]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
Merge branches 'pm-cpufreq-x86', 'pm-cpufreq-docs' and 'intel_pstate'
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48
49 #include <asm/virtext.h>
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 static const struct x86_cpu_id svm_cpu_id[] = {
58         X86_FEATURE_MATCH(X86_FEATURE_SVM),
59         {}
60 };
61 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
62
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 #define SVM_FEATURE_NPT            (1 <<  0)
70 #define SVM_FEATURE_LBRV           (1 <<  1)
71 #define SVM_FEATURE_SVML           (1 <<  2)
72 #define SVM_FEATURE_NRIP           (1 <<  3)
73 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
74 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
75 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
76 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
77 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
78
79 #define SVM_AVIC_DOORBELL       0xc001011b
80
81 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
82 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
83 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
88 #define TSC_RATIO_MIN           0x0000000000000001ULL
89 #define TSC_RATIO_MAX           0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94  * 0xff is broadcast, so the max index allowed for physical APIC ID
95  * table is 0xfe.  APIC IDs above 0xff are reserved.
96  */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS               8
105 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS                 24
108 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112                                                 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121         MSR_FS_BASE,
122 #endif
123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124         MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_vcpu;
130
131 struct nested_state {
132         struct vmcb *hsave;
133         u64 hsave_msr;
134         u64 vm_cr_msr;
135         u64 vmcb;
136
137         /* These are the merged vectors */
138         u32 *msrpm;
139
140         /* gpa pointers to the real vectors */
141         u64 vmcb_msrpm;
142         u64 vmcb_iopm;
143
144         /* A VMEXIT is required but not yet emulated */
145         bool exit_required;
146
147         /* cache for intercepts of the guest */
148         u32 intercept_cr;
149         u32 intercept_dr;
150         u32 intercept_exceptions;
151         u64 intercept;
152
153         /* Nested Paging related state */
154         u64 nested_cr3;
155 };
156
157 #define MSRPM_OFFSETS   16
158 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
159
160 /*
161  * Set osvw_len to higher value when updated Revision Guides
162  * are published and we know what the new status bits are
163  */
164 static uint64_t osvw_len = 4, osvw_status;
165
166 struct vcpu_svm {
167         struct kvm_vcpu vcpu;
168         struct vmcb *vmcb;
169         unsigned long vmcb_pa;
170         struct svm_cpu_data *svm_data;
171         uint64_t asid_generation;
172         uint64_t sysenter_esp;
173         uint64_t sysenter_eip;
174         uint64_t tsc_aux;
175
176         u64 next_rip;
177
178         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
179         struct {
180                 u16 fs;
181                 u16 gs;
182                 u16 ldt;
183                 u64 gs_base;
184         } host;
185
186         u32 *msrpm;
187
188         ulong nmi_iret_rip;
189
190         struct nested_state nested;
191
192         bool nmi_singlestep;
193         u64 nmi_singlestep_guest_rflags;
194
195         unsigned int3_injected;
196         unsigned long int3_rip;
197
198         /* cached guest cpuid flags for faster access */
199         bool nrips_enabled      : 1;
200
201         u32 ldr_reg;
202         struct page *avic_backing_page;
203         u64 *avic_physical_id_cache;
204         bool avic_is_running;
205
206         /*
207          * Per-vcpu list of struct amd_svm_iommu_ir:
208          * This is used mainly to store interrupt remapping information used
209          * when update the vcpu affinity. This avoids the need to scan for
210          * IRTE and try to match ga_tag in the IOMMU driver.
211          */
212         struct list_head ir_list;
213         spinlock_t ir_list_lock;
214 };
215
216 /*
217  * This is a wrapper of struct amd_iommu_ir_data.
218  */
219 struct amd_svm_iommu_ir {
220         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
221         void *data;             /* Storing pointer to struct amd_ir_data */
222 };
223
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
226
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
231
232 static DEFINE_PER_CPU(u64, current_tsc_ratio);
233 #define TSC_RATIO_DEFAULT       0x0100000000ULL
234
235 #define MSR_INVALID                     0xffffffffU
236
237 static const struct svm_direct_access_msrs {
238         u32 index;   /* Index of the MSR */
239         bool always; /* True if intercept is always on */
240 } direct_access_msrs[] = {
241         { .index = MSR_STAR,                            .always = true  },
242         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
243 #ifdef CONFIG_X86_64
244         { .index = MSR_GS_BASE,                         .always = true  },
245         { .index = MSR_FS_BASE,                         .always = true  },
246         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
247         { .index = MSR_LSTAR,                           .always = true  },
248         { .index = MSR_CSTAR,                           .always = true  },
249         { .index = MSR_SYSCALL_MASK,                    .always = true  },
250 #endif
251         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
252         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
253         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
254         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
255         { .index = MSR_INVALID,                         .always = false },
256 };
257
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled = true;
261 #else
262 static bool npt_enabled;
263 #endif
264
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt = true;
267 module_param(npt, int, S_IRUGO);
268
269 /* allow nested virtualization in KVM/SVM */
270 static int nested = true;
271 module_param(nested, int, S_IRUGO);
272
273 /* enable / disable AVIC */
274 static int avic;
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic, int, S_IRUGO);
277 #endif
278
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls = true;
281 module_param(vls, int, 0444);
282
283 /* AVIC VM ID bit masks and lock */
284 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
285 static DEFINE_SPINLOCK(avic_vm_id_lock);
286
287 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
288 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
289 static void svm_complete_interrupts(struct vcpu_svm *svm);
290
291 static int nested_svm_exit_handled(struct vcpu_svm *svm);
292 static int nested_svm_intercept(struct vcpu_svm *svm);
293 static int nested_svm_vmexit(struct vcpu_svm *svm);
294 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
295                                       bool has_error_code, u32 error_code);
296
297 enum {
298         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
299                             pause filter count */
300         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
301         VMCB_ASID,       /* ASID */
302         VMCB_INTR,       /* int_ctl, int_vector */
303         VMCB_NPT,        /* npt_en, nCR3, gPAT */
304         VMCB_CR,         /* CR0, CR3, CR4, EFER */
305         VMCB_DR,         /* DR6, DR7 */
306         VMCB_DT,         /* GDT, IDT */
307         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
308         VMCB_CR2,        /* CR2 only */
309         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311                           * AVIC PHYSICAL_TABLE pointer,
312                           * AVIC LOGICAL_TABLE pointer
313                           */
314         VMCB_DIRTY_MAX,
315 };
316
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
319
320 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
321
322 static inline void mark_all_dirty(struct vmcb *vmcb)
323 {
324         vmcb->control.clean = 0;
325 }
326
327 static inline void mark_all_clean(struct vmcb *vmcb)
328 {
329         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
330                                & ~VMCB_ALWAYS_DIRTY_MASK;
331 }
332
333 static inline void mark_dirty(struct vmcb *vmcb, int bit)
334 {
335         vmcb->control.clean &= ~(1 << bit);
336 }
337
338 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
339 {
340         return container_of(vcpu, struct vcpu_svm, vcpu);
341 }
342
343 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
344 {
345         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
346         mark_dirty(svm->vmcb, VMCB_AVIC);
347 }
348
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
350 {
351         struct vcpu_svm *svm = to_svm(vcpu);
352         u64 *entry = svm->avic_physical_id_cache;
353
354         if (!entry)
355                 return false;
356
357         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
358 }
359
360 static void recalc_intercepts(struct vcpu_svm *svm)
361 {
362         struct vmcb_control_area *c, *h;
363         struct nested_state *g;
364
365         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
366
367         if (!is_guest_mode(&svm->vcpu))
368                 return;
369
370         c = &svm->vmcb->control;
371         h = &svm->nested.hsave->control;
372         g = &svm->nested;
373
374         c->intercept_cr = h->intercept_cr | g->intercept_cr;
375         c->intercept_dr = h->intercept_dr | g->intercept_dr;
376         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
377         c->intercept = h->intercept | g->intercept;
378 }
379
380 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
381 {
382         if (is_guest_mode(&svm->vcpu))
383                 return svm->nested.hsave;
384         else
385                 return svm->vmcb;
386 }
387
388 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
389 {
390         struct vmcb *vmcb = get_host_vmcb(svm);
391
392         vmcb->control.intercept_cr |= (1U << bit);
393
394         recalc_intercepts(svm);
395 }
396
397 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
398 {
399         struct vmcb *vmcb = get_host_vmcb(svm);
400
401         vmcb->control.intercept_cr &= ~(1U << bit);
402
403         recalc_intercepts(svm);
404 }
405
406 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
407 {
408         struct vmcb *vmcb = get_host_vmcb(svm);
409
410         return vmcb->control.intercept_cr & (1U << bit);
411 }
412
413 static inline void set_dr_intercepts(struct vcpu_svm *svm)
414 {
415         struct vmcb *vmcb = get_host_vmcb(svm);
416
417         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
418                 | (1 << INTERCEPT_DR1_READ)
419                 | (1 << INTERCEPT_DR2_READ)
420                 | (1 << INTERCEPT_DR3_READ)
421                 | (1 << INTERCEPT_DR4_READ)
422                 | (1 << INTERCEPT_DR5_READ)
423                 | (1 << INTERCEPT_DR6_READ)
424                 | (1 << INTERCEPT_DR7_READ)
425                 | (1 << INTERCEPT_DR0_WRITE)
426                 | (1 << INTERCEPT_DR1_WRITE)
427                 | (1 << INTERCEPT_DR2_WRITE)
428                 | (1 << INTERCEPT_DR3_WRITE)
429                 | (1 << INTERCEPT_DR4_WRITE)
430                 | (1 << INTERCEPT_DR5_WRITE)
431                 | (1 << INTERCEPT_DR6_WRITE)
432                 | (1 << INTERCEPT_DR7_WRITE);
433
434         recalc_intercepts(svm);
435 }
436
437 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
438 {
439         struct vmcb *vmcb = get_host_vmcb(svm);
440
441         vmcb->control.intercept_dr = 0;
442
443         recalc_intercepts(svm);
444 }
445
446 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
447 {
448         struct vmcb *vmcb = get_host_vmcb(svm);
449
450         vmcb->control.intercept_exceptions |= (1U << bit);
451
452         recalc_intercepts(svm);
453 }
454
455 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
456 {
457         struct vmcb *vmcb = get_host_vmcb(svm);
458
459         vmcb->control.intercept_exceptions &= ~(1U << bit);
460
461         recalc_intercepts(svm);
462 }
463
464 static inline void set_intercept(struct vcpu_svm *svm, int bit)
465 {
466         struct vmcb *vmcb = get_host_vmcb(svm);
467
468         vmcb->control.intercept |= (1ULL << bit);
469
470         recalc_intercepts(svm);
471 }
472
473 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
474 {
475         struct vmcb *vmcb = get_host_vmcb(svm);
476
477         vmcb->control.intercept &= ~(1ULL << bit);
478
479         recalc_intercepts(svm);
480 }
481
482 static inline void enable_gif(struct vcpu_svm *svm)
483 {
484         svm->vcpu.arch.hflags |= HF_GIF_MASK;
485 }
486
487 static inline void disable_gif(struct vcpu_svm *svm)
488 {
489         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
490 }
491
492 static inline bool gif_set(struct vcpu_svm *svm)
493 {
494         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
495 }
496
497 static unsigned long iopm_base;
498
499 struct kvm_ldttss_desc {
500         u16 limit0;
501         u16 base0;
502         unsigned base1:8, type:5, dpl:2, p:1;
503         unsigned limit1:4, zero0:3, g:1, base2:8;
504         u32 base3;
505         u32 zero1;
506 } __attribute__((packed));
507
508 struct svm_cpu_data {
509         int cpu;
510
511         u64 asid_generation;
512         u32 max_asid;
513         u32 next_asid;
514         struct kvm_ldttss_desc *tss_desc;
515
516         struct page *save_area;
517 };
518
519 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
520
521 struct svm_init_data {
522         int cpu;
523         int r;
524 };
525
526 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
527
528 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
529 #define MSRS_RANGE_SIZE 2048
530 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
531
532 static u32 svm_msrpm_offset(u32 msr)
533 {
534         u32 offset;
535         int i;
536
537         for (i = 0; i < NUM_MSR_MAPS; i++) {
538                 if (msr < msrpm_ranges[i] ||
539                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
540                         continue;
541
542                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
543                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
544
545                 /* Now we have the u8 offset - but need the u32 offset */
546                 return offset / 4;
547         }
548
549         /* MSR not in any range */
550         return MSR_INVALID;
551 }
552
553 #define MAX_INST_SIZE 15
554
555 static inline void clgi(void)
556 {
557         asm volatile (__ex(SVM_CLGI));
558 }
559
560 static inline void stgi(void)
561 {
562         asm volatile (__ex(SVM_STGI));
563 }
564
565 static inline void invlpga(unsigned long addr, u32 asid)
566 {
567         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
568 }
569
570 static int get_npt_level(void)
571 {
572 #ifdef CONFIG_X86_64
573         return PT64_ROOT_LEVEL;
574 #else
575         return PT32E_ROOT_LEVEL;
576 #endif
577 }
578
579 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
580 {
581         vcpu->arch.efer = efer;
582         if (!npt_enabled && !(efer & EFER_LMA))
583                 efer &= ~EFER_LME;
584
585         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
586         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
587 }
588
589 static int is_external_interrupt(u32 info)
590 {
591         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
592         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
593 }
594
595 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
596 {
597         struct vcpu_svm *svm = to_svm(vcpu);
598         u32 ret = 0;
599
600         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
601                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
602         return ret;
603 }
604
605 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
606 {
607         struct vcpu_svm *svm = to_svm(vcpu);
608
609         if (mask == 0)
610                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
611         else
612                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
613
614 }
615
616 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
617 {
618         struct vcpu_svm *svm = to_svm(vcpu);
619
620         if (svm->vmcb->control.next_rip != 0) {
621                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
622                 svm->next_rip = svm->vmcb->control.next_rip;
623         }
624
625         if (!svm->next_rip) {
626                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
627                                 EMULATE_DONE)
628                         printk(KERN_DEBUG "%s: NOP\n", __func__);
629                 return;
630         }
631         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
632                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
633                        __func__, kvm_rip_read(vcpu), svm->next_rip);
634
635         kvm_rip_write(vcpu, svm->next_rip);
636         svm_set_interrupt_shadow(vcpu, 0);
637 }
638
639 static void svm_queue_exception(struct kvm_vcpu *vcpu)
640 {
641         struct vcpu_svm *svm = to_svm(vcpu);
642         unsigned nr = vcpu->arch.exception.nr;
643         bool has_error_code = vcpu->arch.exception.has_error_code;
644         bool reinject = vcpu->arch.exception.reinject;
645         u32 error_code = vcpu->arch.exception.error_code;
646
647         /*
648          * If we are within a nested VM we'd better #VMEXIT and let the guest
649          * handle the exception
650          */
651         if (!reinject &&
652             nested_svm_check_exception(svm, nr, has_error_code, error_code))
653                 return;
654
655         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
656                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
657
658                 /*
659                  * For guest debugging where we have to reinject #BP if some
660                  * INT3 is guest-owned:
661                  * Emulate nRIP by moving RIP forward. Will fail if injection
662                  * raises a fault that is not intercepted. Still better than
663                  * failing in all cases.
664                  */
665                 skip_emulated_instruction(&svm->vcpu);
666                 rip = kvm_rip_read(&svm->vcpu);
667                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
668                 svm->int3_injected = rip - old_rip;
669         }
670
671         svm->vmcb->control.event_inj = nr
672                 | SVM_EVTINJ_VALID
673                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
674                 | SVM_EVTINJ_TYPE_EXEPT;
675         svm->vmcb->control.event_inj_err = error_code;
676 }
677
678 static void svm_init_erratum_383(void)
679 {
680         u32 low, high;
681         int err;
682         u64 val;
683
684         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
685                 return;
686
687         /* Use _safe variants to not break nested virtualization */
688         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
689         if (err)
690                 return;
691
692         val |= (1ULL << 47);
693
694         low  = lower_32_bits(val);
695         high = upper_32_bits(val);
696
697         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
698
699         erratum_383_found = true;
700 }
701
702 static void svm_init_osvw(struct kvm_vcpu *vcpu)
703 {
704         /*
705          * Guests should see errata 400 and 415 as fixed (assuming that
706          * HLT and IO instructions are intercepted).
707          */
708         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
709         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
710
711         /*
712          * By increasing VCPU's osvw.length to 3 we are telling the guest that
713          * all osvw.status bits inside that length, including bit 0 (which is
714          * reserved for erratum 298), are valid. However, if host processor's
715          * osvw_len is 0 then osvw_status[0] carries no information. We need to
716          * be conservative here and therefore we tell the guest that erratum 298
717          * is present (because we really don't know).
718          */
719         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
720                 vcpu->arch.osvw.status |= 1;
721 }
722
723 static int has_svm(void)
724 {
725         const char *msg;
726
727         if (!cpu_has_svm(&msg)) {
728                 printk(KERN_INFO "has_svm: %s\n", msg);
729                 return 0;
730         }
731
732         return 1;
733 }
734
735 static void svm_hardware_disable(void)
736 {
737         /* Make sure we clean up behind us */
738         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
739                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
740
741         cpu_svm_disable();
742
743         amd_pmu_disable_virt();
744 }
745
746 static int svm_hardware_enable(void)
747 {
748
749         struct svm_cpu_data *sd;
750         uint64_t efer;
751         struct desc_struct *gdt;
752         int me = raw_smp_processor_id();
753
754         rdmsrl(MSR_EFER, efer);
755         if (efer & EFER_SVME)
756                 return -EBUSY;
757
758         if (!has_svm()) {
759                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
760                 return -EINVAL;
761         }
762         sd = per_cpu(svm_data, me);
763         if (!sd) {
764                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
765                 return -EINVAL;
766         }
767
768         sd->asid_generation = 1;
769         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
770         sd->next_asid = sd->max_asid + 1;
771
772         gdt = get_current_gdt_rw();
773         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
774
775         wrmsrl(MSR_EFER, efer | EFER_SVME);
776
777         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
778
779         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
780                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
781                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
782         }
783
784
785         /*
786          * Get OSVW bits.
787          *
788          * Note that it is possible to have a system with mixed processor
789          * revisions and therefore different OSVW bits. If bits are not the same
790          * on different processors then choose the worst case (i.e. if erratum
791          * is present on one processor and not on another then assume that the
792          * erratum is present everywhere).
