]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
of: irq: fix of_irq_to_resource() error check
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         int launched;
202         struct list_head loaded_vmcss_on_cpu_link;
203 };
204
205 struct shared_msr_entry {
206         unsigned index;
207         u64 data;
208         u64 mask;
209 };
210
211 /*
212  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
213  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
214  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
215  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
216  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
217  * More than one of these structures may exist, if L1 runs multiple L2 guests.
218  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
219  * underlying hardware which will be used to run L2.
220  * This structure is packed to ensure that its layout is identical across
221  * machines (necessary for live migration).
222  * If there are changes in this struct, VMCS12_REVISION must be changed.
223  */
224 typedef u64 natural_width;
225 struct __packed vmcs12 {
226         /* According to the Intel spec, a VMCS region must start with the
227          * following two fields. Then follow implementation-specific data.
228          */
229         u32 revision_id;
230         u32 abort;
231
232         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
233         u32 padding[7]; /* room for future expansion */
234
235         u64 io_bitmap_a;
236         u64 io_bitmap_b;
237         u64 msr_bitmap;
238         u64 vm_exit_msr_store_addr;
239         u64 vm_exit_msr_load_addr;
240         u64 vm_entry_msr_load_addr;
241         u64 tsc_offset;
242         u64 virtual_apic_page_addr;
243         u64 apic_access_addr;
244         u64 posted_intr_desc_addr;
245         u64 ept_pointer;
246         u64 eoi_exit_bitmap0;
247         u64 eoi_exit_bitmap1;
248         u64 eoi_exit_bitmap2;
249         u64 eoi_exit_bitmap3;
250         u64 xss_exit_bitmap;
251         u64 guest_physical_address;
252         u64 vmcs_link_pointer;
253         u64 pml_address;
254         u64 guest_ia32_debugctl;
255         u64 guest_ia32_pat;
256         u64 guest_ia32_efer;
257         u64 guest_ia32_perf_global_ctrl;
258         u64 guest_pdptr0;
259         u64 guest_pdptr1;
260         u64 guest_pdptr2;
261         u64 guest_pdptr3;
262         u64 guest_bndcfgs;
263         u64 host_ia32_pat;
264         u64 host_ia32_efer;
265         u64 host_ia32_perf_global_ctrl;
266         u64 padding64[8]; /* room for future expansion */
267         /*
268          * To allow migration of L1 (complete with its L2 guests) between
269          * machines of different natural widths (32 or 64 bit), we cannot have
270          * unsigned long fields with no explict size. We use u64 (aliased
271          * natural_width) instead. Luckily, x86 is little-endian.
272          */
273         natural_width cr0_guest_host_mask;
274         natural_width cr4_guest_host_mask;
275         natural_width cr0_read_shadow;
276         natural_width cr4_read_shadow;
277         natural_width cr3_target_value0;
278         natural_width cr3_target_value1;
279         natural_width cr3_target_value2;
280         natural_width cr3_target_value3;
281         natural_width exit_qualification;
282         natural_width guest_linear_address;
283         natural_width guest_cr0;
284         natural_width guest_cr3;
285         natural_width guest_cr4;
286         natural_width guest_es_base;
287         natural_width guest_cs_base;
288         natural_width guest_ss_base;
289         natural_width guest_ds_base;
290         natural_width guest_fs_base;
291         natural_width guest_gs_base;
292         natural_width guest_ldtr_base;
293         natural_width guest_tr_base;
294         natural_width guest_gdtr_base;
295         natural_width guest_idtr_base;
296         natural_width guest_dr7;
297         natural_width guest_rsp;
298         natural_width guest_rip;
299         natural_width guest_rflags;
300         natural_width guest_pending_dbg_exceptions;
301         natural_width guest_sysenter_esp;
302         natural_width guest_sysenter_eip;
303         natural_width host_cr0;
304         natural_width host_cr3;
305         natural_width host_cr4;
306         natural_width host_fs_base;
307         natural_width host_gs_base;
308         natural_width host_tr_base;
309         natural_width host_gdtr_base;
310         natural_width host_idtr_base;
311         natural_width host_ia32_sysenter_esp;
312         natural_width host_ia32_sysenter_eip;
313         natural_width host_rsp;
314         natural_width host_rip;
315         natural_width paddingl[8]; /* room for future expansion */
316         u32 pin_based_vm_exec_control;
317         u32 cpu_based_vm_exec_control;
318         u32 exception_bitmap;
319         u32 page_fault_error_code_mask;
320         u32 page_fault_error_code_match;
321         u32 cr3_target_count;
322         u32 vm_exit_controls;
323         u32 vm_exit_msr_store_count;
324         u32 vm_exit_msr_load_count;
325         u32 vm_entry_controls;
326         u32 vm_entry_msr_load_count;
327         u32 vm_entry_intr_info_field;
328         u32 vm_entry_exception_error_code;
329         u32 vm_entry_instruction_len;
330         u32 tpr_threshold;
331         u32 secondary_vm_exec_control;
332         u32 vm_instruction_error;
333         u32 vm_exit_reason;
334         u32 vm_exit_intr_info;
335         u32 vm_exit_intr_error_code;
336         u32 idt_vectoring_info_field;
337         u32 idt_vectoring_error_code;
338         u32 vm_exit_instruction_len;
339         u32 vmx_instruction_info;
340         u32 guest_es_limit;
341         u32 guest_cs_limit;
342         u32 guest_ss_limit;
343         u32 guest_ds_limit;
344         u32 guest_fs_limit;
345         u32 guest_gs_limit;
346         u32 guest_ldtr_limit;
347         u32 guest_tr_limit;
348         u32 guest_gdtr_limit;
349         u32 guest_idtr_limit;
350         u32 guest_es_ar_bytes;
351         u32 guest_cs_ar_bytes;
352         u32 guest_ss_ar_bytes;
353         u32 guest_ds_ar_bytes;
354         u32 guest_fs_ar_bytes;
355         u32 guest_gs_ar_bytes;
356         u32 guest_ldtr_ar_bytes;
357         u32 guest_tr_ar_bytes;
358         u32 guest_interruptibility_info;
359         u32 guest_activity_state;
360         u32 guest_sysenter_cs;
361         u32 host_ia32_sysenter_cs;
362         u32 vmx_preemption_timer_value;
363         u32 padding32[7]; /* room for future expansion */
364         u16 virtual_processor_id;
365         u16 posted_intr_nv;
366         u16 guest_es_selector;
367         u16 guest_cs_selector;
368         u16 guest_ss_selector;
369         u16 guest_ds_selector;
370         u16 guest_fs_selector;
371         u16 guest_gs_selector;
372         u16 guest_ldtr_selector;
373         u16 guest_tr_selector;
374         u16 guest_intr_status;
375         u16 guest_pml_index;
376         u16 host_es_selector;
377         u16 host_cs_selector;
378         u16 host_ss_selector;
379         u16 host_ds_selector;
380         u16 host_fs_selector;
381         u16 host_gs_selector;
382         u16 host_tr_selector;
383 };
384
385 /*
386  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
387  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
388  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
389  */
390 #define VMCS12_REVISION 0x11e57ed0
391
392 /*
393  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
394  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
395  * current implementation, 4K are reserved to avoid future complications.
396  */
397 #define VMCS12_SIZE 0x1000
398
399 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
400 struct vmcs02_list {
401         struct list_head list;
402         gpa_t vmptr;
403         struct loaded_vmcs vmcs02;
404 };
405
406 /*
407  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
408  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
409  */
410 struct nested_vmx {
411         /* Has the level1 guest done vmxon? */
412         bool vmxon;
413         gpa_t vmxon_ptr;
414         bool pml_full;
415
416         /* The guest-physical address of the current VMCS L1 keeps for L2 */
417         gpa_t current_vmptr;
418         /* The host-usable pointer to the above */
419         struct page *current_vmcs12_page;
420         struct vmcs12 *current_vmcs12;
421         /*
422          * Cache of the guest's VMCS, existing outside of guest memory.
423          * Loaded from guest memory during VMPTRLD. Flushed to guest
424          * memory during VMXOFF, VMCLEAR, VMPTRLD.
425          */
426         struct vmcs12 *cached_vmcs12;
427         /*
428          * Indicates if the shadow vmcs must be updated with the
429          * data hold by vmcs12
430          */
431         bool sync_shadow_vmcs;
432
433         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434         struct list_head vmcs02_pool;
435         int vmcs02_num;
436         bool change_vmcs01_virtual_x2apic_mode;
437         /* L2 must run next, and mustn't decide to exit to L1. */
438         bool nested_run_pending;
439         /*
440          * Guest pages referred to in vmcs02 with host-physical pointers, so
441          * we must keep them pinned while L2 runs.
442          */
443         struct page *apic_access_page;
444         struct page *virtual_apic_page;
445         struct page *pi_desc_page;
446         struct pi_desc *pi_desc;
447         bool pi_pending;
448         u16 posted_intr_nv;
449
450         unsigned long *msr_bitmap;
451
452         struct hrtimer preemption_timer;
453         bool preemption_timer_expired;
454
455         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456         u64 vmcs01_debugctl;
457
458         u16 vpid02;
459         u16 last_vpid;
460
461         /*
462          * We only store the "true" versions of the VMX capability MSRs. We
463          * generate the "non-true" versions by setting the must-be-1 bits
464          * according to the SDM.
465          */
466         u32 nested_vmx_procbased_ctls_low;
467         u32 nested_vmx_procbased_ctls_high;
468         u32 nested_vmx_secondary_ctls_low;
469         u32 nested_vmx_secondary_ctls_high;
470         u32 nested_vmx_pinbased_ctls_low;
471         u32 nested_vmx_pinbased_ctls_high;
472         u32 nested_vmx_exit_ctls_low;
473         u32 nested_vmx_exit_ctls_high;
474         u32 nested_vmx_entry_ctls_low;
475         u32 nested_vmx_entry_ctls_high;
476         u32 nested_vmx_misc_low;
477         u32 nested_vmx_misc_high;
478         u32 nested_vmx_ept_caps;
479         u32 nested_vmx_vpid_caps;
480         u64 nested_vmx_basic;
481         u64 nested_vmx_cr0_fixed0;
482         u64 nested_vmx_cr0_fixed1;
483         u64 nested_vmx_cr4_fixed0;
484         u64 nested_vmx_cr4_fixed1;
485         u64 nested_vmx_vmcs_enum;
486 };
487
488 #define POSTED_INTR_ON  0
489 #define POSTED_INTR_SN  1
490
491 /* Posted-Interrupt Descriptor */
492 struct pi_desc {
493         u32 pir[8];     /* Posted interrupt requested */
494         union {
495                 struct {
496                                 /* bit 256 - Outstanding Notification */
497                         u16     on      : 1,
498                                 /* bit 257 - Suppress Notification */
499                                 sn      : 1,
500                                 /* bit 271:258 - Reserved */
501                                 rsvd_1  : 14;
502                                 /* bit 279:272 - Notification Vector */
503                         u8      nv;
504                                 /* bit 287:280 - Reserved */
505                         u8      rsvd_2;
506                                 /* bit 319:288 - Notification Destination */
507                         u32     ndst;
508                 };
509                 u64 control;
510         };
511         u32 rsvd[6];
512 } __aligned(64);
513
514 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
515 {
516         return test_and_set_bit(POSTED_INTR_ON,
517                         (unsigned long *)&pi_desc->control);
518 }
519
520 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
521 {
522         return test_and_clear_bit(POSTED_INTR_ON,
523                         (unsigned long *)&pi_desc->control);
524 }
525
526 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
527 {
528         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
529 }
530
531 static inline void pi_clear_sn(struct pi_desc *pi_desc)
532 {
533         return clear_bit(POSTED_INTR_SN,
534                         (unsigned long *)&pi_desc->control);
535 }
536
537 static inline void pi_set_sn(struct pi_desc *pi_desc)
538 {
539         return set_bit(POSTED_INTR_SN,
540                         (unsigned long *)&pi_desc->control);
541 }
542
543 static inline void pi_clear_on(struct pi_desc *pi_desc)
544 {
545         clear_bit(POSTED_INTR_ON,
546                   (unsigned long *)&pi_desc->control);
547 }
548
549 static inline int pi_test_on(struct pi_desc *pi_desc)
550 {
551         return test_bit(POSTED_INTR_ON,
552                         (unsigned long *)&pi_desc->control);
553 }
554
555 static inline int pi_test_sn(struct pi_desc *pi_desc)
556 {
557         return test_bit(POSTED_INTR_SN,
558                         (unsigned long *)&pi_desc->control);
559 }
560
561 struct vcpu_vmx {
562         struct kvm_vcpu       vcpu;
563         unsigned long         host_rsp;
564         u8                    fail;
565         bool                  nmi_known_unmasked;
566         u32                   exit_intr_info;
567         u32                   idt_vectoring_info;
568         ulong                 rflags;
569         struct shared_msr_entry *guest_msrs;
570         int                   nmsrs;
571         int                   save_nmsrs;
572         unsigned long         host_idt_base;
573 #ifdef CONFIG_X86_64
574         u64                   msr_host_kernel_gs_base;
575         u64                   msr_guest_kernel_gs_base;
576 #endif
577         u32 vm_entry_controls_shadow;
578         u32 vm_exit_controls_shadow;
579         /*
580          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581          * non-nested (L1) guest, it always points to vmcs01. For a nested
582          * guest (L2), it points to a different VMCS.
583          */
584         struct loaded_vmcs    vmcs01;
585         struct loaded_vmcs   *loaded_vmcs;
586         bool                  __launched; /* temporary, used in vmx_vcpu_run */
587         struct msr_autoload {
588                 unsigned nr;
589                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591         } msr_autoload;
592         struct {
593                 int           loaded;
594                 u16           fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596                 u16           ds_sel, es_sel;
597 #endif
598                 int           gs_ldt_reload_needed;
599                 int           fs_reload_needed;
600                 u64           msr_host_bndcfgs;
601                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
602                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
603         } host_state;
604         struct {
605                 int vm86_active;
606                 ulong save_rflags;
607                 struct kvm_segment segs[8];
608         } rmode;
609         struct {
610                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611                 struct kvm_save_segment {
612                         u16 selector;
613                         unsigned long base;
614                         u32 limit;
615                         u32 ar;
616                 } seg[8];
617         } segment_cache;
618         int vpid;
619         bool emulation_required;
620
621         u32 exit_reason;
622
623         /* Posted interrupt descriptor */
624         struct pi_desc pi_desc;
625
626         /* Support for a guest hypervisor (nested VMX) */
627         struct nested_vmx nested;
628
629         /* Dynamic PLE window. */
630         int ple_window;
631         bool ple_window_dirty;
632
633         /* Support for PML */
634 #define PML_ENTITY_NUM          512
635         struct page *pml_pg;
636
637         /* apic deadline value in host tsc */
638         u64 hv_deadline_tsc;
639
640         u64 current_tsc_ratio;
641
642         bool guest_pkru_valid;
643         u32 guest_pkru;
644         u32 host_pkru;
645
646         /*
647          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649          * in msr_ia32_feature_control_valid_bits.
650          */
651         u64 msr_ia32_feature_control;
652         u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656         SEG_FIELD_SEL = 0,
657         SEG_FIELD_BASE = 1,
658         SEG_FIELD_LIMIT = 2,
659         SEG_FIELD_AR = 3,
660
661         SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666         return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671         return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
677                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681         /*
682          * We do NOT shadow fields that are modified when L0
683          * traps and emulates any vmx instruction (e.g. VMPTRLD,
684          * VMXON...) executed by L1.
685          * For example, VM_INSTRUCTION_ERROR is read
686          * by L1 if a vmx instruction fails (part of the error path).
687          * Note the code assumes this logic. If for some reason
688          * we start shadowing these fields then we need to
689          * force a shadow sync when L0 emulates vmx instructions
690          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691          * by nested_vmx_failValid)
692          */
693         VM_EXIT_REASON,
694         VM_EXIT_INTR_INFO,
695         VM_EXIT_INSTRUCTION_LEN,
696         IDT_VECTORING_INFO_FIELD,
697         IDT_VECTORING_ERROR_CODE,
698         VM_EXIT_INTR_ERROR_CODE,
699         EXIT_QUALIFICATION,
700         GUEST_LINEAR_ADDRESS,
701         GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704         ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707         TPR_THRESHOLD,
708         GUEST_RIP,
709         GUEST_RSP,
710         GUEST_CR0,
711         GUEST_CR3,
712         GUEST_CR4,
713         GUEST_INTERRUPTIBILITY_INFO,
714         GUEST_RFLAGS,
715         GUEST_CS_SELECTOR,
716         GUEST_CS_AR_BYTES,
717         GUEST_CS_LIMIT,
718         GUEST_CS_BASE,
719         GUEST_ES_BASE,
720         GUEST_BNDCFGS,
721         CR0_GUEST_HOST_MASK,
722         CR0_READ_SHADOW,
723         CR4_READ_SHADOW,
724         TSC_OFFSET,
725         EXCEPTION_BITMAP,
726         CPU_BASED_VM_EXEC_CONTROL,
727         VM_ENTRY_EXCEPTION_ERROR_CODE,
728         VM_ENTRY_INTR_INFO_FIELD,
729         VM_ENTRY_INSTRUCTION_LEN,
730         VM_ENTRY_EXCEPTION_ERROR_CODE,
731         HOST_FS_BASE,
732         HOST_GS_BASE,
733         HOST_FS_SELECTOR,
734         HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737         ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741         FIELD(POSTED_INTR_NV, posted_intr_nv),
742         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750         FIELD(GUEST_INTR_STATUS, guest_intr_status),
751         FIELD(GUEST_PML_INDEX, guest_pml_index),
752         FIELD(HOST_ES_SELECTOR, host_es_selector),
753         FIELD(HOST_CS_SELECTOR, host_cs_selector),
754         FIELD(HOST_SS_SELECTOR, host_ss_selector),
755         FIELD(HOST_DS_SELECTOR, host_ds_selector),
756         FIELD(HOST_FS_SELECTOR, host_fs_selector),
757         FIELD(HOST_GS_SELECTOR, host_gs_selector),
758         FIELD(HOST_TR_SELECTOR, host_tr_selector),
759         FIELD64(IO_BITMAP_A, io_bitmap_a),
760         FIELD64(IO_BITMAP_B, io_bitmap_b),
761         FIELD64(MSR_BITMAP, msr_bitmap),
762         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765         FIELD64(TSC_OFFSET, tsc_offset),
766         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769         FIELD64(EPT_POINTER, ept_pointer),
770         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777         FIELD64(PML_ADDRESS, pml_address),
778         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782         FIELD64(GUEST_PDPTR0, guest_pdptr0),
783         FIELD64(GUEST_PDPTR1, guest_pdptr1),
784         FIELD64(GUEST_PDPTR2, guest_pdptr2),
785         FIELD64(GUEST_PDPTR3, guest_pdptr3),
786         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787         FIELD64(HOST_IA32_PAT, host_ia32_pat),
788         FIELD64(HOST_IA32_EFER, host_ia32_efer),
789         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792         FIELD(EXCEPTION_BITMAP, exception_bitmap),
793         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795         FIELD(CR3_TARGET_COUNT, cr3_target_count),
796         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804         FIELD(TPR_THRESHOLD, tpr_threshold),
805         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807         FIELD(VM_EXIT_REASON, vm_exit_reason),
808         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814         FIELD(GUEST_ES_LIMIT, guest_es_limit),
815         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845         FIELD(EXIT_QUALIFICATION, exit_qualification),
846         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847         FIELD(GUEST_CR0, guest_cr0),
848         FIELD(GUEST_CR3, guest_cr3),
849         FIELD(GUEST_CR4, guest_cr4),
850         FIELD(GUEST_ES_BASE, guest_es_base),
851         FIELD(GUEST_CS_BASE, guest_cs_base),
852         FIELD(GUEST_SS_BASE, guest_ss_base),
853         FIELD(GUEST_DS_BASE, guest_ds_base),
854         FIELD(GUEST_FS_BASE, guest_fs_base),
855         FIELD(GUEST_GS_BASE, guest_gs_base),
856         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857         FIELD(GUEST_TR_BASE, guest_tr_base),
858         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860         FIELD(GUEST_DR7, guest_dr7),
861         FIELD(GUEST_RSP, guest_rsp),
862         FIELD(GUEST_RIP, guest_rip),
863         FIELD(GUEST_RFLAGS, guest_rflags),
864         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867         FIELD(HOST_CR0, host_cr0),
868         FIELD(HOST_CR3, host_cr3),
869         FIELD(HOST_CR4, host_cr4),
870         FIELD(HOST_FS_BASE, host_fs_base),
871         FIELD(HOST_GS_BASE, host_gs_base),
872         FIELD(HOST_TR_BASE, host_tr_base),
873         FIELD(HOST_GDTR_BASE, host_gdtr_base),
874         FIELD(HOST_IDTR_BASE, host_idtr_base),
875         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877         FIELD(HOST_RSP, host_rsp),
878         FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886             vmcs_field_to_offset_table[field] == 0)
887                 return -ENOENT;
888
889         return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894         return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900         if (is_error_page(page))
901                 return NULL;
902
903         return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908         kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913         kvm_release_page_clean(page);
914 }
915
916 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
917 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
918 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922                             struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924                             struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936  */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938
939 /*
940  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
941  * can find which vCPU should be waken up.
942  */
943 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
944 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
945
946 enum {
947         VMX_IO_BITMAP_A,
948         VMX_IO_BITMAP_B,
949         VMX_MSR_BITMAP_LEGACY,
950         VMX_MSR_BITMAP_LONGMODE,
951         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
952         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
953         VMX_MSR_BITMAP_LEGACY_X2APIC,
954         VMX_MSR_BITMAP_LONGMODE_X2APIC,
955         VMX_VMREAD_BITMAP,
956         VMX_VMWRITE_BITMAP,
957         VMX_BITMAP_NR
958 };
959
960 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
961
962 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
963 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
964 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
965 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
966 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
967 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
968 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
969 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
970 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
971 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
972
973 static bool cpu_has_load_ia32_efer;
974 static bool cpu_has_load_perf_global_ctrl;
975
976 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
977 static DEFINE_SPINLOCK(vmx_vpid_lock);
978
979 static struct vmcs_config {
980         int size;
981         int order;
982         u32 basic_cap;
983         u32 revision_id;
984         u32 pin_based_exec_ctrl;
985         u32 cpu_based_exec_ctrl;
986         u32 cpu_based_2nd_exec_ctrl;
987         u32 vmexit_ctrl;
988         u32 vmentry_ctrl;
989 } vmcs_config;
990
991 static struct vmx_capability {
992         u32 ept;
993         u32 vpid;
994 } vmx_capability;
995
996 #define VMX_SEGMENT_FIELD(seg)                                  \
997         [VCPU_SREG_##seg] = {                                   \
998                 .selector = GUEST_##seg##_SELECTOR,             \
999                 .base = GUEST_##seg##_BASE,                     \
1000                 .limit = GUEST_##seg##_LIMIT,                   \
1001                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1002         }
1003
1004 static const struct kvm_vmx_segment_field {
1005         unsigned selector;
1006         unsigned base;
1007         unsigned limit;
1008         unsigned ar_bytes;
1009 } kvm_vmx_segment_fields[] = {
1010         VMX_SEGMENT_FIELD(CS),
1011         VMX_SEGMENT_FIELD(DS),
1012         VMX_SEGMENT_FIELD(ES),
1013         VMX_SEGMENT_FIELD(FS),
1014         VMX_SEGMENT_FIELD(GS),
1015         VMX_SEGMENT_FIELD(SS),
1016         VMX_SEGMENT_FIELD(TR),
1017         VMX_SEGMENT_FIELD(LDTR),
1018 };
1019
1020 static u64 host_efer;
1021
1022 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1023
1024 /*
1025  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1026  * away by decrementing the array size.
1027  */
1028 static const u32 vmx_msr_index[] = {
1029 #ifdef CONFIG_X86_64
1030         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1031 #endif
1032         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1033 };
1034
1035 static inline bool is_exception_n(u32 intr_info, u8 vector)
1036 {
1037         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038                              INTR_INFO_VALID_MASK)) ==
1039                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool is_debug(u32 intr_info)
1043 {
1044         return is_exception_n(intr_info, DB_VECTOR);
1045 }
1046
1047 static inline bool is_breakpoint(u32 intr_info)
1048 {
1049         return is_exception_n(intr_info, BP_VECTOR);
1050 }
1051
1052 static inline bool is_page_fault(u32 intr_info)
1053 {
1054         return is_exception_n(intr_info, PF_VECTOR);
1055 }
1056
1057 static inline bool is_no_device(u32 intr_info)
1058 {
1059         return is_exception_n(intr_info, NM_VECTOR);
1060 }
1061
1062 static inline bool is_invalid_opcode(u32 intr_info)
1063 {
1064         return is_exception_n(intr_info, UD_VECTOR);
1065 }
1066
1067 static inline bool is_external_interrupt(u32 intr_info)
1068 {
1069         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1070                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1071 }
1072
1073 static inline bool is_machine_check(u32 intr_info)
1074 {
1075         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1076                              INTR_INFO_VALID_MASK)) ==
1077                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 {
1082         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1083 }
1084
1085 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 {
1087         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1088 }
1089
1090 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1091 {
1092         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1093 }
1094
1095 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 {
1097         return vmcs_config.cpu_based_exec_ctrl &
1098                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1099 }
1100
1101 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 {
1103         return vmcs_config.cpu_based_2nd_exec_ctrl &
1104                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1105 }
1106
1107 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 {
1109         return vmcs_config.cpu_based_2nd_exec_ctrl &
1110                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1111 }
1112
1113 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 {
1115         return vmcs_config.cpu_based_2nd_exec_ctrl &
1116                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1117 }
1118
1119 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 {
1121         return vmcs_config.cpu_based_2nd_exec_ctrl &
1122                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1123 }
1124
1125 /*
1126  * Comment's format: document - errata name - stepping - processor name.
1127  * Refer from
1128  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129  */
1130 static u32 vmx_preemption_cpu_tfms[] = {
1131 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1132 0x000206E6,
1133 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1134 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1135 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 0x00020652,
1137 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 0x00020655,
1139 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1140 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1141 /*
1142  * 320767.pdf - AAP86  - B1 -
1143  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1144  */
1145 0x000106E5,
1146 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 0x000106A0,
1148 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 0x000106A1,
1150 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 0x000106A4,
1152  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1153  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1154  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1155 0x000106A5,
1156 };
1157
1158 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 {
1160         u32 eax = cpuid_eax(0x00000001), i;
1161
1162         /* Clear the reserved bits */
1163         eax &= ~(0x3U << 14 | 0xfU << 28);
1164         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1165                 if (eax == vmx_preemption_cpu_tfms[i])
1166                         return true;
1167
1168         return false;
1169 }
1170
1171 static inline bool cpu_has_vmx_preemption_timer(void)
1172 {
1173         return vmcs_config.pin_based_exec_ctrl &
1174                 PIN_BASED_VMX_PREEMPTION_TIMER;
1175 }
1176
1177 static inline bool cpu_has_vmx_posted_intr(void)
1178 {
1179         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1180                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1181 }
1182
1183 static inline bool cpu_has_vmx_apicv(void)
1184 {
1185         return cpu_has_vmx_apic_register_virt() &&
1186                 cpu_has_vmx_virtual_intr_delivery() &&
1187                 cpu_has_vmx_posted_intr();
1188 }
1189
1190 static inline bool cpu_has_vmx_flexpriority(void)
1191 {
1192         return cpu_has_vmx_tpr_shadow() &&
1193                 cpu_has_vmx_virtualize_apic_accesses();
1194 }
1195
1196 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 {
1198         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1199 }
1200
1201 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 {
1203         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1204 }
1205
1206 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 {
1208         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1209 }
1210
1211 static inline bool cpu_has_vmx_ept_4levels(void)
1212 {
1213         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1214 }
1215
1216 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 {
1218         return vmx_capability.ept & VMX_EPT_AD_BIT;
1219 }
1220
1221 static inline bool cpu_has_vmx_invept_context(void)
1222 {
1223         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1224 }
1225
1226 static inline bool cpu_has_vmx_invept_global(void)
1227 {
1228         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1229 }
1230
1231 static inline bool cpu_has_vmx_invvpid_single(void)
1232 {
1233         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1234 }
1235
1236 static inline bool cpu_has_vmx_invvpid_global(void)
1237 {
1238         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1239 }
1240
1241 static inline bool cpu_has_vmx_invvpid(void)
1242 {
1243         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1244 }
1245
1246 static inline bool cpu_has_vmx_ept(void)
1247 {
1248         return vmcs_config.cpu_based_2nd_exec_ctrl &
1249                 SECONDARY_EXEC_ENABLE_EPT;
1250 }
1251
1252 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 {
1254         return vmcs_config.cpu_based_2nd_exec_ctrl &
1255                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1256 }
1257
1258 static inline bool cpu_has_vmx_ple(void)
1259 {
1260         return vmcs_config.cpu_based_2nd_exec_ctrl &
1261                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1262 }
1263
1264 static inline bool cpu_has_vmx_basic_inout(void)
1265 {
1266         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1267 }
1268
1269 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1270 {
1271         return flexpriority_enabled && lapic_in_kernel(vcpu);
1272 }
1273
1274 static inline bool cpu_has_vmx_vpid(void)
1275 {
1276         return vmcs_config.cpu_based_2nd_exec_ctrl &
1277                 SECONDARY_EXEC_ENABLE_VPID;
1278 }
1279
1280 static inline bool cpu_has_vmx_rdtscp(void)
1281 {
1282         return vmcs_config.cpu_based_2nd_exec_ctrl &
1283                 SECONDARY_EXEC_RDTSCP;
1284 }
1285
1286 static inline bool cpu_has_vmx_invpcid(void)
1287 {
1288         return vmcs_config.cpu_based_2nd_exec_ctrl &
1289                 SECONDARY_EXEC_ENABLE_INVPCID;
1290 }
1291
1292 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 {
1294         return vmcs_config.cpu_based_2nd_exec_ctrl &
1295                 SECONDARY_EXEC_WBINVD_EXITING;
1296 }
1297
1298 static inline bool cpu_has_vmx_shadow_vmcs(void)
1299 {
1300         u64 vmx_msr;
1301         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1302         /* check if the cpu supports writing r/o exit information fields */
1303         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1304                 return false;
1305
1306         return vmcs_config.cpu_based_2nd_exec_ctrl &
1307                 SECONDARY_EXEC_SHADOW_VMCS;
1308 }
1309
1310 static inline bool cpu_has_vmx_pml(void)
1311 {
1312         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1313 }
1314
1315 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 {
1317         return vmcs_config.cpu_based_2nd_exec_ctrl &
1318                 SECONDARY_EXEC_TSC_SCALING;
1319 }
1320
1321 static inline bool report_flexpriority(void)
1322 {
1323         return flexpriority_enabled;
1324 }
1325
1326 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327 {
1328         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329 }
1330
1331 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332 {
1333         return vmcs12->cpu_based_vm_exec_control & bit;
1334 }
1335
1336 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337 {
1338         return (vmcs12->cpu_based_vm_exec_control &
1339                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340                 (vmcs12->secondary_vm_exec_control & bit);
1341 }
1342
1343 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1344 {
1345         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346 }
1347
1348 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349 {
1350         return vmcs12->pin_based_vm_exec_control &
1351                 PIN_BASED_VMX_PREEMPTION_TIMER;
1352 }
1353
1354 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355 {
1356         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357 }
1358
1359 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360 {
1361         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1362                 vmx_xsaves_supported();
1363 }
1364
1365 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1366 {
1367         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1368 }
1369
1370 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1371 {
1372         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1373 }
1374
1375 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1376 {
1377         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1378 }
1379
1380 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1381 {
1382         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1383 }
1384
1385 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1386 {
1387         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1388 }
1389
1390 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1391 {
1392         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1393 }
1394
1395 static inline bool is_nmi(u32 intr_info)
1396 {
1397         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1398                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1399 }
1400
1401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1402                               u32 exit_intr_info,
1403                               unsigned long exit_qualification);
1404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1405                         struct vmcs12 *vmcs12,
1406                         u32 reason, unsigned long qualification);
1407
1408 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1409 {
1410         int i;
1411
1412         for (i = 0; i < vmx->nmsrs; ++i)
1413                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1414                         return i;
1415         return -1;
1416 }
1417
1418 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1419 {
1420     struct {
1421         u64 vpid : 16;
1422         u64 rsvd : 48;
1423         u64 gva;
1424     } operand = { vpid, 0, gva };
1425
1426     asm volatile (__ex(ASM_VMX_INVVPID)
1427                   /* CF==1 or ZF==1 --> rc = -1 */
1428                   "; ja 1f ; ud2 ; 1:"
1429                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1430 }
1431
1432 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1433 {
1434         struct {
1435                 u64 eptp, gpa;
1436         } operand = {eptp, gpa};
1437
1438         asm volatile (__ex(ASM_VMX_INVEPT)
1439                         /* CF==1 or ZF==1 --> rc = -1 */
1440                         "; ja 1f ; ud2 ; 1:\n"
1441                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1442 }
1443
1444 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1445 {
1446         int i;
1447
1448         i = __find_msr_index(vmx, msr);
1449         if (i >= 0)
1450                 return &vmx->guest_msrs[i];
1451         return NULL;
1452 }
1453
1454 static void vmcs_clear(struct vmcs *vmcs)
1455 {
1456         u64 phys_addr = __pa(vmcs);
1457         u8 error;
1458
1459         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1460                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461                       : "cc", "memory");
1462         if (error)
1463                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1464                        vmcs, phys_addr);
1465 }
1466
1467 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1468 {
1469         vmcs_clear(loaded_vmcs->vmcs);
1470         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1471                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1472         loaded_vmcs->cpu = -1;
1473         loaded_vmcs->launched = 0;
1474 }
1475
1476 static void vmcs_load(struct vmcs *vmcs)
1477 {
1478         u64 phys_addr = __pa(vmcs);
1479         u8 error;
1480
1481         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1482                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1483                         : "cc", "memory");
1484         if (error)
1485                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1486                        vmcs, phys_addr);
1487 }
1488
1489 #ifdef CONFIG_KEXEC_CORE
1490 /*
1491  * This bitmap is used to indicate whether the vmclear
1492  * operation is enabled on all cpus. All disabled by
1493  * default.
1494  */
1495 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1496
1497 static inline void crash_enable_local_vmclear(int cpu)
1498 {
1499         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1500 }
1501
1502 static inline void crash_disable_local_vmclear(int cpu)
1503 {
1504         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505 }
1506
1507 static inline int crash_local_vmclear_enabled(int cpu)
1508 {
1509         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510 }
1511
1512 static void crash_vmclear_local_loaded_vmcss(void)
1513 {
1514         int cpu = raw_smp_processor_id();
1515         struct loaded_vmcs *v;
1516
1517         if (!crash_local_vmclear_enabled(cpu))
1518                 return;
1519
1520         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1521                             loaded_vmcss_on_cpu_link)
1522                 vmcs_clear(v->vmcs);
1523 }
1524 #else
1525 static inline void crash_enable_local_vmclear(int cpu) { }
1526 static inline void crash_disable_local_vmclear(int cpu) { }
1527 #endif /* CONFIG_KEXEC_CORE */
1528
1529 static void __loaded_vmcs_clear(void *arg)
1530 {
1531         struct loaded_vmcs *loaded_vmcs = arg;
1532         int cpu = raw_smp_processor_id();
1533
1534         if (loaded_vmcs->cpu != cpu)
1535                 return; /* vcpu migration can race with cpu offline */
1536         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1537                 per_cpu(current_vmcs, cpu) = NULL;
1538         crash_disable_local_vmclear(cpu);
1539         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1540
1541         /*
1542          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1543          * is before setting loaded_vmcs->vcpu to -1 which is done in
1544          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1545          * then adds the vmcs into percpu list before it is deleted.
