu->arch.cr0 = cr0;
1228
1229         if (!npt_enabled)
1230                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1231
1232         if (!vcpu->fpu_active)
1233                 cr0 |= X86_CR0_TS;
1234         /*
1235          * re-enable caching here because the QEMU bios
1236          * does not do it - this results in some delay at
1237          * reboot
1238          */
1239         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1240         svm->vmcb->save.cr0 = cr0;
1241         update_cr0_intercept(svm);
1242 }
1243
1244 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1245 {
1246         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1247         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1248
1249         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1250                 force_new_asid(vcpu);
1251
1252         vcpu->arch.cr4 = cr4;
1253         if (!npt_enabled)
1254                 cr4 |= X86_CR4_PAE;
1255         cr4 |= host_cr4_mce;
1256         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1257 }
1258
1259 static void svm_set_segment(struct kvm_vcpu *vcpu,
1260                             struct kvm_segment *var, int seg)
1261 {
1262         struct vcpu_svm *svm = to_svm(vcpu);
1263         struct vmcb_seg *s = svm_seg(vcpu, seg);
1264
1265         s->base = var->base;
1266         s->limit = var->limit;
1267         s->selector = var->selector;
1268         if (var->unusable)
1269                 s->attrib = 0;
1270         else {
1271                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1272                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1273                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1274                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1275                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1276                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1277                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1278                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1279         }
1280         if (seg == VCPU_SREG_CS)
1281                 svm->vmcb->save.cpl
1282                         = (svm->vmcb->save.cs.attrib
1283                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1284
1285 }
1286
1287 static void update_db_intercept(struct kvm_vcpu *vcpu)
1288 {
1289         struct vcpu_svm *svm = to_svm(vcpu);
1290
1291         svm->vmcb->control.intercept_exceptions &=
1292                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1293
1294         if (svm->nmi_singlestep)
1295                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1296
1297         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1298                 if (vcpu->guest_debug &
1299                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1300                         svm->vmcb->control.intercept_exceptions |=
1301                                 1 << DB_VECTOR;
1302                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1303                         svm->vmcb->control.intercept_exceptions |=
1304                                 1 << BP_VECTOR;
1305         } else
1306                 vcpu->guest_debug = 0;
1307 }
1308
1309 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1310 {
1311         struct vcpu_svm *svm = to_svm(vcpu);
1312
1313         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1314                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1315         else
1316                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1317
1318         update_db_intercept(vcpu);
1319 }
1320
1321 static void load_host_msrs(struct kvm_vcpu *vcpu)
1322 {
1323 #ifdef CONFIG_X86_64
1324         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1325 #endif
1326 }
1327
1328 static void save_host_msrs(struct kvm_vcpu *vcpu)
1329 {
1330 #ifdef CONFIG_X86_64
1331         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1332 #endif
1333 }
1334
1335 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1336 {
1337         if (sd->next_asid > sd->max_asid) {
1338                 ++sd->asid_generation;
1339                 sd->next_asid = 1;
1340                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1341         }
1342
1343         svm->asid_generation = sd->asid_generation;
1344         svm->vmcb->control.asid = sd->next_asid++;
1345 }
1346
1347 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1348 {
1349         struct vcpu_svm *svm = to_svm(vcpu);
1350
1351         svm->vmcb->save.dr7 = value;
1352 }
1353
1354 static int pf_interception(struct vcpu_svm *svm)
1355 {
1356         u64 fault_address;
1357         u32 error_code;
1358
1359         fault_address  = svm->vmcb->control.exit_info_2;
1360         error_code = svm->vmcb->control.exit_info_1;
1361
1362         trace_kvm_page_fault(fault_address, error_code);
1363         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1364                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1365         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1366 }
1367
1368 static int db_interception(struct vcpu_svm *svm)
1369 {
1370         struct kvm_run *kvm_run = svm->vcpu.run;
1371
1372         if (!(svm->vcpu.guest_debug &
1373               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1374                 !svm->nmi_singlestep) {
1375                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1376                 return 1;
1377         }
1378
1379         if (svm->nmi_singlestep) {
1380                 svm->nmi_singlestep = false;
1381                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1382                         svm->vmcb->save.rflags &=
1383                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1384                 update_db_intercept(&svm->vcpu);
1385         }
1386
1387         if (svm->vcpu.guest_debug &
1388             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1389                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1390                 kvm_run->debug.arch.pc =
1391                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1392                 kvm_run->debug.arch.exception = DB_VECTOR;
1393                 return 0;
1394         }
1395
1396         return 1;
1397 }
1398
1399 static int bp_interception(struct vcpu_svm *svm)
1400 {
1401         struct kvm_run *kvm_run = svm->vcpu.run;
1402
1403         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1404         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1405         kvm_run->debug.arch.exception = BP_VECTOR;
1406         return 0;
1407 }
1408
1409 static int ud_interception(struct vcpu_svm *svm)
1410 {
1411         int er;
1412
1413         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1414         if (er != EMULATE_DONE)
1415                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1416         return 1;
1417 }
1418
1419 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1420 {
1421         struct vcpu_svm *svm = to_svm(vcpu);
1422         u32 excp;
1423
1424         if (is_nested(svm)) {
1425                 u32 h_excp, n_excp;
1426
1427                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1428                 n_excp  = svm->nested.intercept_exceptions;
1429                 h_excp &= ~(1 << NM_VECTOR);
1430                 excp    = h_excp | n_excp;
1431         } else {
1432                 excp  = svm->vmcb->control.intercept_exceptions;
1433                 excp &= ~(1 << NM_VECTOR);
1434         }
1435
1436         svm->vmcb->control.intercept_exceptions = excp;
1437
1438         svm->vcpu.fpu_active = 1;
1439         update_cr0_intercept(svm);
1440 }
1441
1442 static int nm_interception(struct vcpu_svm *svm)
1443 {
1444         svm_fpu_activate(&svm->vcpu);
1445         return 1;
1446 }
1447
1448 static bool is_erratum_383(void)
1449 {
1450         int err, i;
1451         u64 value;
1452
1453         if (!erratum_383_found)
1454                 return false;
1455
1456         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1457         if (err)
1458                 return false;
1459
1460         /* Bit 62 may or may not be set for this mce */
1461         value &= ~(1ULL << 62);
1462
1463         if (value != 0xb600000000010015ULL)
1464                 return false;
1465
1466         /* Clear MCi_STATUS registers */
1467         for (i = 0; i < 6; ++i)
1468                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1469
1470         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1471         if (!err) {
1472                 u32 low, high;
1473
1474                 value &= ~(1ULL << 2);
1475                 low    = lower_32_bits(value);
1476                 high   = upper_32_bits(value);
1477
1478                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1479         }
1480
1481         /* Flush tlb to evict multi-match entries */
1482         __flush_tlb_all();
1483
1484         return true;
1485 }
1486
1487 static void svm_handle_mce(struct vcpu_svm *svm)
1488 {
1489         if (is_erratum_383()) {
1490                 /*
1491                  * Erratum 383 triggered. Guest state is corrupt so kill the
1492                  * guest.
1493                  */
1494                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1495
1496                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1497
1498                 return;
1499         }
1500
1501         /*
1502          * On an #MC intercept the MCE handler is not called automatically in
1503          * the host. So do it by hand here.
1504          */
1505         asm volatile (
1506                 "int $0x12\n");
1507         /* not sure if we ever come back to this point */
1508
1509         return;
1510 }
1511
1512 static int mc_interception(struct vcpu_svm *svm)
1513 {
1514         return 1;
1515 }
1516
1517 static int shutdown_interception(struct vcpu_svm *svm)
1518 {
1519         struct kvm_run *kvm_run = svm->vcpu.run;
1520
1521         /*
1522          * VMCB is undefined after a SHUTDOWN intercept
1523          * so reinitialize it.
