]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
a4ef6371810106bef15aa649badef4ff9d8ac18d
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_VMX),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79                         enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
109
110 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
111 static int __read_mostly cpu_preemption_timer_multi;
112 static bool __read_mostly enable_preemption_timer = 1;
113 #ifdef CONFIG_X86_64
114 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
115 #endif
116
117 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
118 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
119 #define KVM_VM_CR0_ALWAYS_ON                                            \
120         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
121 #define KVM_CR4_GUEST_OWNED_BITS                                      \
122         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
123          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
124
125 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
126 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
127
128 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
129
130 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
131
132 /*
133  * Hyper-V requires all of these, so mark them as supported even though
134  * they are just treated the same as all-context.
135  */
136 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
137         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
138         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
139         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
140         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
141
142 /*
143  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
144  * ple_gap:    upper bound on the amount of time between two successive
145  *             executions of PAUSE in a loop. Also indicate if ple enabled.
146  *             According to test, this time is usually smaller than 128 cycles.
147  * ple_window: upper bound on the amount of time a guest is allowed to execute
148  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
149  *             less than 2^12 cycles
150  * Time is measured based on a counter that runs at the same rate as the TSC,
151  * refer SDM volume 3b section 21.6.13 & 22.1.3.
152  */
153 #define KVM_VMX_DEFAULT_PLE_GAP           128
154 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
155 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
156 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
158                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
159
160 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
161 module_param(ple_gap, int, S_IRUGO);
162
163 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
164 module_param(ple_window, int, S_IRUGO);
165
166 /* Default doubles per-vcpu window every exit. */
167 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
168 module_param(ple_window_grow, int, S_IRUGO);
169
170 /* Default resets per-vcpu window every exit to ple_window. */
171 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
172 module_param(ple_window_shrink, int, S_IRUGO);
173
174 /* Default is to compute the maximum so we can never overflow. */
175 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
176 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
177 module_param(ple_window_max, int, S_IRUGO);
178
179 extern const ulong vmx_return;
180
181 #define NR_AUTOLOAD_MSRS 8
182 #define VMCS02_POOL_SIZE 1
183
184 struct vmcs {
185         u32 revision_id;
186         u32 abort;
187         char data[0];
188 };
189
190 /*
191  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
192  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
193  * loaded on this CPU (so we can clear them if the CPU goes down).
194  */
195 struct loaded_vmcs {
196         struct vmcs *vmcs;
197         struct vmcs *shadow_vmcs;
198         int cpu;
199         int launched;
200         struct list_head loaded_vmcss_on_cpu_link;
201 };
202
203 struct shared_msr_entry {
204         unsigned index;
205         u64 data;
206         u64 mask;
207 };
208
209 /*
210  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
211  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
212  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
213  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
214  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
215  * More than one of these structures may exist, if L1 runs multiple L2 guests.
216  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
217  * underlying hardware which will be used to run L2.
218  * This structure is packed to ensure that its layout is identical across
219  * machines (necessary for live migration).
220  * If there are changes in this struct, VMCS12_REVISION must be changed.
221  */
222 typedef u64 natural_width;
223 struct __packed vmcs12 {
224         /* According to the Intel spec, a VMCS region must start with the
225          * following two fields. Then follow implementation-specific data.
226          */
227         u32 revision_id;
228         u32 abort;
229
230         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
231         u32 padding[7]; /* room for future expansion */
232
233         u64 io_bitmap_a;
234         u64 io_bitmap_b;
235         u64 msr_bitmap;
236         u64 vm_exit_msr_store_addr;
237         u64 vm_exit_msr_load_addr;
238         u64 vm_entry_msr_load_addr;
239         u64 tsc_offset;
240         u64 virtual_apic_page_addr;
241         u64 apic_access_addr;
242         u64 posted_intr_desc_addr;
243         u64 ept_pointer;
244         u64 eoi_exit_bitmap0;
245         u64 eoi_exit_bitmap1;
246         u64 eoi_exit_bitmap2;
247         u64 eoi_exit_bitmap3;
248         u64 xss_exit_bitmap;
249         u64 guest_physical_address;
250         u64 vmcs_link_pointer;
251         u64 guest_ia32_debugctl;
252         u64 guest_ia32_pat;
253         u64 guest_ia32_efer;
254         u64 guest_ia32_perf_global_ctrl;
255         u64 guest_pdptr0;
256         u64 guest_pdptr1;
257         u64 guest_pdptr2;
258         u64 guest_pdptr3;
259         u64 guest_bndcfgs;
260         u64 host_ia32_pat;
261         u64 host_ia32_efer;
262         u64 host_ia32_perf_global_ctrl;
263         u64 padding64[8]; /* room for future expansion */
264         /*
265          * To allow migration of L1 (complete with its L2 guests) between
266          * machines of different natural widths (32 or 64 bit), we cannot have
267          * unsigned long fields with no explict size. We use u64 (aliased
268          * natural_width) instead. Luckily, x86 is little-endian.
269          */
270         natural_width cr0_guest_host_mask;
271         natural_width cr4_guest_host_mask;
272         natural_width cr0_read_shadow;
273         natural_width cr4_read_shadow;
274         natural_width cr3_target_value0;
275         natural_width cr3_target_value1;
276         natural_width cr3_target_value2;
277         natural_width cr3_target_value3;
278         natural_width exit_qualification;
279         natural_width guest_linear_address;
280         natural_width guest_cr0;
281         natural_width guest_cr3;
282         natural_width guest_cr4;
283         natural_width guest_es_base;
284         natural_width guest_cs_base;
285         natural_width guest_ss_base;
286         natural_width guest_ds_base;
287         natural_width guest_fs_base;
288         natural_width guest_gs_base;
289         natural_width guest_ldtr_base;
290         natural_width guest_tr_base;
291         natural_width guest_gdtr_base;
292         natural_width guest_idtr_base;
293         natural_width guest_dr7;
294         natural_width guest_rsp;
295         natural_width guest_rip;
296         natural_width guest_rflags;
297         natural_width guest_pending_dbg_exceptions;
298         natural_width guest_sysenter_esp;
299         natural_width guest_sysenter_eip;
300         natural_width host_cr0;
301         natural_width host_cr3;
302         natural_width host_cr4;
303         natural_width host_fs_base;
304         natural_width host_gs_base;
305         natural_width host_tr_base;
306         natural_width host_gdtr_base;
307         natural_width host_idtr_base;
308         natural_width host_ia32_sysenter_esp;
309         natural_width host_ia32_sysenter_eip;
310         natural_width host_rsp;
311         natural_width host_rip;
312         natural_width paddingl[8]; /* room for future expansion */
313         u32 pin_based_vm_exec_control;
314         u32 cpu_based_vm_exec_control;
315         u32 exception_bitmap;
316         u32 page_fault_error_code_mask;
317         u32 page_fault_error_code_match;
318         u32 cr3_target_count;
319         u32 vm_exit_controls;
320         u32 vm_exit_msr_store_count;
321         u32 vm_exit_msr_load_count;
322         u32 vm_entry_controls;
323         u32 vm_entry_msr_load_count;
324         u32 vm_entry_intr_info_field;
325         u32 vm_entry_exception_error_code;
326         u32 vm_entry_instruction_len;
327         u32 tpr_threshold;
328         u32 secondary_vm_exec_control;
329         u32 vm_instruction_error;
330         u32 vm_exit_reason;
331         u32 vm_exit_intr_info;
332         u32 vm_exit_intr_error_code;
333         u32 idt_vectoring_info_field;
334         u32 idt_vectoring_error_code;
335         u32 vm_exit_instruction_len;
336         u32 vmx_instruction_info;
337         u32 guest_es_limit;
338         u32 guest_cs_limit;
339         u32 guest_ss_limit;
340         u32 guest_ds_limit;
341         u32 guest_fs_limit;
342         u32 guest_gs_limit;
343         u32 guest_ldtr_limit;
344         u32 guest_tr_limit;
345         u32 guest_gdtr_limit;
346         u32 guest_idtr_limit;
347         u32 guest_es_ar_bytes;
348         u32 guest_cs_ar_bytes;
349         u32 guest_ss_ar_bytes;
350         u32 guest_ds_ar_bytes;
351         u32 guest_fs_ar_bytes;
352         u32 guest_gs_ar_bytes;
353         u32 guest_ldtr_ar_bytes;
354         u32 guest_tr_ar_bytes;
355         u32 guest_interruptibility_info;
356         u32 guest_activity_state;
357         u32 guest_sysenter_cs;
358         u32 host_ia32_sysenter_cs;
359         u32 vmx_preemption_timer_value;
360         u32 padding32[7]; /* room for future expansion */
361         u16 virtual_processor_id;
362         u16 posted_intr_nv;
363         u16 guest_es_selector;
364         u16 guest_cs_selector;
365         u16 guest_ss_selector;
366         u16 guest_ds_selector;
367         u16 guest_fs_selector;
368         u16 guest_gs_selector;
369         u16 guest_ldtr_selector;
370         u16 guest_tr_selector;
371         u16 guest_intr_status;
372         u16 host_es_selector;
373         u16 host_cs_selector;
374         u16 host_ss_selector;
375         u16 host_ds_selector;
376         u16 host_fs_selector;
377         u16 host_gs_selector;
378         u16 host_tr_selector;
379 };
380
381 /*
382  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
383  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
384  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
385  */
386 #define VMCS12_REVISION 0x11e57ed0
387
388 /*
389  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
390  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
391  * current implementation, 4K are reserved to avoid future complications.
392  */
393 #define VMCS12_SIZE 0x1000
394
395 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
396 struct vmcs02_list {
397         struct list_head list;
398         gpa_t vmptr;
399         struct loaded_vmcs vmcs02;
400 };
401
402 /*
403  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
404  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
405  */
406 struct nested_vmx {
407         /* Has the level1 guest done vmxon? */
408         bool vmxon;
409         gpa_t vmxon_ptr;
410
411         /* The guest-physical address of the current VMCS L1 keeps for L2 */
412         gpa_t current_vmptr;
413         /* The host-usable pointer to the above */
414         struct page *current_vmcs12_page;
415         struct vmcs12 *current_vmcs12;
416         /*
417          * Cache of the guest's VMCS, existing outside of guest memory.
418          * Loaded from guest memory during VMPTRLD. Flushed to guest
419          * memory during VMXOFF, VMCLEAR, VMPTRLD.
420          */
421         struct vmcs12 *cached_vmcs12;
422         /*
423          * Indicates if the shadow vmcs must be updated with the
424          * data hold by vmcs12
425          */
426         bool sync_shadow_vmcs;
427
428         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
429         struct list_head vmcs02_pool;
430         int vmcs02_num;
431         bool change_vmcs01_virtual_x2apic_mode;
432         /* L2 must run next, and mustn't decide to exit to L1. */
433         bool nested_run_pending;
434         /*
435          * Guest pages referred to in vmcs02 with host-physical pointers, so
436          * we must keep them pinned while L2 runs.
437          */
438         struct page *apic_access_page;
439         struct page *virtual_apic_page;
440         struct page *pi_desc_page;
441         struct pi_desc *pi_desc;
442         bool pi_pending;
443         u16 posted_intr_nv;
444
445         unsigned long *msr_bitmap;
446
447         struct hrtimer preemption_timer;
448         bool preemption_timer_expired;
449
450         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
451         u64 vmcs01_debugctl;
452
453         u16 vpid02;
454         u16 last_vpid;
455
456         /*
457          * We only store the "true" versions of the VMX capability MSRs. We
458          * generate the "non-true" versions by setting the must-be-1 bits
459          * according to the SDM.
460          */
461         u32 nested_vmx_procbased_ctls_low;
462         u32 nested_vmx_procbased_ctls_high;
463         u32 nested_vmx_secondary_ctls_low;
464         u32 nested_vmx_secondary_ctls_high;
465         u32 nested_vmx_pinbased_ctls_low;
466         u32 nested_vmx_pinbased_ctls_high;
467         u32 nested_vmx_exit_ctls_low;
468         u32 nested_vmx_exit_ctls_high;
469         u32 nested_vmx_entry_ctls_low;
470         u32 nested_vmx_entry_ctls_high;
471         u32 nested_vmx_misc_low;
472         u32 nested_vmx_misc_high;
473         u32 nested_vmx_ept_caps;
474         u32 nested_vmx_vpid_caps;
475         u64 nested_vmx_basic;
476         u64 nested_vmx_cr0_fixed0;
477         u64 nested_vmx_cr0_fixed1;
478         u64 nested_vmx_cr4_fixed0;
479         u64 nested_vmx_cr4_fixed1;
480         u64 nested_vmx_vmcs_enum;
481 };
482
483 #define POSTED_INTR_ON  0
484 #define POSTED_INTR_SN  1
485
486 /* Posted-Interrupt Descriptor */
487 struct pi_desc {
488         u32 pir[8];     /* Posted interrupt requested */
489         union {
490                 struct {
491                                 /* bit 256 - Outstanding Notification */
492                         u16     on      : 1,
493                                 /* bit 257 - Suppress Notification */
494                                 sn      : 1,
495                                 /* bit 271:258 - Reserved */
496                                 rsvd_1  : 14;
497                                 /* bit 279:272 - Notification Vector */
498                         u8      nv;
499                                 /* bit 287:280 - Reserved */
500                         u8      rsvd_2;
501                                 /* bit 319:288 - Notification Destination */
502                         u32     ndst;
503                 };
504                 u64 control;
505         };
506         u32 rsvd[6];
507 } __aligned(64);
508
509 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
510 {
511         return test_and_set_bit(POSTED_INTR_ON,
512                         (unsigned long *)&pi_desc->control);
513 }
514
515 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
516 {
517         return test_and_clear_bit(POSTED_INTR_ON,
518                         (unsigned long *)&pi_desc->control);
519 }
520
521 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
522 {
523         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
524 }
525
526 static inline void pi_clear_sn(struct pi_desc *pi_desc)
527 {
528         return clear_bit(POSTED_INTR_SN,
529                         (unsigned long *)&pi_desc->control);
530 }
531
532 static inline void pi_set_sn(struct pi_desc *pi_desc)
533 {
534         return set_bit(POSTED_INTR_SN,
535                         (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_clear_on(struct pi_desc *pi_desc)
539 {
540         clear_bit(POSTED_INTR_ON,
541                   (unsigned long *)&pi_desc->control);
542 }
543
544 static inline int pi_test_on(struct pi_desc *pi_desc)
545 {
546         return test_bit(POSTED_INTR_ON,
547                         (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_sn(struct pi_desc *pi_desc)
551 {
552         return test_bit(POSTED_INTR_SN,
553                         (unsigned long *)&pi_desc->control);
554 }
555
556 struct vcpu_vmx {
557         struct kvm_vcpu       vcpu;
558         unsigned long         host_rsp;
559         u8                    fail;
560         bool                  nmi_known_unmasked;
561         u32                   exit_intr_info;
562         u32                   idt_vectoring_info;
563         ulong                 rflags;
564         struct shared_msr_entry *guest_msrs;
565         int                   nmsrs;
566         int                   save_nmsrs;
567         unsigned long         host_idt_base;
568 #ifdef CONFIG_X86_64
569         u64                   msr_host_kernel_gs_base;
570         u64                   msr_guest_kernel_gs_base;
571 #endif
572         u32 vm_entry_controls_shadow;
573         u32 vm_exit_controls_shadow;
574         /*
575          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
576          * non-nested (L1) guest, it always points to vmcs01. For a nested
577          * guest (L2), it points to a different VMCS.
578          */
579         struct loaded_vmcs    vmcs01;
580         struct loaded_vmcs   *loaded_vmcs;
581         bool                  __launched; /* temporary, used in vmx_vcpu_run */
582         struct msr_autoload {
583                 unsigned nr;
584                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
585                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
586         } msr_autoload;
587         struct {
588                 int           loaded;
589                 u16           fs_sel, gs_sel, ldt_sel;
590 #ifdef CONFIG_X86_64
591                 u16           ds_sel, es_sel;
592 #endif
593                 int           gs_ldt_reload_needed;
594                 int           fs_reload_needed;
595                 u64           msr_host_bndcfgs;
596                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
597         } host_state;
598         struct {
599                 int vm86_active;
600                 ulong save_rflags;
601                 struct kvm_segment segs[8];
602         } rmode;
603         struct {
604                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
605                 struct kvm_save_segment {
606                         u16 selector;
607                         unsigned long base;
608                         u32 limit;
609                         u32 ar;
610                 } seg[8];
611         } segment_cache;
612         int vpid;
613         bool emulation_required;
614
615         u32 exit_reason;
616
617         /* Posted interrupt descriptor */
618         struct pi_desc pi_desc;
619
620         /* Support for a guest hypervisor (nested VMX) */
621         struct nested_vmx nested;
622
623         /* Dynamic PLE window. */
624         int ple_window;
625         bool ple_window_dirty;
626
627         /* Support for PML */
628 #define PML_ENTITY_NUM          512
629         struct page *pml_pg;
630
631         /* apic deadline value in host tsc */
632         u64 hv_deadline_tsc;
633
634         u64 current_tsc_ratio;
635
636         bool guest_pkru_valid;
637         u32 guest_pkru;
638         u32 host_pkru;
639
640         /*
641          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
642          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
643          * in msr_ia32_feature_control_valid_bits.
644          */
645         u64 msr_ia32_feature_control;
646         u64 msr_ia32_feature_control_valid_bits;
647 };
648
649 enum segment_cache_field {
650         SEG_FIELD_SEL = 0,
651         SEG_FIELD_BASE = 1,
652         SEG_FIELD_LIMIT = 2,
653         SEG_FIELD_AR = 3,
654
655         SEG_FIELD_NR = 4
656 };
657
658 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
659 {
660         return container_of(vcpu, struct vcpu_vmx, vcpu);
661 }
662
663 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
664 {
665         return &(to_vmx(vcpu)->pi_desc);
666 }
667
668 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
669 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
670 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
671                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
672
673
674 static unsigned long shadow_read_only_fields[] = {
675         /*
676          * We do NOT shadow fields that are modified when L0
677          * traps and emulates any vmx instruction (e.g. VMPTRLD,
678          * VMXON...) executed by L1.
679          * For example, VM_INSTRUCTION_ERROR is read
680          * by L1 if a vmx instruction fails (part of the error path).
681          * Note the code assumes this logic. If for some reason
682          * we start shadowing these fields then we need to
683          * force a shadow sync when L0 emulates vmx instructions
684          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
685          * by nested_vmx_failValid)
686          */
687         VM_EXIT_REASON,
688         VM_EXIT_INTR_INFO,
689         VM_EXIT_INSTRUCTION_LEN,
690         IDT_VECTORING_INFO_FIELD,
691         IDT_VECTORING_ERROR_CODE,
692         VM_EXIT_INTR_ERROR_CODE,
693         EXIT_QUALIFICATION,
694         GUEST_LINEAR_ADDRESS,
695         GUEST_PHYSICAL_ADDRESS
696 };
697 static int max_shadow_read_only_fields =
698         ARRAY_SIZE(shadow_read_only_fields);
699
700 static unsigned long shadow_read_write_fields[] = {
701         TPR_THRESHOLD,
702         GUEST_RIP,
703         GUEST_RSP,
704         GUEST_CR0,
705         GUEST_CR3,
706         GUEST_CR4,
707         GUEST_INTERRUPTIBILITY_INFO,
708         GUEST_RFLAGS,
709         GUEST_CS_SELECTOR,
710         GUEST_CS_AR_BYTES,
711         GUEST_CS_LIMIT,
712         GUEST_CS_BASE,
713         GUEST_ES_BASE,
714         GUEST_BNDCFGS,
715         CR0_GUEST_HOST_MASK,
716         CR0_READ_SHADOW,
717         CR4_READ_SHADOW,
718         TSC_OFFSET,
719         EXCEPTION_BITMAP,
720         CPU_BASED_VM_EXEC_CONTROL,
721         VM_ENTRY_EXCEPTION_ERROR_CODE,
722         VM_ENTRY_INTR_INFO_FIELD,
723         VM_ENTRY_INSTRUCTION_LEN,
724         VM_ENTRY_EXCEPTION_ERROR_CODE,
725         HOST_FS_BASE,
726         HOST_GS_BASE,
727         HOST_FS_SELECTOR,
728         HOST_GS_SELECTOR
729 };
730 static int max_shadow_read_write_fields =
731         ARRAY_SIZE(shadow_read_write_fields);
732
733 static const unsigned short vmcs_field_to_offset_table[] = {
734         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
735         FIELD(POSTED_INTR_NV, posted_intr_nv),
736         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
737         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
738         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
739         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
740         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
741         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
742         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
743         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
744         FIELD(GUEST_INTR_STATUS, guest_intr_status),
745         FIELD(HOST_ES_SELECTOR, host_es_selector),
746         FIELD(HOST_CS_SELECTOR, host_cs_selector),
747         FIELD(HOST_SS_SELECTOR, host_ss_selector),
748         FIELD(HOST_DS_SELECTOR, host_ds_selector),
749         FIELD(HOST_FS_SELECTOR, host_fs_selector),
750         FIELD(HOST_GS_SELECTOR, host_gs_selector),
751         FIELD(HOST_TR_SELECTOR, host_tr_selector),
752         FIELD64(IO_BITMAP_A, io_bitmap_a),
753         FIELD64(IO_BITMAP_B, io_bitmap_b),
754         FIELD64(MSR_BITMAP, msr_bitmap),
755         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
756         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
757         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
758         FIELD64(TSC_OFFSET, tsc_offset),
759         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
760         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
761         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
762         FIELD64(EPT_POINTER, ept_pointer),
763         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
764         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
765         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
766         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
767         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
768         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
769         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
770         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
771         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
772         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
773         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
774         FIELD64(GUEST_PDPTR0, guest_pdptr0),
775         FIELD64(GUEST_PDPTR1, guest_pdptr1),
776         FIELD64(GUEST_PDPTR2, guest_pdptr2),
777         FIELD64(GUEST_PDPTR3, guest_pdptr3),
778         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
779         FIELD64(HOST_IA32_PAT, host_ia32_pat),
780         FIELD64(HOST_IA32_EFER, host_ia32_efer),
781         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
782         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
783         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
784         FIELD(EXCEPTION_BITMAP, exception_bitmap),
785         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
786         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
787         FIELD(CR3_TARGET_COUNT, cr3_target_count),
788         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
789         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
790         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
791         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
792         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
793         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
794         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
795         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
796         FIELD(TPR_THRESHOLD, tpr_threshold),
797         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
798         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
799         FIELD(VM_EXIT_REASON, vm_exit_reason),
800         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
801         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
802         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
803         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
804         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
805         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
806         FIELD(GUEST_ES_LIMIT, guest_es_limit),
807         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
808         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
809         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
810         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
811         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
812         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
813         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
814         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
815         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
816         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
817         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
818         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
819         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
820         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
821         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
822         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
823         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
824         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
825         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
826         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
827         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
828         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
829         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
830         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
831         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
832         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
833         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
834         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
835         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
836         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
837         FIELD(EXIT_QUALIFICATION, exit_qualification),
838         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
839         FIELD(GUEST_CR0, guest_cr0),
840         FIELD(GUEST_CR3, guest_cr3),
841         FIELD(GUEST_CR4, guest_cr4),
842         FIELD(GUEST_ES_BASE, guest_es_base),
843         FIELD(GUEST_CS_BASE, guest_cs_base),
844         FIELD(GUEST_SS_BASE, guest_ss_base),
845         FIELD(GUEST_DS_BASE, guest_ds_base),
846         FIELD(GUEST_FS_BASE, guest_fs_base),
847         FIELD(GUEST_GS_BASE, guest_gs_base),
848         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
849         FIELD(GUEST_TR_BASE, guest_tr_base),
850         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
851         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
852         FIELD(GUEST_DR7, guest_dr7),
853         FIELD(GUEST_RSP, guest_rsp),
854         FIELD(GUEST_RIP, guest_rip),
855         FIELD(GUEST_RFLAGS, guest_rflags),
856         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
857         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
858         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
859         FIELD(HOST_CR0, host_cr0),
860         FIELD(HOST_CR3, host_cr3),
861         FIELD(HOST_CR4, host_cr4),
862         FIELD(HOST_FS_BASE, host_fs_base),
863         FIELD(HOST_GS_BASE, host_gs_base),
864         FIELD(HOST_TR_BASE, host_tr_base),
865         FIELD(HOST_GDTR_BASE, host_gdtr_base),
866         FIELD(HOST_IDTR_BASE, host_idtr_base),
867         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
868         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
869         FIELD(HOST_RSP, host_rsp),
870         FIELD(HOST_RIP, host_rip),
871 };
872
873 static inline short vmcs_field_to_offset(unsigned long field)
874 {
875         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
876
877         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
878             vmcs_field_to_offset_table[field] == 0)
879                 return -ENOENT;
880
881         return vmcs_field_to_offset_table[field];
882 }
883
884 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
885 {
886         return to_vmx(vcpu)->nested.cached_vmcs12;
887 }
888
889 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
890 {
891         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
892         if (is_error_page(page))
893                 return NULL;
894
895         return page;
896 }
897
898 static void nested_release_page(struct page *page)
899 {
900         kvm_release_page_dirty(page);
901 }
902
903 static void nested_release_page_clean(struct page *page)
904 {
905         kvm_release_page_clean(page);
906 }
907
908 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
909 static u64 construct_eptp(unsigned long root_hpa);
910 static bool vmx_xsaves_supported(void);
911 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
912 static void vmx_set_segment(struct kvm_vcpu *vcpu,
913                             struct kvm_segment *var, int seg);
914 static void vmx_get_segment(struct kvm_vcpu *vcpu,
915                             struct kvm_segment *var, int seg);
916 static bool guest_state_valid(struct kvm_vcpu *vcpu);
917 static u32 vmx_segment_access_rights(struct kvm_segment *var);
918 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
919 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
920 static int alloc_identity_pagetable(struct kvm *kvm);
921
922 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
923 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
924 /*
925  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
926  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
927  */
928 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
929 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
930
931 /*
932  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
933  * can find which vCPU should be waken up.
934  */
935 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
936 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
937
938 enum {
939         VMX_IO_BITMAP_A,
940         VMX_IO_BITMAP_B,
941         VMX_MSR_BITMAP_LEGACY,
942         VMX_MSR_BITMAP_LONGMODE,
943         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
944         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
945         VMX_MSR_BITMAP_LEGACY_X2APIC,
946         VMX_MSR_BITMAP_LONGMODE_X2APIC,
947         VMX_VMREAD_BITMAP,
948         VMX_VMWRITE_BITMAP,
949         VMX_BITMAP_NR
950 };
951
952 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
953
954 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
955 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
956 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
957 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
958 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
959 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
960 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
961 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
962 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
963 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
964
965 static bool cpu_has_load_ia32_efer;
966 static bool cpu_has_load_perf_global_ctrl;
967
968 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
969 static DEFINE_SPINLOCK(vmx_vpid_lock);
970
971 static struct vmcs_config {
972         int size;
973         int order;
974         u32 basic_cap;
975         u32 revision_id;
976         u32 pin_based_exec_ctrl;
977         u32 cpu_based_exec_ctrl;
978         u32 cpu_based_2nd_exec_ctrl;
979         u32 vmexit_ctrl;
980         u32 vmentry_ctrl;
981 } vmcs_config;
982
983 static struct vmx_capability {
984         u32 ept;
985         u32 vpid;
986 } vmx_capability;
987
988 #define VMX_SEGMENT_FIELD(seg)                                  \
989         [VCPU_SREG_##seg] = {                                   \
990                 .selector = GUEST_##seg##_SELECTOR,             \
991                 .base = GUEST_##seg##_BASE,                     \
992                 .limit = GUEST_##seg##_LIMIT,                   \
993                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
994         }
995
996 static const struct kvm_vmx_segment_field {
997         unsigned selector;
998         unsigned base;
999         unsigned limit;
1000         unsigned ar_bytes;
1001 } kvm_vmx_segment_fields[] = {
1002         VMX_SEGMENT_FIELD(CS),
1003         VMX_SEGMENT_FIELD(DS),
1004         VMX_SEGMENT_FIELD(ES),
1005         VMX_SEGMENT_FIELD(FS),
1006         VMX_SEGMENT_FIELD(GS),
1007         VMX_SEGMENT_FIELD(SS),
1008         VMX_SEGMENT_FIELD(TR),
1009         VMX_SEGMENT_FIELD(LDTR),
1010 };
1011
1012 static u64 host_efer;
1013
1014 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1015
1016 /*
1017  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1018  * away by decrementing the array size.