1546          */
1547         smp_wmb();
1548
1549         loaded_vmcs_init(loaded_vmcs);
1550         crash_enable_local_vmclear(cpu);
1551 }
1552
1553 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1554 {
1555         int cpu = loaded_vmcs->cpu;
1556
1557         if (cpu != -1)
1558                 smp_call_function_single(cpu,
1559                          __loaded_vmcs_clear, loaded_vmcs, 1);
1560 }
1561
1562 static inline void vpid_sync_vcpu_single(int vpid)
1563 {
1564         if (vpid == 0)
1565                 return;
1566
1567         if (cpu_has_vmx_invvpid_single())
1568                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1569 }
1570
1571 static inline void vpid_sync_vcpu_global(void)
1572 {
1573         if (cpu_has_vmx_invvpid_global())
1574                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1575 }
1576
1577 static inline void vpid_sync_context(int vpid)
1578 {
1579         if (cpu_has_vmx_invvpid_single())
1580                 vpid_sync_vcpu_single(vpid);
1581         else
1582                 vpid_sync_vcpu_global();
1583 }
1584
1585 static inline void ept_sync_global(void)
1586 {
1587         if (cpu_has_vmx_invept_global())
1588                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1589 }
1590
1591 static inline void ept_sync_context(u64 eptp)
1592 {
1593         if (enable_ept) {
1594                 if (cpu_has_vmx_invept_context())
1595                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1596                 else
1597                         ept_sync_global();
1598         }
1599 }
1600
1601 static __always_inline void vmcs_check16(unsigned long field)
1602 {
1603         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1604                          "16-bit accessor invalid for 64-bit field");
1605         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1606                          "16-bit accessor invalid for 64-bit high field");
1607         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1608                          "16-bit accessor invalid for 32-bit high field");
1609         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1610                          "16-bit accessor invalid for natural width field");
1611 }
1612
1613 static __always_inline void vmcs_check32(unsigned long field)
1614 {
1615         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1616                          "32-bit accessor invalid for 16-bit field");
1617         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618                          "32-bit accessor invalid for natural width field");
1619 }
1620
1621 static __always_inline void vmcs_check64(unsigned long field)
1622 {
1623         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624                          "64-bit accessor invalid for 16-bit field");
1625         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1626                          "64-bit accessor invalid for 64-bit high field");
1627         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1628                          "64-bit accessor invalid for 32-bit field");
1629         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630                          "64-bit accessor invalid for natural width field");
1631 }
1632
1633 static __always_inline void vmcs_checkl(unsigned long field)
1634 {
1635         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636                          "Natural width accessor invalid for 16-bit field");
1637         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1638                          "Natural width accessor invalid for 64-bit field");
1639         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640                          "Natural width accessor invalid for 64-bit high field");
1641         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642                          "Natural width accessor invalid for 32-bit field");
1643 }
1644
1645 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1646 {
1647         unsigned long value;
1648
1649         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1650                       : "=a"(value) : "d"(field) : "cc");
1651         return value;
1652 }
1653
1654 static __always_inline u16 vmcs_read16(unsigned long field)
1655 {
1656         vmcs_check16(field);
1657         return __vmcs_readl(field);
1658 }
1659
1660 static __always_inline u32 vmcs_read32(unsigned long field)
1661 {
1662         vmcs_check32(field);
1663         return __vmcs_readl(field);
1664 }
1665
1666 static __always_inline u64 vmcs_read64(unsigned long field)
1667 {
1668         vmcs_check64(field);
1669 #ifdef CONFIG_X86_64
1670         return __vmcs_readl(field);
1671 #else
1672         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1673 #endif
1674 }
1675
1676 static __always_inline unsigned long vmcs_readl(unsigned long field)
1677 {
1678         vmcs_checkl(field);
1679         return __vmcs_readl(field);
1680 }
1681
1682 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1683 {
1684         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1685                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1686         dump_stack();
1687 }
1688
1689 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1690 {
1691         u8 error;
1692
1693         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1694                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1695         if (unlikely(error))
1696                 vmwrite_error(field, value);
1697 }
1698
1699 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1700 {
1701         vmcs_check16(field);
1702         __vmcs_writel(field, value);
1703 }
1704
1705 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1706 {
1707         vmcs_check32(field);
1708         __vmcs_writel(field, value);
1709 }
1710
1711 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1712 {
1713         vmcs_check64(field);
1714         __vmcs_writel(field, value);
1715 #ifndef CONFIG_X86_64
1716         asm volatile ("");
1717         __vmcs_writel(field+1, value >> 32);
1718 #endif
1719 }
1720
1721 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723         vmcs_checkl(field);
1724         __vmcs_writel(field, value);
1725 }
1726
1727 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1728 {
1729         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1730                          "vmcs_clear_bits does not support 64-bit fields");
1731         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1732 }
1733
1734 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1735 {
1736         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1737                          "vmcs_set_bits does not support 64-bit fields");
1738         __vmcs_writel(field, __vmcs_readl(field) | mask);
1739 }
1740
1741 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1742 {
1743         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1744 }
1745
1746 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1747 {
1748         vmcs_write32(VM_ENTRY_CONTROLS, val);
1749         vmx->vm_entry_controls_shadow = val;
1750 }
1751
1752 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1753 {
1754         if (vmx->vm_entry_controls_shadow != val)
1755                 vm_entry_controls_init(vmx, val);
1756 }
1757
1758 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1759 {
1760         return vmx->vm_entry_controls_shadow;
1761 }
1762
1763
1764 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1765 {
1766         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1767 }
1768
1769 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1770 {
1771         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1772 }
1773
1774 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1775 {
1776         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1777 }
1778
1779 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1780 {
1781         vmcs_write32(VM_EXIT_CONTROLS, val);
1782         vmx->vm_exit_controls_shadow = val;
1783 }
1784
1785 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1786 {
1787         if (vmx->vm_exit_controls_shadow != val)
1788                 vm_exit_controls_init(vmx, val);
1789 }
1790
1791 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1792 {
1793         return vmx->vm_exit_controls_shadow;
1794 }
1795
1796
1797 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798 {
1799         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1800 }
1801
1802 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803 {
1804         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1805 }
1806
1807 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1808 {
1809         vmx->segment_cache.bitmask = 0;
1810 }
1811
1812 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1813                                        unsigned field)
1814 {
1815         bool ret;
1816         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1817
1818         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1819                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1820                 vmx->segment_cache.bitmask = 0;
1821         }
1822         ret = vmx->segment_cache.bitmask & mask;
1823         vmx->segment_cache.bitmask |= mask;
1824         return ret;
1825 }
1826
1827 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829         u16 *p = &vmx->segment_cache.seg[seg].selector;
1830
1831         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1832                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1833         return *p;
1834 }
1835
1836 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838         ulong *p = &vmx->segment_cache.seg[seg].base;
1839
1840         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1841                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1842         return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847         u32 *p = &vmx->segment_cache.seg[seg].limit;
1848
1849         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1850                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1851         return *p;
1852 }
1853
1854 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1855 {
1856         u32 *p = &vmx->segment_cache.seg[seg].ar;
1857
1858         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1859                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1860         return *p;
1861 }
1862
1863 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1864 {
1865         u32 eb;
1866
1867         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1868              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1869         if ((vcpu->guest_debug &
1870              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1871             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1872                 eb |= 1u << BP_VECTOR;
1873         if (to_vmx(vcpu)->rmode.vm86_active)
1874                 eb = ~0;
1875         if (enable_ept)
1876                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1877
1878         /* When we are running a nested L2 guest and L1 specified for it a
1879          * certain exception bitmap, we must trap the same exceptions and pass
1880          * them to L1. When running L2, we will only handle the exceptions
1881          * specified above if L1 did not want them.
1882          */
1883         if (is_guest_mode(vcpu))
1884                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1885
1886         vmcs_write32(EXCEPTION_BITMAP, eb);
1887 }
1888
1889 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1890                 unsigned long entry, unsigned long exit)
1891 {
1892         vm_entry_controls_clearbit(vmx, entry);
1893         vm_exit_controls_clearbit(vmx, exit);
1894 }
1895
1896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1897 {
1898         unsigned i;
1899         struct msr_autoload *m = &vmx->msr_autoload;
1900
1901         switch (msr) {
1902         case MSR_EFER:
1903                 if (cpu_has_load_ia32_efer) {
1904                         clear_atomic_switch_msr_special(vmx,
1905                                         VM_ENTRY_LOAD_IA32_EFER,
1906                                         VM_EXIT_LOAD_IA32_EFER);
1907                         return;
1908                 }
1909                 break;
1910         case MSR_CORE_PERF_GLOBAL_CTRL:
1911                 if (cpu_has_load_perf_global_ctrl) {
1912                         clear_atomic_switch_msr_special(vmx,
1913                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1914                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1915                         return;
1916                 }
1917                 break;
1918         }
1919
1920         for (i = 0; i < m->nr; ++i)
1921                 if (m->guest[i].index == msr)
1922                         break;
1923
1924         if (i == m->nr)
1925                 return;
1926         --m->nr;
1927         m->guest[i] = m->guest[m->nr];
1928         m->host[i] = m->host[m->nr];
1929         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1930         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1931 }
1932
1933 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1934                 unsigned long entry, unsigned long exit,
1935                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1936                 u64 guest_val, u64 host_val)
1937 {
1938         vmcs_write64(guest_val_vmcs, guest_val);
1939         vmcs_write64(host_val_vmcs, host_val);
1940         vm_entry_controls_setbit(vmx, entry);
1941         vm_exit_controls_setbit(vmx, exit);
1942 }
1943
1944 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1945                                   u64 guest_val, u64 host_val)
1946 {
1947         unsigned i;
1948         struct msr_autoload *m = &vmx->msr_autoload;
1949
1950         switch (msr) {
1951         case MSR_EFER:
1952                 if (cpu_has_load_ia32_efer) {
1953                         add_atomic_switch_msr_special(vmx,
1954                                         VM_ENTRY_LOAD_IA32_EFER,
1955                                         VM_EXIT_LOAD_IA32_EFER,
1956                                         GUEST_IA32_EFER,
1957                                         HOST_IA32_EFER,
1958                                         guest_val, host_val);
1959                         return;
1960                 }
1961                 break;
1962         case MSR_CORE_PERF_GLOBAL_CTRL:
1963                 if (cpu_has_load_perf_global_ctrl) {
1964                         add_atomic_switch_msr_special(vmx,
1965                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1966                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1967                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1968                                         HOST_IA32_PERF_GLOBAL_CTRL,
1969                                         guest_val, host_val);
1970                         return;
1971                 }
1972                 break;
1973         case MSR_IA32_PEBS_ENABLE:
1974                 /* PEBS needs a quiescent period after being disabled (to write
1975                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1976                  * provide that period, so a CPU could write host's record into
1977                  * guest's memory.
1978                  */
1979                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1980         }
1981
1982         for (i = 0; i < m->nr; ++i)
1983                 if (m->guest[i].index == msr)
1984                         break;
1985
1986         if (i == NR_AUTOLOAD_MSRS) {
1987                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1988                                 "Can't add msr %x\n", msr);
1989                 return;
1990         } else if (i == m->nr) {
1991                 ++m->nr;
1992                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1993                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1994         }
1995
1996         m->guest[i].index = msr;
1997         m->guest[i].value = guest_val;
1998         m->host[i].index = msr;
1999         m->host[i].value = host_val;
2000 }
2001
2002 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2003 {
2004         u64 guest_efer = vmx->vcpu.arch.efer;
2005         u64 ignore_bits = 0;
2006
2007         if (!enable_ept) {
2008                 /*
2009                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2010                  * host CPUID is more efficient than testing guest CPUID
2011                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2012                  */
2013                 if (boot_cpu_has(X86_FEATURE_SMEP))
2014                         guest_efer |= EFER_NX;
2015                 else if (!(guest_efer & EFER_NX))
2016                         ignore_bits |= EFER_NX;
2017         }
2018
2019         /*
2020          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021          */
2022         ignore_bits |= EFER_SCE;
2023 #ifdef CONFIG_X86_64
2024         ignore_bits |= EFER_LMA | EFER_LME;
2025         /* SCE is meaningful only in long mode on Intel */
2026         if (guest_efer & EFER_LMA)
2027                 ignore_bits &= ~(u64)EFER_SCE;
2028 #endif
2029
2030         clear_atomic_switch_msr(vmx, MSR_EFER);
2031
2032         /*
2033          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2034          * On CPUs that support "load IA32_EFER", always switch EFER
2035          * atomically, since it's faster than switching it manually.
2036          */
2037         if (cpu_has_load_ia32_efer ||
2038             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2039                 if (!(guest_efer & EFER_LMA))
2040                         guest_efer &= ~EFER_LME;
2041                 if (guest_efer != host_efer)
2042                         add_atomic_switch_msr(vmx, MSR_EFER,
2043                                               guest_efer, host_efer);
2044                 return false;
2045         } else {
2046                 guest_efer &= ~ignore_bits;
2047                 guest_efer |= host_efer & ignore_bits;
2048
2049                 vmx->guest_msrs[efer_offset].data = guest_efer;
2050                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2051
2052                 return true;
2053         }
2054 }
2055
2056 #ifdef CONFIG_X86_32
2057 /*
2058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2059  * VMCS rather than the segment table.  KVM uses this helper to figure
2060  * out the current bases to poke them into the VMCS before entry.
2061  */
2062 static unsigned long segment_base(u16 selector)
2063 {
2064         struct desc_struct *table;
2065         unsigned long v;
2066
2067         if (!(selector & ~SEGMENT_RPL_MASK))
2068                 return 0;
2069
2070         table = get_current_gdt_ro();
2071
2072         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2073                 u16 ldt_selector = kvm_read_ldt();
2074
2075                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2076                         return 0;
2077
2078                 table = (struct desc_struct *)segment_base(ldt_selector);
2079         }
2080         v = get_desc_base(&table[selector >> 3]);
2081         return v;
2082 }
2083 #endif
2084
2085 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2086 {
2087         struct vcpu_vmx *vmx = to_vmx(vcpu);
2088         int i;
2089
2090         if (vmx->host_state.loaded)
2091                 return;
2092
2093         vmx->host_state.loaded = 1;
2094         /*
2095          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2096          * allow segment selectors with cpl > 0 or ti == 1.
2097          */
2098         vmx->host_state.ldt_sel = kvm_read_ldt();
2099         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2100         savesegment(fs, vmx->host_state.fs_sel);
2101         if (!(vmx->host_state.fs_sel & 7)) {
2102                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2103                 vmx->host_state.fs_reload_needed = 0;
2104         } else {
2105                 vmcs_write16(HOST_FS_SELECTOR, 0);
2106                 vmx->host_state.fs_reload_needed = 1;
2107         }
2108         savesegment(gs, vmx->host_state.gs_sel);
2109         if (!(vmx->host_state.gs_sel & 7))
2110                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2111         else {
2112                 vmcs_write16(HOST_GS_SELECTOR, 0);
2113                 vmx->host_state.gs_ldt_reload_needed = 1;
2114         }
2115
2116 #ifdef CONFIG_X86_64
2117         savesegment(ds, vmx->host_state.ds_sel);
2118         savesegment(es, vmx->host_state.es_sel);
2119 #endif
2120
2121 #ifdef CONFIG_X86_64
2122         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2123         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2124 #else
2125         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2126         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2127 #endif
2128
2129 #ifdef CONFIG_X86_64
2130         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2131         if (is_long_mode(&vmx->vcpu))
2132                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2133 #endif
2134         if (boot_cpu_has(X86_FEATURE_MPX))
2135                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2136         for (i = 0; i < vmx->save_nmsrs; ++i)
2137                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2138                                    vmx->guest_msrs[i].data,
2139                                    vmx->guest_msrs[i].mask);
2140 }
2141
2142 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2143 {
2144         if (!vmx->host_state.loaded)
2145                 return;
2146
2147         ++vmx->vcpu.stat.host_state_reload;
2148         vmx->host_state.loaded = 0;
2149 #ifdef CONFIG_X86_64
2150         if (is_long_mode(&vmx->vcpu))
2151                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2152 #endif
2153         if (vmx->host_state.gs_ldt_reload_needed) {
2154                 kvm_load_ldt(vmx->host_state.ldt_sel);
2155 #ifdef CONFIG_X86_64
2156                 load_gs_index(vmx->host_state.gs_sel);
2157 #else
2158                 loadsegment(gs, vmx->host_state.gs_sel);
2159 #endif
2160         }
2161         if (vmx->host_state.fs_reload_needed)
2162                 loadsegment(fs, vmx->host_state.fs_sel);
2163 #ifdef CONFIG_X86_64
2164         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2165                 loadsegment(ds, vmx->host_state.ds_sel);
2166                 loadsegment(es, vmx->host_state.es_sel);
2167         }
2168 #endif
2169         invalidate_tss_limit();
2170 #ifdef CONFIG_X86_64
2171         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2172 #endif
2173         if (vmx->host_state.msr_host_bndcfgs)
2174                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2175         load_fixmap_gdt(raw_smp_processor_id());
2176 }
2177
2178 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2179 {
2180         preempt_disable();
2181         __vmx_load_host_state(vmx);
2182         preempt_enable();
2183 }
2184
2185 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2188         struct pi_desc old, new;
2189         unsigned int dest;
2190
2191         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2192                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2193                 !kvm_vcpu_apicv_active(vcpu))
2194                 return;
2195
2196         do {
2197                 old.control = new.control = pi_desc->control;
2198
2199                 /*
2200                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2201                  * are two possible cases:
2202                  * 1. After running 'pre_block', context switch
2203                  *    happened. For this case, 'sn' was set in
2204                  *    vmx_vcpu_put(), so we need to clear it here.
2205                  * 2. After running 'pre_block', we were blocked,
2206                  *    and woken up by some other guy. For this case,
2207                  *    we don't need to do anything, 'pi_post_block'
2208                  *    will do everything for us. However, we cannot
2209                  *    check whether it is case #1 or case #2 here
2210                  *    (maybe, not needed), so we also clear sn here,
2211                  *    I think it is not a big deal.
2212                  */
2213                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2214                         if (vcpu->cpu != cpu) {
2215                                 dest = cpu_physical_id(cpu);
2216
2217                                 if (x2apic_enabled())
2218                                         new.ndst = dest;
2219                                 else
2220                                         new.ndst = (dest << 8) & 0xFF00;
2221                         }
2222
2223                         /* set 'NV' to 'notification vector' */
2224                         new.nv = POSTED_INTR_VECTOR;
2225                 }
2226
2227                 /* Allow posting non-urgent interrupts */
2228                 new.sn = 0;
2229         } while (cmpxchg(&pi_desc->control, old.control,
2230                         new.control) != old.control);
2231 }
2232
2233 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2234 {
2235         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2236         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2237 }
2238
2239 /*
2240  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2241  * vcpu mutex is already taken.
2242  */
2243 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245         struct vcpu_vmx *vmx = to_vmx(vcpu);
2246         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2247
2248         if (!already_loaded) {
2249                 loaded_vmcs_clear(vmx->loaded_vmcs);
2250                 local_irq_disable();
2251                 crash_disable_local_vmclear(cpu);
2252
2253                 /*
2254                  * Read loaded_vmcs->cpu should be before fetching
2255                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2256                  * See the comments in __loaded_vmcs_clear().
2257                  */
2258                 smp_rmb();
2259
2260                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2261                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2262                 crash_enable_local_vmclear(cpu);
2263                 local_irq_enable();
2264         }
2265
2266         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2267                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2268                 vmcs_load(vmx->loaded_vmcs->vmcs);
2269         }
2270
2271         if (!already_loaded) {
2272                 void *gdt = get_current_gdt_ro();
2273                 unsigned long sysenter_esp;
2274
2275                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2276
2277                 /*
2278                  * Linux uses per-cpu TSS and GDT, so set these when switching
2279                  * processors.  See 22.2.4.
2280                  */
2281                 vmcs_writel(HOST_TR_BASE,
2282                             (unsigned long)this_cpu_ptr(&cpu_tss));
2283                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2284
2285                 /*
2286                  * VM exits change the host TR limit to 0x67 after a VM
2287                  * exit.  This is okay, since 0x67 covers everything except
2288                  * the IO bitmap and have have code to handle the IO bitmap
2289                  * being lost after a VM exit.
2290                  */
2291                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2292
2293                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2294                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2295
2296                 vmx->loaded_vmcs->cpu = cpu;
2297         }
2298
2299         /* Setup TSC multiplier */
2300         if (kvm_has_tsc_control &&
2301             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2302                 decache_tsc_multiplier(vmx);
2303
2304         vmx_vcpu_pi_load(vcpu, cpu);
2305         vmx->host_pkru = read_pkru();
2306 }
2307
2308 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2309 {
2310         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2311
2312         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2313                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2314                 !kvm_vcpu_apicv_active(vcpu))
2315                 return;
2316
2317         /* Set SN when the vCPU is preempted */
2318         if (vcpu->preempted)
2319                 pi_set_sn(pi_desc);
2320 }
2321
2322 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2323 {
2324         vmx_vcpu_pi_put(vcpu);
2325
2326         __vmx_load_host_state(to_vmx(vcpu));
2327 }
2328
2329 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2330
2331 /*
2332  * Return the cr0 value that a nested guest would read. This is a combination
2333  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2334  * its hypervisor (cr0_read_shadow).
2335  */
2336 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2337 {
2338         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2339                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2340 }
2341 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2342 {
2343         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2344                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2345 }
2346
2347 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2348 {
2349         unsigned long rflags, save_rflags;
2350
2351         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2352                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2353                 rflags = vmcs_readl(GUEST_RFLAGS);
2354                 if (to_vmx(vcpu)->rmode.vm86_active) {
2355                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2356                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2357                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2358                 }
2359                 to_vmx(vcpu)->rflags = rflags;
2360         }
2361         return to_vmx(vcpu)->rflags;
2362 }
2363
2364 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2365 {
2366         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2367         to_vmx(vcpu)->rflags = rflags;
2368         if (to_vmx(vcpu)->rmode.vm86_active) {
2369                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2370                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2371         }
2372         vmcs_writel(GUEST_RFLAGS, rflags);
2373 }
2374
2375 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2376 {
2377         return to_vmx(vcpu)->guest_pkru;
2378 }
2379
2380 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2381 {
2382         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2383         int ret = 0;
2384
2385         if (interruptibility & GUEST_INTR_STATE_STI)
2386                 ret |= KVM_X86_SHADOW_INT_STI;
2387         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2388                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2389
2390         return ret;
2391 }
2392
2393 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2394 {
2395         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2396         u32 interruptibility = interruptibility_old;
2397
2398         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2399
2400         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2401                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2402         else if (mask & KVM_X86_SHADOW_INT_STI)
2403                 interruptibility |= GUEST_INTR_STATE_STI;
2404
2405         if ((interruptibility != interruptibility_old))
2406                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2407 }
2408
2409 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2410 {
2411         unsigned long rip;
2412
2413         rip = kvm_rip_read(vcpu);
2414         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2415         kvm_rip_write(vcpu, rip);
2416
2417         /* skipping an emulated instruction also counts */
2418         vmx_set_interrupt_shadow(vcpu, 0);
2419 }
2420
2421 /*
2422  * KVM wants to inject page-faults which it got to the guest. This function
2423  * checks whether in a nested guest, we need to inject them to L1 or L2.
2424  */
2425 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
2426 {
2427         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2428         unsigned int nr = vcpu->arch.exception.nr;
2429
2430         if (!((vmcs12->exception_bitmap & (1u << nr)) ||
2431                 (nr == PF_VECTOR && vcpu->arch.exception.nested_apf)))
2432                 return 0;
2433
2434         if (vcpu->arch.exception.nested_apf) {
2435                 vmcs_write32(VM_EXIT_INTR_ERROR_CODE, vcpu->arch.exception.error_code);
2436                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2437                         PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
2438                         INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
2439                         vcpu->arch.apf.nested_apf_token);
2440                 return 1;
2441         }
2442
2443         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2444                           vmcs_read32(VM_EXIT_INTR_INFO),
2445                           vmcs_readl(EXIT_QUALIFICATION));
2446         return 1;
2447 }
2448
2449 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2450 {
2451         struct vcpu_vmx *vmx = to_vmx(vcpu);
2452         unsigned nr = vcpu->arch.exception.nr;
2453         bool has_error_code = vcpu->arch.exception.has_error_code;
2454         bool reinject = vcpu->arch.exception.reinject;
2455         u32 error_code = vcpu->arch.exception.error_code;
2456         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2457
2458         if (!reinject && is_guest_mode(vcpu) &&
2459             nested_vmx_check_exception(vcpu))
2460                 return;
2461
2462         if (has_error_code) {
2463                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2464                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2465         }
2466
2467         if (vmx->rmode.vm86_active) {
2468                 int inc_eip = 0;
2469                 if (kvm_exception_is_soft(nr))
2470                         inc_eip = vcpu->arch.event_exit_inst_len;
2471                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2472                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2473                 return;
2474         }
2475
2476         if (kvm_exception_is_soft(nr)) {
2477                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2478                              vmx->vcpu.arch.event_exit_inst_len);
2479                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2480         } else
2481                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2482
2483         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2484 }
2485
2486 static bool vmx_rdtscp_supported(void)
2487 {
2488         return cpu_has_vmx_rdtscp();
2489 }
2490
2491 static bool vmx_invpcid_supported(void)
2492 {
2493         return cpu_has_vmx_invpcid() && enable_ept;
2494 }
2495
2496 /*
2497  * Swap MSR entry in host/guest MSR entry array.
2498  */
2499 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2500 {
2501         struct shared_msr_entry tmp;
2502
2503         tmp = vmx->guest_msrs[to];
2504         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2505         vmx->guest_msrs[from] = tmp;
2506 }
2507
2508 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2509 {
2510         unsigned long *msr_bitmap;
2511
2512         if (is_guest_mode(vcpu))
2513                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2514         else if (cpu_has_secondary_exec_ctrls() &&
2515                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2516                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2517                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2518                         if (is_long_mode(vcpu))
2519                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2520                         else
2521                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2522                 } else {
2523                         if (is_long_mode(vcpu))
2524                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2525                         else
2526                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2527                 }
2528         } else {
2529                 if (is_long_mode(vcpu))
2530                         msr_bitmap = vmx_msr_bitmap_longmode;
2531                 else
2532                         msr_bitmap = vmx_msr_bitmap_legacy;
2533         }
2534
2535         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2536 }
2537
2538 /*
2539  * Set up the vmcs to automatically save and restore system
2540  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2541  * mode, as fiddling with msrs is very expensive.
2542  */
2543 static void setup_msrs(struct vcpu_vmx *vmx)
2544 {
2545         int save_nmsrs, index;
2546
2547         save_nmsrs = 0;
2548 #ifdef CONFIG_X86_64
2549         if (is_long_mode(&vmx->vcpu)) {
2550                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2551                 if (index >= 0)
2552                         move_msr_up(vmx, index, save_nmsrs++);
2553                 index = __find_msr_index(vmx, MSR_LSTAR);
2554                 if (index >= 0)
2555                         move_msr_up(vmx, index, save_nmsrs++);
2556                 index = __find_msr_index(vmx, MSR_CSTAR);
2557                 if (index >= 0)
2558                         move_msr_up(vmx, index, save_nmsrs++);
2559                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2560                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2561                         move_msr_up(vmx, index, save_nmsrs++);
2562                 /*
2563                  * MSR_STAR is only needed on long mode guests, and only
2564                  * if efer.sce is enabled.
2565                  */
2566                 index = __find_msr_index(vmx, MSR_STAR);
2567                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2568                         move_msr_up(vmx, index, save_nmsrs++);
2569         }
2570 #endif
2571         index = __find_msr_index(vmx, MSR_EFER);
2572         if (index >= 0 && update_transition_efer(vmx, index))
2573                 move_msr_up(vmx, index, save_nmsrs++);
2574
2575         vmx->save_nmsrs = save_nmsrs;
2576
2577         if (cpu_has_vmx_msr_bitmap())
2578                 vmx_set_msr_bitmap(&vmx->vcpu);
2579 }
2580
2581 /*
2582  * reads and returns guest's timestamp counter "register"
2583  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2584  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2585  */
2586 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2587 {
2588         u64 host_tsc, tsc_offset;
2589
2590         host_tsc = rdtsc();
2591         tsc_offset = vmcs_read64(TSC_OFFSET);
2592         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2593 }
2594
2595 /*
2596  * writes 'offset' into guest's timestamp counter offset register
2597  */
2598 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2599 {
2600         if (is_guest_mode(vcpu)) {
2601                 /*
2602                  * We're here if L1 chose not to trap WRMSR to TSC. According
2603                  * to the spec, this should set L1's TSC; The offset that L1
2604                  * set for L2 remains unchanged, and still needs to be added
2605                  * to the newly set TSC to get L2's TSC.
2606                  */
2607                 struct vmcs12 *vmcs12;
2608                 /* recalculate vmcs02.TSC_OFFSET: */
2609                 vmcs12 = get_vmcs12(vcpu);
2610                 vmcs_write64(TSC_OFFSET, offset +
2611                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2612                          vmcs12->tsc_offset : 0));
2613         } else {
2614                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615                                            vmcs_read64(TSC_OFFSET), offset);
2616                 vmcs_write64(TSC_OFFSET, offset);
2617         }
2618 }
2619
2620 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2621 {
2622         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2623         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2624 }
2625
2626 /*
2627  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2628  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2629  * all guests if the "nested" module option is off, and can also be disabled
2630  * for a single guest by disabling its VMX cpuid bit.
2631  */
2632 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2633 {
2634         return nested && guest_cpuid_has_vmx(vcpu);
2635 }
2636
2637 /*
2638  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2639  * returned for the various VMX controls MSRs when nested VMX is enabled.
2640  * The same values should also be used to verify that vmcs12 control fields are
2641  * valid during nested entry from L1 to L2.
2642  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2643  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2644  * bit in the high half is on if the corresponding bit in the control field
2645  * may be on. See also vmx_control_verify().
2646  */
2647 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2648 {
2649         /*
2650          * Note that as a general rule, the high half of the MSRs (bits in
2651          * the control fields which may be 1) should be initialized by the
2652          * intersection of the underlying hardware's MSR (i.e., features which
2653          * can be supported) and the list of features we want to expose -
2654          * because they are known to be properly supported in our code.
2655          * Also, usually, the low half of the MSRs (bits which must be 1) can
2656          * be set to 0, meaning that L1 may turn off any of these bits. The
2657          * reason is that if one of these bits is necessary, it will appear
2658          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2659          * fields of vmcs01 and vmcs02, will turn these bits off - and
2660          * nested_vmx_exit_handled() will not pass related exits to L1.
2661          * These rules have exceptions below.
2662          */
2663
2664         /* pin-based controls */
2665         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2666                 vmx->nested.nested_vmx_pinbased_ctls_low,
2667                 vmx->nested.nested_vmx_pinbased_ctls_high);
2668         vmx->nested.nested_vmx_pinbased_ctls_low |=
2669                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2670         vmx->nested.nested_vmx_pinbased_ctls_high &=
2671                 PIN_BASED_EXT_INTR_MASK |
2672                 PIN_BASED_NMI_EXITING |
2673                 PIN_BASED_VIRTUAL_NMIS;
2674         vmx->nested.nested_vmx_pinbased_ctls_high |=
2675                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2676                 PIN_BASED_VMX_PREEMPTION_TIMER;
2677         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2678                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2679                         PIN_BASED_POSTED_INTR;
2680
2681         /* exit controls */
2682         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2683                 vmx->nested.nested_vmx_exit_ctls_low,
2684                 vmx->nested.nested_vmx_exit_ctls_high);
2685         vmx->nested.nested_vmx_exit_ctls_low =
2686                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2687
2688         vmx->nested.nested_vmx_exit_ctls_high &=
2689 #ifdef CONFIG_X86_64
2690                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2691 #endif
2692                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2693         vmx->nested.nested_vmx_exit_ctls_high |=
2694                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2695                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2696                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2697
2698         if (kvm_mpx_supported())
2699                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2700
2701         /* We support free control of debug control saving. */
2702         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2703
2704         /* entry controls */
2705         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2706                 vmx->nested.nested_vmx_entry_ctls_low,
2707                 vmx->nested.nested_vmx_entry_ctls_high);
2708         vmx->nested.nested_vmx_entry_ctls_low =
2709                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2710         vmx->nested.nested_vmx_entry_ctls_high &=
2711 #ifdef CONFIG_X86_64
2712                 VM_ENTRY_IA32E_MODE |
2713 #endif
2714                 VM_ENTRY_LOAD_IA32_PAT;
2715         vmx->nested.nested_vmx_entry_ctls_high |=
2716                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2717         if (kvm_mpx_supported())
2718                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2719
2720         /* We support free control of debug control loading. */
2721         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2722
2723         /* cpu-based controls */
2724         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2725                 vmx->nested.nested_vmx_procbased_ctls_low,
2726                 vmx->nested.nested_vmx_procbased_ctls_high);
2727         vmx->nested.nested_vmx_procbased_ctls_low =
2728                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2729         vmx->nested.nested_vmx_procbased_ctls_high &=
2730                 CPU_BASED_VIRTUAL_INTR_PENDING |
2731                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2732                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2733                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2734                 CPU_BASED_CR3_STORE_EXITING |
2735 #ifdef CONFIG_X86_64
2736                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2737 #endif
2738                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2739                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2740                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2741                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2742                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2743         /*
2744          * We can allow some features even when not supported by the
2745          * hardware. For example, L1 can specify an MSR bitmap - and we
2746          * can use it to avoid exits to L1 - even when L0 runs L2
2747          * without MSR bitmaps.
2748          */
2749         vmx->nested.nested_vmx_procbased_ctls_high |=
2750                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2751                 CPU_BASED_USE_MSR_BITMAPS;
2752
2753         /* We support free control of CR3 access interception. */
2754         vmx->nested.nested_vmx_procbased_ctls_low &=
2755                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2756
2757         /* secondary cpu-based controls */
2758         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2759                 vmx->nested.nested_vmx_secondary_ctls_low,
2760                 vmx->nested.nested_vmx_secondary_ctls_high);
2761         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2762         vmx->nested.nested_vmx_secondary_ctls_high &=
2763                 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2764                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2765                 SECONDARY_EXEC_RDTSCP |
2766                 SECONDARY_EXEC_DESC |
2767                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2768                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2769                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2770                 SECONDARY_EXEC_WBINVD_EXITING |
2771                 SECONDARY_EXEC_XSAVES;
2772
2773         if (enable_ept) {
2774                 /* nested EPT: emulate EPT also to L1 */
2775                 vmx->nested.nested_vmx_secondary_ctls_high |=
2776                         SECONDARY_EXEC_ENABLE_EPT;
2777                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2778                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2779                 if (cpu_has_vmx_ept_execute_only())
2780                         vmx->nested.nested_vmx_ept_caps |=
2781                                 VMX_EPT_EXECUTE_ONLY_BIT;
2782                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2783                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2784                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2785                         VMX_EPT_1GB_PAGE_BIT;
2786                 if (enable_ept_ad_bits) {
2787                         vmx->nested.nested_vmx_secondary_ctls_high |=
2788                                 SECONDARY_EXEC_ENABLE_PML;
2789                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2790                 }
2791         } else
2792                 vmx->nested.nested_vmx_ept_caps = 0;
2793
2794         /*
2795          * Old versions of KVM use the single-context version without
2796          * checking for support, so declare that it is supported even
2797          * though it is treated as global context.  The alternative is
2798          * not failing the single-context invvpid, and it is worse.
2799          */
2800         if (enable_vpid) {
2801                 vmx->nested.nested_vmx_secondary_ctls_high |=
2802                         SECONDARY_EXEC_ENABLE_VPID;
2803                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2804                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2805         } else
2806                 vmx->nested.nested_vmx_vpid_caps = 0;
2807
2808         if (enable_unrestricted_guest)
2809                 vmx->nested.nested_vmx_secondary_ctls_high |=
2810                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2811
2812         /* miscellaneous data */
2813         rdmsr(MSR_IA32_VMX_MISC,
2814                 vmx->nested.nested_vmx_misc_low,
2815                 vmx->nested.nested_vmx_misc_high);
2816         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2817         vmx->nested.nested_vmx_misc_low |=
2818                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2819                 VMX_MISC_ACTIVITY_HLT;
2820         vmx->nested.nested_vmx_misc_high = 0;
2821
2822         /*
2823          * This MSR reports some information about VMX support. We
2824          * should return information about the VMX we emulate for the
2825          * guest, and the VMCS structure we give it - not about the
2826          * VMX support of the underlying hardware.
2827          */
2828         vmx->nested.nested_vmx_basic =
2829                 VMCS12_REVISION |
2830                 VMX_BASIC_TRUE_CTLS |
2831                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2832                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2833
2834         if (cpu_has_vmx_basic_inout())
2835                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2836
2837         /*
2838          * These MSRs specify bits which the guest must keep fixed on
2839          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2840          * We picked the standard core2 setting.
2841          */
2842 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2843 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2844         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2845         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2846
2847         /* These MSRs specify bits which the guest must keep fixed off. */
2848         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2849         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2850
2851         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2852         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2853 }
2854
2855 /*
2856  * if fixed0[i] == 1: val[i] must be 1
2857  * if fixed1[i] == 0: val[i] must be 0
2858  */
2859 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2860 {
2861         return ((val & fixed1) | fixed0) == val;
2862 }
2863
2864 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2865 {
2866         return fixed_bits_valid(control, low, high);
2867 }
2868
2869 static inline u64 vmx_control_msr(u32 low, u32 high)
2870 {
2871         return low | ((u64)high << 32);
2872 }
2873
2874 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2875 {
2876         superset &= mask;
2877         subset &= mask;
2878
2879         return (superset | subset) == superset;
2880 }
2881
2882 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2883 {
2884         const u64 feature_and_reserved =
2885                 /* feature (except bit 48; see below) */
2886                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2887                 /* reserved */
2888                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2889         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2890
2891         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2892                 return -EINVAL;
2893
2894         /*
2895          * KVM does not emulate a version of VMX that constrains physical
2896          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2897          */
2898         if (data & BIT_ULL(48))
2899                 return -EINVAL;
2900
2901         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2902             vmx_basic_vmcs_revision_id(data))
2903                 return -EINVAL;
2904
2905         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2906                 return -EINVAL;
2907
2908         vmx->nested.nested_vmx_basic = data;
2909         return 0;
2910 }
2911
2912 static int
2913 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2914 {
2915         u64 supported;
2916         u32 *lowp, *highp;
2917
2918         switch (msr_index) {
2919         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2920                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2921                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2922                 break;
2923         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2924                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2925                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2926                 break;
2927         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2928                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2929                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2930                 break;
2931         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2932                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2933                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2934                 break;
2935         case MSR_IA32_VMX_PROCBASED_CTLS2:
2936                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2937                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2938                 break;
2939         default:
2940                 BUG();
2941         }
2942
2943         supported = vmx_control_msr(*lowp, *highp);
2944
2945         /* Check must-be-1 bits are still 1. */
2946         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2947                 return -EINVAL;
2948
2949         /* Check must-be-0 bits are still 0. */
2950         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2951                 return -EINVAL;
2952
2953         *lowp = data;
2954         *highp = data >> 32;
2955         return 0;
2956 }
2957
2958 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2959 {
2960         const u64 feature_and_reserved_bits =
2961                 /* feature */
2962                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2963                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2964                 /* reserved */
2965                 GENMASK_ULL(13, 9) | BIT_ULL(31);
2966         u64 vmx_misc;
2967
2968         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2969                                    vmx->nested.nested_vmx_misc_high);
2970
2971         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2972                 return -EINVAL;
2973
2974         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2975              PIN_BASED_VMX_PREEMPTION_TIMER) &&
2976             vmx_misc_preemption_timer_rate(data) !=
2977             vmx_misc_preemption_timer_rate(vmx_misc))
2978                 return -EINVAL;
2979
2980         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2981                 return -EINVAL;
2982
2983         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2984                 return -EINVAL;
2985
2986         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2987                 return -EINVAL;
2988
2989         vmx->nested.nested_vmx_misc_low = data;
2990         vmx->nested.nested_vmx_misc_high = data >> 32;
2991         return 0;
2992 }
2993
2994 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2995 {
2996         u64 vmx_ept_vpid_cap;
2997
2998         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2999                                            vmx->nested.nested_vmx_vpid_caps);
3000
3001         /* Every bit is either reserved or a feature bit. */
3002         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3003                 return -EINVAL;
3004
3005         vmx->nested.nested_vmx_ept_caps = data;
3006         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3007         return 0;
3008 }
3009
3010 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3011 {
3012         u64 *msr;
3013
3014         switch (msr_index) {
3015         case MSR_IA32_VMX_CR0_FIXED0:
3016                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3017                 break;
3018         case MSR_IA32_VMX_CR4_FIXED0:
3019                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3020                 break;
3021         default:
3022                 BUG();
3023         }
3024
3025         /*
3026          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3027          * must be 1 in the restored value.
3028          */
3029         if (!is_bitwise_subset(data, *msr, -1ULL))
3030                 return -EINVAL;
3031
3032         *msr = data;
3033         return 0;
3034 }
3035
3036 /*
3037  * Called when userspace is restoring VMX MSRs.
3038  *
3039  * Returns 0 on success, non-0 otherwise.
3040  */
3041 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3042 {
3043         struct vcpu_vmx *vmx = to_vmx(vcpu);
3044
3045         switch (msr_index) {
3046         case MSR_IA32_VMX_BASIC:
3047                 return vmx_restore_vmx_basic(vmx, data);
3048         case MSR_IA32_VMX_PINBASED_CTLS:
3049         case MSR_IA32_VMX_PROCBASED_CTLS:
3050         case MSR_IA32_VMX_EXIT_CTLS:
3051         case MSR_IA32_VMX_ENTRY_CTLS:
3052                 /*
3053                  * The "non-true" VMX capability MSRs are generated from the
3054                  * "true" MSRs, so we do not support restoring them directly.
3055                  *
3056                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3057                  * should restore the "true" MSRs with the must-be-1 bits
3058                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3059                  * DEFAULT SETTINGS".
3060                  */
3061                 return -EINVAL;
3062         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3063         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3064         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3065         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3066         case MSR_IA32_VMX_PROCBASED_CTLS2:
3067                 return vmx_restore_control_msr(vmx, msr_index, data);
3068         case MSR_IA32_VMX_MISC:
3069                 return vmx_restore_vmx_misc(vmx, data);
3070         case MSR_IA32_VMX_CR0_FIXED0:
3071         case MSR_IA32_VMX_CR4_FIXED0:
3072                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3073         case MSR_IA32_VMX_CR0_FIXED1:
3074         case MSR_IA32_VMX_CR4_FIXED1:
3075                 /*
3076                  * These MSRs are generated based on the vCPU's CPUID, so we
3077                  * do not support restoring them directly.
3078                  */
3079                 return -EINVAL;
3080         case MSR_IA32_VMX_EPT_VPID_CAP:
3081                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3082         case MSR_IA32_VMX_VMCS_ENUM:
3083                 vmx->nested.nested_vmx_vmcs_enum = data;
3084                 return 0;
3085         default:
3086                 /*
3087                  * The rest of the VMX capability MSRs do not support restore.