1524          */
1525         clear_page(svm->vmcb);
1526         init_vmcb(svm);
1527
1528         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1529         return 0;
1530 }
1531
1532 static int io_interception(struct vcpu_svm *svm)
1533 {
1534         struct kvm_vcpu *vcpu = &svm->vcpu;
1535         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1536         int size, in, string;
1537         unsigned port;
1538
1539         ++svm->vcpu.stat.io_exits;
1540         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1541         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1542         if (string || in)
1543                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1544
1545         port = io_info >> 16;
1546         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1547         svm->next_rip = svm->vmcb->control.exit_info_2;
1548         skip_emulated_instruction(&svm->vcpu);
1549
1550         return kvm_fast_pio_out(vcpu, size, port);
1551 }
1552
1553 static int nmi_interception(struct vcpu_svm *svm)
1554 {
1555         return 1;
1556 }
1557
1558 static int intr_interception(struct vcpu_svm *svm)
1559 {
1560         ++svm->vcpu.stat.irq_exits;
1561         return 1;
1562 }
1563
1564 static int nop_on_interception(struct vcpu_svm *svm)
1565 {
1566         return 1;
1567 }
1568
1569 static int halt_interception(struct vcpu_svm *svm)
1570 {
1571         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1572         skip_emulated_instruction(&svm->vcpu);
1573         return kvm_emulate_halt(&svm->vcpu);
1574 }
1575
1576 static int vmmcall_interception(struct vcpu_svm *svm)
1577 {
1578         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1579         skip_emulated_instruction(&svm->vcpu);
1580         kvm_emulate_hypercall(&svm->vcpu);
1581         return 1;
1582 }
1583
1584 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1585 {
1586         if (!(svm->vcpu.arch.efer & EFER_SVME)
1587             || !is_paging(&svm->vcpu)) {
1588                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1589                 return 1;
1590         }
1591
1592         if (svm->vmcb->save.cpl) {
1593                 kvm_inject_gp(&svm->vcpu, 0);
1594                 return 1;
1595         }
1596
1597        return 0;
1598 }
1599
1600 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1601                                       bool has_error_code, u32 error_code)
1602 {
1603         int vmexit;
1604
1605         if (!is_nested(svm))
1606                 return 0;
1607
1608         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1609         svm->vmcb->control.exit_code_hi = 0;
1610         svm->vmcb->control.exit_info_1 = error_code;
1611         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1612
1613         vmexit = nested_svm_intercept(svm);
1614         if (vmexit == NESTED_EXIT_DONE)
1615                 svm->nested.exit_required = true;
1616
1617         return vmexit;
1618 }
1619
1620 /* This function returns true if it is save to enable the irq window */
1621 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1622 {
1623         if (!is_nested(svm))
1624                 return true;
1625
1626         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1627                 return true;
1628
1629         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1630                 return false;
1631
1632         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1633         svm->vmcb->control.exit_info_1 = 0;
1634         svm->vmcb->control.exit_info_2 = 0;
1635
1636         if (svm->nested.intercept & 1ULL) {
1637                 /*
1638                  * The #vmexit can't be emulated here directly because this
1639                  * code path runs with irqs and preemtion disabled. A
1640                  * #vmexit emulation might sleep. Only signal request for
1641                  * the #vmexit here.
1642                  */
1643                 svm->nested.exit_required = true;
1644                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1645                 return false;
1646         }
1647
1648         return true;
1649 }
1650
1651 /* This function returns true if it is save to enable the nmi window */
1652 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1653 {
1654         if (!is_nested(svm))
1655                 return true;
1656
1657         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1658                 return true;
1659
1660         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1661         svm->nested.exit_required = true;
1662
1663         return false;
1664 }
1665
1666 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1667 {
1668         struct page *page;
1669
1670         might_sleep();
1671
1672         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1673         if (is_error_page(page))
1674                 goto error;
1675
1676         *_page = page;
1677
1678         return kmap(page);
1679
1680 error:
1681         kvm_release_page_clean(page);
1682         kvm_inject_gp(&svm->vcpu, 0);
1683
1684         return NULL;
1685 }
1686
1687 static void nested_svm_unmap(struct page *page)
1688 {
1689         kunmap(page);
1690         kvm_release_page_dirty(page);
1691 }
1692
1693 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1694 {
1695         unsigned port;
1696         u8 val, bit;
1697         u64 gpa;
1698
1699         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1700                 return NESTED_EXIT_HOST;
1701
1702         port = svm->vmcb->control.exit_info_1 >> 16;
1703         gpa  = svm->nested.vmcb_iopm + (port / 8);
1704         bit  = port % 8;
1705         val  = 0;
1706
1707         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1708                 val &= (1 << bit);
1709
1710         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1711 }
1712
1713 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1714 {
1715         u32 offset, msr, value;
1716         int write, mask;
1717
1718         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1719                 return NESTED_EXIT_HOST;
1720
1721         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1722         offset = svm_msrpm_offset(msr);
1723         write  = svm->vmcb->control.exit_info_1 & 1;
1724         mask   = 1 << ((2 * (msr & 0xf)) + write);
1725
1726         if (offset == MSR_INVALID)
1727                 return NESTED_EXIT_DONE;
1728
1729         /* Offset is in 32 bit units but need in 8 bit units */
1730         offset *= 4;
1731
1732         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1733                 return NESTED_EXIT_DONE;
1734
1735         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1736 }
1737
1738 static int nested_svm_exit_special(struct vcpu_svm *svm)
1739 {
1740         u32 exit_code = svm->vmcb->control.exit_code;
1741
1742         switch (exit_code) {
1743         case SVM_EXIT_INTR:
1744         case SVM_EXIT_NMI:
1745         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1746                 return NESTED_EXIT_HOST;
1747         case SVM_EXIT_NPF:
1748                 /* For now we are always handling NPFs when using them */
1749                 if (npt_enabled)
1750                         return NESTED_EXIT_HOST;
1751                 break;
1752         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1753                 /* When we're shadowing, trap PFs */
1754                 if (!npt_enabled)
1755                         return NESTED_EXIT_HOST;
1756                 break;
1757         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1758                 nm_interception(svm);
1759                 break;
1760         default:
1761                 break;
1762         }
1763
1764         return NESTED_EXIT_CONTINUE;
1765 }
1766
1767 /*
1768  * If this function returns true, this #vmexit was already handled
1769  */
1770 static int nested_svm_intercept(struct vcpu_svm *svm)
1771 {
1772         u32 exit_code = svm->vmcb->control.exit_code;
1773         int vmexit = NESTED_EXIT_HOST;
1774
1775         switch (exit_code) {
1776         case SVM_EXIT_MSR:
1777                 vmexit = nested_svm_exit_handled_msr(svm);
1778                 break;
1779         case SVM_EXIT_IOIO:
1780                 vmexit = nested_svm_intercept_ioio(svm);
1781                 break;
1782         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1783                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1784                 if (svm->nested.intercept_cr_read & cr_bits)
1785                         vmexit = NESTED_EXIT_DONE;
1786                 break;
1787         }
1788         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1789                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1790                 if (svm->nested.intercept_cr_write & cr_bits)
1791                         vmexit = NESTED_EXIT_DONE;
1792                 break;
1793         }
1794         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1795                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1796                 if (svm->nested.intercept_dr_read & dr_bits)
1797                         vmexit = NESTED_EXIT_DONE;
1798                 break;
1799         }
1800         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1801                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1802                 if (svm->nested.intercept_dr_write & dr_bits)
1803                         vmexit = NESTED_EXIT_DONE;
1804                 break;
1805         }
1806         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1807                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1808                 if (svm->nested.intercept_exceptions & excp_bits)
1809                         vmexit = NESTED_EXIT_DONE;
1810                 break;
1811         }
1812         case SVM_EXIT_ERR: {
1813                 vmexit = NESTED_EXIT_DONE;
1814                 break;
1815         }
1816         default: {
1817                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1818                 if (svm->nested.intercept & exit_bits)
1819                         vmexit = NESTED_EXIT_DONE;
1820         }
1821         }
1822
1823         return vmexit;
1824 }
1825
1826 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1827 {
1828         int vmexit;
1829
1830         vmexit = nested_svm_intercept(svm);
1831
1832         if (vmexit == NESTED_EXIT_DONE)
1833                 nested_svm_vmexit(svm);
1834
1835         return vmexit;
1836 }
1837
1838 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1839 {
1840         struct vmcb_control_area *dst  = &dst_vmcb->control;
1841         struct vmcb_control_area *from = &from_vmcb->control;
1842
1843         dst->intercept_cr_read    = from->intercept_cr_read;
1844         dst->intercept_cr_write   = from->intercept_cr_write;
1845         dst->intercept_dr_read    = from->intercept_dr_read;
1846         dst->intercept_dr_write   = from->intercept_dr_write;
1847         dst->intercept_exceptions = from->intercept_exceptions;
1848         dst->intercept            = from->intercept;
1849         dst->iopm_base_pa         = from->iopm_base_pa;
1850         dst->msrpm_base_pa        = from->msrpm_base_pa;
1851         dst->tsc_offset           = from->tsc_offset;
1852         dst->asid                 = from->asid;
1853         dst->tlb_ctl              = from->tlb_ctl;
1854         dst->int_ctl              = from->int_ctl;
1855         dst->int_vector           = from->int_vector;
1856         dst->int_state            = from->int_state;
1857         dst->exit_code            = from->exit_code;
1858         dst->exit_code_hi         = from->exit_code_hi;
1859         dst->exit_info_1          = from->exit_info_1;
1860         dst->exit_info_2          = from->exit_info_2;
1861         dst->exit_int_info        = from->exit_int_info;
1862         dst->exit_int_info_err    = from->exit_int_info_err;
1863         dst->nested_ctl           = from->nested_ctl;
1864         dst->event_inj            = from->event_inj;
1865         dst->event_inj_err        = from->event_inj_err;
1866         dst->nested_cr3           = from->nested_cr3;