793          */
794         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
795                 uint64_t len, status = 0;
796                 int err;
797
798                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
799                 if (!err)
800                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
801                                                       &err);
802
803                 if (err)
804                         osvw_status = osvw_len = 0;
805                 else {
806                         if (len < osvw_len)
807                                 osvw_len = len;
808                         osvw_status |= status;
809                         osvw_status &= (1ULL << osvw_len) - 1;
810                 }
811         } else
812                 osvw_status = osvw_len = 0;
813
814         svm_init_erratum_383();
815
816         amd_pmu_enable_virt();
817
818         return 0;
819 }
820
821 static void svm_cpu_uninit(int cpu)
822 {
823         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
824
825         if (!sd)
826                 return;
827
828         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
829         __free_page(sd->save_area);
830         kfree(sd);
831 }
832
833 static int svm_cpu_init(int cpu)
834 {
835         struct svm_cpu_data *sd;
836         int r;
837
838         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
839         if (!sd)
840                 return -ENOMEM;
841         sd->cpu = cpu;
842         sd->save_area = alloc_page(GFP_KERNEL);
843         r = -ENOMEM;
844         if (!sd->save_area)
845                 goto err_1;
846
847         per_cpu(svm_data, cpu) = sd;
848
849         return 0;
850
851 err_1:
852         kfree(sd);
853         return r;
854
855 }
856
857 static bool valid_msr_intercept(u32 index)
858 {
859         int i;
860
861         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
862                 if (direct_access_msrs[i].index == index)
863                         return true;
864
865         return false;
866 }
867
868 static void set_msr_interception(u32 *msrpm, unsigned msr,
869                                  int read, int write)
870 {
871         u8 bit_read, bit_write;
872         unsigned long tmp;
873         u32 offset;
874
875         /*
876          * If this warning triggers extend the direct_access_msrs list at the
877          * beginning of the file
878          */
879         WARN_ON(!valid_msr_intercept(msr));
880
881         offset    = svm_msrpm_offset(msr);
882         bit_read  = 2 * (msr & 0x0f);
883         bit_write = 2 * (msr & 0x0f) + 1;
884         tmp       = msrpm[offset];
885
886         BUG_ON(offset == MSR_INVALID);
887
888         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
889         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
890
891         msrpm[offset] = tmp;
892 }
893
894 static void svm_vcpu_init_msrpm(u32 *msrpm)
895 {
896         int i;
897
898         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
899
900         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
901                 if (!direct_access_msrs[i].always)
902                         continue;
903
904                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
905         }
906 }
907
908 static void add_msr_offset(u32 offset)
909 {
910         int i;
911
912         for (i = 0; i < MSRPM_OFFSETS; ++i) {
913
914                 /* Offset already in list? */
915                 if (msrpm_offsets[i] == offset)
916                         return;
917
918                 /* Slot used by another offset? */
919                 if (msrpm_offsets[i] != MSR_INVALID)
920                         continue;
921
922                 /* Add offset to list */
923                 msrpm_offsets[i] = offset;
924
925                 return;
926         }
927
928         /*
929          * If this BUG triggers the msrpm_offsets table has an overflow. Just
930          * increase MSRPM_OFFSETS in this case.
931          */
932         BUG();
933 }
934
935 static void init_msrpm_offsets(void)
936 {
937         int i;
938
939         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
940
941         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
942                 u32 offset;
943
944                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
945                 BUG_ON(offset == MSR_INVALID);
946
947                 add_msr_offset(offset);
948         }
949 }
950
951 static void svm_enable_lbrv(struct vcpu_svm *svm)
952 {
953         u32 *msrpm = svm->msrpm;
954
955         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
956         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
957         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
958         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
959         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
960 }
961
962 static void svm_disable_lbrv(struct vcpu_svm *svm)
963 {
964         u32 *msrpm = svm->msrpm;
965
966         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
967         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
968         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
969         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
970         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
971 }
972
973 static void disable_nmi_singlestep(struct vcpu_svm *svm)
974 {
975         svm->nmi_singlestep = false;
976         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
977                 /* Clear our flags if they were not set by the guest */
978                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
979                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
980                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
981                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
982         }
983 }
984
985 /* Note:
986  * This hash table is used to map VM_ID to a struct kvm_arch,
987  * when handling AMD IOMMU GALOG notification to schedule in
988  * a particular vCPU.
989  */
990 #define SVM_VM_DATA_HASH_BITS   8
991 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
992 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
993
994 /* Note:
995  * This function is called from IOMMU driver to notify
996  * SVM to schedule in a particular vCPU of a particular VM.
997  */
998 static int avic_ga_log_notifier(u32 ga_tag)
999 {
1000         unsigned long flags;
1001         struct kvm_arch *ka = NULL;
1002         struct kvm_vcpu *vcpu = NULL;
1003         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1004         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1005
1006         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1007
1008         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1009         hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1010                 struct kvm *kvm = container_of(ka, struct kvm, arch);
1011                 struct kvm_arch *vm_data = &kvm->arch;
1012
1013                 if (vm_data->avic_vm_id != vm_id)
1014                         continue;
1015                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1016                 break;
1017         }
1018         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1019
1020         if (!vcpu)
1021                 return 0;
1022
1023         /* Note:
1024          * At this point, the IOMMU should have already set the pending
1025          * bit in the vAPIC backing page. So, we just need to schedule
1026          * in the vcpu.
1027          */
1028         if (vcpu->mode == OUTSIDE_GUEST_MODE)
1029                 kvm_vcpu_wake_up(vcpu);
1030
1031         return 0;
1032 }
1033
1034 static __init int svm_hardware_setup(void)
1035 {
1036         int cpu;
1037         struct page *iopm_pages;
1038         void *iopm_va;
1039         int r;
1040
1041         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1042
1043         if (!iopm_pages)
1044                 return -ENOMEM;
1045
1046         iopm_va = page_address(iopm_pages);
1047         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1048         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1049
1050         init_msrpm_offsets();
1051
1052         if (boot_cpu_has(X86_FEATURE_NX))
1053                 kvm_enable_efer_bits(EFER_NX);
1054
1055         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1056                 kvm_enable_efer_bits(EFER_FFXSR);
1057
1058         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1059                 kvm_has_tsc_control = true;
1060                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1061                 kvm_tsc_scaling_ratio_frac_bits = 32;
1062         }
1063
1064         if (nested) {
1065                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1066                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1067         }
1068
1069         for_each_possible_cpu(cpu) {
1070                 r = svm_cpu_init(cpu);
1071                 if (r)
1072                         goto err;
1073         }
1074
1075         if (!boot_cpu_has(X86_FEATURE_NPT))
1076                 npt_enabled = false;
1077
1078         if (npt_enabled && !npt) {
1079                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1080                 npt_enabled = false;
1081         }
1082
1083         if (npt_enabled) {
1084                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1085                 kvm_enable_tdp();
1086         } else
1087                 kvm_disable_tdp();
1088
1089         if (avic) {
1090                 if (!npt_enabled ||
1091                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1092                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1093                         avic = false;
1094                 } else {
1095                         pr_info("AVIC enabled\n");
1096
1097                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1098                 }
1099         }
1100
1101         if (vls) {
1102                 if (!npt_enabled ||
1103                     !boot_cpu_has(X86_FEATURE_VIRTUAL_VMLOAD_VMSAVE) ||
1104                     !IS_ENABLED(CONFIG_X86_64)) {
1105                         vls = false;
1106                 } else {
1107                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1108                 }
1109         }
1110
1111         return 0;
1112
1113 err:
1114         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1115         iopm_base = 0;
1116         return r;
1117 }
1118
1119 static __exit void svm_hardware_unsetup(void)
1120 {
1121         int cpu;
1122
1123         for_each_possible_cpu(cpu)
1124                 svm_cpu_uninit(cpu);
1125
1126         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1127         iopm_base = 0;
1128 }
1129
1130 static void init_seg(struct vmcb_seg *seg)
1131 {
1132         seg->selector = 0;
1133         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1134                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1135         seg->limit = 0xffff;
1136         seg->base = 0;
1137 }
1138
1139 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1140 {
1141         seg->selector = 0;
1142         seg->attrib = SVM_SELECTOR_P_MASK | type;
1143         seg->limit = 0xffff;
1144         seg->base = 0;
1145 }
1146
1147 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150         u64 g_tsc_offset = 0;
1151
1152         if (is_guest_mode(vcpu)) {
1153                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1154                                svm->nested.hsave->control.tsc_offset;
1155                 svm->nested.hsave->control.tsc_offset = offset;
1156         } else
1157                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1158                                            svm->vmcb->control.tsc_offset,
1159                                            offset);
1160
1161         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1162
1163         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1164 }
1165
1166 static void avic_init_vmcb(struct vcpu_svm *svm)
1167 {
1168         struct vmcb *vmcb = svm->vmcb;
1169         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1170         phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1171         phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1172         phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1173
1174         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1175         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1176         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1177         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1178         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1179         svm->vcpu.arch.apicv_active = true;
1180 }
1181
1182 static void init_vmcb(struct vcpu_svm *svm)
1183 {
1184         struct vmcb_control_area *control = &svm->vmcb->control;
1185         struct vmcb_save_area *save = &svm->vmcb->save;
1186
1187         svm->vcpu.arch.hflags = 0;
1188
1189         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1190         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1191         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1192         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1193         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1194         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1195         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1196                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1197
1198         set_dr_intercepts(svm);
1199
1200         set_exception_intercept(svm, PF_VECTOR);
1201         set_exception_intercept(svm, UD_VECTOR);
1202         set_exception_intercept(svm, MC_VECTOR);
1203         set_exception_intercept(svm, AC_VECTOR);
1204         set_exception_intercept(svm, DB_VECTOR);
1205
1206         set_intercept(svm, INTERCEPT_INTR);
1207         set_intercept(svm, INTERCEPT_NMI);
1208         set_intercept(svm, INTERCEPT_SMI);
1209         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210         set_intercept(svm, INTERCEPT_RDPMC);
1211         set_intercept(svm, INTERCEPT_CPUID);
1212         set_intercept(svm, INTERCEPT_INVD);
1213         set_intercept(svm, INTERCEPT_HLT);
1214         set_intercept(svm, INTERCEPT_INVLPG);
1215         set_intercept(svm, INTERCEPT_INVLPGA);
1216         set_intercept(svm, INTERCEPT_IOIO_PROT);
1217         set_intercept(svm, INTERCEPT_MSR_PROT);
1218         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219         set_intercept(svm, INTERCEPT_SHUTDOWN);
1220         set_intercept(svm, INTERCEPT_VMRUN);
1221         set_intercept(svm, INTERCEPT_VMMCALL);
1222         set_intercept(svm, INTERCEPT_VMLOAD);
1223         set_intercept(svm, INTERCEPT_VMSAVE);
1224         set_intercept(svm, INTERCEPT_STGI);
1225         set_intercept(svm, INTERCEPT_CLGI);
1226         set_intercept(svm, INTERCEPT_SKINIT);
1227         set_intercept(svm, INTERCEPT_WBINVD);
1228         set_intercept(svm, INTERCEPT_XSETBV);
1229
1230         if (!kvm_mwait_in_guest()) {
1231                 set_intercept(svm, INTERCEPT_MONITOR);
1232                 set_intercept(svm, INTERCEPT_MWAIT);
1233         }
1234
1235         control->iopm_base_pa = iopm_base;
1236         control->msrpm_base_pa = __pa(svm->msrpm);
1237         control->int_ctl = V_INTR_MASKING_MASK;
1238
1239         init_seg(&save->es);
1240         init_seg(&save->ss);
1241         init_seg(&save->ds);
1242         init_seg(&save->fs);
1243         init_seg(&save->gs);
1244
1245         save->cs.selector = 0xf000;
1246         save->cs.base = 0xffff0000;
1247         /* Executable/Readable Code Segment */
1248         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1249                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1250         save->cs.limit = 0xffff;
1251
1252         save->gdtr.limit = 0xffff;
1253         save->idtr.limit = 0xffff;
1254
1255         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1256         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1257
1258         svm_set_efer(&svm->vcpu, 0);
1259         save->dr6 = 0xffff0ff0;
1260         kvm_set_rflags(&svm->vcpu, 2);
1261         save->rip = 0x0000fff0;
1262         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1263
1264         /*
1265          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1266          * It also updates the guest-visible cr0 value.
1267          */
1268         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1269         kvm_mmu_reset_context(&svm->vcpu);
1270
1271         save->cr4 = X86_CR4_PAE;
1272         /* rdx = ?? */
1273
1274         if (npt_enabled) {
1275                 /* Setup VMCB for Nested Paging */
1276                 control->nested_ctl = 1;
1277                 clr_intercept(svm, INTERCEPT_INVLPG);
1278                 clr_exception_intercept(svm, PF_VECTOR);
1279                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1280                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1281                 save->g_pat = svm->vcpu.arch.pat;
1282                 save->cr3 = 0;
1283                 save->cr4 = 0;
1284         }
1285         svm->asid_generation = 0;
1286
1287         svm->nested.vmcb = 0;
1288         svm->vcpu.arch.hflags = 0;
1289
1290         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1291                 control->pause_filter_count = 3000;
1292                 set_intercept(svm, INTERCEPT_PAUSE);
1293         }
1294
1295         if (avic)
1296                 avic_init_vmcb(svm);
1297
1298         /*
1299          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1300          * in VMCB and clear intercepts to avoid #VMEXIT.
1301          */
1302         if (vls) {
1303                 clr_intercept(svm, INTERCEPT_VMLOAD);
1304                 clr_intercept(svm, INTERCEPT_VMSAVE);
1305                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1306         }
1307
1308         mark_all_dirty(svm->vmcb);
1309
1310         enable_gif(svm);
1311
1312 }
1313
1314 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1315                                        unsigned int index)
1316 {
1317         u64 *avic_physical_id_table;
1318         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1319
1320         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1321                 return NULL;
1322
1323         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1324
1325         return &avic_physical_id_table[index];
1326 }
1327
1328 /**
1329  * Note:
1330  * AVIC hardware walks the nested page table to check permissions,
1331  * but does not use the SPA address specified in the leaf page
1332  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1333  * field of the VMCB. Therefore, we set up the
1334  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1335  */
1336 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1337 {
1338         struct kvm *kvm = vcpu->kvm;
1339         int ret;
1340
1341         if (kvm->arch.apic_access_page_done)
1342                 return 0;
1343
1344         ret = x86_set_memory_region(kvm,
1345                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1346                                     APIC_DEFAULT_PHYS_BASE,
1347                                     PAGE_SIZE);
1348         if (ret)
1349                 return ret;
1350
1351         kvm->arch.apic_access_page_done = true;
1352         return 0;
1353 }
1354
1355 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1356 {
1357         int ret;
1358         u64 *entry, new_entry;
1359         int id = vcpu->vcpu_id;
1360         struct vcpu_svm *svm = to_svm(vcpu);
1361
1362         ret = avic_init_access_page(vcpu);
1363         if (ret)
1364                 return ret;
1365
1366         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1367                 return -EINVAL;
1368
1369         if (!svm->vcpu.arch.apic->regs)
1370                 return -EINVAL;
1371
1372         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1373
1374         /* Setting AVIC backing page address in the phy APIC ID table */
1375         entry = avic_get_physical_id_entry(vcpu, id);
1376         if (!entry)
1377                 return -EINVAL;
1378
1379         new_entry = READ_ONCE(*entry);
1380         new_entry = (page_to_phys(svm->avic_backing_page) &
1381                      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1382                      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1383         WRITE_ONCE(*entry, new_entry);
1384
1385         svm->avic_physical_id_cache = entry;
1386
1387         return 0;
1388 }
1389
1390 static inline int avic_get_next_vm_id(void)
1391 {
1392         int id;
1393
1394         spin_lock(&avic_vm_id_lock);
1395
1396         /* AVIC VM ID is one-based. */
1397         id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1398         if (id <= AVIC_VM_ID_MASK)
1399                 __set_bit(id, avic_vm_id_bitmap);
1400         else
1401                 id = -EAGAIN;
1402
1403         spin_unlock(&avic_vm_id_lock);
1404         return id;
1405 }
1406
1407 static inline int avic_free_vm_id(int id)
1408 {
1409         if (id <= 0 || id > AVIC_VM_ID_MASK)
1410                 return -EINVAL;
1411
1412         spin_lock(&avic_vm_id_lock);
1413         __clear_bit(id, avic_vm_id_bitmap);
1414         spin_unlock(&avic_vm_id_lock);
1415         return 0;
1416 }
1417
1418 static void avic_vm_destroy(struct kvm *kvm)
1419 {
1420         unsigned long flags;
1421         struct kvm_arch *vm_data = &kvm->arch;
1422
1423         if (!avic)
1424                 return;
1425
1426         avic_free_vm_id(vm_data->avic_vm_id);
1427
1428         if (vm_data->avic_logical_id_table_page)
1429                 __free_page(vm_data->avic_logical_id_table_page);
1430         if (vm_data->avic_physical_id_table_page)
1431                 __free_page(vm_data->avic_physical_id_table_page);
1432
1433         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1434         hash_del(&vm_data->hnode);
1435         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1436 }
1437
1438 static int avic_vm_init(struct kvm *kvm)
1439 {
1440         unsigned long flags;
1441         int vm_id, err = -ENOMEM;
1442         struct kvm_arch *vm_data = &kvm->arch;
1443         struct page *p_page;
1444         struct page *l_page;
1445
1446         if (!avic)
1447                 return 0;
1448
1449         vm_id = avic_get_next_vm_id();
1450         if (vm_id < 0)
1451                 return vm_id;
1452         vm_data->avic_vm_id = (u32)vm_id;
1453
1454         /* Allocating physical APIC ID table (4KB) */
1455         p_page = alloc_page(GFP_KERNEL);
1456         if (!p_page)
1457                 goto free_avic;
1458
1459         vm_data->avic_physical_id_table_page = p_page;
1460         clear_page(page_address(p_page));
1461
1462         /* Allocating logical APIC ID table (4KB) */
1463         l_page = alloc_page(GFP_KERNEL);
1464         if (!l_page)
1465                 goto free_avic;
1466
1467         vm_data->avic_logical_id_table_page = l_page;
1468         clear_page(page_address(l_page));
1469
1470         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1471         hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1472         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1473
1474         return 0;
1475
1476 free_avic:
1477         avic_vm_destroy(kvm);
1478         return err;
1479 }
1480
1481 static inline int
1482 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1483 {
1484         int ret = 0;
1485         unsigned long flags;
1486         struct amd_svm_iommu_ir *ir;
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1490                 return 0;
1491
1492         /*
1493          * Here, we go through the per-vcpu ir_list to update all existing
1494          * interrupt remapping table entry targeting this vcpu.