3088                  */
3089                 return -EINVAL;
3090         }
3091 }
3092
3093 /* Returns 0 on success, non-0 otherwise. */
3094 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3095 {
3096         struct vcpu_vmx *vmx = to_vmx(vcpu);
3097
3098         switch (msr_index) {
3099         case MSR_IA32_VMX_BASIC:
3100                 *pdata = vmx->nested.nested_vmx_basic;
3101                 break;
3102         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3103         case MSR_IA32_VMX_PINBASED_CTLS:
3104                 *pdata = vmx_control_msr(
3105                         vmx->nested.nested_vmx_pinbased_ctls_low,
3106                         vmx->nested.nested_vmx_pinbased_ctls_high);
3107                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3108                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3109                 break;
3110         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3111         case MSR_IA32_VMX_PROCBASED_CTLS:
3112                 *pdata = vmx_control_msr(
3113                         vmx->nested.nested_vmx_procbased_ctls_low,
3114                         vmx->nested.nested_vmx_procbased_ctls_high);
3115                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3116                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3117                 break;
3118         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3119         case MSR_IA32_VMX_EXIT_CTLS:
3120                 *pdata = vmx_control_msr(
3121                         vmx->nested.nested_vmx_exit_ctls_low,
3122                         vmx->nested.nested_vmx_exit_ctls_high);
3123                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3124                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3125                 break;
3126         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3127         case MSR_IA32_VMX_ENTRY_CTLS:
3128                 *pdata = vmx_control_msr(
3129                         vmx->nested.nested_vmx_entry_ctls_low,
3130                         vmx->nested.nested_vmx_entry_ctls_high);
3131                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3132                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3133                 break;
3134         case MSR_IA32_VMX_MISC:
3135                 *pdata = vmx_control_msr(
3136                         vmx->nested.nested_vmx_misc_low,
3137                         vmx->nested.nested_vmx_misc_high);
3138                 break;
3139         case MSR_IA32_VMX_CR0_FIXED0:
3140                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3141                 break;
3142         case MSR_IA32_VMX_CR0_FIXED1:
3143                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3144                 break;
3145         case MSR_IA32_VMX_CR4_FIXED0:
3146                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3147                 break;
3148         case MSR_IA32_VMX_CR4_FIXED1:
3149                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3150                 break;
3151         case MSR_IA32_VMX_VMCS_ENUM:
3152                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3153                 break;
3154         case MSR_IA32_VMX_PROCBASED_CTLS2:
3155                 *pdata = vmx_control_msr(
3156                         vmx->nested.nested_vmx_secondary_ctls_low,
3157                         vmx->nested.nested_vmx_secondary_ctls_high);
3158                 break;
3159         case MSR_IA32_VMX_EPT_VPID_CAP:
3160                 *pdata = vmx->nested.nested_vmx_ept_caps |
3161                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3162                 break;
3163         default:
3164                 return 1;
3165         }
3166
3167         return 0;
3168 }
3169
3170 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3171                                                  uint64_t val)
3172 {
3173         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3174
3175         return !(val & ~valid_bits);
3176 }
3177
3178 /*
3179  * Reads an msr value (of 'msr_index') into 'pdata'.
3180  * Returns 0 on success, non-0 otherwise.
3181  * Assumes vcpu_load() was already called.
3182  */
3183 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3184 {
3185         struct shared_msr_entry *msr;
3186
3187         switch (msr_info->index) {
3188 #ifdef CONFIG_X86_64
3189         case MSR_FS_BASE:
3190                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3191                 break;
3192         case MSR_GS_BASE:
3193                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3194                 break;
3195         case MSR_KERNEL_GS_BASE:
3196                 vmx_load_host_state(to_vmx(vcpu));
3197                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3198                 break;
3199 #endif
3200         case MSR_EFER:
3201                 return kvm_get_msr_common(vcpu, msr_info);
3202         case MSR_IA32_TSC:
3203                 msr_info->data = guest_read_tsc(vcpu);
3204                 break;
3205         case MSR_IA32_SYSENTER_CS:
3206                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3207                 break;
3208         case MSR_IA32_SYSENTER_EIP:
3209                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3210                 break;
3211         case MSR_IA32_SYSENTER_ESP:
3212                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3213                 break;
3214         case MSR_IA32_BNDCFGS:
3215                 if (!kvm_mpx_supported() ||
3216                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3217                         return 1;
3218                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3219                 break;
3220         case MSR_IA32_MCG_EXT_CTL:
3221                 if (!msr_info->host_initiated &&
3222                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3223                       FEATURE_CONTROL_LMCE))
3224                         return 1;
3225                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3226                 break;
3227         case MSR_IA32_FEATURE_CONTROL:
3228                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3229                 break;
3230         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3231                 if (!nested_vmx_allowed(vcpu))
3232                         return 1;
3233                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3234         case MSR_IA32_XSS:
3235                 if (!vmx_xsaves_supported())
3236                         return 1;
3237                 msr_info->data = vcpu->arch.ia32_xss;
3238                 break;
3239         case MSR_TSC_AUX:
3240                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3241                         return 1;
3242                 /* Otherwise falls through */
3243         default:
3244                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3245                 if (msr) {
3246                         msr_info->data = msr->data;
3247                         break;
3248                 }
3249                 return kvm_get_msr_common(vcpu, msr_info);
3250         }
3251
3252         return 0;
3253 }
3254
3255 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3256
3257 /*
3258  * Writes msr value into into the appropriate "register".
3259  * Returns 0 on success, non-0 otherwise.
3260  * Assumes vcpu_load() was already called.
3261  */
3262 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3263 {
3264         struct vcpu_vmx *vmx = to_vmx(vcpu);
3265         struct shared_msr_entry *msr;
3266         int ret = 0;
3267         u32 msr_index = msr_info->index;
3268         u64 data = msr_info->data;
3269
3270         switch (msr_index) {
3271         case MSR_EFER:
3272                 ret = kvm_set_msr_common(vcpu, msr_info);
3273                 break;
3274 #ifdef CONFIG_X86_64
3275         case MSR_FS_BASE:
3276                 vmx_segment_cache_clear(vmx);
3277                 vmcs_writel(GUEST_FS_BASE, data);
3278                 break;
3279         case MSR_GS_BASE:
3280                 vmx_segment_cache_clear(vmx);
3281                 vmcs_writel(GUEST_GS_BASE, data);
3282                 break;
3283         case MSR_KERNEL_GS_BASE:
3284                 vmx_load_host_state(vmx);
3285                 vmx->msr_guest_kernel_gs_base = data;
3286                 break;
3287 #endif
3288         case MSR_IA32_SYSENTER_CS:
3289                 vmcs_write32(GUEST_SYSENTER_CS, data);
3290                 break;
3291         case MSR_IA32_SYSENTER_EIP:
3292                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3293                 break;
3294         case MSR_IA32_SYSENTER_ESP:
3295                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3296                 break;
3297         case MSR_IA32_BNDCFGS:
3298                 if (!kvm_mpx_supported() ||
3299                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3300                         return 1;
3301                 if (is_noncanonical_address(data & PAGE_MASK) ||
3302                     (data & MSR_IA32_BNDCFGS_RSVD))
3303                         return 1;
3304                 vmcs_write64(GUEST_BNDCFGS, data);
3305                 break;
3306         case MSR_IA32_TSC:
3307                 kvm_write_tsc(vcpu, msr_info);
3308                 break;
3309         case MSR_IA32_CR_PAT:
3310                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3311                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3312                                 return 1;
3313                         vmcs_write64(GUEST_IA32_PAT, data);
3314                         vcpu->arch.pat = data;
3315                         break;
3316                 }
3317                 ret = kvm_set_msr_common(vcpu, msr_info);
3318                 break;
3319         case MSR_IA32_TSC_ADJUST:
3320                 ret = kvm_set_msr_common(vcpu, msr_info);
3321                 break;
3322         case MSR_IA32_MCG_EXT_CTL:
3323                 if ((!msr_info->host_initiated &&
3324                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3325                        FEATURE_CONTROL_LMCE)) ||
3326                     (data & ~MCG_EXT_CTL_LMCE_EN))
3327                         return 1;
3328                 vcpu->arch.mcg_ext_ctl = data;
3329                 break;
3330         case MSR_IA32_FEATURE_CONTROL:
3331                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3332                     (to_vmx(vcpu)->msr_ia32_feature_control &
3333                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3334                         return 1;
3335                 vmx->msr_ia32_feature_control = data;
3336                 if (msr_info->host_initiated && data == 0)
3337                         vmx_leave_nested(vcpu);
3338                 break;
3339         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3340                 if (!msr_info->host_initiated)
3341                         return 1; /* they are read-only */
3342                 if (!nested_vmx_allowed(vcpu))
3343                         return 1;
3344                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3345         case MSR_IA32_XSS:
3346                 if (!vmx_xsaves_supported())
3347                         return 1;
3348                 /*
3349                  * The only supported bit as of Skylake is bit 8, but
3350                  * it is not supported on KVM.
3351                  */
3352                 if (data != 0)
3353                         return 1;
3354                 vcpu->arch.ia32_xss = data;
3355                 if (vcpu->arch.ia32_xss != host_xss)
3356                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3357                                 vcpu->arch.ia32_xss, host_xss);
3358                 else
3359                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3360                 break;
3361         case MSR_TSC_AUX:
3362                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3363                         return 1;
3364                 /* Check reserved bit, higher 32 bits should be zero */
3365                 if ((data >> 32) != 0)
3366                         return 1;
3367                 /* Otherwise falls through */
3368         default:
3369                 msr = find_msr_entry(vmx, msr_index);
3370                 if (msr) {
3371                         u64 old_msr_data = msr->data;
3372                         msr->data = data;
3373                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3374                                 preempt_disable();
3375                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3376                                                          msr->mask);
3377                                 preempt_enable();
3378                                 if (ret)
3379                                         msr->data = old_msr_data;
3380                         }
3381                         break;
3382                 }
3383                 ret = kvm_set_msr_common(vcpu, msr_info);
3384         }
3385
3386         return ret;
3387 }
3388
3389 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3390 {
3391         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3392         switch (reg) {
3393         case VCPU_REGS_RSP:
3394                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3395                 break;
3396         case VCPU_REGS_RIP:
3397                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3398                 break;
3399         case VCPU_EXREG_PDPTR:
3400                 if (enable_ept)
3401                         ept_save_pdptrs(vcpu);
3402                 break;
3403         default:
3404                 break;
3405         }
3406 }
3407
3408 static __init int cpu_has_kvm_support(void)
3409 {
3410         return cpu_has_vmx();
3411 }
3412
3413 static __init int vmx_disabled_by_bios(void)
3414 {
3415         u64 msr;
3416
3417         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3418         if (msr & FEATURE_CONTROL_LOCKED) {
3419                 /* launched w/ TXT and VMX disabled */
3420                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3421                         && tboot_enabled())
3422                         return 1;
3423                 /* launched w/o TXT and VMX only enabled w/ TXT */
3424                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3425                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3426                         && !tboot_enabled()) {
3427                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3428                                 "activate TXT before enabling KVM\n");
3429                         return 1;
3430                 }
3431                 /* launched w/o TXT and VMX disabled */
3432                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3433                         && !tboot_enabled())
3434                         return 1;
3435         }
3436
3437         return 0;
3438 }
3439
3440 static void kvm_cpu_vmxon(u64 addr)
3441 {
3442         cr4_set_bits(X86_CR4_VMXE);
3443         intel_pt_handle_vmx(1);
3444
3445         asm volatile (ASM_VMX_VMXON_RAX
3446                         : : "a"(&addr), "m"(addr)
3447                         : "memory", "cc");
3448 }
3449
3450 static int hardware_enable(void)
3451 {
3452         int cpu = raw_smp_processor_id();
3453         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3454         u64 old, test_bits;
3455
3456         if (cr4_read_shadow() & X86_CR4_VMXE)
3457                 return -EBUSY;
3458
3459         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3460         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3461         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3462
3463         /*
3464          * Now we can enable the vmclear operation in kdump
3465          * since the loaded_vmcss_on_cpu list on this cpu
3466          * has been initialized.
3467          *
3468          * Though the cpu is not in VMX operation now, there
3469          * is no problem to enable the vmclear operation
3470          * for the loaded_vmcss_on_cpu list is empty!
3471          */
3472         crash_enable_local_vmclear(cpu);
3473
3474         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3475
3476         test_bits = FEATURE_CONTROL_LOCKED;
3477         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3478         if (tboot_enabled())
3479                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3480
3481         if ((old & test_bits) != test_bits) {
3482                 /* enable and lock */
3483                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3484         }
3485         kvm_cpu_vmxon(phys_addr);
3486         ept_sync_global();
3487
3488         return 0;
3489 }
3490
3491 static void vmclear_local_loaded_vmcss(void)
3492 {
3493         int cpu = raw_smp_processor_id();
3494         struct loaded_vmcs *v, *n;
3495
3496         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3497                                  loaded_vmcss_on_cpu_link)
3498                 __loaded_vmcs_clear(v);
3499 }
3500
3501
3502 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3503  * tricks.
3504  */
3505 static void kvm_cpu_vmxoff(void)
3506 {
3507         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3508
3509         intel_pt_handle_vmx(0);
3510         cr4_clear_bits(X86_CR4_VMXE);
3511 }
3512
3513 static void hardware_disable(void)
3514 {
3515         vmclear_local_loaded_vmcss();
3516         kvm_cpu_vmxoff();
3517 }
3518
3519 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3520                                       u32 msr, u32 *result)
3521 {
3522         u32 vmx_msr_low, vmx_msr_high;
3523         u32 ctl = ctl_min | ctl_opt;
3524
3525         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3526
3527         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3528         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3529
3530         /* Ensure minimum (required) set of control bits are supported. */
3531         if (ctl_min & ~ctl)
3532                 return -EIO;
3533
3534         *result = ctl;
3535         return 0;
3536 }
3537
3538 static __init bool allow_1_setting(u32 msr, u32 ctl)
3539 {
3540         u32 vmx_msr_low, vmx_msr_high;
3541
3542         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3543         return vmx_msr_high & ctl;
3544 }
3545
3546 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3547 {
3548         u32 vmx_msr_low, vmx_msr_high;
3549         u32 min, opt, min2, opt2;
3550         u32 _pin_based_exec_control = 0;
3551         u32 _cpu_based_exec_control = 0;
3552         u32 _cpu_based_2nd_exec_control = 0;
3553         u32 _vmexit_control = 0;
3554         u32 _vmentry_control = 0;
3555
3556         min = CPU_BASED_HLT_EXITING |
3557 #ifdef CONFIG_X86_64
3558               CPU_BASED_CR8_LOAD_EXITING |
3559               CPU_BASED_CR8_STORE_EXITING |
3560 #endif
3561               CPU_BASED_CR3_LOAD_EXITING |
3562               CPU_BASED_CR3_STORE_EXITING |
3563               CPU_BASED_USE_IO_BITMAPS |
3564               CPU_BASED_MOV_DR_EXITING |
3565               CPU_BASED_USE_TSC_OFFSETING |
3566               CPU_BASED_INVLPG_EXITING |
3567               CPU_BASED_RDPMC_EXITING;
3568
3569         if (!kvm_mwait_in_guest())
3570                 min |= CPU_BASED_MWAIT_EXITING |
3571                         CPU_BASED_MONITOR_EXITING;
3572
3573         opt = CPU_BASED_TPR_SHADOW |
3574               CPU_BASED_USE_MSR_BITMAPS |
3575               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3576         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3577                                 &_cpu_based_exec_control) < 0)
3578                 return -EIO;
3579 #ifdef CONFIG_X86_64
3580         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3581                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3582                                            ~CPU_BASED_CR8_STORE_EXITING;
3583 #endif
3584         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3585                 min2 = 0;
3586                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3587                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3588                         SECONDARY_EXEC_WBINVD_EXITING |
3589                         SECONDARY_EXEC_ENABLE_VPID |
3590                         SECONDARY_EXEC_ENABLE_EPT |
3591                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3592                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3593                         SECONDARY_EXEC_RDTSCP |
3594                         SECONDARY_EXEC_ENABLE_INVPCID |
3595                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3596                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3597                         SECONDARY_EXEC_SHADOW_VMCS |
3598                         SECONDARY_EXEC_XSAVES |
3599                         SECONDARY_EXEC_ENABLE_PML |
3600                         SECONDARY_EXEC_TSC_SCALING;
3601                 if (adjust_vmx_controls(min2, opt2,
3602                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3603                                         &_cpu_based_2nd_exec_control) < 0)
3604                         return -EIO;
3605         }
3606 #ifndef CONFIG_X86_64
3607         if (!(_cpu_based_2nd_exec_control &
3608                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3609                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3610 #endif
3611
3612         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3613                 _cpu_based_2nd_exec_control &= ~(
3614                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3615                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3616                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3617
3618         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3619                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3620                    enabled */
3621                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3622                                              CPU_BASED_CR3_STORE_EXITING |
3623                                              CPU_BASED_INVLPG_EXITING);
3624                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3625                       vmx_capability.ept, vmx_capability.vpid);
3626         }
3627
3628         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3629 #ifdef CONFIG_X86_64
3630         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3631 #endif
3632         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3633                 VM_EXIT_CLEAR_BNDCFGS;
3634         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3635                                 &_vmexit_control) < 0)
3636                 return -EIO;
3637
3638         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3639                 PIN_BASED_VIRTUAL_NMIS;
3640         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3641         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3642                                 &_pin_based_exec_control) < 0)
3643                 return -EIO;
3644
3645         if (cpu_has_broken_vmx_preemption_timer())
3646                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3647         if (!(_cpu_based_2nd_exec_control &
3648                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3649                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3650
3651         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3652         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3653         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3654                                 &_vmentry_control) < 0)
3655                 return -EIO;
3656
3657         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3658
3659         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3660         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3661                 return -EIO;
3662
3663 #ifdef CONFIG_X86_64
3664         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3665         if (vmx_msr_high & (1u<<16))
3666                 return -EIO;
3667 #endif
3668
3669         /* Require Write-Back (WB) memory type for VMCS accesses. */
3670         if (((vmx_msr_high >> 18) & 15) != 6)
3671                 return -EIO;
3672
3673         vmcs_conf->size = vmx_msr_high & 0x1fff;
3674         vmcs_conf->order = get_order(vmcs_conf->size);
3675         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3676         vmcs_conf->revision_id = vmx_msr_low;
3677
3678         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3679         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3680         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3681         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3682         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3683
3684         cpu_has_load_ia32_efer =
3685                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3686                                 VM_ENTRY_LOAD_IA32_EFER)
3687                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3688                                    VM_EXIT_LOAD_IA32_EFER);
3689
3690         cpu_has_load_perf_global_ctrl =
3691                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3692                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3693                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3694                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3695
3696         /*
3697          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3698          * but due to errata below it can't be used. Workaround is to use
3699          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3700          *
3701          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3702          *
3703          * AAK155             (model 26)
3704          * AAP115             (model 30)
3705          * AAT100             (model 37)
3706          * BC86,AAY89,BD102   (model 44)
3707          * BA97               (model 46)
3708          *
3709          */
3710         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3711                 switch (boot_cpu_data.x86_model) {
3712                 case 26:
3713                 case 30:
3714                 case 37:
3715                 case 44:
3716                 case 46:
3717                         cpu_has_load_perf_global_ctrl = false;
3718                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3719                                         "does not work properly. Using workaround\n");
3720                         break;
3721                 default:
3722                         break;
3723                 }
3724         }
3725
3726         if (boot_cpu_has(X86_FEATURE_XSAVES))
3727                 rdmsrl(MSR_IA32_XSS, host_xss);
3728
3729         return 0;
3730 }
3731
3732 static struct vmcs *alloc_vmcs_cpu(int cpu)
3733 {
3734         int node = cpu_to_node(cpu);
3735         struct page *pages;
3736         struct vmcs *vmcs;
3737
3738         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3739         if (!pages)
3740                 return NULL;
3741         vmcs = page_address(pages);
3742         memset(vmcs, 0, vmcs_config.size);
3743         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3744         return vmcs;
3745 }
3746
3747 static struct vmcs *alloc_vmcs(void)
3748 {
3749         return alloc_vmcs_cpu(raw_smp_processor_id());
3750 }
3751
3752 static void free_vmcs(struct vmcs *vmcs)
3753 {
3754         free_pages((unsigned long)vmcs, vmcs_config.order);
3755 }
3756
3757 /*
3758  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3759  */
3760 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3761 {
3762         if (!loaded_vmcs->vmcs)
3763                 return;
3764         loaded_vmcs_clear(loaded_vmcs);
3765         free_vmcs(loaded_vmcs->vmcs);
3766         loaded_vmcs->vmcs = NULL;
3767         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3768 }
3769
3770 static void free_kvm_area(void)
3771 {
3772         int cpu;
3773
3774         for_each_possible_cpu(cpu) {
3775                 free_vmcs(per_cpu(vmxarea, cpu));
3776                 per_cpu(vmxarea, cpu) = NULL;
3777         }
3778 }
3779
3780 enum vmcs_field_type {
3781         VMCS_FIELD_TYPE_U16 = 0,
3782         VMCS_FIELD_TYPE_U64 = 1,
3783         VMCS_FIELD_TYPE_U32 = 2,
3784         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3785 };
3786
3787 static inline int vmcs_field_type(unsigned long field)
3788 {
3789         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3790                 return VMCS_FIELD_TYPE_U32;
3791         return (field >> 13) & 0x3 ;
3792 }
3793
3794 static inline int vmcs_field_readonly(unsigned long field)
3795 {
3796         return (((field >> 10) & 0x3) == 1);
3797 }
3798
3799 static void init_vmcs_shadow_fields(void)
3800 {
3801         int i, j;
3802
3803         /* No checks for read only fields yet */
3804
3805         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3806                 switch (shadow_read_write_fields[i]) {
3807                 case GUEST_BNDCFGS:
3808                         if (!kvm_mpx_supported())
3809                                 continue;
3810                         break;
3811                 default:
3812                         break;
3813                 }
3814
3815                 if (j < i)
3816                         shadow_read_write_fields[j] =
3817                                 shadow_read_write_fields[i];
3818                 j++;
3819         }
3820         max_shadow_read_write_fields = j;
3821
3822         /* shadowed fields guest access without vmexit */
3823         for (i = 0; i < max_shadow_read_write_fields; i++) {
3824                 unsigned long field = shadow_read_write_fields[i];
3825
3826                 clear_bit(field, vmx_vmwrite_bitmap);
3827                 clear_bit(field, vmx_vmread_bitmap);
3828                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3829                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3830                         clear_bit(field + 1, vmx_vmread_bitmap);
3831                 }
3832         }
3833         for (i = 0; i < max_shadow_read_only_fields; i++) {
3834                 unsigned long field = shadow_read_only_fields[i];
3835
3836                 clear_bit(field, vmx_vmread_bitmap);
3837                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3838                         clear_bit(field + 1, vmx_vmread_bitmap);
3839         }
3840 }
3841
3842 static __init int alloc_kvm_area(void)
3843 {
3844         int cpu;
3845
3846         for_each_possible_cpu(cpu) {
3847                 struct vmcs *vmcs;
3848
3849                 vmcs = alloc_vmcs_cpu(cpu);
3850                 if (!vmcs) {
3851                         free_kvm_area();
3852                         return -ENOMEM;
3853                 }
3854
3855                 per_cpu(vmxarea, cpu) = vmcs;
3856         }
3857         return 0;
3858 }
3859
3860 static bool emulation_required(struct kvm_vcpu *vcpu)
3861 {
3862         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3863 }
3864
3865 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3866                 struct kvm_segment *save)
3867 {
3868         if (!emulate_invalid_guest_state) {
3869                 /*
3870                  * CS and SS RPL should be equal during guest entry according
3871                  * to VMX spec, but in reality it is not always so. Since vcpu
3872                  * is in the middle of the transition from real mode to
3873                  * protected mode it is safe to assume that RPL 0 is a good
3874                  * default value.
3875                  */
3876                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3877                         save->selector &= ~SEGMENT_RPL_MASK;
3878                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3879                 save->s = 1;
3880         }
3881         vmx_set_segment(vcpu, save, seg);
3882 }
3883
3884 static void enter_pmode(struct kvm_vcpu *vcpu)
3885 {
3886         unsigned long flags;
3887         struct vcpu_vmx *vmx = to_vmx(vcpu);
3888
3889         /*
3890          * Update real mode segment cache. It may be not up-to-date if sement
3891          * register was written while vcpu was in a guest mode.
3892          */
3893         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3894         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3895         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3896         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3897         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3898         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3899
3900         vmx->rmode.vm86_active = 0;
3901
3902         vmx_segment_cache_clear(vmx);
3903
3904         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3905
3906         flags = vmcs_readl(GUEST_RFLAGS);
3907         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3908         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3909         vmcs_writel(GUEST_RFLAGS, flags);
3910
3911         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3912                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3913
3914         update_exception_bitmap(vcpu);
3915
3916         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3917         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3918         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3919         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3920         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3921         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3922 }
3923
3924 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3925 {
3926         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3927         struct kvm_segment var = *save;
3928
3929         var.dpl = 0x3;
3930         if (seg == VCPU_SREG_CS)
3931                 var.type = 0x3;
3932
3933         if (!emulate_invalid_guest_state) {
3934                 var.selector = var.base >> 4;
3935                 var.base = var.base & 0xffff0;
3936                 var.limit = 0xffff;
3937                 var.g = 0;
3938                 var.db = 0;
3939                 var.present = 1;
3940                 var.s = 1;
3941                 var.l = 0;
3942                 var.unusable = 0;
3943                 var.type = 0x3;
3944                 var.avl = 0;
3945                 if (save->base & 0xf)
3946                         printk_once(KERN_WARNING "kvm: segment base is not "
3947                                         "paragraph aligned when entering "
3948                                         "protected mode (seg=%d)", seg);
3949         }
3950
3951         vmcs_write16(sf->selector, var.selector);
3952         vmcs_writel(sf->base, var.base);
3953         vmcs_write32(sf->limit, var.limit);
3954         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3955 }
3956
3957 static void enter_rmode(struct kvm_vcpu *vcpu)
3958 {
3959         unsigned long flags;
3960         struct vcpu_vmx *vmx = to_vmx(vcpu);
3961
3962         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3963         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3964         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3965         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3966         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3967         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3968         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3969
3970         vmx->rmode.vm86_active = 1;
3971
3972         /*
3973          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3974          * vcpu. Warn the user that an update is overdue.
3975          */
3976         if (!vcpu->kvm->arch.tss_addr)
3977                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3978                              "called before entering vcpu\n");
3979
3980         vmx_segment_cache_clear(vmx);
3981
3982         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3983         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3984         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3985
3986         flags = vmcs_readl(GUEST_RFLAGS);
3987         vmx->rmode.save_rflags = flags;
3988
3989         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3990
3991         vmcs_writel(GUEST_RFLAGS, flags);
3992         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3993         update_exception_bitmap(vcpu);
3994
3995         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3996         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3997         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3998         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3999         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4000         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4001
4002         kvm_mmu_reset_context(vcpu);
4003 }
4004
4005 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4006 {
4007         struct vcpu_vmx *vmx = to_vmx(vcpu);
4008         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4009
4010         if (!msr)
4011                 return;
4012
4013         /*
4014          * Force kernel_gs_base reloading before EFER changes, as control
4015          * of this msr depends on is_long_mode().
4016          */
4017         vmx_load_host_state(to_vmx(vcpu));
4018         vcpu->arch.efer = efer;
4019         if (efer & EFER_LMA) {
4020                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4021                 msr->data = efer;
4022         } else {
4023                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4024
4025                 msr->data = efer & ~EFER_LME;
4026         }
4027         setup_msrs(vmx);
4028 }
4029
4030 #ifdef CONFIG_X86_64
4031
4032 static void enter_lmode(struct kvm_vcpu *vcpu)
4033 {
4034         u32 guest_tr_ar;
4035
4036         vmx_segment_cache_clear(to_vmx(vcpu));
4037
4038         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4039         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4040                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4041                                      __func__);
4042                 vmcs_write32(GUEST_TR_AR_BYTES,
4043                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4044                              | VMX_AR_TYPE_BUSY_64_TSS);
4045         }
4046         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4047 }
4048
4049 static void exit_lmode(struct kvm_vcpu *vcpu)
4050 {
4051         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4052         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4053 }
4054
4055 #endif
4056
4057 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4058 {
4059         if (enable_ept) {
4060                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4061                         return;
4062                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4063         } else {
4064                 vpid_sync_context(vpid);
4065         }
4066 }
4067
4068 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4069 {
4070         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4071 }
4072
4073 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4074 {
4075         if (enable_ept)
4076                 vmx_flush_tlb(vcpu);
4077 }
4078
4079 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4080 {
4081         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4082
4083         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4084         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4085 }
4086
4087 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4088 {
4089         if (enable_ept && is_paging(vcpu))
4090                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4091         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4092 }
4093
4094 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4095 {
4096         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4097
4098         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4099         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4100 }
4101
4102 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4103 {
4104         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4105
4106         if (!test_bit(VCPU_EXREG_PDPTR,
4107                       (unsigned long *)&vcpu->arch.regs_dirty))
4108                 return;
4109
4110         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4111                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4112                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4113                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4114                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4115         }
4116 }
4117
4118 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4119 {
4120         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4121
4122         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4123                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4124                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4125                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4126                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4127         }
4128
4129         __set_bit(VCPU_EXREG_PDPTR,
4130                   (unsigned long *)&vcpu->arch.regs_avail);
4131         __set_bit(VCPU_EXREG_PDPTR,
4132                   (unsigned long *)&vcpu->arch.regs_dirty);
4133 }
4134
4135 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4136 {
4137         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4138         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4139         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4140
4141         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4142                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4143             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4144                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4145
4146         return fixed_bits_valid(val, fixed0, fixed1);
4147 }
4148
4149 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4150 {
4151         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4152         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4153
4154         return fixed_bits_valid(val, fixed0, fixed1);
4155 }
4156
4157 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4158 {
4159         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4160         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4161
4162         return fixed_bits_valid(val, fixed0, fixed1);
4163 }
4164
4165 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4166 #define nested_guest_cr4_valid  nested_cr4_valid
4167 #define nested_host_cr4_valid   nested_cr4_valid
4168
4169 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4170
4171 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4172                                         unsigned long cr0,
4173                                         struct kvm_vcpu *vcpu)
4174 {
4175         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4176                 vmx_decache_cr3(vcpu);
4177         if (!(cr0 & X86_CR0_PG)) {
4178                 /* From paging/starting to nonpaging */
4179                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4180                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4181                              (CPU_BASED_CR3_LOAD_EXITING |
4182                               CPU_BASED_CR3_STORE_EXITING));
4183                 vcpu->arch.cr0 = cr0;
4184                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4185         } else if (!is_paging(vcpu)) {
4186                 /* From nonpaging to paging */
4187                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4188                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4189                              ~(CPU_BASED_CR3_LOAD_EXITING |
4190                                CPU_BASED_CR3_STORE_EXITING));
4191                 vcpu->arch.cr0 = cr0;
4192                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4193         }
4194
4195         if (!(cr0 & X86_CR0_WP))
4196                 *hw_cr0 &= ~X86_CR0_WP;
4197 }
4198
4199 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4200 {
4201         struct vcpu_vmx *vmx = to_vmx(vcpu);
4202         unsigned long hw_cr0;
4203
4204         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4205         if (enable_unrestricted_guest)
4206                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4207         else {
4208                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4209
4210                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4211                         enter_pmode(vcpu);
4212
4213                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4214                         enter_rmode(vcpu);
4215         }
4216
4217 #ifdef CONFIG_X86_64
4218         if (vcpu->arch.efer & EFER_LME) {
4219                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4220                         enter_lmode(vcpu);
4221                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4222                         exit_lmode(vcpu);
4223         }
4224 #endif
4225
4226         if (enable_ept)
4227                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4228
4229         vmcs_writel(CR0_READ_SHADOW, cr0);
4230         vmcs_writel(GUEST_CR0, hw_cr0);
4231         vcpu->arch.cr0 = cr0;
4232
4233         /* depends on vcpu->arch.cr0 to be set to a new value */
4234         vmx->emulation_required = emulation_required(vcpu);
4235 }
4236
4237 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4238 {
4239         u64 eptp;
4240
4241         /* TODO write the value reading from MSR */
4242         eptp = VMX_EPT_DEFAULT_MT |
4243                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4244         if (enable_ept_ad_bits &&
4245             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4246                 eptp |= VMX_EPT_AD_ENABLE_BIT;
4247         eptp |= (root_hpa & PAGE_MASK);
4248
4249         return eptp;
4250 }
4251
4252 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4253 {
4254         unsigned long guest_cr3;
4255         u64 eptp;
4256
4257         guest_cr3 = cr3;
4258         if (enable_ept) {
4259                 eptp = construct_eptp(vcpu, cr3);
4260                 vmcs_write64(EPT_POINTER, eptp);
4261                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4262                         guest_cr3 = kvm_read_cr3(vcpu);
4263                 else
4264                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4265                 ept_load_pdptrs(vcpu);
4266         }
4267
4268         vmx_flush_tlb(vcpu);
4269         vmcs_writel(GUEST_CR3, guest_cr3);
4270 }
4271
4272 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4273 {
4274         /*
4275          * Pass through host's Machine Check Enable value to hw_cr4, which
4276          * is in force while we are in guest mode.  Do not let guests control
4277          * this bit, even if host CR4.MCE == 0.
4278          */
4279         unsigned long hw_cr4 =
4280                 (cr4_read_shadow() & X86_CR4_MCE) |
4281                 (cr4 & ~X86_CR4_MCE) |
4282                 (to_vmx(vcpu)->rmode.vm86_active ?
4283                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4284
4285         if (cr4 & X86_CR4_VMXE) {
4286                 /*
4287                  * To use VMXON (and later other VMX instructions), a guest
4288                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4289                  * So basically the check on whether to allow nested VMX
4290                  * is here.
4291                  */
4292                 if (!nested_vmx_allowed(vcpu))
4293                         return 1;
4294         }
4295
4296         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4297                 return 1;
4298
4299         vcpu->arch.cr4 = cr4;
4300         if (enable_ept) {
4301                 if (!is_paging(vcpu)) {
4302                         hw_cr4 &= ~X86_CR4_PAE;
4303                         hw_cr4 |= X86_CR4_PSE;
4304                 } else if (!(cr4 & X86_CR4_PAE)) {
4305                         hw_cr4 &= ~X86_CR4_PAE;
4306                 }
4307         }
4308
4309         if (!enable_unrestricted_guest && !is_paging(vcpu))
4310                 /*
4311                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4312                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4313                  * to be manually disabled when guest switches to non-paging
4314                  * mode.
4315                  *
4316                  * If !enable_unrestricted_guest, the CPU is always running
4317                  * with CR0.PG=1 and CR4 needs to be modified.
4318                  * If enable_unrestricted_guest, the CPU automatically
4319                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4320                  */
4321                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4322
4323         vmcs_writel(CR4_READ_SHADOW, cr4);
4324         vmcs_writel(GUEST_CR4, hw_cr4);
4325         return 0;
4326 }
4327
4328 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4329                             struct kvm_segment *var, int seg)
4330 {
4331         struct vcpu_vmx *vmx = to_vmx(vcpu);
4332         u32 ar;
4333
4334         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4335                 *var = vmx->rmode.segs[seg];
4336                 if (seg == VCPU_SREG_TR
4337                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4338                         return;
4339                 var->base = vmx_read_guest_seg_base(vmx, seg);
4340                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4341                 return;
4342         }
4343         var->base = vmx_read_guest_seg_base(vmx, seg);
4344         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4345         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4346         ar = vmx_read_guest_seg_ar(vmx, seg);
4347         var->unusable = (ar >> 16) & 1;
4348         var->type = ar & 15;
4349         var->s = (ar >> 4) & 1;
4350         var->dpl = (ar >> 5) & 3;
4351         /*
4352          * Some userspaces do not preserve unusable property. Since usable
4353          * segment has to be present according to VMX spec we can use present
4354          * property to amend userspace bug by making unusable segment always
4355          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4356          * segment as unusable.
4357          */
4358         var->present = !var->unusable;
4359         var->avl = (ar >> 12) & 1;
4360         var->l = (ar >> 13) & 1;
4361         var->db = (ar >> 14) & 1;
4362         var->g = (ar >> 15) & 1;
4363 }
4364
4365 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4366 {
4367         struct kvm_segment s;
4368
4369         if (to_vmx(vcpu)->rmode.vm86_active) {
4370                 vmx_get_segment(vcpu, &s, seg);
4371                 return s.base;
4372         }
4373         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4374 }
4375
4376 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4377 {
4378         struct vcpu_vmx *vmx = to_vmx(vcpu);
4379
4380         if (unlikely(vmx->rmode.vm86_active))
4381                 return 0;
4382         else {
4383                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4384                 return VMX_AR_DPL(ar);
4385         }
4386 }
4387
4388 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4389 {
4390         u32 ar;
4391
4392         if (var->unusable || !var->present)
4393                 ar = 1 << 16;
4394         else {
4395                 ar = var->type & 15;
4396                 ar |= (var->s & 1) << 4;
4397                 ar |= (var->dpl & 3) << 5;
4398                 ar |= (var->present & 1) << 7;
4399                 ar |= (var->avl & 1) << 12;
4400                 ar |= (var->l & 1) << 13;
4401                 ar |= (var->db & 1) << 14;
4402                 ar |= (var->g & 1) << 15;
4403         }
4404
4405         return ar;
4406 }
4407
4408 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4409                             struct kvm_segment *var, int seg)
4410 {
4411         struct vcpu_vmx *vmx = to_vmx(vcpu);
4412         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4413
4414         vmx_segment_cache_clear(vmx);
4415
4416         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4417                 vmx->rmode.segs[seg] = *var;
4418                 if (seg == VCPU_SREG_TR)
4419                         vmcs_write16(sf->selector, var->selector);
4420                 else if (var->s)
4421                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4422                 goto out;
4423         }
4424
4425         vmcs_writel(sf->base, var->base);
4426         vmcs_write32(sf->limit, var->limit);
4427         vmcs_write16(sf->selector, var->selector);
4428
4429         /*
4430          *   Fix the "Accessed" bit in AR field of segment registers for older
4431          * qemu binaries.
4432          *   IA32 arch specifies that at the time of processor reset the
4433          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4434          * is setting it to 0 in the userland code. This causes invalid guest
4435          * state vmexit when "unrestricted guest" mode is turned on.
4436          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4437          * tree. Newer qemu binaries with that qemu fix would not need this
4438          * kvm hack.