1019  */
1020 static const u32 vmx_msr_index[] = {
1021 #ifdef CONFIG_X86_64
1022         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1023 #endif
1024         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1025 };
1026
1027 static inline bool is_exception_n(u32 intr_info, u8 vector)
1028 {
1029         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1030                              INTR_INFO_VALID_MASK)) ==
1031                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1032 }
1033
1034 static inline bool is_debug(u32 intr_info)
1035 {
1036         return is_exception_n(intr_info, DB_VECTOR);
1037 }
1038
1039 static inline bool is_breakpoint(u32 intr_info)
1040 {
1041         return is_exception_n(intr_info, BP_VECTOR);
1042 }
1043
1044 static inline bool is_page_fault(u32 intr_info)
1045 {
1046         return is_exception_n(intr_info, PF_VECTOR);
1047 }
1048
1049 static inline bool is_no_device(u32 intr_info)
1050 {
1051         return is_exception_n(intr_info, NM_VECTOR);
1052 }
1053
1054 static inline bool is_invalid_opcode(u32 intr_info)
1055 {
1056         return is_exception_n(intr_info, UD_VECTOR);
1057 }
1058
1059 static inline bool is_external_interrupt(u32 intr_info)
1060 {
1061         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1062                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1063 }
1064
1065 static inline bool is_machine_check(u32 intr_info)
1066 {
1067         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1068                              INTR_INFO_VALID_MASK)) ==
1069                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1070 }
1071
1072 static inline bool cpu_has_vmx_msr_bitmap(void)
1073 {
1074         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1075 }
1076
1077 static inline bool cpu_has_vmx_tpr_shadow(void)
1078 {
1079         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1080 }
1081
1082 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1083 {
1084         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1085 }
1086
1087 static inline bool cpu_has_secondary_exec_ctrls(void)
1088 {
1089         return vmcs_config.cpu_based_exec_ctrl &
1090                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1091 }
1092
1093 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1094 {
1095         return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1097 }
1098
1099 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1100 {
1101         return vmcs_config.cpu_based_2nd_exec_ctrl &
1102                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1103 }
1104
1105 static inline bool cpu_has_vmx_apic_register_virt(void)
1106 {
1107         return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1109 }
1110
1111 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1112 {
1113         return vmcs_config.cpu_based_2nd_exec_ctrl &
1114                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1115 }
1116
1117 /*
1118  * Comment's format: document - errata name - stepping - processor name.
1119  * Refer from
1120  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1121  */
1122 static u32 vmx_preemption_cpu_tfms[] = {
1123 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1124 0x000206E6,
1125 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1126 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1127 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1128 0x00020652,
1129 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1130 0x00020655,
1131 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1132 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1133 /*
1134  * 320767.pdf - AAP86  - B1 -
1135  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1136  */
1137 0x000106E5,
1138 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1139 0x000106A0,
1140 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1141 0x000106A1,
1142 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1143 0x000106A4,
1144  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1145  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1146  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1147 0x000106A5,
1148 };
1149
1150 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1151 {
1152         u32 eax = cpuid_eax(0x00000001), i;
1153
1154         /* Clear the reserved bits */
1155         eax &= ~(0x3U << 14 | 0xfU << 28);
1156         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1157                 if (eax == vmx_preemption_cpu_tfms[i])
1158                         return true;
1159
1160         return false;
1161 }
1162
1163 static inline bool cpu_has_vmx_preemption_timer(void)
1164 {
1165         return vmcs_config.pin_based_exec_ctrl &
1166                 PIN_BASED_VMX_PREEMPTION_TIMER;
1167 }
1168
1169 static inline bool cpu_has_vmx_posted_intr(void)
1170 {
1171         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1172                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1173 }
1174
1175 static inline bool cpu_has_vmx_apicv(void)
1176 {
1177         return cpu_has_vmx_apic_register_virt() &&
1178                 cpu_has_vmx_virtual_intr_delivery() &&
1179                 cpu_has_vmx_posted_intr();
1180 }
1181
1182 static inline bool cpu_has_vmx_flexpriority(void)
1183 {
1184         return cpu_has_vmx_tpr_shadow() &&
1185                 cpu_has_vmx_virtualize_apic_accesses();
1186 }
1187
1188 static inline bool cpu_has_vmx_ept_execute_only(void)
1189 {
1190         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1191 }
1192
1193 static inline bool cpu_has_vmx_ept_2m_page(void)
1194 {
1195         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1196 }
1197
1198 static inline bool cpu_has_vmx_ept_1g_page(void)
1199 {
1200         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1201 }
1202
1203 static inline bool cpu_has_vmx_ept_4levels(void)
1204 {
1205         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1206 }
1207
1208 static inline bool cpu_has_vmx_ept_ad_bits(void)
1209 {
1210         return vmx_capability.ept & VMX_EPT_AD_BIT;
1211 }
1212
1213 static inline bool cpu_has_vmx_invept_context(void)
1214 {
1215         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1216 }
1217
1218 static inline bool cpu_has_vmx_invept_global(void)
1219 {
1220         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1221 }
1222
1223 static inline bool cpu_has_vmx_invvpid_single(void)
1224 {
1225         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1226 }
1227
1228 static inline bool cpu_has_vmx_invvpid_global(void)
1229 {
1230         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1231 }
1232
1233 static inline bool cpu_has_vmx_invvpid(void)
1234 {
1235         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1236 }
1237
1238 static inline bool cpu_has_vmx_ept(void)
1239 {
1240         return vmcs_config.cpu_based_2nd_exec_ctrl &
1241                 SECONDARY_EXEC_ENABLE_EPT;
1242 }
1243
1244 static inline bool cpu_has_vmx_unrestricted_guest(void)
1245 {
1246         return vmcs_config.cpu_based_2nd_exec_ctrl &
1247                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1248 }
1249
1250 static inline bool cpu_has_vmx_ple(void)
1251 {
1252         return vmcs_config.cpu_based_2nd_exec_ctrl &
1253                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1254 }
1255
1256 static inline bool cpu_has_vmx_basic_inout(void)
1257 {
1258         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1259 }
1260
1261 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1262 {
1263         return flexpriority_enabled && lapic_in_kernel(vcpu);
1264 }
1265
1266 static inline bool cpu_has_vmx_vpid(void)
1267 {
1268         return vmcs_config.cpu_based_2nd_exec_ctrl &
1269                 SECONDARY_EXEC_ENABLE_VPID;
1270 }
1271
1272 static inline bool cpu_has_vmx_rdtscp(void)
1273 {
1274         return vmcs_config.cpu_based_2nd_exec_ctrl &
1275                 SECONDARY_EXEC_RDTSCP;
1276 }
1277
1278 static inline bool cpu_has_vmx_invpcid(void)
1279 {
1280         return vmcs_config.cpu_based_2nd_exec_ctrl &
1281                 SECONDARY_EXEC_ENABLE_INVPCID;
1282 }
1283
1284 static inline bool cpu_has_vmx_wbinvd_exit(void)
1285 {
1286         return vmcs_config.cpu_based_2nd_exec_ctrl &
1287                 SECONDARY_EXEC_WBINVD_EXITING;
1288 }
1289
1290 static inline bool cpu_has_vmx_shadow_vmcs(void)
1291 {
1292         u64 vmx_msr;
1293         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1294         /* check if the cpu supports writing r/o exit information fields */
1295         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1296                 return false;
1297
1298         return vmcs_config.cpu_based_2nd_exec_ctrl &
1299                 SECONDARY_EXEC_SHADOW_VMCS;
1300 }
1301
1302 static inline bool cpu_has_vmx_pml(void)
1303 {
1304         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1305 }
1306
1307 static inline bool cpu_has_vmx_tsc_scaling(void)
1308 {
1309         return vmcs_config.cpu_based_2nd_exec_ctrl &
1310                 SECONDARY_EXEC_TSC_SCALING;
1311 }
1312
1313 static inline bool report_flexpriority(void)
1314 {
1315         return flexpriority_enabled;
1316 }
1317
1318 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1319 {
1320         return vmcs12->cpu_based_vm_exec_control & bit;
1321 }
1322
1323 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1324 {
1325         return (vmcs12->cpu_based_vm_exec_control &
1326                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1327                 (vmcs12->secondary_vm_exec_control & bit);
1328 }
1329
1330 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1331 {
1332         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1333 }
1334
1335 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1336 {
1337         return vmcs12->pin_based_vm_exec_control &
1338                 PIN_BASED_VMX_PREEMPTION_TIMER;
1339 }
1340
1341 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1342 {
1343         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1344 }
1345
1346 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1347 {
1348         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1349                 vmx_xsaves_supported();
1350 }
1351
1352 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1353 {
1354         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1355 }
1356
1357 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1358 {
1359         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1360 }
1361
1362 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1363 {
1364         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1365 }
1366
1367 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1368 {
1369         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1370 }
1371
1372 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1373 {
1374         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1375 }
1376
1377 static inline bool is_nmi(u32 intr_info)
1378 {
1379         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1380                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1381 }
1382
1383 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1384                               u32 exit_intr_info,
1385                               unsigned long exit_qualification);
1386 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1387                         struct vmcs12 *vmcs12,
1388                         u32 reason, unsigned long qualification);
1389
1390 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1391 {
1392         int i;
1393
1394         for (i = 0; i < vmx->nmsrs; ++i)
1395                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1396                         return i;
1397         return -1;
1398 }
1399
1400 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1401 {
1402     struct {
1403         u64 vpid : 16;
1404         u64 rsvd : 48;
1405         u64 gva;
1406     } operand = { vpid, 0, gva };
1407
1408     asm volatile (__ex(ASM_VMX_INVVPID)
1409                   /* CF==1 or ZF==1 --> rc = -1 */
1410                   "; ja 1f ; ud2 ; 1:"
1411                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1412 }
1413
1414 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1415 {
1416         struct {
1417                 u64 eptp, gpa;
1418         } operand = {eptp, gpa};
1419
1420         asm volatile (__ex(ASM_VMX_INVEPT)
1421                         /* CF==1 or ZF==1 --> rc = -1 */
1422                         "; ja 1f ; ud2 ; 1:\n"
1423                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1424 }
1425
1426 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1427 {
1428         int i;
1429
1430         i = __find_msr_index(vmx, msr);
1431         if (i >= 0)
1432                 return &vmx->guest_msrs[i];
1433         return NULL;
1434 }
1435
1436 static void vmcs_clear(struct vmcs *vmcs)
1437 {
1438         u64 phys_addr = __pa(vmcs);
1439         u8 error;
1440
1441         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1442                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1443                       : "cc", "memory");
1444         if (error)
1445                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1446                        vmcs, phys_addr);
1447 }
1448
1449 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1450 {
1451         vmcs_clear(loaded_vmcs->vmcs);
1452         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1453                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1454         loaded_vmcs->cpu = -1;
1455         loaded_vmcs->launched = 0;
1456 }
1457
1458 static void vmcs_load(struct vmcs *vmcs)
1459 {
1460         u64 phys_addr = __pa(vmcs);
1461         u8 error;
1462
1463         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1464                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1465                         : "cc", "memory");
1466         if (error)
1467                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1468                        vmcs, phys_addr);
1469 }
1470
1471 #ifdef CONFIG_KEXEC_CORE
1472 /*
1473  * This bitmap is used to indicate whether the vmclear
1474  * operation is enabled on all cpus. All disabled by
1475  * default.
1476  */
1477 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1478
1479 static inline void crash_enable_local_vmclear(int cpu)
1480 {
1481         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1482 }
1483
1484 static inline void crash_disable_local_vmclear(int cpu)
1485 {
1486         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1487 }
1488
1489 static inline int crash_local_vmclear_enabled(int cpu)
1490 {
1491         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1492 }
1493
1494 static void crash_vmclear_local_loaded_vmcss(void)
1495 {
1496         int cpu = raw_smp_processor_id();
1497         struct loaded_vmcs *v;
1498
1499         if (!crash_local_vmclear_enabled(cpu))
1500                 return;
1501
1502         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1503                             loaded_vmcss_on_cpu_link)
1504                 vmcs_clear(v->vmcs);
1505 }
1506 #else
1507 static inline void crash_enable_local_vmclear(int cpu) { }
1508 static inline void crash_disable_local_vmclear(int cpu) { }
1509 #endif /* CONFIG_KEXEC_CORE */
1510
1511 static void __loaded_vmcs_clear(void *arg)
1512 {
1513         struct loaded_vmcs *loaded_vmcs = arg;
1514         int cpu = raw_smp_processor_id();
1515
1516         if (loaded_vmcs->cpu != cpu)
1517                 return; /* vcpu migration can race with cpu offline */
1518         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1519                 per_cpu(current_vmcs, cpu) = NULL;
1520         crash_disable_local_vmclear(cpu);
1521         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1522
1523         /*
1524          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1525          * is before setting loaded_vmcs->vcpu to -1 which is done in
1526          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1527          * then adds the vmcs into percpu list before it is deleted.
1528          */
1529         smp_wmb();
1530
1531         loaded_vmcs_init(loaded_vmcs);
1532         crash_enable_local_vmclear(cpu);
1533 }
1534
1535 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1536 {
1537         int cpu = loaded_vmcs->cpu;
1538
1539         if (cpu != -1)
1540                 smp_call_function_single(cpu,
1541                          __loaded_vmcs_clear, loaded_vmcs, 1);
1542 }
1543
1544 static inline void vpid_sync_vcpu_single(int vpid)
1545 {
1546         if (vpid == 0)
1547                 return;
1548
1549         if (cpu_has_vmx_invvpid_single())
1550                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1551 }
1552
1553 static inline void vpid_sync_vcpu_global(void)
1554 {
1555         if (cpu_has_vmx_invvpid_global())
1556                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1557 }
1558
1559 static inline void vpid_sync_context(int vpid)
1560 {
1561         if (cpu_has_vmx_invvpid_single())
1562                 vpid_sync_vcpu_single(vpid);
1563         else
1564                 vpid_sync_vcpu_global();
1565 }
1566
1567 static inline void ept_sync_global(void)
1568 {
1569         if (cpu_has_vmx_invept_global())
1570                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1571 }
1572
1573 static inline void ept_sync_context(u64 eptp)
1574 {
1575         if (enable_ept) {
1576                 if (cpu_has_vmx_invept_context())
1577                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1578                 else
1579                         ept_sync_global();
1580         }
1581 }
1582
1583 static __always_inline void vmcs_check16(unsigned long field)
1584 {
1585         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1586                          "16-bit accessor invalid for 64-bit field");
1587         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1588                          "16-bit accessor invalid for 64-bit high field");
1589         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1590                          "16-bit accessor invalid for 32-bit high field");
1591         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1592                          "16-bit accessor invalid for natural width field");
1593 }
1594
1595 static __always_inline void vmcs_check32(unsigned long field)
1596 {
1597         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1598                          "32-bit accessor invalid for 16-bit field");
1599         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1600                          "32-bit accessor invalid for natural width field");
1601 }
1602
1603 static __always_inline void vmcs_check64(unsigned long field)
1604 {
1605         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1606                          "64-bit accessor invalid for 16-bit field");
1607         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1608                          "64-bit accessor invalid for 64-bit high field");
1609         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1610                          "64-bit accessor invalid for 32-bit field");
1611         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1612                          "64-bit accessor invalid for natural width field");
1613 }
1614
1615 static __always_inline void vmcs_checkl(unsigned long field)
1616 {
1617         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1618                          "Natural width accessor invalid for 16-bit field");
1619         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1620                          "Natural width accessor invalid for 64-bit field");
1621         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1622                          "Natural width accessor invalid for 64-bit high field");
1623         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1624                          "Natural width accessor invalid for 32-bit field");
1625 }
1626
1627 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1628 {
1629         unsigned long value;
1630
1631         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1632                       : "=a"(value) : "d"(field) : "cc");
1633         return value;
1634 }
1635
1636 static __always_inline u16 vmcs_read16(unsigned long field)
1637 {
1638         vmcs_check16(field);
1639         return __vmcs_readl(field);
1640 }
1641
1642 static __always_inline u32 vmcs_read32(unsigned long field)
1643 {
1644         vmcs_check32(field);
1645         return __vmcs_readl(field);
1646 }
1647
1648 static __always_inline u64 vmcs_read64(unsigned long field)
1649 {
1650         vmcs_check64(field);
1651 #ifdef CONFIG_X86_64
1652         return __vmcs_readl(field);
1653 #else
1654         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1655 #endif
1656 }
1657
1658 static __always_inline unsigned long vmcs_readl(unsigned long field)
1659 {
1660         vmcs_checkl(field);
1661         return __vmcs_readl(field);
1662 }
1663
1664 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1665 {
1666         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1667                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1668         dump_stack();
1669 }
1670
1671 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1672 {
1673         u8 error;
1674
1675         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1676                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1677         if (unlikely(error))
1678                 vmwrite_error(field, value);
1679 }
1680
1681 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1682 {
1683         vmcs_check16(field);
1684         __vmcs_writel(field, value);
1685 }
1686
1687 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1688 {
1689         vmcs_check32(field);
1690         __vmcs_writel(field, value);
1691 }
1692
1693 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1694 {
1695         vmcs_check64(field);
1696         __vmcs_writel(field, value);
1697 #ifndef CONFIG_X86_64
1698         asm volatile ("");
1699         __vmcs_writel(field+1, value >> 32);
1700 #endif
1701 }
1702
1703 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1704 {
1705         vmcs_checkl(field);
1706         __vmcs_writel(field, value);
1707 }
1708
1709 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1710 {
1711         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1712                          "vmcs_clear_bits does not support 64-bit fields");
1713         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1714 }
1715
1716 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1717 {
1718         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1719                          "vmcs_set_bits does not support 64-bit fields");
1720         __vmcs_writel(field, __vmcs_readl(field) | mask);
1721 }
1722
1723 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1724 {
1725         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1726 }
1727
1728 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1729 {
1730         vmcs_write32(VM_ENTRY_CONTROLS, val);
1731         vmx->vm_entry_controls_shadow = val;
1732 }
1733
1734 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1735 {
1736         if (vmx->vm_entry_controls_shadow != val)
1737                 vm_entry_controls_init(vmx, val);
1738 }
1739
1740 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1741 {
1742         return vmx->vm_entry_controls_shadow;
1743 }
1744
1745
1746 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1747 {
1748         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1749 }
1750
1751 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1752 {
1753         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1754 }
1755
1756 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1757 {
1758         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1759 }
1760
1761 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1762 {
1763         vmcs_write32(VM_EXIT_CONTROLS, val);
1764         vmx->vm_exit_controls_shadow = val;
1765 }
1766
1767 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1768 {
1769         if (vmx->vm_exit_controls_shadow != val)
1770                 vm_exit_controls_init(vmx, val);
1771 }
1772
1773 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1774 {
1775         return vmx->vm_exit_controls_shadow;
1776 }
1777
1778
1779 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1780 {
1781         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1782 }
1783
1784 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1785 {
1786         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1787 }
1788
1789 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1790 {
1791         vmx->segment_cache.bitmask = 0;
1792 }
1793
1794 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1795                                        unsigned field)
1796 {
1797         bool ret;
1798         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1799
1800         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1801                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1802                 vmx->segment_cache.bitmask = 0;
1803         }
1804         ret = vmx->segment_cache.bitmask & mask;
1805         vmx->segment_cache.bitmask |= mask;
1806         return ret;
1807 }
1808
1809 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1810 {
1811         u16 *p = &vmx->segment_cache.seg[seg].selector;
1812
1813         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1814                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1815         return *p;
1816 }
1817
1818 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1819 {
1820         ulong *p = &vmx->segment_cache.seg[seg].base;
1821
1822         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1823                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1824         return *p;
1825 }
1826
1827 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829         u32 *p = &vmx->segment_cache.seg[seg].limit;
1830
1831         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1832                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1833         return *p;
1834 }
1835
1836 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838         u32 *p = &vmx->segment_cache.seg[seg].ar;
1839
1840         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1841                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1842         return *p;
1843 }
1844
1845 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1846 {
1847         u32 eb;
1848
1849         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1850              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1851         if ((vcpu->guest_debug &
1852              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1853             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1854                 eb |= 1u << BP_VECTOR;
1855         if (to_vmx(vcpu)->rmode.vm86_active)
1856                 eb = ~0;
1857         if (enable_ept)
1858                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1859
1860         /* When we are running a nested L2 guest and L1 specified for it a
1861          * certain exception bitmap, we must trap the same exceptions and pass
1862          * them to L1. When running L2, we will only handle the exceptions
1863          * specified above if L1 did not want them.
1864          */
1865         if (is_guest_mode(vcpu))
1866                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1867
1868         vmcs_write32(EXCEPTION_BITMAP, eb);
1869 }
1870
1871 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1872                 unsigned long entry, unsigned long exit)
1873 {
1874         vm_entry_controls_clearbit(vmx, entry);
1875         vm_exit_controls_clearbit(vmx, exit);
1876 }
1877
1878 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1879 {
1880         unsigned i;
1881         struct msr_autoload *m = &vmx->msr_autoload;
1882
1883         switch (msr) {
1884         case MSR_EFER:
1885                 if (cpu_has_load_ia32_efer) {
1886                         clear_atomic_switch_msr_special(vmx,
1887                                         VM_ENTRY_LOAD_IA32_EFER,
1888                                         VM_EXIT_LOAD_IA32_EFER);
1889                         return;
1890                 }
1891                 break;
1892         case MSR_CORE_PERF_GLOBAL_CTRL:
1893                 if (cpu_has_load_perf_global_ctrl) {
1894                         clear_atomic_switch_msr_special(vmx,
1895                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1896                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1897                         return;
1898                 }
1899                 break;
1900         }
1901
1902         for (i = 0; i < m->nr; ++i)
1903                 if (m->guest[i].index == msr)
1904                         break;
1905
1906         if (i == m->nr)
1907                 return;
1908         --m->nr;
1909         m->guest[i] = m->guest[m->nr];
1910         m->host[i] = m->host[m->nr];
1911         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1912         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1913 }
1914
1915 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1916                 unsigned long entry, unsigned long exit,
1917                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1918                 u64 guest_val, u64 host_val)
1919 {
1920         vmcs_write64(guest_val_vmcs, guest_val);
1921         vmcs_write64(host_val_vmcs, host_val);
1922         vm_entry_controls_setbit(vmx, entry);
1923         vm_exit_controls_setbit(vmx, exit);
1924 }
1925
1926 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1927                                   u64 guest_val, u64 host_val)
1928 {
1929         unsigned i;
1930         struct msr_autoload *m = &vmx->msr_autoload;
1931
1932         switch (msr) {
1933         case MSR_EFER:
1934                 if (cpu_has_load_ia32_efer) {
1935                         add_atomic_switch_msr_special(vmx,
1936                                         VM_ENTRY_LOAD_IA32_EFER,
1937                                         VM_EXIT_LOAD_IA32_EFER,
1938                                         GUEST_IA32_EFER,
1939                                         HOST_IA32_EFER,
1940                                         guest_val, host_val);
1941                         return;
1942                 }
1943                 break;
1944         case MSR_CORE_PERF_GLOBAL_CTRL:
1945                 if (cpu_has_load_perf_global_ctrl) {
1946                         add_atomic_switch_msr_special(vmx,
1947                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1948                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1949                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1950                                         HOST_IA32_PERF_GLOBAL_CTRL,
1951                                         guest_val, host_val);
1952                         return;
1953                 }
1954                 break;
1955         case MSR_IA32_PEBS_ENABLE:
1956                 /* PEBS needs a quiescent period after being disabled (to write
1957                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1958                  * provide that period, so a CPU could write host's record into
1959                  * guest's memory.
1960                  */
1961                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1962         }
1963
1964         for (i = 0; i < m->nr; ++i)
1965                 if (m->guest[i].index == msr)
1966                         break;
1967
1968         if (i == NR_AUTOLOAD_MSRS) {
1969                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1970                                 "Can't add msr %x\n", msr);
1971                 return;
1972         } else if (i == m->nr) {
1973                 ++m->nr;
1974                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1975                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1976         }
1977
1978         m->guest[i].index = msr;
1979         m->guest[i].value = guest_val;
1980         m->host[i].index = msr;
1981         m->host[i].value = host_val;
1982 }
1983
1984 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1985 {
1986         u64 guest_efer = vmx->vcpu.arch.efer;
1987         u64 ignore_bits = 0;
1988
1989         if (!enable_ept) {
1990                 /*
1991                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1992                  * host CPUID is more efficient than testing guest CPUID
1993                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1994                  */
1995                 if (boot_cpu_has(X86_FEATURE_SMEP))
1996                         guest_efer |= EFER_NX;
1997                 else if (!(guest_efer & EFER_NX))
1998                         ignore_bits |= EFER_NX;
1999         }
2000
2001         /*
2002          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2003          */
2004         ignore_bits |= EFER_SCE;
2005 #ifdef CONFIG_X86_64
2006         ignore_bits |= EFER_LMA | EFER_LME;
2007         /* SCE is meaningful only in long mode on Intel */
2008         if (guest_efer & EFER_LMA)
2009                 ignore_bits &= ~(u64)EFER_SCE;
2010 #endif
2011
2012         clear_atomic_switch_msr(vmx, MSR_EFER);
2013
2014         /*
2015          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2016          * On CPUs that support "load IA32_EFER", always switch EFER
2017          * atomically, since it's faster than switching it manually.
2018          */
2019         if (cpu_has_load_ia32_efer ||
2020             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2021                 if (!(guest_efer & EFER_LMA))
2022                         guest_efer &= ~EFER_LME;
2023                 if (guest_efer != host_efer)
2024                         add_atomic_switch_msr(vmx, MSR_EFER,
2025                                               guest_efer, host_efer);
2026                 return false;
2027         } else {
2028                 guest_efer &= ~ignore_bits;
2029                 guest_efer |= host_efer & ignore_bits;
2030
2031                 vmx->guest_msrs[efer_offset].data = guest_efer;
2032                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2033
2034                 return true;
2035         }
2036 }
2037
2038 #ifdef CONFIG_X86_32
2039 /*
2040  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2041  * VMCS rather than the segment table.  KVM uses this helper to figure
2042  * out the current bases to poke them into the VMCS before entry.
2043  */
2044 static unsigned long segment_base(u16 selector)
2045 {
2046         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2047         struct desc_struct *table;
2048         unsigned long v;
2049
2050         if (!(selector & ~SEGMENT_RPL_MASK))
2051                 return 0;
2052
2053         table = (struct desc_struct *)gdt->address;
2054
2055         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2056                 u16 ldt_selector = kvm_read_ldt();
2057
2058                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2059                         return 0;
2060
2061                 table = (struct desc_struct *)segment_base(ldt_selector);
2062         }
2063         v = get_desc_base(&table[selector >> 3]);
2064         return v;
2065 }
2066 #endif
2067
2068 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2069 {
2070         struct vcpu_vmx *vmx = to_vmx(vcpu);
2071         int i;
2072
2073         if (vmx->host_state.loaded)
2074                 return;
2075
2076         vmx->host_state.loaded = 1;
2077         /*
2078          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2079          * allow segment selectors with cpl > 0 or ti == 1.
2080          */
2081         vmx->host_state.ldt_sel = kvm_read_ldt();
2082         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2083         savesegment(fs, vmx->host_state.fs_sel);
2084         if (!(vmx->host_state.fs_sel & 7)) {
2085                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2086                 vmx->host_state.fs_reload_needed = 0;
2087         } else {
2088                 vmcs_write16(HOST_FS_SELECTOR, 0);
2089                 vmx->host_state.fs_reload_needed = 1;
2090         }
2091         savesegment(gs, vmx->host_state.gs_sel);
2092         if (!(vmx->host_state.gs_sel & 7))
2093                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2094         else {
2095                 vmcs_write16(HOST_GS_SELECTOR, 0);
2096                 vmx->host_state.gs_ldt_reload_needed = 1;
2097         }
2098
2099 #ifdef CONFIG_X86_64
2100         savesegment(ds, vmx->host_state.ds_sel);
2101         savesegment(es, vmx->host_state.es_sel);
2102 #endif
2103
2104 #ifdef CONFIG_X86_64
2105         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2106         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2107 #else
2108         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2109         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2110 #endif
2111
2112 #ifdef CONFIG_X86_64
2113         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2114         if (is_long_mode(&vmx->vcpu))
2115                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2116 #endif
2117         if (boot_cpu_has(X86_FEATURE_MPX))
2118                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2119         for (i = 0; i < vmx->save_nmsrs; ++i)
2120                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2121                                    vmx->guest_msrs[i].data,
2122                                    vmx->guest_msrs[i].mask);
2123 }
2124
2125 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2126 {
2127         if (!vmx->host_state.loaded)
2128                 return;
2129
2130         ++vmx->vcpu.stat.host_state_reload;
2131         vmx->host_state.loaded = 0;
2132 #ifdef CONFIG_X86_64
2133         if (is_long_mode(&vmx->vcpu))
2134                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2135 #endif
2136         if (vmx->host_state.gs_ldt_reload_needed) {
2137                 kvm_load_ldt(vmx->host_state.ldt_sel);
2138 #ifdef CONFIG_X86_64
2139                 load_gs_index(vmx->host_state.gs_sel);
2140 #else
2141                 loadsegment(gs, vmx->host_state.gs_sel);
2142 #endif
2143         }
2144         if (vmx->host_state.fs_reload_needed)
2145                 loadsegment(fs, vmx->host_state.fs_sel);
2146 #ifdef CONFIG_X86_64
2147         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2148                 loadsegment(ds, vmx->host_state.ds_sel);
2149                 loadsegment(es, vmx->host_state.es_sel);
2150         }
2151 #endif
2152         invalidate_tss_limit();
2153 #ifdef CONFIG_X86_64
2154         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2155 #endif
2156         if (vmx->host_state.msr_host_bndcfgs)
2157                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2158         load_gdt(this_cpu_ptr(&host_gdt));
2159 }
2160
2161 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2162 {
2163         preempt_disable();
2164         __vmx_load_host_state(vmx);
2165         preempt_enable();
2166 }
2167
2168 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2169 {
2170         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2171         struct pi_desc old, new;
2172         unsigned int dest;
2173
2174         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2175                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2176                 !kvm_vcpu_apicv_active(vcpu))
2177                 return;
2178
2179         do {
2180                 old.control = new.control = pi_desc->control;
2181
2182                 /*
2183                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2184                  * are two possible cases:
2185                  * 1. After running 'pre_block', context switch
2186                  *    happened. For this case, 'sn' was set in
2187                  *    vmx_vcpu_put(), so we need to clear it here.
2188                  * 2. After running 'pre_block', we were blocked,
2189                  *    and woken up by some other guy. For this case,
2190                  *    we don't need to do anything, 'pi_post_block'
2191                  *    will do everything for us. However, we cannot
2192                  *    check whether it is case #1 or case #2 here
2193                  *    (maybe, not needed), so we also clear sn here,
2194                  *    I think it is not a big deal.