1867         dst->lbr_ctl              = from->lbr_ctl;
1868 }
1869
1870 static int nested_svm_vmexit(struct vcpu_svm *svm)
1871 {
1872         struct vmcb *nested_vmcb;
1873         struct vmcb *hsave = svm->nested.hsave;
1874         struct vmcb *vmcb = svm->vmcb;
1875         struct page *page;
1876
1877         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1878                                        vmcb->control.exit_info_1,
1879                                        vmcb->control.exit_info_2,
1880                                        vmcb->control.exit_int_info,
1881                                        vmcb->control.exit_int_info_err);
1882
1883         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1884         if (!nested_vmcb)
1885                 return 1;
1886
1887         /* Exit nested SVM mode */
1888         svm->nested.vmcb = 0;
1889
1890         /* Give the current vmcb to the guest */
1891         disable_gif(svm);
1892
1893         nested_vmcb->save.es     = vmcb->save.es;
1894         nested_vmcb->save.cs     = vmcb->save.cs;
1895         nested_vmcb->save.ss     = vmcb->save.ss;
1896         nested_vmcb->save.ds     = vmcb->save.ds;
1897         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1898         nested_vmcb->save.idtr   = vmcb->save.idtr;
1899         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
1900         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1901         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1902         nested_vmcb->save.cr2    = vmcb->save.cr2;
1903         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1904         nested_vmcb->save.rflags = vmcb->save.rflags;
1905         nested_vmcb->save.rip    = vmcb->save.rip;
1906         nested_vmcb->save.rsp    = vmcb->save.rsp;
1907         nested_vmcb->save.rax    = vmcb->save.rax;
1908         nested_vmcb->save.dr7    = vmcb->save.dr7;
1909         nested_vmcb->save.dr6    = vmcb->save.dr6;
1910         nested_vmcb->save.cpl    = vmcb->save.cpl;
1911
1912         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1913         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1914         nested_vmcb->control.int_state         = vmcb->control.int_state;
1915         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1916         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1917         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1918         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1919         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1920         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1921         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
1922
1923         /*
1924          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1925          * to make sure that we do not lose injected events. So check event_inj
1926          * here and copy it to exit_int_info if it is valid.
1927          * Exit_int_info and event_inj can't be both valid because the case
1928          * below only happens on a VMRUN instruction intercept which has
1929          * no valid exit_int_info set.
1930          */
1931         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1932                 struct vmcb_control_area *nc = &nested_vmcb->control;
1933
1934                 nc->exit_int_info     = vmcb->control.event_inj;
1935                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1936         }
1937
1938         nested_vmcb->control.tlb_ctl           = 0;
1939         nested_vmcb->control.event_inj         = 0;
1940         nested_vmcb->control.event_inj_err     = 0;
1941
1942         /* We always set V_INTR_MASKING and remember the old value in hflags */
1943         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1944                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1945
1946         /* Restore the original control entries */
1947         copy_vmcb_control_area(vmcb, hsave);
1948
1949         kvm_clear_exception_queue(&svm->vcpu);
1950         kvm_clear_interrupt_queue(&svm->vcpu);
1951
1952         /* Restore selected save entries */
1953         svm->vmcb->save.es = hsave->save.es;
1954         svm->vmcb->save.cs = hsave->save.cs;
1955         svm->vmcb->save.ss = hsave->save.ss;
1956         svm->vmcb->save.ds = hsave->save.ds;
1957         svm->vmcb->save.gdtr = hsave->save.gdtr;
1958         svm->vmcb->save.idtr = hsave->save.idtr;
1959         svm->vmcb->save.rflags = hsave->save.rflags;
1960         svm_set_efer(&svm->vcpu, hsave->save.efer);
1961         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1962         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1963         if (npt_enabled) {
1964                 svm->vmcb->save.cr3 = hsave->save.cr3;
1965                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1966         } else {
1967                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1968         }
1969         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1970         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1971         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1972         svm->vmcb->save.dr7 = 0;
1973         svm->vmcb->save.cpl = 0;
1974         svm->vmcb->control.exit_int_info = 0;
1975
1976         nested_svm_unmap(page);
1977
1978         kvm_mmu_reset_context(&svm->vcpu);
1979         kvm_mmu_load(&svm->vcpu);
1980
1981         return 0;
1982 }
1983
1984 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1985 {
1986         /*
1987          * This function merges the msr permission bitmaps of kvm and the
1988          * nested vmcb. It is omptimized in that it only merges the parts where
1989          * the kvm msr permission bitmap may contain zero bits
1990          */
1991         int i;
1992
1993         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1994                 return true;
1995
1996         for (i = 0; i < MSRPM_OFFSETS; i++) {
1997                 u32 value, p;
1998                 u64 offset;
1999
2000                 if (msrpm_offsets[i] == 0xffffffff)
2001                         break;
2002
2003                 p      = msrpm_offsets[i];
2004                 offset = svm->nested.vmcb_msrpm + (p * 4);
2005
2006                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2007                         return false;
2008
2009                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2010         }
2011
2012         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2013
2014         return true;
2015 }
2016
2017 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2018 {
2019         struct vmcb *nested_vmcb;
2020         struct vmcb *hsave = svm->nested.hsave;
2021         struct vmcb *vmcb = svm->vmcb;
2022         struct page *page;
2023         u64 vmcb_gpa;
2024
2025         vmcb_gpa = svm->vmcb->save.rax;
2026
2027         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2028         if (!nested_vmcb)
2029                 return false;
2030
2031         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
2032                                nested_vmcb->save.rip,
2033                                nested_vmcb->control.int_ctl,
2034                                nested_vmcb->control.event_inj,
2035                                nested_vmcb->control.nested_ctl);
2036
2037         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2038                                     nested_vmcb->control.intercept_cr_write,
2039                                     nested_vmcb->control.intercept_exceptions,
2040                                     nested_vmcb->control.intercept);
2041
2042         /* Clear internal status */
2043         kvm_clear_exception_queue(&svm->vcpu);
2044         kvm_clear_interrupt_queue(&svm->vcpu);
2045
2046         /*
2047          * Save the old vmcb, so we don't need to pick what we save, but can
2048          * restore everything when a VMEXIT occurs
2049          */
2050         hsave->save.es     = vmcb->save.es;
2051         hsave->save.cs     = vmcb->save.cs;
2052         hsave->save.ss     = vmcb->save.ss;
2053         hsave->save.ds     = vmcb->save.ds;
2054         hsave->save.gdtr   = vmcb->save.gdtr;
2055         hsave->save.idtr   = vmcb->save.idtr;
2056         hsave->save.efer   = svm->vcpu.arch.efer;
2057         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2058         hsave->save.cr4    = svm->vcpu.arch.cr4;
2059         hsave->save.rflags = vmcb->save.rflags;
2060         hsave->save.rip    = svm->next_rip;
2061         hsave->save.rsp    = vmcb->save.rsp;
2062         hsave->save.rax    = vmcb->save.rax;
2063         if (npt_enabled)
2064                 hsave->save.cr3    = vmcb->save.cr3;
2065         else
2066                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2067
2068         copy_vmcb_control_area(hsave, vmcb);
2069
2070         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2071                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2072         else
2073                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2074
2075         /* Load the nested guest state */
2076         svm->vmcb->save.es = nested_vmcb->save.es;
2077         svm->vmcb->save.cs = nested_vmcb->save.cs;
2078         svm->vmcb->save.ss = nested_vmcb->save.ss;
2079         svm->vmcb->save.ds = nested_vmcb->save.ds;
2080         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2081         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2082         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2083         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2084         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2085         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2086         if (npt_enabled) {
2087                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2088                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2089         } else
2090                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2091
2092         /* Guest paging mode is active - reset mmu */
2093         kvm_mmu_reset_context(&svm->vcpu);
2094
2095         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2096         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2097         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2098         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2099
2100         /* In case we don't even reach vcpu_run, the fields are not updated */
2101         svm->vmcb->save.rax = nested_vmcb->save.rax;
2102         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2103         svm->vmcb->save.rip = nested_vmcb->save.rip;
2104         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2105         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2106         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2107
2108         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2109         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2110
2111         /* cache intercepts */
2112         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2113         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2114         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2115         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2116         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2117         svm->nested.intercept            = nested_vmcb->control.intercept;
2118
2119         force_new_asid(&svm->vcpu);
2120         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2121         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2122                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2123         else
2124                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2125
2126         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2127                 /* We only want the cr8 intercept bits of the guest */
2128                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2129                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2130         }
2131
2132         /* We don't want to see VMMCALLs from a nested guest */