4439          */
4440         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4441                 var->type |= 0x1; /* Accessed */
4442
4443         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4444
4445 out:
4446         vmx->emulation_required = emulation_required(vcpu);
4447 }
4448
4449 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4450 {
4451         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4452
4453         *db = (ar >> 14) & 1;
4454         *l = (ar >> 13) & 1;
4455 }
4456
4457 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4458 {
4459         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4460         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4461 }
4462
4463 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4464 {
4465         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4466         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4467 }
4468
4469 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4470 {
4471         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4472         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4473 }
4474
4475 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4476 {
4477         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4478         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4479 }
4480
4481 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4482 {
4483         struct kvm_segment var;
4484         u32 ar;
4485
4486         vmx_get_segment(vcpu, &var, seg);
4487         var.dpl = 0x3;
4488         if (seg == VCPU_SREG_CS)
4489                 var.type = 0x3;
4490         ar = vmx_segment_access_rights(&var);
4491
4492         if (var.base != (var.selector << 4))
4493                 return false;
4494         if (var.limit != 0xffff)
4495                 return false;
4496         if (ar != 0xf3)
4497                 return false;
4498
4499         return true;
4500 }
4501
4502 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4503 {
4504         struct kvm_segment cs;
4505         unsigned int cs_rpl;
4506
4507         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4508         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4509
4510         if (cs.unusable)
4511                 return false;
4512         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4513                 return false;
4514         if (!cs.s)
4515                 return false;
4516         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4517                 if (cs.dpl > cs_rpl)
4518                         return false;
4519         } else {
4520                 if (cs.dpl != cs_rpl)
4521                         return false;
4522         }
4523         if (!cs.present)
4524                 return false;
4525
4526         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4527         return true;
4528 }
4529
4530 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4531 {
4532         struct kvm_segment ss;
4533         unsigned int ss_rpl;
4534
4535         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4536         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4537
4538         if (ss.unusable)
4539                 return true;
4540         if (ss.type != 3 && ss.type != 7)
4541                 return false;
4542         if (!ss.s)
4543                 return false;
4544         if (ss.dpl != ss_rpl) /* DPL != RPL */
4545                 return false;
4546         if (!ss.present)
4547                 return false;
4548
4549         return true;
4550 }
4551
4552 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4553 {
4554         struct kvm_segment var;
4555         unsigned int rpl;
4556
4557         vmx_get_segment(vcpu, &var, seg);
4558         rpl = var.selector & SEGMENT_RPL_MASK;
4559
4560         if (var.unusable)
4561                 return true;
4562         if (!var.s)
4563                 return false;
4564         if (!var.present)
4565                 return false;
4566         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4567                 if (var.dpl < rpl) /* DPL < RPL */
4568                         return false;
4569         }
4570
4571         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4572          * rights flags
4573          */
4574         return true;
4575 }
4576
4577 static bool tr_valid(struct kvm_vcpu *vcpu)
4578 {
4579         struct kvm_segment tr;
4580
4581         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4582
4583         if (tr.unusable)
4584                 return false;
4585         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4586                 return false;
4587         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4588                 return false;
4589         if (!tr.present)
4590                 return false;
4591
4592         return true;
4593 }
4594
4595 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4596 {
4597         struct kvm_segment ldtr;
4598
4599         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4600
4601         if (ldtr.unusable)
4602                 return true;
4603         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4604                 return false;
4605         if (ldtr.type != 2)
4606                 return false;
4607         if (!ldtr.present)
4608                 return false;
4609
4610         return true;
4611 }
4612
4613 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4614 {
4615         struct kvm_segment cs, ss;
4616
4617         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4618         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4619
4620         return ((cs.selector & SEGMENT_RPL_MASK) ==
4621                  (ss.selector & SEGMENT_RPL_MASK));
4622 }
4623
4624 /*
4625  * Check if guest state is valid. Returns true if valid, false if
4626  * not.
4627  * We assume that registers are always usable
4628  */
4629 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4630 {
4631         if (enable_unrestricted_guest)
4632                 return true;
4633
4634         /* real mode guest state checks */
4635         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4636                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4637                         return false;
4638                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4639                         return false;
4640                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4641                         return false;
4642                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4643                         return false;
4644                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4645                         return false;
4646                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4647                         return false;
4648         } else {
4649         /* protected mode guest state checks */
4650                 if (!cs_ss_rpl_check(vcpu))
4651                         return false;
4652                 if (!code_segment_valid(vcpu))
4653                         return false;
4654                 if (!stack_segment_valid(vcpu))
4655                         return false;
4656                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4657                         return false;
4658                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4659                         return false;
4660                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4661                         return false;
4662                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4663                         return false;
4664                 if (!tr_valid(vcpu))
4665                         return false;
4666                 if (!ldtr_valid(vcpu))
4667                         return false;
4668         }
4669         /* TODO:
4670          * - Add checks on RIP
4671          * - Add checks on RFLAGS
4672          */
4673
4674         return true;
4675 }
4676
4677 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4678 {
4679         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4680 }
4681
4682 static int init_rmode_tss(struct kvm *kvm)
4683 {
4684         gfn_t fn;
4685         u16 data = 0;
4686         int idx, r;
4687
4688         idx = srcu_read_lock(&kvm->srcu);
4689         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4690         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4691         if (r < 0)
4692                 goto out;
4693         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4694         r = kvm_write_guest_page(kvm, fn++, &data,
4695                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4696         if (r < 0)
4697                 goto out;
4698         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4699         if (r < 0)
4700                 goto out;
4701         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4702         if (r < 0)
4703                 goto out;
4704         data = ~0;
4705         r = kvm_write_guest_page(kvm, fn, &data,
4706                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4707                                  sizeof(u8));
4708 out:
4709         srcu_read_unlock(&kvm->srcu, idx);
4710         return r;
4711 }
4712
4713 static int init_rmode_identity_map(struct kvm *kvm)
4714 {
4715         int i, idx, r = 0;
4716         kvm_pfn_t identity_map_pfn;
4717         u32 tmp;
4718
4719         if (!enable_ept)
4720                 return 0;
4721
4722         /* Protect kvm->arch.ept_identity_pagetable_done. */
4723         mutex_lock(&kvm->slots_lock);
4724
4725         if (likely(kvm->arch.ept_identity_pagetable_done))
4726                 goto out2;
4727
4728         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4729
4730         r = alloc_identity_pagetable(kvm);
4731         if (r < 0)
4732                 goto out2;
4733
4734         idx = srcu_read_lock(&kvm->srcu);
4735         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4736         if (r < 0)
4737                 goto out;
4738         /* Set up identity-mapping pagetable for EPT in real mode */
4739         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4740                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4741                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4742                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4743                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4744                 if (r < 0)
4745                         goto out;
4746         }
4747         kvm->arch.ept_identity_pagetable_done = true;
4748
4749 out:
4750         srcu_read_unlock(&kvm->srcu, idx);
4751
4752 out2:
4753         mutex_unlock(&kvm->slots_lock);
4754         return r;
4755 }
4756
4757 static void seg_setup(int seg)
4758 {
4759         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4760         unsigned int ar;
4761
4762         vmcs_write16(sf->selector, 0);
4763         vmcs_writel(sf->base, 0);
4764         vmcs_write32(sf->limit, 0xffff);
4765         ar = 0x93;
4766         if (seg == VCPU_SREG_CS)
4767                 ar |= 0x08; /* code segment */
4768
4769         vmcs_write32(sf->ar_bytes, ar);
4770 }
4771
4772 static int alloc_apic_access_page(struct kvm *kvm)
4773 {
4774         struct page *page;
4775         int r = 0;
4776
4777         mutex_lock(&kvm->slots_lock);
4778         if (kvm->arch.apic_access_page_done)
4779                 goto out;
4780         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4781                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4782         if (r)
4783                 goto out;
4784
4785         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4786         if (is_error_page(page)) {
4787                 r = -EFAULT;
4788                 goto out;
4789         }
4790
4791         /*
4792          * Do not pin the page in memory, so that memory hot-unplug
4793          * is able to migrate it.
4794          */
4795         put_page(page);
4796         kvm->arch.apic_access_page_done = true;
4797 out:
4798         mutex_unlock(&kvm->slots_lock);
4799         return r;
4800 }
4801
4802 static int alloc_identity_pagetable(struct kvm *kvm)
4803 {
4804         /* Called with kvm->slots_lock held. */
4805
4806         int r = 0;
4807
4808         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4809
4810         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4811                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4812
4813         return r;
4814 }
4815
4816 static int allocate_vpid(void)
4817 {
4818         int vpid;
4819
4820         if (!enable_vpid)
4821                 return 0;
4822         spin_lock(&vmx_vpid_lock);
4823         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4824         if (vpid < VMX_NR_VPIDS)
4825                 __set_bit(vpid, vmx_vpid_bitmap);
4826         else
4827                 vpid = 0;
4828         spin_unlock(&vmx_vpid_lock);
4829         return vpid;
4830 }
4831
4832 static void free_vpid(int vpid)
4833 {
4834         if (!enable_vpid || vpid == 0)
4835                 return;
4836         spin_lock(&vmx_vpid_lock);
4837         __clear_bit(vpid, vmx_vpid_bitmap);
4838         spin_unlock(&vmx_vpid_lock);
4839 }
4840
4841 #define MSR_TYPE_R      1
4842 #define MSR_TYPE_W      2
4843 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4844                                                 u32 msr, int type)
4845 {
4846         int f = sizeof(unsigned long);
4847
4848         if (!cpu_has_vmx_msr_bitmap())
4849                 return;
4850
4851         /*
4852          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4853          * have the write-low and read-high bitmap offsets the wrong way round.
4854          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4855          */
4856         if (msr <= 0x1fff) {
4857                 if (type & MSR_TYPE_R)
4858                         /* read-low */
4859                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4860
4861                 if (type & MSR_TYPE_W)
4862                         /* write-low */
4863                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4864
4865         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4866                 msr &= 0x1fff;
4867                 if (type & MSR_TYPE_R)
4868                         /* read-high */
4869                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4870
4871                 if (type & MSR_TYPE_W)
4872                         /* write-high */
4873                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4874
4875         }
4876 }
4877
4878 /*
4879  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4880  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4881  */
4882 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4883                                                unsigned long *msr_bitmap_nested,
4884                                                u32 msr, int type)
4885 {
4886         int f = sizeof(unsigned long);
4887
4888         if (!cpu_has_vmx_msr_bitmap()) {
4889                 WARN_ON(1);
4890                 return;
4891         }
4892
4893         /*
4894          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4895          * have the write-low and read-high bitmap offsets the wrong way round.
4896          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4897          */
4898         if (msr <= 0x1fff) {
4899                 if (type & MSR_TYPE_R &&
4900                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4901                         /* read-low */
4902                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4903
4904                 if (type & MSR_TYPE_W &&
4905                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4906                         /* write-low */
4907                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4908
4909         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4910                 msr &= 0x1fff;
4911                 if (type & MSR_TYPE_R &&
4912                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4913                         /* read-high */
4914                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4915
4916                 if (type & MSR_TYPE_W &&
4917                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4918                         /* write-high */
4919                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4920
4921         }
4922 }
4923
4924 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4925 {
4926         if (!longmode_only)
4927                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4928                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4929         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4930                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4931 }
4932
4933 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4934 {
4935         if (apicv_active) {
4936                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4937                                 msr, type);
4938                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4939                                 msr, type);
4940         } else {
4941                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4942                                 msr, type);
4943                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4944                                 msr, type);
4945         }
4946 }
4947
4948 static bool vmx_get_enable_apicv(void)
4949 {
4950         return enable_apicv;
4951 }
4952
4953 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4954 {
4955         struct vcpu_vmx *vmx = to_vmx(vcpu);
4956         int max_irr;
4957         void *vapic_page;
4958         u16 status;
4959
4960         if (vmx->nested.pi_desc &&
4961             vmx->nested.pi_pending) {
4962                 vmx->nested.pi_pending = false;
4963                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4964                         return;
4965
4966                 max_irr = find_last_bit(
4967                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4968
4969                 if (max_irr == 256)
4970                         return;
4971
4972                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4973                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4974                 kunmap(vmx->nested.virtual_apic_page);
4975
4976                 status = vmcs_read16(GUEST_INTR_STATUS);
4977                 if ((u8)max_irr > ((u8)status & 0xff)) {
4978                         status &= ~0xff;
4979                         status |= (u8)max_irr;
4980                         vmcs_write16(GUEST_INTR_STATUS, status);
4981                 }
4982         }
4983 }
4984
4985 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4986 {
4987 #ifdef CONFIG_SMP
4988         if (vcpu->mode == IN_GUEST_MODE) {
4989                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4990
4991                 /*
4992                  * Currently, we don't support urgent interrupt,
4993                  * all interrupts are recognized as non-urgent
4994                  * interrupt, so we cannot post interrupts when
4995                  * 'SN' is set.
4996                  *
4997                  * If the vcpu is in guest mode, it means it is
4998                  * running instead of being scheduled out and
4999                  * waiting in the run queue, and that's the only
5000                  * case when 'SN' is set currently, warning if
5001                  * 'SN' is set.
5002                  */
5003                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5004
5005                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
5006                                 POSTED_INTR_VECTOR);
5007                 return true;
5008         }
5009 #endif
5010         return false;
5011 }
5012
5013 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5014                                                 int vector)
5015 {
5016         struct vcpu_vmx *vmx = to_vmx(vcpu);
5017
5018         if (is_guest_mode(vcpu) &&
5019             vector == vmx->nested.posted_intr_nv) {
5020                 /* the PIR and ON have been set by L1. */
5021                 kvm_vcpu_trigger_posted_interrupt(vcpu);
5022                 /*
5023                  * If a posted intr is not recognized by hardware,
5024                  * we will accomplish it in the next vmentry.
5025                  */
5026                 vmx->nested.pi_pending = true;
5027                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5028                 return 0;
5029         }
5030         return -1;
5031 }
5032 /*
5033  * Send interrupt to vcpu via posted interrupt way.
5034  * 1. If target vcpu is running(non-root mode), send posted interrupt
5035  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5036  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5037  * interrupt from PIR in next vmentry.
5038  */
5039 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5040 {
5041         struct vcpu_vmx *vmx = to_vmx(vcpu);
5042         int r;
5043
5044         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5045         if (!r)
5046                 return;
5047
5048         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5049                 return;
5050
5051         /* If a previous notification has sent the IPI, nothing to do.  */
5052         if (pi_test_and_set_on(&vmx->pi_desc))
5053                 return;
5054
5055         if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5056                 kvm_vcpu_kick(vcpu);
5057 }
5058
5059 /*
5060  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5061  * will not change in the lifetime of the guest.
5062  * Note that host-state that does change is set elsewhere. E.g., host-state
5063  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5064  */
5065 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5066 {
5067         u32 low32, high32;
5068         unsigned long tmpl;
5069         struct desc_ptr dt;
5070         unsigned long cr0, cr3, cr4;
5071
5072         cr0 = read_cr0();
5073         WARN_ON(cr0 & X86_CR0_TS);
5074         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5075
5076         /*
5077          * Save the most likely value for this task's CR3 in the VMCS.
5078          * We can't use __get_current_cr3_fast() because we're not atomic.
5079          */
5080         cr3 = __read_cr3();
5081         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5082         vmx->host_state.vmcs_host_cr3 = cr3;
5083
5084         /* Save the most likely value for this task's CR4 in the VMCS. */
5085         cr4 = cr4_read_shadow();
5086         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5087         vmx->host_state.vmcs_host_cr4 = cr4;
5088
5089         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5090 #ifdef CONFIG_X86_64
5091         /*
5092          * Load null selectors, so we can avoid reloading them in
5093          * __vmx_load_host_state(), in case userspace uses the null selectors
5094          * too (the expected case).
5095          */
5096         vmcs_write16(HOST_DS_SELECTOR, 0);
5097         vmcs_write16(HOST_ES_SELECTOR, 0);
5098 #else
5099         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5100         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5101 #endif
5102         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5103         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5104
5105         native_store_idt(&dt);
5106         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5107         vmx->host_idt_base = dt.address;
5108
5109         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5110
5111         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5112         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5113         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5114         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5115
5116         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5117                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5118                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5119         }
5120 }
5121
5122 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5123 {
5124         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5125         if (enable_ept)
5126                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5127         if (is_guest_mode(&vmx->vcpu))
5128                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5129                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5130         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5131 }
5132
5133 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5134 {
5135         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5136
5137         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5138                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5139         /* Enable the preemption timer dynamically */
5140         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5141         return pin_based_exec_ctrl;
5142 }
5143
5144 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5145 {
5146         struct vcpu_vmx *vmx = to_vmx(vcpu);
5147
5148         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5149         if (cpu_has_secondary_exec_ctrls()) {
5150                 if (kvm_vcpu_apicv_active(vcpu))
5151                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5152                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5153                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5154                 else
5155                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5156                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5157                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5158         }
5159
5160         if (cpu_has_vmx_msr_bitmap())
5161                 vmx_set_msr_bitmap(vcpu);
5162 }
5163
5164 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5165 {
5166         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5167
5168         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5169                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5170
5171         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5172                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5173 #ifdef CONFIG_X86_64
5174                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5175                                 CPU_BASED_CR8_LOAD_EXITING;
5176 #endif
5177         }
5178         if (!enable_ept)
5179                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5180                                 CPU_BASED_CR3_LOAD_EXITING  |
5181                                 CPU_BASED_INVLPG_EXITING;
5182         return exec_control;
5183 }
5184
5185 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5186 {
5187         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5188         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5189                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5190         if (vmx->vpid == 0)
5191                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5192         if (!enable_ept) {
5193                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5194                 enable_unrestricted_guest = 0;
5195                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5196                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5197         }
5198         if (!enable_unrestricted_guest)
5199                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5200         if (!ple_gap)
5201                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5202         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5203                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5204                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5205         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5206         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5207            (handle_vmptrld).
5208            We can NOT enable shadow_vmcs here because we don't have yet
5209            a current VMCS12
5210         */
5211         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5212
5213         if (!enable_pml)
5214                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5215
5216         return exec_control;
5217 }
5218
5219 static void ept_set_mmio_spte_mask(void)
5220 {
5221         /*
5222          * EPT Misconfigurations can be generated if the value of bits 2:0
5223          * of an EPT paging-structure entry is 110b (write/execute).
5224          */
5225         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5226                                    VMX_EPT_MISCONFIG_WX_VALUE);
5227 }
5228
5229 #define VMX_XSS_EXIT_BITMAP 0
5230 /*
5231  * Sets up the vmcs for emulated real mode.
5232  */
5233 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5234 {
5235 #ifdef CONFIG_X86_64
5236         unsigned long a;
5237 #endif
5238         int i;
5239
5240         /* I/O */
5241         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5242         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5243
5244         if (enable_shadow_vmcs) {
5245                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5246                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5247         }
5248         if (cpu_has_vmx_msr_bitmap())
5249                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5250
5251         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5252
5253         /* Control */
5254         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5255         vmx->hv_deadline_tsc = -1;
5256
5257         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5258
5259         if (cpu_has_secondary_exec_ctrls()) {
5260                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5261                                 vmx_secondary_exec_control(vmx));
5262         }
5263
5264         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5265                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5266                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5267                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5268                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5269
5270                 vmcs_write16(GUEST_INTR_STATUS, 0);
5271
5272                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5273                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5274         }
5275
5276         if (ple_gap) {
5277                 vmcs_write32(PLE_GAP, ple_gap);
5278                 vmx->ple_window = ple_window;
5279                 vmx->ple_window_dirty = true;
5280         }
5281
5282         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5283         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5284         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5285
5286         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5287         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5288         vmx_set_constant_host_state(vmx);
5289 #ifdef CONFIG_X86_64
5290         rdmsrl(MSR_FS_BASE, a);
5291         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5292         rdmsrl(MSR_GS_BASE, a);
5293         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5294 #else
5295         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5296         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5297 #endif
5298
5299         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5300         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5301         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5302         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5303         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5304
5305         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5306                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5307
5308         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5309                 u32 index = vmx_msr_index[i];
5310                 u32 data_low, data_high;
5311                 int j = vmx->nmsrs;
5312
5313                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5314                         continue;
5315                 if (wrmsr_safe(index, data_low, data_high) < 0)
5316                         continue;
5317                 vmx->guest_msrs[j].index = i;
5318                 vmx->guest_msrs[j].data = 0;
5319                 vmx->guest_msrs[j].mask = -1ull;
5320                 ++vmx->nmsrs;
5321         }
5322
5323
5324         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5325
5326         /* 22.2.1, 20.8.1 */
5327         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5328
5329         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5330         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5331
5332         set_cr4_guest_host_mask(vmx);
5333
5334         if (vmx_xsaves_supported())
5335                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5336
5337         if (enable_pml) {
5338                 ASSERT(vmx->pml_pg);
5339                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5340                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5341         }
5342
5343         return 0;
5344 }
5345
5346 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5347 {
5348         struct vcpu_vmx *vmx = to_vmx(vcpu);
5349         struct msr_data apic_base_msr;
5350         u64 cr0;
5351
5352         vmx->rmode.vm86_active = 0;
5353
5354         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5355         kvm_set_cr8(vcpu, 0);
5356
5357         if (!init_event) {
5358                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5359                                      MSR_IA32_APICBASE_ENABLE;
5360                 if (kvm_vcpu_is_reset_bsp(vcpu))
5361                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5362                 apic_base_msr.host_initiated = true;
5363                 kvm_set_apic_base(vcpu, &apic_base_msr);
5364         }
5365
5366         vmx_segment_cache_clear(vmx);
5367
5368         seg_setup(VCPU_SREG_CS);
5369         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5370         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5371
5372         seg_setup(VCPU_SREG_DS);
5373         seg_setup(VCPU_SREG_ES);
5374         seg_setup(VCPU_SREG_FS);
5375         seg_setup(VCPU_SREG_GS);
5376         seg_setup(VCPU_SREG_SS);
5377
5378         vmcs_write16(GUEST_TR_SELECTOR, 0);
5379         vmcs_writel(GUEST_TR_BASE, 0);
5380         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5381         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5382
5383         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5384         vmcs_writel(GUEST_LDTR_BASE, 0);
5385         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5386         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5387
5388         if (!init_event) {
5389                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5390                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5391                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5392                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5393         }
5394
5395         vmcs_writel(GUEST_RFLAGS, 0x02);
5396         kvm_rip_write(vcpu, 0xfff0);
5397
5398         vmcs_writel(GUEST_GDTR_BASE, 0);
5399         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5400
5401         vmcs_writel(GUEST_IDTR_BASE, 0);
5402         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5403
5404         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5405         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5406         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5407
5408         setup_msrs(vmx);
5409
5410         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5411
5412         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5413                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5414                 if (cpu_need_tpr_shadow(vcpu))
5415                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5416                                      __pa(vcpu->arch.apic->regs));
5417                 vmcs_write32(TPR_THRESHOLD, 0);
5418         }
5419
5420         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5421
5422         if (kvm_vcpu_apicv_active(vcpu))
5423                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5424
5425         if (vmx->vpid != 0)
5426                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5427
5428         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5429         vmx->vcpu.arch.cr0 = cr0;
5430         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5431         vmx_set_cr4(vcpu, 0);
5432         vmx_set_efer(vcpu, 0);
5433
5434         update_exception_bitmap(vcpu);
5435
5436         vpid_sync_context(vmx->vpid);
5437 }
5438
5439 /*
5440  * In nested virtualization, check if L1 asked to exit on external interrupts.
5441  * For most existing hypervisors, this will always return true.
5442  */
5443 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5444 {
5445         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5446                 PIN_BASED_EXT_INTR_MASK;
5447 }
5448
5449 /*
5450  * In nested virtualization, check if L1 has set
5451  * VM_EXIT_ACK_INTR_ON_EXIT
5452  */
5453 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5454 {
5455         return get_vmcs12(vcpu)->vm_exit_controls &
5456                 VM_EXIT_ACK_INTR_ON_EXIT;
5457 }
5458
5459 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5460 {
5461         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5462                 PIN_BASED_NMI_EXITING;
5463 }
5464
5465 static void enable_irq_window(struct kvm_vcpu *vcpu)
5466 {
5467         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5468                       CPU_BASED_VIRTUAL_INTR_PENDING);
5469 }
5470
5471 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5472 {
5473         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5474                 enable_irq_window(vcpu);
5475                 return;
5476         }
5477
5478         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5479                       CPU_BASED_VIRTUAL_NMI_PENDING);
5480 }
5481
5482 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5483 {
5484         struct vcpu_vmx *vmx = to_vmx(vcpu);
5485         uint32_t intr;
5486         int irq = vcpu->arch.interrupt.nr;
5487
5488         trace_kvm_inj_virq(irq);
5489
5490         ++vcpu->stat.irq_injections;
5491         if (vmx->rmode.vm86_active) {
5492                 int inc_eip = 0;
5493                 if (vcpu->arch.interrupt.soft)
5494                         inc_eip = vcpu->arch.event_exit_inst_len;
5495                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5496                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5497                 return;
5498         }
5499         intr = irq | INTR_INFO_VALID_MASK;
5500         if (vcpu->arch.interrupt.soft) {
5501                 intr |= INTR_TYPE_SOFT_INTR;
5502                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5503                              vmx->vcpu.arch.event_exit_inst_len);
5504         } else
5505                 intr |= INTR_TYPE_EXT_INTR;
5506         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5507 }
5508
5509 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5510 {
5511         struct vcpu_vmx *vmx = to_vmx(vcpu);
5512
5513         if (!is_guest_mode(vcpu)) {
5514                 ++vcpu->stat.nmi_injections;
5515                 vmx->nmi_known_unmasked = false;
5516         }
5517
5518         if (vmx->rmode.vm86_active) {
5519                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5520                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5521                 return;
5522         }
5523
5524         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5525                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5526 }
5527
5528 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5529 {
5530         if (to_vmx(vcpu)->nmi_known_unmasked)
5531                 return false;
5532         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5533 }
5534
5535 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5536 {
5537         struct vcpu_vmx *vmx = to_vmx(vcpu);
5538
5539         vmx->nmi_known_unmasked = !masked;
5540         if (masked)
5541                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5542                               GUEST_INTR_STATE_NMI);
5543         else
5544                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5545                                 GUEST_INTR_STATE_NMI);
5546 }
5547
5548 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5549 {
5550         if (to_vmx(vcpu)->nested.nested_run_pending)
5551                 return 0;
5552
5553         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5554                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5555                    | GUEST_INTR_STATE_NMI));
5556 }
5557
5558 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5559 {
5560         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5561                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5562                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5563                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5564 }
5565
5566 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5567 {
5568         int ret;
5569
5570         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5571                                     PAGE_SIZE * 3);
5572         if (ret)
5573                 return ret;
5574         kvm->arch.tss_addr = addr;
5575         return init_rmode_tss(kvm);
5576 }
5577
5578 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5579 {
5580         switch (vec) {
5581         case BP_VECTOR:
5582                 /*
5583                  * Update instruction length as we may reinject the exception
5584                  * from user space while in guest debugging mode.
5585                  */
5586                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5587                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5588                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5589                         return false;
5590                 /* fall through */
5591         case DB_VECTOR:
5592                 if (vcpu->guest_debug &
5593                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5594                         return false;
5595                 /* fall through */
5596         case DE_VECTOR:
5597         case OF_VECTOR:
5598         case BR_VECTOR:
5599         case UD_VECTOR:
5600         case DF_VECTOR:
5601         case SS_VECTOR:
5602         case GP_VECTOR:
5603         case MF_VECTOR:
5604                 return true;
5605         break;
5606         }
5607         return false;
5608 }
5609
5610 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5611                                   int vec, u32 err_code)
5612 {
5613         /*
5614          * Instruction with address size override prefix opcode 0x67
5615          * Cause the #SS fault with 0 error code in VM86 mode.
5616          */
5617         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5618                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5619                         if (vcpu->arch.halt_request) {
5620                                 vcpu->arch.halt_request = 0;
5621                                 return kvm_vcpu_halt(vcpu);
5622                         }
5623                         return 1;
5624                 }
5625                 return 0;
5626         }
5627
5628         /*
5629          * Forward all other exceptions that are valid in real mode.
5630          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5631          *        the required debugging infrastructure rework.
5632          */
5633         kvm_queue_exception(vcpu, vec);
5634         return 1;
5635 }
5636
5637 /*
5638  * Trigger machine check on the host. We assume all the MSRs are already set up
5639  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5640  * We pass a fake environment to the machine check handler because we want
5641  * the guest to be always treated like user space, no matter what context
5642  * it used internally.
5643  */
5644 static void kvm_machine_check(void)
5645 {
5646 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5647         struct pt_regs regs = {
5648                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5649                 .flags = X86_EFLAGS_IF,
5650         };
5651
5652         do_machine_check(&regs, 0);
5653 #endif
5654 }
5655
5656 static int handle_machine_check(struct kvm_vcpu *vcpu)
5657 {
5658         /* already handled by vcpu_run */
5659         return 1;
5660 }
5661
5662 static int handle_exception(struct kvm_vcpu *vcpu)
5663 {
5664         struct vcpu_vmx *vmx = to_vmx(vcpu);
5665         struct kvm_run *kvm_run = vcpu->run;
5666         u32 intr_info, ex_no, error_code;
5667         unsigned long cr2, rip, dr6;
5668         u32 vect_info;
5669         enum emulation_result er;
5670
5671         vect_info = vmx->idt_vectoring_info;
5672         intr_info = vmx->exit_intr_info;
5673
5674         if (is_machine_check(intr_info))
5675                 return handle_machine_check(vcpu);
5676
5677         if (is_nmi(intr_info))
5678                 return 1;  /* already handled by vmx_vcpu_run() */
5679
5680         if (is_invalid_opcode(intr_info)) {
5681                 if (is_guest_mode(vcpu)) {
5682                         kvm_queue_exception(vcpu, UD_VECTOR);
5683                         return 1;
5684                 }
5685                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5686                 if (er != EMULATE_DONE)
5687                         kvm_queue_exception(vcpu, UD_VECTOR);
5688                 return 1;
5689         }
5690
5691         error_code = 0;
5692         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5693                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5694
5695         /*
5696          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5697          * MMIO, it is better to report an internal error.
5698          * See the comments in vmx_handle_exit.
5699          */
5700         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5701             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5702                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5703                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5704                 vcpu->run->internal.ndata = 3;
5705                 vcpu->run->internal.data[0] = vect_info;
5706                 vcpu->run->internal.data[1] = intr_info;
5707                 vcpu->run->internal.data[2] = error_code;
5708                 return 0;
5709         }
5710
5711         if (is_page_fault(intr_info)) {
5712                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5713                 /* EPT won't cause page fault directly */
5714                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5715                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5716                                 true);
5717         }
5718
5719         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5720
5721         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5722                 return handle_rmode_exception(vcpu, ex_no, error_code);
5723
5724         switch (ex_no) {
5725         case AC_VECTOR:
5726                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5727                 return 1;
5728         case DB_VECTOR:
5729                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5730                 if (!(vcpu->guest_debug &
5731                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5732                         vcpu->arch.dr6 &= ~15;
5733                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5734                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5735                                 skip_emulated_instruction(vcpu);
5736
5737                         kvm_queue_exception(vcpu, DB_VECTOR);
5738                         return 1;
5739                 }
5740                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5741                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5742                 /* fall through */
5743         case BP_VECTOR:
5744                 /*
5745                  * Update instruction length as we may reinject #BP from
5746                  * user space while in guest debugging mode. Reading it for
5747                  * #DB as well causes no harm, it is not used in that case.
5748                  */
5749                 vmx->vcpu.arch.event_exit_inst_len =
5750                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5751                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5752                 rip = kvm_rip_read(vcpu);
5753                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5754                 kvm_run->debug.arch.exception = ex_no;
5755                 break;
5756         default:
5757                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5758                 kvm_run->ex.exception = ex_no;
5759                 kvm_run->ex.error_code = error_code;
5760                 break;
5761         }
5762         return 0;
5763 }
5764
5765 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5766 {
5767         ++vcpu->stat.irq_exits;
5768         return 1;
5769 }
5770
5771 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5772 {
5773         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5774         return 0;
5775 }
5776
5777 static int handle_io(struct kvm_vcpu *vcpu)
5778 {
5779         unsigned long exit_qualification;
5780         int size, in, string, ret;
5781         unsigned port;
5782
5783         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5784         string = (exit_qualification & 16) != 0;
5785         in = (exit_qualification & 8) != 0;
5786
5787         ++vcpu->stat.io_exits;
5788
5789         if (string || in)
5790                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5791
5792         port = exit_qualification >> 16;
5793         size = (exit_qualification & 7) + 1;
5794
5795         ret = kvm_skip_emulated_instruction(vcpu);
5796
5797         /*
5798          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5799          * KVM_EXIT_DEBUG here.
5800          */
5801         return kvm_fast_pio_out(vcpu, size, port) && ret;
5802 }
5803
5804 static void
5805 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5806 {
5807         /*
5808          * Patch in the VMCALL instruction:
5809          */
5810         hypercall[0] = 0x0f;
5811         hypercall[1] = 0x01;
5812         hypercall[2] = 0xc1;
5813 }
5814
5815 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5816 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5817 {
5818         if (is_guest_mode(vcpu)) {
5819                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5820                 unsigned long orig_val = val;
5821
5822                 /*
5823                  * We get here when L2 changed cr0 in a way that did not change
5824                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5825                  * but did change L0 shadowed bits. So we first calculate the
5826                  * effective cr0 value that L1 would like to write into the
5827                  * hardware. It consists of the L2-owned bits from the new
5828                  * value combined with the L1-owned bits from L1's guest_cr0.
5829                  */
5830                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5831                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5832
5833                 if (!nested_guest_cr0_valid(vcpu, val))
5834                         return 1;
5835
5836                 if (kvm_set_cr0(vcpu, val))
5837                         return 1;
5838                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5839                 return 0;
5840         } else {
5841                 if (to_vmx(vcpu)->nested.vmxon &&
5842                     !nested_host_cr0_valid(vcpu, val))
5843                         return 1;
5844
5845                 return kvm_set_cr0(vcpu, val);
5846         }
5847 }
5848
5849 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5850 {
5851         if (is_guest_mode(vcpu)) {
5852                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5853                 unsigned long orig_val = val;
5854
5855                 /* analogously to handle_set_cr0 */
5856                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5857                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5858                 if (kvm_set_cr4(vcpu, val))
5859                         return 1;
5860                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5861                 return 0;
5862         } else
5863                 return kvm_set_cr4(vcpu, val);
5864 }
5865
5866 static int handle_cr(struct kvm_vcpu *vcpu)
5867 {
5868         unsigned long exit_qualification, val;
5869         int cr;
5870         int reg;
5871         int err;
5872         int ret;
5873
5874         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5875         cr = exit_qualification & 15;
5876         reg = (exit_qualification >> 8) & 15;
5877         switch ((exit_qualification >> 4) & 3) {
5878         case 0: /* mov to cr */
5879                 val = kvm_register_readl(vcpu, reg);
5880                 trace_kvm_cr_write(cr, val);
5881                 switch (cr) {
5882                 case 0:
5883                         err = handle_set_cr0(vcpu, val);
5884                         return kvm_complete_insn_gp(vcpu, err);
5885                 case 3:
5886                         err = kvm_set_cr3(vcpu, val);
5887                         return kvm_complete_insn_gp(vcpu, err);
5888                 case 4:
5889                         err = handle_set_cr4(vcpu, val);
5890                         return kvm_complete_insn_gp(vcpu, err);
5891                 case 8: {
5892                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5893                                 u8 cr8 = (u8)val;
5894                                 err = kvm_set_cr8(vcpu, cr8);
5895                                 ret = kvm_complete_insn_gp(vcpu, err);
5896                                 if (lapic_in_kernel(vcpu))
5897                                         return ret;
5898                                 if (cr8_prev <= cr8)
5899                                         return ret;
5900                                 /*
5901                                  * TODO: we might be squashing a
5902                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5903                                  * KVM_EXIT_DEBUG here.
5904                                  */
5905                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5906                                 return 0;
5907                         }
5908                 }
5909                 break;
5910         case 2: /* clts */
5911                 WARN_ONCE(1, "Guest should always own CR0.TS");
5912                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5913                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5914                 return kvm_skip_emulated_instruction(vcpu);
5915         case 1: /*mov from cr*/
5916                 switch (cr) {
5917                 case 3:
5918                         val = kvm_read_cr3(vcpu);
5919                         kvm_register_write(vcpu, reg, val);
5920                         trace_kvm_cr_read(cr, val);
5921                         return kvm_skip_emulated_instruction(vcpu);
5922                 case 8:
5923                         val = kvm_get_cr8(vcpu);
5924                         kvm_register_write(vcpu, reg, val);
5925                         trace_kvm_cr_read(cr, val);
5926                         return kvm_skip_emulated_instruction(vcpu);
5927                 }
5928                 break;
5929         case 3: /* lmsw */
5930                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5931                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5932                 kvm_lmsw(vcpu, val);
5933
5934                 return kvm_skip_emulated_instruction(vcpu);
5935         default:
5936                 break;
5937         }
5938         vcpu->run->exit_reason = 0;
5939         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5940                (int)(exit_qualification >> 4) & 3, cr);
5941         return 0;
5942 }
5943
5944 static int handle_dr(struct kvm_vcpu *vcpu)
5945 {
5946         unsigned long exit_qualification;
5947         int dr, dr7, reg;
5948
5949         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5950         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5951
5952         /* First, if DR does not exist, trigger UD */
5953         if (!kvm_require_dr(vcpu, dr))
5954                 return 1;
5955
5956         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5957         if (!kvm_require_cpl(vcpu, 0))
5958                 return 1;
5959         dr7 = vmcs_readl(GUEST_DR7);
5960         if (dr7 & DR7_GD) {
5961                 /*
5962                  * As the vm-exit takes precedence over the debug trap, we
5963                  * need to emulate the latter, either for the host or the
5964                  * guest debugging itself.
5965                  */
5966                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5967                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5968                         vcpu->run->debug.arch.dr7 = dr7;
5969                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5970                         vcpu->run->debug.arch.exception = DB_VECTOR;
5971                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5972                         return 0;
5973                 } else {
5974                         vcpu->arch.dr6 &= ~15;
5975                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5976                         kvm_queue_exception(vcpu, DB_VECTOR);
5977                         return 1;
5978                 }
5979         }
5980
5981         if (vcpu->guest_debug == 0) {
5982                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5983                                 CPU_BASED_MOV_DR_EXITING);
5984
5985                 /*
5986                  * No more DR vmexits; force a reload of the debug registers
5987                  * and reenter on this instruction.  The next vmexit will
5988                  * retrieve the full state of the debug registers.