1495          */
1496         spin_lock_irqsave(&svm->ir_list_lock, flags);
1497
1498         if (list_empty(&svm->ir_list))
1499                 goto out;
1500
1501         list_for_each_entry(ir, &svm->ir_list, node) {
1502                 ret = amd_iommu_update_ga(cpu, r, ir->data);
1503                 if (ret)
1504                         break;
1505         }
1506 out:
1507         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1508         return ret;
1509 }
1510
1511 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1512 {
1513         u64 entry;
1514         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1515         int h_physical_id = kvm_cpu_get_apicid(cpu);
1516         struct vcpu_svm *svm = to_svm(vcpu);
1517
1518         if (!kvm_vcpu_apicv_active(vcpu))
1519                 return;
1520
1521         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1522                 return;
1523
1524         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1525         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1526
1527         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1528         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1529
1530         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1531         if (svm->avic_is_running)
1532                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1533
1534         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1535         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1536                                         svm->avic_is_running);
1537 }
1538
1539 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1540 {
1541         u64 entry;
1542         struct vcpu_svm *svm = to_svm(vcpu);
1543
1544         if (!kvm_vcpu_apicv_active(vcpu))
1545                 return;
1546
1547         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1548         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1549                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1550
1551         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1552         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1553 }
1554
1555 /**
1556  * This function is called during VCPU halt/unhalt.
1557  */
1558 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1559 {
1560         struct vcpu_svm *svm = to_svm(vcpu);
1561
1562         svm->avic_is_running = is_run;
1563         if (is_run)
1564                 avic_vcpu_load(vcpu, vcpu->cpu);
1565         else
1566                 avic_vcpu_put(vcpu);
1567 }
1568
1569 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1570 {
1571         struct vcpu_svm *svm = to_svm(vcpu);
1572         u32 dummy;
1573         u32 eax = 1;
1574
1575         if (!init_event) {
1576                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1577                                            MSR_IA32_APICBASE_ENABLE;
1578                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1579                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1580         }
1581         init_vmcb(svm);
1582
1583         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1584         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1585
1586         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1587                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1588 }
1589
1590 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1591 {
1592         struct vcpu_svm *svm;
1593         struct page *page;
1594         struct page *msrpm_pages;
1595         struct page *hsave_page;
1596         struct page *nested_msrpm_pages;
1597         int err;
1598
1599         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1600         if (!svm) {
1601                 err = -ENOMEM;
1602                 goto out;
1603         }
1604
1605         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1606         if (err)
1607                 goto free_svm;
1608
1609         err = -ENOMEM;
1610         page = alloc_page(GFP_KERNEL);
1611         if (!page)
1612                 goto uninit;
1613
1614         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1615         if (!msrpm_pages)
1616                 goto free_page1;
1617
1618         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1619         if (!nested_msrpm_pages)
1620                 goto free_page2;
1621
1622         hsave_page = alloc_page(GFP_KERNEL);
1623         if (!hsave_page)
1624                 goto free_page3;
1625
1626         if (avic) {
1627                 err = avic_init_backing_page(&svm->vcpu);
1628                 if (err)
1629                         goto free_page4;
1630
1631                 INIT_LIST_HEAD(&svm->ir_list);
1632                 spin_lock_init(&svm->ir_list_lock);
1633         }
1634
1635         /* We initialize this flag to true to make sure that the is_running
1636          * bit would be set the first time the vcpu is loaded.
1637          */
1638         svm->avic_is_running = true;
1639
1640         svm->nested.hsave = page_address(hsave_page);
1641
1642         svm->msrpm = page_address(msrpm_pages);
1643         svm_vcpu_init_msrpm(svm->msrpm);
1644
1645         svm->nested.msrpm = page_address(nested_msrpm_pages);
1646         svm_vcpu_init_msrpm(svm->nested.msrpm);
1647
1648         svm->vmcb = page_address(page);
1649         clear_page(svm->vmcb);
1650         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1651         svm->asid_generation = 0;
1652         init_vmcb(svm);
1653
1654         svm_init_osvw(&svm->vcpu);
1655
1656         return &svm->vcpu;
1657
1658 free_page4:
1659         __free_page(hsave_page);
1660 free_page3:
1661         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1662 free_page2:
1663         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1664 free_page1:
1665         __free_page(page);
1666 uninit:
1667         kvm_vcpu_uninit(&svm->vcpu);
1668 free_svm:
1669         kmem_cache_free(kvm_vcpu_cache, svm);
1670 out:
1671         return ERR_PTR(err);
1672 }
1673
1674 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1675 {
1676         struct vcpu_svm *svm = to_svm(vcpu);
1677
1678         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1679         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1680         __free_page(virt_to_page(svm->nested.hsave));
1681         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1682         kvm_vcpu_uninit(vcpu);
1683         kmem_cache_free(kvm_vcpu_cache, svm);
1684 }
1685
1686 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1687 {
1688         struct vcpu_svm *svm = to_svm(vcpu);
1689         int i;
1690
1691         if (unlikely(cpu != vcpu->cpu)) {
1692                 svm->asid_generation = 0;
1693                 mark_all_dirty(svm->vmcb);
1694         }
1695
1696 #ifdef CONFIG_X86_64
1697         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1698 #endif
1699         savesegment(fs, svm->host.fs);
1700         savesegment(gs, svm->host.gs);
1701         svm->host.ldt = kvm_read_ldt();
1702
1703         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1704                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1705
1706         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1707                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1708                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1709                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1710                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1711                 }
1712         }
1713         /* This assumes that the kernel never uses MSR_TSC_AUX */
1714         if (static_cpu_has(X86_FEATURE_RDTSCP))
1715                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1716
1717         avic_vcpu_load(vcpu, cpu);
1718 }
1719
1720 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1721 {
1722         struct vcpu_svm *svm = to_svm(vcpu);
1723         int i;
1724
1725         avic_vcpu_put(vcpu);
1726
1727         ++vcpu->stat.host_state_reload;
1728         kvm_load_ldt(svm->host.ldt);
1729 #ifdef CONFIG_X86_64
1730         loadsegment(fs, svm->host.fs);
1731         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1732         load_gs_index(svm->host.gs);
1733 #else
1734 #ifdef CONFIG_X86_32_LAZY_GS
1735         loadsegment(gs, svm->host.gs);
1736 #endif
1737 #endif
1738         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1739                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1740 }
1741
1742 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1743 {
1744         avic_set_running(vcpu, false);
1745 }
1746
1747 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1748 {
1749         avic_set_running(vcpu, true);
1750 }
1751
1752 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1753 {
1754         struct vcpu_svm *svm = to_svm(vcpu);
1755         unsigned long rflags = svm->vmcb->save.rflags;
1756
1757         if (svm->nmi_singlestep) {
1758                 /* Hide our flags if they were not set by the guest */
1759                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1760                         rflags &= ~X86_EFLAGS_TF;
1761                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1762                         rflags &= ~X86_EFLAGS_RF;
1763         }
1764         return rflags;
1765 }
1766
1767 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1768 {
1769         if (to_svm(vcpu)->nmi_singlestep)
1770                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1771
1772        /*
1773         * Any change of EFLAGS.VM is accompanied by a reload of SS
1774         * (caused by either a task switch or an inter-privilege IRET),
1775         * so we do not need to update the CPL here.
1776         */
1777         to_svm(vcpu)->vmcb->save.rflags = rflags;
1778 }
1779
1780 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1781 {
1782         return 0;
1783 }
1784
1785 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1786 {
1787         switch (reg) {
1788         case VCPU_EXREG_PDPTR:
1789                 BUG_ON(!npt_enabled);
1790                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1791                 break;
1792         default:
1793                 BUG();
1794         }
1795 }
1796
1797 static void svm_set_vintr(struct vcpu_svm *svm)
1798 {
1799         set_intercept(svm, INTERCEPT_VINTR);
1800 }
1801
1802 static void svm_clear_vintr(struct vcpu_svm *svm)
1803 {
1804         clr_intercept(svm, INTERCEPT_VINTR);
1805 }
1806
1807 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1808 {
1809         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1810
1811         switch (seg) {
1812         case VCPU_SREG_CS: return &save->cs;
1813         case VCPU_SREG_DS: return &save->ds;
1814         case VCPU_SREG_ES: return &save->es;
1815         case VCPU_SREG_FS: return &save->fs;
1816         case VCPU_SREG_GS: return &save->gs;
1817         case VCPU_SREG_SS: return &save->ss;
1818         case VCPU_SREG_TR: return &save->tr;
1819         case VCPU_SREG_LDTR: return &save->ldtr;
1820         }
1821         BUG();
1822         return NULL;
1823 }
1824
1825 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1826 {
1827         struct vmcb_seg *s = svm_seg(vcpu, seg);
1828
1829         return s->base;
1830 }
1831
1832 static void svm_get_segment(struct kvm_vcpu *vcpu,
1833                             struct kvm_segment *var, int seg)
1834 {
1835         struct vmcb_seg *s = svm_seg(vcpu, seg);
1836
1837         var->base = s->base;
1838         var->limit = s->limit;
1839         var->selector = s->selector;
1840         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1841         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1842         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1843         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1844         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1845         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1846         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1847
1848         /*
1849          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1850          * However, the SVM spec states that the G bit is not observed by the
1851          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1852          * So let's synthesize a legal G bit for all segments, this helps
1853          * running KVM nested. It also helps cross-vendor migration, because
1854          * Intel's vmentry has a check on the 'G' bit.
1855          */
1856         var->g = s->limit > 0xfffff;
1857
1858         /*
1859          * AMD's VMCB does not have an explicit unusable field, so emulate it
1860          * for cross vendor migration purposes by "not present"
1861          */
1862         var->unusable = !var->present;
1863
1864         switch (seg) {
1865         case VCPU_SREG_TR:
1866                 /*
1867                  * Work around a bug where the busy flag in the tr selector
1868                  * isn't exposed
1869                  */
1870                 var->type |= 0x2;
1871                 break;
1872         case VCPU_SREG_DS:
1873         case VCPU_SREG_ES:
1874         case VCPU_SREG_FS:
1875         case VCPU_SREG_GS:
1876                 /*
1877                  * The accessed bit must always be set in the segment
1878                  * descriptor cache, although it can be cleared in the
1879                  * descriptor, the cached bit always remains at 1. Since
1880                  * Intel has a check on this, set it here to support
1881                  * cross-vendor migration.
1882                  */
1883                 if (!var->unusable)
1884                         var->type |= 0x1;
1885                 break;
1886         case VCPU_SREG_SS:
1887                 /*
1888                  * On AMD CPUs sometimes the DB bit in the segment
1889                  * descriptor is left as 1, although the whole segment has
1890                  * been made unusable. Clear it here to pass an Intel VMX
1891                  * entry check when cross vendor migrating.
1892                  */
1893                 if (var->unusable)
1894                         var->db = 0;
1895                 /* This is symmetric with svm_set_segment() */
1896                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1897                 break;
1898         }
1899 }
1900
1901 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1902 {
1903         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1904
1905         return save->cpl;
1906 }
1907
1908 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1909 {
1910         struct vcpu_svm *svm = to_svm(vcpu);
1911
1912         dt->size = svm->vmcb->save.idtr.limit;
1913         dt->address = svm->vmcb->save.idtr.base;
1914 }
1915
1916 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1917 {
1918         struct vcpu_svm *svm = to_svm(vcpu);
1919
1920         svm->vmcb->save.idtr.limit = dt->size;
1921         svm->vmcb->save.idtr.base = dt->address ;
1922         mark_dirty(svm->vmcb, VMCB_DT);
1923 }
1924
1925 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1926 {
1927         struct vcpu_svm *svm = to_svm(vcpu);
1928
1929         dt->size = svm->vmcb->save.gdtr.limit;
1930         dt->address = svm->vmcb->save.gdtr.base;
1931 }
1932
1933 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1934 {
1935         struct vcpu_svm *svm = to_svm(vcpu);
1936
1937         svm->vmcb->save.gdtr.limit = dt->size;
1938         svm->vmcb->save.gdtr.base = dt->address ;
1939         mark_dirty(svm->vmcb, VMCB_DT);
1940 }
1941
1942 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1943 {
1944 }
1945
1946 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1947 {
1948 }
1949
1950 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1951 {
1952 }
1953
1954 static void update_cr0_intercept(struct vcpu_svm *svm)
1955 {
1956         ulong gcr0 = svm->vcpu.arch.cr0;
1957         u64 *hcr0 = &svm->vmcb->save.cr0;
1958
1959         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1960                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1961
1962         mark_dirty(svm->vmcb, VMCB_CR);
1963
1964         if (gcr0 == *hcr0) {
1965                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1966                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1967         } else {
1968                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1969                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1970         }
1971 }
1972
1973 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1974 {
1975         struct vcpu_svm *svm = to_svm(vcpu);
1976
1977 #ifdef CONFIG_X86_64
1978         if (vcpu->arch.efer & EFER_LME) {
1979                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1980                         vcpu->arch.efer |= EFER_LMA;
1981                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1982                 }
1983
1984                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1985                         vcpu->arch.efer &= ~EFER_LMA;
1986                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1987                 }
1988         }
1989 #endif
1990         vcpu->arch.cr0 = cr0;
1991
1992         if (!npt_enabled)
1993                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1994
1995         /*
1996          * re-enable caching here because the QEMU bios
1997          * does not do it - this results in some delay at
1998          * reboot
1999          */
2000         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2001                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2002         svm->vmcb->save.cr0 = cr0;
2003         mark_dirty(svm->vmcb, VMCB_CR);
2004         update_cr0_intercept(svm);
2005 }
2006
2007 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2008 {
2009         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2010         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2011
2012         if (cr4 & X86_CR4_VMXE)
2013                 return 1;
2014
2015         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2016                 svm_flush_tlb(vcpu);
2017
2018         vcpu->arch.cr4 = cr4;
2019         if (!npt_enabled)
2020                 cr4 |= X86_CR4_PAE;
2021         cr4 |= host_cr4_mce;
2022         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2023         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2024         return 0;
2025 }
2026
2027 static void svm_set_segment(struct kvm_vcpu *vcpu,
2028                             struct kvm_segment *var, int seg)
2029 {
2030         struct vcpu_svm *svm = to_svm(vcpu);
2031         struct vmcb_seg *s = svm_seg(vcpu, seg);
2032
2033         s->base = var->base;
2034         s->limit = var->limit;
2035         s->selector = var->selector;
2036         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2037         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2038         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2039         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2040         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2041         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2042         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2043         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2044
2045         /*
2046          * This is always accurate, except if SYSRET returned to a segment
2047          * with SS.DPL != 3.  Intel does not have this quirk, and always
2048          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2049          * would entail passing the CPL to userspace and back.
2050          */
2051         if (seg == VCPU_SREG_SS)
2052                 /* This is symmetric with svm_get_segment() */
2053                 svm->vmcb->save.cpl = (var->dpl & 3);
2054
2055         mark_dirty(svm->vmcb, VMCB_SEG);
2056 }
2057
2058 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2059 {
2060         struct vcpu_svm *svm = to_svm(vcpu);
2061
2062         clr_exception_intercept(svm, BP_VECTOR);
2063
2064         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2065                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2066                         set_exception_intercept(svm, BP_VECTOR);
2067         } else
2068                 vcpu->guest_debug = 0;
2069 }
2070
2071 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2072 {
2073         if (sd->next_asid > sd->max_asid) {
2074                 ++sd->asid_generation;
2075                 sd->next_asid = 1;
2076                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2077         }
2078
2079         svm->asid_generation = sd->asid_generation;
2080         svm->vmcb->control.asid = sd->next_asid++;
2081
2082         mark_dirty(svm->vmcb, VMCB_ASID);
2083 }
2084
2085 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2086 {
2087         return to_svm(vcpu)->vmcb->save.dr6;
2088 }
2089
2090 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2091 {
2092         struct vcpu_svm *svm = to_svm(vcpu);
2093
2094         svm->vmcb->save.dr6 = value;
2095         mark_dirty(svm->vmcb, VMCB_DR);
2096 }
2097
2098 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2099 {
2100         struct vcpu_svm *svm = to_svm(vcpu);
2101
2102         get_debugreg(vcpu->arch.db[0], 0);
2103         get_debugreg(vcpu->arch.db[1], 1);
2104         get_debugreg(vcpu->arch.db[2], 2);
2105         get_debugreg(vcpu->arch.db[3], 3);
2106         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2107         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2108
2109         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2110         set_dr_intercepts(svm);
2111 }
2112
2113 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2114 {
2115         struct vcpu_svm *svm = to_svm(vcpu);
2116
2117         svm->vmcb->save.dr7 = value;
2118         mark_dirty(svm->vmcb, VMCB_DR);
2119 }
2120
2121 static int pf_interception(struct vcpu_svm *svm)
2122 {
2123         u64 fault_address = svm->vmcb->control.exit_info_2;
2124         u64 error_code = svm->vmcb->control.exit_info_1;
2125
2126         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2127                         svm->vmcb->control.insn_bytes,
2128                         svm->vmcb->control.insn_len, !npt_enabled);
2129 }
2130
2131 static int db_interception(struct vcpu_svm *svm)
2132 {
2133         struct kvm_run *kvm_run = svm->vcpu.run;
2134
2135         if (!(svm->vcpu.guest_debug &
2136               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2137                 !svm->nmi_singlestep) {
2138                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2139                 return 1;
2140         }
2141
2142         if (svm->nmi_singlestep) {
2143                 disable_nmi_singlestep(svm);
2144         }
2145
2146         if (svm->vcpu.guest_debug &
2147             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2148                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2149                 kvm_run->debug.arch.pc =
2150                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2151                 kvm_run->debug.arch.exception = DB_VECTOR;
2152                 return 0;
2153         }
2154
2155         return 1;
2156 }
2157
2158 static int bp_interception(struct vcpu_svm *svm)
2159 {
2160         struct kvm_run *kvm_run = svm->vcpu.run;
2161
2162         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2163         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2164         kvm_run->debug.arch.exception = BP_VECTOR;
2165         return 0;
2166 }
2167
2168 static int ud_interception(struct vcpu_svm *svm)
2169 {
2170         int er;
2171
2172         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2173         if (er != EMULATE_DONE)
2174                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2175         return 1;
2176 }
2177
2178 static int ac_interception(struct vcpu_svm *svm)
2179 {
2180         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2181         return 1;
2182 }
2183
2184 static bool is_erratum_383(void)
2185 {
2186         int err, i;
2187         u64 value;
2188
2189         if (!erratum_383_found)
2190                 return false;
2191
2192         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2193         if (err)
2194                 return false;
2195
2196         /* Bit 62 may or may not be set for this mce */
2197         value &= ~(1ULL << 62);
2198
2199         if (value != 0xb600000000010015ULL)
2200                 return false;
2201
2202         /* Clear MCi_STATUS registers */
2203         for (i = 0; i < 6; ++i)
2204                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2205
2206         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2207         if (!err) {
2208                 u32 low, high;
2209
2210                 value &= ~(1ULL << 2);
2211                 low    = lower_32_bits(value);
2212                 high   = upper_32_bits(value);
2213
2214                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2215         }
2216
2217         /* Flush tlb to evict multi-match entries */
2218         __flush_tlb_all();
2219
2220         return true;
2221 }
2222
2223 static void svm_handle_mce(struct vcpu_svm *svm)
2224 {
2225         if (is_erratum_383()) {
2226                 /*
2227                  * Erratum 383 triggered. Guest state is corrupt so kill the
2228                  * guest.