2133         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2134
2135         /*
2136          * We don't want a nested guest to be more powerful than the guest, so
2137          * all intercepts are ORed
2138          */
2139         svm->vmcb->control.intercept_cr_read |=
2140                 nested_vmcb->control.intercept_cr_read;
2141         svm->vmcb->control.intercept_cr_write |=
2142                 nested_vmcb->control.intercept_cr_write;
2143         svm->vmcb->control.intercept_dr_read |=
2144                 nested_vmcb->control.intercept_dr_read;
2145         svm->vmcb->control.intercept_dr_write |=
2146                 nested_vmcb->control.intercept_dr_write;
2147         svm->vmcb->control.intercept_exceptions |=
2148                 nested_vmcb->control.intercept_exceptions;
2149
2150         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2151
2152         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2153         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2154         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2155         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2156         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2157         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2158
2159         nested_svm_unmap(page);
2160
2161         /* nested_vmcb is our indicator if nested SVM is activated */
2162         svm->nested.vmcb = vmcb_gpa;
2163
2164         enable_gif(svm);
2165
2166         return true;
2167 }
2168
2169 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2170 {
2171         to_vmcb->save.fs = from_vmcb->save.fs;
2172         to_vmcb->save.gs = from_vmcb->save.gs;
2173         to_vmcb->save.tr = from_vmcb->save.tr;
2174         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2175         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2176         to_vmcb->save.star = from_vmcb->save.star;
2177         to_vmcb->save.lstar = from_vmcb->save.lstar;
2178         to_vmcb->save.cstar = from_vmcb->save.cstar;
2179         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2180         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2181         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2182         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2183 }
2184
2185 static int vmload_interception(struct vcpu_svm *svm)
2186 {
2187         struct vmcb *nested_vmcb;
2188         struct page *page;
2189
2190         if (nested_svm_check_permissions(svm))
2191                 return 1;
2192
2193         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2194         skip_emulated_instruction(&svm->vcpu);
2195
2196         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2197         if (!nested_vmcb)
2198                 return 1;
2199
2200         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2201         nested_svm_unmap(page);
2202
2203         return 1;
2204 }
2205
2206 static int vmsave_interception(struct vcpu_svm *svm)
2207 {
2208         struct vmcb *nested_vmcb;
2209         struct page *page;
2210
2211         if (nested_svm_check_permissions(svm))
2212                 return 1;
2213
2214         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2215         skip_emulated_instruction(&svm->vcpu);
2216
2217         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2218         if (!nested_vmcb)
2219                 return 1;
2220
2221         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2222         nested_svm_unmap(page);
2223
2224         return 1;
2225 }
2226
2227 static int vmrun_interception(struct vcpu_svm *svm)
2228 {
2229         if (nested_svm_check_permissions(svm))
2230                 return 1;
2231
2232         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2233         skip_emulated_instruction(&svm->vcpu);
2234
2235         if (!nested_svm_vmrun(svm))
2236                 return 1;
2237
2238         if (!nested_svm_vmrun_msrpm(svm))
2239                 goto failed;
2240
2241         return 1;
2242
2243 failed:
2244
2245         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2246         svm->vmcb->control.exit_code_hi = 0;
2247         svm->vmcb->control.exit_info_1  = 0;
2248         svm->vmcb->control.exit_info_2  = 0;
2249
2250         nested_svm_vmexit(svm);
2251
2252         return 1;
2253 }
2254
2255 static int stgi_interception(struct vcpu_svm *svm)
2256 {
2257         if (nested_svm_check_permissions(svm))
2258                 return 1;
2259
2260         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2261         skip_emulated_instruction(&svm->vcpu);
2262
2263         enable_gif(svm);
2264
2265         return 1;
2266 }
2267
2268 static int clgi_interception(struct vcpu_svm *svm)
2269 {
2270         if (nested_svm_check_permissions(svm))
2271                 return 1;
2272
2273         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2274         skip_emulated_instruction(&svm->vcpu);
2275
2276         disable_gif(svm);
2277
2278         /* After a CLGI no interrupts should come */
2279         svm_clear_vintr(svm);
2280         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2281
2282         return 1;
2283 }
2284
2285 static int invlpga_interception(struct vcpu_svm *svm)
2286 {
2287         struct kvm_vcpu *vcpu = &svm->vcpu;
2288
2289         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2290                           vcpu->arch.regs[VCPU_REGS_RAX]);
2291
2292         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2293         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2294
2295         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2296         skip_emulated_instruction(&svm->vcpu);
2297         return 1;
2298 }
2299
2300 static int skinit_interception(struct vcpu_svm *svm)
2301 {
2302         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2303
2304         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2305         return 1;
2306 }
2307
2308 static int invalid_op_interception(struct vcpu_svm *svm)
2309 {
2310         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2311         return 1;
2312 }
2313
2314 static int task_switch_interception(struct vcpu_svm *svm)
2315 {
2316         u16 tss_selector;
2317         int reason;
2318         int int_type = svm->vmcb->control.exit_int_info &
2319                 SVM_EXITINTINFO_TYPE_MASK;
2320         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2321         uint32_t type =
2322                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2323         uint32_t idt_v =
2324                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2325         bool has_error_code = false;
2326         u32 error_code = 0;
2327
2328         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2329
2330         if (svm->vmcb->control.exit_info_2 &
2331             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2332                 reason = TASK_SWITCH_IRET;
2333         else if (svm->vmcb->control.exit_info_2 &
2334                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2335                 reason = TASK_SWITCH_JMP;
2336         else if (idt_v)
2337                 reason = TASK_SWITCH_GATE;
2338         else
2339                 reason = TASK_SWITCH_CALL;
2340
2341         if (reason == TASK_SWITCH_GATE) {
2342                 switch (type) {
2343                 case SVM_EXITINTINFO_TYPE_NMI:
2344                         svm->vcpu.arch.nmi_injected = false;
2345                         break;
2346                 case SVM_EXITINTINFO_TYPE_EXEPT:
2347                         if (svm->vmcb->control.exit_info_2 &
2348                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2349                                 has_error_code = true;
2350                                 error_code =
2351                                         (u32)svm->vmcb->control.exit_info_2;
2352                         }
2353                         kvm_clear_exception_queue(&svm->vcpu);
2354                         break;
2355                 case SVM_EXITINTINFO_TYPE_INTR:
2356                         kvm_clear_interrupt_queue(&svm->vcpu);
2357                         break;
2358                 default:
2359                         break;
2360                 }
2361         }
2362
2363         if (reason != TASK_SWITCH_GATE ||
2364             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2365             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2366              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2367                 skip_emulated_instruction(&svm->vcpu);
2368
2369         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2370                                 has_error_code, error_code) == EMULATE_FAIL) {
2371                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2372                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2373                 svm->vcpu.run->internal.ndata = 0;
2374                 return 0;
2375         }
2376         return 1;
2377 }
2378
2379 static int cpuid_interception(struct vcpu_svm *svm)
2380 {
2381         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2382         kvm_emulate_cpuid(&svm->vcpu);
2383         return 1;
2384 }
2385
2386 static int iret_interception(struct vcpu_svm *svm)
2387 {
2388         ++svm->vcpu.stat.nmi_window_exits;
2389         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2390         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2391         return 1;
2392 }
2393
2394 static int invlpg_interception(struct vcpu_svm *svm)
2395 {
2396         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2397 }
2398
2399 static int emulate_on_interception(struct vcpu_svm *svm)
2400 {
2401         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2402 }
2403
2404 static int cr8_write_interception(struct vcpu_svm *svm)
2405 {
2406         struct kvm_run *kvm_run = svm->vcpu.run;
2407
2408         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2409         /* instruction emulation calls kvm_set_cr8() */
2410         emulate_instruction(&svm->vcpu, 0, 0, 0);
2411         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2412                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2413                 return 1;
2414         }
2415         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2416                 return 1;
2417         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2418         return 0;
2419 }
2420
2421 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2422 {
2423         struct vcpu_svm *svm = to_svm(vcpu);
2424
2425         switch (ecx) {
2426         case MSR_IA32_TSC: {
2427                 u64 tsc_offset;
2428
2429                 if (is_nested(svm))
2430                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2431                 else
2432                         tsc_offset = svm->vmcb->control.tsc_offset;
2433
2434                 *data = tsc_offset + native_read_tsc();
2435                 break;
2436         }
2437         case MSR_STAR:
2438                 *data = svm->vmcb->save.star;
2439                 break;
2440 #ifdef CONFIG_X86_64
2441         case MSR_LSTAR:
2442                 *data = svm->vmcb->save.lstar;
2443                 break;
2444         case MSR_CSTAR:
2445                 *data = svm->vmcb->save.cstar;
2446                 break;
2447         case MSR_KERNEL_GS_BASE:
2448                 *data = svm->vmcb->save.kernel_gs_base;
2449                 break;
2450         case MSR_SYSCALL_MASK:
2451                 *data = svm->vmcb->save.sfmask;
2452                 break;
2453 #endif
2454         case MSR_IA32_SYSENTER_CS:
2455                 *data = svm->vmcb->save.sysenter_cs;
2456                 break;
2457         case MSR_IA32_SYSENTER_EIP:
2458                 *data = svm->sysenter_eip;
2459                 break;
2460         case MSR_IA32_SYSENTER_ESP:
2461                 *data = svm->sysenter_esp;
2462                 break;
2463         /*
2464          * Nobody will change the following 5 values in the VMCB so we can
2465          * safely return them on rdmsr. They will always be 0 until LBRV is
2466          * implemented.