5989                  */
5990                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5991                 return 1;
5992         }
5993
5994         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5995         if (exit_qualification & TYPE_MOV_FROM_DR) {
5996                 unsigned long val;
5997
5998                 if (kvm_get_dr(vcpu, dr, &val))
5999                         return 1;
6000                 kvm_register_write(vcpu, reg, val);
6001         } else
6002                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6003                         return 1;
6004
6005         return kvm_skip_emulated_instruction(vcpu);
6006 }
6007
6008 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6009 {
6010         return vcpu->arch.dr6;
6011 }
6012
6013 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6014 {
6015 }
6016
6017 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6018 {
6019         get_debugreg(vcpu->arch.db[0], 0);
6020         get_debugreg(vcpu->arch.db[1], 1);
6021         get_debugreg(vcpu->arch.db[2], 2);
6022         get_debugreg(vcpu->arch.db[3], 3);
6023         get_debugreg(vcpu->arch.dr6, 6);
6024         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6025
6026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6027         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6028 }
6029
6030 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6031 {
6032         vmcs_writel(GUEST_DR7, val);
6033 }
6034
6035 static int handle_cpuid(struct kvm_vcpu *vcpu)
6036 {
6037         return kvm_emulate_cpuid(vcpu);
6038 }
6039
6040 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6041 {
6042         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6043         struct msr_data msr_info;
6044
6045         msr_info.index = ecx;
6046         msr_info.host_initiated = false;
6047         if (vmx_get_msr(vcpu, &msr_info)) {
6048                 trace_kvm_msr_read_ex(ecx);
6049                 kvm_inject_gp(vcpu, 0);
6050                 return 1;
6051         }
6052
6053         trace_kvm_msr_read(ecx, msr_info.data);
6054
6055         /* FIXME: handling of bits 32:63 of rax, rdx */
6056         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6057         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6058         return kvm_skip_emulated_instruction(vcpu);
6059 }
6060
6061 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6062 {
6063         struct msr_data msr;
6064         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6065         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6066                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6067
6068         msr.data = data;
6069         msr.index = ecx;
6070         msr.host_initiated = false;
6071         if (kvm_set_msr(vcpu, &msr) != 0) {
6072                 trace_kvm_msr_write_ex(ecx, data);
6073                 kvm_inject_gp(vcpu, 0);
6074                 return 1;
6075         }
6076
6077         trace_kvm_msr_write(ecx, data);
6078         return kvm_skip_emulated_instruction(vcpu);
6079 }
6080
6081 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6082 {
6083         kvm_apic_update_ppr(vcpu);
6084         return 1;
6085 }
6086
6087 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6088 {
6089         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6090                         CPU_BASED_VIRTUAL_INTR_PENDING);
6091
6092         kvm_make_request(KVM_REQ_EVENT, vcpu);
6093
6094         ++vcpu->stat.irq_window_exits;
6095         return 1;
6096 }
6097
6098 static int handle_halt(struct kvm_vcpu *vcpu)
6099 {
6100         return kvm_emulate_halt(vcpu);
6101 }
6102
6103 static int handle_vmcall(struct kvm_vcpu *vcpu)
6104 {
6105         return kvm_emulate_hypercall(vcpu);
6106 }
6107
6108 static int handle_invd(struct kvm_vcpu *vcpu)
6109 {
6110         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6111 }
6112
6113 static int handle_invlpg(struct kvm_vcpu *vcpu)
6114 {
6115         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6116
6117         kvm_mmu_invlpg(vcpu, exit_qualification);
6118         return kvm_skip_emulated_instruction(vcpu);
6119 }
6120
6121 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6122 {
6123         int err;
6124
6125         err = kvm_rdpmc(vcpu);
6126         return kvm_complete_insn_gp(vcpu, err);
6127 }
6128
6129 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6130 {
6131         return kvm_emulate_wbinvd(vcpu);
6132 }
6133
6134 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6135 {
6136         u64 new_bv = kvm_read_edx_eax(vcpu);
6137         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6138
6139         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6140                 return kvm_skip_emulated_instruction(vcpu);
6141         return 1;
6142 }
6143
6144 static int handle_xsaves(struct kvm_vcpu *vcpu)
6145 {
6146         kvm_skip_emulated_instruction(vcpu);
6147         WARN(1, "this should never happen\n");
6148         return 1;
6149 }
6150
6151 static int handle_xrstors(struct kvm_vcpu *vcpu)
6152 {
6153         kvm_skip_emulated_instruction(vcpu);
6154         WARN(1, "this should never happen\n");
6155         return 1;
6156 }
6157
6158 static int handle_apic_access(struct kvm_vcpu *vcpu)
6159 {
6160         if (likely(fasteoi)) {
6161                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6162                 int access_type, offset;
6163
6164                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6165                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6166                 /*
6167                  * Sane guest uses MOV to write EOI, with written value
6168                  * not cared. So make a short-circuit here by avoiding
6169                  * heavy instruction emulation.
6170                  */
6171                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6172                     (offset == APIC_EOI)) {
6173                         kvm_lapic_set_eoi(vcpu);
6174                         return kvm_skip_emulated_instruction(vcpu);
6175                 }
6176         }
6177         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6178 }
6179
6180 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6181 {
6182         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6183         int vector = exit_qualification & 0xff;
6184
6185         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6186         kvm_apic_set_eoi_accelerated(vcpu, vector);
6187         return 1;
6188 }
6189
6190 static int handle_apic_write(struct kvm_vcpu *vcpu)
6191 {
6192         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6193         u32 offset = exit_qualification & 0xfff;
6194
6195         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6196         kvm_apic_write_nodecode(vcpu, offset);
6197         return 1;
6198 }
6199
6200 static int handle_task_switch(struct kvm_vcpu *vcpu)
6201 {
6202         struct vcpu_vmx *vmx = to_vmx(vcpu);
6203         unsigned long exit_qualification;
6204         bool has_error_code = false;
6205         u32 error_code = 0;
6206         u16 tss_selector;
6207         int reason, type, idt_v, idt_index;
6208
6209         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6210         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6211         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6212
6213         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6214
6215         reason = (u32)exit_qualification >> 30;
6216         if (reason == TASK_SWITCH_GATE && idt_v) {
6217                 switch (type) {
6218                 case INTR_TYPE_NMI_INTR:
6219                         vcpu->arch.nmi_injected = false;
6220                         vmx_set_nmi_mask(vcpu, true);
6221                         break;
6222                 case INTR_TYPE_EXT_INTR:
6223                 case INTR_TYPE_SOFT_INTR:
6224                         kvm_clear_interrupt_queue(vcpu);
6225                         break;
6226                 case INTR_TYPE_HARD_EXCEPTION:
6227                         if (vmx->idt_vectoring_info &
6228                             VECTORING_INFO_DELIVER_CODE_MASK) {
6229                                 has_error_code = true;
6230                                 error_code =
6231                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6232                         }
6233                         /* fall through */
6234                 case INTR_TYPE_SOFT_EXCEPTION:
6235                         kvm_clear_exception_queue(vcpu);
6236                         break;
6237                 default:
6238                         break;
6239                 }
6240         }
6241         tss_selector = exit_qualification;
6242
6243         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6244                        type != INTR_TYPE_EXT_INTR &&
6245                        type != INTR_TYPE_NMI_INTR))
6246                 skip_emulated_instruction(vcpu);
6247
6248         if (kvm_task_switch(vcpu, tss_selector,
6249                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6250                             has_error_code, error_code) == EMULATE_FAIL) {
6251                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6252                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6253                 vcpu->run->internal.ndata = 0;
6254                 return 0;
6255         }
6256
6257         /*
6258          * TODO: What about debug traps on tss switch?
6259          *       Are we supposed to inject them and update dr6?
6260          */
6261
6262         return 1;
6263 }
6264
6265 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6266 {
6267         unsigned long exit_qualification;
6268         gpa_t gpa;
6269         u32 error_code;
6270
6271         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6272
6273         /*
6274          * EPT violation happened while executing iret from NMI,
6275          * "blocked by NMI" bit has to be set before next VM entry.
6276          * There are errata that may cause this bit to not be set:
6277          * AAK134, BY25.
6278          */
6279         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6280                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6281                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6282
6283         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6284         trace_kvm_page_fault(gpa, exit_qualification);
6285
6286         /* Is it a read fault? */
6287         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6288                      ? PFERR_USER_MASK : 0;
6289         /* Is it a write fault? */
6290         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6291                       ? PFERR_WRITE_MASK : 0;
6292         /* Is it a fetch fault? */
6293         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6294                       ? PFERR_FETCH_MASK : 0;
6295         /* ept page table entry is present? */
6296         error_code |= (exit_qualification &
6297                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6298                         EPT_VIOLATION_EXECUTABLE))
6299                       ? PFERR_PRESENT_MASK : 0;
6300
6301         vcpu->arch.gpa_available = true;
6302         vcpu->arch.exit_qualification = exit_qualification;
6303
6304         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6305 }
6306
6307 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6308 {
6309         int ret;
6310         gpa_t gpa;
6311
6312         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6313         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6314                 trace_kvm_fast_mmio(gpa);
6315                 return kvm_skip_emulated_instruction(vcpu);
6316         }
6317
6318         ret = handle_mmio_page_fault(vcpu, gpa, true);
6319         vcpu->arch.gpa_available = true;
6320         if (likely(ret == RET_MMIO_PF_EMULATE))
6321                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6322                                               EMULATE_DONE;
6323
6324         if (unlikely(ret == RET_MMIO_PF_INVALID))
6325                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6326
6327         if (unlikely(ret == RET_MMIO_PF_RETRY))
6328                 return 1;
6329
6330         /* It is the real ept misconfig */
6331         WARN_ON(1);
6332
6333         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6334         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6335
6336         return 0;
6337 }
6338
6339 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6340 {
6341         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6342                         CPU_BASED_VIRTUAL_NMI_PENDING);
6343         ++vcpu->stat.nmi_window_exits;
6344         kvm_make_request(KVM_REQ_EVENT, vcpu);
6345
6346         return 1;
6347 }
6348
6349 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6350 {
6351         struct vcpu_vmx *vmx = to_vmx(vcpu);
6352         enum emulation_result err = EMULATE_DONE;
6353         int ret = 1;
6354         u32 cpu_exec_ctrl;
6355         bool intr_window_requested;
6356         unsigned count = 130;
6357
6358         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6359         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6360
6361         while (vmx->emulation_required && count-- != 0) {
6362                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6363                         return handle_interrupt_window(&vmx->vcpu);
6364
6365                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6366                         return 1;
6367
6368                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6369
6370                 if (err == EMULATE_USER_EXIT) {
6371                         ++vcpu->stat.mmio_exits;
6372                         ret = 0;
6373                         goto out;
6374                 }
6375
6376                 if (err != EMULATE_DONE) {
6377                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6378                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6379                         vcpu->run->internal.ndata = 0;
6380                         return 0;
6381                 }
6382
6383                 if (vcpu->arch.halt_request) {
6384                         vcpu->arch.halt_request = 0;
6385                         ret = kvm_vcpu_halt(vcpu);
6386                         goto out;
6387                 }
6388
6389                 if (signal_pending(current))
6390                         goto out;
6391                 if (need_resched())
6392                         schedule();
6393         }
6394
6395 out:
6396         return ret;
6397 }
6398
6399 static int __grow_ple_window(int val)
6400 {
6401         if (ple_window_grow < 1)
6402                 return ple_window;
6403
6404         val = min(val, ple_window_actual_max);
6405
6406         if (ple_window_grow < ple_window)
6407                 val *= ple_window_grow;
6408         else
6409                 val += ple_window_grow;
6410
6411         return val;
6412 }
6413
6414 static int __shrink_ple_window(int val, int modifier, int minimum)
6415 {
6416         if (modifier < 1)
6417                 return ple_window;
6418
6419         if (modifier < ple_window)
6420                 val /= modifier;
6421         else
6422                 val -= modifier;
6423
6424         return max(val, minimum);
6425 }
6426
6427 static void grow_ple_window(struct kvm_vcpu *vcpu)
6428 {
6429         struct vcpu_vmx *vmx = to_vmx(vcpu);
6430         int old = vmx->ple_window;
6431
6432         vmx->ple_window = __grow_ple_window(old);
6433
6434         if (vmx->ple_window != old)
6435                 vmx->ple_window_dirty = true;
6436
6437         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6438 }
6439
6440 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6441 {
6442         struct vcpu_vmx *vmx = to_vmx(vcpu);
6443         int old = vmx->ple_window;
6444
6445         vmx->ple_window = __shrink_ple_window(old,
6446                                               ple_window_shrink, ple_window);
6447
6448         if (vmx->ple_window != old)
6449                 vmx->ple_window_dirty = true;
6450
6451         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6452 }
6453
6454 /*
6455  * ple_window_actual_max is computed to be one grow_ple_window() below
6456  * ple_window_max. (See __grow_ple_window for the reason.)
6457  * This prevents overflows, because ple_window_max is int.
6458  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6459  * this process.
6460  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6461  */
6462 static void update_ple_window_actual_max(void)
6463 {
6464         ple_window_actual_max =
6465                         __shrink_ple_window(max(ple_window_max, ple_window),
6466                                             ple_window_grow, INT_MIN);
6467 }
6468
6469 /*
6470  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6471  */
6472 static void wakeup_handler(void)
6473 {
6474         struct kvm_vcpu *vcpu;
6475         int cpu = smp_processor_id();
6476
6477         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6478         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6479                         blocked_vcpu_list) {
6480                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6481
6482                 if (pi_test_on(pi_desc) == 1)
6483                         kvm_vcpu_kick(vcpu);
6484         }
6485         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6486 }
6487
6488 void vmx_enable_tdp(void)
6489 {
6490         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6491                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6492                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6493                 0ull, VMX_EPT_EXECUTABLE_MASK,
6494                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6495                 VMX_EPT_RWX_MASK);
6496
6497         ept_set_mmio_spte_mask();
6498         kvm_enable_tdp();
6499 }
6500
6501 static __init int hardware_setup(void)
6502 {
6503         int r = -ENOMEM, i, msr;
6504
6505         rdmsrl_safe(MSR_EFER, &host_efer);
6506
6507         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6508                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6509
6510         for (i = 0; i < VMX_BITMAP_NR; i++) {
6511                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6512                 if (!vmx_bitmap[i])
6513                         goto out;
6514         }
6515
6516         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6517         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6518         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6519
6520         /*
6521          * Allow direct access to the PC debug port (it is often used for I/O
6522          * delays, but the vmexits simply slow things down).
6523          */
6524         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6525         clear_bit(0x80, vmx_io_bitmap_a);
6526
6527         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6528
6529         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6530         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6531
6532         if (setup_vmcs_config(&vmcs_config) < 0) {
6533                 r = -EIO;
6534                 goto out;
6535         }
6536
6537         if (boot_cpu_has(X86_FEATURE_NX))
6538                 kvm_enable_efer_bits(EFER_NX);
6539
6540         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6541                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6542                 enable_vpid = 0;
6543
6544         if (!cpu_has_vmx_shadow_vmcs())
6545                 enable_shadow_vmcs = 0;
6546         if (enable_shadow_vmcs)
6547                 init_vmcs_shadow_fields();
6548
6549         if (!cpu_has_vmx_ept() ||
6550             !cpu_has_vmx_ept_4levels()) {
6551                 enable_ept = 0;
6552                 enable_unrestricted_guest = 0;
6553                 enable_ept_ad_bits = 0;
6554         }
6555
6556         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6557                 enable_ept_ad_bits = 0;
6558
6559         if (!cpu_has_vmx_unrestricted_guest())
6560                 enable_unrestricted_guest = 0;
6561
6562         if (!cpu_has_vmx_flexpriority())
6563                 flexpriority_enabled = 0;
6564
6565         /*
6566          * set_apic_access_page_addr() is used to reload apic access
6567          * page upon invalidation.  No need to do anything if not
6568          * using the APIC_ACCESS_ADDR VMCS field.
6569          */
6570         if (!flexpriority_enabled)
6571                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6572
6573         if (!cpu_has_vmx_tpr_shadow())
6574                 kvm_x86_ops->update_cr8_intercept = NULL;
6575
6576         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6577                 kvm_disable_largepages();
6578
6579         if (!cpu_has_vmx_ple())
6580                 ple_gap = 0;
6581
6582         if (!cpu_has_vmx_apicv()) {
6583                 enable_apicv = 0;
6584                 kvm_x86_ops->sync_pir_to_irr = NULL;
6585         }
6586
6587         if (cpu_has_vmx_tsc_scaling()) {
6588                 kvm_has_tsc_control = true;
6589                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6590                 kvm_tsc_scaling_ratio_frac_bits = 48;
6591         }
6592
6593         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6594         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6595         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6596         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6597         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6598         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6599
6600         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6601                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6602         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6603                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6604         memcpy(vmx_msr_bitmap_legacy_x2apic,
6605                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6606         memcpy(vmx_msr_bitmap_longmode_x2apic,
6607                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6608
6609         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6610
6611         for (msr = 0x800; msr <= 0x8ff; msr++) {
6612                 if (msr == 0x839 /* TMCCT */)
6613                         continue;
6614                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6615         }
6616
6617         /*
6618          * TPR reads and writes can be virtualized even if virtual interrupt
6619          * delivery is not in use.
6620          */
6621         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6622         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6623
6624         /* EOI */
6625         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6626         /* SELF-IPI */
6627         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6628
6629         if (enable_ept)
6630                 vmx_enable_tdp();
6631         else
6632                 kvm_disable_tdp();
6633
6634         update_ple_window_actual_max();
6635
6636         /*
6637          * Only enable PML when hardware supports PML feature, and both EPT
6638          * and EPT A/D bit features are enabled -- PML depends on them to work.
6639          */
6640         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6641                 enable_pml = 0;
6642
6643         if (!enable_pml) {
6644                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6645                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6646                 kvm_x86_ops->flush_log_dirty = NULL;
6647                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6648         }
6649
6650         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6651                 u64 vmx_msr;
6652
6653                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6654                 cpu_preemption_timer_multi =
6655                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6656         } else {
6657                 kvm_x86_ops->set_hv_timer = NULL;
6658                 kvm_x86_ops->cancel_hv_timer = NULL;
6659         }
6660
6661         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6662
6663         kvm_mce_cap_supported |= MCG_LMCE_P;
6664
6665         return alloc_kvm_area();
6666
6667 out:
6668         for (i = 0; i < VMX_BITMAP_NR; i++)
6669                 free_page((unsigned long)vmx_bitmap[i]);
6670
6671     return r;
6672 }
6673
6674 static __exit void hardware_unsetup(void)
6675 {
6676         int i;
6677
6678         for (i = 0; i < VMX_BITMAP_NR; i++)
6679                 free_page((unsigned long)vmx_bitmap[i]);
6680
6681         free_kvm_area();
6682 }
6683
6684 /*
6685  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6686  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6687  */
6688 static int handle_pause(struct kvm_vcpu *vcpu)
6689 {
6690         if (ple_gap)
6691                 grow_ple_window(vcpu);
6692
6693         kvm_vcpu_on_spin(vcpu);
6694         return kvm_skip_emulated_instruction(vcpu);
6695 }
6696
6697 static int handle_nop(struct kvm_vcpu *vcpu)
6698 {
6699         return kvm_skip_emulated_instruction(vcpu);
6700 }
6701
6702 static int handle_mwait(struct kvm_vcpu *vcpu)
6703 {
6704         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6705         return handle_nop(vcpu);
6706 }
6707
6708 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6709 {
6710         return 1;
6711 }
6712
6713 static int handle_monitor(struct kvm_vcpu *vcpu)
6714 {
6715         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6716         return handle_nop(vcpu);
6717 }
6718
6719 /*
6720  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6721  * We could reuse a single VMCS for all the L2 guests, but we also want the
6722  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6723  * allows keeping them loaded on the processor, and in the future will allow
6724  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6725  * every entry if they never change.
6726  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6727  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6728  *
6729  * The following functions allocate and free a vmcs02 in this pool.
6730  */
6731
6732 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6733 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6734 {
6735         struct vmcs02_list *item;
6736         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6737                 if (item->vmptr == vmx->nested.current_vmptr) {
6738                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6739                         return &item->vmcs02;
6740                 }
6741
6742         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6743                 /* Recycle the least recently used VMCS. */
6744                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6745                                        struct vmcs02_list, list);
6746                 item->vmptr = vmx->nested.current_vmptr;
6747                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6748                 return &item->vmcs02;
6749         }
6750
6751         /* Create a new VMCS */
6752         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6753         if (!item)
6754                 return NULL;
6755         item->vmcs02.vmcs = alloc_vmcs();
6756         item->vmcs02.shadow_vmcs = NULL;
6757         if (!item->vmcs02.vmcs) {
6758                 kfree(item);
6759                 return NULL;
6760         }
6761         loaded_vmcs_init(&item->vmcs02);
6762         item->vmptr = vmx->nested.current_vmptr;
6763         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6764         vmx->nested.vmcs02_num++;
6765         return &item->vmcs02;
6766 }
6767
6768 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6769 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6770 {
6771         struct vmcs02_list *item;
6772         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6773                 if (item->vmptr == vmptr) {
6774                         free_loaded_vmcs(&item->vmcs02);
6775                         list_del(&item->list);
6776                         kfree(item);
6777                         vmx->nested.vmcs02_num--;
6778                         return;
6779                 }
6780 }
6781
6782 /*
6783  * Free all VMCSs saved for this vcpu, except the one pointed by
6784  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6785  * must be &vmx->vmcs01.
6786  */
6787 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6788 {
6789         struct vmcs02_list *item, *n;
6790
6791         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6792         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6793                 /*
6794                  * Something will leak if the above WARN triggers.  Better than
6795                  * a use-after-free.
6796                  */
6797                 if (vmx->loaded_vmcs == &item->vmcs02)
6798                         continue;
6799
6800                 free_loaded_vmcs(&item->vmcs02);
6801                 list_del(&item->list);
6802                 kfree(item);
6803                 vmx->nested.vmcs02_num--;
6804         }
6805 }
6806
6807 /*
6808  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6809  * set the success or error code of an emulated VMX instruction, as specified
6810  * by Vol 2B, VMX Instruction Reference, "Conventions".
6811  */
6812 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6813 {
6814         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6815                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6816                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6817 }
6818
6819 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6820 {
6821         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6822                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6823                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6824                         | X86_EFLAGS_CF);
6825 }
6826
6827 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6828                                         u32 vm_instruction_error)
6829 {
6830         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6831                 /*
6832                  * failValid writes the error number to the current VMCS, which
6833                  * can't be done there isn't a current VMCS.
6834                  */
6835                 nested_vmx_failInvalid(vcpu);
6836                 return;
6837         }
6838         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6839                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6840                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6841                         | X86_EFLAGS_ZF);
6842         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6843         /*
6844          * We don't need to force a shadow sync because
6845          * VM_INSTRUCTION_ERROR is not shadowed
6846          */
6847 }
6848
6849 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6850 {
6851         /* TODO: not to reset guest simply here. */
6852         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6853         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6854 }
6855
6856 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6857 {
6858         struct vcpu_vmx *vmx =
6859                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6860
6861         vmx->nested.preemption_timer_expired = true;
6862         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6863         kvm_vcpu_kick(&vmx->vcpu);
6864
6865         return HRTIMER_NORESTART;
6866 }
6867
6868 /*
6869  * Decode the memory-address operand of a vmx instruction, as recorded on an
6870  * exit caused by such an instruction (run by a guest hypervisor).
6871  * On success, returns 0. When the operand is invalid, returns 1 and throws
6872  * #UD or #GP.
6873  */
6874 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6875                                  unsigned long exit_qualification,
6876                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6877 {
6878         gva_t off;
6879         bool exn;
6880         struct kvm_segment s;
6881
6882         /*
6883          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6884          * Execution", on an exit, vmx_instruction_info holds most of the
6885          * addressing components of the operand. Only the displacement part
6886          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6887          * For how an actual address is calculated from all these components,
6888          * refer to Vol. 1, "Operand Addressing".
6889          */
6890         int  scaling = vmx_instruction_info & 3;
6891         int  addr_size = (vmx_instruction_info >> 7) & 7;
6892         bool is_reg = vmx_instruction_info & (1u << 10);
6893         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6894         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6895         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6896         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6897         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6898
6899         if (is_reg) {
6900                 kvm_queue_exception(vcpu, UD_VECTOR);
6901                 return 1;
6902         }
6903
6904         /* Addr = segment_base + offset */
6905         /* offset = base + [index * scale] + displacement */
6906         off = exit_qualification; /* holds the displacement */
6907         if (base_is_valid)
6908                 off += kvm_register_read(vcpu, base_reg);
6909         if (index_is_valid)
6910                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6911         vmx_get_segment(vcpu, &s, seg_reg);
6912         *ret = s.base + off;
6913
6914         if (addr_size == 1) /* 32 bit */
6915                 *ret &= 0xffffffff;
6916
6917         /* Checks for #GP/#SS exceptions. */
6918         exn = false;
6919         if (is_long_mode(vcpu)) {
6920                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6921                  * non-canonical form. This is the only check on the memory
6922                  * destination for long mode!
6923                  */
6924                 exn = is_noncanonical_address(*ret);
6925         } else if (is_protmode(vcpu)) {
6926                 /* Protected mode: apply checks for segment validity in the
6927                  * following order:
6928                  * - segment type check (#GP(0) may be thrown)
6929                  * - usability check (#GP(0)/#SS(0))
6930                  * - limit check (#GP(0)/#SS(0))
6931                  */
6932                 if (wr)
6933                         /* #GP(0) if the destination operand is located in a
6934                          * read-only data segment or any code segment.
6935                          */
6936                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6937                 else
6938                         /* #GP(0) if the source operand is located in an
6939                          * execute-only code segment
6940                          */
6941                         exn = ((s.type & 0xa) == 8);
6942                 if (exn) {
6943                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6944                         return 1;
6945                 }
6946                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6947                  */
6948                 exn = (s.unusable != 0);
6949                 /* Protected mode: #GP(0)/#SS(0) if the memory
6950                  * operand is outside the segment limit.
6951                  */
6952                 exn = exn || (off + sizeof(u64) > s.limit);
6953         }
6954         if (exn) {
6955                 kvm_queue_exception_e(vcpu,
6956                                       seg_reg == VCPU_SREG_SS ?
6957                                                 SS_VECTOR : GP_VECTOR,
6958                                       0);
6959                 return 1;
6960         }
6961
6962         return 0;
6963 }
6964
6965 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6966 {
6967         gva_t gva;
6968         struct x86_exception e;
6969
6970         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6971                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6972                 return 1;
6973
6974         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6975                                 sizeof(*vmpointer), &e)) {
6976                 kvm_inject_page_fault(vcpu, &e);
6977                 return 1;
6978         }
6979
6980         return 0;
6981 }
6982
6983 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6984 {
6985         struct vcpu_vmx *vmx = to_vmx(vcpu);
6986         struct vmcs *shadow_vmcs;
6987
6988         if (cpu_has_vmx_msr_bitmap()) {
6989                 vmx->nested.msr_bitmap =
6990                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6991                 if (!vmx->nested.msr_bitmap)
6992                         goto out_msr_bitmap;
6993         }
6994
6995         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6996         if (!vmx->nested.cached_vmcs12)
6997                 goto out_cached_vmcs12;
6998
6999         if (enable_shadow_vmcs) {
7000                 shadow_vmcs = alloc_vmcs();
7001                 if (!shadow_vmcs)
7002                         goto out_shadow_vmcs;
7003                 /* mark vmcs as shadow */
7004                 shadow_vmcs->revision_id |= (1u << 31);
7005                 /* init shadow vmcs */
7006                 vmcs_clear(shadow_vmcs);
7007                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7008         }
7009
7010         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7011         vmx->nested.vmcs02_num = 0;
7012
7013         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7014                      HRTIMER_MODE_REL_PINNED);
7015         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7016
7017         vmx->nested.vmxon = true;
7018         return 0;
7019
7020 out_shadow_vmcs:
7021         kfree(vmx->nested.cached_vmcs12);
7022
7023 out_cached_vmcs12:
7024         free_page((unsigned long)vmx->nested.msr_bitmap);
7025
7026 out_msr_bitmap:
7027         return -ENOMEM;
7028 }
7029
7030 /*
7031  * Emulate the VMXON instruction.
7032  * Currently, we just remember that VMX is active, and do not save or even
7033  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7034  * do not currently need to store anything in that guest-allocated memory
7035  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7036  * argument is different from the VMXON pointer (which the spec says they do).
7037  */
7038 static int handle_vmon(struct kvm_vcpu *vcpu)
7039 {
7040         int ret;
7041         gpa_t vmptr;
7042         struct page *page;
7043         struct vcpu_vmx *vmx = to_vmx(vcpu);
7044         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7045                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7046
7047         /*
7048          * The Intel VMX Instruction Reference lists a bunch of bits that are
7049          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7050          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7051          * Otherwise, we should fail with #UD.  But most faulting conditions
7052          * have already been checked by hardware, prior to the VM-exit for
7053          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7054          * that bit set to 1 in non-root mode.
7055          */
7056         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7057                 kvm_queue_exception(vcpu, UD_VECTOR);
7058                 return 1;
7059         }
7060
7061         if (vmx->nested.vmxon) {
7062                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7063                 return kvm_skip_emulated_instruction(vcpu);
7064         }
7065
7066         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7067                         != VMXON_NEEDED_FEATURES) {
7068                 kvm_inject_gp(vcpu, 0);
7069                 return 1;
7070         }
7071
7072         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7073                 return 1;
7074
7075         /*
7076          * SDM 3: 24.11.5
7077          * The first 4 bytes of VMXON region contain the supported
7078          * VMCS revision identifier
7079          *
7080          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7081          * which replaces physical address width with 32
7082          */
7083         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7084                 nested_vmx_failInvalid(vcpu);
7085                 return kvm_skip_emulated_instruction(vcpu);
7086         }
7087
7088         page = nested_get_page(vcpu, vmptr);
7089         if (page == NULL) {
7090                 nested_vmx_failInvalid(vcpu);
7091                 return kvm_skip_emulated_instruction(vcpu);
7092         }
7093         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7094                 kunmap(page);
7095                 nested_release_page_clean(page);
7096                 nested_vmx_failInvalid(vcpu);
7097                 return kvm_skip_emulated_instruction(vcpu);
7098         }
7099         kunmap(page);
7100         nested_release_page_clean(page);
7101
7102         vmx->nested.vmxon_ptr = vmptr;
7103         ret = enter_vmx_operation(vcpu);
7104         if (ret)
7105                 return ret;
7106
7107         nested_vmx_succeed(vcpu);
7108         return kvm_skip_emulated_instruction(vcpu);
7109 }
7110
7111 /*
7112  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7113  * for running VMX instructions (except VMXON, whose prerequisites are
7114  * slightly different). It also specifies what exception to inject otherwise.
7115  * Note that many of these exceptions have priority over VM exits, so they
7116  * don't have to be checked again here.
7117  */
7118 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7119 {
7120         if (!to_vmx(vcpu)->nested.vmxon) {
7121                 kvm_queue_exception(vcpu, UD_VECTOR);
7122                 return 0;
7123         }
7124         return 1;
7125 }
7126
7127 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7128 {
7129         if (vmx->nested.current_vmptr == -1ull)
7130                 return;
7131
7132         /* current_vmptr and current_vmcs12 are always set/reset together */
7133         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7134                 return;
7135
7136         if (enable_shadow_vmcs) {
7137                 /* copy to memory all shadowed fields in case
7138                    they were modified */
7139                 copy_shadow_to_vmcs12(vmx);
7140                 vmx->nested.sync_shadow_vmcs = false;
7141                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7142                                 SECONDARY_EXEC_SHADOW_VMCS);
7143                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7144         }
7145         vmx->nested.posted_intr_nv = -1;
7146
7147         /* Flush VMCS12 to guest memory */
7148         memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7149                VMCS12_SIZE);
7150
7151         kunmap(vmx->nested.current_vmcs12_page);
7152         nested_release_page(vmx->nested.current_vmcs12_page);
7153         vmx->nested.current_vmptr = -1ull;
7154         vmx->nested.current_vmcs12 = NULL;
7155 }
7156
7157 /*
7158  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7159  * just stops using VMX.
7160  */
7161 static void free_nested(struct vcpu_vmx *vmx)
7162 {
7163         if (!vmx->nested.vmxon)
7164                 return;
7165
7166         vmx->nested.vmxon = false;
7167         free_vpid(vmx->nested.vpid02);
7168         nested_release_vmcs12(vmx);
7169         if (vmx->nested.msr_bitmap) {
7170                 free_page((unsigned long)vmx->nested.msr_bitmap);
7171                 vmx->nested.msr_bitmap = NULL;
7172         }
7173         if (enable_shadow_vmcs) {
7174                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7175                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7176                 vmx->vmcs01.shadow_vmcs = NULL;
7177         }
7178         kfree(vmx->nested.cached_vmcs12);
7179         /* Unpin physical memory we referred to in current vmcs02 */
7180         if (vmx->nested.apic_access_page) {
7181                 nested_release_page(vmx->nested.apic_access_page);
7182                 vmx->nested.apic_access_page = NULL;
7183         }
7184         if (vmx->nested.virtual_apic_page) {
7185                 nested_release_page(vmx->nested.virtual_apic_page);
7186                 vmx->nested.virtual_apic_page = NULL;
7187         }
7188         if (vmx->nested.pi_desc_page) {
7189                 kunmap(vmx->nested.pi_desc_page);
7190                 nested_release_page(vmx->nested.pi_desc_page);
7191                 vmx->nested.pi_desc_page = NULL;
7192                 vmx->nested.pi_desc = NULL;
7193         }
7194
7195         nested_free_all_saved_vmcss(vmx);
7196 }
7197
7198 /* Emulate the VMXOFF instruction */
7199 static int handle_vmoff(struct kvm_vcpu *vcpu)
7200 {
7201         if (!nested_vmx_check_permission(vcpu))
7202                 return 1;
7203         free_nested(to_vmx(vcpu));
7204         nested_vmx_succeed(vcpu);
7205         return kvm_skip_emulated_instruction(vcpu);
7206 }
7207
7208 /* Emulate the VMCLEAR instruction */
7209 static int handle_vmclear(struct kvm_vcpu *vcpu)
7210 {
7211         struct vcpu_vmx *vmx = to_vmx(vcpu);
7212         u32 zero = 0;
7213         gpa_t vmptr;
7214
7215         if (!nested_vmx_check_permission(vcpu))
7216                 return 1;
7217
7218         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7219                 return 1;
7220
7221         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7222                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7223                 return kvm_skip_emulated_instruction(vcpu);
7224         }
7225
7226         if (vmptr == vmx->nested.vmxon_ptr) {
7227                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7228                 return kvm_skip_emulated_instruction(vcpu);
7229         }
7230
7231         if (vmptr == vmx->nested.current_vmptr)
7232                 nested_release_vmcs12(vmx);
7233
7234         kvm_vcpu_write_guest(vcpu,
7235                         vmptr + offsetof(struct vmcs12, launch_state),
7236                         &zero, sizeof(zero));
7237
7238         nested_free_vmcs02(vmx, vmptr);
7239
7240         nested_vmx_succeed(vcpu);
7241         return kvm_skip_emulated_instruction(vcpu);
7242 }
7243
7244 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7245
7246 /* Emulate the VMLAUNCH instruction */
7247 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7248 {
7249         return nested_vmx_run(vcpu, true);
7250 }
7251
7252 /* Emulate the VMRESUME instruction */
7253 static int handle_vmresume(struct kvm_vcpu *vcpu)
7254 {
7255
7256         return nested_vmx_run(vcpu, false);
7257 }
7258
7259 /*
7260  * Read a vmcs12 field. Since these can have varying lengths and we return
7261  * one type, we chose the biggest type (u64) and zero-extend the return value
7262  * to that size. Note that the caller, handle_vmread, might need to use only
7263  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7264  * 64-bit fields are to be returned).
7265  */
7266 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7267                                   unsigned long field, u64 *ret)
7268 {
7269         short offset = vmcs_field_to_offset(field);
7270         char *p;
7271
7272         if (offset < 0)
7273                 return offset;
7274
7275         p = ((char *)(get_vmcs12(vcpu))) + offset;
7276
7277         switch (vmcs_field_type(field)) {
7278         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7279                 *ret = *((natural_width *)p);
7280                 return 0;
7281         case VMCS_FIELD_TYPE_U16:
7282                 *ret = *((u16 *)p);
7283                 return 0;
7284         case VMCS_FIELD_TYPE_U32:
7285                 *ret = *((u32 *)p);
7286                 return 0;
7287         case VMCS_FIELD_TYPE_U64:
7288                 *ret = *((u64 *)p);
7289                 return 0;
7290         default:
7291                 WARN_ON(1);
7292                 return -ENOENT;
7293         }
7294 }
7295
7296
7297 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7298                                    unsigned long field, u64 field_value){
7299         short offset = vmcs_field_to_offset(field);
7300         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7301         if (offset < 0)
7302                 return offset;
7303
7304         switch (vmcs_field_type(field)) {
7305         case VMCS_FIELD_TYPE_U16:
7306                 *(u16 *)p = field_value;
7307                 return 0;
7308         case VMCS_FIELD_TYPE_U32:
7309                 *(u32 *)p = field_value;
7310                 return 0;
7311         case VMCS_FIELD_TYPE_U64:
7312                 *(u64 *)p = field_value;
7313                 return 0;
7314         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7315                 *(natural_width *)p = field_value;
7316                 return 0;
7317         default:
7318                 WARN_ON(1);
7319                 return -ENOENT;
7320         }
7321
7322 }
7323
7324 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7325 {
7326         int i;
7327         unsigned long field;
7328         u64 field_value;
7329         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7330         const unsigned long *fields = shadow_read_write_fields;
7331         const int num_fields = max_shadow_read_write_fields;
7332
7333         preempt_disable();
7334
7335         vmcs_load(shadow_vmcs);
7336
7337         for (i = 0; i < num_fields; i++) {
7338                 field = fields[i];
7339                 switch (vmcs_field_type(field)) {
7340                 case VMCS_FIELD_TYPE_U16:
7341                         field_value = vmcs_read16(field);
7342                         break;
7343                 case VMCS_FIELD_TYPE_U32:
7344                         field_value = vmcs_read32(field);
7345                         break;
7346                 case VMCS_FIELD_TYPE_U64:
7347                         field_value = vmcs_read64(field);
7348                         break;
7349                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7350                         field_value = vmcs_readl(field);
7351                         break;
7352                 default:
7353                         WARN_ON(1);
7354                         continue;
7355                 }
7356                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7357         }
7358
7359         vmcs_clear(shadow_vmcs);
7360         vmcs_load(vmx->loaded_vmcs->vmcs);
7361
7362         preempt_enable();
7363 }
7364
7365 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7366 {
7367         const unsigned long *fields[] = {
7368                 shadow_read_write_fields,
7369                 shadow_read_only_fields
7370         };
7371         const int max_fields[] = {
7372                 max_shadow_read_write_fields,
7373                 max_shadow_read_only_fields
7374         };
7375         int i, q;
7376         unsigned long field;
7377         u64 field_value = 0;
7378         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7379
7380         vmcs_load(shadow_vmcs);
7381
7382         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7383                 for (i = 0; i < max_fields[q]; i++) {
7384                         field = fields[q][i];
7385                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7386
7387                         switch (vmcs_field_type(field)) {
7388                         case VMCS_FIELD_TYPE_U16:
7389                                 vmcs_write16(field, (u16)field_value);
7390                                 break;
7391                         case VMCS_FIELD_TYPE_U32:
7392                                 vmcs_write32(field, (u32)field_value);
7393                                 break;
7394                         case VMCS_FIELD_TYPE_U64:
7395                                 vmcs_write64(field, (u64)field_value);
7396                                 break;
7397                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7398                                 vmcs_writel(field, (long)field_value);
7399                                 break;
7400                         default:
7401                                 WARN_ON(1);
7402                                 break;
7403                         }
7404                 }
7405         }
7406
7407         vmcs_clear(shadow_vmcs);
7408         vmcs_load(vmx->loaded_vmcs->vmcs);
7409 }
7410
7411 /*
7412  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7413  * used before) all generate the same failure when it is missing.
7414  */
7415 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7416 {
7417         struct vcpu_vmx *vmx = to_vmx(vcpu);
7418         if (vmx->nested.current_vmptr == -1ull) {
7419                 nested_vmx_failInvalid(vcpu);
7420                 return 0;
7421         }
7422         return 1;
7423 }
7424
7425 static int handle_vmread(struct kvm_vcpu *vcpu)
7426 {
7427         unsigned long field;
7428         u64 field_value;
7429         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7430         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7431         gva_t gva = 0;
7432
7433         if (!nested_vmx_check_permission(vcpu))
7434                 return 1;
7435
7436         if (!nested_vmx_check_vmcs12(vcpu))
7437                 return kvm_skip_emulated_instruction(vcpu);
7438
7439         /* Decode instruction info and find the field to read */
7440         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7441         /* Read the field, zero-extended to a u64 field_value */
7442         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7443                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7444                 return kvm_skip_emulated_instruction(vcpu);
7445         }
7446         /*
7447          * Now copy part of this value to register or memory, as requested.