2229                  */
2230                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2231
2232                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2233
2234                 return;
2235         }
2236
2237         /*
2238          * On an #MC intercept the MCE handler is not called automatically in
2239          * the host. So do it by hand here.
2240          */
2241         asm volatile (
2242                 "int $0x12\n");
2243         /* not sure if we ever come back to this point */
2244
2245         return;
2246 }
2247
2248 static int mc_interception(struct vcpu_svm *svm)
2249 {
2250         return 1;
2251 }
2252
2253 static int shutdown_interception(struct vcpu_svm *svm)
2254 {
2255         struct kvm_run *kvm_run = svm->vcpu.run;
2256
2257         /*
2258          * VMCB is undefined after a SHUTDOWN intercept
2259          * so reinitialize it.
2260          */
2261         clear_page(svm->vmcb);
2262         init_vmcb(svm);
2263
2264         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2265         return 0;
2266 }
2267
2268 static int io_interception(struct vcpu_svm *svm)
2269 {
2270         struct kvm_vcpu *vcpu = &svm->vcpu;
2271         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2272         int size, in, string, ret;
2273         unsigned port;
2274
2275         ++svm->vcpu.stat.io_exits;
2276         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2277         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2278         if (string)
2279                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2280
2281         port = io_info >> 16;
2282         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2283         svm->next_rip = svm->vmcb->control.exit_info_2;
2284         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2285
2286         /*
2287          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2288          * KVM_EXIT_DEBUG here.
2289          */
2290         if (in)
2291                 return kvm_fast_pio_in(vcpu, size, port) && ret;
2292         else
2293                 return kvm_fast_pio_out(vcpu, size, port) && ret;
2294 }
2295
2296 static int nmi_interception(struct vcpu_svm *svm)
2297 {
2298         return 1;
2299 }
2300
2301 static int intr_interception(struct vcpu_svm *svm)
2302 {
2303         ++svm->vcpu.stat.irq_exits;
2304         return 1;
2305 }
2306
2307 static int nop_on_interception(struct vcpu_svm *svm)
2308 {
2309         return 1;
2310 }
2311
2312 static int halt_interception(struct vcpu_svm *svm)
2313 {
2314         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2315         return kvm_emulate_halt(&svm->vcpu);
2316 }
2317
2318 static int vmmcall_interception(struct vcpu_svm *svm)
2319 {
2320         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2321         return kvm_emulate_hypercall(&svm->vcpu);
2322 }
2323
2324 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2325 {
2326         struct vcpu_svm *svm = to_svm(vcpu);
2327
2328         return svm->nested.nested_cr3;
2329 }
2330
2331 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2332 {
2333         struct vcpu_svm *svm = to_svm(vcpu);
2334         u64 cr3 = svm->nested.nested_cr3;
2335         u64 pdpte;
2336         int ret;
2337
2338         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2339                                        offset_in_page(cr3) + index * 8, 8);
2340         if (ret)
2341                 return 0;
2342         return pdpte;
2343 }
2344
2345 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2346                                    unsigned long root)
2347 {
2348         struct vcpu_svm *svm = to_svm(vcpu);
2349
2350         svm->vmcb->control.nested_cr3 = root;
2351         mark_dirty(svm->vmcb, VMCB_NPT);
2352         svm_flush_tlb(vcpu);
2353 }
2354
2355 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2356                                        struct x86_exception *fault)
2357 {
2358         struct vcpu_svm *svm = to_svm(vcpu);
2359
2360         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2361                 /*
2362                  * TODO: track the cause of the nested page fault, and
2363                  * correctly fill in the high bits of exit_info_1.
2364                  */
2365                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2366                 svm->vmcb->control.exit_code_hi = 0;
2367                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2368                 svm->vmcb->control.exit_info_2 = fault->address;
2369         }
2370
2371         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2372         svm->vmcb->control.exit_info_1 |= fault->error_code;
2373
2374         /*
2375          * The present bit is always zero for page structure faults on real
2376          * hardware.
2377          */
2378         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2379                 svm->vmcb->control.exit_info_1 &= ~1;
2380
2381         nested_svm_vmexit(svm);
2382 }
2383
2384 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2385 {
2386         WARN_ON(mmu_is_nested(vcpu));
2387         kvm_init_shadow_mmu(vcpu);
2388         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2389         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2390         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2391         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2392         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2393         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2394         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2395 }
2396
2397 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2398 {
2399         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2400 }
2401
2402 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2403 {
2404         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2405             !is_paging(&svm->vcpu)) {
2406                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2407                 return 1;
2408         }
2409
2410         if (svm->vmcb->save.cpl) {
2411                 kvm_inject_gp(&svm->vcpu, 0);
2412                 return 1;
2413         }
2414
2415         return 0;
2416 }
2417
2418 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2419                                       bool has_error_code, u32 error_code)
2420 {
2421         int vmexit;
2422
2423         if (!is_guest_mode(&svm->vcpu))
2424                 return 0;
2425
2426         vmexit = nested_svm_intercept(svm);
2427         if (vmexit != NESTED_EXIT_DONE)
2428                 return 0;
2429
2430         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2431         svm->vmcb->control.exit_code_hi = 0;
2432         svm->vmcb->control.exit_info_1 = error_code;
2433         if (svm->vcpu.arch.exception.nested_apf)
2434                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2435         else
2436                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2437
2438         svm->nested.exit_required = true;
2439         return vmexit;
2440 }
2441
2442 /* This function returns true if it is save to enable the irq window */
2443 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2444 {
2445         if (!is_guest_mode(&svm->vcpu))
2446                 return true;
2447
2448         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2449                 return true;
2450
2451         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2452                 return false;
2453
2454         /*
2455          * if vmexit was already requested (by intercepted exception
2456          * for instance) do not overwrite it with "external interrupt"
2457          * vmexit.
2458          */
2459         if (svm->nested.exit_required)
2460                 return false;
2461
2462         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2463         svm->vmcb->control.exit_info_1 = 0;
2464         svm->vmcb->control.exit_info_2 = 0;
2465
2466         if (svm->nested.intercept & 1ULL) {
2467                 /*
2468                  * The #vmexit can't be emulated here directly because this
2469                  * code path runs with irqs and preemption disabled. A
2470                  * #vmexit emulation might sleep. Only signal request for
2471                  * the #vmexit here.
2472                  */
2473                 svm->nested.exit_required = true;
2474                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2475                 return false;
2476         }
2477
2478         return true;
2479 }
2480
2481 /* This function returns true if it is save to enable the nmi window */
2482 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2483 {
2484         if (!is_guest_mode(&svm->vcpu))
2485                 return true;
2486
2487         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2488                 return true;
2489
2490         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2491         svm->nested.exit_required = true;
2492
2493         return false;
2494 }
2495
2496 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2497 {
2498         struct page *page;
2499
2500         might_sleep();
2501
2502         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2503         if (is_error_page(page))
2504                 goto error;
2505
2506         *_page = page;
2507
2508         return kmap(page);
2509
2510 error:
2511         kvm_inject_gp(&svm->vcpu, 0);
2512
2513         return NULL;
2514 }
2515
2516 static void nested_svm_unmap(struct page *page)
2517 {
2518         kunmap(page);
2519         kvm_release_page_dirty(page);
2520 }
2521
2522 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2523 {
2524         unsigned port, size, iopm_len;
2525         u16 val, mask;
2526         u8 start_bit;
2527         u64 gpa;
2528
2529         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2530                 return NESTED_EXIT_HOST;
2531
2532         port = svm->vmcb->control.exit_info_1 >> 16;
2533         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2534                 SVM_IOIO_SIZE_SHIFT;
2535         gpa  = svm->nested.vmcb_iopm + (port / 8);
2536         start_bit = port % 8;
2537         iopm_len = (start_bit + size > 8) ? 2 : 1;
2538         mask = (0xf >> (4 - size)) << start_bit;
2539         val = 0;
2540
2541         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2542                 return NESTED_EXIT_DONE;
2543
2544         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2545 }
2546
2547 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2548 {
2549         u32 offset, msr, value;
2550         int write, mask;
2551
2552         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2553                 return NESTED_EXIT_HOST;
2554
2555         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2556         offset = svm_msrpm_offset(msr);
2557         write  = svm->vmcb->control.exit_info_1 & 1;
2558         mask   = 1 << ((2 * (msr & 0xf)) + write);
2559
2560         if (offset == MSR_INVALID)
2561                 return NESTED_EXIT_DONE;
2562
2563         /* Offset is in 32 bit units but need in 8 bit units */
2564         offset *= 4;
2565
2566         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2567                 return NESTED_EXIT_DONE;
2568
2569         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2570 }
2571
2572 /* DB exceptions for our internal use must not cause vmexit */
2573 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2574 {
2575         unsigned long dr6;
2576
2577         /* if we're not singlestepping, it's not ours */
2578         if (!svm->nmi_singlestep)
2579                 return NESTED_EXIT_DONE;
2580
2581         /* if it's not a singlestep exception, it's not ours */
2582         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2583                 return NESTED_EXIT_DONE;
2584         if (!(dr6 & DR6_BS))
2585                 return NESTED_EXIT_DONE;
2586
2587         /* if the guest is singlestepping, it should get the vmexit */
2588         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2589                 disable_nmi_singlestep(svm);
2590                 return NESTED_EXIT_DONE;
2591         }
2592
2593         /* it's ours, the nested hypervisor must not see this one */
2594         return NESTED_EXIT_HOST;
2595 }
2596
2597 static int nested_svm_exit_special(struct vcpu_svm *svm)
2598 {
2599         u32 exit_code = svm->vmcb->control.exit_code;
2600
2601         switch (exit_code) {
2602         case SVM_EXIT_INTR:
2603         case SVM_EXIT_NMI:
2604         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2605                 return NESTED_EXIT_HOST;
2606         case SVM_EXIT_NPF:
2607                 /* For now we are always handling NPFs when using them */
2608                 if (npt_enabled)
2609                         return NESTED_EXIT_HOST;
2610                 break;
2611         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2612                 /* When we're shadowing, trap PFs, but not async PF */
2613                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2614                         return NESTED_EXIT_HOST;
2615                 break;
2616         default:
2617                 break;
2618         }
2619
2620         return NESTED_EXIT_CONTINUE;
2621 }
2622
2623 /*
2624  * If this function returns true, this #vmexit was already handled
2625  */
2626 static int nested_svm_intercept(struct vcpu_svm *svm)
2627 {
2628         u32 exit_code = svm->vmcb->control.exit_code;
2629         int vmexit = NESTED_EXIT_HOST;
2630
2631         switch (exit_code) {
2632         case SVM_EXIT_MSR:
2633                 vmexit = nested_svm_exit_handled_msr(svm);
2634                 break;
2635         case SVM_EXIT_IOIO:
2636                 vmexit = nested_svm_intercept_ioio(svm);
2637                 break;
2638         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2639                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2640                 if (svm->nested.intercept_cr & bit)
2641                         vmexit = NESTED_EXIT_DONE;
2642                 break;
2643         }
2644         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2645                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2646                 if (svm->nested.intercept_dr & bit)
2647                         vmexit = NESTED_EXIT_DONE;
2648                 break;
2649         }
2650         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2651                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2652                 if (svm->nested.intercept_exceptions & excp_bits) {
2653                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2654                                 vmexit = nested_svm_intercept_db(svm);
2655                         else
2656                                 vmexit = NESTED_EXIT_DONE;
2657                 }
2658                 /* async page fault always cause vmexit */
2659                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2660                          svm->vcpu.arch.exception.nested_apf != 0)
2661                         vmexit = NESTED_EXIT_DONE;
2662                 break;
2663         }
2664         case SVM_EXIT_ERR: {
2665                 vmexit = NESTED_EXIT_DONE;
2666                 break;
2667         }
2668         default: {
2669                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2670                 if (svm->nested.intercept & exit_bits)
2671                         vmexit = NESTED_EXIT_DONE;
2672         }
2673         }
2674
2675         return vmexit;
2676 }
2677
2678 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2679 {
2680         int vmexit;
2681
2682         vmexit = nested_svm_intercept(svm);
2683
2684         if (vmexit == NESTED_EXIT_DONE)
2685                 nested_svm_vmexit(svm);
2686
2687         return vmexit;
2688 }
2689
2690 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2691 {
2692         struct vmcb_control_area *dst  = &dst_vmcb->control;
2693         struct vmcb_control_area *from = &from_vmcb->control;
2694
2695         dst->intercept_cr         = from->intercept_cr;
2696         dst->intercept_dr         = from->intercept_dr;
2697         dst->intercept_exceptions = from->intercept_exceptions;
2698         dst->intercept            = from->intercept;
2699         dst->iopm_base_pa         = from->iopm_base_pa;
2700         dst->msrpm_base_pa        = from->msrpm_base_pa;
2701         dst->tsc_offset           = from->tsc_offset;
2702         dst->asid                 = from->asid;
2703         dst->tlb_ctl              = from->tlb_ctl;
2704         dst->int_ctl              = from->int_ctl;
2705         dst->int_vector           = from->int_vector;
2706         dst->int_state            = from->int_state;
2707         dst->exit_code            = from->exit_code;
2708         dst->exit_code_hi         = from->exit_code_hi;
2709         dst->exit_info_1          = from->exit_info_1;
2710         dst->exit_info_2          = from->exit_info_2;
2711         dst->exit_int_info        = from->exit_int_info;
2712         dst->exit_int_info_err    = from->exit_int_info_err;
2713         dst->nested_ctl           = from->nested_ctl;
2714         dst->event_inj            = from->event_inj;
2715         dst->event_inj_err        = from->event_inj_err;
2716         dst->nested_cr3           = from->nested_cr3;
2717         dst->virt_ext              = from->virt_ext;
2718 }
2719
2720 static int nested_svm_vmexit(struct vcpu_svm *svm)
2721 {
2722         struct vmcb *nested_vmcb;
2723         struct vmcb *hsave = svm->nested.hsave;
2724         struct vmcb *vmcb = svm->vmcb;
2725         struct page *page;
2726
2727         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2728                                        vmcb->control.exit_info_1,
2729                                        vmcb->control.exit_info_2,
2730                                        vmcb->control.exit_int_info,
2731                                        vmcb->control.exit_int_info_err,
2732                                        KVM_ISA_SVM);
2733
2734         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2735         if (!nested_vmcb)
2736                 return 1;
2737
2738         /* Exit Guest-Mode */
2739         leave_guest_mode(&svm->vcpu);
2740         svm->nested.vmcb = 0;
2741
2742         /* Give the current vmcb to the guest */
2743         disable_gif(svm);
2744
2745         nested_vmcb->save.es     = vmcb->save.es;
2746         nested_vmcb->save.cs     = vmcb->save.cs;
2747         nested_vmcb->save.ss     = vmcb->save.ss;
2748         nested_vmcb->save.ds     = vmcb->save.ds;
2749         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2750         nested_vmcb->save.idtr   = vmcb->save.idtr;
2751         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2752         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2753         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2754         nested_vmcb->save.cr2    = vmcb->save.cr2;
2755         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2756         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2757         nested_vmcb->save.rip    = vmcb->save.rip;
2758         nested_vmcb->save.rsp    = vmcb->save.rsp;
2759         nested_vmcb->save.rax    = vmcb->save.rax;
2760         nested_vmcb->save.dr7    = vmcb->save.dr7;
2761         nested_vmcb->save.dr6    = vmcb->save.dr6;
2762         nested_vmcb->save.cpl    = vmcb->save.cpl;
2763
2764         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2765         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2766         nested_vmcb->control.int_state         = vmcb->control.int_state;
2767         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2768         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2769         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2770         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2771         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2772         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2773
2774         if (svm->nrips_enabled)
2775                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2776
2777         /*
2778          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2779          * to make sure that we do not lose injected events. So check event_inj
2780          * here and copy it to exit_int_info if it is valid.
2781          * Exit_int_info and event_inj can't be both valid because the case
2782          * below only happens on a VMRUN instruction intercept which has
2783          * no valid exit_int_info set.