2467          */
2468         case MSR_IA32_DEBUGCTLMSR:
2469                 *data = svm->vmcb->save.dbgctl;
2470                 break;
2471         case MSR_IA32_LASTBRANCHFROMIP:
2472                 *data = svm->vmcb->save.br_from;
2473                 break;
2474         case MSR_IA32_LASTBRANCHTOIP:
2475                 *data = svm->vmcb->save.br_to;
2476                 break;
2477         case MSR_IA32_LASTINTFROMIP:
2478                 *data = svm->vmcb->save.last_excp_from;
2479                 break;
2480         case MSR_IA32_LASTINTTOIP:
2481                 *data = svm->vmcb->save.last_excp_to;
2482                 break;
2483         case MSR_VM_HSAVE_PA:
2484                 *data = svm->nested.hsave_msr;
2485                 break;
2486         case MSR_VM_CR:
2487                 *data = svm->nested.vm_cr_msr;
2488                 break;
2489         case MSR_IA32_UCODE_REV:
2490                 *data = 0x01000065;
2491                 break;
2492         default:
2493                 return kvm_get_msr_common(vcpu, ecx, data);
2494         }
2495         return 0;
2496 }
2497
2498 static int rdmsr_interception(struct vcpu_svm *svm)
2499 {
2500         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2501         u64 data;
2502
2503         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2504                 trace_kvm_msr_read_ex(ecx);
2505                 kvm_inject_gp(&svm->vcpu, 0);
2506         } else {
2507                 trace_kvm_msr_read(ecx, data);
2508
2509                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2510                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2511                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2512                 skip_emulated_instruction(&svm->vcpu);
2513         }
2514         return 1;
2515 }
2516
2517 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2518 {
2519         struct vcpu_svm *svm = to_svm(vcpu);
2520         int svm_dis, chg_mask;
2521
2522         if (data & ~SVM_VM_CR_VALID_MASK)
2523                 return 1;
2524
2525         chg_mask = SVM_VM_CR_VALID_MASK;
2526
2527         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2528                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2529
2530         svm->nested.vm_cr_msr &= ~chg_mask;
2531         svm->nested.vm_cr_msr |= (data & chg_mask);
2532
2533         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2534
2535         /* check for svm_disable while efer.svme is set */
2536         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2537                 return 1;
2538
2539         return 0;
2540 }
2541
2542 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2543 {
2544         struct vcpu_svm *svm = to_svm(vcpu);
2545
2546         switch (ecx) {
2547         case MSR_IA32_TSC: {
2548                 u64 tsc_offset = data - native_read_tsc();
2549                 u64 g_tsc_offset = 0;
2550
2551                 if (is_nested(svm)) {
2552                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2553                                        svm->nested.hsave->control.tsc_offset;
2554                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2555                 }
2556
2557                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2558
2559                 break;
2560         }
2561         case MSR_STAR:
2562                 svm->vmcb->save.star = data;
2563                 break;
2564 #ifdef CONFIG_X86_64
2565         case MSR_LSTAR:
2566                 svm->vmcb->save.lstar = data;
2567                 break;
2568         case MSR_CSTAR:
2569                 svm->vmcb->save.cstar = data;
2570                 break;
2571         case MSR_KERNEL_GS_BASE:
2572                 svm->vmcb->save.kernel_gs_base = data;
2573                 break;
2574         case MSR_SYSCALL_MASK:
2575                 svm->vmcb->save.sfmask = data;
2576                 break;
2577 #endif
2578         case MSR_IA32_SYSENTER_CS:
2579                 svm->vmcb->save.sysenter_cs = data;
2580                 break;
2581         case MSR_IA32_SYSENTER_EIP:
2582                 svm->sysenter_eip = data;
2583                 svm->vmcb->save.sysenter_eip = data;
2584                 break;
2585         case MSR_IA32_SYSENTER_ESP:
2586                 svm->sysenter_esp = data;
2587                 svm->vmcb->save.sysenter_esp = data;
2588                 break;
2589         case MSR_IA32_DEBUGCTLMSR:
2590                 if (!svm_has(SVM_FEATURE_LBRV)) {
2591                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2592                                         __func__, data);
2593                         break;
2594                 }
2595                 if (data & DEBUGCTL_RESERVED_BITS)
2596                         return 1;
2597
2598                 svm->vmcb->save.dbgctl = data;
2599                 if (data & (1ULL<<0))
2600                         svm_enable_lbrv(svm);
2601                 else
2602                         svm_disable_lbrv(svm);
2603                 break;
2604         case MSR_VM_HSAVE_PA:
2605                 svm->nested.hsave_msr = data;
2606                 break;
2607         case MSR_VM_CR:
2608                 return svm_set_vm_cr(vcpu, data);
2609         case MSR_VM_IGNNE:
2610                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2611                 break;
2612         default:
2613                 return kvm_set_msr_common(vcpu, ecx, data);
2614         }
2615         return 0;
2616 }
2617
2618 static int wrmsr_interception(struct vcpu_svm *svm)
2619 {
2620         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2621         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2622                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2623
2624
2625         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2626         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2627                 trace_kvm_msr_write_ex(ecx, data);
2628                 kvm_inject_gp(&svm->vcpu, 0);
2629         } else {
2630                 trace_kvm_msr_write(ecx, data);
2631                 skip_emulated_instruction(&svm->vcpu);
2632         }
2633         return 1;
2634 }
2635
2636 static int msr_interception(struct vcpu_svm *svm)
2637 {
2638         if (svm->vmcb->control.exit_info_1)
2639                 return wrmsr_interception(svm);
2640         else
2641                 return rdmsr_interception(svm);
2642 }
2643
2644 static int interrupt_window_interception(struct vcpu_svm *svm)
2645 {
2646         struct kvm_run *kvm_run = svm->vcpu.run;
2647
2648         svm_clear_vintr(svm);
2649         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2650         /*
2651          * If the user space waits to inject interrupts, exit as soon as
2652          * possible
2653          */
2654         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2655             kvm_run->request_interrupt_window &&
2656             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2657                 ++svm->vcpu.stat.irq_window_exits;
2658                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2659                 return 0;
2660         }
2661
2662         return 1;
2663 }
2664
2665 static int pause_interception(struct vcpu_svm *svm)
2666 {
2667         kvm_vcpu_on_spin(&(svm->vcpu));
2668         return 1;
2669 }
2670
2671 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2672         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2673         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2674         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2675         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2676         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2677         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2678         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2679         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2680         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2681         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2682         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2683         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2684         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2685         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2686         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2687         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2688         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2689         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2690         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2691         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2692         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2693         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2694         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2695         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2696         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2697         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2698         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2699         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2700         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2701         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2702         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2703         [SVM_EXIT_INTR]                         = intr_interception,
2704         [SVM_EXIT_NMI]                          = nmi_interception,
2705         [SVM_EXIT_SMI]                          = nop_on_interception,
2706         [SVM_EXIT_INIT]                         = nop_on_interception,
2707         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2708         [SVM_EXIT_CPUID]                        = cpuid_interception,
2709         [SVM_EXIT_IRET]                         = iret_interception,
2710         [SVM_EXIT_INVD]                         = emulate_on_interception,
2711         [SVM_EXIT_PAUSE]                        = pause_interception,
2712         [SVM_EXIT_HLT]                          = halt_interception,
2713         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2714         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2715         [SVM_EXIT_IOIO]                         = io_interception,
2716         [SVM_EXIT_MSR]                          = msr_interception,
2717         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2718         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2719         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2720         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2721         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2722         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2723         [SVM_EXIT_STGI]                         = stgi_interception,
2724         [SVM_EXIT_CLGI]                         = clgi_interception,
2725         [SVM_EXIT_SKINIT]                       = skinit_interception,
2726         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2727         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2728         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2729         [SVM_EXIT_NPF]                          = pf_interception,
2730 };
2731
2732 void dump_vmcb(struct kvm_vcpu *vcpu)
2733 {
2734         struct vcpu_svm *svm = to_svm(vcpu);
2735         struct vmcb_control_area *control = &svm->vmcb->control;
2736         struct vmcb_save_area *save = &svm->vmcb->save;
2737
2738         pr_err("VMCB Control Area:\n");
2739         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2740         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2741         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2742         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2743         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2744         pr_err("intercepts:         %016llx\n", control->intercept);