2195                  */
2196                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2197                         if (vcpu->cpu != cpu) {
2198                                 dest = cpu_physical_id(cpu);
2199
2200                                 if (x2apic_enabled())
2201                                         new.ndst = dest;
2202                                 else
2203                                         new.ndst = (dest << 8) & 0xFF00;
2204                         }
2205
2206                         /* set 'NV' to 'notification vector' */
2207                         new.nv = POSTED_INTR_VECTOR;
2208                 }
2209
2210                 /* Allow posting non-urgent interrupts */
2211                 new.sn = 0;
2212         } while (cmpxchg(&pi_desc->control, old.control,
2213                         new.control) != old.control);
2214 }
2215
2216 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2217 {
2218         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2219         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2220 }
2221
2222 /*
2223  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2224  * vcpu mutex is already taken.
2225  */
2226 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2227 {
2228         struct vcpu_vmx *vmx = to_vmx(vcpu);
2229         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2230
2231         if (!already_loaded) {
2232                 loaded_vmcs_clear(vmx->loaded_vmcs);
2233                 local_irq_disable();
2234                 crash_disable_local_vmclear(cpu);
2235
2236                 /*
2237                  * Read loaded_vmcs->cpu should be before fetching
2238                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2239                  * See the comments in __loaded_vmcs_clear().
2240                  */
2241                 smp_rmb();
2242
2243                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2244                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2245                 crash_enable_local_vmclear(cpu);
2246                 local_irq_enable();
2247         }
2248
2249         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2250                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2251                 vmcs_load(vmx->loaded_vmcs->vmcs);
2252         }
2253
2254         if (!already_loaded) {
2255                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2256                 unsigned long sysenter_esp;
2257
2258                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2259
2260                 /*
2261                  * Linux uses per-cpu TSS and GDT, so set these when switching
2262                  * processors.  See 22.2.4.
2263                  */
2264                 vmcs_writel(HOST_TR_BASE,
2265                             (unsigned long)this_cpu_ptr(&cpu_tss));
2266                 vmcs_writel(HOST_GDTR_BASE, gdt->address);
2267
2268                 /*
2269                  * VM exits change the host TR limit to 0x67 after a VM
2270                  * exit.  This is okay, since 0x67 covers everything except
2271                  * the IO bitmap and have have code to handle the IO bitmap
2272                  * being lost after a VM exit.
2273                  */
2274                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2275
2276                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2277                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2278
2279                 vmx->loaded_vmcs->cpu = cpu;
2280         }
2281
2282         /* Setup TSC multiplier */
2283         if (kvm_has_tsc_control &&
2284             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2285                 decache_tsc_multiplier(vmx);
2286
2287         vmx_vcpu_pi_load(vcpu, cpu);
2288         vmx->host_pkru = read_pkru();
2289 }
2290
2291 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2292 {
2293         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2294
2295         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2296                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2297                 !kvm_vcpu_apicv_active(vcpu))
2298                 return;
2299
2300         /* Set SN when the vCPU is preempted */
2301         if (vcpu->preempted)
2302                 pi_set_sn(pi_desc);
2303 }
2304
2305 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2306 {
2307         vmx_vcpu_pi_put(vcpu);
2308
2309         __vmx_load_host_state(to_vmx(vcpu));
2310 }
2311
2312 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2313
2314 /*
2315  * Return the cr0 value that a nested guest would read. This is a combination
2316  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2317  * its hypervisor (cr0_read_shadow).
2318  */
2319 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2320 {
2321         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2322                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2323 }
2324 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2325 {
2326         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2327                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2328 }
2329
2330 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2331 {
2332         unsigned long rflags, save_rflags;
2333
2334         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2335                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2336                 rflags = vmcs_readl(GUEST_RFLAGS);
2337                 if (to_vmx(vcpu)->rmode.vm86_active) {
2338                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2339                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2340                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2341                 }
2342                 to_vmx(vcpu)->rflags = rflags;
2343         }
2344         return to_vmx(vcpu)->rflags;
2345 }
2346
2347 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2348 {
2349         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2350         to_vmx(vcpu)->rflags = rflags;
2351         if (to_vmx(vcpu)->rmode.vm86_active) {
2352                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2353                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2354         }
2355         vmcs_writel(GUEST_RFLAGS, rflags);
2356 }
2357
2358 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2359 {
2360         return to_vmx(vcpu)->guest_pkru;
2361 }
2362
2363 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2364 {
2365         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2366         int ret = 0;
2367
2368         if (interruptibility & GUEST_INTR_STATE_STI)
2369                 ret |= KVM_X86_SHADOW_INT_STI;
2370         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2371                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2372
2373         return ret;
2374 }
2375
2376 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2377 {
2378         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2379         u32 interruptibility = interruptibility_old;
2380
2381         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2382
2383         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2384                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2385         else if (mask & KVM_X86_SHADOW_INT_STI)
2386                 interruptibility |= GUEST_INTR_STATE_STI;
2387
2388         if ((interruptibility != interruptibility_old))
2389                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2390 }
2391
2392 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2393 {
2394         unsigned long rip;
2395
2396         rip = kvm_rip_read(vcpu);
2397         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2398         kvm_rip_write(vcpu, rip);
2399
2400         /* skipping an emulated instruction also counts */
2401         vmx_set_interrupt_shadow(vcpu, 0);
2402 }
2403
2404 /*
2405  * KVM wants to inject page-faults which it got to the guest. This function
2406  * checks whether in a nested guest, we need to inject them to L1 or L2.
2407  */
2408 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2409 {
2410         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2411
2412         if (!(vmcs12->exception_bitmap & (1u << nr)))
2413                 return 0;
2414
2415         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2416                           vmcs_read32(VM_EXIT_INTR_INFO),
2417                           vmcs_readl(EXIT_QUALIFICATION));
2418         return 1;
2419 }
2420
2421 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2422                                 bool has_error_code, u32 error_code,
2423                                 bool reinject)
2424 {
2425         struct vcpu_vmx *vmx = to_vmx(vcpu);
2426         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2427
2428         if (!reinject && is_guest_mode(vcpu) &&
2429             nested_vmx_check_exception(vcpu, nr))
2430                 return;
2431
2432         if (has_error_code) {
2433                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2434                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2435         }
2436
2437         if (vmx->rmode.vm86_active) {
2438                 int inc_eip = 0;
2439                 if (kvm_exception_is_soft(nr))
2440                         inc_eip = vcpu->arch.event_exit_inst_len;
2441                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2442                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2443                 return;
2444         }
2445
2446         if (kvm_exception_is_soft(nr)) {
2447                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2448                              vmx->vcpu.arch.event_exit_inst_len);
2449                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450         } else
2451                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2454 }
2455
2456 static bool vmx_rdtscp_supported(void)
2457 {
2458         return cpu_has_vmx_rdtscp();
2459 }
2460
2461 static bool vmx_invpcid_supported(void)
2462 {
2463         return cpu_has_vmx_invpcid() && enable_ept;
2464 }
2465
2466 /*
2467  * Swap MSR entry in host/guest MSR entry array.
2468  */
2469 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2470 {
2471         struct shared_msr_entry tmp;
2472
2473         tmp = vmx->guest_msrs[to];
2474         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2475         vmx->guest_msrs[from] = tmp;
2476 }
2477
2478 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2479 {
2480         unsigned long *msr_bitmap;
2481
2482         if (is_guest_mode(vcpu))
2483                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2484         else if (cpu_has_secondary_exec_ctrls() &&
2485                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2486                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2487                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2488                         if (is_long_mode(vcpu))
2489                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2490                         else
2491                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2492                 } else {
2493                         if (is_long_mode(vcpu))
2494                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2495                         else
2496                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2497                 }
2498         } else {
2499                 if (is_long_mode(vcpu))
2500                         msr_bitmap = vmx_msr_bitmap_longmode;
2501                 else
2502                         msr_bitmap = vmx_msr_bitmap_legacy;
2503         }
2504
2505         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2506 }
2507
2508 /*
2509  * Set up the vmcs to automatically save and restore system
2510  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2511  * mode, as fiddling with msrs is very expensive.
2512  */
2513 static void setup_msrs(struct vcpu_vmx *vmx)
2514 {
2515         int save_nmsrs, index;
2516
2517         save_nmsrs = 0;
2518 #ifdef CONFIG_X86_64
2519         if (is_long_mode(&vmx->vcpu)) {
2520                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2521                 if (index >= 0)
2522                         move_msr_up(vmx, index, save_nmsrs++);
2523                 index = __find_msr_index(vmx, MSR_LSTAR);
2524                 if (index >= 0)
2525                         move_msr_up(vmx, index, save_nmsrs++);
2526                 index = __find_msr_index(vmx, MSR_CSTAR);
2527                 if (index >= 0)
2528                         move_msr_up(vmx, index, save_nmsrs++);
2529                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2530                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2531                         move_msr_up(vmx, index, save_nmsrs++);
2532                 /*
2533                  * MSR_STAR is only needed on long mode guests, and only
2534                  * if efer.sce is enabled.
2535                  */
2536                 index = __find_msr_index(vmx, MSR_STAR);
2537                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2538                         move_msr_up(vmx, index, save_nmsrs++);
2539         }
2540 #endif
2541         index = __find_msr_index(vmx, MSR_EFER);
2542         if (index >= 0 && update_transition_efer(vmx, index))
2543                 move_msr_up(vmx, index, save_nmsrs++);
2544
2545         vmx->save_nmsrs = save_nmsrs;
2546
2547         if (cpu_has_vmx_msr_bitmap())
2548                 vmx_set_msr_bitmap(&vmx->vcpu);
2549 }
2550
2551 /*
2552  * reads and returns guest's timestamp counter "register"
2553  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2554  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2555  */
2556 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2557 {
2558         u64 host_tsc, tsc_offset;
2559
2560         host_tsc = rdtsc();
2561         tsc_offset = vmcs_read64(TSC_OFFSET);
2562         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2563 }
2564
2565 /*
2566  * writes 'offset' into guest's timestamp counter offset register
2567  */
2568 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2569 {
2570         if (is_guest_mode(vcpu)) {
2571                 /*
2572                  * We're here if L1 chose not to trap WRMSR to TSC. According
2573                  * to the spec, this should set L1's TSC; The offset that L1
2574                  * set for L2 remains unchanged, and still needs to be added
2575                  * to the newly set TSC to get L2's TSC.
2576                  */
2577                 struct vmcs12 *vmcs12;
2578                 /* recalculate vmcs02.TSC_OFFSET: */
2579                 vmcs12 = get_vmcs12(vcpu);
2580                 vmcs_write64(TSC_OFFSET, offset +
2581                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2582                          vmcs12->tsc_offset : 0));
2583         } else {
2584                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2585                                            vmcs_read64(TSC_OFFSET), offset);
2586                 vmcs_write64(TSC_OFFSET, offset);
2587         }
2588 }
2589
2590 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2591 {
2592         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2593         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2594 }
2595
2596 /*
2597  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2598  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2599  * all guests if the "nested" module option is off, and can also be disabled
2600  * for a single guest by disabling its VMX cpuid bit.
2601  */
2602 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2603 {
2604         return nested && guest_cpuid_has_vmx(vcpu);
2605 }
2606
2607 /*
2608  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2609  * returned for the various VMX controls MSRs when nested VMX is enabled.
2610  * The same values should also be used to verify that vmcs12 control fields are
2611  * valid during nested entry from L1 to L2.
2612  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2613  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2614  * bit in the high half is on if the corresponding bit in the control field
2615  * may be on. See also vmx_control_verify().
2616  */
2617 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2618 {
2619         /*
2620          * Note that as a general rule, the high half of the MSRs (bits in
2621          * the control fields which may be 1) should be initialized by the
2622          * intersection of the underlying hardware's MSR (i.e., features which
2623          * can be supported) and the list of features we want to expose -
2624          * because they are known to be properly supported in our code.
2625          * Also, usually, the low half of the MSRs (bits which must be 1) can
2626          * be set to 0, meaning that L1 may turn off any of these bits. The
2627          * reason is that if one of these bits is necessary, it will appear
2628          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2629          * fields of vmcs01 and vmcs02, will turn these bits off - and
2630          * nested_vmx_exit_handled() will not pass related exits to L1.
2631          * These rules have exceptions below.
2632          */
2633
2634         /* pin-based controls */
2635         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2636                 vmx->nested.nested_vmx_pinbased_ctls_low,
2637                 vmx->nested.nested_vmx_pinbased_ctls_high);
2638         vmx->nested.nested_vmx_pinbased_ctls_low |=
2639                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2640         vmx->nested.nested_vmx_pinbased_ctls_high &=
2641                 PIN_BASED_EXT_INTR_MASK |
2642                 PIN_BASED_NMI_EXITING |
2643                 PIN_BASED_VIRTUAL_NMIS;
2644         vmx->nested.nested_vmx_pinbased_ctls_high |=
2645                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2646                 PIN_BASED_VMX_PREEMPTION_TIMER;
2647         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2648                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2649                         PIN_BASED_POSTED_INTR;
2650
2651         /* exit controls */
2652         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2653                 vmx->nested.nested_vmx_exit_ctls_low,
2654                 vmx->nested.nested_vmx_exit_ctls_high);
2655         vmx->nested.nested_vmx_exit_ctls_low =
2656                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2657
2658         vmx->nested.nested_vmx_exit_ctls_high &=
2659 #ifdef CONFIG_X86_64
2660                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2661 #endif
2662                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2663         vmx->nested.nested_vmx_exit_ctls_high |=
2664                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2665                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2666                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2667
2668         if (kvm_mpx_supported())
2669                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2670
2671         /* We support free control of debug control saving. */
2672         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2673
2674         /* entry controls */
2675         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2676                 vmx->nested.nested_vmx_entry_ctls_low,
2677                 vmx->nested.nested_vmx_entry_ctls_high);
2678         vmx->nested.nested_vmx_entry_ctls_low =
2679                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2680         vmx->nested.nested_vmx_entry_ctls_high &=
2681 #ifdef CONFIG_X86_64
2682                 VM_ENTRY_IA32E_MODE |
2683 #endif
2684                 VM_ENTRY_LOAD_IA32_PAT;
2685         vmx->nested.nested_vmx_entry_ctls_high |=
2686                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2687         if (kvm_mpx_supported())
2688                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2689
2690         /* We support free control of debug control loading. */
2691         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2692
2693         /* cpu-based controls */
2694         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2695                 vmx->nested.nested_vmx_procbased_ctls_low,
2696                 vmx->nested.nested_vmx_procbased_ctls_high);
2697         vmx->nested.nested_vmx_procbased_ctls_low =
2698                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2699         vmx->nested.nested_vmx_procbased_ctls_high &=
2700                 CPU_BASED_VIRTUAL_INTR_PENDING |
2701                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2702                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2703                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2704                 CPU_BASED_CR3_STORE_EXITING |
2705 #ifdef CONFIG_X86_64
2706                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2707 #endif
2708                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2709                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2710                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2711                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2712                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2713         /*
2714          * We can allow some features even when not supported by the
2715          * hardware. For example, L1 can specify an MSR bitmap - and we
2716          * can use it to avoid exits to L1 - even when L0 runs L2
2717          * without MSR bitmaps.
2718          */
2719         vmx->nested.nested_vmx_procbased_ctls_high |=
2720                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2721                 CPU_BASED_USE_MSR_BITMAPS;
2722
2723         /* We support free control of CR3 access interception. */
2724         vmx->nested.nested_vmx_procbased_ctls_low &=
2725                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2726
2727         /* secondary cpu-based controls */
2728         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2729                 vmx->nested.nested_vmx_secondary_ctls_low,
2730                 vmx->nested.nested_vmx_secondary_ctls_high);
2731         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2732         vmx->nested.nested_vmx_secondary_ctls_high &=
2733                 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2734                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2735                 SECONDARY_EXEC_RDTSCP |
2736                 SECONDARY_EXEC_DESC |
2737                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2738                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2739                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2740                 SECONDARY_EXEC_WBINVD_EXITING |
2741                 SECONDARY_EXEC_XSAVES;
2742
2743         if (enable_ept) {
2744                 /* nested EPT: emulate EPT also to L1 */
2745                 vmx->nested.nested_vmx_secondary_ctls_high |=
2746                         SECONDARY_EXEC_ENABLE_EPT;
2747                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2748                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2749                 if (cpu_has_vmx_ept_execute_only())
2750                         vmx->nested.nested_vmx_ept_caps |=
2751                                 VMX_EPT_EXECUTE_ONLY_BIT;
2752                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2753                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2754                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2755                         VMX_EPT_1GB_PAGE_BIT;
2756                if (enable_ept_ad_bits)
2757                        vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2758         } else
2759                 vmx->nested.nested_vmx_ept_caps = 0;
2760
2761         /*
2762          * Old versions of KVM use the single-context version without
2763          * checking for support, so declare that it is supported even
2764          * though it is treated as global context.  The alternative is
2765          * not failing the single-context invvpid, and it is worse.
2766          */
2767         if (enable_vpid) {
2768                 vmx->nested.nested_vmx_secondary_ctls_high |=
2769                         SECONDARY_EXEC_ENABLE_VPID;
2770                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2771                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2772         } else
2773                 vmx->nested.nested_vmx_vpid_caps = 0;
2774
2775         if (enable_unrestricted_guest)
2776                 vmx->nested.nested_vmx_secondary_ctls_high |=
2777                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2778
2779         /* miscellaneous data */
2780         rdmsr(MSR_IA32_VMX_MISC,
2781                 vmx->nested.nested_vmx_misc_low,
2782                 vmx->nested.nested_vmx_misc_high);
2783         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2784         vmx->nested.nested_vmx_misc_low |=
2785                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2786                 VMX_MISC_ACTIVITY_HLT;
2787         vmx->nested.nested_vmx_misc_high = 0;
2788
2789         /*
2790          * This MSR reports some information about VMX support. We
2791          * should return information about the VMX we emulate for the
2792          * guest, and the VMCS structure we give it - not about the
2793          * VMX support of the underlying hardware.
2794          */
2795         vmx->nested.nested_vmx_basic =
2796                 VMCS12_REVISION |
2797                 VMX_BASIC_TRUE_CTLS |
2798                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2799                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2800
2801         if (cpu_has_vmx_basic_inout())
2802                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2803
2804         /*
2805          * These MSRs specify bits which the guest must keep fixed on
2806          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2807          * We picked the standard core2 setting.
2808          */
2809 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2810 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2811         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2812         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2813
2814         /* These MSRs specify bits which the guest must keep fixed off. */
2815         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2816         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2817
2818         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2819         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2820 }
2821
2822 /*
2823  * if fixed0[i] == 1: val[i] must be 1
2824  * if fixed1[i] == 0: val[i] must be 0
2825  */
2826 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2827 {
2828         return ((val & fixed1) | fixed0) == val;
2829 }
2830
2831 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2832 {
2833         return fixed_bits_valid(control, low, high);
2834 }
2835
2836 static inline u64 vmx_control_msr(u32 low, u32 high)
2837 {
2838         return low | ((u64)high << 32);
2839 }
2840
2841 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2842 {
2843         superset &= mask;
2844         subset &= mask;
2845
2846         return (superset | subset) == superset;
2847 }
2848
2849 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2850 {
2851         const u64 feature_and_reserved =
2852                 /* feature (except bit 48; see below) */
2853                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2854                 /* reserved */
2855                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2856         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2857
2858         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2859                 return -EINVAL;
2860
2861         /*
2862          * KVM does not emulate a version of VMX that constrains physical
2863          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2864          */
2865         if (data & BIT_ULL(48))
2866                 return -EINVAL;
2867
2868         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2869             vmx_basic_vmcs_revision_id(data))
2870                 return -EINVAL;
2871
2872         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2873                 return -EINVAL;
2874
2875         vmx->nested.nested_vmx_basic = data;
2876         return 0;
2877 }
2878
2879 static int
2880 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2881 {
2882         u64 supported;
2883         u32 *lowp, *highp;
2884
2885         switch (msr_index) {
2886         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2887                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2888                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2889                 break;
2890         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2891                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2892                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2893                 break;
2894         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2895                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2896                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2897                 break;
2898         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2899                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2900                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2901                 break;
2902         case MSR_IA32_VMX_PROCBASED_CTLS2:
2903                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2904                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2905                 break;
2906         default:
2907                 BUG();
2908         }
2909
2910         supported = vmx_control_msr(*lowp, *highp);
2911
2912         /* Check must-be-1 bits are still 1. */
2913         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2914                 return -EINVAL;
2915
2916         /* Check must-be-0 bits are still 0. */
2917         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2918                 return -EINVAL;
2919
2920         *lowp = data;
2921         *highp = data >> 32;
2922         return 0;
2923 }
2924
2925 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2926 {
2927         const u64 feature_and_reserved_bits =
2928                 /* feature */
2929                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2930                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2931                 /* reserved */
2932                 GENMASK_ULL(13, 9) | BIT_ULL(31);
2933         u64 vmx_misc;
2934
2935         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2936                                    vmx->nested.nested_vmx_misc_high);
2937
2938         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2939                 return -EINVAL;
2940
2941         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2942              PIN_BASED_VMX_PREEMPTION_TIMER) &&
2943             vmx_misc_preemption_timer_rate(data) !=
2944             vmx_misc_preemption_timer_rate(vmx_misc))
2945                 return -EINVAL;
2946
2947         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2948                 return -EINVAL;
2949
2950         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2951                 return -EINVAL;
2952
2953         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2954                 return -EINVAL;
2955
2956         vmx->nested.nested_vmx_misc_low = data;
2957         vmx->nested.nested_vmx_misc_high = data >> 32;
2958         return 0;
2959 }
2960
2961 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2962 {
2963         u64 vmx_ept_vpid_cap;
2964
2965         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2966                                            vmx->nested.nested_vmx_vpid_caps);
2967
2968         /* Every bit is either reserved or a feature bit. */
2969         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2970                 return -EINVAL;
2971
2972         vmx->nested.nested_vmx_ept_caps = data;
2973         vmx->nested.nested_vmx_vpid_caps = data >> 32;
2974         return 0;
2975 }
2976
2977 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2978 {
2979         u64 *msr;
2980
2981         switch (msr_index) {
2982         case MSR_IA32_VMX_CR0_FIXED0:
2983                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
2984                 break;
2985         case MSR_IA32_VMX_CR4_FIXED0:
2986                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
2987                 break;
2988         default:
2989                 BUG();
2990         }
2991
2992         /*
2993          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
2994          * must be 1 in the restored value.
2995          */
2996         if (!is_bitwise_subset(data, *msr, -1ULL))
2997                 return -EINVAL;
2998
2999         *msr = data;
3000         return 0;
3001 }
3002
3003 /*
3004  * Called when userspace is restoring VMX MSRs.
3005  *
3006  * Returns 0 on success, non-0 otherwise.
3007  */
3008 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3009 {
3010         struct vcpu_vmx *vmx = to_vmx(vcpu);
3011
3012         switch (msr_index) {
3013         case MSR_IA32_VMX_BASIC:
3014                 return vmx_restore_vmx_basic(vmx, data);
3015         case MSR_IA32_VMX_PINBASED_CTLS:
3016         case MSR_IA32_VMX_PROCBASED_CTLS:
3017         case MSR_IA32_VMX_EXIT_CTLS:
3018         case MSR_IA32_VMX_ENTRY_CTLS:
3019                 /*
3020                  * The "non-true" VMX capability MSRs are generated from the
3021                  * "true" MSRs, so we do not support restoring them directly.
3022                  *
3023                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3024                  * should restore the "true" MSRs with the must-be-1 bits
3025                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3026                  * DEFAULT SETTINGS".
3027                  */
3028                 return -EINVAL;
3029         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3031         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3032         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3033         case MSR_IA32_VMX_PROCBASED_CTLS2:
3034                 return vmx_restore_control_msr(vmx, msr_index, data);
3035         case MSR_IA32_VMX_MISC:
3036                 return vmx_restore_vmx_misc(vmx, data);
3037         case MSR_IA32_VMX_CR0_FIXED0:
3038         case MSR_IA32_VMX_CR4_FIXED0:
3039                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3040         case MSR_IA32_VMX_CR0_FIXED1:
3041         case MSR_IA32_VMX_CR4_FIXED1:
3042                 /*
3043                  * These MSRs are generated based on the vCPU's CPUID, so we
3044                  * do not support restoring them directly.
3045                  */
3046                 return -EINVAL;
3047         case MSR_IA32_VMX_EPT_VPID_CAP:
3048                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3049         case MSR_IA32_VMX_VMCS_ENUM:
3050                 vmx->nested.nested_vmx_vmcs_enum = data;
3051                 return 0;
3052         default:
3053                 /*
3054                  * The rest of the VMX capability MSRs do not support restore.
3055                  */
3056                 return -EINVAL;
3057         }
3058 }
3059
3060 /* Returns 0 on success, non-0 otherwise. */
3061 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3062 {
3063         struct vcpu_vmx *vmx = to_vmx(vcpu);
3064
3065         switch (msr_index) {
3066         case MSR_IA32_VMX_BASIC:
3067                 *pdata = vmx->nested.nested_vmx_basic;
3068                 break;
3069         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3070         case MSR_IA32_VMX_PINBASED_CTLS:
3071                 *pdata = vmx_control_msr(
3072                         vmx->nested.nested_vmx_pinbased_ctls_low,
3073                         vmx->nested.nested_vmx_pinbased_ctls_high);
3074                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3075                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3076                 break;
3077         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3078         case MSR_IA32_VMX_PROCBASED_CTLS:
3079                 *pdata = vmx_control_msr(
3080                         vmx->nested.nested_vmx_procbased_ctls_low,
3081                         vmx->nested.nested_vmx_procbased_ctls_high);
3082                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3083                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3084                 break;
3085         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3086         case MSR_IA32_VMX_EXIT_CTLS:
3087                 *pdata = vmx_control_msr(
3088                         vmx->nested.nested_vmx_exit_ctls_low,
3089                         vmx->nested.nested_vmx_exit_ctls_high);
3090                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3091                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3092                 break;
3093         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3094         case MSR_IA32_VMX_ENTRY_CTLS:
3095                 *pdata = vmx_control_msr(
3096                         vmx->nested.nested_vmx_entry_ctls_low,
3097                         vmx->nested.nested_vmx_entry_ctls_high);
3098                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3099                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3100                 break;
3101         case MSR_IA32_VMX_MISC:
3102                 *pdata = vmx_control_msr(
3103                         vmx->nested.nested_vmx_misc_low,
3104                         vmx->nested.nested_vmx_misc_high);
3105                 break;
3106         case MSR_IA32_VMX_CR0_FIXED0:
3107                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3108                 break;
3109         case MSR_IA32_VMX_CR0_FIXED1:
3110                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3111                 break;
3112         case MSR_IA32_VMX_CR4_FIXED0:
3113                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3114                 break;
3115         case MSR_IA32_VMX_CR4_FIXED1:
3116                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3117                 break;
3118         case MSR_IA32_VMX_VMCS_ENUM:
3119                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3120                 break;
3121         case MSR_IA32_VMX_PROCBASED_CTLS2:
3122                 *pdata = vmx_control_msr(
3123                         vmx->nested.nested_vmx_secondary_ctls_low,
3124                         vmx->nested.nested_vmx_secondary_ctls_high);
3125                 break;
3126         case MSR_IA32_VMX_EPT_VPID_CAP:
3127                 *pdata = vmx->nested.nested_vmx_ept_caps |
3128                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3129                 break;
3130         default:
3131                 return 1;
3132         }
3133
3134         return 0;
3135 }
3136
3137 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3138                                                  uint64_t val)
3139 {
3140         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3141
3142         return !(val & ~valid_bits);
3143 }
3144
3145 /*
3146  * Reads an msr value (of 'msr_index') into 'pdata'.
3147  * Returns 0 on success, non-0 otherwise.
3148  * Assumes vcpu_load() was already called.
3149  */
3150 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3151 {
3152         struct shared_msr_entry *msr;
3153
3154         switch (msr_info->index) {
3155 #ifdef CONFIG_X86_64
3156         case MSR_FS_BASE:
3157                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3158                 break;
3159         case MSR_GS_BASE:
3160                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3161                 break;
3162         case MSR_KERNEL_GS_BASE:
3163                 vmx_load_host_state(to_vmx(vcpu));
3164                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3165                 break;
3166 #endif
3167         case MSR_EFER:
3168                 return kvm_get_msr_common(vcpu, msr_info);
3169         case MSR_IA32_TSC:
3170                 msr_info->data = guest_read_tsc(vcpu);
3171                 break;
3172         case MSR_IA32_SYSENTER_CS:
3173                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3174                 break;
3175         case MSR_IA32_SYSENTER_EIP:
3176                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3177                 break;
3178         case MSR_IA32_SYSENTER_ESP:
3179                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3180                 break;
3181         case MSR_IA32_BNDCFGS:
3182                 if (!kvm_mpx_supported())
3183                         return 1;
3184                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3185                 break;
3186         case MSR_IA32_MCG_EXT_CTL:
3187                 if (!msr_info->host_initiated &&
3188                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3189                       FEATURE_CONTROL_LMCE))
3190                         return 1;
3191                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3192                 break;
3193         case MSR_IA32_FEATURE_CONTROL:
3194                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3195                 break;
3196         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3197                 if (!nested_vmx_allowed(vcpu))
3198                         return 1;
3199                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3200         case MSR_IA32_XSS:
3201                 if (!vmx_xsaves_supported())
3202                         return 1;
3203                 msr_info->data = vcpu->arch.ia32_xss;
3204                 break;
3205         case MSR_TSC_AUX:
3206                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3207                         return 1;
3208                 /* Otherwise falls through */
3209         default:
3210                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3211                 if (msr) {
3212                         msr_info->data = msr->data;
3213                         break;
3214                 }
3215                 return kvm_get_msr_common(vcpu, msr_info);
3216         }
3217
3218         return 0;
3219 }
3220
3221 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3222
3223 /*
3224  * Writes msr value into into the appropriate "register".