2784          */
2785         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2786                 struct vmcb_control_area *nc = &nested_vmcb->control;
2787
2788                 nc->exit_int_info     = vmcb->control.event_inj;
2789                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2790         }
2791
2792         nested_vmcb->control.tlb_ctl           = 0;
2793         nested_vmcb->control.event_inj         = 0;
2794         nested_vmcb->control.event_inj_err     = 0;
2795
2796         /* We always set V_INTR_MASKING and remember the old value in hflags */
2797         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2798                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2799
2800         /* Restore the original control entries */
2801         copy_vmcb_control_area(vmcb, hsave);
2802
2803         kvm_clear_exception_queue(&svm->vcpu);
2804         kvm_clear_interrupt_queue(&svm->vcpu);
2805
2806         svm->nested.nested_cr3 = 0;
2807
2808         /* Restore selected save entries */
2809         svm->vmcb->save.es = hsave->save.es;
2810         svm->vmcb->save.cs = hsave->save.cs;
2811         svm->vmcb->save.ss = hsave->save.ss;
2812         svm->vmcb->save.ds = hsave->save.ds;
2813         svm->vmcb->save.gdtr = hsave->save.gdtr;
2814         svm->vmcb->save.idtr = hsave->save.idtr;
2815         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2816         svm_set_efer(&svm->vcpu, hsave->save.efer);
2817         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2818         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2819         if (npt_enabled) {
2820                 svm->vmcb->save.cr3 = hsave->save.cr3;
2821                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2822         } else {
2823                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2824         }
2825         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2826         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2827         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2828         svm->vmcb->save.dr7 = 0;
2829         svm->vmcb->save.cpl = 0;
2830         svm->vmcb->control.exit_int_info = 0;
2831
2832         mark_all_dirty(svm->vmcb);
2833
2834         nested_svm_unmap(page);
2835
2836         nested_svm_uninit_mmu_context(&svm->vcpu);
2837         kvm_mmu_reset_context(&svm->vcpu);
2838         kvm_mmu_load(&svm->vcpu);
2839
2840         return 0;
2841 }
2842
2843 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2844 {
2845         /*
2846          * This function merges the msr permission bitmaps of kvm and the
2847          * nested vmcb. It is optimized in that it only merges the parts where
2848          * the kvm msr permission bitmap may contain zero bits
2849          */
2850         int i;
2851
2852         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2853                 return true;
2854
2855         for (i = 0; i < MSRPM_OFFSETS; i++) {
2856                 u32 value, p;
2857                 u64 offset;
2858
2859                 if (msrpm_offsets[i] == 0xffffffff)
2860                         break;
2861
2862                 p      = msrpm_offsets[i];
2863                 offset = svm->nested.vmcb_msrpm + (p * 4);
2864
2865                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2866                         return false;
2867
2868                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2869         }
2870
2871         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2872
2873         return true;
2874 }
2875
2876 static bool nested_vmcb_checks(struct vmcb *vmcb)
2877 {
2878         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2879                 return false;
2880
2881         if (vmcb->control.asid == 0)
2882                 return false;
2883
2884         if (vmcb->control.nested_ctl && !npt_enabled)
2885                 return false;
2886
2887         return true;
2888 }
2889
2890 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2891 {
2892         struct vmcb *nested_vmcb;
2893         struct vmcb *hsave = svm->nested.hsave;
2894         struct vmcb *vmcb = svm->vmcb;
2895         struct page *page;
2896         u64 vmcb_gpa;
2897
2898         vmcb_gpa = svm->vmcb->save.rax;
2899
2900         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2901         if (!nested_vmcb)
2902                 return false;
2903
2904         if (!nested_vmcb_checks(nested_vmcb)) {
2905                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2906                 nested_vmcb->control.exit_code_hi = 0;
2907                 nested_vmcb->control.exit_info_1  = 0;
2908                 nested_vmcb->control.exit_info_2  = 0;
2909
2910                 nested_svm_unmap(page);
2911
2912                 return false;
2913         }
2914
2915         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2916                                nested_vmcb->save.rip,
2917                                nested_vmcb->control.int_ctl,
2918                                nested_vmcb->control.event_inj,
2919                                nested_vmcb->control.nested_ctl);
2920
2921         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2922                                     nested_vmcb->control.intercept_cr >> 16,
2923                                     nested_vmcb->control.intercept_exceptions,
2924                                     nested_vmcb->control.intercept);
2925
2926         /* Clear internal status */
2927         kvm_clear_exception_queue(&svm->vcpu);
2928         kvm_clear_interrupt_queue(&svm->vcpu);
2929
2930         /*
2931          * Save the old vmcb, so we don't need to pick what we save, but can
2932          * restore everything when a VMEXIT occurs
2933          */
2934         hsave->save.es     = vmcb->save.es;
2935         hsave->save.cs     = vmcb->save.cs;
2936         hsave->save.ss     = vmcb->save.ss;
2937         hsave->save.ds     = vmcb->save.ds;
2938         hsave->save.gdtr   = vmcb->save.gdtr;
2939         hsave->save.idtr   = vmcb->save.idtr;
2940         hsave->save.efer   = svm->vcpu.arch.efer;
2941         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2942         hsave->save.cr4    = svm->vcpu.arch.cr4;
2943         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2944         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2945         hsave->save.rsp    = vmcb->save.rsp;
2946         hsave->save.rax    = vmcb->save.rax;
2947         if (npt_enabled)
2948                 hsave->save.cr3    = vmcb->save.cr3;
2949         else
2950                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2951
2952         copy_vmcb_control_area(hsave, vmcb);
2953
2954         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2955                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2956         else
2957                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2958
2959         if (nested_vmcb->control.nested_ctl) {
2960                 kvm_mmu_unload(&svm->vcpu);
2961                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2962                 nested_svm_init_mmu_context(&svm->vcpu);
2963         }
2964
2965         /* Load the nested guest state */
2966         svm->vmcb->save.es = nested_vmcb->save.es;
2967         svm->vmcb->save.cs = nested_vmcb->save.cs;
2968         svm->vmcb->save.ss = nested_vmcb->save.ss;
2969         svm->vmcb->save.ds = nested_vmcb->save.ds;
2970         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2971         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2972         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2973         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2974         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2975         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2976         if (npt_enabled) {
2977                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2978                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2979         } else
2980                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2981
2982         /* Guest paging mode is active - reset mmu */
2983         kvm_mmu_reset_context(&svm->vcpu);
2984
2985         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2986         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2987         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2988         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2989
2990         /* In case we don't even reach vcpu_run, the fields are not updated */
2991         svm->vmcb->save.rax = nested_vmcb->save.rax;
2992         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2993         svm->vmcb->save.rip = nested_vmcb->save.rip;
2994         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2995         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2996         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2997
2998         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2999         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3000
3001         /* cache intercepts */
3002         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3003         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3004         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3005         svm->nested.intercept            = nested_vmcb->control.intercept;
3006
3007         svm_flush_tlb(&svm->vcpu);
3008         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3009         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3010                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3011         else
3012                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3013
3014         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3015                 /* We only want the cr8 intercept bits of the guest */
3016                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3017                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3018         }
3019
3020         /* We don't want to see VMMCALLs from a nested guest */
3021         clr_intercept(svm, INTERCEPT_VMMCALL);
3022
3023         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3024         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3025         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3026         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3027         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3028         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3029
3030         nested_svm_unmap(page);
3031
3032         /* Enter Guest-Mode */
3033         enter_guest_mode(&svm->vcpu);
3034
3035         /*
3036          * Merge guest and host intercepts - must be called  with vcpu in
3037          * guest-mode to take affect here
3038          */
3039         recalc_intercepts(svm);
3040
3041         svm->nested.vmcb = vmcb_gpa;
3042
3043         enable_gif(svm);
3044
3045         mark_all_dirty(svm->vmcb);
3046
3047         return true;
3048 }
3049
3050 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3051 {
3052         to_vmcb->save.fs = from_vmcb->save.fs;
3053         to_vmcb->save.gs = from_vmcb->save.gs;
3054         to_vmcb->save.tr = from_vmcb->save.tr;
3055         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3056         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3057         to_vmcb->save.star = from_vmcb->save.star;
3058         to_vmcb->save.lstar = from_vmcb->save.lstar;
3059         to_vmcb->save.cstar = from_vmcb->save.cstar;
3060         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3061         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3062         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3063         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3064 }
3065
3066 static int vmload_interception(struct vcpu_svm *svm)
3067 {
3068         struct vmcb *nested_vmcb;
3069         struct page *page;
3070         int ret;
3071
3072         if (nested_svm_check_permissions(svm))
3073                 return 1;
3074
3075         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3076         if (!nested_vmcb)
3077                 return 1;
3078
3079         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3080         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3081
3082         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3083         nested_svm_unmap(page);
3084
3085         return ret;
3086 }
3087
3088 static int vmsave_interception(struct vcpu_svm *svm)
3089 {
3090         struct vmcb *nested_vmcb;
3091         struct page *page;
3092         int ret;
3093
3094         if (nested_svm_check_permissions(svm))
3095                 return 1;
3096
3097         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3098         if (!nested_vmcb)
3099                 return 1;
3100
3101         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3102         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3103
3104         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3105         nested_svm_unmap(page);
3106
3107         return ret;
3108 }
3109
3110 static int vmrun_interception(struct vcpu_svm *svm)
3111 {
3112         if (nested_svm_check_permissions(svm))
3113                 return 1;
3114
3115         /* Save rip after vmrun instruction */
3116         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3117
3118         if (!nested_svm_vmrun(svm))
3119                 return 1;
3120
3121         if (!nested_svm_vmrun_msrpm(svm))
3122                 goto failed;
3123
3124         return 1;
3125
3126 failed:
3127
3128         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3129         svm->vmcb->control.exit_code_hi = 0;
3130         svm->vmcb->control.exit_info_1  = 0;
3131         svm->vmcb->control.exit_info_2  = 0;
3132
3133         nested_svm_vmexit(svm);
3134
3135         return 1;
3136 }
3137
3138 static int stgi_interception(struct vcpu_svm *svm)
3139 {
3140         int ret;
3141
3142         if (nested_svm_check_permissions(svm))
3143                 return 1;
3144
3145         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3146         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3147         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3148
3149         enable_gif(svm);
3150
3151         return ret;
3152 }
3153
3154 static int clgi_interception(struct vcpu_svm *svm)
3155 {
3156         int ret;
3157
3158         if (nested_svm_check_permissions(svm))
3159                 return 1;
3160
3161         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3162         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3163
3164         disable_gif(svm);
3165
3166         /* After a CLGI no interrupts should come */
3167         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3168                 svm_clear_vintr(svm);
3169                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3170                 mark_dirty(svm->vmcb, VMCB_INTR);
3171         }
3172
3173         return ret;
3174 }
3175
3176 static int invlpga_interception(struct vcpu_svm *svm)
3177 {
3178         struct kvm_vcpu *vcpu = &svm->vcpu;
3179
3180         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3181                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3182
3183         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3184         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3185
3186         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3187         return kvm_skip_emulated_instruction(&svm->vcpu);
3188 }
3189
3190 static int skinit_interception(struct vcpu_svm *svm)
3191 {
3192         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3193
3194         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3195         return 1;
3196 }
3197
3198 static int wbinvd_interception(struct vcpu_svm *svm)
3199 {
3200         return kvm_emulate_wbinvd(&svm->vcpu);
3201 }
3202
3203 static int xsetbv_interception(struct vcpu_svm *svm)
3204 {
3205         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3206         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3207
3208         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3209                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3210                 return kvm_skip_emulated_instruction(&svm->vcpu);
3211         }
3212
3213         return 1;
3214 }
3215
3216 static int task_switch_interception(struct vcpu_svm *svm)
3217 {
3218         u16 tss_selector;
3219         int reason;
3220         int int_type = svm->vmcb->control.exit_int_info &
3221                 SVM_EXITINTINFO_TYPE_MASK;
3222         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3223         uint32_t type =
3224                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3225         uint32_t idt_v =
3226                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3227         bool has_error_code = false;
3228         u32 error_code = 0;
3229
3230         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3231
3232         if (svm->vmcb->control.exit_info_2 &
3233             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3234                 reason = TASK_SWITCH_IRET;
3235         else if (svm->vmcb->control.exit_info_2 &
3236                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3237                 reason = TASK_SWITCH_JMP;
3238         else if (idt_v)
3239                 reason = TASK_SWITCH_GATE;
3240         else
3241                 reason = TASK_SWITCH_CALL;
3242
3243         if (reason == TASK_SWITCH_GATE) {
3244                 switch (type) {
3245                 case SVM_EXITINTINFO_TYPE_NMI:
3246                         svm->vcpu.arch.nmi_injected = false;
3247                         break;
3248                 case SVM_EXITINTINFO_TYPE_EXEPT:
3249                         if (svm->vmcb->control.exit_info_2 &
3250                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3251                                 has_error_code = true;
3252                                 error_code =
3253                                         (u32)svm->vmcb->control.exit_info_2;
3254                         }
3255                         kvm_clear_exception_queue(&svm->vcpu);
3256                         break;
3257                 case SVM_EXITINTINFO_TYPE_INTR:
3258                         kvm_clear_interrupt_queue(&svm->vcpu);
3259                         break;
3260                 default:
3261                         break;
3262                 }
3263         }
3264
3265         if (reason != TASK_SWITCH_GATE ||
3266             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3267             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3268              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3269                 skip_emulated_instruction(&svm->vcpu);
3270
3271         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3272                 int_vec = -1;
3273
3274         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3275                                 has_error_code, error_code) == EMULATE_FAIL) {
3276                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3277                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3278                 svm->vcpu.run->internal.ndata = 0;
3279                 return 0;
3280         }
3281         return 1;
3282 }
3283
3284 static int cpuid_interception(struct vcpu_svm *svm)
3285 {
3286         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3287         return kvm_emulate_cpuid(&svm->vcpu);
3288 }
3289
3290 static int iret_interception(struct vcpu_svm *svm)
3291 {
3292         ++svm->vcpu.stat.nmi_window_exits;
3293         clr_intercept(svm, INTERCEPT_IRET);
3294         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3295         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3296         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3297         return 1;
3298 }
3299
3300 static int invlpg_interception(struct vcpu_svm *svm)
3301 {
3302         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3303                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3304
3305         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3306         return kvm_skip_emulated_instruction(&svm->vcpu);
3307 }
3308
3309 static int emulate_on_interception(struct vcpu_svm *svm)
3310 {
3311         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3312 }
3313
3314 static int rdpmc_interception(struct vcpu_svm *svm)
3315 {
3316         int err;
3317
3318         if (!static_cpu_has(X86_FEATURE_NRIPS))
3319                 return emulate_on_interception(svm);
3320
3321         err = kvm_rdpmc(&svm->vcpu);
3322         return kvm_complete_insn_gp(&svm->vcpu, err);
3323 }
3324
3325 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3326                                             unsigned long val)
3327 {
3328         unsigned long cr0 = svm->vcpu.arch.cr0;
3329         bool ret = false;
3330         u64 intercept;
3331
3332         intercept = svm->nested.intercept;
3333
3334         if (!is_guest_mode(&svm->vcpu) ||
3335             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3336                 return false;
3337
3338         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3339         val &= ~SVM_CR0_SELECTIVE_MASK;
3340
3341         if (cr0 ^ val) {
3342                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3343                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3344         }
3345
3346         return ret;
3347 }
3348
3349 #define CR_VALID (1ULL << 63)
3350
3351 static int cr_interception(struct vcpu_svm *svm)
3352 {
3353         int reg, cr;
3354         unsigned long val;
3355         int err;
3356
3357         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3358                 return emulate_on_interception(svm);
3359
3360         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3361                 return emulate_on_interception(svm);
3362
3363         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3364         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3365                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3366         else
3367                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3368
3369         err = 0;
3370         if (cr >= 16) { /* mov to cr */
3371                 cr -= 16;
3372                 val = kvm_register_read(&svm->vcpu, reg);
3373                 switch (cr) {
3374                 case 0:
3375                         if (!check_selective_cr0_intercepted(svm, val))
3376                                 err = kvm_set_cr0(&svm->vcpu, val);
3377                         else
3378                                 return 1;
3379
3380                         break;
3381                 case 3:
3382                         err = kvm_set_cr3(&svm->vcpu, val);
3383                         break;
3384                 case 4:
3385                         err = kvm_set_cr4(&svm->vcpu, val);
3386                         break;
3387                 case 8:
3388                         err = kvm_set_cr8(&svm->vcpu, val);
3389                         break;
3390                 default:
3391                         WARN(1, "unhandled write to CR%d", cr);
3392                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3393                         return 1;
3394                 }
3395         } else { /* mov from cr */
3396                 switch (cr) {
3397                 case 0:
3398                         val = kvm_read_cr0(&svm->vcpu);
3399                         break;
3400                 case 2:
3401                         val = svm->vcpu.arch.cr2;
3402                         break;
3403                 case 3:
3404                         val = kvm_read_cr3(&svm->vcpu);
3405                         break;
3406                 case 4:
3407                         val = kvm_read_cr4(&svm->vcpu);
3408                         break;
3409                 case 8:
3410                         val = kvm_get_cr8(&svm->vcpu);
3411                         break;
3412                 default:
3413                         WARN(1, "unhandled read from CR%d", cr);
3414                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3415                         return 1;
3416                 }
3417                 kvm_register_write(&svm->vcpu, reg, val);
3418         }
3419         return kvm_complete_insn_gp(&svm->vcpu, err);
3420 }
3421
3422 static int dr_interception(struct vcpu_svm *svm)
3423 {
3424         int reg, dr;
3425         unsigned long val;
3426
3427         if (svm->vcpu.guest_debug == 0) {
3428                 /*
3429                  * No more DR vmexits; force a reload of the debug registers
3430                  * and reenter on this instruction.  The next vmexit will
3431                  * retrieve the full state of the debug registers.
3432                  */
3433                 clr_dr_intercepts(svm);
3434                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3435                 return 1;
3436         }
3437
3438         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3439                 return emulate_on_interception(svm);
3440
3441         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3442         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3443
3444         if (dr >= 16) { /* mov to DRn */
3445                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3446                         return 1;
3447                 val = kvm_register_read(&svm->vcpu, reg);
3448                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3449         } else {
3450                 if (!kvm_require_dr(&svm->vcpu, dr))
3451                         return 1;
3452                 kvm_get_dr(&svm->vcpu, dr, &val);
3453                 kvm_register_write(&svm->vcpu, reg, val);
3454         }
3455
3456         return kvm_skip_emulated_instruction(&svm->vcpu);
3457 }
3458
3459 static int cr8_write_interception(struct vcpu_svm *svm)
3460 {
3461         struct kvm_run *kvm_run = svm->vcpu.run;
3462         int r;
3463
3464         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3465         /* instruction emulation calls kvm_set_cr8() */
3466         r = cr_interception(svm);
3467         if (lapic_in_kernel(&svm->vcpu))
3468                 return r;
3469         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3470                 return r;
3471         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3472         return 0;
3473 }
3474
3475 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3476 {
3477         struct vcpu_svm *svm = to_svm(vcpu);
3478
3479         switch (msr_info->index) {
3480         case MSR_IA32_TSC: {
3481                 msr_info->data = svm->vmcb->control.tsc_offset +
3482                         kvm_scale_tsc(vcpu, rdtsc());
3483
3484                 break;
3485         }
3486         case MSR_STAR:
3487                 msr_info->data = svm->vmcb->save.star;
3488                 break;
3489 #ifdef CONFIG_X86_64
3490         case MSR_LSTAR:
3491                 msr_info->data = svm->vmcb->save.lstar;
3492                 break;
3493         case MSR_CSTAR:
3494                 msr_info->data = svm->vmcb->save.cstar;
3495                 break;
3496         case MSR_KERNEL_GS_BASE:
3497                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3498                 break;
3499         case MSR_SYSCALL_MASK:
3500                 msr_info->data = svm->vmcb->save.sfmask;
3501                 break;
3502 #endif
3503         case MSR_IA32_SYSENTER_CS:
3504                 msr_info->data = svm->vmcb->save.sysenter_cs;
3505                 break;
3506         case MSR_IA32_SYSENTER_EIP:
3507                 msr_info->data = svm->sysenter_eip;
3508                 break;
3509         case MSR_IA32_SYSENTER_ESP:
3510                 msr_info->data = svm->sysenter_esp;
3511                 break;
3512         case MSR_TSC_AUX:
3513                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3514                         return 1;
3515                 msr_info->data = svm->tsc_aux;
3516                 break;
3517         /*
3518          * Nobody will change the following 5 values in the VMCB so we can
3519          * safely return them on rdmsr. They will always be 0 until LBRV is
3520          * implemented.