2745         pr_err("pause filter count: %d\n", control->pause_filter_count);
2746         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2747         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2748         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2749         pr_err("asid:               %d\n", control->asid);
2750         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2751         pr_err("int_ctl:            %08x\n", control->int_ctl);
2752         pr_err("int_vector:         %08x\n", control->int_vector);
2753         pr_err("int_state:          %08x\n", control->int_state);
2754         pr_err("exit_code:          %08x\n", control->exit_code);
2755         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2756         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2757         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2758         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2759         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2760         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2761         pr_err("event_inj:          %08x\n", control->event_inj);
2762         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2763         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2764         pr_err("next_rip:           %016llx\n", control->next_rip);
2765         pr_err("VMCB State Save Area:\n");
2766         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2767                 save->es.selector, save->es.attrib,
2768                 save->es.limit, save->es.base);
2769         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2770                 save->cs.selector, save->cs.attrib,
2771                 save->cs.limit, save->cs.base);
2772         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2773                 save->ss.selector, save->ss.attrib,
2774                 save->ss.limit, save->ss.base);
2775         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2776                 save->ds.selector, save->ds.attrib,
2777                 save->ds.limit, save->ds.base);
2778         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2779                 save->fs.selector, save->fs.attrib,
2780                 save->fs.limit, save->fs.base);
2781         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2782                 save->gs.selector, save->gs.attrib,
2783                 save->gs.limit, save->gs.base);
2784         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2785                 save->gdtr.selector, save->gdtr.attrib,
2786                 save->gdtr.limit, save->gdtr.base);
2787         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2788                 save->ldtr.selector, save->ldtr.attrib,
2789                 save->ldtr.limit, save->ldtr.base);
2790         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2791                 save->idtr.selector, save->idtr.attrib,
2792                 save->idtr.limit, save->idtr.base);
2793         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2794                 save->tr.selector, save->tr.attrib,
2795                 save->tr.limit, save->tr.base);
2796         pr_err("cpl:            %d                efer:         %016llx\n",
2797                 save->cpl, save->efer);
2798         pr_err("cr0:            %016llx cr2:          %016llx\n",
2799                 save->cr0, save->cr2);
2800         pr_err("cr3:            %016llx cr4:          %016llx\n",
2801                 save->cr3, save->cr4);
2802         pr_err("dr6:            %016llx dr7:          %016llx\n",
2803                 save->dr6, save->dr7);
2804         pr_err("rip:            %016llx rflags:       %016llx\n",
2805                 save->rip, save->rflags);
2806         pr_err("rsp:            %016llx rax:          %016llx\n",
2807                 save->rsp, save->rax);
2808         pr_err("star:           %016llx lstar:        %016llx\n",
2809                 save->star, save->lstar);
2810         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2811                 save->cstar, save->sfmask);
2812         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2813                 save->kernel_gs_base, save->sysenter_cs);
2814         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2815                 save->sysenter_esp, save->sysenter_eip);
2816         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2817                 save->g_pat, save->dbgctl);
2818         pr_err("br_from:        %016llx br_to:        %016llx\n",
2819                 save->br_from, save->br_to);
2820         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2821                 save->last_excp_from, save->last_excp_to);
2822
2823 }
2824
2825 static int handle_exit(struct kvm_vcpu *vcpu)
2826 {
2827         struct vcpu_svm *svm = to_svm(vcpu);
2828         struct kvm_run *kvm_run = vcpu->run;
2829         u32 exit_code = svm->vmcb->control.exit_code;
2830
2831         trace_kvm_exit(exit_code, vcpu);
2832
2833         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2834                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2835         if (npt_enabled)
2836                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2837
2838         if (unlikely(svm->nested.exit_required)) {
2839                 nested_svm_vmexit(svm);
2840                 svm->nested.exit_required = false;
2841
2842                 return 1;
2843         }
2844
2845         if (is_nested(svm)) {
2846                 int vmexit;
2847
2848                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2849                                         svm->vmcb->control.exit_info_1,
2850                                         svm->vmcb->control.exit_info_2,
2851                                         svm->vmcb->control.exit_int_info,
2852                                         svm->vmcb->control.exit_int_info_err);
2853
2854                 vmexit = nested_svm_exit_special(svm);
2855
2856                 if (vmexit == NESTED_EXIT_CONTINUE)
2857                         vmexit = nested_svm_exit_handled(svm);
2858
2859                 if (vmexit == NESTED_EXIT_DONE)
2860                         return 1;
2861         }
2862
2863         svm_complete_interrupts(svm);
2864
2865         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2866                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2867                 kvm_run->fail_entry.hardware_entry_failure_reason
2868                         = svm->vmcb->control.exit_code;
2869                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
2870                 dump_vmcb(vcpu);
2871                 return 0;
2872         }
2873
2874         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2875             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2876             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2877                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2878                        "exit_code 0x%x\n",
2879                        __func__, svm->vmcb->control.exit_int_info,
2880                        exit_code);
2881
2882         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2883             || !svm_exit_handlers[exit_code]) {
2884                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2885                 kvm_run->hw.hardware_exit_reason = exit_code;
2886                 return 0;
2887         }
2888
2889         return svm_exit_handlers[exit_code](svm);
2890 }
2891
2892 static void reload_tss(struct kvm_vcpu *vcpu)
2893 {
2894         int cpu = raw_smp_processor_id();
2895
2896         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2897         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2898         load_TR_desc();
2899 }
2900
2901 static void pre_svm_run(struct vcpu_svm *svm)
2902 {
2903         int cpu = raw_smp_processor_id();
2904
2905         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2906
2907         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2908         /* FIXME: handle wraparound of asid_generation */
2909         if (svm->asid_generation != sd->asid_generation)
2910                 new_asid(svm, sd);
2911 }
2912
2913 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2914 {
2915         struct vcpu_svm *svm = to_svm(vcpu);
2916
2917         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2918         vcpu->arch.hflags |= HF_NMI_MASK;
2919         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2920         ++vcpu->stat.nmi_injections;
2921 }
2922
2923 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2924 {
2925         struct vmcb_control_area *control;
2926
2927         control = &svm->vmcb->control;
2928         control->int_vector = irq;
2929         control->int_ctl &= ~V_INTR_PRIO_MASK;
2930         control->int_ctl |= V_IRQ_MASK |
2931                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2932 }
2933
2934 static void svm_set_irq(struct kvm_vcpu *vcpu)
2935 {
2936         struct vcpu_svm *svm = to_svm(vcpu);
2937
2938         BUG_ON(!(gif_set(svm)));
2939
2940         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
2941         ++vcpu->stat.irq_injections;
2942
2943         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2944                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2945 }
2946
2947 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2948 {
2949         struct vcpu_svm *svm = to_svm(vcpu);
2950
2951         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2952                 return;
2953
2954         if (irr == -1)
2955                 return;
2956
2957         if (tpr >= irr)
2958                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2959 }
2960
2961 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2962 {
2963         struct vcpu_svm *svm = to_svm(vcpu);
2964         struct vmcb *vmcb = svm->vmcb;
2965         int ret;
2966         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2967               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2968         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
2969
2970         return ret;
2971 }
2972
2973 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2974 {
2975         struct vcpu_svm *svm = to_svm(vcpu);
2976
2977         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2978 }
2979
2980 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2981 {
2982         struct vcpu_svm *svm = to_svm(vcpu);
2983
2984         if (masked) {
2985                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2986                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2987         } else {
2988                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2989                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2990         }
2991 }
2992
2993 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2994 {
2995         struct vcpu_svm *svm = to_svm(vcpu);
2996         struct vmcb *vmcb = svm->vmcb;
2997         int ret;
2998
2999         if (!gif_set(svm) ||
3000              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3001                 return 0;
3002
3003         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3004
3005         if (is_nested(svm))
3006                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3007
3008         return ret;
3009 }
3010
3011 static void enable_irq_window(struct kvm_vcpu *vcpu)
3012 {
3013         struct vcpu_svm *svm = to_svm(vcpu);
3014
3015         /*
3016          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3017          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3018          * get that intercept, this function will be called again though and
3019          * we'll get the vintr intercept.