3225  * Returns 0 on success, non-0 otherwise.
3226  * Assumes vcpu_load() was already called.
3227  */
3228 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3229 {
3230         struct vcpu_vmx *vmx = to_vmx(vcpu);
3231         struct shared_msr_entry *msr;
3232         int ret = 0;
3233         u32 msr_index = msr_info->index;
3234         u64 data = msr_info->data;
3235
3236         switch (msr_index) {
3237         case MSR_EFER:
3238                 ret = kvm_set_msr_common(vcpu, msr_info);
3239                 break;
3240 #ifdef CONFIG_X86_64
3241         case MSR_FS_BASE:
3242                 vmx_segment_cache_clear(vmx);
3243                 vmcs_writel(GUEST_FS_BASE, data);
3244                 break;
3245         case MSR_GS_BASE:
3246                 vmx_segment_cache_clear(vmx);
3247                 vmcs_writel(GUEST_GS_BASE, data);
3248                 break;
3249         case MSR_KERNEL_GS_BASE:
3250                 vmx_load_host_state(vmx);
3251                 vmx->msr_guest_kernel_gs_base = data;
3252                 break;
3253 #endif
3254         case MSR_IA32_SYSENTER_CS:
3255                 vmcs_write32(GUEST_SYSENTER_CS, data);
3256                 break;
3257         case MSR_IA32_SYSENTER_EIP:
3258                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3259                 break;
3260         case MSR_IA32_SYSENTER_ESP:
3261                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3262                 break;
3263         case MSR_IA32_BNDCFGS:
3264                 if (!kvm_mpx_supported())
3265                         return 1;
3266                 vmcs_write64(GUEST_BNDCFGS, data);
3267                 break;
3268         case MSR_IA32_TSC:
3269                 kvm_write_tsc(vcpu, msr_info);
3270                 break;
3271         case MSR_IA32_CR_PAT:
3272                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3273                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3274                                 return 1;
3275                         vmcs_write64(GUEST_IA32_PAT, data);
3276                         vcpu->arch.pat = data;
3277                         break;
3278                 }
3279                 ret = kvm_set_msr_common(vcpu, msr_info);
3280                 break;
3281         case MSR_IA32_TSC_ADJUST:
3282                 ret = kvm_set_msr_common(vcpu, msr_info);
3283                 break;
3284         case MSR_IA32_MCG_EXT_CTL:
3285                 if ((!msr_info->host_initiated &&
3286                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3287                        FEATURE_CONTROL_LMCE)) ||
3288                     (data & ~MCG_EXT_CTL_LMCE_EN))
3289                         return 1;
3290                 vcpu->arch.mcg_ext_ctl = data;
3291                 break;
3292         case MSR_IA32_FEATURE_CONTROL:
3293                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3294                     (to_vmx(vcpu)->msr_ia32_feature_control &
3295                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3296                         return 1;
3297                 vmx->msr_ia32_feature_control = data;
3298                 if (msr_info->host_initiated && data == 0)
3299                         vmx_leave_nested(vcpu);
3300                 break;
3301         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3302                 if (!msr_info->host_initiated)
3303                         return 1; /* they are read-only */
3304                 if (!nested_vmx_allowed(vcpu))
3305                         return 1;
3306                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3307         case MSR_IA32_XSS:
3308                 if (!vmx_xsaves_supported())
3309                         return 1;
3310                 /*
3311                  * The only supported bit as of Skylake is bit 8, but
3312                  * it is not supported on KVM.
3313                  */
3314                 if (data != 0)
3315                         return 1;
3316                 vcpu->arch.ia32_xss = data;
3317                 if (vcpu->arch.ia32_xss != host_xss)
3318                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3319                                 vcpu->arch.ia32_xss, host_xss);
3320                 else
3321                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3322                 break;
3323         case MSR_TSC_AUX:
3324                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3325                         return 1;
3326                 /* Check reserved bit, higher 32 bits should be zero */
3327                 if ((data >> 32) != 0)
3328                         return 1;
3329                 /* Otherwise falls through */
3330         default:
3331                 msr = find_msr_entry(vmx, msr_index);
3332                 if (msr) {
3333                         u64 old_msr_data = msr->data;
3334                         msr->data = data;
3335                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3336                                 preempt_disable();
3337                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3338                                                          msr->mask);
3339                                 preempt_enable();
3340                                 if (ret)
3341                                         msr->data = old_msr_data;
3342                         }
3343                         break;
3344                 }
3345                 ret = kvm_set_msr_common(vcpu, msr_info);
3346         }
3347
3348         return ret;
3349 }
3350
3351 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3352 {
3353         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3354         switch (reg) {
3355         case VCPU_REGS_RSP:
3356                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3357                 break;
3358         case VCPU_REGS_RIP:
3359                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3360                 break;
3361         case VCPU_EXREG_PDPTR:
3362                 if (enable_ept)
3363                         ept_save_pdptrs(vcpu);
3364                 break;
3365         default:
3366                 break;
3367         }
3368 }
3369
3370 static __init int cpu_has_kvm_support(void)
3371 {
3372         return cpu_has_vmx();
3373 }
3374
3375 static __init int vmx_disabled_by_bios(void)
3376 {
3377         u64 msr;
3378
3379         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3380         if (msr & FEATURE_CONTROL_LOCKED) {
3381                 /* launched w/ TXT and VMX disabled */
3382                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3383                         && tboot_enabled())
3384                         return 1;
3385                 /* launched w/o TXT and VMX only enabled w/ TXT */
3386                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3387                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3388                         && !tboot_enabled()) {
3389                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3390                                 "activate TXT before enabling KVM\n");
3391                         return 1;
3392                 }
3393                 /* launched w/o TXT and VMX disabled */
3394                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3395                         && !tboot_enabled())
3396                         return 1;
3397         }
3398
3399         return 0;
3400 }
3401
3402 static void kvm_cpu_vmxon(u64 addr)
3403 {
3404         cr4_set_bits(X86_CR4_VMXE);
3405         intel_pt_handle_vmx(1);
3406
3407         asm volatile (ASM_VMX_VMXON_RAX
3408                         : : "a"(&addr), "m"(addr)
3409                         : "memory", "cc");
3410 }
3411
3412 static int hardware_enable(void)
3413 {
3414         int cpu = raw_smp_processor_id();
3415         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3416         u64 old, test_bits;
3417
3418         if (cr4_read_shadow() & X86_CR4_VMXE)
3419                 return -EBUSY;
3420
3421         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3422         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3423         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3424
3425         /*
3426          * Now we can enable the vmclear operation in kdump
3427          * since the loaded_vmcss_on_cpu list on this cpu
3428          * has been initialized.
3429          *
3430          * Though the cpu is not in VMX operation now, there
3431          * is no problem to enable the vmclear operation
3432          * for the loaded_vmcss_on_cpu list is empty!
3433          */
3434         crash_enable_local_vmclear(cpu);
3435
3436         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3437
3438         test_bits = FEATURE_CONTROL_LOCKED;
3439         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3440         if (tboot_enabled())
3441                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3442
3443         if ((old & test_bits) != test_bits) {
3444                 /* enable and lock */
3445                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3446         }
3447         kvm_cpu_vmxon(phys_addr);
3448         ept_sync_global();
3449
3450         native_store_gdt(this_cpu_ptr(&host_gdt));
3451
3452         return 0;
3453 }
3454
3455 static void vmclear_local_loaded_vmcss(void)
3456 {
3457         int cpu = raw_smp_processor_id();
3458         struct loaded_vmcs *v, *n;
3459
3460         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3461                                  loaded_vmcss_on_cpu_link)
3462                 __loaded_vmcs_clear(v);
3463 }
3464
3465
3466 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3467  * tricks.
3468  */
3469 static void kvm_cpu_vmxoff(void)
3470 {
3471         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3472
3473         intel_pt_handle_vmx(0);
3474         cr4_clear_bits(X86_CR4_VMXE);
3475 }
3476
3477 static void hardware_disable(void)
3478 {
3479         vmclear_local_loaded_vmcss();
3480         kvm_cpu_vmxoff();
3481 }
3482
3483 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3484                                       u32 msr, u32 *result)
3485 {
3486         u32 vmx_msr_low, vmx_msr_high;
3487         u32 ctl = ctl_min | ctl_opt;
3488
3489         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3490
3491         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3492         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3493
3494         /* Ensure minimum (required) set of control bits are supported. */
3495         if (ctl_min & ~ctl)
3496                 return -EIO;
3497
3498         *result = ctl;
3499         return 0;
3500 }
3501
3502 static __init bool allow_1_setting(u32 msr, u32 ctl)
3503 {
3504         u32 vmx_msr_low, vmx_msr_high;
3505
3506         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3507         return vmx_msr_high & ctl;
3508 }
3509
3510 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3511 {
3512         u32 vmx_msr_low, vmx_msr_high;
3513         u32 min, opt, min2, opt2;
3514         u32 _pin_based_exec_control = 0;
3515         u32 _cpu_based_exec_control = 0;
3516         u32 _cpu_based_2nd_exec_control = 0;
3517         u32 _vmexit_control = 0;
3518         u32 _vmentry_control = 0;
3519
3520         min = CPU_BASED_HLT_EXITING |
3521 #ifdef CONFIG_X86_64
3522               CPU_BASED_CR8_LOAD_EXITING |
3523               CPU_BASED_CR8_STORE_EXITING |
3524 #endif
3525               CPU_BASED_CR3_LOAD_EXITING |
3526               CPU_BASED_CR3_STORE_EXITING |
3527               CPU_BASED_USE_IO_BITMAPS |
3528               CPU_BASED_MOV_DR_EXITING |
3529               CPU_BASED_USE_TSC_OFFSETING |
3530               CPU_BASED_INVLPG_EXITING |
3531               CPU_BASED_RDPMC_EXITING;
3532
3533         if (!kvm_mwait_in_guest())
3534                 min |= CPU_BASED_MWAIT_EXITING |
3535                         CPU_BASED_MONITOR_EXITING;
3536
3537         opt = CPU_BASED_TPR_SHADOW |
3538               CPU_BASED_USE_MSR_BITMAPS |
3539               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3540         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3541                                 &_cpu_based_exec_control) < 0)
3542                 return -EIO;
3543 #ifdef CONFIG_X86_64
3544         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3545                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3546                                            ~CPU_BASED_CR8_STORE_EXITING;
3547 #endif
3548         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3549                 min2 = 0;
3550                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3551                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3552                         SECONDARY_EXEC_WBINVD_EXITING |
3553                         SECONDARY_EXEC_ENABLE_VPID |
3554                         SECONDARY_EXEC_ENABLE_EPT |
3555                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3556                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3557                         SECONDARY_EXEC_RDTSCP |
3558                         SECONDARY_EXEC_ENABLE_INVPCID |
3559                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3560                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3561                         SECONDARY_EXEC_SHADOW_VMCS |
3562                         SECONDARY_EXEC_XSAVES |
3563                         SECONDARY_EXEC_ENABLE_PML |
3564                         SECONDARY_EXEC_TSC_SCALING;
3565                 if (adjust_vmx_controls(min2, opt2,
3566                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3567                                         &_cpu_based_2nd_exec_control) < 0)
3568                         return -EIO;
3569         }
3570 #ifndef CONFIG_X86_64
3571         if (!(_cpu_based_2nd_exec_control &
3572                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3573                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3574 #endif
3575
3576         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3577                 _cpu_based_2nd_exec_control &= ~(
3578                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3579                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3580                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3581
3582         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3583                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3584                    enabled */
3585                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3586                                              CPU_BASED_CR3_STORE_EXITING |
3587                                              CPU_BASED_INVLPG_EXITING);
3588                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3589                       vmx_capability.ept, vmx_capability.vpid);
3590         }
3591
3592         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3593 #ifdef CONFIG_X86_64
3594         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3595 #endif
3596         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3597                 VM_EXIT_CLEAR_BNDCFGS;
3598         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3599                                 &_vmexit_control) < 0)
3600                 return -EIO;
3601
3602         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3603                 PIN_BASED_VIRTUAL_NMIS;
3604         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3605         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3606                                 &_pin_based_exec_control) < 0)
3607                 return -EIO;
3608
3609         if (cpu_has_broken_vmx_preemption_timer())
3610                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3611         if (!(_cpu_based_2nd_exec_control &
3612                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3613                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3614
3615         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3616         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3617         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3618                                 &_vmentry_control) < 0)
3619                 return -EIO;
3620
3621         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3622
3623         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3624         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3625                 return -EIO;
3626
3627 #ifdef CONFIG_X86_64
3628         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3629         if (vmx_msr_high & (1u<<16))
3630                 return -EIO;
3631 #endif
3632
3633         /* Require Write-Back (WB) memory type for VMCS accesses. */
3634         if (((vmx_msr_high >> 18) & 15) != 6)
3635                 return -EIO;
3636
3637         vmcs_conf->size = vmx_msr_high & 0x1fff;
3638         vmcs_conf->order = get_order(vmcs_conf->size);
3639         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3640         vmcs_conf->revision_id = vmx_msr_low;
3641
3642         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3643         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3644         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3645         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3646         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3647
3648         cpu_has_load_ia32_efer =
3649                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3650                                 VM_ENTRY_LOAD_IA32_EFER)
3651                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3652                                    VM_EXIT_LOAD_IA32_EFER);
3653
3654         cpu_has_load_perf_global_ctrl =
3655                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3656                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3657                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3658                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3659
3660         /*
3661          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3662          * but due to errata below it can't be used. Workaround is to use
3663          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3664          *
3665          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3666          *
3667          * AAK155             (model 26)
3668          * AAP115             (model 30)
3669          * AAT100             (model 37)
3670          * BC86,AAY89,BD102   (model 44)
3671          * BA97               (model 46)
3672          *
3673          */
3674         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3675                 switch (boot_cpu_data.x86_model) {
3676                 case 26:
3677                 case 30:
3678                 case 37:
3679                 case 44:
3680                 case 46:
3681                         cpu_has_load_perf_global_ctrl = false;
3682                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3683                                         "does not work properly. Using workaround\n");
3684                         break;
3685                 default:
3686                         break;
3687                 }
3688         }
3689
3690         if (boot_cpu_has(X86_FEATURE_XSAVES))
3691                 rdmsrl(MSR_IA32_XSS, host_xss);
3692
3693         return 0;
3694 }
3695
3696 static struct vmcs *alloc_vmcs_cpu(int cpu)
3697 {
3698         int node = cpu_to_node(cpu);
3699         struct page *pages;
3700         struct vmcs *vmcs;
3701
3702         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3703         if (!pages)
3704                 return NULL;
3705         vmcs = page_address(pages);
3706         memset(vmcs, 0, vmcs_config.size);
3707         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3708         return vmcs;
3709 }
3710
3711 static struct vmcs *alloc_vmcs(void)
3712 {
3713         return alloc_vmcs_cpu(raw_smp_processor_id());
3714 }
3715
3716 static void free_vmcs(struct vmcs *vmcs)
3717 {
3718         free_pages((unsigned long)vmcs, vmcs_config.order);
3719 }
3720
3721 /*
3722  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3723  */
3724 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3725 {
3726         if (!loaded_vmcs->vmcs)
3727                 return;
3728         loaded_vmcs_clear(loaded_vmcs);
3729         free_vmcs(loaded_vmcs->vmcs);
3730         loaded_vmcs->vmcs = NULL;
3731         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3732 }
3733
3734 static void free_kvm_area(void)
3735 {
3736         int cpu;
3737
3738         for_each_possible_cpu(cpu) {
3739                 free_vmcs(per_cpu(vmxarea, cpu));
3740                 per_cpu(vmxarea, cpu) = NULL;
3741         }
3742 }
3743
3744 static void init_vmcs_shadow_fields(void)
3745 {
3746         int i, j;
3747
3748         /* No checks for read only fields yet */
3749
3750         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3751                 switch (shadow_read_write_fields[i]) {
3752                 case GUEST_BNDCFGS:
3753                         if (!kvm_mpx_supported())
3754                                 continue;
3755                         break;
3756                 default:
3757                         break;
3758                 }
3759
3760                 if (j < i)
3761                         shadow_read_write_fields[j] =
3762                                 shadow_read_write_fields[i];
3763                 j++;
3764         }
3765         max_shadow_read_write_fields = j;
3766
3767         /* shadowed fields guest access without vmexit */
3768         for (i = 0; i < max_shadow_read_write_fields; i++) {
3769                 clear_bit(shadow_read_write_fields[i],
3770                           vmx_vmwrite_bitmap);
3771                 clear_bit(shadow_read_write_fields[i],
3772                           vmx_vmread_bitmap);
3773         }
3774         for (i = 0; i < max_shadow_read_only_fields; i++)
3775                 clear_bit(shadow_read_only_fields[i],
3776                           vmx_vmread_bitmap);
3777 }
3778
3779 static __init int alloc_kvm_area(void)
3780 {
3781         int cpu;
3782
3783         for_each_possible_cpu(cpu) {
3784                 struct vmcs *vmcs;
3785
3786                 vmcs = alloc_vmcs_cpu(cpu);
3787                 if (!vmcs) {
3788                         free_kvm_area();
3789                         return -ENOMEM;
3790                 }
3791
3792                 per_cpu(vmxarea, cpu) = vmcs;
3793         }
3794         return 0;
3795 }
3796
3797 static bool emulation_required(struct kvm_vcpu *vcpu)
3798 {
3799         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3800 }
3801
3802 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3803                 struct kvm_segment *save)
3804 {
3805         if (!emulate_invalid_guest_state) {
3806                 /*
3807                  * CS and SS RPL should be equal during guest entry according
3808                  * to VMX spec, but in reality it is not always so. Since vcpu
3809                  * is in the middle of the transition from real mode to
3810                  * protected mode it is safe to assume that RPL 0 is a good
3811                  * default value.
3812                  */
3813                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3814                         save->selector &= ~SEGMENT_RPL_MASK;
3815                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3816                 save->s = 1;
3817         }
3818         vmx_set_segment(vcpu, save, seg);
3819 }
3820
3821 static void enter_pmode(struct kvm_vcpu *vcpu)
3822 {
3823         unsigned long flags;
3824         struct vcpu_vmx *vmx = to_vmx(vcpu);
3825
3826         /*
3827          * Update real mode segment cache. It may be not up-to-date if sement
3828          * register was written while vcpu was in a guest mode.
3829          */
3830         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3831         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3832         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3833         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3834         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3835         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3836
3837         vmx->rmode.vm86_active = 0;
3838
3839         vmx_segment_cache_clear(vmx);
3840
3841         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3842
3843         flags = vmcs_readl(GUEST_RFLAGS);
3844         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3845         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3846         vmcs_writel(GUEST_RFLAGS, flags);
3847
3848         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3849                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3850
3851         update_exception_bitmap(vcpu);
3852
3853         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3854         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3855         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3856         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3857         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3858         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3859 }
3860
3861 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3862 {
3863         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3864         struct kvm_segment var = *save;
3865
3866         var.dpl = 0x3;
3867         if (seg == VCPU_SREG_CS)
3868                 var.type = 0x3;
3869
3870         if (!emulate_invalid_guest_state) {
3871                 var.selector = var.base >> 4;
3872                 var.base = var.base & 0xffff0;
3873                 var.limit = 0xffff;
3874                 var.g = 0;
3875                 var.db = 0;
3876                 var.present = 1;
3877                 var.s = 1;
3878                 var.l = 0;
3879                 var.unusable = 0;
3880                 var.type = 0x3;
3881                 var.avl = 0;
3882                 if (save->base & 0xf)
3883                         printk_once(KERN_WARNING "kvm: segment base is not "
3884                                         "paragraph aligned when entering "
3885                                         "protected mode (seg=%d)", seg);
3886         }
3887
3888         vmcs_write16(sf->selector, var.selector);
3889         vmcs_writel(sf->base, var.base);
3890         vmcs_write32(sf->limit, var.limit);
3891         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3892 }
3893
3894 static void enter_rmode(struct kvm_vcpu *vcpu)
3895 {
3896         unsigned long flags;
3897         struct vcpu_vmx *vmx = to_vmx(vcpu);
3898
3899         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3900         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3901         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3902         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3903         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3904         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3905         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3906
3907         vmx->rmode.vm86_active = 1;
3908
3909         /*
3910          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3911          * vcpu. Warn the user that an update is overdue.
3912          */
3913         if (!vcpu->kvm->arch.tss_addr)
3914                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3915                              "called before entering vcpu\n");
3916
3917         vmx_segment_cache_clear(vmx);
3918
3919         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3920         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3921         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3922
3923         flags = vmcs_readl(GUEST_RFLAGS);
3924         vmx->rmode.save_rflags = flags;
3925
3926         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3927
3928         vmcs_writel(GUEST_RFLAGS, flags);
3929         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3930         update_exception_bitmap(vcpu);
3931
3932         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3933         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3934         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3935         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3936         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3937         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3938
3939         kvm_mmu_reset_context(vcpu);
3940 }
3941
3942 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3943 {
3944         struct vcpu_vmx *vmx = to_vmx(vcpu);
3945         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3946
3947         if (!msr)
3948                 return;
3949
3950         /*
3951          * Force kernel_gs_base reloading before EFER changes, as control
3952          * of this msr depends on is_long_mode().
3953          */
3954         vmx_load_host_state(to_vmx(vcpu));
3955         vcpu->arch.efer = efer;
3956         if (efer & EFER_LMA) {
3957                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3958                 msr->data = efer;
3959         } else {
3960                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3961
3962                 msr->data = efer & ~EFER_LME;
3963         }
3964         setup_msrs(vmx);
3965 }
3966
3967 #ifdef CONFIG_X86_64
3968
3969 static void enter_lmode(struct kvm_vcpu *vcpu)
3970 {
3971         u32 guest_tr_ar;
3972
3973         vmx_segment_cache_clear(to_vmx(vcpu));
3974
3975         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3976         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3977                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3978                                      __func__);
3979                 vmcs_write32(GUEST_TR_AR_BYTES,
3980                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3981                              | VMX_AR_TYPE_BUSY_64_TSS);
3982         }
3983         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3984 }
3985
3986 static void exit_lmode(struct kvm_vcpu *vcpu)
3987 {
3988         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3989         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3990 }
3991
3992 #endif
3993
3994 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3995 {
3996         if (enable_ept) {
3997                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3998                         return;
3999                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
4000         } else {
4001                 vpid_sync_context(vpid);
4002         }
4003 }
4004
4005 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4006 {
4007         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4008 }
4009
4010 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4011 {
4012         if (enable_ept)
4013                 vmx_flush_tlb(vcpu);
4014 }
4015
4016 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4017 {
4018         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4019
4020         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4021         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4022 }
4023
4024 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4025 {
4026         if (enable_ept && is_paging(vcpu))
4027                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4028         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4029 }
4030
4031 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4032 {
4033         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4034
4035         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4036         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4037 }
4038
4039 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4040 {
4041         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4042
4043         if (!test_bit(VCPU_EXREG_PDPTR,
4044                       (unsigned long *)&vcpu->arch.regs_dirty))
4045                 return;
4046
4047         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4048                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4049                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4050                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4051                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4052         }
4053 }
4054
4055 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4056 {
4057         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4058
4059         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4060                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4061                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4062                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4063                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4064         }
4065
4066         __set_bit(VCPU_EXREG_PDPTR,
4067                   (unsigned long *)&vcpu->arch.regs_avail);
4068         __set_bit(VCPU_EXREG_PDPTR,
4069                   (unsigned long *)&vcpu->arch.regs_dirty);
4070 }
4071
4072 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4073 {
4074         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4075         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4076         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4077
4078         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4079                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4080             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4081                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4082
4083         return fixed_bits_valid(val, fixed0, fixed1);
4084 }
4085
4086 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4087 {
4088         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4089         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4090
4091         return fixed_bits_valid(val, fixed0, fixed1);
4092 }
4093
4094 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4095 {
4096         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4097         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4098
4099         return fixed_bits_valid(val, fixed0, fixed1);
4100 }
4101
4102 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4103 #define nested_guest_cr4_valid  nested_cr4_valid
4104 #define nested_host_cr4_valid   nested_cr4_valid
4105
4106 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4107
4108 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4109                                         unsigned long cr0,
4110                                         struct kvm_vcpu *vcpu)
4111 {
4112         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4113                 vmx_decache_cr3(vcpu);
4114         if (!(cr0 & X86_CR0_PG)) {
4115                 /* From paging/starting to nonpaging */
4116                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4117                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4118                              (CPU_BASED_CR3_LOAD_EXITING |
4119                               CPU_BASED_CR3_STORE_EXITING));
4120                 vcpu->arch.cr0 = cr0;
4121                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4122         } else if (!is_paging(vcpu)) {
4123                 /* From nonpaging to paging */
4124                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4125                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4126                              ~(CPU_BASED_CR3_LOAD_EXITING |
4127                                CPU_BASED_CR3_STORE_EXITING));
4128                 vcpu->arch.cr0 = cr0;
4129                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4130         }
4131
4132         if (!(cr0 & X86_CR0_WP))
4133                 *hw_cr0 &= ~X86_CR0_WP;
4134 }
4135
4136 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4137 {
4138         struct vcpu_vmx *vmx = to_vmx(vcpu);
4139         unsigned long hw_cr0;
4140
4141         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4142         if (enable_unrestricted_guest)
4143                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4144         else {
4145                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4146
4147                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4148                         enter_pmode(vcpu);
4149
4150                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4151                         enter_rmode(vcpu);
4152         }
4153
4154 #ifdef CONFIG_X86_64
4155         if (vcpu->arch.efer & EFER_LME) {
4156                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4157                         enter_lmode(vcpu);
4158                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4159                         exit_lmode(vcpu);
4160         }
4161 #endif
4162
4163         if (enable_ept)
4164                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4165
4166         vmcs_writel(CR0_READ_SHADOW, cr0);
4167         vmcs_writel(GUEST_CR0, hw_cr0);
4168         vcpu->arch.cr0 = cr0;
4169
4170         /* depends on vcpu->arch.cr0 to be set to a new value */
4171         vmx->emulation_required = emulation_required(vcpu);
4172 }
4173
4174 static u64 construct_eptp(unsigned long root_hpa)
4175 {
4176         u64 eptp;
4177
4178         /* TODO write the value reading from MSR */
4179         eptp = VMX_EPT_DEFAULT_MT |
4180                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4181         if (enable_ept_ad_bits)
4182                 eptp |= VMX_EPT_AD_ENABLE_BIT;
4183         eptp |= (root_hpa & PAGE_MASK);
4184
4185         return eptp;
4186 }
4187
4188 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4189 {
4190         unsigned long guest_cr3;
4191         u64 eptp;
4192
4193         guest_cr3 = cr3;
4194         if (enable_ept) {
4195                 eptp = construct_eptp(cr3);
4196                 vmcs_write64(EPT_POINTER, eptp);
4197                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4198                         guest_cr3 = kvm_read_cr3(vcpu);
4199                 else
4200                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4201                 ept_load_pdptrs(vcpu);
4202         }
4203
4204         vmx_flush_tlb(vcpu);
4205         vmcs_writel(GUEST_CR3, guest_cr3);
4206 }
4207
4208 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4209 {
4210         /*
4211          * Pass through host's Machine Check Enable value to hw_cr4, which
4212          * is in force while we are in guest mode.  Do not let guests control
4213          * this bit, even if host CR4.MCE == 0.
4214          */
4215         unsigned long hw_cr4 =
4216                 (cr4_read_shadow() & X86_CR4_MCE) |
4217                 (cr4 & ~X86_CR4_MCE) |
4218                 (to_vmx(vcpu)->rmode.vm86_active ?
4219                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4220
4221         if (cr4 & X86_CR4_VMXE) {
4222                 /*
4223                  * To use VMXON (and later other VMX instructions), a guest
4224                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4225                  * So basically the check on whether to allow nested VMX
4226                  * is here.
4227                  */
4228                 if (!nested_vmx_allowed(vcpu))
4229                         return 1;
4230         }
4231
4232         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4233                 return 1;
4234
4235         vcpu->arch.cr4 = cr4;
4236         if (enable_ept) {
4237                 if (!is_paging(vcpu)) {
4238                         hw_cr4 &= ~X86_CR4_PAE;
4239                         hw_cr4 |= X86_CR4_PSE;
4240                 } else if (!(cr4 & X86_CR4_PAE)) {
4241                         hw_cr4 &= ~X86_CR4_PAE;
4242                 }
4243         }
4244
4245         if (!enable_unrestricted_guest && !is_paging(vcpu))
4246                 /*
4247                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4248                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4249                  * to be manually disabled when guest switches to non-paging
4250                  * mode.
4251                  *
4252                  * If !enable_unrestricted_guest, the CPU is always running
4253                  * with CR0.PG=1 and CR4 needs to be modified.