7448          * Note that the number of bits actually copied is 32 or 64 depending
7449          * on the guest's mode (32 or 64 bit), not on the given field's length.
7450          */
7451         if (vmx_instruction_info & (1u << 10)) {
7452                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7453                         field_value);
7454         } else {
7455                 if (get_vmx_mem_address(vcpu, exit_qualification,
7456                                 vmx_instruction_info, true, &gva))
7457                         return 1;
7458                 /* _system ok, as hardware has verified cpl=0 */
7459                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7460                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7461         }
7462
7463         nested_vmx_succeed(vcpu);
7464         return kvm_skip_emulated_instruction(vcpu);
7465 }
7466
7467
7468 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7469 {
7470         unsigned long field;
7471         gva_t gva;
7472         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7473         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7474         /* The value to write might be 32 or 64 bits, depending on L1's long
7475          * mode, and eventually we need to write that into a field of several
7476          * possible lengths. The code below first zero-extends the value to 64
7477          * bit (field_value), and then copies only the appropriate number of
7478          * bits into the vmcs12 field.
7479          */
7480         u64 field_value = 0;
7481         struct x86_exception e;
7482
7483         if (!nested_vmx_check_permission(vcpu))
7484                 return 1;
7485
7486         if (!nested_vmx_check_vmcs12(vcpu))
7487                 return kvm_skip_emulated_instruction(vcpu);
7488
7489         if (vmx_instruction_info & (1u << 10))
7490                 field_value = kvm_register_readl(vcpu,
7491                         (((vmx_instruction_info) >> 3) & 0xf));
7492         else {
7493                 if (get_vmx_mem_address(vcpu, exit_qualification,
7494                                 vmx_instruction_info, false, &gva))
7495                         return 1;
7496                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7497                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7498                         kvm_inject_page_fault(vcpu, &e);
7499                         return 1;
7500                 }
7501         }
7502
7503
7504         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7505         if (vmcs_field_readonly(field)) {
7506                 nested_vmx_failValid(vcpu,
7507                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7508                 return kvm_skip_emulated_instruction(vcpu);
7509         }
7510
7511         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7512                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7513                 return kvm_skip_emulated_instruction(vcpu);
7514         }
7515
7516         nested_vmx_succeed(vcpu);
7517         return kvm_skip_emulated_instruction(vcpu);
7518 }
7519
7520 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7521 {
7522         vmx->nested.current_vmptr = vmptr;
7523         if (enable_shadow_vmcs) {
7524                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7525                               SECONDARY_EXEC_SHADOW_VMCS);
7526                 vmcs_write64(VMCS_LINK_POINTER,
7527                              __pa(vmx->vmcs01.shadow_vmcs));
7528                 vmx->nested.sync_shadow_vmcs = true;
7529         }
7530 }
7531
7532 /* Emulate the VMPTRLD instruction */
7533 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7534 {
7535         struct vcpu_vmx *vmx = to_vmx(vcpu);
7536         gpa_t vmptr;
7537
7538         if (!nested_vmx_check_permission(vcpu))
7539                 return 1;
7540
7541         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7542                 return 1;
7543
7544         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7545                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7546                 return kvm_skip_emulated_instruction(vcpu);
7547         }
7548
7549         if (vmptr == vmx->nested.vmxon_ptr) {
7550                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7551                 return kvm_skip_emulated_instruction(vcpu);
7552         }
7553
7554         if (vmx->nested.current_vmptr != vmptr) {
7555                 struct vmcs12 *new_vmcs12;
7556                 struct page *page;
7557                 page = nested_get_page(vcpu, vmptr);
7558                 if (page == NULL) {
7559                         nested_vmx_failInvalid(vcpu);
7560                         return kvm_skip_emulated_instruction(vcpu);
7561                 }
7562                 new_vmcs12 = kmap(page);
7563                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7564                         kunmap(page);
7565                         nested_release_page_clean(page);
7566                         nested_vmx_failValid(vcpu,
7567                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7568                         return kvm_skip_emulated_instruction(vcpu);
7569                 }
7570
7571                 nested_release_vmcs12(vmx);
7572                 vmx->nested.current_vmcs12 = new_vmcs12;
7573                 vmx->nested.current_vmcs12_page = page;
7574                 /*
7575                  * Load VMCS12 from guest memory since it is not already
7576                  * cached.
7577                  */
7578                 memcpy(vmx->nested.cached_vmcs12,
7579                        vmx->nested.current_vmcs12, VMCS12_SIZE);
7580                 set_current_vmptr(vmx, vmptr);
7581         }
7582
7583         nested_vmx_succeed(vcpu);
7584         return kvm_skip_emulated_instruction(vcpu);
7585 }
7586
7587 /* Emulate the VMPTRST instruction */
7588 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7589 {
7590         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7591         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7592         gva_t vmcs_gva;
7593         struct x86_exception e;
7594
7595         if (!nested_vmx_check_permission(vcpu))
7596                 return 1;
7597
7598         if (get_vmx_mem_address(vcpu, exit_qualification,
7599                         vmx_instruction_info, true, &vmcs_gva))
7600                 return 1;
7601         /* ok to use *_system, as hardware has verified cpl=0 */
7602         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7603                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7604                                  sizeof(u64), &e)) {
7605                 kvm_inject_page_fault(vcpu, &e);
7606                 return 1;
7607         }
7608         nested_vmx_succeed(vcpu);
7609         return kvm_skip_emulated_instruction(vcpu);
7610 }
7611
7612 /* Emulate the INVEPT instruction */
7613 static int handle_invept(struct kvm_vcpu *vcpu)
7614 {
7615         struct vcpu_vmx *vmx = to_vmx(vcpu);
7616         u32 vmx_instruction_info, types;
7617         unsigned long type;
7618         gva_t gva;
7619         struct x86_exception e;
7620         struct {
7621                 u64 eptp, gpa;
7622         } operand;
7623
7624         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7625               SECONDARY_EXEC_ENABLE_EPT) ||
7626             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7627                 kvm_queue_exception(vcpu, UD_VECTOR);
7628                 return 1;
7629         }
7630
7631         if (!nested_vmx_check_permission(vcpu))
7632                 return 1;
7633
7634         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7635         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7636
7637         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7638
7639         if (type >= 32 || !(types & (1 << type))) {
7640                 nested_vmx_failValid(vcpu,
7641                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7642                 return kvm_skip_emulated_instruction(vcpu);
7643         }
7644
7645         /* According to the Intel VMX instruction reference, the memory
7646          * operand is read even if it isn't needed (e.g., for type==global)
7647          */
7648         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7649                         vmx_instruction_info, false, &gva))
7650                 return 1;
7651         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7652                                 sizeof(operand), &e)) {
7653                 kvm_inject_page_fault(vcpu, &e);
7654                 return 1;
7655         }
7656
7657         switch (type) {
7658         case VMX_EPT_EXTENT_GLOBAL:
7659         /*
7660          * TODO: track mappings and invalidate
7661          * single context requests appropriately
7662          */
7663         case VMX_EPT_EXTENT_CONTEXT:
7664                 kvm_mmu_sync_roots(vcpu);
7665                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7666                 nested_vmx_succeed(vcpu);
7667                 break;
7668         default:
7669                 BUG_ON(1);
7670                 break;
7671         }
7672
7673         return kvm_skip_emulated_instruction(vcpu);
7674 }
7675
7676 static int handle_invvpid(struct kvm_vcpu *vcpu)
7677 {
7678         struct vcpu_vmx *vmx = to_vmx(vcpu);
7679         u32 vmx_instruction_info;
7680         unsigned long type, types;
7681         gva_t gva;
7682         struct x86_exception e;
7683         struct {
7684                 u64 vpid;
7685                 u64 gla;
7686         } operand;
7687
7688         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7689               SECONDARY_EXEC_ENABLE_VPID) ||
7690                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7691                 kvm_queue_exception(vcpu, UD_VECTOR);
7692                 return 1;
7693         }
7694
7695         if (!nested_vmx_check_permission(vcpu))
7696                 return 1;
7697
7698         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7699         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7700
7701         types = (vmx->nested.nested_vmx_vpid_caps &
7702                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7703
7704         if (type >= 32 || !(types & (1 << type))) {
7705                 nested_vmx_failValid(vcpu,
7706                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7707                 return kvm_skip_emulated_instruction(vcpu);
7708         }
7709
7710         /* according to the intel vmx instruction reference, the memory
7711          * operand is read even if it isn't needed (e.g., for type==global)
7712          */
7713         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7714                         vmx_instruction_info, false, &gva))
7715                 return 1;
7716         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7717                                 sizeof(operand), &e)) {
7718                 kvm_inject_page_fault(vcpu, &e);
7719                 return 1;
7720         }
7721         if (operand.vpid >> 16) {
7722                 nested_vmx_failValid(vcpu,
7723                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7724                 return kvm_skip_emulated_instruction(vcpu);
7725         }
7726
7727         switch (type) {
7728         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7729                 if (is_noncanonical_address(operand.gla)) {
7730                         nested_vmx_failValid(vcpu,
7731                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7732                         return kvm_skip_emulated_instruction(vcpu);
7733                 }
7734                 /* fall through */
7735         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7736         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7737                 if (!operand.vpid) {
7738                         nested_vmx_failValid(vcpu,
7739                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7740                         return kvm_skip_emulated_instruction(vcpu);
7741                 }
7742                 break;
7743         case VMX_VPID_EXTENT_ALL_CONTEXT:
7744                 break;
7745         default:
7746                 WARN_ON_ONCE(1);
7747                 return kvm_skip_emulated_instruction(vcpu);
7748         }
7749
7750         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7751         nested_vmx_succeed(vcpu);
7752
7753         return kvm_skip_emulated_instruction(vcpu);
7754 }
7755
7756 static int handle_pml_full(struct kvm_vcpu *vcpu)
7757 {
7758         unsigned long exit_qualification;
7759
7760         trace_kvm_pml_full(vcpu->vcpu_id);
7761
7762         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7763
7764         /*
7765          * PML buffer FULL happened while executing iret from NMI,
7766          * "blocked by NMI" bit has to be set before next VM entry.
7767          */
7768         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7769                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7770                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7771                                 GUEST_INTR_STATE_NMI);
7772
7773         /*
7774          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7775          * here.., and there's no userspace involvement needed for PML.
7776          */
7777         return 1;
7778 }
7779
7780 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7781 {
7782         kvm_lapic_expired_hv_timer(vcpu);
7783         return 1;
7784 }
7785
7786 /*
7787  * The exit handlers return 1 if the exit was handled fully and guest execution
7788  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7789  * to be done to userspace and return 0.
7790  */
7791 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7792         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7793         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7794         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7795         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7796         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7797         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7798         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7799         [EXIT_REASON_CPUID]                   = handle_cpuid,
7800         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7801         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7802         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7803         [EXIT_REASON_HLT]                     = handle_halt,
7804         [EXIT_REASON_INVD]                    = handle_invd,
7805         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7806         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7807         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7808         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7809         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7810         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7811         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7812         [EXIT_REASON_VMREAD]                  = handle_vmread,
7813         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7814         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7815         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7816         [EXIT_REASON_VMON]                    = handle_vmon,
7817         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7818         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7819         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7820         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7821         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7822         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7823         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7824         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7825         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7826         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7827         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7828         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7829         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7830         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7831         [EXIT_REASON_INVEPT]                  = handle_invept,
7832         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7833         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7834         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7835         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7836         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7837 };
7838
7839 static const int kvm_vmx_max_exit_handlers =
7840         ARRAY_SIZE(kvm_vmx_exit_handlers);
7841
7842 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7843                                        struct vmcs12 *vmcs12)
7844 {
7845         unsigned long exit_qualification;
7846         gpa_t bitmap, last_bitmap;
7847         unsigned int port;
7848         int size;
7849         u8 b;
7850
7851         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7852                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7853
7854         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7855
7856         port = exit_qualification >> 16;
7857         size = (exit_qualification & 7) + 1;
7858
7859         last_bitmap = (gpa_t)-1;
7860         b = -1;
7861
7862         while (size > 0) {
7863                 if (port < 0x8000)
7864                         bitmap = vmcs12->io_bitmap_a;
7865                 else if (port < 0x10000)
7866                         bitmap = vmcs12->io_bitmap_b;
7867                 else
7868                         return true;
7869                 bitmap += (port & 0x7fff) / 8;
7870
7871                 if (last_bitmap != bitmap)
7872                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7873                                 return true;
7874                 if (b & (1 << (port & 7)))
7875                         return true;
7876
7877                 port++;
7878                 size--;
7879                 last_bitmap = bitmap;
7880         }
7881
7882         return false;
7883 }
7884
7885 /*
7886  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7887  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7888  * disinterest in the current event (read or write a specific MSR) by using an
7889  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7890  */
7891 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7892         struct vmcs12 *vmcs12, u32 exit_reason)
7893 {
7894         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7895         gpa_t bitmap;
7896
7897         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7898                 return true;
7899
7900         /*
7901          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7902          * for the four combinations of read/write and low/high MSR numbers.
7903          * First we need to figure out which of the four to use:
7904          */
7905         bitmap = vmcs12->msr_bitmap;
7906         if (exit_reason == EXIT_REASON_MSR_WRITE)
7907                 bitmap += 2048;
7908         if (msr_index >= 0xc0000000) {
7909                 msr_index -= 0xc0000000;
7910                 bitmap += 1024;
7911         }
7912
7913         /* Then read the msr_index'th bit from this bitmap: */
7914         if (msr_index < 1024*8) {
7915                 unsigned char b;
7916                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7917                         return true;
7918                 return 1 & (b >> (msr_index & 7));
7919         } else
7920                 return true; /* let L1 handle the wrong parameter */
7921 }
7922
7923 /*
7924  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7925  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7926  * intercept (via guest_host_mask etc.) the current event.
7927  */
7928 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7929         struct vmcs12 *vmcs12)
7930 {
7931         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7932         int cr = exit_qualification & 15;
7933         int reg;
7934         unsigned long val;
7935
7936         switch ((exit_qualification >> 4) & 3) {
7937         case 0: /* mov to cr */
7938                 reg = (exit_qualification >> 8) & 15;
7939                 val = kvm_register_readl(vcpu, reg);
7940                 switch (cr) {
7941                 case 0:
7942                         if (vmcs12->cr0_guest_host_mask &
7943                             (val ^ vmcs12->cr0_read_shadow))
7944                                 return true;
7945                         break;
7946                 case 3:
7947                         if ((vmcs12->cr3_target_count >= 1 &&
7948                                         vmcs12->cr3_target_value0 == val) ||
7949                                 (vmcs12->cr3_target_count >= 2 &&
7950                                         vmcs12->cr3_target_value1 == val) ||
7951                                 (vmcs12->cr3_target_count >= 3 &&
7952                                         vmcs12->cr3_target_value2 == val) ||
7953                                 (vmcs12->cr3_target_count >= 4 &&
7954                                         vmcs12->cr3_target_value3 == val))
7955                                 return false;
7956                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7957                                 return true;
7958                         break;
7959                 case 4:
7960                         if (vmcs12->cr4_guest_host_mask &
7961                             (vmcs12->cr4_read_shadow ^ val))
7962                                 return true;
7963                         break;
7964                 case 8:
7965                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7966                                 return true;
7967                         break;
7968                 }
7969                 break;
7970         case 2: /* clts */
7971                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7972                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7973                         return true;
7974                 break;
7975         case 1: /* mov from cr */
7976                 switch (cr) {
7977                 case 3:
7978                         if (vmcs12->cpu_based_vm_exec_control &
7979                             CPU_BASED_CR3_STORE_EXITING)
7980                                 return true;
7981                         break;
7982                 case 8:
7983                         if (vmcs12->cpu_based_vm_exec_control &
7984                             CPU_BASED_CR8_STORE_EXITING)
7985                                 return true;
7986                         break;
7987                 }
7988                 break;
7989         case 3: /* lmsw */
7990                 /*
7991                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7992                  * cr0. Other attempted changes are ignored, with no exit.
7993                  */
7994                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7995                 if (vmcs12->cr0_guest_host_mask & 0xe &
7996                     (val ^ vmcs12->cr0_read_shadow))
7997                         return true;
7998                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7999                     !(vmcs12->cr0_read_shadow & 0x1) &&
8000                     (val & 0x1))
8001                         return true;
8002                 break;
8003         }
8004         return false;
8005 }
8006
8007 /*
8008  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8009  * should handle it ourselves in L0 (and then continue L2). Only call this
8010  * when in is_guest_mode (L2).
8011  */
8012 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8013 {
8014         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8015         struct vcpu_vmx *vmx = to_vmx(vcpu);
8016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8017         u32 exit_reason = vmx->exit_reason;
8018
8019         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8020                                 vmcs_readl(EXIT_QUALIFICATION),
8021                                 vmx->idt_vectoring_info,
8022                                 intr_info,
8023                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8024                                 KVM_ISA_VMX);
8025
8026         if (vmx->nested.nested_run_pending)
8027                 return false;
8028
8029         if (unlikely(vmx->fail)) {
8030                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8031                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8032                 return true;
8033         }
8034
8035         switch (exit_reason) {
8036         case EXIT_REASON_EXCEPTION_NMI:
8037                 if (is_nmi(intr_info))
8038                         return false;
8039                 else if (is_page_fault(intr_info))
8040                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8041                 else if (is_no_device(intr_info) &&
8042                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8043                         return false;
8044                 else if (is_debug(intr_info) &&
8045                          vcpu->guest_debug &
8046                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8047                         return false;
8048                 else if (is_breakpoint(intr_info) &&
8049                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8050                         return false;
8051                 return vmcs12->exception_bitmap &
8052                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8053         case EXIT_REASON_EXTERNAL_INTERRUPT:
8054                 return false;
8055         case EXIT_REASON_TRIPLE_FAULT:
8056                 return true;
8057         case EXIT_REASON_PENDING_INTERRUPT:
8058                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8059         case EXIT_REASON_NMI_WINDOW:
8060                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8061         case EXIT_REASON_TASK_SWITCH:
8062                 return true;
8063         case EXIT_REASON_CPUID:
8064                 return true;
8065         case EXIT_REASON_HLT:
8066                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8067         case EXIT_REASON_INVD:
8068                 return true;
8069         case EXIT_REASON_INVLPG:
8070                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8071         case EXIT_REASON_RDPMC:
8072                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8073         case EXIT_REASON_RDRAND:
8074                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8075         case EXIT_REASON_RDSEED:
8076                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8077         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8078                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8079         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8080         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8081         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8082         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8083         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8084         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8085                 /*
8086                  * VMX instructions trap unconditionally. This allows L1 to
8087                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8088                  */
8089                 return true;
8090         case EXIT_REASON_CR_ACCESS:
8091                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8092         case EXIT_REASON_DR_ACCESS:
8093                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8094         case EXIT_REASON_IO_INSTRUCTION:
8095                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8096         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8097                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8098         case EXIT_REASON_MSR_READ:
8099         case EXIT_REASON_MSR_WRITE:
8100                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8101         case EXIT_REASON_INVALID_STATE:
8102                 return true;
8103         case EXIT_REASON_MWAIT_INSTRUCTION:
8104                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8105         case EXIT_REASON_MONITOR_TRAP_FLAG:
8106                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8107         case EXIT_REASON_MONITOR_INSTRUCTION:
8108                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8109         case EXIT_REASON_PAUSE_INSTRUCTION:
8110                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8111                         nested_cpu_has2(vmcs12,
8112                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8113         case EXIT_REASON_MCE_DURING_VMENTRY:
8114                 return false;
8115         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8116                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8117         case EXIT_REASON_APIC_ACCESS:
8118                 return nested_cpu_has2(vmcs12,
8119                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8120         case EXIT_REASON_APIC_WRITE:
8121         case EXIT_REASON_EOI_INDUCED:
8122                 /* apic_write and eoi_induced should exit unconditionally. */
8123                 return true;
8124         case EXIT_REASON_EPT_VIOLATION:
8125                 /*
8126                  * L0 always deals with the EPT violation. If nested EPT is
8127                  * used, and the nested mmu code discovers that the address is
8128                  * missing in the guest EPT table (EPT12), the EPT violation
8129                  * will be injected with nested_ept_inject_page_fault()
8130                  */
8131                 return false;
8132         case EXIT_REASON_EPT_MISCONFIG:
8133                 /*
8134                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8135                  * table (shadow on EPT) or a merged EPT table that L0 built
8136                  * (EPT on EPT). So any problems with the structure of the
8137                  * table is L0's fault.
8138                  */
8139                 return false;
8140         case EXIT_REASON_WBINVD:
8141                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8142         case EXIT_REASON_XSETBV:
8143                 return true;
8144         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8145                 /*
8146                  * This should never happen, since it is not possible to
8147                  * set XSS to a non-zero value---neither in L1 nor in L2.
8148                  * If if it were, XSS would have to be checked against
8149                  * the XSS exit bitmap in vmcs12.
8150                  */
8151                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8152         case EXIT_REASON_PREEMPTION_TIMER:
8153                 return false;
8154         case EXIT_REASON_PML_FULL:
8155                 /* We emulate PML support to L1. */
8156                 return false;
8157         default:
8158                 return true;
8159         }
8160 }
8161
8162 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8163 {
8164         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8165         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8166 }
8167
8168 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8169 {
8170         if (vmx->pml_pg) {
8171                 __free_page(vmx->pml_pg);
8172                 vmx->pml_pg = NULL;
8173         }
8174 }
8175
8176 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8177 {
8178         struct vcpu_vmx *vmx = to_vmx(vcpu);
8179         u64 *pml_buf;
8180         u16 pml_idx;
8181
8182         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8183
8184         /* Do nothing if PML buffer is empty */
8185         if (pml_idx == (PML_ENTITY_NUM - 1))
8186                 return;
8187
8188         /* PML index always points to next available PML buffer entity */
8189         if (pml_idx >= PML_ENTITY_NUM)
8190                 pml_idx = 0;
8191         else
8192                 pml_idx++;
8193
8194         pml_buf = page_address(vmx->pml_pg);
8195         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8196                 u64 gpa;
8197
8198                 gpa = pml_buf[pml_idx];
8199                 WARN_ON(gpa & (PAGE_SIZE - 1));
8200                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8201         }
8202
8203         /* reset PML index */
8204         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8205 }
8206
8207 /*
8208  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8209  * Called before reporting dirty_bitmap to userspace.
8210  */
8211 static void kvm_flush_pml_buffers(struct kvm *kvm)
8212 {
8213         int i;
8214         struct kvm_vcpu *vcpu;
8215         /*
8216          * We only need to kick vcpu out of guest mode here, as PML buffer
8217          * is flushed at beginning of all VMEXITs, and it's obvious that only
8218          * vcpus running in guest are possible to have unflushed GPAs in PML
8219          * buffer.
8220          */
8221         kvm_for_each_vcpu(i, vcpu, kvm)
8222                 kvm_vcpu_kick(vcpu);
8223 }
8224
8225 static void vmx_dump_sel(char *name, uint32_t sel)
8226 {
8227         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8228                name, vmcs_read16(sel),
8229                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8230                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8231                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8232 }
8233
8234 static void vmx_dump_dtsel(char *name, uint32_t limit)
8235 {
8236         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8237                name, vmcs_read32(limit),
8238                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8239 }
8240
8241 static void dump_vmcs(void)
8242 {
8243         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8244         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8245         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8246         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8247         u32 secondary_exec_control = 0;
8248         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8249         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8250         int i, n;
8251
8252         if (cpu_has_secondary_exec_ctrls())
8253                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8254
8255         pr_err("*** Guest State ***\n");
8256         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8257                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8258                vmcs_readl(CR0_GUEST_HOST_MASK));
8259         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8260                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8261         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8262         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8263             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8264         {
8265                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8266                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8267                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8268                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8269         }
8270         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8271                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8272         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8273                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8274         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8275                vmcs_readl(GUEST_SYSENTER_ESP),
8276                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8277         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8278         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8279         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8280         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8281         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8282         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8283         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8284         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8285         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8286         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8287         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8288             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8289                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8290                        efer, vmcs_read64(GUEST_IA32_PAT));
8291         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8292                vmcs_read64(GUEST_IA32_DEBUGCTL),
8293                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8294         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8295                 pr_err("PerfGlobCtl = 0x%016llx\n",
8296                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8297         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8298                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8299         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8300                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8301                vmcs_read32(GUEST_ACTIVITY_STATE));
8302         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8303                 pr_err("InterruptStatus = %04x\n",
8304                        vmcs_read16(GUEST_INTR_STATUS));
8305
8306         pr_err("*** Host State ***\n");
8307         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8308                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8309         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8310                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8311                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8312                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8313                vmcs_read16(HOST_TR_SELECTOR));
8314         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8315                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8316                vmcs_readl(HOST_TR_BASE));
8317         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8318                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8319         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8320                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8321                vmcs_readl(HOST_CR4));
8322         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8323                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8324                vmcs_read32(HOST_IA32_SYSENTER_CS),
8325                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8326         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8327                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8328                        vmcs_read64(HOST_IA32_EFER),
8329                        vmcs_read64(HOST_IA32_PAT));
8330         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8331                 pr_err("PerfGlobCtl = 0x%016llx\n",
8332                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8333
8334         pr_err("*** Control State ***\n");
8335         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8336                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8337         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8338         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8339                vmcs_read32(EXCEPTION_BITMAP),
8340                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8341                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8342         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8343                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8344                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8345                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8346         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8347                vmcs_read32(VM_EXIT_INTR_INFO),
8348                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8349                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8350         pr_err("        reason=%08x qualification=%016lx\n",
8351                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8352         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8353                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8354                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8355         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8356         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8357                 pr_err("TSC Multiplier = 0x%016llx\n",
8358                        vmcs_read64(TSC_MULTIPLIER));
8359         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8360                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8361         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8362                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8363         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8364                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8365         n = vmcs_read32(CR3_TARGET_COUNT);
8366         for (i = 0; i + 1 < n; i += 4)
8367                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8368                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8369                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8370         if (i < n)
8371                 pr_err("CR3 target%u=%016lx\n",
8372                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8373         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8374                 pr_err("PLE Gap=%08x Window=%08x\n",
8375                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8376         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8377                 pr_err("Virtual processor ID = 0x%04x\n",
8378                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8379 }
8380
8381 /*
8382  * The guest has exited.  See if we can fix it or if we need userspace
8383  * assistance.
8384  */
8385 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8386 {
8387         struct vcpu_vmx *vmx = to_vmx(vcpu);
8388         u32 exit_reason = vmx->exit_reason;
8389         u32 vectoring_info = vmx->idt_vectoring_info;
8390
8391         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8392         vcpu->arch.gpa_available = false;
8393
8394         /*
8395          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8396          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8397          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8398          * mode as if vcpus is in root mode, the PML buffer must has been
8399          * flushed already.
8400          */
8401         if (enable_pml)
8402                 vmx_flush_pml_buffer(vcpu);
8403
8404         /* If guest state is invalid, start emulating */
8405         if (vmx->emulation_required)
8406                 return handle_invalid_guest_state(vcpu);
8407
8408         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8409                 nested_vmx_vmexit(vcpu, exit_reason,
8410                                   vmcs_read32(VM_EXIT_INTR_INFO),
8411                                   vmcs_readl(EXIT_QUALIFICATION));
8412                 return 1;
8413         }
8414
8415         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8416                 dump_vmcs();
8417                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8418                 vcpu->run->fail_entry.hardware_entry_failure_reason
8419                         = exit_reason;
8420                 return 0;
8421         }
8422
8423         if (unlikely(vmx->fail)) {
8424                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8425                 vcpu->run->fail_entry.hardware_entry_failure_reason
8426                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8427                 return 0;
8428         }
8429
8430         /*
8431          * Note:
8432          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8433          * delivery event since it indicates guest is accessing MMIO.
8434          * The vm-exit can be triggered again after return to guest that
8435          * will cause infinite loop.
8436          */
8437         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8438                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8439                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8440                         exit_reason != EXIT_REASON_PML_FULL &&
8441                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8442                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8443                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8444                 vcpu->run->internal.ndata = 3;
8445                 vcpu->run->internal.data[0] = vectoring_info;
8446                 vcpu->run->internal.data[1] = exit_reason;
8447                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8448                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8449                         vcpu->run->internal.ndata++;
8450                         vcpu->run->internal.data[3] =
8451                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8452                 }
8453                 return 0;
8454         }
8455
8456         if (exit_reason < kvm_vmx_max_exit_handlers
8457             && kvm_vmx_exit_handlers[exit_reason])
8458                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8459         else {
8460                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8461                                 exit_reason);
8462                 kvm_queue_exception(vcpu, UD_VECTOR);
8463                 return 1;
8464         }
8465 }
8466
8467 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8468 {
8469         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8470
8471         if (is_guest_mode(vcpu) &&
8472                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8473                 return;
8474
8475         if (irr == -1 || tpr < irr) {
8476                 vmcs_write32(TPR_THRESHOLD, 0);
8477                 return;
8478         }
8479
8480         vmcs_write32(TPR_THRESHOLD, irr);
8481 }
8482
8483 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8484 {
8485         u32 sec_exec_control;
8486
8487         /* Postpone execution until vmcs01 is the current VMCS. */
8488         if (is_guest_mode(vcpu)) {
8489                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8490                 return;
8491         }
8492
8493         if (!cpu_has_vmx_virtualize_x2apic_mode())
8494                 return;
8495
8496         if (!cpu_need_tpr_shadow(vcpu))
8497                 return;
8498
8499         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8500
8501         if (set) {
8502                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8503                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8504         } else {
8505                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8506                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8507                 vmx_flush_tlb_ept_only(vcpu);
8508         }
8509         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8510
8511         vmx_set_msr_bitmap(vcpu);
8512 }
8513
8514 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8515 {
8516         struct vcpu_vmx *vmx = to_vmx(vcpu);
8517
8518         /*
8519          * Currently we do not handle the nested case where L2 has an
8520          * APIC access page of its own; that page is still pinned.
8521          * Hence, we skip the case where the VCPU is in guest mode _and_
8522          * L1 prepared an APIC access page for L2.
8523          *
8524          * For the case where L1 and L2 share the same APIC access page
8525          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8526          * in the vmcs12), this function will only update either the vmcs01
8527          * or the vmcs02.  If the former, the vmcs02 will be updated by
8528          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8529          * the next L2->L1 exit.
8530          */
8531         if (!is_guest_mode(vcpu) ||
8532             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8533                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8534                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8535                 vmx_flush_tlb_ept_only(vcpu);
8536         }
8537 }
8538
8539 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8540 {
8541         u16 status;
8542         u8 old;
8543
8544         if (max_isr == -1)
8545                 max_isr = 0;
8546
8547         status = vmcs_read16(GUEST_INTR_STATUS);
8548         old = status >> 8;
8549         if (max_isr != old) {
8550                 status &= 0xff;
8551                 status |= max_isr << 8;
8552                 vmcs_write16(GUEST_INTR_STATUS, status);
8553         }
8554 }
8555
8556 static void vmx_set_rvi(int vector)
8557 {
8558         u16 status;
8559         u8 old;
8560
8561         if (vector == -1)
8562                 vector = 0;
8563
8564         status = vmcs_read16(GUEST_INTR_STATUS);
8565         old = (u8)status & 0xff;
8566         if ((u8)vector != old) {
8567                 status &= ~0xff;
8568                 status |= (u8)vector;
8569                 vmcs_write16(GUEST_INTR_STATUS, status);
8570         }
8571 }
8572
8573 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8574 {
8575         if (!is_guest_mode(vcpu)) {
8576                 vmx_set_rvi(max_irr);
8577                 return;
8578         }
8579
8580         if (max_irr == -1)
8581                 return;
8582
8583         /*
8584          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8585          * handles it.
8586          */
8587         if (nested_exit_on_intr(vcpu))
8588                 return;
8589
8590         /*
8591          * Else, fall back to pre-APICv interrupt injection since L2
8592          * is run without virtual interrupt delivery.
8593          */
8594         if (!kvm_event_needs_reinjection(vcpu) &&
8595             vmx_interrupt_allowed(vcpu)) {
8596                 kvm_queue_interrupt(vcpu, max_irr, false);
8597                 vmx_inject_irq(vcpu);
8598         }
8599 }
8600
8601 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8602 {
8603         struct vcpu_vmx *vmx = to_vmx(vcpu);
8604         int max_irr;
8605
8606         WARN_ON(!vcpu->arch.apicv_active);
8607         if (pi_test_on(&vmx->pi_desc)) {
8608                 pi_clear_on(&vmx->pi_desc);
8609                 /*
8610                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8611                  * But on x86 this is just a compiler barrier anyway.
8612                  */
8613                 smp_mb__after_atomic();
8614                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8615         } else {
8616                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8617         }
8618         vmx_hwapic_irr_update(vcpu, max_irr);
8619         return max_irr;
8620 }
8621
8622 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8623 {
8624         if (!kvm_vcpu_apicv_active(vcpu))
8625                 return;
8626
8627         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8628         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8629         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8630         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8631 }
8632
8633 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8634 {
8635         struct vcpu_vmx *vmx = to_vmx(vcpu);
8636
8637         pi_clear_on(&vmx->pi_desc);
8638         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8639 }
8640
8641 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8642 {
8643         u32 exit_intr_info = 0;
8644         u16 basic_exit_reason = (u16)vmx->exit_reason;
8645
8646         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8647               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8648                 return;
8649
8650         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8651                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8652         vmx->exit_intr_info = exit_intr_info;
8653
8654         /* if exit due to PF check for async PF */
8655         if (is_page_fault(exit_intr_info))
8656                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8657
8658         /* Handle machine checks before interrupts are enabled */
8659         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8660             is_machine_check(exit_intr_info))
8661                 kvm_machine_check();
8662
8663         /* We need to handle NMIs before interrupts are enabled */
8664         if (is_nmi(exit_intr_info)) {
8665                 kvm_before_handle_nmi(&vmx->vcpu);
8666                 asm("int $2");
8667                 kvm_after_handle_nmi(&vmx->vcpu);
8668         }
8669 }
8670
8671 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8672 {
8673         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8674         register void *__sp asm(_ASM_SP);
8675
8676         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8677                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8678                 unsigned int vector;
8679                 unsigned long entry;
8680                 gate_desc *desc;
8681                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8682 #ifdef CONFIG_X86_64
8683                 unsigned long tmp;
8684 #endif
8685
8686                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8687                 desc = (gate_desc *)vmx->host_idt_base + vector;
8688                 entry = gate_offset(*desc);
8689                 asm volatile(
8690 #ifdef CONFIG_X86_64
8691                         "mov %%" _ASM_SP ", %[sp]\n\t"
8692                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8693                         "push $%c[ss]\n\t"
8694                         "push %[sp]\n\t"
8695 #endif
8696                         "pushf\n\t"
8697                         __ASM_SIZE(push) " $%c[cs]\n\t"
8698                         "call *%[entry]\n\t"
8699                         :
8700 #ifdef CONFIG_X86_64
8701                         [sp]"=&r"(tmp),
8702 #endif
8703                         "+r"(__sp)
8704                         :
8705                         [entry]"r"(entry),
8706                         [ss]"i"(__KERNEL_DS),
8707                         [cs]"i"(__KERNEL_CS)
8708                         );
8709         }
8710 }
8711 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8712
8713 static bool vmx_has_high_real_mode_segbase(void)
8714 {
8715         return enable_unrestricted_guest || emulate_invalid_guest_state;
8716 }
8717
8718 static bool vmx_mpx_supported(void)
8719 {
8720         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8721                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8722 }
8723
8724 static bool vmx_xsaves_supported(void)
8725 {
8726         return vmcs_config.cpu_based_2nd_exec_ctrl &
8727                 SECONDARY_EXEC_XSAVES;
8728 }
8729
8730 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8731 {
8732         u32 exit_intr_info;
8733         bool unblock_nmi;
8734         u8 vector;
8735         bool idtv_info_valid;
8736
8737         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8738
8739         if (vmx->nmi_known_unmasked)
8740                 return;
8741         /*
8742          * Can't use vmx->exit_intr_info since we're not sure what
8743          * the exit reason is.
8744          */
8745         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8746         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8747         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8748         /*
8749          * SDM 3: 27.7.1.2 (September 2008)
8750          * Re-set bit "block by NMI" before VM entry if vmexit caused by
8751          * a guest IRET fault.
8752          * SDM 3: 23.2.2 (September 2008)
8753          * Bit 12 is undefined in any of the following cases:
8754          *  If the VM exit sets the valid bit in the IDT-vectoring
8755          *   information field.
8756          *  If the VM exit is due to a double fault.
8757          */
8758         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8759             vector != DF_VECTOR && !idtv_info_valid)
8760                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8761                               GUEST_INTR_STATE_NMI);
8762         else
8763                 vmx->nmi_known_unmasked =
8764                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8765                           & GUEST_INTR_STATE_NMI);
8766 }
8767
8768 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8769                                       u32 idt_vectoring_info,
8770                                       int instr_len_field,
8771                                       int error_code_field)
8772 {
8773         u8 vector;
8774         int type;
8775         bool idtv_info_valid;
8776
8777         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8778
8779         vcpu->arch.nmi_injected = false;
8780         kvm_clear_exception_queue(vcpu);
8781         kvm_clear_interrupt_queue(vcpu);
8782
8783         if (!idtv_info_valid)
8784                 return;
8785
8786         kvm_make_request(KVM_REQ_EVENT, vcpu);
8787
8788         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8789         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8790
8791         switch (type) {
8792         case INTR_TYPE_NMI_INTR:
8793                 vcpu->arch.nmi_injected = true;
8794                 /*
8795                  * SDM 3: 27.7.1.2 (September 2008)
8796                  * Clear bit "block by NMI" before VM entry if a NMI
8797                  * delivery faulted.