3020          */
3021         if (gif_set(svm) && nested_svm_intr(svm)) {
3022                 svm_set_vintr(svm);
3023                 svm_inject_irq(svm, 0x0);
3024         }
3025 }
3026
3027 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3028 {
3029         struct vcpu_svm *svm = to_svm(vcpu);
3030
3031         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3032             == HF_NMI_MASK)
3033                 return; /* IRET will cause a vm exit */
3034
3035         /*
3036          * Something prevents NMI from been injected. Single step over possible
3037          * problem (IRET or exception injection or interrupt shadow)
3038          */
3039         svm->nmi_singlestep = true;
3040         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3041         update_db_intercept(vcpu);
3042 }
3043
3044 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3045 {
3046         return 0;
3047 }
3048
3049 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3050 {
3051         force_new_asid(vcpu);
3052 }
3053
3054 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3055 {
3056 }
3057
3058 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3059 {
3060         struct vcpu_svm *svm = to_svm(vcpu);
3061
3062         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3063                 return;
3064
3065         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3066                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3067                 kvm_set_cr8(vcpu, cr8);
3068         }
3069 }
3070
3071 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3072 {
3073         struct vcpu_svm *svm = to_svm(vcpu);
3074         u64 cr8;
3075
3076         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3077                 return;
3078
3079         cr8 = kvm_get_cr8(vcpu);
3080         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3081         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3082 }
3083
3084 static void svm_complete_interrupts(struct vcpu_svm *svm)
3085 {
3086         u8 vector;
3087         int type;
3088         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3089         unsigned int3_injected = svm->int3_injected;
3090
3091         svm->int3_injected = 0;
3092
3093         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
3094                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3095
3096         svm->vcpu.arch.nmi_injected = false;
3097         kvm_clear_exception_queue(&svm->vcpu);
3098         kvm_clear_interrupt_queue(&svm->vcpu);
3099
3100         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3101                 return;
3102
3103         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3104         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3105
3106         switch (type) {
3107         case SVM_EXITINTINFO_TYPE_NMI:
3108                 svm->vcpu.arch.nmi_injected = true;
3109                 break;
3110         case SVM_EXITINTINFO_TYPE_EXEPT:
3111                 /*
3112                  * In case of software exceptions, do not reinject the vector,
3113                  * but re-execute the instruction instead. Rewind RIP first
3114                  * if we emulated INT3 before.
3115                  */
3116                 if (kvm_exception_is_soft(vector)) {
3117                         if (vector == BP_VECTOR && int3_injected &&
3118                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3119                                 kvm_rip_write(&svm->vcpu,
3120                                               kvm_rip_read(&svm->vcpu) -
3121                                               int3_injected);
3122                         break;
3123                 }
3124                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3125                         u32 err = svm->vmcb->control.exit_int_info_err;
3126                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3127
3128                 } else
3129                         kvm_requeue_exception(&svm->vcpu, vector);
3130                 break;
3131         case SVM_EXITINTINFO_TYPE_INTR:
3132                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3133                 break;
3134         default:
3135                 break;
3136         }
3137 }
3138
3139 #ifdef CONFIG_X86_64
3140 #define R "r"
3141 #else
3142 #define R "e"
3143 #endif
3144
3145 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3146 {
3147         struct vcpu_svm *svm = to_svm(vcpu);
3148         u16 fs_selector;
3149         u16 gs_selector;
3150         u16 ldt_selector;
3151
3152         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3153         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3154         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3155
3156         /*
3157          * A vmexit emulation is required before the vcpu can be executed
3158          * again.
3159          */
3160         if (unlikely(svm->nested.exit_required))
3161                 return;
3162
3163         pre_svm_run(svm);
3164
3165         sync_lapic_to_cr8(vcpu);
3166
3167         save_host_msrs(vcpu);
3168         savesegment(fs, fs_selector);
3169         savesegment(gs, gs_selector);
3170         ldt_selector = kvm_read_ldt();
3171         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3172         /* required for live migration with NPT */
3173         if (npt_enabled)
3174                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3175
3176         clgi();
3177
3178         local_irq_enable();
3179
3180         asm volatile (
3181                 "push %%"R"bp; \n\t"
3182                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3183                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3184                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3185                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3186                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3187                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3188 #ifdef CONFIG_X86_64
3189                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3190                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3191                 "mov %c[r10](%[svm]), %%r10 \n\t"
3192                 "mov %c[r11](%[svm]), %%r11 \n\t"
3193                 "mov %c[r12](%[svm]), %%r12 \n\t"
3194                 "mov %c[r13](%[svm]), %%r13 \n\t"
3195                 "mov %c[r14](%[svm]), %%r14 \n\t"
3196                 "mov %c[r15](%[svm]), %%r15 \n\t"
3197 #endif
3198
3199                 /* Enter guest mode */
3200                 "push %%"R"ax \n\t"
3201                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3202                 __ex(SVM_VMLOAD) "\n\t"
3203                 __ex(SVM_VMRUN) "\n\t"
3204                 __ex(SVM_VMSAVE) "\n\t"
3205                 "pop %%"R"ax \n\t"
3206
3207                 /* Save guest registers, load host registers */
3208                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3209                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3210                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3211                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3212                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3213                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3214 #ifdef CONFIG_X86_64
3215                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3216                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3217                 "mov %%r10, %c[r10](%[svm]) \n\t"
3218                 "mov %%r11, %c[r11](%[svm]) \n\t"
3219                 "mov %%r12, %c[r12](%[svm]) \n\t"
3220                 "mov %%r13, %c[r13](%[svm]) \n\t"
3221                 "mov %%r14, %c[r14](%[svm]) \n\t"
3222                 "mov %%r15, %c[r15](%[svm]) \n\t"
3223 #endif
3224                 "pop %%"R"bp"
3225                 :
3226                 : [svm]"a"(svm),
3227                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3228                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3229                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3230                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3231                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3232                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3233                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3234 #ifdef CONFIG_X86_64
3235                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3236                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3237                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3238                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3239                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3240                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3241                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3242                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3243 #endif
3244                 : "cc", "memory"
3245                 , R"bx", R"cx", R"dx", R"si", R"di"
3246 #ifdef CONFIG_X86_64
3247                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3248 #endif
3249                 );
3250
3251         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3252         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3253         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3254         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3255
3256         load_host_msrs(vcpu);
3257         loadsegment(fs, fs_selector);
3258 #ifdef CONFIG_X86_64
3259         load_gs_index(gs_selector);
3260         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3261 #else
3262         loadsegment(gs, gs_selector);
3263 #endif
3264         kvm_load_ldt(ldt_selector);
3265
3266         reload_tss(vcpu);
3267
3268         local_irq_disable();
3269
3270         stgi();
3271
3272         sync_cr8_to_lapic(vcpu);
3273
3274         svm->next_rip = 0;
3275
3276         if (npt_enabled) {