4254                  * If enable_unrestricted_guest, the CPU automatically
4255                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4256                  */
4257                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4258
4259         vmcs_writel(CR4_READ_SHADOW, cr4);
4260         vmcs_writel(GUEST_CR4, hw_cr4);
4261         return 0;
4262 }
4263
4264 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4265                             struct kvm_segment *var, int seg)
4266 {
4267         struct vcpu_vmx *vmx = to_vmx(vcpu);
4268         u32 ar;
4269
4270         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4271                 *var = vmx->rmode.segs[seg];
4272                 if (seg == VCPU_SREG_TR
4273                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4274                         return;
4275                 var->base = vmx_read_guest_seg_base(vmx, seg);
4276                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4277                 return;
4278         }
4279         var->base = vmx_read_guest_seg_base(vmx, seg);
4280         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4281         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4282         ar = vmx_read_guest_seg_ar(vmx, seg);
4283         var->unusable = (ar >> 16) & 1;
4284         var->type = ar & 15;
4285         var->s = (ar >> 4) & 1;
4286         var->dpl = (ar >> 5) & 3;
4287         /*
4288          * Some userspaces do not preserve unusable property. Since usable
4289          * segment has to be present according to VMX spec we can use present
4290          * property to amend userspace bug by making unusable segment always
4291          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4292          * segment as unusable.
4293          */
4294         var->present = !var->unusable;
4295         var->avl = (ar >> 12) & 1;
4296         var->l = (ar >> 13) & 1;
4297         var->db = (ar >> 14) & 1;
4298         var->g = (ar >> 15) & 1;
4299 }
4300
4301 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4302 {
4303         struct kvm_segment s;
4304
4305         if (to_vmx(vcpu)->rmode.vm86_active) {
4306                 vmx_get_segment(vcpu, &s, seg);
4307                 return s.base;
4308         }
4309         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4310 }
4311
4312 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4313 {
4314         struct vcpu_vmx *vmx = to_vmx(vcpu);
4315
4316         if (unlikely(vmx->rmode.vm86_active))
4317                 return 0;
4318         else {
4319                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4320                 return VMX_AR_DPL(ar);
4321         }
4322 }
4323
4324 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4325 {
4326         u32 ar;
4327
4328         if (var->unusable || !var->present)
4329                 ar = 1 << 16;
4330         else {
4331                 ar = var->type & 15;
4332                 ar |= (var->s & 1) << 4;
4333                 ar |= (var->dpl & 3) << 5;
4334                 ar |= (var->present & 1) << 7;
4335                 ar |= (var->avl & 1) << 12;
4336                 ar |= (var->l & 1) << 13;
4337                 ar |= (var->db & 1) << 14;
4338                 ar |= (var->g & 1) << 15;
4339         }
4340
4341         return ar;
4342 }
4343
4344 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4345                             struct kvm_segment *var, int seg)
4346 {
4347         struct vcpu_vmx *vmx = to_vmx(vcpu);
4348         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4349
4350         vmx_segment_cache_clear(vmx);
4351
4352         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4353                 vmx->rmode.segs[seg] = *var;
4354                 if (seg == VCPU_SREG_TR)
4355                         vmcs_write16(sf->selector, var->selector);
4356                 else if (var->s)
4357                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4358                 goto out;
4359         }
4360
4361         vmcs_writel(sf->base, var->base);
4362         vmcs_write32(sf->limit, var->limit);
4363         vmcs_write16(sf->selector, var->selector);
4364
4365         /*
4366          *   Fix the "Accessed" bit in AR field of segment registers for older
4367          * qemu binaries.
4368          *   IA32 arch specifies that at the time of processor reset the
4369          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4370          * is setting it to 0 in the userland code. This causes invalid guest
4371          * state vmexit when "unrestricted guest" mode is turned on.
4372          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4373          * tree. Newer qemu binaries with that qemu fix would not need this
4374          * kvm hack.
4375          */
4376         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4377                 var->type |= 0x1; /* Accessed */
4378
4379         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4380
4381 out:
4382         vmx->emulation_required = emulation_required(vcpu);
4383 }
4384
4385 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4386 {
4387         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4388
4389         *db = (ar >> 14) & 1;
4390         *l = (ar >> 13) & 1;
4391 }
4392
4393 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4394 {
4395         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4396         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4397 }
4398
4399 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4400 {
4401         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4402         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4403 }
4404
4405 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4406 {
4407         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4408         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4409 }
4410
4411 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4412 {
4413         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4414         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4415 }
4416
4417 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4418 {
4419         struct kvm_segment var;
4420         u32 ar;
4421
4422         vmx_get_segment(vcpu, &var, seg);
4423         var.dpl = 0x3;
4424         if (seg == VCPU_SREG_CS)
4425                 var.type = 0x3;
4426         ar = vmx_segment_access_rights(&var);
4427
4428         if (var.base != (var.selector << 4))
4429                 return false;
4430         if (var.limit != 0xffff)
4431                 return false;
4432         if (ar != 0xf3)
4433                 return false;
4434
4435         return true;
4436 }
4437
4438 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4439 {
4440         struct kvm_segment cs;
4441         unsigned int cs_rpl;
4442
4443         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4444         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4445
4446         if (cs.unusable)
4447                 return false;
4448         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4449                 return false;
4450         if (!cs.s)
4451                 return false;
4452         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4453                 if (cs.dpl > cs_rpl)
4454                         return false;
4455         } else {
4456                 if (cs.dpl != cs_rpl)
4457                         return false;
4458         }
4459         if (!cs.present)
4460                 return false;
4461
4462         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4463         return true;
4464 }
4465
4466 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4467 {
4468         struct kvm_segment ss;
4469         unsigned int ss_rpl;
4470
4471         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4472         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4473
4474         if (ss.unusable)
4475                 return true;
4476         if (ss.type != 3 && ss.type != 7)
4477                 return false;
4478         if (!ss.s)
4479                 return false;
4480         if (ss.dpl != ss_rpl) /* DPL != RPL */
4481                 return false;
4482         if (!ss.present)
4483                 return false;
4484
4485         return true;
4486 }
4487
4488 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4489 {
4490         struct kvm_segment var;
4491         unsigned int rpl;
4492
4493         vmx_get_segment(vcpu, &var, seg);
4494         rpl = var.selector & SEGMENT_RPL_MASK;
4495
4496         if (var.unusable)
4497                 return true;
4498         if (!var.s)
4499                 return false;
4500         if (!var.present)
4501                 return false;
4502         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4503                 if (var.dpl < rpl) /* DPL < RPL */
4504                         return false;
4505         }
4506
4507         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4508          * rights flags
4509          */
4510         return true;
4511 }
4512
4513 static bool tr_valid(struct kvm_vcpu *vcpu)
4514 {
4515         struct kvm_segment tr;
4516
4517         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4518
4519         if (tr.unusable)
4520                 return false;
4521         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4522                 return false;
4523         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4524                 return false;
4525         if (!tr.present)
4526                 return false;
4527
4528         return true;
4529 }
4530
4531 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4532 {
4533         struct kvm_segment ldtr;
4534
4535         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4536
4537         if (ldtr.unusable)
4538                 return true;
4539         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4540                 return false;
4541         if (ldtr.type != 2)
4542                 return false;
4543         if (!ldtr.present)
4544                 return false;
4545
4546         return true;
4547 }
4548
4549 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4550 {
4551         struct kvm_segment cs, ss;
4552
4553         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4554         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4555
4556         return ((cs.selector & SEGMENT_RPL_MASK) ==
4557                  (ss.selector & SEGMENT_RPL_MASK));
4558 }
4559
4560 /*
4561  * Check if guest state is valid. Returns true if valid, false if
4562  * not.
4563  * We assume that registers are always usable
4564  */
4565 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4566 {
4567         if (enable_unrestricted_guest)
4568                 return true;
4569
4570         /* real mode guest state checks */
4571         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4572                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4573                         return false;
4574                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4575                         return false;
4576                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4577                         return false;
4578                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4579                         return false;
4580                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4581                         return false;
4582                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4583                         return false;
4584         } else {
4585         /* protected mode guest state checks */
4586                 if (!cs_ss_rpl_check(vcpu))
4587                         return false;
4588                 if (!code_segment_valid(vcpu))
4589                         return false;
4590                 if (!stack_segment_valid(vcpu))
4591                         return false;
4592                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4593                         return false;
4594                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4595                         return false;
4596                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4597                         return false;
4598                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4599                         return false;
4600                 if (!tr_valid(vcpu))
4601                         return false;
4602                 if (!ldtr_valid(vcpu))
4603                         return false;
4604         }
4605         /* TODO:
4606          * - Add checks on RIP
4607          * - Add checks on RFLAGS
4608          */
4609
4610         return true;
4611 }
4612
4613 static int init_rmode_tss(struct kvm *kvm)
4614 {
4615         gfn_t fn;
4616         u16 data = 0;
4617         int idx, r;
4618
4619         idx = srcu_read_lock(&kvm->srcu);
4620         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4621         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4622         if (r < 0)
4623                 goto out;
4624         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4625         r = kvm_write_guest_page(kvm, fn++, &data,
4626                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4627         if (r < 0)
4628                 goto out;
4629         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4630         if (r < 0)
4631                 goto out;
4632         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4633         if (r < 0)
4634                 goto out;
4635         data = ~0;
4636         r = kvm_write_guest_page(kvm, fn, &data,
4637                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4638                                  sizeof(u8));
4639 out:
4640         srcu_read_unlock(&kvm->srcu, idx);
4641         return r;
4642 }
4643
4644 static int init_rmode_identity_map(struct kvm *kvm)
4645 {
4646         int i, idx, r = 0;
4647         kvm_pfn_t identity_map_pfn;
4648         u32 tmp;
4649
4650         if (!enable_ept)
4651                 return 0;
4652
4653         /* Protect kvm->arch.ept_identity_pagetable_done. */
4654         mutex_lock(&kvm->slots_lock);
4655
4656         if (likely(kvm->arch.ept_identity_pagetable_done))
4657                 goto out2;
4658
4659         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4660
4661         r = alloc_identity_pagetable(kvm);
4662         if (r < 0)
4663                 goto out2;
4664
4665         idx = srcu_read_lock(&kvm->srcu);
4666         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4667         if (r < 0)
4668                 goto out;
4669         /* Set up identity-mapping pagetable for EPT in real mode */
4670         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4671                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4672                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4673                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4674                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4675                 if (r < 0)
4676                         goto out;
4677         }
4678         kvm->arch.ept_identity_pagetable_done = true;
4679
4680 out:
4681         srcu_read_unlock(&kvm->srcu, idx);
4682
4683 out2:
4684         mutex_unlock(&kvm->slots_lock);
4685         return r;
4686 }
4687
4688 static void seg_setup(int seg)
4689 {
4690         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4691         unsigned int ar;
4692
4693         vmcs_write16(sf->selector, 0);
4694         vmcs_writel(sf->base, 0);
4695         vmcs_write32(sf->limit, 0xffff);
4696         ar = 0x93;
4697         if (seg == VCPU_SREG_CS)
4698                 ar |= 0x08; /* code segment */
4699
4700         vmcs_write32(sf->ar_bytes, ar);
4701 }
4702
4703 static int alloc_apic_access_page(struct kvm *kvm)
4704 {
4705         struct page *page;
4706         int r = 0;
4707
4708         mutex_lock(&kvm->slots_lock);
4709         if (kvm->arch.apic_access_page_done)
4710                 goto out;
4711         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4712                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4713         if (r)
4714                 goto out;
4715
4716         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4717         if (is_error_page(page)) {
4718                 r = -EFAULT;
4719                 goto out;
4720         }
4721
4722         /*
4723          * Do not pin the page in memory, so that memory hot-unplug
4724          * is able to migrate it.
4725          */
4726         put_page(page);
4727         kvm->arch.apic_access_page_done = true;
4728 out:
4729         mutex_unlock(&kvm->slots_lock);
4730         return r;
4731 }
4732
4733 static int alloc_identity_pagetable(struct kvm *kvm)
4734 {
4735         /* Called with kvm->slots_lock held. */
4736
4737         int r = 0;
4738
4739         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4740
4741         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4742                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4743
4744         return r;
4745 }
4746
4747 static int allocate_vpid(void)
4748 {
4749         int vpid;
4750
4751         if (!enable_vpid)
4752                 return 0;
4753         spin_lock(&vmx_vpid_lock);
4754         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4755         if (vpid < VMX_NR_VPIDS)
4756                 __set_bit(vpid, vmx_vpid_bitmap);
4757         else
4758                 vpid = 0;
4759         spin_unlock(&vmx_vpid_lock);
4760         return vpid;
4761 }
4762
4763 static void free_vpid(int vpid)
4764 {
4765         if (!enable_vpid || vpid == 0)
4766                 return;
4767         spin_lock(&vmx_vpid_lock);
4768         __clear_bit(vpid, vmx_vpid_bitmap);
4769         spin_unlock(&vmx_vpid_lock);
4770 }
4771
4772 #define MSR_TYPE_R      1
4773 #define MSR_TYPE_W      2
4774 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4775                                                 u32 msr, int type)
4776 {
4777         int f = sizeof(unsigned long);
4778
4779         if (!cpu_has_vmx_msr_bitmap())
4780                 return;
4781
4782         /*
4783          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4784          * have the write-low and read-high bitmap offsets the wrong way round.
4785          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4786          */
4787         if (msr <= 0x1fff) {
4788                 if (type & MSR_TYPE_R)
4789                         /* read-low */
4790                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4791
4792                 if (type & MSR_TYPE_W)
4793                         /* write-low */
4794                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4795
4796         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4797                 msr &= 0x1fff;
4798                 if (type & MSR_TYPE_R)
4799                         /* read-high */
4800                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4801
4802                 if (type & MSR_TYPE_W)
4803                         /* write-high */
4804                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4805
4806         }
4807 }
4808
4809 /*
4810  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4811  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4812  */
4813 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4814                                                unsigned long *msr_bitmap_nested,
4815                                                u32 msr, int type)
4816 {
4817         int f = sizeof(unsigned long);
4818
4819         if (!cpu_has_vmx_msr_bitmap()) {
4820                 WARN_ON(1);
4821                 return;
4822         }
4823
4824         /*
4825          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4826          * have the write-low and read-high bitmap offsets the wrong way round.
4827          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4828          */
4829         if (msr <= 0x1fff) {
4830                 if (type & MSR_TYPE_R &&
4831                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4832                         /* read-low */
4833                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4834
4835                 if (type & MSR_TYPE_W &&
4836                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4837                         /* write-low */
4838                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4839
4840         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4841                 msr &= 0x1fff;
4842                 if (type & MSR_TYPE_R &&
4843                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4844                         /* read-high */
4845                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4846
4847                 if (type & MSR_TYPE_W &&
4848                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4849                         /* write-high */
4850                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4851
4852         }
4853 }
4854
4855 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4856 {
4857         if (!longmode_only)
4858                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4859                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4860         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4861                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4862 }
4863
4864 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4865 {
4866         if (apicv_active) {
4867                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4868                                 msr, type);
4869                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4870                                 msr, type);
4871         } else {
4872                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4873                                 msr, type);
4874                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4875                                 msr, type);
4876         }
4877 }
4878
4879 static bool vmx_get_enable_apicv(void)
4880 {
4881         return enable_apicv;
4882 }
4883
4884 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4885 {
4886         struct vcpu_vmx *vmx = to_vmx(vcpu);
4887         int max_irr;
4888         void *vapic_page;
4889         u16 status;
4890
4891         if (vmx->nested.pi_desc &&
4892             vmx->nested.pi_pending) {
4893                 vmx->nested.pi_pending = false;
4894                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4895                         return;
4896
4897                 max_irr = find_last_bit(
4898                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4899
4900                 if (max_irr == 256)
4901                         return;
4902
4903                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4904                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4905                 kunmap(vmx->nested.virtual_apic_page);
4906
4907                 status = vmcs_read16(GUEST_INTR_STATUS);
4908                 if ((u8)max_irr > ((u8)status & 0xff)) {
4909                         status &= ~0xff;
4910                         status |= (u8)max_irr;
4911                         vmcs_write16(GUEST_INTR_STATUS, status);
4912                 }
4913         }
4914 }
4915
4916 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4917 {
4918 #ifdef CONFIG_SMP
4919         if (vcpu->mode == IN_GUEST_MODE) {
4920                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4921
4922                 /*
4923                  * Currently, we don't support urgent interrupt,
4924                  * all interrupts are recognized as non-urgent
4925                  * interrupt, so we cannot post interrupts when
4926                  * 'SN' is set.
4927                  *
4928                  * If the vcpu is in guest mode, it means it is
4929                  * running instead of being scheduled out and
4930                  * waiting in the run queue, and that's the only
4931                  * case when 'SN' is set currently, warning if
4932                  * 'SN' is set.
4933                  */
4934                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4935
4936                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4937                                 POSTED_INTR_VECTOR);
4938                 return true;
4939         }
4940 #endif
4941         return false;
4942 }
4943
4944 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4945                                                 int vector)
4946 {
4947         struct vcpu_vmx *vmx = to_vmx(vcpu);
4948
4949         if (is_guest_mode(vcpu) &&
4950             vector == vmx->nested.posted_intr_nv) {
4951                 /* the PIR and ON have been set by L1. */
4952                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4953                 /*
4954                  * If a posted intr is not recognized by hardware,
4955                  * we will accomplish it in the next vmentry.
4956                  */
4957                 vmx->nested.pi_pending = true;
4958                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4959                 return 0;
4960         }
4961         return -1;
4962 }
4963 /*
4964  * Send interrupt to vcpu via posted interrupt way.
4965  * 1. If target vcpu is running(non-root mode), send posted interrupt
4966  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4967  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4968  * interrupt from PIR in next vmentry.
4969  */
4970 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4971 {
4972         struct vcpu_vmx *vmx = to_vmx(vcpu);
4973         int r;
4974
4975         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4976         if (!r)
4977                 return;
4978
4979         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4980                 return;
4981
4982         /* If a previous notification has sent the IPI, nothing to do.  */
4983         if (pi_test_and_set_on(&vmx->pi_desc))
4984                 return;
4985
4986         if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
4987                 kvm_vcpu_kick(vcpu);
4988 }
4989
4990 /*
4991  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4992  * will not change in the lifetime of the guest.
4993  * Note that host-state that does change is set elsewhere. E.g., host-state
4994  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4995  */
4996 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4997 {
4998         u32 low32, high32;
4999         unsigned long tmpl;
5000         struct desc_ptr dt;
5001         unsigned long cr0, cr4;
5002
5003         cr0 = read_cr0();
5004         WARN_ON(cr0 & X86_CR0_TS);
5005         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5006         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
5007
5008         /* Save the most likely value for this task's CR4 in the VMCS. */
5009         cr4 = cr4_read_shadow();
5010         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5011         vmx->host_state.vmcs_host_cr4 = cr4;
5012
5013         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5014 #ifdef CONFIG_X86_64
5015         /*
5016          * Load null selectors, so we can avoid reloading them in
5017          * __vmx_load_host_state(), in case userspace uses the null selectors
5018          * too (the expected case).
5019          */
5020         vmcs_write16(HOST_DS_SELECTOR, 0);
5021         vmcs_write16(HOST_ES_SELECTOR, 0);
5022 #else
5023         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5024         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5025 #endif
5026         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5027         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5028
5029         native_store_idt(&dt);
5030         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5031         vmx->host_idt_base = dt.address;
5032
5033         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5034
5035         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5036         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5037         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5038         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5039
5040         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5041                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5042                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5043         }
5044 }
5045
5046 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5047 {
5048         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5049         if (enable_ept)
5050                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5051         if (is_guest_mode(&vmx->vcpu))
5052                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5053                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5054         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5055 }
5056
5057 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5058 {
5059         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5060
5061         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5062                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5063         /* Enable the preemption timer dynamically */
5064         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5065         return pin_based_exec_ctrl;
5066 }
5067
5068 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5069 {
5070         struct vcpu_vmx *vmx = to_vmx(vcpu);
5071
5072         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5073         if (cpu_has_secondary_exec_ctrls()) {
5074                 if (kvm_vcpu_apicv_active(vcpu))
5075                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5076                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5077                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5078                 else
5079                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5080                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5081                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5082         }
5083
5084         if (cpu_has_vmx_msr_bitmap())
5085                 vmx_set_msr_bitmap(vcpu);
5086 }
5087
5088 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5089 {
5090         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5091
5092         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5093                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5094
5095         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5096                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5097 #ifdef CONFIG_X86_64
5098                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5099                                 CPU_BASED_CR8_LOAD_EXITING;
5100 #endif
5101         }
5102         if (!enable_ept)
5103                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5104                                 CPU_BASED_CR3_LOAD_EXITING  |
5105                                 CPU_BASED_INVLPG_EXITING;
5106         return exec_control;
5107 }
5108
5109 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5110 {
5111         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5112         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5113                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5114         if (vmx->vpid == 0)
5115                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5116         if (!enable_ept) {
5117                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5118                 enable_unrestricted_guest = 0;
5119                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5120                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5121         }
5122         if (!enable_unrestricted_guest)
5123                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5124         if (!ple_gap)
5125                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5126         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5127                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5128                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5129         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5130         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5131            (handle_vmptrld).
5132            We can NOT enable shadow_vmcs here because we don't have yet
5133            a current VMCS12
5134         */
5135         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5136
5137         if (!enable_pml)
5138                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5139
5140         return exec_control;
5141 }
5142
5143 static void ept_set_mmio_spte_mask(void)
5144 {
5145         /*
5146          * EPT Misconfigurations can be generated if the value of bits 2:0
5147          * of an EPT paging-structure entry is 110b (write/execute).
5148          */
5149         kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
5150 }
5151
5152 #define VMX_XSS_EXIT_BITMAP 0
5153 /*
5154  * Sets up the vmcs for emulated real mode.
5155  */
5156 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5157 {
5158 #ifdef CONFIG_X86_64
5159         unsigned long a;
5160 #endif
5161         int i;
5162
5163         /* I/O */
5164         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5165         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5166
5167         if (enable_shadow_vmcs) {
5168                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5169                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5170         }
5171         if (cpu_has_vmx_msr_bitmap())
5172                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5173
5174         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5175
5176         /* Control */
5177         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5178         vmx->hv_deadline_tsc = -1;
5179
5180         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5181
5182         if (cpu_has_secondary_exec_ctrls()) {
5183                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5184                                 vmx_secondary_exec_control(vmx));
5185         }
5186
5187         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5188                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5189                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5190                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5191                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5192
5193                 vmcs_write16(GUEST_INTR_STATUS, 0);
5194
5195                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5196                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5197         }
5198
5199         if (ple_gap) {
5200                 vmcs_write32(PLE_GAP, ple_gap);
5201                 vmx->ple_window = ple_window;
5202                 vmx->ple_window_dirty = true;
5203         }
5204
5205         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5206         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5207         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5208
5209         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5210         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5211         vmx_set_constant_host_state(vmx);
5212 #ifdef CONFIG_X86_64
5213         rdmsrl(MSR_FS_BASE, a);
5214         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5215         rdmsrl(MSR_GS_BASE, a);
5216         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5217 #else
5218         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5219         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5220 #endif
5221
5222         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5223         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5224         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5225         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5226         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5227
5228         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5229                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5230
5231         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5232                 u32 index = vmx_msr_index[i];
5233                 u32 data_low, data_high;
5234                 int j = vmx->nmsrs;
5235
5236                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5237                         continue;
5238                 if (wrmsr_safe(index, data_low, data_high) < 0)
5239                         continue;
5240                 vmx->guest_msrs[j].index = i;
5241                 vmx->guest_msrs[j].data = 0;
5242                 vmx->guest_msrs[j].mask = -1ull;
5243                 ++vmx->nmsrs;
5244         }
5245
5246
5247         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5248
5249         /* 22.2.1, 20.8.1 */
5250         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5251
5252         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5253         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5254
5255         set_cr4_guest_host_mask(vmx);
5256
5257         if (vmx_xsaves_supported())
5258                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5259
5260         if (enable_pml) {
5261                 ASSERT(vmx->pml_pg);
5262                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5263                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5264         }
5265
5266         return 0;
5267 }
5268
5269 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5270 {
5271         struct vcpu_vmx *vmx = to_vmx(vcpu);
5272         struct msr_data apic_base_msr;
5273         u64 cr0;
5274
5275         vmx->rmode.vm86_active = 0;
5276
5277         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5278         kvm_set_cr8(vcpu, 0);
5279
5280         if (!init_event) {
5281                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5282                                      MSR_IA32_APICBASE_ENABLE;
5283                 if (kvm_vcpu_is_reset_bsp(vcpu))
5284                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5285                 apic_base_msr.host_initiated = true;
5286                 kvm_set_apic_base(vcpu, &apic_base_msr);
5287         }
5288
5289         vmx_segment_cache_clear(vmx);
5290
5291         seg_setup(VCPU_SREG_CS);
5292         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5293         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5294
5295         seg_setup(VCPU_SREG_DS);
5296         seg_setup(VCPU_SREG_ES);
5297         seg_setup(VCPU_SREG_FS);
5298         seg_setup(VCPU_SREG_GS);
5299         seg_setup(VCPU_SREG_SS);
5300
5301         vmcs_write16(GUEST_TR_SELECTOR, 0);
5302         vmcs_writel(GUEST_TR_BASE, 0);
5303         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5304         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5305
5306         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5307         vmcs_writel(GUEST_LDTR_BASE, 0);
5308         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5309         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5310
5311         if (!init_event) {
5312                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5313                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5314                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5315                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5316         }
5317
5318         vmcs_writel(GUEST_RFLAGS, 0x02);
5319         kvm_rip_write(vcpu, 0xfff0);
5320
5321         vmcs_writel(GUEST_GDTR_BASE, 0);
5322         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5323
5324         vmcs_writel(GUEST_IDTR_BASE, 0);
5325         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5326
5327         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5328         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5329         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5330
5331         setup_msrs(vmx);
5332
5333         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5334
5335         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5336                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5337                 if (cpu_need_tpr_shadow(vcpu))
5338                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5339                                      __pa(vcpu->arch.apic->regs));
5340                 vmcs_write32(TPR_THRESHOLD, 0);
5341         }
5342
5343         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5344
5345         if (kvm_vcpu_apicv_active(vcpu))
5346                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5347
5348         if (vmx->vpid != 0)
5349                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5350
5351         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5352         vmx->vcpu.arch.cr0 = cr0;
5353         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5354         vmx_set_cr4(vcpu, 0);
5355         vmx_set_efer(vcpu, 0);
5356
5357         update_exception_bitmap(vcpu);
5358
5359         vpid_sync_context(vmx->vpid);
5360 }
5361
5362 /*
5363  * In nested virtualization, check if L1 asked to exit on external interrupts.
5364  * For most existing hypervisors, this will always return true.
5365  */
5366 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5367 {
5368         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5369                 PIN_BASED_EXT_INTR_MASK;
5370 }
5371
5372 /*
5373  * In nested virtualization, check if L1 has set
5374  * VM_EXIT_ACK_INTR_ON_EXIT
5375  */
5376 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5377 {
5378         return get_vmcs12(vcpu)->vm_exit_controls &
5379                 VM_EXIT_ACK_INTR_ON_EXIT;
5380 }
5381
5382 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5383 {
5384         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5385                 PIN_BASED_NMI_EXITING;
5386 }
5387
5388 static void enable_irq_window(struct kvm_vcpu *vcpu)
5389 {
5390         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5391                       CPU_BASED_VIRTUAL_INTR_PENDING);
5392 }
5393
5394 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5395 {
5396         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5397                 enable_irq_window(vcpu);
5398                 return;
5399         }
5400
5401         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5402                       CPU_BASED_VIRTUAL_NMI_PENDING);
5403 }
5404
5405 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5406 {
5407         struct vcpu_vmx *vmx = to_vmx(vcpu);
5408         uint32_t intr;
5409         int irq = vcpu->arch.interrupt.nr;
5410
5411         trace_kvm_inj_virq(irq);
5412
5413         ++vcpu->stat.irq_injections;
5414         if (vmx->rmode.vm86_active) {
5415                 int inc_eip = 0;
5416                 if (vcpu->arch.interrupt.soft)
5417                         inc_eip = vcpu->arch.event_exit_inst_len;
5418                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5419                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5420                 return;
5421         }
5422         intr = irq | INTR_INFO_VALID_MASK;
5423         if (vcpu->arch.interrupt.soft) {
5424                 intr |= INTR_TYPE_SOFT_INTR;
5425                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5426                              vmx->vcpu.arch.event_exit_inst_len);
5427         } else
5428                 intr |= INTR_TYPE_EXT_INTR;
5429         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5430 }
5431
5432 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5433 {
5434         struct vcpu_vmx *vmx = to_vmx(vcpu);
5435
5436         if (!is_guest_mode(vcpu)) {
5437                 ++vcpu->stat.nmi_injections;
5438                 vmx->nmi_known_unmasked = false;
5439         }
5440
5441         if (vmx->rmode.vm86_active) {
5442                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5443                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5444                 return;
5445         }
5446
5447         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5448                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5449 }
5450
5451 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5452 {
5453         if (to_vmx(vcpu)->nmi_known_unmasked)
5454                 return false;
5455         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5456 }
5457
5458 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5459 {
5460         struct vcpu_vmx *vmx = to_vmx(vcpu);
5461
5462         vmx->nmi_known_unmasked = !masked;
5463         if (masked)
5464                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5465                               GUEST_INTR_STATE_NMI);
5466         else
5467                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5468                                 GUEST_INTR_STATE_NMI);
5469 }
5470
5471 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5472 {
5473         if (to_vmx(vcpu)->nested.nested_run_pending)
5474                 return 0;
5475
5476         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5477                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5478                    | GUEST_INTR_STATE_NMI));
5479 }
5480
5481 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5482 {
5483         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5484                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5485                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5486                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5487 }
5488
5489 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5490 {
5491         int ret;
5492
5493         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5494                                     PAGE_SIZE * 3);
5495         if (ret)
5496                 return ret;
5497         kvm->arch.tss_addr = addr;
5498         return init_rmode_tss(kvm);
5499 }
5500
5501 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5502 {
5503         switch (vec) {
5504         case BP_VECTOR:
5505                 /*
5506                  * Update instruction length as we may reinject the exception
5507                  * from user space while in guest debugging mode.