8798                  */
8799                 vmx_set_nmi_mask(vcpu, false);
8800                 break;
8801         case INTR_TYPE_SOFT_EXCEPTION:
8802                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8803                 /* fall through */
8804         case INTR_TYPE_HARD_EXCEPTION:
8805                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8806                         u32 err = vmcs_read32(error_code_field);
8807                         kvm_requeue_exception_e(vcpu, vector, err);
8808                 } else
8809                         kvm_requeue_exception(vcpu, vector);
8810                 break;
8811         case INTR_TYPE_SOFT_INTR:
8812                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8813                 /* fall through */
8814         case INTR_TYPE_EXT_INTR:
8815                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8816                 break;
8817         default:
8818                 break;
8819         }
8820 }
8821
8822 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8823 {
8824         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8825                                   VM_EXIT_INSTRUCTION_LEN,
8826                                   IDT_VECTORING_ERROR_CODE);
8827 }
8828
8829 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8830 {
8831         __vmx_complete_interrupts(vcpu,
8832                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8833                                   VM_ENTRY_INSTRUCTION_LEN,
8834                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8835
8836         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8837 }
8838
8839 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8840 {
8841         int i, nr_msrs;
8842         struct perf_guest_switch_msr *msrs;
8843
8844         msrs = perf_guest_get_msrs(&nr_msrs);
8845
8846         if (!msrs)
8847                 return;
8848
8849         for (i = 0; i < nr_msrs; i++)
8850                 if (msrs[i].host == msrs[i].guest)
8851                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8852                 else
8853                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8854                                         msrs[i].host);
8855 }
8856
8857 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8858 {
8859         struct vcpu_vmx *vmx = to_vmx(vcpu);
8860         u64 tscl;
8861         u32 delta_tsc;
8862
8863         if (vmx->hv_deadline_tsc == -1)
8864                 return;
8865
8866         tscl = rdtsc();
8867         if (vmx->hv_deadline_tsc > tscl)
8868                 /* sure to be 32 bit only because checked on set_hv_timer */
8869                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8870                         cpu_preemption_timer_multi);
8871         else
8872                 delta_tsc = 0;
8873
8874         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8875 }
8876
8877 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8878 {
8879         struct vcpu_vmx *vmx = to_vmx(vcpu);
8880         unsigned long debugctlmsr, cr3, cr4;
8881
8882         /* Don't enter VMX if guest state is invalid, let the exit handler
8883            start emulation until we arrive back to a valid state */
8884         if (vmx->emulation_required)
8885                 return;
8886
8887         if (vmx->ple_window_dirty) {
8888                 vmx->ple_window_dirty = false;
8889                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8890         }
8891
8892         if (vmx->nested.sync_shadow_vmcs) {
8893                 copy_vmcs12_to_shadow(vmx);
8894                 vmx->nested.sync_shadow_vmcs = false;
8895         }
8896
8897         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8898                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8899         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8900                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8901
8902         cr3 = __get_current_cr3_fast();
8903         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8904                 vmcs_writel(HOST_CR3, cr3);
8905                 vmx->host_state.vmcs_host_cr3 = cr3;
8906         }
8907
8908         cr4 = cr4_read_shadow();
8909         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8910                 vmcs_writel(HOST_CR4, cr4);
8911                 vmx->host_state.vmcs_host_cr4 = cr4;
8912         }
8913
8914         /* When single-stepping over STI and MOV SS, we must clear the
8915          * corresponding interruptibility bits in the guest state. Otherwise
8916          * vmentry fails as it then expects bit 14 (BS) in pending debug
8917          * exceptions being set, but that's not correct for the guest debugging
8918          * case. */
8919         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8920                 vmx_set_interrupt_shadow(vcpu, 0);
8921
8922         if (vmx->guest_pkru_valid)
8923                 __write_pkru(vmx->guest_pkru);
8924
8925         atomic_switch_perf_msrs(vmx);
8926         debugctlmsr = get_debugctlmsr();
8927
8928         vmx_arm_hv_timer(vcpu);
8929
8930         vmx->__launched = vmx->loaded_vmcs->launched;
8931         asm(
8932                 /* Store host registers */
8933                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8934                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8935                 "push %%" _ASM_CX " \n\t"
8936                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8937                 "je 1f \n\t"
8938                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8939                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8940                 "1: \n\t"
8941                 /* Reload cr2 if changed */
8942                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8943                 "mov %%cr2, %%" _ASM_DX " \n\t"
8944                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8945                 "je 2f \n\t"
8946                 "mov %%" _ASM_AX", %%cr2 \n\t"
8947                 "2: \n\t"
8948                 /* Check if vmlaunch of vmresume is needed */
8949                 "cmpl $0, %c[launched](%0) \n\t"
8950                 /* Load guest registers.  Don't clobber flags. */
8951                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8952                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8953                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8954                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8955                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8956                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8957 #ifdef CONFIG_X86_64
8958                 "mov %c[r8](%0),  %%r8  \n\t"
8959                 "mov %c[r9](%0),  %%r9  \n\t"
8960                 "mov %c[r10](%0), %%r10 \n\t"
8961                 "mov %c[r11](%0), %%r11 \n\t"
8962                 "mov %c[r12](%0), %%r12 \n\t"
8963                 "mov %c[r13](%0), %%r13 \n\t"
8964                 "mov %c[r14](%0), %%r14 \n\t"
8965                 "mov %c[r15](%0), %%r15 \n\t"
8966 #endif
8967                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8968
8969                 /* Enter guest mode */
8970                 "jne 1f \n\t"
8971                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8972                 "jmp 2f \n\t"
8973                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8974                 "2: "
8975                 /* Save guest registers, load host registers, keep flags */
8976                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8977                 "pop %0 \n\t"
8978                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8979                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8980                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8981                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8982                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8983                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8984                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8985 #ifdef CONFIG_X86_64
8986                 "mov %%r8,  %c[r8](%0) \n\t"
8987                 "mov %%r9,  %c[r9](%0) \n\t"
8988                 "mov %%r10, %c[r10](%0) \n\t"
8989                 "mov %%r11, %c[r11](%0) \n\t"
8990                 "mov %%r12, %c[r12](%0) \n\t"
8991                 "mov %%r13, %c[r13](%0) \n\t"
8992                 "mov %%r14, %c[r14](%0) \n\t"
8993                 "mov %%r15, %c[r15](%0) \n\t"
8994 #endif
8995                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8996                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8997
8998                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8999                 "setbe %c[fail](%0) \n\t"
9000                 ".pushsection .rodata \n\t"
9001                 ".global vmx_return \n\t"
9002                 "vmx_return: " _ASM_PTR " 2b \n\t"
9003                 ".popsection"
9004               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9005                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9006                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9007                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9008                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9009                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9010                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9011                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9012                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9013                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9014                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9015 #ifdef CONFIG_X86_64
9016                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9017                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9018                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9019                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9020                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9021                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9022                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9023                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9024 #endif
9025                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9026                 [wordsize]"i"(sizeof(ulong))
9027               : "cc", "memory"
9028 #ifdef CONFIG_X86_64
9029                 , "rax", "rbx", "rdi", "rsi"
9030                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9031 #else
9032                 , "eax", "ebx", "edi", "esi"
9033 #endif
9034               );
9035
9036         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9037         if (debugctlmsr)
9038                 update_debugctlmsr(debugctlmsr);
9039
9040 #ifndef CONFIG_X86_64
9041         /*
9042          * The sysexit path does not restore ds/es, so we must set them to
9043          * a reasonable value ourselves.
9044          *
9045          * We can't defer this to vmx_load_host_state() since that function
9046          * may be executed in interrupt context, which saves and restore segments
9047          * around it, nullifying its effect.
9048          */
9049         loadsegment(ds, __USER_DS);
9050         loadsegment(es, __USER_DS);
9051 #endif
9052
9053         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9054                                   | (1 << VCPU_EXREG_RFLAGS)
9055                                   | (1 << VCPU_EXREG_PDPTR)
9056                                   | (1 << VCPU_EXREG_SEGMENTS)
9057                                   | (1 << VCPU_EXREG_CR3));
9058         vcpu->arch.regs_dirty = 0;
9059
9060         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9061
9062         vmx->loaded_vmcs->launched = 1;
9063
9064         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9065
9066         /*
9067          * eager fpu is enabled if PKEY is supported and CR4 is switched
9068          * back on host, so it is safe to read guest PKRU from current
9069          * XSAVE.
9070          */
9071         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9072                 vmx->guest_pkru = __read_pkru();
9073                 if (vmx->guest_pkru != vmx->host_pkru) {
9074                         vmx->guest_pkru_valid = true;
9075                         __write_pkru(vmx->host_pkru);
9076                 } else
9077                         vmx->guest_pkru_valid = false;
9078         }
9079
9080         /*
9081          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9082          * we did not inject a still-pending event to L1 now because of
9083          * nested_run_pending, we need to re-enable this bit.
9084          */
9085         if (vmx->nested.nested_run_pending)
9086                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9087
9088         vmx->nested.nested_run_pending = 0;
9089
9090         vmx_complete_atomic_exit(vmx);
9091         vmx_recover_nmi_blocking(vmx);
9092         vmx_complete_interrupts(vmx);
9093 }
9094 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9095
9096 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9097 {
9098         struct vcpu_vmx *vmx = to_vmx(vcpu);
9099         int cpu;
9100
9101         if (vmx->loaded_vmcs == vmcs)
9102                 return;
9103
9104         cpu = get_cpu();
9105         vmx->loaded_vmcs = vmcs;
9106         vmx_vcpu_put(vcpu);
9107         vmx_vcpu_load(vcpu, cpu);
9108         vcpu->cpu = cpu;
9109         put_cpu();
9110 }
9111
9112 /*
9113  * Ensure that the current vmcs of the logical processor is the
9114  * vmcs01 of the vcpu before calling free_nested().
9115  */
9116 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9117 {
9118        struct vcpu_vmx *vmx = to_vmx(vcpu);
9119        int r;
9120
9121        r = vcpu_load(vcpu);
9122        BUG_ON(r);
9123        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9124        free_nested(vmx);
9125        vcpu_put(vcpu);
9126 }
9127
9128 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9129 {
9130         struct vcpu_vmx *vmx = to_vmx(vcpu);
9131
9132         if (enable_pml)
9133                 vmx_destroy_pml_buffer(vmx);
9134         free_vpid(vmx->vpid);
9135         leave_guest_mode(vcpu);
9136         vmx_free_vcpu_nested(vcpu);
9137         free_loaded_vmcs(vmx->loaded_vmcs);
9138         kfree(vmx->guest_msrs);
9139         kvm_vcpu_uninit(vcpu);
9140         kmem_cache_free(kvm_vcpu_cache, vmx);
9141 }
9142
9143 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9144 {
9145         int err;
9146         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9147         int cpu;
9148
9149         if (!vmx)
9150                 return ERR_PTR(-ENOMEM);
9151
9152         vmx->vpid = allocate_vpid();
9153
9154         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9155         if (err)
9156                 goto free_vcpu;
9157
9158         err = -ENOMEM;
9159
9160         /*
9161          * If PML is turned on, failure on enabling PML just results in failure
9162          * of creating the vcpu, therefore we can simplify PML logic (by
9163          * avoiding dealing with cases, such as enabling PML partially on vcpus
9164          * for the guest, etc.
9165          */
9166         if (enable_pml) {
9167                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9168                 if (!vmx->pml_pg)
9169                         goto uninit_vcpu;
9170         }
9171
9172         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9173         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9174                      > PAGE_SIZE);
9175
9176         if (!vmx->guest_msrs)
9177                 goto free_pml;
9178
9179         vmx->loaded_vmcs = &vmx->vmcs01;
9180         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9181         vmx->loaded_vmcs->shadow_vmcs = NULL;
9182         if (!vmx->loaded_vmcs->vmcs)
9183                 goto free_msrs;
9184         loaded_vmcs_init(vmx->loaded_vmcs);
9185
9186         cpu = get_cpu();
9187         vmx_vcpu_load(&vmx->vcpu, cpu);
9188         vmx->vcpu.cpu = cpu;
9189         err = vmx_vcpu_setup(vmx);
9190         vmx_vcpu_put(&vmx->vcpu);
9191         put_cpu();
9192         if (err)
9193                 goto free_vmcs;
9194         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9195                 err = alloc_apic_access_page(kvm);
9196                 if (err)
9197                         goto free_vmcs;
9198         }
9199
9200         if (enable_ept) {
9201                 if (!kvm->arch.ept_identity_map_addr)
9202                         kvm->arch.ept_identity_map_addr =
9203                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9204                 err = init_rmode_identity_map(kvm);
9205                 if (err)
9206                         goto free_vmcs;
9207         }
9208
9209         if (nested) {
9210                 nested_vmx_setup_ctls_msrs(vmx);
9211                 vmx->nested.vpid02 = allocate_vpid();
9212         }
9213
9214         vmx->nested.posted_intr_nv = -1;
9215         vmx->nested.current_vmptr = -1ull;
9216         vmx->nested.current_vmcs12 = NULL;
9217
9218         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9219
9220         return &vmx->vcpu;
9221
9222 free_vmcs:
9223         free_vpid(vmx->nested.vpid02);
9224         free_loaded_vmcs(vmx->loaded_vmcs);
9225 free_msrs:
9226         kfree(vmx->guest_msrs);
9227 free_pml:
9228         vmx_destroy_pml_buffer(vmx);
9229 uninit_vcpu:
9230         kvm_vcpu_uninit(&vmx->vcpu);
9231 free_vcpu:
9232         free_vpid(vmx->vpid);
9233         kmem_cache_free(kvm_vcpu_cache, vmx);
9234         return ERR_PTR(err);
9235 }
9236
9237 static void __init vmx_check_processor_compat(void *rtn)
9238 {
9239         struct vmcs_config vmcs_conf;
9240
9241         *(int *)rtn = 0;
9242         if (setup_vmcs_config(&vmcs_conf) < 0)
9243                 *(int *)rtn = -EIO;
9244         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9245                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9246                                 smp_processor_id());
9247                 *(int *)rtn = -EIO;
9248         }
9249 }
9250
9251 static int get_ept_level(void)
9252 {
9253         return VMX_EPT_DEFAULT_GAW + 1;
9254 }
9255
9256 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9257 {
9258         u8 cache;
9259         u64 ipat = 0;
9260
9261         /* For VT-d and EPT combination
9262          * 1. MMIO: always map as UC
9263          * 2. EPT with VT-d:
9264          *   a. VT-d without snooping control feature: can't guarantee the
9265          *      result, try to trust guest.
9266          *   b. VT-d with snooping control feature: snooping control feature of
9267          *      VT-d engine can guarantee the cache correctness. Just set it
9268          *      to WB to keep consistent with host. So the same as item 3.
9269          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9270          *    consistent with host MTRR
9271          */
9272         if (is_mmio) {
9273                 cache = MTRR_TYPE_UNCACHABLE;
9274                 goto exit;
9275         }
9276
9277         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9278                 ipat = VMX_EPT_IPAT_BIT;
9279                 cache = MTRR_TYPE_WRBACK;
9280                 goto exit;
9281         }
9282
9283         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9284                 ipat = VMX_EPT_IPAT_BIT;
9285                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9286                         cache = MTRR_TYPE_WRBACK;
9287                 else
9288                         cache = MTRR_TYPE_UNCACHABLE;
9289                 goto exit;
9290         }
9291
9292         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9293
9294 exit:
9295         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9296 }
9297
9298 static int vmx_get_lpage_level(void)
9299 {
9300         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9301                 return PT_DIRECTORY_LEVEL;
9302         else
9303                 /* For shadow and EPT supported 1GB page */
9304                 return PT_PDPE_LEVEL;
9305 }
9306
9307 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9308 {
9309         /*
9310          * These bits in the secondary execution controls field
9311          * are dynamic, the others are mostly based on the hypervisor
9312          * architecture and the guest's CPUID.  Do not touch the
9313          * dynamic bits.
9314          */
9315         u32 mask =
9316                 SECONDARY_EXEC_SHADOW_VMCS |
9317                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9318                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9319
9320         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9321
9322         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9323                      (new_ctl & ~mask) | (cur_ctl & mask));
9324 }
9325
9326 /*
9327  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9328  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9329  */
9330 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9331 {
9332         struct vcpu_vmx *vmx = to_vmx(vcpu);
9333         struct kvm_cpuid_entry2 *entry;
9334
9335         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9336         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9337
9338 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9339         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9340                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9341 } while (0)
9342
9343         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9344         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9345         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9346         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9347         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9348         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9349         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9350         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9351         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9352         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9353         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9354         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9355         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9356         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9357         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9358
9359         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9360         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9361         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9362         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9363         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9364         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9365         cr4_fixed1_update(bit(11),            ecx, bit(2));
9366
9367 #undef cr4_fixed1_update
9368 }
9369
9370 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9371 {
9372         struct kvm_cpuid_entry2 *best;
9373         struct vcpu_vmx *vmx = to_vmx(vcpu);
9374         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9375
9376         if (vmx_rdtscp_supported()) {
9377                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9378                 if (!rdtscp_enabled)
9379                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9380
9381                 if (nested) {
9382                         if (rdtscp_enabled)
9383                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9384                                         SECONDARY_EXEC_RDTSCP;
9385                         else
9386                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9387                                         ~SECONDARY_EXEC_RDTSCP;
9388                 }
9389         }
9390
9391         /* Exposing INVPCID only when PCID is exposed */
9392         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9393         if (vmx_invpcid_supported() &&
9394             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9395             !guest_cpuid_has_pcid(vcpu))) {
9396                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9397
9398                 if (best)
9399                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9400         }
9401
9402         if (cpu_has_secondary_exec_ctrls())
9403                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9404
9405         if (nested_vmx_allowed(vcpu))
9406                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9407                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9408         else
9409                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9410                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9411
9412         if (nested_vmx_allowed(vcpu))
9413                 nested_vmx_cr_fixed1_bits_update(vcpu);
9414 }
9415
9416 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9417 {
9418         if (func == 1 && nested)
9419                 entry->ecx |= bit(X86_FEATURE_VMX);
9420 }
9421
9422 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9423                 struct x86_exception *fault)
9424 {
9425         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9426         struct vcpu_vmx *vmx = to_vmx(vcpu);
9427         u32 exit_reason;
9428         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9429
9430         if (vmx->nested.pml_full) {
9431                 exit_reason = EXIT_REASON_PML_FULL;
9432                 vmx->nested.pml_full = false;
9433                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9434         } else if (fault->error_code & PFERR_RSVD_MASK)
9435                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9436         else
9437                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9438
9439         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9440         vmcs12->guest_physical_address = fault->address;
9441 }
9442
9443 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9444 {
9445         return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9446 }
9447
9448 /* Callbacks for nested_ept_init_mmu_context: */
9449
9450 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9451 {
9452         /* return the page table to be shadowed - in our case, EPT12 */
9453         return get_vmcs12(vcpu)->ept_pointer;
9454 }
9455
9456 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9457 {
9458         bool wants_ad;
9459
9460         WARN_ON(mmu_is_nested(vcpu));
9461         wants_ad = nested_ept_ad_enabled(vcpu);
9462         if (wants_ad && !enable_ept_ad_bits)
9463                 return 1;
9464
9465         kvm_mmu_unload(vcpu);
9466         kvm_init_shadow_ept_mmu(vcpu,
9467                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9468                         VMX_EPT_EXECUTE_ONLY_BIT,
9469                         wants_ad);
9470         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9471         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9472         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9473
9474         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9475         return 0;
9476 }
9477
9478 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9479 {
9480         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9481 }
9482
9483 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9484                                             u16 error_code)
9485 {
9486         bool inequality, bit;
9487
9488         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9489         inequality =
9490                 (error_code & vmcs12->page_fault_error_code_mask) !=
9491                  vmcs12->page_fault_error_code_match;
9492         return inequality ^ bit;
9493 }
9494
9495 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9496                 struct x86_exception *fault)
9497 {
9498         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9499
9500         WARN_ON(!is_guest_mode(vcpu));
9501
9502         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9503                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9504                                   vmcs_read32(VM_EXIT_INTR_INFO),
9505                                   vmcs_readl(EXIT_QUALIFICATION));
9506         else
9507                 kvm_inject_page_fault(vcpu, fault);
9508 }
9509
9510 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9511                                                struct vmcs12 *vmcs12);
9512
9513 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9514                                         struct vmcs12 *vmcs12)
9515 {
9516         struct vcpu_vmx *vmx = to_vmx(vcpu);
9517         u64 hpa;
9518
9519         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9520                 /*
9521                  * Translate L1 physical address to host physical
9522                  * address for vmcs02. Keep the page pinned, so this
9523                  * physical address remains valid. We keep a reference
9524                  * to it so we can release it later.
9525                  */
9526                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9527                         nested_release_page(vmx->nested.apic_access_page);
9528                 vmx->nested.apic_access_page =
9529                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9530                 /*
9531                  * If translation failed, no matter: This feature asks
9532                  * to exit when accessing the given address, and if it
9533                  * can never be accessed, this feature won't do
9534                  * anything anyway.
9535                  */
9536                 if (vmx->nested.apic_access_page) {
9537                         hpa = page_to_phys(vmx->nested.apic_access_page);
9538                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9539                 } else {
9540                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9541                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9542                 }
9543         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9544                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9545                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9546                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9547                 kvm_vcpu_reload_apic_access_page(vcpu);
9548         }
9549
9550         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9551                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9552                         nested_release_page(vmx->nested.virtual_apic_page);
9553                 vmx->nested.virtual_apic_page =
9554                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9555
9556                 /*
9557                  * If translation failed, VM entry will fail because
9558                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9559                  * Failing the vm entry is _not_ what the processor
9560                  * does but it's basically the only possibility we
9561                  * have.  We could still enter the guest if CR8 load
9562                  * exits are enabled, CR8 store exits are enabled, and
9563                  * virtualize APIC access is disabled; in this case
9564                  * the processor would never use the TPR shadow and we
9565                  * could simply clear the bit from the execution
9566                  * control.  But such a configuration is useless, so
9567                  * let's keep the code simple.
9568                  */
9569                 if (vmx->nested.virtual_apic_page) {
9570                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9571                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9572                 }
9573         }
9574
9575         if (nested_cpu_has_posted_intr(vmcs12)) {
9576                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9577                         kunmap(vmx->nested.pi_desc_page);
9578                         nested_release_page(vmx->nested.pi_desc_page);
9579                 }
9580                 vmx->nested.pi_desc_page =
9581                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9582                 vmx->nested.pi_desc =
9583                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9584                 if (!vmx->nested.pi_desc) {
9585                         nested_release_page_clean(vmx->nested.pi_desc_page);
9586                         return;
9587                 }
9588                 vmx->nested.pi_desc =
9589                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9590                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9591                         (PAGE_SIZE - 1)));
9592                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9593                         page_to_phys(vmx->nested.pi_desc_page) +
9594                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9595                         (PAGE_SIZE - 1)));
9596         }
9597         if (cpu_has_vmx_msr_bitmap() &&
9598             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9599             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9600                 ;
9601         else
9602                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9603                                 CPU_BASED_USE_MSR_BITMAPS);
9604 }
9605
9606 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9607 {
9608         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9609         struct vcpu_vmx *vmx = to_vmx(vcpu);
9610
9611         if (vcpu->arch.virtual_tsc_khz == 0)
9612                 return;
9613
9614         /* Make sure short timeouts reliably trigger an immediate vmexit.
9615          * hrtimer_start does not guarantee this. */
9616         if (preemption_timeout <= 1) {
9617                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9618                 return;
9619         }
9620
9621         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9622         preemption_timeout *= 1000000;
9623         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9624         hrtimer_start(&vmx->nested.preemption_timer,
9625                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9626 }
9627
9628 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9629                                                struct vmcs12 *vmcs12)
9630 {
9631         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9632                 return 0;
9633
9634         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9635             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9636                 return -EINVAL;
9637
9638         return 0;
9639 }
9640
9641 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9642                                                 struct vmcs12 *vmcs12)
9643 {
9644         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9645                 return 0;
9646
9647         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9648                 return -EINVAL;
9649
9650         return 0;
9651 }
9652
9653 /*
9654  * Merge L0's and L1's MSR bitmap, return false to indicate that
9655  * we do not use the hardware.
9656  */
9657 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9658                                                struct vmcs12 *vmcs12)
9659 {
9660         int msr;
9661         struct page *page;
9662         unsigned long *msr_bitmap_l1;
9663         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9664
9665         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9666         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9667                 return false;
9668
9669         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9670         if (!page)
9671                 return false;
9672         msr_bitmap_l1 = (unsigned long *)kmap(page);
9673
9674         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9675
9676         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9677                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9678                         for (msr = 0x800; msr <= 0x8ff; msr++)
9679                                 nested_vmx_disable_intercept_for_msr(
9680                                         msr_bitmap_l1, msr_bitmap_l0,
9681                                         msr, MSR_TYPE_R);
9682
9683                 nested_vmx_disable_intercept_for_msr(
9684                                 msr_bitmap_l1, msr_bitmap_l0,
9685                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9686                                 MSR_TYPE_R | MSR_TYPE_W);
9687
9688                 if (nested_cpu_has_vid(vmcs12)) {
9689                         nested_vmx_disable_intercept_for_msr(
9690                                 msr_bitmap_l1, msr_bitmap_l0,
9691                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9692                                 MSR_TYPE_W);
9693                         nested_vmx_disable_intercept_for_msr(
9694                                 msr_bitmap_l1, msr_bitmap_l0,
9695                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9696                                 MSR_TYPE_W);
9697                 }
9698         }
9699         kunmap(page);
9700         nested_release_page_clean(page);
9701
9702         return true;
9703 }
9704
9705 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9706                                            struct vmcs12 *vmcs12)
9707 {
9708         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9709             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9710             !nested_cpu_has_vid(vmcs12) &&
9711             !nested_cpu_has_posted_intr(vmcs12))
9712                 return 0;
9713
9714         /*
9715          * If virtualize x2apic mode is enabled,
9716          * virtualize apic access must be disabled.
9717          */
9718         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9719             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9720                 return -EINVAL;
9721
9722         /*
9723          * If virtual interrupt delivery is enabled,
9724          * we must exit on external interrupts.
9725          */
9726         if (nested_cpu_has_vid(vmcs12) &&
9727            !nested_exit_on_intr(vcpu))
9728                 return -EINVAL;
9729
9730         /*
9731          * bits 15:8 should be zero in posted_intr_nv,
9732          * the descriptor address has been already checked
9733          * in nested_get_vmcs12_pages.
9734          */
9735         if (nested_cpu_has_posted_intr(vmcs12) &&
9736            (!nested_cpu_has_vid(vmcs12) ||
9737             !nested_exit_intr_ack_set(vcpu) ||
9738             vmcs12->posted_intr_nv & 0xff00))
9739                 return -EINVAL;
9740
9741         /* tpr shadow is needed by all apicv features. */
9742         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9743                 return -EINVAL;
9744
9745         return 0;
9746 }
9747
9748 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9749                                        unsigned long count_field,
9750                                        unsigned long addr_field)
9751 {
9752         int maxphyaddr;
9753         u64 count, addr;
9754
9755         if (vmcs12_read_any(vcpu, count_field, &count) ||
9756             vmcs12_read_any(vcpu, addr_field, &addr)) {
9757                 WARN_ON(1);
9758                 return -EINVAL;
9759         }
9760         if (count == 0)
9761                 return 0;
9762         maxphyaddr = cpuid_maxphyaddr(vcpu);
9763         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9764             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9765                 pr_debug_ratelimited(
9766                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9767                         addr_field, maxphyaddr, count, addr);
9768                 return -EINVAL;
9769         }
9770         return 0;
9771 }
9772
9773 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9774                                                 struct vmcs12 *vmcs12)
9775 {
9776         if (vmcs12->vm_exit_msr_load_count == 0 &&
9777             vmcs12->vm_exit_msr_store_count == 0 &&
9778             vmcs12->vm_entry_msr_load_count == 0)
9779                 return 0; /* Fast path */
9780         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9781                                         VM_EXIT_MSR_LOAD_ADDR) ||
9782             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9783                                         VM_EXIT_MSR_STORE_ADDR) ||
9784             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9785                                         VM_ENTRY_MSR_LOAD_ADDR))
9786                 return -EINVAL;
9787         return 0;
9788 }
9789
9790 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9791                                          struct vmcs12 *vmcs12)
9792 {
9793         u64 address = vmcs12->pml_address;
9794         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9795
9796         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9797                 if (!nested_cpu_has_ept(vmcs12) ||
9798                     !IS_ALIGNED(address, 4096)  ||
9799                     address >> maxphyaddr)
9800                         return -EINVAL;
9801         }
9802
9803         return 0;
9804 }
9805
9806 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9807                                        struct vmx_msr_entry *e)
9808 {
9809         /* x2APIC MSR accesses are not allowed */
9810         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9811                 return -EINVAL;
9812         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9813             e->index == MSR_IA32_UCODE_REV)
9814                 return -EINVAL;
9815         if (e->reserved != 0)
9816                 return -EINVAL;
9817         return 0;
9818 }
9819
9820 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9821                                      struct vmx_msr_entry *e)
9822 {
9823         if (e->index == MSR_FS_BASE ||
9824             e->index == MSR_GS_BASE ||
9825             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9826             nested_vmx_msr_check_common(vcpu, e))
9827                 return -EINVAL;
9828         return 0;
9829 }
9830
9831 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9832                                       struct vmx_msr_entry *e)
9833 {
9834         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9835             nested_vmx_msr_check_common(vcpu, e))
9836                 return -EINVAL;
9837         return 0;
9838 }
9839
9840 /*
9841  * Load guest's/host's msr at nested entry/exit.
9842  * return 0 for success, entry index for failure.
9843  */
9844 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9845 {
9846         u32 i;
9847         struct vmx_msr_entry e;
9848         struct msr_data msr;
9849
9850         msr.host_initiated = false;
9851         for (i = 0; i < count; i++) {
9852                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9853                                         &e, sizeof(e))) {
9854                         pr_debug_ratelimited(
9855                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9856                                 __func__, i, gpa + i * sizeof(e));
9857                         goto fail;
9858                 }
9859                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9860                         pr_debug_ratelimited(
9861                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9862                                 __func__, i, e.index, e.reserved);
9863                         goto fail;
9864                 }
9865                 msr.index = e.index;
9866                 msr.data = e.value;
9867                 if (kvm_set_msr(vcpu, &msr)) {
9868                         pr_debug_ratelimited(
9869                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9870                                 __func__, i, e.index, e.value);
9871                         goto fail;
9872                 }
9873         }
9874         return 0;
9875 fail:
9876         return i + 1;
9877 }
9878
9879 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9880 {
9881         u32 i;
9882         struct vmx_msr_entry e;
9883
9884         for (i = 0; i < count; i++) {
9885                 struct msr_data msr_info;
9886                 if (kvm_vcpu_read_guest(vcpu,
9887                                         gpa + i * sizeof(e),
9888                                         &e, 2 * sizeof(u32))) {
9889                         pr_debug_ratelimited(
9890                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9891                                 __func__, i, gpa + i * sizeof(e));
9892                         return -EINVAL;
9893                 }
9894                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9895                         pr_debug_ratelimited(
9896                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9897                                 __func__, i, e.index, e.reserved);
9898                         return -EINVAL;
9899                 }
9900                 msr_info.host_initiated = false;
9901                 msr_info.index = e.index;
9902                 if (kvm_get_msr(vcpu, &msr_info)) {
9903                         pr_debug_ratelimited(
9904                                 "%s cannot read MSR (%u, 0x%x)\n",
9905                                 __func__, i, e.index);
9906                         return -EINVAL;
9907                 }
9908                 if (kvm_vcpu_write_guest(vcpu,
9909                                          gpa + i * sizeof(e) +
9910                                              offsetof(struct vmx_msr_entry, value),
9911                                          &msr_info.data, sizeof(msr_info.data))) {
9912                         pr_debug_ratelimited(
9913                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9914                                 __func__, i, e.index, msr_info.data);
9915                         return -EINVAL;
9916                 }
9917         }
9918         return 0;
9919 }
9920
9921 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9922 {
9923         unsigned long invalid_mask;
9924
9925         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9926         return (val & invalid_mask) == 0;
9927 }
9928
9929 /*
9930  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9931  * emulating VM entry into a guest with EPT enabled.
9932  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9933  * is assigned to entry_failure_code on failure.
9934  */
9935 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9936                                u32 *entry_failure_code)
9937 {
9938         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9939                 if (!nested_cr3_valid(vcpu, cr3)) {
9940                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
9941                         return 1;
9942                 }
9943
9944                 /*
9945                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9946                  * must not be dereferenced.
9947                  */
9948                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9949                     !nested_ept) {
9950                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9951                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
9952                                 return 1;
9953                         }
9954                 }
9955
9956                 vcpu->arch.cr3 = cr3;
9957                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9958         }
9959
9960         kvm_mmu_reset_context(vcpu);
9961         return 0;
9962 }
9963
9964 /*
9965  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9966  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9967  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9968  * guest in a way that will both be appropriate to L1's requests, and our
9969  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9970  * function also has additional necessary side-effects, like setting various
9971  * vcpu->arch fields.
9972  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9973  * is assigned to entry_failure_code on failure.
9974  */
9975 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9976                           bool from_vmentry, u32 *entry_failure_code)
9977 {
9978         struct vcpu_vmx *vmx = to_vmx(vcpu);
9979         u32 exec_control, vmcs12_exec_ctrl;
9980
9981         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9982         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9983         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9984         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9985         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9986         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9987         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9988         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9989         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9990         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9991         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9992         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9993         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9994         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9995         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9996         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9997         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9998         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9999         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10000         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10001         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10002         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10003         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10004         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10005         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10006         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10007         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10008         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10009         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10010         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10011         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10012         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10013         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10014         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10015         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10016         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10017
10018         if (from_vmentry &&
10019             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10020                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10021                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10022         } else {
10023                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10024                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10025         }
10026         if (from_vmentry) {
10027                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10028                              vmcs12->vm_entry_intr_info_field);
10029                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10030                              vmcs12->vm_entry_exception_error_code);
10031                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10032                              vmcs12->vm_entry_instruction_len);
10033                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10034                              vmcs12->guest_interruptibility_info);
10035         } else {
10036                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10037         }
10038         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10039         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10040         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10041                 vmcs12->guest_pending_dbg_exceptions);
10042         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10043         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10044
10045         if (nested_cpu_has_xsaves(vmcs12))
10046                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10047         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10048
10049         exec_control = vmcs12->pin_based_vm_exec_control;
10050
10051         /* Preemption timer setting is only taken from vmcs01.  */
10052         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10053         exec_control |= vmcs_config.pin_based_exec_ctrl;
10054         if (vmx->hv_deadline_tsc == -1)
10055                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10056
10057         /* Posted interrupts setting is only taken from vmcs12.  */
10058         if (nested_cpu_has_posted_intr(vmcs12)) {
10059                 /*
10060                  * Note that we use L0's vector here and in
10061                  * vmx_deliver_nested_posted_interrupt.
10062                  */
10063                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10064                 vmx->nested.pi_pending = false;
10065                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10066         } else {
10067                 exec_control &= ~PIN_BASED_POSTED_INTR;
10068         }
10069
10070         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10071
10072         vmx->nested.preemption_timer_expired = false;
10073         if (nested_cpu_has_preemption_timer(vmcs12))
10074                 vmx_start_preemption_timer(vcpu);
10075
10076         /*
10077          * Whether page-faults are trapped is determined by a combination of
10078          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10079          * If enable_ept, L0 doesn't care about page faults and we should
10080          * set all of these to L1's desires. However, if !enable_ept, L0 does
10081          * care about (at least some) page faults, and because it is not easy
10082          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10083          * to exit on each and every L2 page fault. This is done by setting
10084          * MASK=MATCH=0 and (see below) EB.PF=1.
10085          * Note that below we don't need special code to set EB.PF beyond the
10086          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10087          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10088          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10089          *
10090          * A problem with this approach (when !enable_ept) is that L1 may be
10091          * injected with more page faults than it asked for. This could have
10092          * caused problems, but in practice existing hypervisors don't care.
10093          * To fix this, we will need to emulate the PFEC checking (on the L1
10094          * page tables), using walk_addr(), when injecting PFs to L1.
10095          */
10096         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10097                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10098         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10099                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10100
10101         if (cpu_has_secondary_exec_ctrls()) {
10102                 exec_control = vmx_secondary_exec_control(vmx);
10103
10104                 /* Take the following fields only from vmcs12 */
10105                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10106                                   SECONDARY_EXEC_RDTSCP |
10107                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10108                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
10109                 if (nested_cpu_has(vmcs12,
10110                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10111                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10112                                 ~SECONDARY_EXEC_ENABLE_PML;
10113                         exec_control |= vmcs12_exec_ctrl;
10114                 }
10115
10116                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10117                         vmcs_write64(EOI_EXIT_BITMAP0,
10118                                 vmcs12->eoi_exit_bitmap0);
10119                         vmcs_write64(EOI_EXIT_BITMAP1,
10120                                 vmcs12->eoi_exit_bitmap1);
10121                         vmcs_write64(EOI_EXIT_BITMAP2,
10122                                 vmcs12->eoi_exit_bitmap2);
10123                         vmcs_write64(EOI_EXIT_BITMAP3,
10124                                 vmcs12->eoi_exit_bitmap3);
10125                         vmcs_write16(GUEST_INTR_STATUS,
10126                                 vmcs12->guest_intr_status);
10127                 }
10128
10129                 /*
10130                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10131                  * nested_get_vmcs12_pages will either fix it up or
10132                  * remove the VM execution control.
10133                  */
10134                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10135                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10136
10137                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10138         }
10139
10140
10141         /*
10142          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10143          * Some constant fields are set here by vmx_set_constant_host_state().
10144          * Other fields are different per CPU, and will be set later when
10145          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10146          */
10147         vmx_set_constant_host_state(vmx);
10148
10149         /*
10150          * Set the MSR load/store lists to match L0's settings.
10151          */
10152         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10153         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10154         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10155         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10156         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10157
10158         /*
10159          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10160          * entry, but only if the current (host) sp changed from the value
10161          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10162          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10163          * here we just force the write to happen on entry.
10164          */
10165         vmx->host_rsp = 0;
10166
10167         exec_control = vmx_exec_control(vmx); /* L0's desires */
10168         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10169         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10170         exec_control &= ~CPU_BASED_TPR_SHADOW;
10171         exec_control |= vmcs12->cpu_based_vm_exec_control;
10172
10173         /*
10174          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10175          * nested_get_vmcs12_pages can't fix it up, the illegal value
10176          * will result in a VM entry failure.
10177          */
10178         if (exec_control & CPU_BASED_TPR_SHADOW) {
10179                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10180                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10181         }
10182
10183         /*
10184          * Merging of IO bitmap not currently supported.
10185          * Rather, exit every time.
10186          */
10187         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10188         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10189
10190         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10191
10192         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10193          * bitwise-or of what L1 wants to trap for L2, and what we want to
10194          * trap. Note that CR0.TS also needs updating - we do this later.
10195          */
10196         update_exception_bitmap(vcpu);
10197         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10198         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10199
10200         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10201          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10202          * bits are further modified by vmx_set_efer() below.
10203          */
10204         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10205
10206         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10207          * emulated by vmx_set_efer(), below.
10208          */
10209         vm_entry_controls_init(vmx, 
10210                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10211                         ~VM_ENTRY_IA32E_MODE) |
10212                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10213
10214         if (from_vmentry &&
10215             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10216                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10217                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10218         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10219                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10220         }
10221
10222         set_cr4_guest_host_mask(vmx);
10223
10224         if (from_vmentry &&
10225             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10226                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10227
10228         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10229                 vmcs_write64(TSC_OFFSET,
10230                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10231         else
10232                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10233         if (kvm_has_tsc_control)
10234                 decache_tsc_multiplier(vmx);
10235
10236         if (enable_vpid) {
10237                 /*
10238                  * There is no direct mapping between vpid02 and vpid12, the
10239                  * vpid02 is per-vCPU for L0 and reused while the value of
10240                  * vpid12 is changed w/ one invvpid during nested vmentry.
10241                  * The vpid12 is allocated by L1 for L2, so it will not
10242                  * influence global bitmap(for vpid01 and vpid02 allocation)
10243                  * even if spawn a lot of nested vCPUs.
10244                  */
10245                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10246                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10247                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10248                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10249                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10250                         }
10251                 } else {
10252                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10253                         vmx_flush_tlb(vcpu);
10254                 }
10255
10256         }
10257
10258         if (enable_pml) {
10259                 /*
10260                  * Conceptually we want to copy the PML address and index from
10261                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10262                  * since we always flush the log on each vmexit, this happens
10263                  * to be equivalent to simply resetting the fields in vmcs02.