3521          */
3522         case MSR_IA32_DEBUGCTLMSR:
3523                 msr_info->data = svm->vmcb->save.dbgctl;
3524                 break;
3525         case MSR_IA32_LASTBRANCHFROMIP:
3526                 msr_info->data = svm->vmcb->save.br_from;
3527                 break;
3528         case MSR_IA32_LASTBRANCHTOIP:
3529                 msr_info->data = svm->vmcb->save.br_to;
3530                 break;
3531         case MSR_IA32_LASTINTFROMIP:
3532                 msr_info->data = svm->vmcb->save.last_excp_from;
3533                 break;
3534         case MSR_IA32_LASTINTTOIP:
3535                 msr_info->data = svm->vmcb->save.last_excp_to;
3536                 break;
3537         case MSR_VM_HSAVE_PA:
3538                 msr_info->data = svm->nested.hsave_msr;
3539                 break;
3540         case MSR_VM_CR:
3541                 msr_info->data = svm->nested.vm_cr_msr;
3542                 break;
3543         case MSR_IA32_UCODE_REV:
3544                 msr_info->data = 0x01000065;
3545                 break;
3546         case MSR_F15H_IC_CFG: {
3547
3548                 int family, model;
3549
3550                 family = guest_cpuid_family(vcpu);
3551                 model  = guest_cpuid_model(vcpu);
3552
3553                 if (family < 0 || model < 0)
3554                         return kvm_get_msr_common(vcpu, msr_info);
3555
3556                 msr_info->data = 0;
3557
3558                 if (family == 0x15 &&
3559                     (model >= 0x2 && model < 0x20))
3560                         msr_info->data = 0x1E;
3561                 }
3562                 break;
3563         default:
3564                 return kvm_get_msr_common(vcpu, msr_info);
3565         }
3566         return 0;
3567 }
3568
3569 static int rdmsr_interception(struct vcpu_svm *svm)
3570 {
3571         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3572         struct msr_data msr_info;
3573
3574         msr_info.index = ecx;
3575         msr_info.host_initiated = false;
3576         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3577                 trace_kvm_msr_read_ex(ecx);
3578                 kvm_inject_gp(&svm->vcpu, 0);
3579                 return 1;
3580         } else {
3581                 trace_kvm_msr_read(ecx, msr_info.data);
3582
3583                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3584                                    msr_info.data & 0xffffffff);
3585                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3586                                    msr_info.data >> 32);
3587                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3588                 return kvm_skip_emulated_instruction(&svm->vcpu);
3589         }
3590 }
3591
3592 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3593 {
3594         struct vcpu_svm *svm = to_svm(vcpu);
3595         int svm_dis, chg_mask;
3596
3597         if (data & ~SVM_VM_CR_VALID_MASK)
3598                 return 1;
3599
3600         chg_mask = SVM_VM_CR_VALID_MASK;
3601
3602         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3603                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3604
3605         svm->nested.vm_cr_msr &= ~chg_mask;
3606         svm->nested.vm_cr_msr |= (data & chg_mask);
3607
3608         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3609
3610         /* check for svm_disable while efer.svme is set */
3611         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3612                 return 1;
3613
3614         return 0;
3615 }
3616
3617 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620
3621         u32 ecx = msr->index;
3622         u64 data = msr->data;
3623         switch (ecx) {
3624         case MSR_IA32_TSC:
3625                 kvm_write_tsc(vcpu, msr);
3626                 break;
3627         case MSR_STAR:
3628                 svm->vmcb->save.star = data;
3629                 break;
3630 #ifdef CONFIG_X86_64
3631         case MSR_LSTAR:
3632                 svm->vmcb->save.lstar = data;
3633                 break;
3634         case MSR_CSTAR:
3635                 svm->vmcb->save.cstar = data;
3636                 break;
3637         case MSR_KERNEL_GS_BASE:
3638                 svm->vmcb->save.kernel_gs_base = data;
3639                 break;
3640         case MSR_SYSCALL_MASK:
3641                 svm->vmcb->save.sfmask = data;
3642                 break;
3643 #endif
3644         case MSR_IA32_SYSENTER_CS:
3645                 svm->vmcb->save.sysenter_cs = data;
3646                 break;
3647         case MSR_IA32_SYSENTER_EIP:
3648                 svm->sysenter_eip = data;
3649                 svm->vmcb->save.sysenter_eip = data;
3650                 break;
3651         case MSR_IA32_SYSENTER_ESP:
3652                 svm->sysenter_esp = data;
3653                 svm->vmcb->save.sysenter_esp = data;
3654                 break;
3655         case MSR_TSC_AUX:
3656                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3657                         return 1;
3658
3659                 /*
3660                  * This is rare, so we update the MSR here instead of using
3661                  * direct_access_msrs.  Doing that would require a rdmsr in
3662                  * svm_vcpu_put.
3663                  */
3664                 svm->tsc_aux = data;
3665                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3666                 break;
3667         case MSR_IA32_DEBUGCTLMSR:
3668                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3669                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3670                                     __func__, data);
3671                         break;
3672                 }
3673                 if (data & DEBUGCTL_RESERVED_BITS)
3674                         return 1;
3675
3676                 svm->vmcb->save.dbgctl = data;
3677                 mark_dirty(svm->vmcb, VMCB_LBR);
3678                 if (data & (1ULL<<0))
3679                         svm_enable_lbrv(svm);
3680                 else
3681                         svm_disable_lbrv(svm);
3682                 break;
3683         case MSR_VM_HSAVE_PA:
3684                 svm->nested.hsave_msr = data;
3685                 break;
3686         case MSR_VM_CR:
3687                 return svm_set_vm_cr(vcpu, data);
3688         case MSR_VM_IGNNE:
3689                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3690                 break;
3691         case MSR_IA32_APICBASE:
3692                 if (kvm_vcpu_apicv_active(vcpu))
3693                         avic_update_vapic_bar(to_svm(vcpu), data);
3694                 /* Follow through */
3695         default:
3696                 return kvm_set_msr_common(vcpu, msr);
3697         }
3698         return 0;
3699 }
3700
3701 static int wrmsr_interception(struct vcpu_svm *svm)
3702 {
3703         struct msr_data msr;
3704         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3705         u64 data = kvm_read_edx_eax(&svm->vcpu);
3706
3707         msr.data = data;
3708         msr.index = ecx;
3709         msr.host_initiated = false;
3710
3711         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3712         if (kvm_set_msr(&svm->vcpu, &msr)) {
3713                 trace_kvm_msr_write_ex(ecx, data);
3714                 kvm_inject_gp(&svm->vcpu, 0);
3715                 return 1;
3716         } else {
3717                 trace_kvm_msr_write(ecx, data);
3718                 return kvm_skip_emulated_instruction(&svm->vcpu);
3719         }
3720 }
3721
3722 static int msr_interception(struct vcpu_svm *svm)
3723 {
3724         if (svm->vmcb->control.exit_info_1)
3725                 return wrmsr_interception(svm);
3726         else
3727                 return rdmsr_interception(svm);
3728 }
3729
3730 static int interrupt_window_interception(struct vcpu_svm *svm)
3731 {
3732         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3733         svm_clear_vintr(svm);
3734         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3735         mark_dirty(svm->vmcb, VMCB_INTR);
3736         ++svm->vcpu.stat.irq_window_exits;
3737         return 1;
3738 }
3739
3740 static int pause_interception(struct vcpu_svm *svm)
3741 {
3742         kvm_vcpu_on_spin(&(svm->vcpu));
3743         return 1;
3744 }
3745
3746 static int nop_interception(struct vcpu_svm *svm)
3747 {
3748         return kvm_skip_emulated_instruction(&(svm->vcpu));
3749 }
3750
3751 static int monitor_interception(struct vcpu_svm *svm)
3752 {
3753         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3754         return nop_interception(svm);
3755 }
3756
3757 static int mwait_interception(struct vcpu_svm *svm)
3758 {
3759         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3760         return nop_interception(svm);
3761 }
3762
3763 enum avic_ipi_failure_cause {
3764         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3765         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3766         AVIC_IPI_FAILURE_INVALID_TARGET,
3767         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3768 };
3769
3770 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3771 {
3772         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3773         u32 icrl = svm->vmcb->control.exit_info_1;
3774         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3775         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3776         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3777
3778         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3779
3780         switch (id) {
3781         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3782                 /*
3783                  * AVIC hardware handles the generation of
3784                  * IPIs when the specified Message Type is Fixed
3785                  * (also known as fixed delivery mode) and
3786                  * the Trigger Mode is edge-triggered. The hardware
3787                  * also supports self and broadcast delivery modes
3788                  * specified via the Destination Shorthand(DSH)
3789                  * field of the ICRL. Logical and physical APIC ID
3790                  * formats are supported. All other IPI types cause
3791                  * a #VMEXIT, which needs to emulated.
3792                  */
3793                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3794                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3795                 break;
3796         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3797                 int i;
3798                 struct kvm_vcpu *vcpu;
3799                 struct kvm *kvm = svm->vcpu.kvm;
3800                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3801
3802                 /*
3803                  * At this point, we expect that the AVIC HW has already
3804                  * set the appropriate IRR bits on the valid target
3805                  * vcpus. So, we just need to kick the appropriate vcpu.
3806                  */
3807                 kvm_for_each_vcpu(i, vcpu, kvm) {
3808                         bool m = kvm_apic_match_dest(vcpu, apic,
3809                                                      icrl & KVM_APIC_SHORT_MASK,
3810                                                      GET_APIC_DEST_FIELD(icrh),
3811                                                      icrl & KVM_APIC_DEST_MASK);
3812
3813                         if (m && !avic_vcpu_is_running(vcpu))
3814                                 kvm_vcpu_wake_up(vcpu);
3815                 }
3816                 break;
3817         }
3818         case AVIC_IPI_FAILURE_INVALID_TARGET:
3819                 break;
3820         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3821                 WARN_ONCE(1, "Invalid backing page\n");
3822                 break;
3823         default:
3824                 pr_err("Unknown IPI interception\n");
3825         }
3826
3827         return 1;
3828 }
3829
3830 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3831 {
3832         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3833         int index;
3834         u32 *logical_apic_id_table;
3835         int dlid = GET_APIC_LOGICAL_ID(ldr);
3836
3837         if (!dlid)
3838                 return NULL;
3839
3840         if (flat) { /* flat */
3841                 index = ffs(dlid) - 1;
3842                 if (index > 7)
3843                         return NULL;
3844         } else { /* cluster */
3845                 int cluster = (dlid & 0xf0) >> 4;
3846                 int apic = ffs(dlid & 0x0f) - 1;
3847
3848                 if ((apic < 0) || (apic > 7) ||
3849                     (cluster >= 0xf))
3850                         return NULL;
3851                 index = (cluster << 2) + apic;
3852         }
3853
3854         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3855
3856         return &logical_apic_id_table[index];
3857 }
3858
3859 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3860                           bool valid)
3861 {
3862         bool flat;
3863         u32 *entry, new_entry;
3864
3865         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3866         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3867         if (!entry)
3868                 return -EINVAL;
3869
3870         new_entry = READ_ONCE(*entry);
3871         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3872         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3873         if (valid)
3874                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3875         else
3876                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3877         WRITE_ONCE(*entry, new_entry);
3878
3879         return 0;
3880 }
3881
3882 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3883 {
3884         int ret;
3885         struct vcpu_svm *svm = to_svm(vcpu);
3886         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3887
3888         if (!ldr)
3889                 return 1;
3890
3891         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3892         if (ret && svm->ldr_reg) {
3893                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3894                 svm->ldr_reg = 0;
3895         } else {
3896                 svm->ldr_reg = ldr;
3897         }
3898         return ret;
3899 }
3900
3901 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3902 {
3903         u64 *old, *new;
3904         struct vcpu_svm *svm = to_svm(vcpu);
3905         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3906         u32 id = (apic_id_reg >> 24) & 0xff;
3907
3908         if (vcpu->vcpu_id == id)
3909                 return 0;
3910
3911         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3912         new = avic_get_physical_id_entry(vcpu, id);
3913         if (!new || !old)
3914                 return 1;
3915
3916         /* We need to move physical_id_entry to new offset */
3917         *new = *old;
3918         *old = 0ULL;
3919         to_svm(vcpu)->avic_physical_id_cache = new;
3920
3921         /*
3922          * Also update the guest physical APIC ID in the logical
3923          * APIC ID table entry if already setup the LDR.
3924          */
3925         if (svm->ldr_reg)
3926                 avic_handle_ldr_update(vcpu);
3927
3928         return 0;
3929 }
3930
3931 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3932 {
3933         struct vcpu_svm *svm = to_svm(vcpu);
3934         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3935         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3936         u32 mod = (dfr >> 28) & 0xf;
3937
3938         /*
3939          * We assume that all local APICs are using the same type.
3940          * If this changes, we need to flush the AVIC logical
3941          * APID id table.
3942          */
3943         if (vm_data->ldr_mode == mod)
3944                 return 0;
3945
3946         clear_page(page_address(vm_data->avic_logical_id_table_page));
3947         vm_data->ldr_mode = mod;
3948
3949         if (svm->ldr_reg)
3950                 avic_handle_ldr_update(vcpu);
3951         return 0;
3952 }
3953
3954 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3955 {
3956         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3957         u32 offset = svm->vmcb->control.exit_info_1 &
3958                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3959
3960         switch (offset) {
3961         case APIC_ID:
3962                 if (avic_handle_apic_id_update(&svm->vcpu))
3963                         return 0;
3964                 break;
3965         case APIC_LDR:
3966                 if (avic_handle_ldr_update(&svm->vcpu))
3967                         return 0;
3968                 break;
3969         case APIC_DFR:
3970                 avic_handle_dfr_update(&svm->vcpu);
3971                 break;
3972         default:
3973                 break;
3974         }
3975
3976         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3977
3978         return 1;
3979 }
3980
3981 static bool is_avic_unaccelerated_access_trap(u32 offset)
3982 {
3983         bool ret = false;
3984
3985         switch (offset) {
3986         case APIC_ID:
3987         case APIC_EOI:
3988         case APIC_RRR:
3989         case APIC_LDR:
3990         case APIC_DFR:
3991         case APIC_SPIV:
3992         case APIC_ESR:
3993         case APIC_ICR:
3994         case APIC_LVTT:
3995         case APIC_LVTTHMR:
3996         case APIC_LVTPC:
3997         case APIC_LVT0:
3998         case APIC_LVT1:
3999         case APIC_LVTERR:
4000         case APIC_TMICT:
4001         case APIC_TDCR:
4002                 ret = true;
4003                 break;
4004         default:
4005                 break;
4006         }
4007         return ret;
4008 }
4009
4010 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4011 {
4012         int ret = 0;
4013         u32 offset = svm->vmcb->control.exit_info_1 &
4014                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4015         u32 vector = svm->vmcb->control.exit_info_2 &
4016                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4017         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4018                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4019         bool trap = is_avic_unaccelerated_access_trap(offset);
4020
4021         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4022                                             trap, write, vector);
4023         if (trap) {
4024                 /* Handling Trap */
4025                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4026                 ret = avic_unaccel_trap_write(svm);
4027         } else {
4028                 /* Handling Fault */
4029                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4030         }
4031
4032         return ret;
4033 }
4034
4035 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4036         [SVM_EXIT_READ_CR0]                     = cr_interception,
4037         [SVM_EXIT_READ_CR3]                     = cr_interception,
4038         [SVM_EXIT_READ_CR4]                     = cr_interception,
4039         [SVM_EXIT_READ_CR8]                     = cr_interception,
4040         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4041         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4042         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4043         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4044         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4045         [SVM_EXIT_READ_DR0]                     = dr_interception,
4046         [SVM_EXIT_READ_DR1]                     = dr_interception,
4047         [SVM_EXIT_READ_DR2]                     = dr_interception,
4048         [SVM_EXIT_READ_DR3]                     = dr_interception,
4049         [SVM_EXIT_READ_DR4]                     = dr_interception,
4050         [SVM_EXIT_READ_DR5]                     = dr_interception,
4051         [SVM_EXIT_READ_DR6]                     = dr_interception,
4052         [SVM_EXIT_READ_DR7]                     = dr_interception,
4053         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4054         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4055         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4056         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4057         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4058         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4059         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4060         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4061         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4062         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4063         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4064         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4065         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4066         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4067         [SVM_EXIT_INTR]                         = intr_interception,
4068         [SVM_EXIT_NMI]                          = nmi_interception,
4069         [SVM_EXIT_SMI]                          = nop_on_interception,
4070         [SVM_EXIT_INIT]                         = nop_on_interception,
4071         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4072         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4073         [SVM_EXIT_CPUID]                        = cpuid_interception,
4074         [SVM_EXIT_IRET]                         = iret_interception,
4075         [SVM_EXIT_INVD]                         = emulate_on_interception,
4076         [SVM_EXIT_PAUSE]                        = pause_interception,
4077         [SVM_EXIT_HLT]                          = halt_interception,
4078         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4079         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4080         [SVM_EXIT_IOIO]                         = io_interception,
4081         [SVM_EXIT_MSR]                          = msr_interception,
4082         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4083         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4084         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4085         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4086         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4087         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4088         [SVM_EXIT_STGI]                         = stgi_interception,
4089         [SVM_EXIT_CLGI]                         = clgi_interception,
4090         [SVM_EXIT_SKINIT]                       = skinit_interception,
4091         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4092         [SVM_EXIT_MONITOR]                      = monitor_interception,
4093         [SVM_EXIT_MWAIT]                        = mwait_interception,
4094         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4095         [SVM_EXIT_NPF]                          = pf_interception,
4096         [SVM_EXIT_RSM]                          = emulate_on_interception,
4097         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4098         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4099 };
4100
4101 static void dump_vmcb(struct kvm_vcpu *vcpu)
4102 {
4103         struct vcpu_svm *svm = to_svm(vcpu);
4104         struct vmcb_control_area *control = &svm->vmcb->control;
4105         struct vmcb_save_area *save = &svm->vmcb->save;
4106
4107         pr_err("VMCB Control Area:\n");
4108         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4109         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4110         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4111         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4112         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4113         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4114         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4115         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4116         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4117         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4118         pr_err("%-20s%d\n", "asid:", control->asid);
4119         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4120         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4121         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4122         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4123         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4124         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4125         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4126         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4127         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4128         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4129         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4130         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4131         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4132         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4133         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4134         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4135         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4136         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4137         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4138         pr_err("VMCB State Save Area:\n");
4139         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4140                "es:",
4141                save->es.selector, save->es.attrib,
4142                save->es.limit, save->es.base);
4143         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4144                "cs:",
4145                save->cs.selector, save->cs.attrib,
4146                save->cs.limit, save->cs.base);
4147         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4148                "ss:",
4149                save->ss.selector, save->ss.attrib,
4150                save->ss.limit, save->ss.base);
4151         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4152                "ds:",
4153                save->ds.selector, save->ds.attrib,