5508                  */
5509                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5510                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5511                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5512                         return false;
5513                 /* fall through */
5514         case DB_VECTOR:
5515                 if (vcpu->guest_debug &
5516                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5517                         return false;
5518                 /* fall through */
5519         case DE_VECTOR:
5520         case OF_VECTOR:
5521         case BR_VECTOR:
5522         case UD_VECTOR:
5523         case DF_VECTOR:
5524         case SS_VECTOR:
5525         case GP_VECTOR:
5526         case MF_VECTOR:
5527                 return true;
5528         break;
5529         }
5530         return false;
5531 }
5532
5533 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5534                                   int vec, u32 err_code)
5535 {
5536         /*
5537          * Instruction with address size override prefix opcode 0x67
5538          * Cause the #SS fault with 0 error code in VM86 mode.
5539          */
5540         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5541                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5542                         if (vcpu->arch.halt_request) {
5543                                 vcpu->arch.halt_request = 0;
5544                                 return kvm_vcpu_halt(vcpu);
5545                         }
5546                         return 1;
5547                 }
5548                 return 0;
5549         }
5550
5551         /*
5552          * Forward all other exceptions that are valid in real mode.
5553          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5554          *        the required debugging infrastructure rework.
5555          */
5556         kvm_queue_exception(vcpu, vec);
5557         return 1;
5558 }
5559
5560 /*
5561  * Trigger machine check on the host. We assume all the MSRs are already set up
5562  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5563  * We pass a fake environment to the machine check handler because we want
5564  * the guest to be always treated like user space, no matter what context
5565  * it used internally.
5566  */
5567 static void kvm_machine_check(void)
5568 {
5569 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5570         struct pt_regs regs = {
5571                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5572                 .flags = X86_EFLAGS_IF,
5573         };
5574
5575         do_machine_check(&regs, 0);
5576 #endif
5577 }
5578
5579 static int handle_machine_check(struct kvm_vcpu *vcpu)
5580 {
5581         /* already handled by vcpu_run */
5582         return 1;
5583 }
5584
5585 static int handle_exception(struct kvm_vcpu *vcpu)
5586 {
5587         struct vcpu_vmx *vmx = to_vmx(vcpu);
5588         struct kvm_run *kvm_run = vcpu->run;
5589         u32 intr_info, ex_no, error_code;
5590         unsigned long cr2, rip, dr6;
5591         u32 vect_info;
5592         enum emulation_result er;
5593
5594         vect_info = vmx->idt_vectoring_info;
5595         intr_info = vmx->exit_intr_info;
5596
5597         if (is_machine_check(intr_info))
5598                 return handle_machine_check(vcpu);
5599
5600         if (is_nmi(intr_info))
5601                 return 1;  /* already handled by vmx_vcpu_run() */
5602
5603         if (is_invalid_opcode(intr_info)) {
5604                 if (is_guest_mode(vcpu)) {
5605                         kvm_queue_exception(vcpu, UD_VECTOR);
5606                         return 1;
5607                 }
5608                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5609                 if (er != EMULATE_DONE)
5610                         kvm_queue_exception(vcpu, UD_VECTOR);
5611                 return 1;
5612         }
5613
5614         error_code = 0;
5615         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5616                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5617
5618         /*
5619          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5620          * MMIO, it is better to report an internal error.
5621          * See the comments in vmx_handle_exit.
5622          */
5623         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5624             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5625                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5626                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5627                 vcpu->run->internal.ndata = 3;
5628                 vcpu->run->internal.data[0] = vect_info;
5629                 vcpu->run->internal.data[1] = intr_info;
5630                 vcpu->run->internal.data[2] = error_code;
5631                 return 0;
5632         }
5633
5634         if (is_page_fault(intr_info)) {
5635                 /* EPT won't cause page fault directly */
5636                 BUG_ON(enable_ept);
5637                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5638                 trace_kvm_page_fault(cr2, error_code);
5639
5640                 if (kvm_event_needs_reinjection(vcpu))
5641                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5642                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5643         }
5644
5645         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5646
5647         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5648                 return handle_rmode_exception(vcpu, ex_no, error_code);
5649
5650         switch (ex_no) {
5651         case AC_VECTOR:
5652                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5653                 return 1;
5654         case DB_VECTOR:
5655                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5656                 if (!(vcpu->guest_debug &
5657                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5658                         vcpu->arch.dr6 &= ~15;
5659                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5660                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5661                                 skip_emulated_instruction(vcpu);
5662
5663                         kvm_queue_exception(vcpu, DB_VECTOR);
5664                         return 1;
5665                 }
5666                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5667                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5668                 /* fall through */
5669         case BP_VECTOR:
5670                 /*
5671                  * Update instruction length as we may reinject #BP from
5672                  * user space while in guest debugging mode. Reading it for
5673                  * #DB as well causes no harm, it is not used in that case.
5674                  */
5675                 vmx->vcpu.arch.event_exit_inst_len =
5676                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5677                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5678                 rip = kvm_rip_read(vcpu);
5679                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5680                 kvm_run->debug.arch.exception = ex_no;
5681                 break;
5682         default:
5683                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5684                 kvm_run->ex.exception = ex_no;
5685                 kvm_run->ex.error_code = error_code;
5686                 break;
5687         }
5688         return 0;
5689 }
5690
5691 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5692 {
5693         ++vcpu->stat.irq_exits;
5694         return 1;
5695 }
5696
5697 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5698 {
5699         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5700         return 0;
5701 }
5702
5703 static int handle_io(struct kvm_vcpu *vcpu)
5704 {
5705         unsigned long exit_qualification;
5706         int size, in, string, ret;
5707         unsigned port;
5708
5709         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5710         string = (exit_qualification & 16) != 0;
5711         in = (exit_qualification & 8) != 0;
5712
5713         ++vcpu->stat.io_exits;
5714
5715         if (string || in)
5716                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5717
5718         port = exit_qualification >> 16;
5719         size = (exit_qualification & 7) + 1;
5720
5721         ret = kvm_skip_emulated_instruction(vcpu);
5722
5723         /*
5724          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5725          * KVM_EXIT_DEBUG here.
5726          */
5727         return kvm_fast_pio_out(vcpu, size, port) && ret;
5728 }
5729
5730 static void
5731 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5732 {
5733         /*
5734          * Patch in the VMCALL instruction:
5735          */
5736         hypercall[0] = 0x0f;
5737         hypercall[1] = 0x01;
5738         hypercall[2] = 0xc1;
5739 }
5740
5741 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5742 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5743 {
5744         if (is_guest_mode(vcpu)) {
5745                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5746                 unsigned long orig_val = val;
5747
5748                 /*
5749                  * We get here when L2 changed cr0 in a way that did not change
5750                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5751                  * but did change L0 shadowed bits. So we first calculate the
5752                  * effective cr0 value that L1 would like to write into the
5753                  * hardware. It consists of the L2-owned bits from the new
5754                  * value combined with the L1-owned bits from L1's guest_cr0.
5755                  */
5756                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5757                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5758
5759                 if (!nested_guest_cr0_valid(vcpu, val))
5760                         return 1;
5761
5762                 if (kvm_set_cr0(vcpu, val))
5763                         return 1;
5764                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5765                 return 0;
5766         } else {
5767                 if (to_vmx(vcpu)->nested.vmxon &&
5768                     !nested_host_cr0_valid(vcpu, val))
5769                         return 1;
5770
5771                 return kvm_set_cr0(vcpu, val);
5772         }
5773 }
5774
5775 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5776 {
5777         if (is_guest_mode(vcpu)) {
5778                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5779                 unsigned long orig_val = val;
5780
5781                 /* analogously to handle_set_cr0 */
5782                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5783                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5784                 if (kvm_set_cr4(vcpu, val))
5785                         return 1;
5786                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5787                 return 0;
5788         } else
5789                 return kvm_set_cr4(vcpu, val);
5790 }
5791
5792 static int handle_cr(struct kvm_vcpu *vcpu)
5793 {
5794         unsigned long exit_qualification, val;
5795         int cr;
5796         int reg;
5797         int err;
5798         int ret;
5799
5800         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5801         cr = exit_qualification & 15;
5802         reg = (exit_qualification >> 8) & 15;
5803         switch ((exit_qualification >> 4) & 3) {
5804         case 0: /* mov to cr */
5805                 val = kvm_register_readl(vcpu, reg);
5806                 trace_kvm_cr_write(cr, val);
5807                 switch (cr) {
5808                 case 0:
5809                         err = handle_set_cr0(vcpu, val);
5810                         return kvm_complete_insn_gp(vcpu, err);
5811                 case 3:
5812                         err = kvm_set_cr3(vcpu, val);
5813                         return kvm_complete_insn_gp(vcpu, err);
5814                 case 4:
5815                         err = handle_set_cr4(vcpu, val);
5816                         return kvm_complete_insn_gp(vcpu, err);
5817                 case 8: {
5818                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5819                                 u8 cr8 = (u8)val;
5820                                 err = kvm_set_cr8(vcpu, cr8);
5821                                 ret = kvm_complete_insn_gp(vcpu, err);
5822                                 if (lapic_in_kernel(vcpu))
5823                                         return ret;
5824                                 if (cr8_prev <= cr8)
5825                                         return ret;
5826                                 /*
5827                                  * TODO: we might be squashing a
5828                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5829                                  * KVM_EXIT_DEBUG here.
5830                                  */
5831                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5832                                 return 0;
5833                         }
5834                 }
5835                 break;
5836         case 2: /* clts */
5837                 WARN_ONCE(1, "Guest should always own CR0.TS");
5838                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5839                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5840                 return kvm_skip_emulated_instruction(vcpu);
5841         case 1: /*mov from cr*/
5842                 switch (cr) {
5843                 case 3:
5844                         val = kvm_read_cr3(vcpu);
5845                         kvm_register_write(vcpu, reg, val);
5846                         trace_kvm_cr_read(cr, val);
5847                         return kvm_skip_emulated_instruction(vcpu);
5848                 case 8:
5849                         val = kvm_get_cr8(vcpu);
5850                         kvm_register_write(vcpu, reg, val);
5851                         trace_kvm_cr_read(cr, val);
5852                         return kvm_skip_emulated_instruction(vcpu);
5853                 }
5854                 break;
5855         case 3: /* lmsw */
5856                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5857                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5858                 kvm_lmsw(vcpu, val);
5859
5860                 return kvm_skip_emulated_instruction(vcpu);
5861         default:
5862                 break;
5863         }
5864         vcpu->run->exit_reason = 0;
5865         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5866                (int)(exit_qualification >> 4) & 3, cr);
5867         return 0;
5868 }
5869
5870 static int handle_dr(struct kvm_vcpu *vcpu)
5871 {
5872         unsigned long exit_qualification;
5873         int dr, dr7, reg;
5874
5875         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5876         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5877
5878         /* First, if DR does not exist, trigger UD */
5879         if (!kvm_require_dr(vcpu, dr))
5880                 return 1;
5881
5882         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5883         if (!kvm_require_cpl(vcpu, 0))
5884                 return 1;
5885         dr7 = vmcs_readl(GUEST_DR7);
5886         if (dr7 & DR7_GD) {
5887                 /*
5888                  * As the vm-exit takes precedence over the debug trap, we
5889                  * need to emulate the latter, either for the host or the
5890                  * guest debugging itself.
5891                  */
5892                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5893                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5894                         vcpu->run->debug.arch.dr7 = dr7;
5895                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5896                         vcpu->run->debug.arch.exception = DB_VECTOR;
5897                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5898                         return 0;
5899                 } else {
5900                         vcpu->arch.dr6 &= ~15;
5901                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5902                         kvm_queue_exception(vcpu, DB_VECTOR);
5903                         return 1;
5904                 }
5905         }
5906
5907         if (vcpu->guest_debug == 0) {
5908                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5909                                 CPU_BASED_MOV_DR_EXITING);
5910
5911                 /*
5912                  * No more DR vmexits; force a reload of the debug registers
5913                  * and reenter on this instruction.  The next vmexit will
5914                  * retrieve the full state of the debug registers.
5915                  */
5916                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5917                 return 1;
5918         }
5919
5920         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5921         if (exit_qualification & TYPE_MOV_FROM_DR) {
5922                 unsigned long val;
5923
5924                 if (kvm_get_dr(vcpu, dr, &val))
5925                         return 1;
5926                 kvm_register_write(vcpu, reg, val);
5927         } else
5928                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5929                         return 1;
5930
5931         return kvm_skip_emulated_instruction(vcpu);
5932 }
5933
5934 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5935 {
5936         return vcpu->arch.dr6;
5937 }
5938
5939 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5940 {
5941 }
5942
5943 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5944 {
5945         get_debugreg(vcpu->arch.db[0], 0);
5946         get_debugreg(vcpu->arch.db[1], 1);
5947         get_debugreg(vcpu->arch.db[2], 2);
5948         get_debugreg(vcpu->arch.db[3], 3);
5949         get_debugreg(vcpu->arch.dr6, 6);
5950         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5951
5952         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5953         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5954 }
5955
5956 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5957 {
5958         vmcs_writel(GUEST_DR7, val);
5959 }
5960
5961 static int handle_cpuid(struct kvm_vcpu *vcpu)
5962 {
5963         return kvm_emulate_cpuid(vcpu);
5964 }
5965
5966 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5967 {
5968         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5969         struct msr_data msr_info;
5970
5971         msr_info.index = ecx;
5972         msr_info.host_initiated = false;
5973         if (vmx_get_msr(vcpu, &msr_info)) {
5974                 trace_kvm_msr_read_ex(ecx);
5975                 kvm_inject_gp(vcpu, 0);
5976                 return 1;
5977         }
5978
5979         trace_kvm_msr_read(ecx, msr_info.data);
5980
5981         /* FIXME: handling of bits 32:63 of rax, rdx */
5982         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5983         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5984         return kvm_skip_emulated_instruction(vcpu);
5985 }
5986
5987 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5988 {
5989         struct msr_data msr;
5990         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5991         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5992                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5993
5994         msr.data = data;
5995         msr.index = ecx;
5996         msr.host_initiated = false;
5997         if (kvm_set_msr(vcpu, &msr) != 0) {
5998                 trace_kvm_msr_write_ex(ecx, data);
5999                 kvm_inject_gp(vcpu, 0);
6000                 return 1;
6001         }
6002
6003         trace_kvm_msr_write(ecx, data);
6004         return kvm_skip_emulated_instruction(vcpu);
6005 }
6006
6007 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6008 {
6009         kvm_apic_update_ppr(vcpu);
6010         return 1;
6011 }
6012
6013 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6014 {
6015         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6016                         CPU_BASED_VIRTUAL_INTR_PENDING);
6017
6018         kvm_make_request(KVM_REQ_EVENT, vcpu);
6019
6020         ++vcpu->stat.irq_window_exits;
6021         return 1;
6022 }
6023
6024 static int handle_halt(struct kvm_vcpu *vcpu)
6025 {
6026         return kvm_emulate_halt(vcpu);
6027 }
6028
6029 static int handle_vmcall(struct kvm_vcpu *vcpu)
6030 {
6031         return kvm_emulate_hypercall(vcpu);
6032 }
6033
6034 static int handle_invd(struct kvm_vcpu *vcpu)
6035 {
6036         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6037 }
6038
6039 static int handle_invlpg(struct kvm_vcpu *vcpu)
6040 {
6041         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6042
6043         kvm_mmu_invlpg(vcpu, exit_qualification);
6044         return kvm_skip_emulated_instruction(vcpu);
6045 }
6046
6047 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6048 {
6049         int err;
6050
6051         err = kvm_rdpmc(vcpu);
6052         return kvm_complete_insn_gp(vcpu, err);
6053 }
6054
6055 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6056 {
6057         return kvm_emulate_wbinvd(vcpu);
6058 }
6059
6060 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6061 {
6062         u64 new_bv = kvm_read_edx_eax(vcpu);
6063         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6064
6065         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6066                 return kvm_skip_emulated_instruction(vcpu);
6067         return 1;
6068 }
6069
6070 static int handle_xsaves(struct kvm_vcpu *vcpu)
6071 {
6072         kvm_skip_emulated_instruction(vcpu);
6073         WARN(1, "this should never happen\n");
6074         return 1;
6075 }
6076
6077 static int handle_xrstors(struct kvm_vcpu *vcpu)
6078 {
6079         kvm_skip_emulated_instruction(vcpu);
6080         WARN(1, "this should never happen\n");
6081         return 1;
6082 }
6083
6084 static int handle_apic_access(struct kvm_vcpu *vcpu)
6085 {
6086         if (likely(fasteoi)) {
6087                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6088                 int access_type, offset;
6089
6090                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6091                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6092                 /*
6093                  * Sane guest uses MOV to write EOI, with written value
6094                  * not cared. So make a short-circuit here by avoiding
6095                  * heavy instruction emulation.
6096                  */
6097                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6098                     (offset == APIC_EOI)) {
6099                         kvm_lapic_set_eoi(vcpu);
6100                         return kvm_skip_emulated_instruction(vcpu);
6101                 }
6102         }
6103         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6104 }
6105
6106 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6107 {
6108         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6109         int vector = exit_qualification & 0xff;
6110
6111         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6112         kvm_apic_set_eoi_accelerated(vcpu, vector);
6113         return 1;
6114 }
6115
6116 static int handle_apic_write(struct kvm_vcpu *vcpu)
6117 {
6118         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6119         u32 offset = exit_qualification & 0xfff;
6120
6121         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6122         kvm_apic_write_nodecode(vcpu, offset);
6123         return 1;
6124 }
6125
6126 static int handle_task_switch(struct kvm_vcpu *vcpu)
6127 {
6128         struct vcpu_vmx *vmx = to_vmx(vcpu);
6129         unsigned long exit_qualification;
6130         bool has_error_code = false;
6131         u32 error_code = 0;
6132         u16 tss_selector;
6133         int reason, type, idt_v, idt_index;
6134
6135         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6136         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6137         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6138
6139         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6140
6141         reason = (u32)exit_qualification >> 30;
6142         if (reason == TASK_SWITCH_GATE && idt_v) {
6143                 switch (type) {
6144                 case INTR_TYPE_NMI_INTR:
6145                         vcpu->arch.nmi_injected = false;
6146                         vmx_set_nmi_mask(vcpu, true);
6147                         break;
6148                 case INTR_TYPE_EXT_INTR:
6149                 case INTR_TYPE_SOFT_INTR:
6150                         kvm_clear_interrupt_queue(vcpu);
6151                         break;
6152                 case INTR_TYPE_HARD_EXCEPTION:
6153                         if (vmx->idt_vectoring_info &
6154                             VECTORING_INFO_DELIVER_CODE_MASK) {
6155                                 has_error_code = true;
6156                                 error_code =
6157                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6158                         }
6159                         /* fall through */
6160                 case INTR_TYPE_SOFT_EXCEPTION:
6161                         kvm_clear_exception_queue(vcpu);
6162                         break;
6163                 default:
6164                         break;
6165                 }
6166         }
6167         tss_selector = exit_qualification;
6168
6169         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6170                        type != INTR_TYPE_EXT_INTR &&
6171                        type != INTR_TYPE_NMI_INTR))
6172                 skip_emulated_instruction(vcpu);
6173
6174         if (kvm_task_switch(vcpu, tss_selector,
6175                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6176                             has_error_code, error_code) == EMULATE_FAIL) {
6177                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6178                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6179                 vcpu->run->internal.ndata = 0;
6180                 return 0;
6181         }
6182
6183         /*
6184          * TODO: What about debug traps on tss switch?
6185          *       Are we supposed to inject them and update dr6?
6186          */
6187
6188         return 1;
6189 }
6190
6191 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6192 {
6193         unsigned long exit_qualification;
6194         gpa_t gpa;
6195         u32 error_code;
6196
6197         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6198
6199         if (is_guest_mode(vcpu)
6200             && !(exit_qualification & EPT_VIOLATION_GVA_TRANSLATED)) {
6201                 /*
6202                  * Fix up exit_qualification according to whether guest
6203                  * page table accesses are reads or writes.
6204                  */
6205                 u64 eptp = nested_ept_get_cr3(vcpu);
6206                 if (!(eptp & VMX_EPT_AD_ENABLE_BIT))
6207                         exit_qualification &= ~EPT_VIOLATION_ACC_WRITE;
6208         }
6209
6210         /*
6211          * EPT violation happened while executing iret from NMI,
6212          * "blocked by NMI" bit has to be set before next VM entry.
6213          * There are errata that may cause this bit to not be set:
6214          * AAK134, BY25.
6215          */
6216         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6217                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6218                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6219
6220         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6221         trace_kvm_page_fault(gpa, exit_qualification);
6222
6223         /* Is it a read fault? */
6224         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6225                      ? PFERR_USER_MASK : 0;
6226         /* Is it a write fault? */
6227         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6228                       ? PFERR_WRITE_MASK : 0;
6229         /* Is it a fetch fault? */
6230         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6231                       ? PFERR_FETCH_MASK : 0;
6232         /* ept page table entry is present? */
6233         error_code |= (exit_qualification &
6234                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6235                         EPT_VIOLATION_EXECUTABLE))
6236                       ? PFERR_PRESENT_MASK : 0;
6237
6238         vcpu->arch.gpa_available = true;
6239         vcpu->arch.exit_qualification = exit_qualification;
6240
6241         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6242 }
6243
6244 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6245 {
6246         int ret;
6247         gpa_t gpa;
6248
6249         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6250         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6251                 trace_kvm_fast_mmio(gpa);
6252                 return kvm_skip_emulated_instruction(vcpu);
6253         }
6254
6255         ret = handle_mmio_page_fault(vcpu, gpa, true);
6256         vcpu->arch.gpa_available = true;
6257         if (likely(ret == RET_MMIO_PF_EMULATE))
6258                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6259                                               EMULATE_DONE;
6260
6261         if (unlikely(ret == RET_MMIO_PF_INVALID))
6262                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6263
6264         if (unlikely(ret == RET_MMIO_PF_RETRY))
6265                 return 1;
6266
6267         /* It is the real ept misconfig */
6268         WARN_ON(1);
6269
6270         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6271         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6272
6273         return 0;
6274 }
6275
6276 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6277 {
6278         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6279                         CPU_BASED_VIRTUAL_NMI_PENDING);
6280         ++vcpu->stat.nmi_window_exits;
6281         kvm_make_request(KVM_REQ_EVENT, vcpu);
6282
6283         return 1;
6284 }
6285
6286 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6287 {
6288         struct vcpu_vmx *vmx = to_vmx(vcpu);
6289         enum emulation_result err = EMULATE_DONE;
6290         int ret = 1;
6291         u32 cpu_exec_ctrl;
6292         bool intr_window_requested;
6293         unsigned count = 130;
6294
6295         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6296         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6297
6298         while (vmx->emulation_required && count-- != 0) {
6299                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6300                         return handle_interrupt_window(&vmx->vcpu);
6301
6302                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6303                         return 1;
6304
6305                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6306
6307                 if (err == EMULATE_USER_EXIT) {
6308                         ++vcpu->stat.mmio_exits;
6309                         ret = 0;
6310                         goto out;
6311                 }
6312
6313                 if (err != EMULATE_DONE) {
6314                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6315                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6316                         vcpu->run->internal.ndata = 0;
6317                         return 0;
6318                 }
6319
6320                 if (vcpu->arch.halt_request) {
6321                         vcpu->arch.halt_request = 0;
6322                         ret = kvm_vcpu_halt(vcpu);
6323                         goto out;
6324                 }
6325
6326                 if (signal_pending(current))
6327                         goto out;
6328                 if (need_resched())
6329                         schedule();
6330         }
6331
6332 out:
6333         return ret;
6334 }
6335
6336 static int __grow_ple_window(int val)
6337 {
6338         if (ple_window_grow < 1)
6339                 return ple_window;
6340
6341         val = min(val, ple_window_actual_max);
6342
6343         if (ple_window_grow < ple_window)
6344                 val *= ple_window_grow;
6345         else
6346                 val += ple_window_grow;
6347
6348         return val;
6349 }
6350
6351 static int __shrink_ple_window(int val, int modifier, int minimum)
6352 {
6353         if (modifier < 1)
6354                 return ple_window;
6355
6356         if (modifier < ple_window)
6357                 val /= modifier;
6358         else
6359                 val -= modifier;
6360
6361         return max(val, minimum);
6362 }
6363
6364 static void grow_ple_window(struct kvm_vcpu *vcpu)
6365 {
6366         struct vcpu_vmx *vmx = to_vmx(vcpu);
6367         int old = vmx->ple_window;
6368
6369         vmx->ple_window = __grow_ple_window(old);
6370
6371         if (vmx->ple_window != old)
6372                 vmx->ple_window_dirty = true;
6373
6374         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6375 }
6376
6377 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6378 {
6379         struct vcpu_vmx *vmx = to_vmx(vcpu);
6380         int old = vmx->ple_window;
6381
6382         vmx->ple_window = __shrink_ple_window(old,
6383                                               ple_window_shrink, ple_window);
6384
6385         if (vmx->ple_window != old)
6386                 vmx->ple_window_dirty = true;
6387
6388         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6389 }
6390
6391 /*
6392  * ple_window_actual_max is computed to be one grow_ple_window() below
6393  * ple_window_max. (See __grow_ple_window for the reason.)
6394  * This prevents overflows, because ple_window_max is int.
6395  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6396  * this process.
6397  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6398  */
6399 static void update_ple_window_actual_max(void)
6400 {
6401         ple_window_actual_max =
6402                         __shrink_ple_window(max(ple_window_max, ple_window),
6403                                             ple_window_grow, INT_MIN);
6404 }
6405
6406 /*
6407  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6408  */
6409 static void wakeup_handler(void)
6410 {
6411         struct kvm_vcpu *vcpu;
6412         int cpu = smp_processor_id();
6413
6414         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6415         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6416                         blocked_vcpu_list) {
6417                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6418
6419                 if (pi_test_on(pi_desc) == 1)
6420                         kvm_vcpu_kick(vcpu);
6421         }
6422         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6423 }
6424
6425 void vmx_enable_tdp(void)
6426 {
6427         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6428                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6429                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6430                 0ull, VMX_EPT_EXECUTABLE_MASK,
6431                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6432                 enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
6433
6434         ept_set_mmio_spte_mask();
6435         kvm_enable_tdp();
6436 }
6437
6438 static __init int hardware_setup(void)
6439 {
6440         int r = -ENOMEM, i, msr;
6441
6442         rdmsrl_safe(MSR_EFER, &host_efer);
6443
6444         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6445                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6446
6447         for (i = 0; i < VMX_BITMAP_NR; i++) {
6448                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6449                 if (!vmx_bitmap[i])
6450                         goto out;
6451         }
6452
6453         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6454         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6455         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6456
6457         /*
6458          * Allow direct access to the PC debug port (it is often used for I/O
6459          * delays, but the vmexits simply slow things down).
6460          */
6461         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6462         clear_bit(0x80, vmx_io_bitmap_a);
6463
6464         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6465
6466         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6467         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6468
6469         if (setup_vmcs_config(&vmcs_config) < 0) {
6470                 r = -EIO;
6471                 goto out;
6472         }
6473
6474         if (boot_cpu_has(X86_FEATURE_NX))
6475                 kvm_enable_efer_bits(EFER_NX);
6476
6477         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6478                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6479                 enable_vpid = 0;
6480
6481         if (!cpu_has_vmx_shadow_vmcs())
6482                 enable_shadow_vmcs = 0;
6483         if (enable_shadow_vmcs)
6484                 init_vmcs_shadow_fields();
6485
6486         if (!cpu_has_vmx_ept() ||
6487             !cpu_has_vmx_ept_4levels()) {
6488                 enable_ept = 0;
6489                 enable_unrestricted_guest = 0;
6490                 enable_ept_ad_bits = 0;
6491         }
6492
6493         if (!cpu_has_vmx_ept_ad_bits())
6494                 enable_ept_ad_bits = 0;
6495
6496         if (!cpu_has_vmx_unrestricted_guest())
6497                 enable_unrestricted_guest = 0;
6498
6499         if (!cpu_has_vmx_flexpriority())
6500                 flexpriority_enabled = 0;
6501
6502         /*
6503          * set_apic_access_page_addr() is used to reload apic access
6504          * page upon invalidation.  No need to do anything if not
6505          * using the APIC_ACCESS_ADDR VMCS field.
6506          */
6507         if (!flexpriority_enabled)
6508                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6509
6510         if (!cpu_has_vmx_tpr_shadow())
6511                 kvm_x86_ops->update_cr8_intercept = NULL;
6512
6513         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6514                 kvm_disable_largepages();
6515
6516         if (!cpu_has_vmx_ple())
6517                 ple_gap = 0;
6518
6519         if (!cpu_has_vmx_apicv()) {
6520                 enable_apicv = 0;
6521                 kvm_x86_ops->sync_pir_to_irr = NULL;
6522         }
6523
6524         if (cpu_has_vmx_tsc_scaling()) {
6525                 kvm_has_tsc_control = true;
6526                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6527                 kvm_tsc_scaling_ratio_frac_bits = 48;
6528         }
6529
6530         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6531         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6532         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6533         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6534         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6535         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6536         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6537
6538         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6539                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6540         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6541                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6542         memcpy(vmx_msr_bitmap_legacy_x2apic,
6543                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6544         memcpy(vmx_msr_bitmap_longmode_x2apic,
6545                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6546
6547         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6548
6549         for (msr = 0x800; msr <= 0x8ff; msr++) {
6550                 if (msr == 0x839 /* TMCCT */)
6551                         continue;
6552                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6553         }
6554
6555         /*
6556          * TPR reads and writes can be virtualized even if virtual interrupt
6557          * delivery is not in use.