3277                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3278                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3279         }
3280
3281         /*
3282          * We need to handle MC intercepts here before the vcpu has a chance to
3283          * change the physical cpu
3284          */
3285         if (unlikely(svm->vmcb->control.exit_code ==
3286                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3287                 svm_handle_mce(svm);
3288 }
3289
3290 #undef R
3291
3292 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3293 {
3294         struct vcpu_svm *svm = to_svm(vcpu);
3295
3296         if (npt_enabled) {
3297                 svm->vmcb->control.nested_cr3 = root;
3298                 force_new_asid(vcpu);
3299                 return;
3300         }
3301
3302         svm->vmcb->save.cr3 = root;
3303         force_new_asid(vcpu);
3304 }
3305
3306 static int is_disabled(void)
3307 {
3308         u64 vm_cr;
3309
3310         rdmsrl(MSR_VM_CR, vm_cr);
3311         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3312                 return 1;
3313
3314         return 0;
3315 }
3316
3317 static void
3318 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3319 {
3320         /*
3321          * Patch in the VMMCALL instruction:
3322          */
3323         hypercall[0] = 0x0f;
3324         hypercall[1] = 0x01;
3325         hypercall[2] = 0xd9;
3326 }
3327
3328 static void svm_check_processor_compat(void *rtn)
3329 {
3330         *(int *)rtn = 0;
3331 }
3332
3333 static bool svm_cpu_has_accelerated_tpr(void)
3334 {
3335         return false;
3336 }
3337
3338 static int get_npt_level(void)
3339 {
3340 #ifdef CONFIG_X86_64
3341         return PT64_ROOT_LEVEL;
3342 #else
3343         return PT32E_ROOT_LEVEL;
3344 #endif
3345 }
3346
3347 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3348 {
3349         return 0;
3350 }
3351
3352 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3353 {
3354 }
3355
3356 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3357 {
3358         switch (func) {
3359         case 0x8000000A:
3360                 entry->eax = 1; /* SVM revision 1 */
3361                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3362                                    ASID emulation to nested SVM */
3363                 entry->ecx = 0; /* Reserved */
3364                 entry->edx = 0; /* Per default do not support any
3365                                    additional features */
3366
3367                 /* Support next_rip if host supports it */
3368                 if (svm_has(SVM_FEATURE_NRIP))
3369                         entry->edx |= SVM_FEATURE_NRIP;
3370
3371                 break;
3372         }
3373 }
3374
3375 static const struct trace_print_flags svm_exit_reasons_str[] = {
3376         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3377         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3378         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3379         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3380         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3381         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3382         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3383         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3384         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3385         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3386         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3387         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3388         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3389         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3390         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3391         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3392         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3393         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3394         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3395         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3396         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3397         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3398         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3399         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3400         { SVM_EXIT_INTR,                        "interrupt" },
3401         { SVM_EXIT_NMI,                         "nmi" },
3402         { SVM_EXIT_SMI,                         "smi" },
3403         { SVM_EXIT_INIT,                        "init" },
3404         { SVM_EXIT_VINTR,                       "vintr" },
3405         { SVM_EXIT_CPUID,                       "cpuid" },
3406         { SVM_EXIT_INVD,                        "invd" },
3407         { SVM_EXIT_HLT,                         "hlt" },
3408         { SVM_EXIT_INVLPG,                      "invlpg" },
3409         { SVM_EXIT_INVLPGA,                     "invlpga" },
3410         { SVM_EXIT_IOIO,                        "io" },
3411         { SVM_EXIT_MSR,                         "msr" },
3412         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3413         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3414         { SVM_EXIT_VMRUN,                       "vmrun" },
3415         { SVM_EXIT_VMMCALL,                     "hypercall" },
3416         { SVM_EXIT_VMLOAD,                      "vmload" },
3417         { SVM_EXIT_VMSAVE,                      "vmsave" },
3418         { SVM_EXIT_STGI,                        "stgi" },
3419         { SVM_EXIT_CLGI,                        "clgi" },
3420         { SVM_EXIT_SKINIT,                      "skinit" },
3421         { SVM_EXIT_WBINVD,                      "wbinvd" },
3422         { SVM_EXIT_MONITOR,                     "monitor" },
3423         { SVM_EXIT_MWAIT,                       "mwait" },
3424         { SVM_EXIT_NPF,                         "npf" },
3425         { -1, NULL }
3426 };
3427
3428 static int svm_get_lpage_level(void)
3429 {
3430         return PT_PDPE_LEVEL;
3431 }
3432
3433 static bool svm_rdtscp_supported(void)
3434 {
3435         return false;
3436 }
3437
3438 static bool svm_has_wbinvd_exit(void)
3439 {
3440         return true;
3441 }
3442
3443 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3444 {
3445         struct vcpu_svm *svm = to_svm(vcpu);
3446
3447         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3448         if (is_nested(svm))
3449                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3450         update_cr0_intercept(svm);
3451 }
3452
3453 static struct kvm_x86_ops svm_x86_ops = {
3454         .cpu_has_kvm_support = has_svm,
3455         .disabled_by_bios = is_disabled,
3456         .hardware_setup = svm_hardware_setup,
3457         .hardware_unsetup = svm_hardware_unsetup,
3458         .check_processor_compatibility = svm_check_processor_compat,
3459         .hardware_enable = svm_hardware_enable,
3460         .hardware_disable = svm_hardware_disable,
3461         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3462
3463         .vcpu_create = svm_create_vcpu,
3464         .vcpu_free = svm_free_vcpu,
3465         .vcpu_reset = svm_vcpu_reset,
3466
3467         .prepare_guest_switch = svm_prepare_guest_switch,
3468         .vcpu_load = svm_vcpu_load,
3469         .vcpu_put = svm_vcpu_put,
3470
3471         .set_guest_debug = svm_guest_debug,
3472         .get_msr = svm_get_msr,
3473         .set_msr = svm_set_msr,
3474         .get_segment_base = svm_get_segment_base,
3475         .get_segment = svm_get_segment,
3476         .set_segment = svm_set_segment,
3477         .get_cpl = svm_get_cpl,
3478         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3479         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3480         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3481         .set_cr0 = svm_set_cr0,
3482         .set_cr3 = svm_set_cr3,
3483         .set_cr4 = svm_set_cr4,
3484         .set_efer = svm_set_efer,
3485         .get_idt = svm_get_idt,
3486         .set_idt = svm_set_idt,
3487         .get_gdt = svm_get_gdt,
3488         .set_gdt = svm_set_gdt,
3489         .set_dr7 = svm_set_dr7,
3490         .cache_reg = svm_cache_reg,
3491         .get_rflags = svm_get_rflags,
3492         .set_rflags = svm_set_rflags,
3493         .fpu_activate = svm_fpu_activate,
3494         .fpu_deactivate = svm_fpu_deactivate,
3495
3496         .tlb_flush = svm_flush_tlb,
3497
3498         .run = svm_vcpu_run,
3499         .handle_exit = handle_exit,
3500         .skip_emulated_instruction = skip_emulated_instruction,
3501         .set_interrupt_shadow = svm_set_interrupt_shadow,
3502         .get_interrupt_shadow = svm_get_interrupt_shadow,
3503         .patch_hypercall = svm_patch_hypercall,
3504         .set_irq = svm_set_irq,
3505         .set_nmi = svm_inject_nmi,
3506         .queue_exception = svm_queue_exception,
3507         .interrupt_allowed = svm_interrupt_allowed,
3508         .nmi_allowed = svm_nmi_allowed,
3509         .get_nmi_mask = svm_get_nmi_mask,
3510         .set_nmi_mask = svm_set_nmi_mask,
3511         .enable_nmi_window = enable_nmi_window,
3512         .enable_irq_window = enable_irq_window,
3513         .update_cr8_intercept = update_cr8_intercept,
3514
3515         .set_tss_addr = svm_set_tss_addr,
3516         .get_tdp_level = get_npt_level,
3517         .get_mt_mask = svm_get_mt_mask,
3518
3519         .exit_reasons_str = svm_exit_reasons_str,
3520         .get_lpage_level = svm_get_lpage_level,
3521
3522         .cpuid_update = svm_cpuid_update,
3523
3524         .rdtscp_supported = svm_rdtscp_supported,
3525
3526         .set_supported_cpuid = svm_set_supported_cpuid,
3527
3528         .has_wbinvd_exit = svm_has_wbinvd_exit,
3529 };
3530
3531 static int __init svm_init(void)
3532 {
3533         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3534                         __alignof__(struct vcpu_svm), THIS_MODULE);
3535 }
3536
3537 static void __exit svm_exit(void)
3538 {
3539         kvm_exit();
3540 }
3541
3542 module_init(svm_init)
3543 module_exit(svm_exit)