4154                save->ds.limit, save->ds.base);
4155         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4156                "fs:",
4157                save->fs.selector, save->fs.attrib,
4158                save->fs.limit, save->fs.base);
4159         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4160                "gs:",
4161                save->gs.selector, save->gs.attrib,
4162                save->gs.limit, save->gs.base);
4163         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4164                "gdtr:",
4165                save->gdtr.selector, save->gdtr.attrib,
4166                save->gdtr.limit, save->gdtr.base);
4167         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4168                "ldtr:",
4169                save->ldtr.selector, save->ldtr.attrib,
4170                save->ldtr.limit, save->ldtr.base);
4171         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4172                "idtr:",
4173                save->idtr.selector, save->idtr.attrib,
4174                save->idtr.limit, save->idtr.base);
4175         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4176                "tr:",
4177                save->tr.selector, save->tr.attrib,
4178                save->tr.limit, save->tr.base);
4179         pr_err("cpl:            %d                efer:         %016llx\n",
4180                 save->cpl, save->efer);
4181         pr_err("%-15s %016llx %-13s %016llx\n",
4182                "cr0:", save->cr0, "cr2:", save->cr2);
4183         pr_err("%-15s %016llx %-13s %016llx\n",
4184                "cr3:", save->cr3, "cr4:", save->cr4);
4185         pr_err("%-15s %016llx %-13s %016llx\n",
4186                "dr6:", save->dr6, "dr7:", save->dr7);
4187         pr_err("%-15s %016llx %-13s %016llx\n",
4188                "rip:", save->rip, "rflags:", save->rflags);
4189         pr_err("%-15s %016llx %-13s %016llx\n",
4190                "rsp:", save->rsp, "rax:", save->rax);
4191         pr_err("%-15s %016llx %-13s %016llx\n",
4192                "star:", save->star, "lstar:", save->lstar);
4193         pr_err("%-15s %016llx %-13s %016llx\n",
4194                "cstar:", save->cstar, "sfmask:", save->sfmask);
4195         pr_err("%-15s %016llx %-13s %016llx\n",
4196                "kernel_gs_base:", save->kernel_gs_base,
4197                "sysenter_cs:", save->sysenter_cs);
4198         pr_err("%-15s %016llx %-13s %016llx\n",
4199                "sysenter_esp:", save->sysenter_esp,
4200                "sysenter_eip:", save->sysenter_eip);
4201         pr_err("%-15s %016llx %-13s %016llx\n",
4202                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4203         pr_err("%-15s %016llx %-13s %016llx\n",
4204                "br_from:", save->br_from, "br_to:", save->br_to);
4205         pr_err("%-15s %016llx %-13s %016llx\n",
4206                "excp_from:", save->last_excp_from,
4207                "excp_to:", save->last_excp_to);
4208 }
4209
4210 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4211 {
4212         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4213
4214         *info1 = control->exit_info_1;
4215         *info2 = control->exit_info_2;
4216 }
4217
4218 static int handle_exit(struct kvm_vcpu *vcpu)
4219 {
4220         struct vcpu_svm *svm = to_svm(vcpu);
4221         struct kvm_run *kvm_run = vcpu->run;
4222         u32 exit_code = svm->vmcb->control.exit_code;
4223
4224         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4225
4226         vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4227
4228         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4229                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4230         if (npt_enabled)
4231                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4232
4233         if (unlikely(svm->nested.exit_required)) {
4234                 nested_svm_vmexit(svm);
4235                 svm->nested.exit_required = false;
4236
4237                 return 1;
4238         }
4239
4240         if (is_guest_mode(vcpu)) {
4241                 int vmexit;
4242
4243                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4244                                         svm->vmcb->control.exit_info_1,
4245                                         svm->vmcb->control.exit_info_2,
4246                                         svm->vmcb->control.exit_int_info,
4247                                         svm->vmcb->control.exit_int_info_err,
4248                                         KVM_ISA_SVM);
4249
4250                 vmexit = nested_svm_exit_special(svm);
4251
4252                 if (vmexit == NESTED_EXIT_CONTINUE)
4253                         vmexit = nested_svm_exit_handled(svm);
4254
4255                 if (vmexit == NESTED_EXIT_DONE)
4256                         return 1;
4257         }
4258
4259         svm_complete_interrupts(svm);
4260
4261         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4262                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4263                 kvm_run->fail_entry.hardware_entry_failure_reason
4264                         = svm->vmcb->control.exit_code;
4265                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4266                 dump_vmcb(vcpu);
4267                 return 0;
4268         }
4269
4270         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4271             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4272             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4273             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4274                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4275                        "exit_code 0x%x\n",
4276                        __func__, svm->vmcb->control.exit_int_info,
4277                        exit_code);
4278
4279         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4280             || !svm_exit_handlers[exit_code]) {
4281                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4282                 kvm_queue_exception(vcpu, UD_VECTOR);
4283                 return 1;
4284         }
4285
4286         return svm_exit_handlers[exit_code](svm);
4287 }
4288
4289 static void reload_tss(struct kvm_vcpu *vcpu)
4290 {
4291         int cpu = raw_smp_processor_id();
4292
4293         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4294         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4295         load_TR_desc();
4296 }
4297
4298 static void pre_svm_run(struct vcpu_svm *svm)
4299 {
4300         int cpu = raw_smp_processor_id();
4301
4302         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4303
4304         /* FIXME: handle wraparound of asid_generation */
4305         if (svm->asid_generation != sd->asid_generation)
4306                 new_asid(svm, sd);
4307 }
4308
4309 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4310 {
4311         struct vcpu_svm *svm = to_svm(vcpu);
4312
4313         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4314         vcpu->arch.hflags |= HF_NMI_MASK;
4315         set_intercept(svm, INTERCEPT_IRET);
4316         ++vcpu->stat.nmi_injections;
4317 }
4318
4319 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4320 {
4321         struct vmcb_control_area *control;
4322
4323         /* The following fields are ignored when AVIC is enabled */
4324         control = &svm->vmcb->control;
4325         control->int_vector = irq;
4326         control->int_ctl &= ~V_INTR_PRIO_MASK;
4327         control->int_ctl |= V_IRQ_MASK |
4328                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4329         mark_dirty(svm->vmcb, VMCB_INTR);
4330 }
4331
4332 static void svm_set_irq(struct kvm_vcpu *vcpu)
4333 {
4334         struct vcpu_svm *svm = to_svm(vcpu);
4335
4336         BUG_ON(!(gif_set(svm)));
4337
4338         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4339         ++vcpu->stat.irq_injections;
4340
4341         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4342                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4343 }
4344
4345 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4346 {
4347         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4348 }
4349
4350 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4351 {
4352         struct vcpu_svm *svm = to_svm(vcpu);
4353
4354         if (svm_nested_virtualize_tpr(vcpu) ||
4355             kvm_vcpu_apicv_active(vcpu))
4356                 return;
4357
4358         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4359
4360         if (irr == -1)
4361                 return;
4362
4363         if (tpr >= irr)
4364                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4365 }
4366
4367 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4368 {
4369         return;
4370 }
4371
4372 static bool svm_get_enable_apicv(void)
4373 {
4374         return avic;
4375 }
4376
4377 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4378 {
4379 }
4380
4381 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4382 {
4383 }
4384
4385 /* Note: Currently only used by Hyper-V. */
4386 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4387 {
4388         struct vcpu_svm *svm = to_svm(vcpu);
4389         struct vmcb *vmcb = svm->vmcb;
4390
4391         if (!avic)
4392                 return;
4393
4394         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4395         mark_dirty(vmcb, VMCB_INTR);
4396 }
4397
4398 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4399 {
4400         return;
4401 }
4402
4403 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4404 {
4405         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4406         smp_mb__after_atomic();
4407
4408         if (avic_vcpu_is_running(vcpu))
4409                 wrmsrl(SVM_AVIC_DOORBELL,
4410                        kvm_cpu_get_apicid(vcpu->cpu));
4411         else
4412                 kvm_vcpu_wake_up(vcpu);
4413 }
4414
4415 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4416 {
4417         unsigned long flags;
4418         struct amd_svm_iommu_ir *cur;
4419
4420         spin_lock_irqsave(&svm->ir_list_lock, flags);
4421         list_for_each_entry(cur, &svm->ir_list, node) {
4422                 if (cur->data != pi->ir_data)
4423                         continue;
4424                 list_del(&cur->node);
4425                 kfree(cur);
4426                 break;
4427         }
4428         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4429 }
4430
4431 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4432 {
4433         int ret = 0;
4434         unsigned long flags;
4435         struct amd_svm_iommu_ir *ir;
4436
4437         /**
4438          * In some cases, the existing irte is updaed and re-set,
4439          * so we need to check here if it's already been * added
4440          * to the ir_list.
4441          */
4442         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4443                 struct kvm *kvm = svm->vcpu.kvm;
4444                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4445                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4446                 struct vcpu_svm *prev_svm;
4447
4448                 if (!prev_vcpu) {
4449                         ret = -EINVAL;
4450                         goto out;
4451                 }
4452
4453                 prev_svm = to_svm(prev_vcpu);
4454                 svm_ir_list_del(prev_svm, pi);
4455         }
4456
4457         /**
4458          * Allocating new amd_iommu_pi_data, which will get
4459          * add to the per-vcpu ir_list.
4460          */
4461         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4462         if (!ir) {
4463                 ret = -ENOMEM;
4464                 goto out;
4465         }
4466         ir->data = pi->ir_data;
4467
4468         spin_lock_irqsave(&svm->ir_list_lock, flags);
4469         list_add(&ir->node, &svm->ir_list);
4470         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4471 out:
4472         return ret;
4473 }
4474
4475 /**
4476  * Note:
4477  * The HW cannot support posting multicast/broadcast
4478  * interrupts to a vCPU. So, we still use legacy interrupt
4479  * remapping for these kind of interrupts.
4480  *
4481  * For lowest-priority interrupts, we only support
4482  * those with single CPU as the destination, e.g. user
4483  * configures the interrupts via /proc/irq or uses
4484  * irqbalance to make the interrupts single-CPU.
4485  */
4486 static int
4487 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4488                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4489 {
4490         struct kvm_lapic_irq irq;
4491         struct kvm_vcpu *vcpu = NULL;
4492
4493         kvm_set_msi_irq(kvm, e, &irq);
4494
4495         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4496                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4497                          __func__, irq.vector);
4498                 return -1;
4499         }
4500
4501         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4502                  irq.vector);
4503         *svm = to_svm(vcpu);
4504         vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4505         vcpu_info->vector = irq.vector;
4506
4507         return 0;
4508 }
4509
4510 /*
4511  * svm_update_pi_irte - set IRTE for Posted-Interrupts
4512  *
4513  * @kvm: kvm
4514  * @host_irq: host irq of the interrupt
4515  * @guest_irq: gsi of the interrupt
4516  * @set: set or unset PI
4517  * returns 0 on success, < 0 on failure
4518  */
4519 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4520                               uint32_t guest_irq, bool set)
4521 {
4522         struct kvm_kernel_irq_routing_entry *e;
4523         struct kvm_irq_routing_table *irq_rt;
4524         int idx, ret = -EINVAL;
4525
4526         if (!kvm_arch_has_assigned_device(kvm) ||
4527             !irq_remapping_cap(IRQ_POSTING_CAP))
4528                 return 0;
4529
4530         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4531                  __func__, host_irq, guest_irq, set);
4532
4533         idx = srcu_read_lock(&kvm->irq_srcu);
4534         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4535         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4536
4537         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4538                 struct vcpu_data vcpu_info;
4539                 struct vcpu_svm *svm = NULL;
4540
4541                 if (e->type != KVM_IRQ_ROUTING_MSI)
4542                         continue;
4543
4544                 /**
4545                  * Here, we setup with legacy mode in the following cases:
4546                  * 1. When cannot target interrupt to a specific vcpu.
4547                  * 2. Unsetting posted interrupt.
4548                  * 3. APIC virtialization is disabled for the vcpu.
4549                  */
4550                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4551                     kvm_vcpu_apicv_active(&svm->vcpu)) {
4552                         struct amd_iommu_pi_data pi;
4553
4554                         /* Try to enable guest_mode in IRTE */
4555                         pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4556                         pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4557                                                      svm->vcpu.vcpu_id);
4558                         pi.is_guest_mode = true;
4559                         pi.vcpu_data = &vcpu_info;
4560                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4561
4562                         /**
4563                          * Here, we successfully setting up vcpu affinity in
4564                          * IOMMU guest mode. Now, we need to store the posted
4565                          * interrupt information in a per-vcpu ir_list so that
4566                          * we can reference to them directly when we update vcpu
4567                          * scheduling information in IOMMU irte.
4568                          */
4569                         if (!ret && pi.is_guest_mode)
4570                                 svm_ir_list_add(svm, &pi);
4571                 } else {
4572                         /* Use legacy mode in IRTE */
4573                         struct amd_iommu_pi_data pi;
4574
4575                         /**
4576                          * Here, pi is used to:
4577                          * - Tell IOMMU to use legacy mode for this interrupt.
4578                          * - Retrieve ga_tag of prior interrupt remapping data.
4579                          */
4580                         pi.is_guest_mode = false;
4581                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4582
4583                         /**
4584                          * Check if the posted interrupt was previously
4585                          * setup with the guest_mode by checking if the ga_tag
4586                          * was cached. If so, we need to clean up the per-vcpu
4587                          * ir_list.
4588                          */
4589                         if (!ret && pi.prev_ga_tag) {
4590                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4591                                 struct kvm_vcpu *vcpu;
4592
4593                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
4594                                 if (vcpu)
4595                                         svm_ir_list_del(to_svm(vcpu), &pi);
4596                         }
4597                 }
4598
4599                 if (!ret && svm) {
4600                         trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4601                                                  host_irq, e->gsi,
4602                                                  vcpu_info.vector,
4603                                                  vcpu_info.pi_desc_addr, set);
4604                 }
4605
4606                 if (ret < 0) {
4607                         pr_err("%s: failed to update PI IRTE\n", __func__);
4608                         goto out;
4609                 }
4610         }
4611
4612         ret = 0;
4613 out:
4614         srcu_read_unlock(&kvm->irq_srcu, idx);
4615         return ret;
4616 }
4617
4618 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4619 {
4620         struct vcpu_svm *svm = to_svm(vcpu);
4621         struct vmcb *vmcb = svm->vmcb;
4622         int ret;
4623         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4624               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4625         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4626
4627         return ret;
4628 }
4629
4630 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4631 {
4632         struct vcpu_svm *svm = to_svm(vcpu);
4633
4634         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4635 }
4636
4637 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4638 {
4639         struct vcpu_svm *svm = to_svm(vcpu);
4640
4641         if (masked) {
4642                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4643                 set_intercept(svm, INTERCEPT_IRET);
4644         } else {
4645                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4646                 clr_intercept(svm, INTERCEPT_IRET);
4647         }
4648 }
4649
4650 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4651 {
4652         struct vcpu_svm *svm = to_svm(vcpu);
4653         struct vmcb *vmcb = svm->vmcb;
4654         int ret;
4655
4656         if (!gif_set(svm) ||
4657              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4658                 return 0;
4659
4660         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4661
4662         if (is_guest_mode(vcpu))
4663                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4664
4665         return ret;
4666 }
4667
4668 static void enable_irq_window(struct kvm_vcpu *vcpu)
4669 {
4670         struct vcpu_svm *svm = to_svm(vcpu);
4671
4672         if (kvm_vcpu_apicv_active(vcpu))
4673                 return;
4674
4675         /*
4676          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4677          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4678          * get that intercept, this function will be called again though and
4679          * we'll get the vintr intercept.
4680          */
4681         if (gif_set(svm) && nested_svm_intr(svm)) {
4682                 svm_set_vintr(svm);
4683                 svm_inject_irq(svm, 0x0);
4684         }
4685 }
4686
4687 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4688 {
4689         struct vcpu_svm *svm = to_svm(vcpu);
4690
4691         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4692             == HF_NMI_MASK)
4693                 return; /* IRET will cause a vm exit */
4694
4695         if ((svm->vcpu.arch.hflags & HF_GIF_MASK) == 0)
4696                 return; /* STGI will cause a vm exit */
4697
4698         if (svm->nested.exit_required)
4699                 return; /* we're not going to run the guest yet */
4700
4701         /*
4702          * Something prevents NMI from been injected. Single step over possible
4703          * problem (IRET or exception injection or interrupt shadow)
4704          */
4705         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4706         svm->nmi_singlestep = true;
4707         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4708 }
4709
4710 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4711 {
4712         return 0;
4713 }
4714
4715 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4716 {
4717         struct vcpu_svm *svm = to_svm(vcpu);
4718
4719         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4720                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4721         else
4722                 svm->asid_generation--;
4723 }
4724
4725 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4726 {
4727 }
4728
4729 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4730 {
4731         struct vcpu_svm *svm = to_svm(vcpu);
4732
4733         if (svm_nested_virtualize_tpr(vcpu))
4734                 return;
4735
4736         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4737                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4738                 kvm_set_cr8(vcpu, cr8);
4739         }
4740 }
4741
4742 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4743 {
4744         struct vcpu_svm *svm = to_svm(vcpu);
4745         u64 cr8;
4746
4747         if (svm_nested_virtualize_tpr(vcpu) ||
4748             kvm_vcpu_apicv_active(vcpu))
4749                 return;
4750
4751         cr8 = kvm_get_cr8(vcpu);
4752         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4753         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4754 }
4755
4756 static void svm_complete_interrupts(struct vcpu_svm *svm)
4757 {
4758         u8 vector;
4759         int type;
4760         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4761         unsigned int3_injected = svm->int3_injected;
4762
4763         svm->int3_injected = 0;
4764
4765         /*
4766          * If we've made progress since setting HF_IRET_MASK, we've
4767          * executed an IRET and can allow NMI injection.
4768          */
4769         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4770             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4771                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4772                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4773         }
4774
4775         svm->vcpu.arch.nmi_injected = false;
4776         kvm_clear_exception_queue(&svm->vcpu);
4777         kvm_clear_interrupt_queue(&svm->vcpu);
4778
4779         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4780                 return;
4781
4782         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4783
4784         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4785         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4786
4787         switch (type) {
4788         case SVM_EXITINTINFO_TYPE_NMI:
4789                 svm->vcpu.arch.nmi_injected = true;
4790                 break;
4791         case SVM_EXITINTINFO_TYPE_EXEPT:
4792                 /*
4793                  * In case of software exceptions, do not reinject the vector,
4794                  * but re-execute the instruction instead. Rewind RIP first
4795                  * if we emulated INT3 before.
4796                  */
4797                 if (kvm_exception_is_soft(vector)) {
4798                         if (vector == BP_VECTOR && int3_injected &&
4799                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4800                                 kvm_rip_write(&svm->vcpu,
4801                                               kvm_rip_read(&svm->vcpu) -
4802                                               int3_injected);
4803                         break;
4804                 }
4805                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4806                         u32 err = svm->vmcb->control.exit_int_info_err;
4807                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4808
4809                 } else
4810                         kvm_requeue_exception(&svm->vcpu, vector);
4811                 break;
4812         case SVM_EXITINTINFO_TYPE_INTR:
4813                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4814                 break;
4815         default:
4816                 break;
4817         }
4818 }
4819
4820 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4821 {
4822         struct vcpu_svm *svm = to_svm(vcpu);
4823         struct vmcb_control_area *control = &svm->vmcb->control;
4824
4825         control->exit_int_info = control->event_inj;
4826         control->exit_int_info_err = control->event_inj_err;
4827         control->event_inj = 0;
4828         svm_complete_interrupts(svm);
4829 }
4830
4831 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4832 {
4833         struct vcpu_svm *svm = to_svm(vcpu);
4834
4835         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4836         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4837         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4838
4839         /*
4840          * A vmexit emulation is required before the vcpu can be executed
4841          * again.