6558          */
6559         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6560         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6561
6562         /* EOI */
6563         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6564         /* SELF-IPI */
6565         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6566
6567         if (enable_ept)
6568                 vmx_enable_tdp();
6569         else
6570                 kvm_disable_tdp();
6571
6572         update_ple_window_actual_max();
6573
6574         /*
6575          * Only enable PML when hardware supports PML feature, and both EPT
6576          * and EPT A/D bit features are enabled -- PML depends on them to work.
6577          */
6578         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6579                 enable_pml = 0;
6580
6581         if (!enable_pml) {
6582                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6583                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6584                 kvm_x86_ops->flush_log_dirty = NULL;
6585                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6586         }
6587
6588         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6589                 u64 vmx_msr;
6590
6591                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6592                 cpu_preemption_timer_multi =
6593                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6594         } else {
6595                 kvm_x86_ops->set_hv_timer = NULL;
6596                 kvm_x86_ops->cancel_hv_timer = NULL;
6597         }
6598
6599         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6600
6601         kvm_mce_cap_supported |= MCG_LMCE_P;
6602
6603         return alloc_kvm_area();
6604
6605 out:
6606         for (i = 0; i < VMX_BITMAP_NR; i++)
6607                 free_page((unsigned long)vmx_bitmap[i]);
6608
6609     return r;
6610 }
6611
6612 static __exit void hardware_unsetup(void)
6613 {
6614         int i;
6615
6616         for (i = 0; i < VMX_BITMAP_NR; i++)
6617                 free_page((unsigned long)vmx_bitmap[i]);
6618
6619         free_kvm_area();
6620 }
6621
6622 /*
6623  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6624  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6625  */
6626 static int handle_pause(struct kvm_vcpu *vcpu)
6627 {
6628         if (ple_gap)
6629                 grow_ple_window(vcpu);
6630
6631         kvm_vcpu_on_spin(vcpu);
6632         return kvm_skip_emulated_instruction(vcpu);
6633 }
6634
6635 static int handle_nop(struct kvm_vcpu *vcpu)
6636 {
6637         return kvm_skip_emulated_instruction(vcpu);
6638 }
6639
6640 static int handle_mwait(struct kvm_vcpu *vcpu)
6641 {
6642         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6643         return handle_nop(vcpu);
6644 }
6645
6646 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6647 {
6648         return 1;
6649 }
6650
6651 static int handle_monitor(struct kvm_vcpu *vcpu)
6652 {
6653         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6654         return handle_nop(vcpu);
6655 }
6656
6657 /*
6658  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6659  * We could reuse a single VMCS for all the L2 guests, but we also want the
6660  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6661  * allows keeping them loaded on the processor, and in the future will allow
6662  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6663  * every entry if they never change.
6664  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6665  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6666  *
6667  * The following functions allocate and free a vmcs02 in this pool.
6668  */
6669
6670 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6671 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6672 {
6673         struct vmcs02_list *item;
6674         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6675                 if (item->vmptr == vmx->nested.current_vmptr) {
6676                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6677                         return &item->vmcs02;
6678                 }
6679
6680         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6681                 /* Recycle the least recently used VMCS. */
6682                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6683                                        struct vmcs02_list, list);
6684                 item->vmptr = vmx->nested.current_vmptr;
6685                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6686                 return &item->vmcs02;
6687         }
6688
6689         /* Create a new VMCS */
6690         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6691         if (!item)
6692                 return NULL;
6693         item->vmcs02.vmcs = alloc_vmcs();
6694         item->vmcs02.shadow_vmcs = NULL;
6695         if (!item->vmcs02.vmcs) {
6696                 kfree(item);
6697                 return NULL;
6698         }
6699         loaded_vmcs_init(&item->vmcs02);
6700         item->vmptr = vmx->nested.current_vmptr;
6701         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6702         vmx->nested.vmcs02_num++;
6703         return &item->vmcs02;
6704 }
6705
6706 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6707 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6708 {
6709         struct vmcs02_list *item;
6710         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6711                 if (item->vmptr == vmptr) {
6712                         free_loaded_vmcs(&item->vmcs02);
6713                         list_del(&item->list);
6714                         kfree(item);
6715                         vmx->nested.vmcs02_num--;
6716                         return;
6717                 }
6718 }
6719
6720 /*
6721  * Free all VMCSs saved for this vcpu, except the one pointed by
6722  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6723  * must be &vmx->vmcs01.
6724  */
6725 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6726 {
6727         struct vmcs02_list *item, *n;
6728
6729         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6730         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6731                 /*
6732                  * Something will leak if the above WARN triggers.  Better than
6733                  * a use-after-free.
6734                  */
6735                 if (vmx->loaded_vmcs == &item->vmcs02)
6736                         continue;
6737
6738                 free_loaded_vmcs(&item->vmcs02);
6739                 list_del(&item->list);
6740                 kfree(item);
6741                 vmx->nested.vmcs02_num--;
6742         }
6743 }
6744
6745 /*
6746  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6747  * set the success or error code of an emulated VMX instruction, as specified
6748  * by Vol 2B, VMX Instruction Reference, "Conventions".
6749  */
6750 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6751 {
6752         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6753                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6754                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6755 }
6756
6757 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6758 {
6759         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6760                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6761                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6762                         | X86_EFLAGS_CF);
6763 }
6764
6765 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6766                                         u32 vm_instruction_error)
6767 {
6768         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6769                 /*
6770                  * failValid writes the error number to the current VMCS, which
6771                  * can't be done there isn't a current VMCS.
6772                  */
6773                 nested_vmx_failInvalid(vcpu);
6774                 return;
6775         }
6776         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6777                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6778                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6779                         | X86_EFLAGS_ZF);
6780         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6781         /*
6782          * We don't need to force a shadow sync because
6783          * VM_INSTRUCTION_ERROR is not shadowed
6784          */
6785 }
6786
6787 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6788 {
6789         /* TODO: not to reset guest simply here. */
6790         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6791         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6792 }
6793
6794 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6795 {
6796         struct vcpu_vmx *vmx =
6797                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6798
6799         vmx->nested.preemption_timer_expired = true;
6800         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6801         kvm_vcpu_kick(&vmx->vcpu);
6802
6803         return HRTIMER_NORESTART;
6804 }
6805
6806 /*
6807  * Decode the memory-address operand of a vmx instruction, as recorded on an
6808  * exit caused by such an instruction (run by a guest hypervisor).
6809  * On success, returns 0. When the operand is invalid, returns 1 and throws
6810  * #UD or #GP.
6811  */
6812 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6813                                  unsigned long exit_qualification,
6814                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6815 {
6816         gva_t off;
6817         bool exn;
6818         struct kvm_segment s;
6819
6820         /*
6821          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6822          * Execution", on an exit, vmx_instruction_info holds most of the
6823          * addressing components of the operand. Only the displacement part
6824          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6825          * For how an actual address is calculated from all these components,
6826          * refer to Vol. 1, "Operand Addressing".
6827          */
6828         int  scaling = vmx_instruction_info & 3;
6829         int  addr_size = (vmx_instruction_info >> 7) & 7;
6830         bool is_reg = vmx_instruction_info & (1u << 10);
6831         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6832         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6833         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6834         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6835         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6836
6837         if (is_reg) {
6838                 kvm_queue_exception(vcpu, UD_VECTOR);
6839                 return 1;
6840         }
6841
6842         /* Addr = segment_base + offset */
6843         /* offset = base + [index * scale] + displacement */
6844         off = exit_qualification; /* holds the displacement */
6845         if (base_is_valid)
6846                 off += kvm_register_read(vcpu, base_reg);
6847         if (index_is_valid)
6848                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6849         vmx_get_segment(vcpu, &s, seg_reg);
6850         *ret = s.base + off;
6851
6852         if (addr_size == 1) /* 32 bit */
6853                 *ret &= 0xffffffff;
6854
6855         /* Checks for #GP/#SS exceptions. */
6856         exn = false;
6857         if (is_long_mode(vcpu)) {
6858                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6859                  * non-canonical form. This is the only check on the memory
6860                  * destination for long mode!
6861                  */
6862                 exn = is_noncanonical_address(*ret);
6863         } else if (is_protmode(vcpu)) {
6864                 /* Protected mode: apply checks for segment validity in the
6865                  * following order:
6866                  * - segment type check (#GP(0) may be thrown)
6867                  * - usability check (#GP(0)/#SS(0))
6868                  * - limit check (#GP(0)/#SS(0))
6869                  */
6870                 if (wr)
6871                         /* #GP(0) if the destination operand is located in a
6872                          * read-only data segment or any code segment.
6873                          */
6874                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6875                 else
6876                         /* #GP(0) if the source operand is located in an
6877                          * execute-only code segment
6878                          */
6879                         exn = ((s.type & 0xa) == 8);
6880                 if (exn) {
6881                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6882                         return 1;
6883                 }
6884                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6885                  */
6886                 exn = (s.unusable != 0);
6887                 /* Protected mode: #GP(0)/#SS(0) if the memory
6888                  * operand is outside the segment limit.
6889                  */
6890                 exn = exn || (off + sizeof(u64) > s.limit);
6891         }
6892         if (exn) {
6893                 kvm_queue_exception_e(vcpu,
6894                                       seg_reg == VCPU_SREG_SS ?
6895                                                 SS_VECTOR : GP_VECTOR,
6896                                       0);
6897                 return 1;
6898         }
6899
6900         return 0;
6901 }
6902
6903 /*
6904  * This function performs the various checks including
6905  * - if it's 4KB aligned
6906  * - No bits beyond the physical address width are set
6907  * - Returns 0 on success or else 1
6908  * (Intel SDM Section 30.3)
6909  */
6910 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6911                                   gpa_t *vmpointer)
6912 {
6913         gva_t gva;
6914         gpa_t vmptr;
6915         struct x86_exception e;
6916         struct page *page;
6917         struct vcpu_vmx *vmx = to_vmx(vcpu);
6918         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6919
6920         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6921                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6922                 return 1;
6923
6924         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6925                                 sizeof(vmptr), &e)) {
6926                 kvm_inject_page_fault(vcpu, &e);
6927                 return 1;
6928         }
6929
6930         switch (exit_reason) {
6931         case EXIT_REASON_VMON:
6932                 /*
6933                  * SDM 3: 24.11.5
6934                  * The first 4 bytes of VMXON region contain the supported
6935                  * VMCS revision identifier
6936                  *
6937                  * Note - IA32_VMX_BASIC[48] will never be 1
6938                  * for the nested case;
6939                  * which replaces physical address width with 32
6940                  *
6941                  */
6942                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6943                         nested_vmx_failInvalid(vcpu);
6944                         return kvm_skip_emulated_instruction(vcpu);
6945                 }
6946
6947                 page = nested_get_page(vcpu, vmptr);
6948                 if (page == NULL) {
6949                         nested_vmx_failInvalid(vcpu);
6950                         return kvm_skip_emulated_instruction(vcpu);
6951                 }
6952                 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
6953                         kunmap(page);
6954                         nested_release_page_clean(page);
6955                         nested_vmx_failInvalid(vcpu);
6956                         return kvm_skip_emulated_instruction(vcpu);
6957                 }
6958                 kunmap(page);
6959                 nested_release_page_clean(page);
6960                 vmx->nested.vmxon_ptr = vmptr;
6961                 break;
6962         case EXIT_REASON_VMCLEAR:
6963                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6964                         nested_vmx_failValid(vcpu,
6965                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6966                         return kvm_skip_emulated_instruction(vcpu);
6967                 }
6968
6969                 if (vmptr == vmx->nested.vmxon_ptr) {
6970                         nested_vmx_failValid(vcpu,
6971                                              VMXERR_VMCLEAR_VMXON_POINTER);
6972                         return kvm_skip_emulated_instruction(vcpu);
6973                 }
6974                 break;
6975         case EXIT_REASON_VMPTRLD:
6976                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6977                         nested_vmx_failValid(vcpu,
6978                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6979                         return kvm_skip_emulated_instruction(vcpu);
6980                 }
6981
6982                 if (vmptr == vmx->nested.vmxon_ptr) {
6983                         nested_vmx_failValid(vcpu,
6984                                              VMXERR_VMPTRLD_VMXON_POINTER);
6985                         return kvm_skip_emulated_instruction(vcpu);
6986                 }
6987                 break;
6988         default:
6989                 return 1; /* shouldn't happen */
6990         }
6991
6992         if (vmpointer)
6993                 *vmpointer = vmptr;
6994         return 0;
6995 }
6996
6997 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6998 {
6999         struct vcpu_vmx *vmx = to_vmx(vcpu);
7000         struct vmcs *shadow_vmcs;
7001
7002         if (cpu_has_vmx_msr_bitmap()) {
7003                 vmx->nested.msr_bitmap =
7004                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7005                 if (!vmx->nested.msr_bitmap)
7006                         goto out_msr_bitmap;
7007         }
7008
7009         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7010         if (!vmx->nested.cached_vmcs12)
7011                 goto out_cached_vmcs12;
7012
7013         if (enable_shadow_vmcs) {
7014                 shadow_vmcs = alloc_vmcs();
7015                 if (!shadow_vmcs)
7016                         goto out_shadow_vmcs;
7017                 /* mark vmcs as shadow */
7018                 shadow_vmcs->revision_id |= (1u << 31);
7019                 /* init shadow vmcs */
7020                 vmcs_clear(shadow_vmcs);
7021                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7022         }
7023
7024         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7025         vmx->nested.vmcs02_num = 0;
7026
7027         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7028                      HRTIMER_MODE_REL_PINNED);
7029         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7030
7031         vmx->nested.vmxon = true;
7032         return 0;
7033
7034 out_shadow_vmcs:
7035         kfree(vmx->nested.cached_vmcs12);
7036
7037 out_cached_vmcs12:
7038         free_page((unsigned long)vmx->nested.msr_bitmap);
7039
7040 out_msr_bitmap:
7041         return -ENOMEM;
7042 }
7043
7044 /*
7045  * Emulate the VMXON instruction.
7046  * Currently, we just remember that VMX is active, and do not save or even
7047  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7048  * do not currently need to store anything in that guest-allocated memory
7049  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7050  * argument is different from the VMXON pointer (which the spec says they do).
7051  */
7052 static int handle_vmon(struct kvm_vcpu *vcpu)
7053 {
7054         int ret;
7055         struct kvm_segment cs;
7056         struct vcpu_vmx *vmx = to_vmx(vcpu);
7057         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7058                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7059
7060         /* The Intel VMX Instruction Reference lists a bunch of bits that
7061          * are prerequisite to running VMXON, most notably cr4.VMXE must be
7062          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7063          * Otherwise, we should fail with #UD. We test these now:
7064          */
7065         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7066             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7067             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7068                 kvm_queue_exception(vcpu, UD_VECTOR);
7069                 return 1;
7070         }
7071
7072         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7073         if (is_long_mode(vcpu) && !cs.l) {
7074                 kvm_queue_exception(vcpu, UD_VECTOR);
7075                 return 1;
7076         }
7077
7078         if (vmx_get_cpl(vcpu)) {
7079                 kvm_inject_gp(vcpu, 0);
7080                 return 1;
7081         }
7082
7083         if (vmx->nested.vmxon) {
7084                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7085                 return kvm_skip_emulated_instruction(vcpu);
7086         }
7087
7088         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7089                         != VMXON_NEEDED_FEATURES) {
7090                 kvm_inject_gp(vcpu, 0);
7091                 return 1;
7092         }
7093
7094         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7095                 return 1;
7096  
7097         ret = enter_vmx_operation(vcpu);
7098         if (ret)
7099                 return ret;
7100
7101         nested_vmx_succeed(vcpu);
7102         return kvm_skip_emulated_instruction(vcpu);
7103 }
7104
7105 /*
7106  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7107  * for running VMX instructions (except VMXON, whose prerequisites are
7108  * slightly different). It also specifies what exception to inject otherwise.
7109  */
7110 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7111 {
7112         struct kvm_segment cs;
7113         struct vcpu_vmx *vmx = to_vmx(vcpu);
7114
7115         if (!vmx->nested.vmxon) {
7116                 kvm_queue_exception(vcpu, UD_VECTOR);
7117                 return 0;
7118         }
7119
7120         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7121         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7122             (is_long_mode(vcpu) && !cs.l)) {
7123                 kvm_queue_exception(vcpu, UD_VECTOR);
7124                 return 0;
7125         }
7126
7127         if (vmx_get_cpl(vcpu)) {
7128                 kvm_inject_gp(vcpu, 0);
7129                 return 0;
7130         }
7131
7132         return 1;
7133 }
7134
7135 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7136 {
7137         if (vmx->nested.current_vmptr == -1ull)
7138                 return;
7139
7140         /* current_vmptr and current_vmcs12 are always set/reset together */
7141         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7142                 return;
7143
7144         if (enable_shadow_vmcs) {
7145                 /* copy to memory all shadowed fields in case
7146                    they were modified */
7147                 copy_shadow_to_vmcs12(vmx);
7148                 vmx->nested.sync_shadow_vmcs = false;
7149                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7150                                 SECONDARY_EXEC_SHADOW_VMCS);
7151                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7152         }
7153         vmx->nested.posted_intr_nv = -1;
7154
7155         /* Flush VMCS12 to guest memory */
7156         memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7157                VMCS12_SIZE);
7158
7159         kunmap(vmx->nested.current_vmcs12_page);
7160         nested_release_page(vmx->nested.current_vmcs12_page);
7161         vmx->nested.current_vmptr = -1ull;
7162         vmx->nested.current_vmcs12 = NULL;
7163 }
7164
7165 /*
7166  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7167  * just stops using VMX.
7168  */
7169 static void free_nested(struct vcpu_vmx *vmx)
7170 {
7171         if (!vmx->nested.vmxon)
7172                 return;
7173
7174         vmx->nested.vmxon = false;
7175         free_vpid(vmx->nested.vpid02);
7176         nested_release_vmcs12(vmx);
7177         if (vmx->nested.msr_bitmap) {
7178                 free_page((unsigned long)vmx->nested.msr_bitmap);
7179                 vmx->nested.msr_bitmap = NULL;
7180         }
7181         if (enable_shadow_vmcs) {
7182                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7183                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7184                 vmx->vmcs01.shadow_vmcs = NULL;
7185         }
7186         kfree(vmx->nested.cached_vmcs12);
7187         /* Unpin physical memory we referred to in current vmcs02 */
7188         if (vmx->nested.apic_access_page) {
7189                 nested_release_page(vmx->nested.apic_access_page);
7190                 vmx->nested.apic_access_page = NULL;
7191         }
7192         if (vmx->nested.virtual_apic_page) {
7193                 nested_release_page(vmx->nested.virtual_apic_page);
7194                 vmx->nested.virtual_apic_page = NULL;
7195         }
7196         if (vmx->nested.pi_desc_page) {
7197                 kunmap(vmx->nested.pi_desc_page);
7198                 nested_release_page(vmx->nested.pi_desc_page);
7199                 vmx->nested.pi_desc_page = NULL;
7200                 vmx->nested.pi_desc = NULL;
7201         }
7202
7203         nested_free_all_saved_vmcss(vmx);
7204 }
7205
7206 /* Emulate the VMXOFF instruction */
7207 static int handle_vmoff(struct kvm_vcpu *vcpu)
7208 {
7209         if (!nested_vmx_check_permission(vcpu))
7210                 return 1;
7211         free_nested(to_vmx(vcpu));
7212         nested_vmx_succeed(vcpu);
7213         return kvm_skip_emulated_instruction(vcpu);
7214 }
7215
7216 /* Emulate the VMCLEAR instruction */
7217 static int handle_vmclear(struct kvm_vcpu *vcpu)
7218 {
7219         struct vcpu_vmx *vmx = to_vmx(vcpu);
7220         u32 zero = 0;
7221         gpa_t vmptr;
7222
7223         if (!nested_vmx_check_permission(vcpu))
7224                 return 1;
7225
7226         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7227                 return 1;
7228
7229         if (vmptr == vmx->nested.current_vmptr)
7230                 nested_release_vmcs12(vmx);
7231
7232         kvm_vcpu_write_guest(vcpu,
7233                         vmptr + offsetof(struct vmcs12, launch_state),
7234                         &zero, sizeof(zero));
7235
7236         nested_free_vmcs02(vmx, vmptr);
7237
7238         nested_vmx_succeed(vcpu);
7239         return kvm_skip_emulated_instruction(vcpu);
7240 }
7241
7242 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7243
7244 /* Emulate the VMLAUNCH instruction */
7245 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7246 {
7247         return nested_vmx_run(vcpu, true);
7248 }
7249
7250 /* Emulate the VMRESUME instruction */
7251 static int handle_vmresume(struct kvm_vcpu *vcpu)
7252 {
7253
7254         return nested_vmx_run(vcpu, false);
7255 }
7256
7257 enum vmcs_field_type {
7258         VMCS_FIELD_TYPE_U16 = 0,
7259         VMCS_FIELD_TYPE_U64 = 1,
7260         VMCS_FIELD_TYPE_U32 = 2,
7261         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7262 };
7263
7264 static inline int vmcs_field_type(unsigned long field)
7265 {
7266         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7267                 return VMCS_FIELD_TYPE_U32;
7268         return (field >> 13) & 0x3 ;
7269 }
7270
7271 static inline int vmcs_field_readonly(unsigned long field)
7272 {
7273         return (((field >> 10) & 0x3) == 1);
7274 }
7275
7276 /*
7277  * Read a vmcs12 field. Since these can have varying lengths and we return
7278  * one type, we chose the biggest type (u64) and zero-extend the return value
7279  * to that size. Note that the caller, handle_vmread, might need to use only
7280  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7281  * 64-bit fields are to be returned).
7282  */
7283 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7284                                   unsigned long field, u64 *ret)
7285 {
7286         short offset = vmcs_field_to_offset(field);
7287         char *p;
7288
7289         if (offset < 0)
7290                 return offset;
7291
7292         p = ((char *)(get_vmcs12(vcpu))) + offset;
7293
7294         switch (vmcs_field_type(field)) {
7295         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7296                 *ret = *((natural_width *)p);
7297                 return 0;
7298         case VMCS_FIELD_TYPE_U16:
7299                 *ret = *((u16 *)p);
7300                 return 0;
7301         case VMCS_FIELD_TYPE_U32:
7302                 *ret = *((u32 *)p);
7303                 return 0;
7304         case VMCS_FIELD_TYPE_U64:
7305                 *ret = *((u64 *)p);
7306                 return 0;
7307         default:
7308                 WARN_ON(1);
7309                 return -ENOENT;
7310         }
7311 }
7312
7313
7314 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7315                                    unsigned long field, u64 field_value){
7316         short offset = vmcs_field_to_offset(field);
7317         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7318         if (offset < 0)
7319                 return offset;
7320
7321         switch (vmcs_field_type(field)) {
7322         case VMCS_FIELD_TYPE_U16:
7323                 *(u16 *)p = field_value;
7324                 return 0;
7325         case VMCS_FIELD_TYPE_U32:
7326                 *(u32 *)p = field_value;
7327                 return 0;
7328         case VMCS_FIELD_TYPE_U64:
7329                 *(u64 *)p = field_value;
7330                 return 0;
7331         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7332                 *(natural_width *)p = field_value;
7333                 return 0;
7334         default:
7335                 WARN_ON(1);
7336                 return -ENOENT;
7337         }
7338
7339 }
7340
7341 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7342 {
7343         int i;
7344         unsigned long field;
7345         u64 field_value;
7346         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7347         const unsigned long *fields = shadow_read_write_fields;
7348         const int num_fields = max_shadow_read_write_fields;
7349
7350         preempt_disable();
7351
7352         vmcs_load(shadow_vmcs);
7353
7354         for (i = 0; i < num_fields; i++) {
7355                 field = fields[i];
7356                 switch (vmcs_field_type(field)) {
7357                 case VMCS_FIELD_TYPE_U16:
7358                         field_value = vmcs_read16(field);
7359                         break;
7360                 case VMCS_FIELD_TYPE_U32:
7361                         field_value = vmcs_read32(field);
7362                         break;
7363                 case VMCS_FIELD_TYPE_U64:
7364                         field_value = vmcs_read64(field);
7365                         break;
7366                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7367                         field_value = vmcs_readl(field);
7368                         break;
7369                 default:
7370                         WARN_ON(1);
7371                         continue;
7372                 }
7373                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7374         }
7375
7376         vmcs_clear(shadow_vmcs);
7377         vmcs_load(vmx->loaded_vmcs->vmcs);
7378
7379         preempt_enable();
7380 }
7381
7382 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7383 {
7384         const unsigned long *fields[] = {
7385                 shadow_read_write_fields,
7386                 shadow_read_only_fields
7387         };
7388         const int max_fields[] = {
7389                 max_shadow_read_write_fields,
7390                 max_shadow_read_only_fields
7391         };
7392         int i, q;
7393         unsigned long field;
7394         u64 field_value = 0;
7395         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7396
7397         vmcs_load(shadow_vmcs);
7398
7399         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7400                 for (i = 0; i < max_fields[q]; i++) {
7401                         field = fields[q][i];
7402                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7403
7404                         switch (vmcs_field_type(field)) {
7405                         case VMCS_FIELD_TYPE_U16:
7406                                 vmcs_write16(field, (u16)field_value);
7407                                 break;
7408                         case VMCS_FIELD_TYPE_U32:
7409                                 vmcs_write32(field, (u32)field_value);
7410                                 break;
7411                         case VMCS_FIELD_TYPE_U64:
7412                                 vmcs_write64(field, (u64)field_value);
7413                                 break;
7414                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7415                                 vmcs_writel(field, (long)field_value);
7416                                 break;
7417                         default:
7418                                 WARN_ON(1);
7419                                 break;
7420                         }
7421                 }
7422         }
7423
7424         vmcs_clear(shadow_vmcs);
7425         vmcs_load(vmx->loaded_vmcs->vmcs);
7426 }
7427
7428 /*
7429  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7430  * used before) all generate the same failure when it is missing.
7431  */
7432 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7433 {
7434         struct vcpu_vmx *vmx = to_vmx(vcpu);
7435         if (vmx->nested.current_vmptr == -1ull) {
7436                 nested_vmx_failInvalid(vcpu);
7437                 return 0;
7438         }
7439         return 1;
7440 }
7441
7442 static int handle_vmread(struct kvm_vcpu *vcpu)
7443 {
7444         unsigned long field;
7445         u64 field_value;
7446         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7447         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7448         gva_t gva = 0;
7449
7450         if (!nested_vmx_check_permission(vcpu))
7451                 return 1;
7452
7453         if (!nested_vmx_check_vmcs12(vcpu))
7454                 return kvm_skip_emulated_instruction(vcpu);
7455
7456         /* Decode instruction info and find the field to read */
7457         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7458         /* Read the field, zero-extended to a u64 field_value */
7459         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7460                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7461                 return kvm_skip_emulated_instruction(vcpu);
7462         }
7463         /*
7464          * Now copy part of this value to register or memory, as requested.
7465          * Note that the number of bits actually copied is 32 or 64 depending
7466          * on the guest's mode (32 or 64 bit), not on the given field's length.
7467          */
7468         if (vmx_instruction_info & (1u << 10)) {
7469                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7470                         field_value);
7471         } else {
7472                 if (get_vmx_mem_address(vcpu, exit_qualification,
7473                                 vmx_instruction_info, true, &gva))
7474                         return 1;
7475                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7476                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7477                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7478         }
7479
7480         nested_vmx_succeed(vcpu);
7481         return kvm_skip_emulated_instruction(vcpu);
7482 }
7483
7484
7485 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7486 {
7487         unsigned long field;
7488         gva_t gva;
7489         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7490         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7491         /* The value to write might be 32 or 64 bits, depending on L1's long
7492          * mode, and eventually we need to write that into a field of several
7493          * possible lengths. The code below first zero-extends the value to 64
7494          * bit (field_value), and then copies only the appropriate number of
7495          * bits into the vmcs12 field.
7496          */
7497         u64 field_value = 0;
7498         struct x86_exception e;
7499
7500         if (!nested_vmx_check_permission(vcpu))
7501                 return 1;
7502
7503         if (!nested_vmx_check_vmcs12(vcpu))
7504                 return kvm_skip_emulated_instruction(vcpu);
7505
7506         if (vmx_instruction_info & (1u << 10))
7507                 field_value = kvm_register_readl(vcpu,
7508                         (((vmx_instruction_info) >> 3) & 0xf));
7509         else {
7510                 if (get_vmx_mem_address(vcpu, exit_qualification,
7511                                 vmx_instruction_info, false, &gva))
7512                         return 1;
7513                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7514                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7515                         kvm_inject_page_fault(vcpu, &e);
7516                         return 1;
7517                 }
7518         }
7519
7520
7521         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7522         if (vmcs_field_readonly(field)) {
7523                 nested_vmx_failValid(vcpu,
7524                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7525                 return kvm_skip_emulated_instruction(vcpu);
7526         }
7527
7528         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7529                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7530                 return kvm_skip_emulated_instruction(vcpu);
7531         }
7532
7533         nested_vmx_succeed(vcpu);
7534         return kvm_skip_emulated_instruction(vcpu);
7535 }
7536
7537 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7538 {
7539         vmx->nested.current_vmptr = vmptr;
7540         if (enable_shadow_vmcs) {
7541                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7542                               SECONDARY_EXEC_SHADOW_VMCS);
7543                 vmcs_write64(VMCS_LINK_POINTER,
7544                              __pa(vmx->vmcs01.shadow_vmcs));
7545                 vmx->nested.sync_shadow_vmcs = true;
7546         }
7547 }
7548
7549 /* Emulate the VMPTRLD instruction */
7550 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7551 {
7552         struct vcpu_vmx *vmx = to_vmx(vcpu);
7553         gpa_t vmptr;
7554
7555         if (!nested_vmx_check_permission(vcpu))
7556                 return 1;
7557
7558         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7559                 return 1;
7560
7561         if (vmx->nested.current_vmptr != vmptr) {
7562                 struct vmcs12 *new_vmcs12;
7563                 struct page *page;
7564                 page = nested_get_page(vcpu, vmptr);
7565                 if (page == NULL) {
7566                         nested_vmx_failInvalid(vcpu);
7567                         return kvm_skip_emulated_instruction(vcpu);
7568                 }
7569                 new_vmcs12 = kmap(page);
7570                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7571                         kunmap(page);
7572                         nested_release_page_clean(page);
7573                         nested_vmx_failValid(vcpu,
7574                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7575                         return kvm_skip_emulated_instruction(vcpu);
7576                 }
7577
7578                 nested_release_vmcs12(vmx);
7579                 vmx->nested.current_vmcs12 = new_vmcs12;
7580                 vmx->nested.current_vmcs12_page = page;
7581                 /*
7582                  * Load VMCS12 from guest memory since it is not already
7583                  * cached.