10264                  */
10265                 ASSERT(vmx->pml_pg);
10266                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10267                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10268         }
10269
10270         if (nested_cpu_has_ept(vmcs12)) {
10271                 if (nested_ept_init_mmu_context(vcpu)) {
10272                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10273                         return 1;
10274                 }
10275         } else if (nested_cpu_has2(vmcs12,
10276                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10277                 vmx_flush_tlb_ept_only(vcpu);
10278         }
10279
10280         /*
10281          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10282          * bits which we consider mandatory enabled.
10283          * The CR0_READ_SHADOW is what L2 should have expected to read given
10284          * the specifications by L1; It's not enough to take
10285          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10286          * have more bits than L1 expected.
10287          */
10288         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10289         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10290
10291         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10292         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10293
10294         if (from_vmentry &&
10295             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10296                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10297         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10298                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10299         else
10300                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10301         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10302         vmx_set_efer(vcpu, vcpu->arch.efer);
10303
10304         /* Shadow page tables on either EPT or shadow page tables. */
10305         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10306                                 entry_failure_code))
10307                 return 1;
10308
10309         if (!enable_ept)
10310                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10311
10312         /*
10313          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10314          */
10315         if (enable_ept) {
10316                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10317                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10318                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10319                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10320         }
10321
10322         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10323         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10324         return 0;
10325 }
10326
10327 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10328 {
10329         struct vcpu_vmx *vmx = to_vmx(vcpu);
10330
10331         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10332             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10333                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10334
10335         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10336                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10337
10338         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10339                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10340
10341         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10342                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10343
10344         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10345                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10346
10347         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10348                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10349
10350         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10351                                 vmx->nested.nested_vmx_procbased_ctls_low,
10352                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10353             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10354              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10355                                  vmx->nested.nested_vmx_secondary_ctls_low,
10356                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10357             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10358                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10359                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10360             !vmx_control_verify(vmcs12->vm_exit_controls,
10361                                 vmx->nested.nested_vmx_exit_ctls_low,
10362                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10363             !vmx_control_verify(vmcs12->vm_entry_controls,
10364                                 vmx->nested.nested_vmx_entry_ctls_low,
10365                                 vmx->nested.nested_vmx_entry_ctls_high))
10366                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10367
10368         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10369                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10370
10371         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10372             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10373             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10374                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10375
10376         return 0;
10377 }
10378
10379 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10380                                   u32 *exit_qual)
10381 {
10382         bool ia32e;
10383
10384         *exit_qual = ENTRY_FAIL_DEFAULT;
10385
10386         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10387             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10388                 return 1;
10389
10390         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10391             vmcs12->vmcs_link_pointer != -1ull) {
10392                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10393                 return 1;
10394         }
10395
10396         /*
10397          * If the load IA32_EFER VM-entry control is 1, the following checks
10398          * are performed on the field for the IA32_EFER MSR:
10399          * - Bits reserved in the IA32_EFER MSR must be 0.
10400          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10401          *   the IA-32e mode guest VM-exit control. It must also be identical
10402          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10403          *   CR0.PG) is 1.
10404          */
10405         if (to_vmx(vcpu)->nested.nested_run_pending &&
10406             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10407                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10408                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10409                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10410                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10411                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10412                         return 1;
10413         }
10414
10415         /*
10416          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10417          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10418          * the values of the LMA and LME bits in the field must each be that of
10419          * the host address-space size VM-exit control.
10420          */
10421         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10422                 ia32e = (vmcs12->vm_exit_controls &
10423                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10424                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10425                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10426                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10427                         return 1;
10428         }
10429
10430         return 0;
10431 }
10432
10433 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10434 {
10435         struct vcpu_vmx *vmx = to_vmx(vcpu);
10436         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10437         struct loaded_vmcs *vmcs02;
10438         u32 msr_entry_idx;
10439         u32 exit_qual;
10440
10441         vmcs02 = nested_get_current_vmcs02(vmx);
10442         if (!vmcs02)
10443                 return -ENOMEM;
10444
10445         enter_guest_mode(vcpu);
10446
10447         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10448                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10449
10450         vmx_switch_vmcs(vcpu, vmcs02);
10451         vmx_segment_cache_clear(vmx);
10452
10453         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10454                 leave_guest_mode(vcpu);
10455                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10456                 nested_vmx_entry_failure(vcpu, vmcs12,
10457                                          EXIT_REASON_INVALID_STATE, exit_qual);
10458                 return 1;
10459         }
10460
10461         nested_get_vmcs12_pages(vcpu, vmcs12);
10462
10463         msr_entry_idx = nested_vmx_load_msr(vcpu,
10464                                             vmcs12->vm_entry_msr_load_addr,
10465                                             vmcs12->vm_entry_msr_load_count);
10466         if (msr_entry_idx) {
10467                 leave_guest_mode(vcpu);
10468                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10469                 nested_vmx_entry_failure(vcpu, vmcs12,
10470                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10471                 return 1;
10472         }
10473
10474         /*
10475          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10476          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10477          * returned as far as L1 is concerned. It will only return (and set
10478          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10479          */
10480         return 0;
10481 }
10482
10483 /*
10484  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10485  * for running an L2 nested guest.
10486  */
10487 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10488 {
10489         struct vmcs12 *vmcs12;
10490         struct vcpu_vmx *vmx = to_vmx(vcpu);
10491         u32 exit_qual;
10492         int ret;
10493
10494         if (!nested_vmx_check_permission(vcpu))
10495                 return 1;
10496
10497         if (!nested_vmx_check_vmcs12(vcpu))
10498                 goto out;
10499
10500         vmcs12 = get_vmcs12(vcpu);
10501
10502         if (enable_shadow_vmcs)
10503                 copy_shadow_to_vmcs12(vmx);
10504
10505         /*
10506          * The nested entry process starts with enforcing various prerequisites
10507          * on vmcs12 as required by the Intel SDM, and act appropriately when
10508          * they fail: As the SDM explains, some conditions should cause the
10509          * instruction to fail, while others will cause the instruction to seem
10510          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10511          * To speed up the normal (success) code path, we should avoid checking
10512          * for misconfigurations which will anyway be caught by the processor
10513          * when using the merged vmcs02.
10514          */
10515         if (vmcs12->launch_state == launch) {
10516                 nested_vmx_failValid(vcpu,
10517                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10518                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10519                 goto out;
10520         }
10521
10522         ret = check_vmentry_prereqs(vcpu, vmcs12);
10523         if (ret) {
10524                 nested_vmx_failValid(vcpu, ret);
10525                 goto out;
10526         }
10527
10528         /*
10529          * After this point, the trap flag no longer triggers a singlestep trap
10530          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10531          * This is not 100% correct; for performance reasons, we delegate most
10532          * of the checks on host state to the processor.  If those fail,
10533          * the singlestep trap is missed.
10534          */
10535         skip_emulated_instruction(vcpu);
10536
10537         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10538         if (ret) {
10539                 nested_vmx_entry_failure(vcpu, vmcs12,
10540                                          EXIT_REASON_INVALID_STATE, exit_qual);
10541                 return 1;
10542         }
10543
10544         /*
10545          * We're finally done with prerequisite checking, and can start with
10546          * the nested entry.
10547          */
10548
10549         ret = enter_vmx_non_root_mode(vcpu, true);
10550         if (ret)
10551                 return ret;
10552
10553         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10554                 return kvm_vcpu_halt(vcpu);
10555
10556         vmx->nested.nested_run_pending = 1;
10557
10558         return 1;
10559
10560 out:
10561         return kvm_skip_emulated_instruction(vcpu);
10562 }
10563
10564 /*
10565  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10566  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10567  * This function returns the new value we should put in vmcs12.guest_cr0.
10568  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10569  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10570  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10571  *     didn't trap the bit, because if L1 did, so would L0).
10572  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10573  *     been modified by L2, and L1 knows it. So just leave the old value of
10574  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10575  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10576  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10577  *     changed these bits, and therefore they need to be updated, but L0
10578  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10579  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10580  */
10581 static inline unsigned long
10582 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10583 {
10584         return
10585         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10586         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10587         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10588                         vcpu->arch.cr0_guest_owned_bits));
10589 }
10590
10591 static inline unsigned long
10592 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10593 {
10594         return
10595         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10596         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10597         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10598                         vcpu->arch.cr4_guest_owned_bits));
10599 }
10600
10601 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10602                                        struct vmcs12 *vmcs12)
10603 {
10604         u32 idt_vectoring;
10605         unsigned int nr;
10606
10607         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10608                 nr = vcpu->arch.exception.nr;
10609                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10610
10611                 if (kvm_exception_is_soft(nr)) {
10612                         vmcs12->vm_exit_instruction_len =
10613                                 vcpu->arch.event_exit_inst_len;
10614                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10615                 } else
10616                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10617
10618                 if (vcpu->arch.exception.has_error_code) {
10619                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10620                         vmcs12->idt_vectoring_error_code =
10621                                 vcpu->arch.exception.error_code;
10622                 }
10623
10624                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10625         } else if (vcpu->arch.nmi_injected) {
10626                 vmcs12->idt_vectoring_info_field =
10627                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10628         } else if (vcpu->arch.interrupt.pending) {
10629                 nr = vcpu->arch.interrupt.nr;
10630                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10631
10632                 if (vcpu->arch.interrupt.soft) {
10633                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10634                         vmcs12->vm_entry_instruction_len =
10635                                 vcpu->arch.event_exit_inst_len;
10636                 } else
10637                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10638
10639                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10640         }
10641 }
10642
10643 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10644 {
10645         struct vcpu_vmx *vmx = to_vmx(vcpu);
10646
10647         if (vcpu->arch.exception.pending ||
10648                 vcpu->arch.nmi_injected ||
10649                 vcpu->arch.interrupt.pending)
10650                 return -EBUSY;
10651
10652         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10653             vmx->nested.preemption_timer_expired) {
10654                 if (vmx->nested.nested_run_pending)
10655                         return -EBUSY;
10656                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10657                 return 0;
10658         }
10659
10660         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10661                 if (vmx->nested.nested_run_pending)
10662                         return -EBUSY;
10663                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10664                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10665                                   INTR_INFO_VALID_MASK, 0);
10666                 /*
10667                  * The NMI-triggered VM exit counts as injection:
10668                  * clear this one and block further NMIs.
10669                  */
10670                 vcpu->arch.nmi_pending = 0;
10671                 vmx_set_nmi_mask(vcpu, true);
10672                 return 0;
10673         }
10674
10675         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10676             nested_exit_on_intr(vcpu)) {
10677                 if (vmx->nested.nested_run_pending)
10678                         return -EBUSY;
10679                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10680                 return 0;
10681         }
10682
10683         vmx_complete_nested_posted_interrupt(vcpu);
10684         return 0;
10685 }
10686
10687 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10688 {
10689         ktime_t remaining =
10690                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10691         u64 value;
10692
10693         if (ktime_to_ns(remaining) <= 0)
10694                 return 0;
10695
10696         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10697         do_div(value, 1000000);
10698         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10699 }
10700
10701 /*
10702  * Update the guest state fields of vmcs12 to reflect changes that
10703  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10704  * VM-entry controls is also updated, since this is really a guest
10705  * state bit.)
10706  */
10707 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10708 {
10709         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10710         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10711
10712         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10713         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10714         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10715
10716         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10717         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10718         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10719         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10720         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10721         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10722         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10723         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10724         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10725         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10726         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10727         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10728         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10729         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10730         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10731         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10732         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10733         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10734         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10735         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10736         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10737         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10738         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10739         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10740         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10741         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10742         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10743         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10744         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10745         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10746         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10747         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10748         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10749         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10750         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10751         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10752
10753         vmcs12->guest_interruptibility_info =
10754                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10755         vmcs12->guest_pending_dbg_exceptions =
10756                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10757         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10758                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10759         else
10760                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10761
10762         if (nested_cpu_has_preemption_timer(vmcs12)) {
10763                 if (vmcs12->vm_exit_controls &
10764                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10765                         vmcs12->vmx_preemption_timer_value =
10766                                 vmx_get_preemption_timer_value(vcpu);
10767                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10768         }
10769
10770         /*
10771          * In some cases (usually, nested EPT), L2 is allowed to change its
10772          * own CR3 without exiting. If it has changed it, we must keep it.
10773          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10774          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10775          *
10776          * Additionally, restore L2's PDPTR to vmcs12.
10777          */
10778         if (enable_ept) {
10779                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10780                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10781                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10782                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10783                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10784         }
10785
10786         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10787
10788         if (nested_cpu_has_vid(vmcs12))
10789                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10790
10791         vmcs12->vm_entry_controls =
10792                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10793                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10794
10795         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10796                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10797                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10798         }
10799
10800         /* TODO: These cannot have changed unless we have MSR bitmaps and
10801          * the relevant bit asks not to trap the change */
10802         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10803                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10804         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10805                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10806         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10807         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10808         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10809         if (kvm_mpx_supported())
10810                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10811 }
10812
10813 /*
10814  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10815  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10816  * and this function updates it to reflect the changes to the guest state while
10817  * L2 was running (and perhaps made some exits which were handled directly by L0
10818  * without going back to L1), and to reflect the exit reason.
10819  * Note that we do not have to copy here all VMCS fields, just those that
10820  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10821  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10822  * which already writes to vmcs12 directly.
10823  */
10824 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10825                            u32 exit_reason, u32 exit_intr_info,
10826                            unsigned long exit_qualification)
10827 {
10828         /* update guest state fields: */
10829         sync_vmcs12(vcpu, vmcs12);
10830
10831         /* update exit information fields: */
10832
10833         vmcs12->vm_exit_reason = exit_reason;
10834         vmcs12->exit_qualification = exit_qualification;
10835
10836         vmcs12->vm_exit_intr_info = exit_intr_info;
10837         if ((vmcs12->vm_exit_intr_info &
10838              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10839             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10840                 vmcs12->vm_exit_intr_error_code =
10841                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10842         vmcs12->idt_vectoring_info_field = 0;
10843         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10844         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10845
10846         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10847                 vmcs12->launch_state = 1;
10848
10849                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10850                  * instead of reading the real value. */
10851                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10852
10853                 /*
10854                  * Transfer the event that L0 or L1 may wanted to inject into
10855                  * L2 to IDT_VECTORING_INFO_FIELD.
10856                  */
10857                 vmcs12_save_pending_event(vcpu, vmcs12);
10858         }
10859
10860         /*
10861          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10862          * preserved above and would only end up incorrectly in L1.
10863          */
10864         vcpu->arch.nmi_injected = false;
10865         kvm_clear_exception_queue(vcpu);
10866         kvm_clear_interrupt_queue(vcpu);
10867 }
10868
10869 /*
10870  * A part of what we need to when the nested L2 guest exits and we want to
10871  * run its L1 parent, is to reset L1's guest state to the host state specified
10872  * in vmcs12.
10873  * This function is to be called not only on normal nested exit, but also on
10874  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10875  * Failures During or After Loading Guest State").
10876  * This function should be called when the active VMCS is L1's (vmcs01).
10877  */
10878 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10879                                    struct vmcs12 *vmcs12)
10880 {
10881         struct kvm_segment seg;
10882         u32 entry_failure_code;
10883
10884         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10885                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10886         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10887                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10888         else
10889                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10890         vmx_set_efer(vcpu, vcpu->arch.efer);
10891
10892         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10893         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10894         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10895         /*
10896          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10897          * actually changed, because vmx_set_cr0 refers to efer set above.
10898          *
10899          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10900          * (KVM doesn't change it);
10901          */
10902         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10903         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10904
10905         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
10906         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10907         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10908
10909         nested_ept_uninit_mmu_context(vcpu);
10910
10911         /*
10912          * Only PDPTE load can fail as the value of cr3 was checked on entry and
10913          * couldn't have changed.
10914          */
10915         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10916                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10917
10918         if (!enable_ept)
10919                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10920
10921         if (enable_vpid) {
10922                 /*
10923                  * Trivially support vpid by letting L2s share their parent
10924                  * L1's vpid. TODO: move to a more elaborate solution, giving
10925                  * each L2 its own vpid and exposing the vpid feature to L1.
10926                  */
10927                 vmx_flush_tlb(vcpu);
10928         }
10929
10930
10931         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10932         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10933         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10934         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10935         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10936
10937         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10938         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10939                 vmcs_write64(GUEST_BNDCFGS, 0);
10940
10941         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10942                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10943                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10944         }
10945         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10946                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10947                         vmcs12->host_ia32_perf_global_ctrl);
10948
10949         /* Set L1 segment info according to Intel SDM
10950             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10951         seg = (struct kvm_segment) {
10952                 .base = 0,
10953                 .limit = 0xFFFFFFFF,
10954                 .selector = vmcs12->host_cs_selector,
10955                 .type = 11,
10956                 .present = 1,
10957                 .s = 1,
10958                 .g = 1
10959         };
10960         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10961                 seg.l = 1;
10962         else
10963                 seg.db = 1;
10964         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10965         seg = (struct kvm_segment) {
10966                 .base = 0,
10967                 .limit = 0xFFFFFFFF,
10968                 .type = 3,
10969                 .present = 1,
10970                 .s = 1,
10971                 .db = 1,
10972                 .g = 1
10973         };
10974         seg.selector = vmcs12->host_ds_selector;
10975         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10976         seg.selector = vmcs12->host_es_selector;
10977         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10978         seg.selector = vmcs12->host_ss_selector;
10979         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10980         seg.selector = vmcs12->host_fs_selector;
10981         seg.base = vmcs12->host_fs_base;
10982         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10983         seg.selector = vmcs12->host_gs_selector;
10984         seg.base = vmcs12->host_gs_base;
10985         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10986         seg = (struct kvm_segment) {
10987                 .base = vmcs12->host_tr_base,
10988                 .limit = 0x67,
10989                 .selector = vmcs12->host_tr_selector,
10990                 .type = 11,
10991                 .present = 1
10992         };
10993         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10994
10995         kvm_set_dr(vcpu, 7, 0x400);
10996         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10997
10998         if (cpu_has_vmx_msr_bitmap())
10999                 vmx_set_msr_bitmap(vcpu);
11000
11001         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11002                                 vmcs12->vm_exit_msr_load_count))
11003                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11004 }
11005
11006 /*
11007  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11008  * and modify vmcs12 to make it see what it would expect to see there if
11009  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11010  */
11011 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11012                               u32 exit_intr_info,
11013                               unsigned long exit_qualification)
11014 {
11015         struct vcpu_vmx *vmx = to_vmx(vcpu);
11016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11017         u32 vm_inst_error = 0;
11018
11019         /* trying to cancel vmlaunch/vmresume is a bug */
11020         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11021
11022         leave_guest_mode(vcpu);
11023         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11024                        exit_qualification);
11025
11026         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11027                                  vmcs12->vm_exit_msr_store_count))
11028                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11029
11030         if (unlikely(vmx->fail))
11031                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11032
11033         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11034
11035         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11036             && nested_exit_intr_ack_set(vcpu)) {
11037                 int irq = kvm_cpu_get_interrupt(vcpu);
11038                 WARN_ON(irq < 0);
11039                 vmcs12->vm_exit_intr_info = irq |
11040                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11041         }
11042
11043         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11044                                        vmcs12->exit_qualification,
11045                                        vmcs12->idt_vectoring_info_field,
11046                                        vmcs12->vm_exit_intr_info,
11047                                        vmcs12->vm_exit_intr_error_code,
11048                                        KVM_ISA_VMX);
11049
11050         vm_entry_controls_reset_shadow(vmx);
11051         vm_exit_controls_reset_shadow(vmx);
11052         vmx_segment_cache_clear(vmx);
11053
11054         /* if no vmcs02 cache requested, remove the one we used */
11055         if (VMCS02_POOL_SIZE == 0)
11056                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11057
11058         load_vmcs12_host_state(vcpu, vmcs12);
11059
11060         /* Update any VMCS fields that might have changed while L2 ran */
11061         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11062         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11063         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11064         if (vmx->hv_deadline_tsc == -1)
11065                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11066                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11067         else
11068                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11069                               PIN_BASED_VMX_PREEMPTION_TIMER);
11070         if (kvm_has_tsc_control)
11071                 decache_tsc_multiplier(vmx);
11072
11073         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11074                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11075                 vmx_set_virtual_x2apic_mode(vcpu,
11076                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11077         } else if (!nested_cpu_has_ept(vmcs12) &&
11078                    nested_cpu_has2(vmcs12,
11079                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11080                 vmx_flush_tlb_ept_only(vcpu);
11081         }
11082
11083         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11084         vmx->host_rsp = 0;
11085
11086         /* Unpin physical memory we referred to in vmcs02 */
11087         if (vmx->nested.apic_access_page) {
11088                 nested_release_page(vmx->nested.apic_access_page);
11089                 vmx->nested.apic_access_page = NULL;
11090         }
11091         if (vmx->nested.virtual_apic_page) {
11092                 nested_release_page(vmx->nested.virtual_apic_page);
11093                 vmx->nested.virtual_apic_page = NULL;
11094         }
11095         if (vmx->nested.pi_desc_page) {
11096                 kunmap(vmx->nested.pi_desc_page);
11097                 nested_release_page(vmx->nested.pi_desc_page);
11098                 vmx->nested.pi_desc_page = NULL;
11099                 vmx->nested.pi_desc = NULL;
11100         }
11101
11102         /*
11103          * We are now running in L2, mmu_notifier will force to reload the
11104          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11105          */
11106         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11107
11108         /*
11109          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11110          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11111          * success or failure flag accordingly.
11112          */
11113         if (unlikely(vmx->fail)) {
11114                 vmx->fail = 0;
11115                 nested_vmx_failValid(vcpu, vm_inst_error);
11116         } else
11117                 nested_vmx_succeed(vcpu);
11118         if (enable_shadow_vmcs)
11119                 vmx->nested.sync_shadow_vmcs = true;
11120
11121         /* in case we halted in L2 */
11122         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11123 }
11124
11125 /*
11126  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11127  */
11128 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11129 {
11130         if (is_guest_mode(vcpu)) {
11131                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11132                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11133         }
11134         free_nested(to_vmx(vcpu));
11135 }
11136
11137 /*
11138  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11139  * 23.7 "VM-entry failures during or after loading guest state" (this also
11140  * lists the acceptable exit-reason and exit-qualification parameters).
11141  * It should only be called before L2 actually succeeded to run, and when
11142  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11143  */
11144 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11145                         struct vmcs12 *vmcs12,
11146                         u32 reason, unsigned long qualification)
11147 {
11148         load_vmcs12_host_state(vcpu, vmcs12);
11149         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11150         vmcs12->exit_qualification = qualification;
11151         nested_vmx_succeed(vcpu);
11152         if (enable_shadow_vmcs)
11153                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11154 }
11155
11156 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11157                                struct x86_instruction_info *info,
11158                                enum x86_intercept_stage stage)
11159 {
11160         return X86EMUL_CONTINUE;
11161 }
11162
11163 #ifdef CONFIG_X86_64
11164 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11165 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11166                                   u64 divisor, u64 *result)
11167 {
11168         u64 low = a << shift, high = a >> (64 - shift);
11169
11170         /* To avoid the overflow on divq */
11171         if (high >= divisor)
11172                 return 1;
11173
11174         /* Low hold the result, high hold rem which is discarded */
11175         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11176             "rm" (divisor), "0" (low), "1" (high));
11177         *result = low;
11178
11179         return 0;
11180 }
11181
11182 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11183 {
11184         struct vcpu_vmx *vmx = to_vmx(vcpu);
11185         u64 tscl = rdtsc();
11186         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11187         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11188
11189         /* Convert to host delta tsc if tsc scaling is enabled */
11190         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11191                         u64_shl_div_u64(delta_tsc,
11192                                 kvm_tsc_scaling_ratio_frac_bits,
11193                                 vcpu->arch.tsc_scaling_ratio,
11194                                 &delta_tsc))
11195                 return -ERANGE;
11196
11197         /*
11198          * If the delta tsc can't fit in the 32 bit after the multi shift,
11199          * we can't use the preemption timer.
11200          * It's possible that it fits on later vmentries, but checking
11201          * on every vmentry is costly so we just use an hrtimer.
11202          */
11203         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11204                 return -ERANGE;
11205
11206         vmx->hv_deadline_tsc = tscl + delta_tsc;
11207         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11208                         PIN_BASED_VMX_PREEMPTION_TIMER);
11209
11210         return delta_tsc == 0;
11211 }
11212
11213 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11214 {
11215         struct vcpu_vmx *vmx = to_vmx(vcpu);
11216         vmx->hv_deadline_tsc = -1;
11217         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11218                         PIN_BASED_VMX_PREEMPTION_TIMER);
11219 }
11220 #endif
11221
11222 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11223 {
11224         if (ple_gap)
11225                 shrink_ple_window(vcpu);
11226 }
11227
11228 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11229                                      struct kvm_memory_slot *slot)
11230 {
11231         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11232         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11233 }
11234
11235 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11236                                        struct kvm_memory_slot *slot)
11237 {
11238         kvm_mmu_slot_set_dirty(kvm, slot);
11239 }
11240
11241 static void vmx_flush_log_dirty(struct kvm *kvm)
11242 {
11243         kvm_flush_pml_buffers(kvm);
11244 }
11245
11246 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11247 {
11248         struct vmcs12 *vmcs12;
11249         struct vcpu_vmx *vmx = to_vmx(vcpu);
11250         gpa_t gpa;
11251         struct page *page = NULL;
11252         u64 *pml_address;
11253
11254         if (is_guest_mode(vcpu)) {
11255                 WARN_ON_ONCE(vmx->nested.pml_full);
11256
11257                 /*
11258                  * Check if PML is enabled for the nested guest.
11259                  * Whether eptp bit 6 is set is already checked
11260                  * as part of A/D emulation.
11261                  */
11262                 vmcs12 = get_vmcs12(vcpu);
11263                 if (!nested_cpu_has_pml(vmcs12))
11264                         return 0;
11265
11266                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11267                         vmx->nested.pml_full = true;
11268                         return 1;
11269                 }
11270
11271                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11272
11273                 page = nested_get_page(vcpu, vmcs12->pml_address);
11274                 if (!page)
11275                         return 0;
11276
11277                 pml_address = kmap(page);
11278                 pml_address[vmcs12->guest_pml_index--] = gpa;
11279                 kunmap(page);
11280                 nested_release_page_clean(page);
11281         }
11282
11283         return 0;
11284 }
11285
11286 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11287                                            struct kvm_memory_slot *memslot,
11288                                            gfn_t offset, unsigned long mask)
11289 {
11290         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11291 }
11292
11293 /*
11294  * This routine does the following things for vCPU which is going
11295  * to be blocked if VT-d PI is enabled.
11296  * - Store the vCPU to the wakeup list, so when interrupts happen
11297  *   we can find the right vCPU to wake up.
11298  * - Change the Posted-interrupt descriptor as below:
11299  *      'NDST' <-- vcpu->pre_pcpu
11300  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11301  * - If 'ON' is set during this process, which means at least one
11302  *   interrupt is posted for this vCPU, we cannot block it, in
11303  *   this case, return 1, otherwise, return 0.
11304  *
11305  */
11306 static int pi_pre_block(struct kvm_vcpu *vcpu)
11307 {
11308         unsigned long flags;
11309         unsigned int dest;
11310         struct pi_desc old, new;
11311         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11312
11313         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11314                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11315                 !kvm_vcpu_apicv_active(vcpu))
11316                 return 0;
11317
11318         vcpu->pre_pcpu = vcpu->cpu;
11319         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11320                           vcpu->pre_pcpu), flags);
11321         list_add_tail(&vcpu->blocked_vcpu_list,
11322                       &per_cpu(blocked_vcpu_on_cpu,
11323                       vcpu->pre_pcpu));
11324         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11325                                vcpu->pre_pcpu), flags);
11326
11327         do {
11328                 old.control = new.control = pi_desc->control;
11329
11330                 /*
11331                  * We should not block the vCPU if
11332                  * an interrupt is posted for it.
11333                  */
11334                 if (pi_test_on(pi_desc) == 1) {
11335                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11336                                           vcpu->pre_pcpu), flags);
11337                         list_del(&vcpu->blocked_vcpu_list);
11338                         spin_unlock_irqrestore(
11339                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11340                                         vcpu->pre_pcpu), flags);
11341                         vcpu->pre_pcpu = -1;
11342
11343                         return 1;
11344                 }
11345
11346                 WARN((pi_desc->sn == 1),
11347                      "Warning: SN field of posted-interrupts "
11348                      "is set before blocking\n");
11349
11350                 /*
11351                  * Since vCPU can be preempted during this process,
11352                  * vcpu->cpu could be different with pre_pcpu, we
11353                  * need to set pre_pcpu as the destination of wakeup
11354                  * notification event, then we can find the right vCPU
11355                  * to wakeup in wakeup handler if interrupts happen
11356                  * when the vCPU is in blocked state.
11357                  */
11358                 dest = cpu_physical_id(vcpu->pre_pcpu);
11359
11360                 if (x2apic_enabled())
11361                         new.ndst = dest;
11362                 else
11363                         new.ndst = (dest << 8) & 0xFF00;
11364
11365                 /* set 'NV' to 'wakeup vector' */
11366                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11367         } while (cmpxchg(&pi_desc->control, old.control,
11368                         new.control) != old.control);
11369
11370         return 0;
11371 }
11372
11373 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11374 {
11375         if (pi_pre_block(vcpu))
11376                 return 1;
11377
11378         if (kvm_lapic_hv_timer_in_use(vcpu))
11379                 kvm_lapic_switch_to_sw_timer(vcpu);
11380
11381         return 0;
11382 }
11383
11384 static void pi_post_block(struct kvm_vcpu *vcpu)
11385 {
11386         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11387         struct pi_desc old, new;
11388         unsigned int dest;
11389         unsigned long flags;
11390
11391         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11392                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11393                 !kvm_vcpu_apicv_active(vcpu))
11394                 return;
11395
11396         do {
11397                 old.control = new.control = pi_desc->control;
11398
11399                 dest = cpu_physical_id(vcpu->cpu);
11400
11401                 if (x2apic_enabled())
11402                         new.ndst = dest;
11403                 else
11404                         new.ndst = (dest << 8) & 0xFF00;
11405
11406                 /* Allow posting non-urgent interrupts */
11407                 new.sn = 0;
11408
11409                 /* set 'NV' to 'notification vector' */
11410                 new.nv = POSTED_INTR_VECTOR;
11411         } while (cmpxchg(&pi_desc->control, old.control,
11412                         new.control) != old.control);
11413
11414         if(vcpu->pre_pcpu != -1) {
11415                 spin_lock_irqsave(
11416                         &per_cpu(blocked_vcpu_on_cpu_lock,
11417                         vcpu->pre_pcpu), flags);
11418                 list_del(&vcpu->blocked_vcpu_list);
11419                 spin_unlock_irqrestore(
11420                         &per_cpu(blocked_vcpu_on_cpu_lock,
11421                         vcpu->pre_pcpu), flags);
11422                 vcpu->pre_pcpu = -1;
11423         }
11424 }
11425
11426 static void vmx_post_block(struct kvm_vcpu *vcpu)
11427 {
11428         if (kvm_x86_ops->set_hv_timer)
11429                 kvm_lapic_switch_to_hv_timer(vcpu);
11430
11431         pi_post_block(vcpu);
11432 }
11433
11434 /*
11435  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11436  *
11437  * @kvm: kvm
11438  * @host_irq: host irq of the interrupt
11439  * @guest_irq: gsi of the interrupt
11440  * @set: set or unset PI
11441  * returns 0 on success, < 0 on failure
11442  */
11443 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11444                               uint32_t guest_irq, bool set)
11445 {
11446         struct kvm_kernel_irq_routing_entry *e;
11447         struct kvm_irq_routing_table *irq_rt;
11448         struct kvm_lapic_irq irq;
11449         struct kvm_vcpu *vcpu;
11450         struct vcpu_data vcpu_info;
11451         int idx, ret = -EINVAL;
11452
11453         if (!kvm_arch_has_assigned_device(kvm) ||
11454                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11455                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11456                 return 0;
11457
11458         idx = srcu_read_lock(&kvm->irq_srcu);
11459         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11460         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11461
11462         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11463                 if (e->type != KVM_IRQ_ROUTING_MSI)
11464                         continue;
11465                 /*
11466                  * VT-d PI cannot support posting multicast/broadcast
11467                  * interrupts to a vCPU, we still use interrupt remapping
11468                  * for these kind of interrupts.
11469                  *
11470                  * For lowest-priority interrupts, we only support
11471                  * those with single CPU as the destination, e.g. user
11472                  * configures the interrupts via /proc/irq or uses
11473                  * irqbalance to make the interrupts single-CPU.
11474                  *
11475                  * We will support full lowest-priority interrupt later.
11476                  */
11477
11478                 kvm_set_msi_irq(kvm, e, &irq);
11479                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11480                         /*
11481                          * Make sure the IRTE is in remapped mode if
11482                          * we don't handle it in posted mode.
11483                          */
11484                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11485                         if (ret < 0) {
11486                                 printk(KERN_INFO
11487                                    "failed to back to remapped mode, irq: %u\n",
11488                                    host_irq);
11489                                 goto out;
11490                         }
11491
11492                         continue;
11493                 }
11494
11495                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11496                 vcpu_info.vector = irq.vector;
11497
11498                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11499                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11500
11501                 if (set)
11502                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11503                 else {
11504                         /* suppress notification event before unposting */
11505                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11506                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11507                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11508                 }
11509
11510                 if (ret < 0) {
11511                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11512                                         __func__);
11513                         goto out;
11514                 }
11515         }
11516
11517         ret = 0;
11518 out:
11519         srcu_read_unlock(&kvm->irq_srcu, idx);
11520         return ret;
11521 }
11522
11523 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11524 {
11525         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11526                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11527                         FEATURE_CONTROL_LMCE;
11528         else
11529                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11530                         ~FEATURE_CONTROL_LMCE;
11531 }
11532
11533 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11534         .cpu_has_kvm_support = cpu_has_kvm_support,
11535         .disabled_by_bios = vmx_disabled_by_bios,
11536         .hardware_setup = hardware_setup,
11537         .hardware_unsetup = hardware_unsetup,
11538         .check_processor_compatibility = vmx_check_processor_compat,
11539         .hardware_enable = hardware_enable,
11540         .hardware_disable = hardware_disable,
11541         .cpu_has_accelerated_tpr = report_flexpriority,
11542         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11543
11544         .vcpu_create = vmx_create_vcpu,
11545         .vcpu_free = vmx_free_vcpu,
11546         .vcpu_reset = vmx_vcpu_reset,
11547
11548         .prepare_guest_switch = vmx_save_host_state,
11549         .vcpu_load = vmx_vcpu_load,
11550         .vcpu_put = vmx_vcpu_put,
11551
11552         .update_bp_intercept = update_exception_bitmap,
11553         .get_msr = vmx_get_msr,
11554         .set_msr = vmx_set_msr,
11555         .get_segment_base = vmx_get_segment_base,
11556         .get_segment = vmx_get_segment,
11557         .set_segment = vmx_set_segment,
11558         .get_cpl = vmx_get_cpl,
11559         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11560         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11561         .decache_cr3 = vmx_decache_cr3,
11562         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11563         .set_cr0 = vmx_set_cr0,
11564         .set_cr3 = vmx_set_cr3,
11565         .set_cr4 = vmx_set_cr4,
11566         .set_efer = vmx_set_efer,
11567         .get_idt = vmx_get_idt,
11568         .set_idt = vmx_set_idt,
11569         .get_gdt = vmx_get_gdt,
11570         .set_gdt = vmx_set_gdt,
11571         .get_dr6 = vmx_get_dr6,
11572         .set_dr6 = vmx_set_dr6,
11573         .set_dr7 = vmx_set_dr7,
11574         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11575         .cache_reg = vmx_cache_reg,
11576         .get_rflags = vmx_get_rflags,
11577         .set_rflags = vmx_set_rflags,
11578
11579         .get_pkru = vmx_get_pkru,
11580
11581         .tlb_flush = vmx_flush_tlb,
11582
11583         .run = vmx_vcpu_run,
11584         .handle_exit = vmx_handle_exit,
11585         .skip_emulated_instruction = skip_emulated_instruction,
11586         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11587         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11588         .patch_hypercall = vmx_patch_hypercall,
11589         .set_irq = vmx_inject_irq,
11590         .set_nmi = vmx_inject_nmi,
11591         .queue_exception = vmx_queue_exception,
11592         .cancel_injection = vmx_cancel_injection,
11593         .interrupt_allowed = vmx_interrupt_allowed,
11594         .nmi_allowed = vmx_nmi_allowed,
11595         .get_nmi_mask = vmx_get_nmi_mask,
11596         .set_nmi_mask = vmx_set_nmi_mask,
11597         .enable_nmi_window = enable_nmi_window,
11598         .enable_irq_window = enable_irq_window,
11599         .update_cr8_intercept = update_cr8_intercept,
11600         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11601         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11602         .get_enable_apicv = vmx_get_enable_apicv,
11603         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11604         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11605         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11606         .hwapic_irr_update = vmx_hwapic_irr_update,
11607         .hwapic_isr_update = vmx_hwapic_isr_update,
11608         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11609         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11610
11611         .set_tss_addr = vmx_set_tss_addr,
11612         .get_tdp_level = get_ept_level,
11613         .get_mt_mask = vmx_get_mt_mask,
11614
11615         .get_exit_info = vmx_get_exit_info,
11616
11617         .get_lpage_level = vmx_get_lpage_level,
11618
11619         .cpuid_update = vmx_cpuid_update,
11620
11621         .rdtscp_supported = vmx_rdtscp_supported,
11622         .invpcid_supported = vmx_invpcid_supported,
11623
11624         .set_supported_cpuid = vmx_set_supported_cpuid,
11625
11626         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11627
11628         .write_tsc_offset = vmx_write_tsc_offset,
11629
11630         .set_tdp_cr3 = vmx_set_cr3,
11631
11632         .check_intercept = vmx_check_intercept,
11633         .handle_external_intr = vmx_handle_external_intr,
11634         .mpx_supported = vmx_mpx_supported,
11635         .xsaves_supported = vmx_xsaves_supported,
11636
11637         .check_nested_events = vmx_check_nested_events,
11638
11639         .sched_in = vmx_sched_in,
11640
11641         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11642         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11643         .flush_log_dirty = vmx_flush_log_dirty,
11644         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11645         .write_log_dirty = vmx_write_pml_buffer,
11646
11647         .pre_block = vmx_pre_block,
11648         .post_block = vmx_post_block,
11649
11650         .pmu_ops = &intel_pmu_ops,
11651
11652         .update_pi_irte = vmx_update_pi_irte,
11653
11654 #ifdef CONFIG_X86_64
11655         .set_hv_timer = vmx_set_hv_timer,
11656         .cancel_hv_timer = vmx_cancel_hv_timer,
11657 #endif
11658
11659         .setup_mce = vmx_setup_mce,
11660 };
11661
11662 static int __init vmx_init(void)
11663 {
11664         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11665                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11666         if (r)
11667                 return r;
11668
11669 #ifdef CONFIG_KEXEC_CORE
11670         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11671                            crash_vmclear_local_loaded_vmcss);
11672 #endif
11673
11674         return 0;
11675 }
11676
11677 static void __exit vmx_exit(void)
11678 {
11679 #ifdef CONFIG_KEXEC_CORE
11680         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11681         synchronize_rcu();
11682 #endif
11683
11684         kvm_exit();
11685 }
11686
11687 module_init(vmx_init)
11688 module_exit(vmx_exit)