4842          */
4843         if (unlikely(svm->nested.exit_required))
4844                 return;
4845
4846         /*
4847          * Disable singlestep if we're injecting an interrupt/exception.
4848          * We don't want our modified rflags to be pushed on the stack where
4849          * we might not be able to easily reset them if we disabled NMI
4850          * singlestep later.
4851          */
4852         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4853                 /*
4854                  * Event injection happens before external interrupts cause a
4855                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4856                  * is enough to force an immediate vmexit.
4857                  */
4858                 disable_nmi_singlestep(svm);
4859                 smp_send_reschedule(vcpu->cpu);
4860         }
4861
4862         pre_svm_run(svm);
4863
4864         sync_lapic_to_cr8(vcpu);
4865
4866         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4867
4868         clgi();
4869
4870         local_irq_enable();
4871
4872         asm volatile (
4873                 "push %%" _ASM_BP "; \n\t"
4874                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4875                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4876                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4877                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4878                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4879                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4880 #ifdef CONFIG_X86_64
4881                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4882                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4883                 "mov %c[r10](%[svm]), %%r10 \n\t"
4884                 "mov %c[r11](%[svm]), %%r11 \n\t"
4885                 "mov %c[r12](%[svm]), %%r12 \n\t"
4886                 "mov %c[r13](%[svm]), %%r13 \n\t"
4887                 "mov %c[r14](%[svm]), %%r14 \n\t"
4888                 "mov %c[r15](%[svm]), %%r15 \n\t"
4889 #endif
4890
4891                 /* Enter guest mode */
4892                 "push %%" _ASM_AX " \n\t"
4893                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4894                 __ex(SVM_VMLOAD) "\n\t"
4895                 __ex(SVM_VMRUN) "\n\t"
4896                 __ex(SVM_VMSAVE) "\n\t"
4897                 "pop %%" _ASM_AX " \n\t"
4898
4899                 /* Save guest registers, load host registers */
4900                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4901                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4902                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4903                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4904                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4905                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4906 #ifdef CONFIG_X86_64
4907                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4908                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4909                 "mov %%r10, %c[r10](%[svm]) \n\t"
4910                 "mov %%r11, %c[r11](%[svm]) \n\t"
4911                 "mov %%r12, %c[r12](%[svm]) \n\t"
4912                 "mov %%r13, %c[r13](%[svm]) \n\t"
4913                 "mov %%r14, %c[r14](%[svm]) \n\t"
4914                 "mov %%r15, %c[r15](%[svm]) \n\t"
4915 #endif
4916                 "pop %%" _ASM_BP
4917                 :
4918                 : [svm]"a"(svm),
4919                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4920                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4921                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4922                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4923                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4924                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4925                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4926 #ifdef CONFIG_X86_64
4927                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4928                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4929                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4930                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4931                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4932                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4933                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4934                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4935 #endif
4936                 : "cc", "memory"
4937 #ifdef CONFIG_X86_64
4938                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4939                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4940 #else
4941                 , "ebx", "ecx", "edx", "esi", "edi"
4942 #endif
4943                 );
4944
4945 #ifdef CONFIG_X86_64
4946         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4947 #else
4948         loadsegment(fs, svm->host.fs);
4949 #ifndef CONFIG_X86_32_LAZY_GS
4950         loadsegment(gs, svm->host.gs);
4951 #endif
4952 #endif
4953
4954         reload_tss(vcpu);
4955
4956         local_irq_disable();
4957
4958         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4959         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4960         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4961         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4962
4963         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4964                 kvm_before_handle_nmi(&svm->vcpu);
4965
4966         stgi();
4967
4968         /* Any pending NMI will happen here */
4969
4970         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4971                 kvm_after_handle_nmi(&svm->vcpu);
4972
4973         sync_cr8_to_lapic(vcpu);
4974
4975         svm->next_rip = 0;
4976
4977         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4978
4979         /* if exit due to PF check for async PF */
4980         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4981                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
4982
4983         if (npt_enabled) {
4984                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4985                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4986         }
4987
4988         /*
4989          * We need to handle MC intercepts here before the vcpu has a chance to
4990          * change the physical cpu
4991          */
4992         if (unlikely(svm->vmcb->control.exit_code ==
4993                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4994                 svm_handle_mce(svm);
4995
4996         mark_all_clean(svm->vmcb);
4997 }
4998 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
4999
5000 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5001 {
5002         struct vcpu_svm *svm = to_svm(vcpu);
5003
5004         svm->vmcb->save.cr3 = root;
5005         mark_dirty(svm->vmcb, VMCB_CR);
5006         svm_flush_tlb(vcpu);
5007 }
5008
5009 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5010 {
5011         struct vcpu_svm *svm = to_svm(vcpu);
5012
5013         svm->vmcb->control.nested_cr3 = root;
5014         mark_dirty(svm->vmcb, VMCB_NPT);
5015
5016         /* Also sync guest cr3 here in case we live migrate */
5017         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5018         mark_dirty(svm->vmcb, VMCB_CR);
5019
5020         svm_flush_tlb(vcpu);
5021 }
5022
5023 static int is_disabled(void)
5024 {
5025         u64 vm_cr;
5026
5027         rdmsrl(MSR_VM_CR, vm_cr);
5028         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5029                 return 1;
5030
5031         return 0;
5032 }
5033
5034 static void
5035 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5036 {
5037         /*
5038          * Patch in the VMMCALL instruction:
5039          */
5040         hypercall[0] = 0x0f;
5041         hypercall[1] = 0x01;
5042         hypercall[2] = 0xd9;
5043 }
5044
5045 static void svm_check_processor_compat(void *rtn)
5046 {
5047         *(int *)rtn = 0;
5048 }
5049
5050 static bool svm_cpu_has_accelerated_tpr(void)
5051 {
5052         return false;
5053 }
5054
5055 static bool svm_has_high_real_mode_segbase(void)
5056 {
5057         return true;
5058 }
5059
5060 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5061 {
5062         return 0;
5063 }
5064
5065 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5066 {
5067         struct vcpu_svm *svm = to_svm(vcpu);
5068         struct kvm_cpuid_entry2 *entry;
5069
5070         /* Update nrips enabled cache */
5071         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5072
5073         if (!kvm_vcpu_apicv_active(vcpu))
5074                 return;
5075
5076         entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5077         if (entry)
5078                 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5079 }
5080
5081 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5082 {
5083         switch (func) {
5084         case 0x1:
5085                 if (avic)
5086                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5087                 break;
5088         case 0x80000001:
5089                 if (nested)
5090                         entry->ecx |= (1 << 2); /* Set SVM bit */
5091                 break;
5092         case 0x8000000A:
5093                 entry->eax = 1; /* SVM revision 1 */
5094                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5095                                    ASID emulation to nested SVM */
5096                 entry->ecx = 0; /* Reserved */
5097                 entry->edx = 0; /* Per default do not support any
5098                                    additional features */
5099
5100                 /* Support next_rip if host supports it */
5101                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5102                         entry->edx |= SVM_FEATURE_NRIP;
5103
5104                 /* Support NPT for the guest if enabled */
5105                 if (npt_enabled)
5106                         entry->edx |= SVM_FEATURE_NPT;
5107
5108                 break;
5109         }
5110 }
5111
5112 static int svm_get_lpage_level(void)
5113 {
5114         return PT_PDPE_LEVEL;
5115 }
5116
5117 static bool svm_rdtscp_supported(void)
5118 {
5119         return boot_cpu_has(X86_FEATURE_RDTSCP);
5120 }
5121
5122 static bool svm_invpcid_supported(void)
5123 {
5124         return false;
5125 }
5126
5127 static bool svm_mpx_supported(void)
5128 {
5129         return false;
5130 }
5131
5132 static bool svm_xsaves_supported(void)
5133 {
5134         return false;
5135 }
5136
5137 static bool svm_has_wbinvd_exit(void)
5138 {
5139         return true;
5140 }
5141
5142 #define PRE_EX(exit)  { .exit_code = (exit), \
5143                         .stage = X86_ICPT_PRE_EXCEPT, }
5144 #define POST_EX(exit) { .exit_code = (exit), \
5145                         .stage = X86_ICPT_POST_EXCEPT, }
5146 #define POST_MEM(exit) { .exit_code = (exit), \
5147                         .stage = X86_ICPT_POST_MEMACCESS, }
5148
5149 static const struct __x86_intercept {
5150         u32 exit_code;
5151         enum x86_intercept_stage stage;
5152 } x86_intercept_map[] = {
5153         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5154         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5155         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5156         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5157         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5158         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5159         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5160         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5161         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5162         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5163         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5164         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5165         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5166         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5167         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5168         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5169         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5170         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5171         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5172         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5173         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5174         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5175         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5176         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5177         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5178         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5179         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5180         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5181         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5182         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5183         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5184         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5185         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5186         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5187         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5188         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5189         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5190         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5191         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5192         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5193         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5194         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5195         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5196         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5197         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5198         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5199 };
5200
5201 #undef PRE_EX
5202 #undef POST_EX
5203 #undef POST_MEM
5204
5205 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5206                                struct x86_instruction_info *info,
5207                                enum x86_intercept_stage stage)
5208 {
5209         struct vcpu_svm *svm = to_svm(vcpu);
5210         int vmexit, ret = X86EMUL_CONTINUE;
5211         struct __x86_intercept icpt_info;
5212         struct vmcb *vmcb = svm->vmcb;
5213
5214         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5215                 goto out;
5216
5217         icpt_info = x86_intercept_map[info->intercept];
5218
5219         if (stage != icpt_info.stage)
5220                 goto out;
5221
5222         switch (icpt_info.exit_code) {
5223         case SVM_EXIT_READ_CR0:
5224                 if (info->intercept == x86_intercept_cr_read)
5225                         icpt_info.exit_code += info->modrm_reg;
5226                 break;
5227         case SVM_EXIT_WRITE_CR0: {
5228                 unsigned long cr0, val;
5229                 u64 intercept;
5230
5231                 if (info->intercept == x86_intercept_cr_write)
5232                         icpt_info.exit_code += info->modrm_reg;
5233
5234                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5235                     info->intercept == x86_intercept_clts)
5236                         break;
5237
5238                 intercept = svm->nested.intercept;
5239
5240                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5241                         break;
5242
5243                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5244                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5245
5246                 if (info->intercept == x86_intercept_lmsw) {
5247                         cr0 &= 0xfUL;
5248                         val &= 0xfUL;
5249                         /* lmsw can't clear PE - catch this here */
5250                         if (cr0 & X86_CR0_PE)
5251                                 val |= X86_CR0_PE;
5252                 }
5253
5254                 if (cr0 ^ val)
5255                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5256
5257                 break;
5258         }
5259         case SVM_EXIT_READ_DR0:
5260         case SVM_EXIT_WRITE_DR0:
5261                 icpt_info.exit_code += info->modrm_reg;
5262                 break;
5263         case SVM_EXIT_MSR:
5264                 if (info->intercept == x86_intercept_wrmsr)
5265                         vmcb->control.exit_info_1 = 1;
5266                 else
5267                         vmcb->control.exit_info_1 = 0;
5268                 break;
5269         case SVM_EXIT_PAUSE:
5270                 /*
5271                  * We get this for NOP only, but pause
5272                  * is rep not, check this here
5273                  */
5274                 if (info->rep_prefix != REPE_PREFIX)
5275                         goto out;
5276         case SVM_EXIT_IOIO: {
5277                 u64 exit_info;
5278                 u32 bytes;
5279
5280                 if (info->intercept == x86_intercept_in ||
5281                     info->intercept == x86_intercept_ins) {
5282                         exit_info = ((info->src_val & 0xffff) << 16) |
5283                                 SVM_IOIO_TYPE_MASK;
5284                         bytes = info->dst_bytes;
5285                 } else {
5286                         exit_info = (info->dst_val & 0xffff) << 16;
5287                         bytes = info->src_bytes;
5288                 }
5289
5290                 if (info->intercept == x86_intercept_outs ||
5291                     info->intercept == x86_intercept_ins)
5292                         exit_info |= SVM_IOIO_STR_MASK;
5293
5294                 if (info->rep_prefix)
5295                         exit_info |= SVM_IOIO_REP_MASK;
5296
5297                 bytes = min(bytes, 4u);
5298
5299                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5300
5301                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5302
5303                 vmcb->control.exit_info_1 = exit_info;
5304                 vmcb->control.exit_info_2 = info->next_rip;
5305
5306                 break;
5307         }
5308         default:
5309                 break;
5310         }
5311
5312         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5313         if (static_cpu_has(X86_FEATURE_NRIPS))
5314                 vmcb->control.next_rip  = info->next_rip;
5315         vmcb->control.exit_code = icpt_info.exit_code;
5316         vmexit = nested_svm_exit_handled(svm);
5317
5318         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5319                                            : X86EMUL_CONTINUE;
5320
5321 out:
5322         return ret;
5323 }
5324
5325 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5326 {
5327         local_irq_enable();
5328         /*
5329          * We must have an instruction with interrupts enabled, so
5330          * the timer interrupt isn't delayed by the interrupt shadow.
5331          */
5332         asm("nop");
5333         local_irq_disable();
5334 }
5335
5336 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5337 {
5338 }
5339
5340 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5341 {
5342         if (avic_handle_apic_id_update(vcpu) != 0)
5343                 return;
5344         if (avic_handle_dfr_update(vcpu) != 0)
5345                 return;
5346         avic_handle_ldr_update(vcpu);
5347 }
5348
5349 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5350 {
5351         /* [63:9] are reserved. */
5352         vcpu->arch.mcg_cap &= 0x1ff;
5353 }
5354
5355 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5356         .cpu_has_kvm_support = has_svm,
5357         .disabled_by_bios = is_disabled,
5358         .hardware_setup = svm_hardware_setup,
5359         .hardware_unsetup = svm_hardware_unsetup,
5360         .check_processor_compatibility = svm_check_processor_compat,
5361         .hardware_enable = svm_hardware_enable,
5362         .hardware_disable = svm_hardware_disable,
5363         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5364         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5365
5366         .vcpu_create = svm_create_vcpu,
5367         .vcpu_free = svm_free_vcpu,
5368         .vcpu_reset = svm_vcpu_reset,
5369
5370         .vm_init = avic_vm_init,
5371         .vm_destroy = avic_vm_destroy,
5372
5373         .prepare_guest_switch = svm_prepare_guest_switch,
5374         .vcpu_load = svm_vcpu_load,
5375         .vcpu_put = svm_vcpu_put,
5376         .vcpu_blocking = svm_vcpu_blocking,
5377         .vcpu_unblocking = svm_vcpu_unblocking,
5378
5379         .update_bp_intercept = update_bp_intercept,
5380         .get_msr = svm_get_msr,
5381         .set_msr = svm_set_msr,
5382         .get_segment_base = svm_get_segment_base,
5383         .get_segment = svm_get_segment,
5384         .set_segment = svm_set_segment,
5385         .get_cpl = svm_get_cpl,
5386         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5387         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5388         .decache_cr3 = svm_decache_cr3,
5389         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5390         .set_cr0 = svm_set_cr0,
5391         .set_cr3 = svm_set_cr3,
5392         .set_cr4 = svm_set_cr4,
5393         .set_efer = svm_set_efer,
5394         .get_idt = svm_get_idt,
5395         .set_idt = svm_set_idt,
5396         .get_gdt = svm_get_gdt,
5397         .set_gdt = svm_set_gdt,
5398         .get_dr6 = svm_get_dr6,
5399         .set_dr6 = svm_set_dr6,
5400         .set_dr7 = svm_set_dr7,
5401         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5402         .cache_reg = svm_cache_reg,
5403         .get_rflags = svm_get_rflags,
5404         .set_rflags = svm_set_rflags,
5405
5406         .get_pkru = svm_get_pkru,
5407
5408         .tlb_flush = svm_flush_tlb,
5409
5410         .run = svm_vcpu_run,
5411         .handle_exit = handle_exit,
5412         .skip_emulated_instruction = skip_emulated_instruction,
5413         .set_interrupt_shadow = svm_set_interrupt_shadow,
5414         .get_interrupt_shadow = svm_get_interrupt_shadow,
5415         .patch_hypercall = svm_patch_hypercall,
5416         .set_irq = svm_set_irq,
5417         .set_nmi = svm_inject_nmi,
5418         .queue_exception = svm_queue_exception,
5419         .cancel_injection = svm_cancel_injection,
5420         .interrupt_allowed = svm_interrupt_allowed,
5421         .nmi_allowed = svm_nmi_allowed,
5422         .get_nmi_mask = svm_get_nmi_mask,
5423         .set_nmi_mask = svm_set_nmi_mask,
5424         .enable_nmi_window = enable_nmi_window,
5425         .enable_irq_window = enable_irq_window,
5426         .update_cr8_intercept = update_cr8_intercept,
5427         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5428         .get_enable_apicv = svm_get_enable_apicv,
5429         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5430         .load_eoi_exitmap = svm_load_eoi_exitmap,
5431         .hwapic_irr_update = svm_hwapic_irr_update,
5432         .hwapic_isr_update = svm_hwapic_isr_update,
5433         .apicv_post_state_restore = avic_post_state_restore,
5434
5435         .set_tss_addr = svm_set_tss_addr,
5436         .get_tdp_level = get_npt_level,
5437         .get_mt_mask = svm_get_mt_mask,
5438
5439         .get_exit_info = svm_get_exit_info,
5440
5441         .get_lpage_level = svm_get_lpage_level,
5442
5443         .cpuid_update = svm_cpuid_update,
5444
5445         .rdtscp_supported = svm_rdtscp_supported,
5446         .invpcid_supported = svm_invpcid_supported,
5447         .mpx_supported = svm_mpx_supported,
5448         .xsaves_supported = svm_xsaves_supported,
5449
5450         .set_supported_cpuid = svm_set_supported_cpuid,
5451
5452         .has_wbinvd_exit = svm_has_wbinvd_exit,
5453
5454         .write_tsc_offset = svm_write_tsc_offset,
5455
5456         .set_tdp_cr3 = set_tdp_cr3,
5457
5458         .check_intercept = svm_check_intercept,
5459         .handle_external_intr = svm_handle_external_intr,
5460
5461         .sched_in = svm_sched_in,
5462
5463         .pmu_ops = &amd_pmu_ops,
5464         .deliver_posted_interrupt = svm_deliver_avic_intr,
5465         .update_pi_irte = svm_update_pi_irte,
5466         .setup_mce = svm_setup_mce,
5467 };
5468
5469 static int __init svm_init(void)
5470 {
5471         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5472                         __alignof__(struct vcpu_svm), THIS_MODULE);
5473 }
5474
5475 static void __exit svm_exit(void)
5476 {
5477         kvm_exit();
5478 }
5479
5480 module_init(svm_init)
5481 module_exit(svm_exit)