7584                  */
7585                 memcpy(vmx->nested.cached_vmcs12,
7586                        vmx->nested.current_vmcs12, VMCS12_SIZE);
7587                 set_current_vmptr(vmx, vmptr);
7588         }
7589
7590         nested_vmx_succeed(vcpu);
7591         return kvm_skip_emulated_instruction(vcpu);
7592 }
7593
7594 /* Emulate the VMPTRST instruction */
7595 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7596 {
7597         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7598         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7599         gva_t vmcs_gva;
7600         struct x86_exception e;
7601
7602         if (!nested_vmx_check_permission(vcpu))
7603                 return 1;
7604
7605         if (get_vmx_mem_address(vcpu, exit_qualification,
7606                         vmx_instruction_info, true, &vmcs_gva))
7607                 return 1;
7608         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7609         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7610                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7611                                  sizeof(u64), &e)) {
7612                 kvm_inject_page_fault(vcpu, &e);
7613                 return 1;
7614         }
7615         nested_vmx_succeed(vcpu);
7616         return kvm_skip_emulated_instruction(vcpu);
7617 }
7618
7619 /* Emulate the INVEPT instruction */
7620 static int handle_invept(struct kvm_vcpu *vcpu)
7621 {
7622         struct vcpu_vmx *vmx = to_vmx(vcpu);
7623         u32 vmx_instruction_info, types;
7624         unsigned long type;
7625         gva_t gva;
7626         struct x86_exception e;
7627         struct {
7628                 u64 eptp, gpa;
7629         } operand;
7630
7631         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7632               SECONDARY_EXEC_ENABLE_EPT) ||
7633             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7634                 kvm_queue_exception(vcpu, UD_VECTOR);
7635                 return 1;
7636         }
7637
7638         if (!nested_vmx_check_permission(vcpu))
7639                 return 1;
7640
7641         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7642                 kvm_queue_exception(vcpu, UD_VECTOR);
7643                 return 1;
7644         }
7645
7646         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7647         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7648
7649         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7650
7651         if (type >= 32 || !(types & (1 << type))) {
7652                 nested_vmx_failValid(vcpu,
7653                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7654                 return kvm_skip_emulated_instruction(vcpu);
7655         }
7656
7657         /* According to the Intel VMX instruction reference, the memory
7658          * operand is read even if it isn't needed (e.g., for type==global)
7659          */
7660         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7661                         vmx_instruction_info, false, &gva))
7662                 return 1;
7663         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7664                                 sizeof(operand), &e)) {
7665                 kvm_inject_page_fault(vcpu, &e);
7666                 return 1;
7667         }
7668
7669         switch (type) {
7670         case VMX_EPT_EXTENT_GLOBAL:
7671         /*
7672          * TODO: track mappings and invalidate
7673          * single context requests appropriately
7674          */
7675         case VMX_EPT_EXTENT_CONTEXT:
7676                 kvm_mmu_sync_roots(vcpu);
7677                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7678                 nested_vmx_succeed(vcpu);
7679                 break;
7680         default:
7681                 BUG_ON(1);
7682                 break;
7683         }
7684
7685         return kvm_skip_emulated_instruction(vcpu);
7686 }
7687
7688 static int handle_invvpid(struct kvm_vcpu *vcpu)
7689 {
7690         struct vcpu_vmx *vmx = to_vmx(vcpu);
7691         u32 vmx_instruction_info;
7692         unsigned long type, types;
7693         gva_t gva;
7694         struct x86_exception e;
7695         int vpid;
7696
7697         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7698               SECONDARY_EXEC_ENABLE_VPID) ||
7699                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7700                 kvm_queue_exception(vcpu, UD_VECTOR);
7701                 return 1;
7702         }
7703
7704         if (!nested_vmx_check_permission(vcpu))
7705                 return 1;
7706
7707         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7708         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7709
7710         types = (vmx->nested.nested_vmx_vpid_caps &
7711                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7712
7713         if (type >= 32 || !(types & (1 << type))) {
7714                 nested_vmx_failValid(vcpu,
7715                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7716                 return kvm_skip_emulated_instruction(vcpu);
7717         }
7718
7719         /* according to the intel vmx instruction reference, the memory
7720          * operand is read even if it isn't needed (e.g., for type==global)
7721          */
7722         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7723                         vmx_instruction_info, false, &gva))
7724                 return 1;
7725         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7726                                 sizeof(u32), &e)) {
7727                 kvm_inject_page_fault(vcpu, &e);
7728                 return 1;
7729         }
7730
7731         switch (type) {
7732         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7733         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7734         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7735                 if (!vpid) {
7736                         nested_vmx_failValid(vcpu,
7737                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7738                         return kvm_skip_emulated_instruction(vcpu);
7739                 }
7740                 break;
7741         case VMX_VPID_EXTENT_ALL_CONTEXT:
7742                 break;
7743         default:
7744                 WARN_ON_ONCE(1);
7745                 return kvm_skip_emulated_instruction(vcpu);
7746         }
7747
7748         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7749         nested_vmx_succeed(vcpu);
7750
7751         return kvm_skip_emulated_instruction(vcpu);
7752 }
7753
7754 static int handle_pml_full(struct kvm_vcpu *vcpu)
7755 {
7756         unsigned long exit_qualification;
7757
7758         trace_kvm_pml_full(vcpu->vcpu_id);
7759
7760         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7761
7762         /*
7763          * PML buffer FULL happened while executing iret from NMI,
7764          * "blocked by NMI" bit has to be set before next VM entry.
7765          */
7766         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7767                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7768                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7769                                 GUEST_INTR_STATE_NMI);
7770
7771         /*
7772          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7773          * here.., and there's no userspace involvement needed for PML.
7774          */
7775         return 1;
7776 }
7777
7778 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7779 {
7780         kvm_lapic_expired_hv_timer(vcpu);
7781         return 1;
7782 }
7783
7784 /*
7785  * The exit handlers return 1 if the exit was handled fully and guest execution
7786  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7787  * to be done to userspace and return 0.
7788  */
7789 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7790         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7791         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7792         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7793         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7794         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7795         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7796         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7797         [EXIT_REASON_CPUID]                   = handle_cpuid,
7798         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7799         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7800         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7801         [EXIT_REASON_HLT]                     = handle_halt,
7802         [EXIT_REASON_INVD]                    = handle_invd,
7803         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7804         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7805         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7806         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7807         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7808         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7809         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7810         [EXIT_REASON_VMREAD]                  = handle_vmread,
7811         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7812         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7813         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7814         [EXIT_REASON_VMON]                    = handle_vmon,
7815         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7816         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7817         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7818         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7819         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7820         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7821         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7822         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7823         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7824         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7825         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7826         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7827         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7828         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7829         [EXIT_REASON_INVEPT]                  = handle_invept,
7830         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7831         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7832         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7833         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7834         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7835 };
7836
7837 static const int kvm_vmx_max_exit_handlers =
7838         ARRAY_SIZE(kvm_vmx_exit_handlers);
7839
7840 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7841                                        struct vmcs12 *vmcs12)
7842 {
7843         unsigned long exit_qualification;
7844         gpa_t bitmap, last_bitmap;
7845         unsigned int port;
7846         int size;
7847         u8 b;
7848
7849         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7850                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7851
7852         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7853
7854         port = exit_qualification >> 16;
7855         size = (exit_qualification & 7) + 1;
7856
7857         last_bitmap = (gpa_t)-1;
7858         b = -1;
7859
7860         while (size > 0) {
7861                 if (port < 0x8000)
7862                         bitmap = vmcs12->io_bitmap_a;
7863                 else if (port < 0x10000)
7864                         bitmap = vmcs12->io_bitmap_b;
7865                 else
7866                         return true;
7867                 bitmap += (port & 0x7fff) / 8;
7868
7869                 if (last_bitmap != bitmap)
7870                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7871                                 return true;
7872                 if (b & (1 << (port & 7)))
7873                         return true;
7874
7875                 port++;
7876                 size--;
7877                 last_bitmap = bitmap;
7878         }
7879
7880         return false;
7881 }
7882
7883 /*
7884  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7885  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7886  * disinterest in the current event (read or write a specific MSR) by using an
7887  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7888  */
7889 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7890         struct vmcs12 *vmcs12, u32 exit_reason)
7891 {
7892         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7893         gpa_t bitmap;
7894
7895         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7896                 return true;
7897
7898         /*
7899          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7900          * for the four combinations of read/write and low/high MSR numbers.
7901          * First we need to figure out which of the four to use:
7902          */
7903         bitmap = vmcs12->msr_bitmap;
7904         if (exit_reason == EXIT_REASON_MSR_WRITE)
7905                 bitmap += 2048;
7906         if (msr_index >= 0xc0000000) {
7907                 msr_index -= 0xc0000000;
7908                 bitmap += 1024;
7909         }
7910
7911         /* Then read the msr_index'th bit from this bitmap: */
7912         if (msr_index < 1024*8) {
7913                 unsigned char b;
7914                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7915                         return true;
7916                 return 1 & (b >> (msr_index & 7));
7917         } else
7918                 return true; /* let L1 handle the wrong parameter */
7919 }
7920
7921 /*
7922  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7923  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7924  * intercept (via guest_host_mask etc.) the current event.
7925  */
7926 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7927         struct vmcs12 *vmcs12)
7928 {
7929         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7930         int cr = exit_qualification & 15;
7931         int reg = (exit_qualification >> 8) & 15;
7932         unsigned long val = kvm_register_readl(vcpu, reg);
7933
7934         switch ((exit_qualification >> 4) & 3) {
7935         case 0: /* mov to cr */
7936                 switch (cr) {
7937                 case 0:
7938                         if (vmcs12->cr0_guest_host_mask &
7939                             (val ^ vmcs12->cr0_read_shadow))
7940                                 return true;
7941                         break;
7942                 case 3:
7943                         if ((vmcs12->cr3_target_count >= 1 &&
7944                                         vmcs12->cr3_target_value0 == val) ||
7945                                 (vmcs12->cr3_target_count >= 2 &&
7946                                         vmcs12->cr3_target_value1 == val) ||
7947                                 (vmcs12->cr3_target_count >= 3 &&
7948                                         vmcs12->cr3_target_value2 == val) ||
7949                                 (vmcs12->cr3_target_count >= 4 &&
7950                                         vmcs12->cr3_target_value3 == val))
7951                                 return false;
7952                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7953                                 return true;
7954                         break;
7955                 case 4:
7956                         if (vmcs12->cr4_guest_host_mask &
7957                             (vmcs12->cr4_read_shadow ^ val))
7958                                 return true;
7959                         break;
7960                 case 8:
7961                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7962                                 return true;
7963                         break;
7964                 }
7965                 break;
7966         case 2: /* clts */
7967                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7968                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7969                         return true;
7970                 break;
7971         case 1: /* mov from cr */
7972                 switch (cr) {
7973                 case 3:
7974                         if (vmcs12->cpu_based_vm_exec_control &
7975                             CPU_BASED_CR3_STORE_EXITING)
7976                                 return true;
7977                         break;
7978                 case 8:
7979                         if (vmcs12->cpu_based_vm_exec_control &
7980                             CPU_BASED_CR8_STORE_EXITING)
7981                                 return true;
7982                         break;
7983                 }
7984                 break;
7985         case 3: /* lmsw */
7986                 /*
7987                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7988                  * cr0. Other attempted changes are ignored, with no exit.
7989                  */
7990                 if (vmcs12->cr0_guest_host_mask & 0xe &
7991                     (val ^ vmcs12->cr0_read_shadow))
7992                         return true;
7993                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7994                     !(vmcs12->cr0_read_shadow & 0x1) &&
7995                     (val & 0x1))
7996                         return true;
7997                 break;
7998         }
7999         return false;
8000 }
8001
8002 /*
8003  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8004  * should handle it ourselves in L0 (and then continue L2). Only call this
8005  * when in is_guest_mode (L2).
8006  */
8007 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8008 {
8009         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8010         struct vcpu_vmx *vmx = to_vmx(vcpu);
8011         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8012         u32 exit_reason = vmx->exit_reason;
8013
8014         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8015                                 vmcs_readl(EXIT_QUALIFICATION),
8016                                 vmx->idt_vectoring_info,
8017                                 intr_info,
8018                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8019                                 KVM_ISA_VMX);
8020
8021         if (vmx->nested.nested_run_pending)
8022                 return false;
8023
8024         if (unlikely(vmx->fail)) {
8025                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8026                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8027                 return true;
8028         }
8029
8030         switch (exit_reason) {
8031         case EXIT_REASON_EXCEPTION_NMI:
8032                 if (is_nmi(intr_info))
8033                         return false;
8034                 else if (is_page_fault(intr_info))
8035                         return enable_ept;
8036                 else if (is_no_device(intr_info) &&
8037                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8038                         return false;
8039                 else if (is_debug(intr_info) &&
8040                          vcpu->guest_debug &
8041                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8042                         return false;
8043                 else if (is_breakpoint(intr_info) &&
8044                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8045                         return false;
8046                 return vmcs12->exception_bitmap &
8047                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8048         case EXIT_REASON_EXTERNAL_INTERRUPT:
8049                 return false;
8050         case EXIT_REASON_TRIPLE_FAULT:
8051                 return true;
8052         case EXIT_REASON_PENDING_INTERRUPT:
8053                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8054         case EXIT_REASON_NMI_WINDOW:
8055                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8056         case EXIT_REASON_TASK_SWITCH:
8057                 return true;
8058         case EXIT_REASON_CPUID:
8059                 return true;
8060         case EXIT_REASON_HLT:
8061                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8062         case EXIT_REASON_INVD:
8063                 return true;
8064         case EXIT_REASON_INVLPG:
8065                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8066         case EXIT_REASON_RDPMC:
8067                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8068         case EXIT_REASON_RDRAND:
8069                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8070         case EXIT_REASON_RDSEED:
8071                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8072         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8073                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8074         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8075         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8076         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8077         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8078         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8079         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8080                 /*
8081                  * VMX instructions trap unconditionally. This allows L1 to
8082                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8083                  */
8084                 return true;
8085         case EXIT_REASON_CR_ACCESS:
8086                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8087         case EXIT_REASON_DR_ACCESS:
8088                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8089         case EXIT_REASON_IO_INSTRUCTION:
8090                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8091         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8092                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8093         case EXIT_REASON_MSR_READ:
8094         case EXIT_REASON_MSR_WRITE:
8095                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8096         case EXIT_REASON_INVALID_STATE:
8097                 return true;
8098         case EXIT_REASON_MWAIT_INSTRUCTION:
8099                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8100         case EXIT_REASON_MONITOR_TRAP_FLAG:
8101                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8102         case EXIT_REASON_MONITOR_INSTRUCTION:
8103                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8104         case EXIT_REASON_PAUSE_INSTRUCTION:
8105                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8106                         nested_cpu_has2(vmcs12,
8107                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8108         case EXIT_REASON_MCE_DURING_VMENTRY:
8109                 return false;
8110         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8111                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8112         case EXIT_REASON_APIC_ACCESS:
8113                 return nested_cpu_has2(vmcs12,
8114                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8115         case EXIT_REASON_APIC_WRITE:
8116         case EXIT_REASON_EOI_INDUCED:
8117                 /* apic_write and eoi_induced should exit unconditionally. */
8118                 return true;
8119         case EXIT_REASON_EPT_VIOLATION:
8120                 /*
8121                  * L0 always deals with the EPT violation. If nested EPT is
8122                  * used, and the nested mmu code discovers that the address is
8123                  * missing in the guest EPT table (EPT12), the EPT violation
8124                  * will be injected with nested_ept_inject_page_fault()
8125                  */
8126                 return false;
8127         case EXIT_REASON_EPT_MISCONFIG:
8128                 /*
8129                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8130                  * table (shadow on EPT) or a merged EPT table that L0 built
8131                  * (EPT on EPT). So any problems with the structure of the
8132                  * table is L0's fault.
8133                  */
8134                 return false;
8135         case EXIT_REASON_WBINVD:
8136                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8137         case EXIT_REASON_XSETBV:
8138                 return true;
8139         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8140                 /*
8141                  * This should never happen, since it is not possible to
8142                  * set XSS to a non-zero value---neither in L1 nor in L2.
8143                  * If if it were, XSS would have to be checked against
8144                  * the XSS exit bitmap in vmcs12.
8145                  */
8146                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8147         case EXIT_REASON_PREEMPTION_TIMER:
8148                 return false;
8149         default:
8150                 return true;
8151         }
8152 }
8153
8154 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8155 {
8156         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8157         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8158 }
8159
8160 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8161 {
8162         if (vmx->pml_pg) {
8163                 __free_page(vmx->pml_pg);
8164                 vmx->pml_pg = NULL;
8165         }
8166 }
8167
8168 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8169 {
8170         struct vcpu_vmx *vmx = to_vmx(vcpu);
8171         u64 *pml_buf;
8172         u16 pml_idx;
8173
8174         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8175
8176         /* Do nothing if PML buffer is empty */
8177         if (pml_idx == (PML_ENTITY_NUM - 1))
8178                 return;
8179
8180         /* PML index always points to next available PML buffer entity */
8181         if (pml_idx >= PML_ENTITY_NUM)
8182                 pml_idx = 0;
8183         else
8184                 pml_idx++;
8185
8186         pml_buf = page_address(vmx->pml_pg);
8187         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8188                 u64 gpa;
8189
8190                 gpa = pml_buf[pml_idx];
8191                 WARN_ON(gpa & (PAGE_SIZE - 1));
8192                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8193         }
8194
8195         /* reset PML index */
8196         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8197 }
8198
8199 /*
8200  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8201  * Called before reporting dirty_bitmap to userspace.
8202  */
8203 static void kvm_flush_pml_buffers(struct kvm *kvm)
8204 {
8205         int i;
8206         struct kvm_vcpu *vcpu;
8207         /*
8208          * We only need to kick vcpu out of guest mode here, as PML buffer
8209          * is flushed at beginning of all VMEXITs, and it's obvious that only
8210          * vcpus running in guest are possible to have unflushed GPAs in PML
8211          * buffer.
8212          */
8213         kvm_for_each_vcpu(i, vcpu, kvm)
8214                 kvm_vcpu_kick(vcpu);
8215 }
8216
8217 static void vmx_dump_sel(char *name, uint32_t sel)
8218 {
8219         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8220                name, vmcs_read16(sel),
8221                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8222                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8223                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8224 }
8225
8226 static void vmx_dump_dtsel(char *name, uint32_t limit)
8227 {
8228         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8229                name, vmcs_read32(limit),
8230                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8231 }
8232
8233 static void dump_vmcs(void)
8234 {
8235         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8236         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8237         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8238         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8239         u32 secondary_exec_control = 0;
8240         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8241         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8242         int i, n;
8243
8244         if (cpu_has_secondary_exec_ctrls())
8245                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8246
8247         pr_err("*** Guest State ***\n");
8248         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8249                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8250                vmcs_readl(CR0_GUEST_HOST_MASK));
8251         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8252                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8253         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8254         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8255             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8256         {
8257                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8258                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8259                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8260                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8261         }
8262         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8263                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8264         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8265                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8266         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8267                vmcs_readl(GUEST_SYSENTER_ESP),
8268                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8269         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8270         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8271         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8272         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8273         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8274         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8275         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8276         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8277         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8278         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8279         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8280             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8281                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8282                        efer, vmcs_read64(GUEST_IA32_PAT));
8283         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8284                vmcs_read64(GUEST_IA32_DEBUGCTL),
8285                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8286         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8287                 pr_err("PerfGlobCtl = 0x%016llx\n",
8288                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8289         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8290                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8291         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8292                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8293                vmcs_read32(GUEST_ACTIVITY_STATE));
8294         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8295                 pr_err("InterruptStatus = %04x\n",
8296                        vmcs_read16(GUEST_INTR_STATUS));
8297
8298         pr_err("*** Host State ***\n");
8299         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8300                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8301         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8302                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8303                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8304                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8305                vmcs_read16(HOST_TR_SELECTOR));
8306         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8307                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8308                vmcs_readl(HOST_TR_BASE));
8309         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8310                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8311         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8312                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8313                vmcs_readl(HOST_CR4));
8314         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8315                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8316                vmcs_read32(HOST_IA32_SYSENTER_CS),
8317                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8318         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8319                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8320                        vmcs_read64(HOST_IA32_EFER),
8321                        vmcs_read64(HOST_IA32_PAT));
8322         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8323                 pr_err("PerfGlobCtl = 0x%016llx\n",
8324                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8325
8326         pr_err("*** Control State ***\n");
8327         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8328                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8329         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8330         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8331                vmcs_read32(EXCEPTION_BITMAP),
8332                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8333                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8334         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8335                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8336                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8337                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8338         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8339                vmcs_read32(VM_EXIT_INTR_INFO),
8340                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8341                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8342         pr_err("        reason=%08x qualification=%016lx\n",
8343                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8344         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8345                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8346                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8347         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8348         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8349                 pr_err("TSC Multiplier = 0x%016llx\n",
8350                        vmcs_read64(TSC_MULTIPLIER));
8351         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8352                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8353         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8354                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8355         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8356                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8357         n = vmcs_read32(CR3_TARGET_COUNT);
8358         for (i = 0; i + 1 < n; i += 4)
8359                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8360                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8361                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8362         if (i < n)
8363                 pr_err("CR3 target%u=%016lx\n",
8364                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8365         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8366                 pr_err("PLE Gap=%08x Window=%08x\n",
8367                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8368         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8369                 pr_err("Virtual processor ID = 0x%04x\n",
8370                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8371 }
8372
8373 /*
8374  * The guest has exited.  See if we can fix it or if we need userspace
8375  * assistance.
8376  */
8377 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8378 {
8379         struct vcpu_vmx *vmx = to_vmx(vcpu);
8380         u32 exit_reason = vmx->exit_reason;
8381         u32 vectoring_info = vmx->idt_vectoring_info;
8382
8383         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8384         vcpu->arch.gpa_available = false;
8385
8386         /*
8387          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8388          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8389          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8390          * mode as if vcpus is in root mode, the PML buffer must has been
8391          * flushed already.
8392          */
8393         if (enable_pml)
8394                 vmx_flush_pml_buffer(vcpu);
8395
8396         /* If guest state is invalid, start emulating */
8397         if (vmx->emulation_required)
8398                 return handle_invalid_guest_state(vcpu);
8399
8400         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8401                 nested_vmx_vmexit(vcpu, exit_reason,
8402                                   vmcs_read32(VM_EXIT_INTR_INFO),
8403                                   vmcs_readl(EXIT_QUALIFICATION));
8404                 return 1;
8405         }
8406
8407         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8408                 dump_vmcs();
8409                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8410                 vcpu->run->fail_entry.hardware_entry_failure_reason
8411                         = exit_reason;
8412                 return 0;
8413         }
8414
8415         if (unlikely(vmx->fail)) {
8416                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8417                 vcpu->run->fail_entry.hardware_entry_failure_reason
8418                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8419                 return 0;
8420         }
8421
8422         /*
8423          * Note:
8424          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8425          * delivery event since it indicates guest is accessing MMIO.
8426          * The vm-exit can be triggered again after return to guest that
8427          * will cause infinite loop.
8428          */
8429         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8430                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8431                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8432                         exit_reason != EXIT_REASON_PML_FULL &&
8433                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8434                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8435                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8436                 vcpu->run->internal.ndata = 2;
8437                 vcpu->run->internal.data[0] = vectoring_info;
8438                 vcpu->run->internal.data[1] = exit_reason;
8439                 return 0;
8440         }
8441
8442         if (exit_reason < kvm_vmx_max_exit_handlers
8443             && kvm_vmx_exit_handlers[exit_reason])
8444                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8445         else {
8446                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8447                                 exit_reason);
8448                 kvm_queue_exception(vcpu, UD_VECTOR);
8449                 return 1;
8450         }
8451 }
8452
8453 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8454 {
8455         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8456
8457         if (is_guest_mode(vcpu) &&
8458                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8459                 return;
8460
8461         if (irr == -1 || tpr < irr) {
8462                 vmcs_write32(TPR_THRESHOLD, 0);
8463                 return;
8464         }
8465
8466         vmcs_write32(TPR_THRESHOLD, irr);
8467 }
8468
8469 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8470 {
8471         u32 sec_exec_control;
8472
8473         /* Postpone execution until vmcs01 is the current VMCS. */
8474         if (is_guest_mode(vcpu)) {
8475                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8476                 return;
8477         }
8478
8479         if (!cpu_has_vmx_virtualize_x2apic_mode())
8480                 return;
8481
8482         if (!cpu_need_tpr_shadow(vcpu))
8483                 return;
8484
8485         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8486
8487         if (set) {
8488                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8489                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8490         } else {
8491                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8492                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8493                 vmx_flush_tlb_ept_only(vcpu);
8494         }
8495         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8496
8497         vmx_set_msr_bitmap(vcpu);
8498 }
8499
8500 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8501 {
8502         struct vcpu_vmx *vmx = to_vmx(vcpu);
8503
8504         /*
8505          * Currently we do not handle the nested case where L2 has an
8506          * APIC access page of its own; that page is still pinned.
8507          * Hence, we skip the case where the VCPU is in guest mode _and_
8508          * L1 prepared an APIC access page for L2.
8509          *
8510          * For the case where L1 and L2 share the same APIC access page
8511          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8512          * in the vmcs12), this function will only update either the vmcs01
8513          * or the vmcs02.  If the former, the vmcs02 will be updated by
8514          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8515          * the next L2->L1 exit.
8516          */
8517         if (!is_guest_mode(vcpu) ||
8518             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8519                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8520                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8521                 vmx_flush_tlb_ept_only(vcpu);
8522         }
8523 }
8524
8525 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8526 {
8527         u16 status;
8528         u8 old;
8529
8530         if (max_isr == -1)
8531                 max_isr = 0;
8532
8533         status = vmcs_read16(GUEST_INTR_STATUS);
8534         old = status >> 8;
8535         if (max_isr != old) {
8536                 status &= 0xff;
8537                 status |= max_isr << 8;
8538                 vmcs_write16(GUEST_INTR_STATUS, status);
8539         }
8540 }
8541
8542 static void vmx_set_rvi(int vector)
8543 {
8544         u16 status;
8545         u8 old;
8546
8547         if (vector == -1)
8548                 vector = 0;
8549
8550         status = vmcs_read16(GUEST_INTR_STATUS);
8551         old = (u8)status & 0xff;
8552         if ((u8)vector != old) {
8553                 status &= ~0xff;
8554                 status |= (u8)vector;
8555                 vmcs_write16(GUEST_INTR_STATUS, status);
8556         }
8557 }
8558
8559 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8560 {
8561         if (!is_guest_mode(vcpu)) {
8562                 vmx_set_rvi(max_irr);
8563                 return;
8564         }
8565
8566         if (max_irr == -1)
8567                 return;
8568
8569         /*
8570          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8571          * handles it.
8572          */
8573         if (nested_exit_on_intr(vcpu))
8574                 return;
8575
8576         /*
8577          * Else, fall back to pre-APICv interrupt injection since L2
8578          * is run without virtual interrupt delivery.
8579          */
8580         if (!kvm_event_needs_reinjection(vcpu) &&
8581             vmx_interrupt_allowed(vcpu)) {
8582                 kvm_queue_interrupt(vcpu, max_irr, false);
8583                 vmx_inject_irq(vcpu);
8584         }
8585 }
8586
8587 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8588 {
8589         struct vcpu_vmx *vmx = to_vmx(vcpu);
8590         int max_irr;
8591
8592         WARN_ON(!vcpu->arch.apicv_active);
8593         if (pi_test_on(&vmx->pi_desc)) {
8594                 pi_clear_on(&vmx->pi_desc);
8595                 /*
8596                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8597                  * But on x86 this is just a compiler barrier anyway.
8598                  */
8599                 smp_mb__after_atomic();
8600                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8601         } else {
8602                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8603         }
8604         vmx_hwapic_irr_update(vcpu, max_irr);
8605         return max_irr;
8606 }
8607
8608 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8609 {
8610         if (!kvm_vcpu_apicv_active(vcpu))
8611                 return;
8612
8613         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8614         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8615         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8616         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8617 }
8618
8619 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8620 {
8621         struct vcpu_vmx *vmx = to_vmx(vcpu);
8622
8623         pi_clear_on(&vmx->pi_desc);
8624         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8625 }
8626
8627 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8628 {
8629         u32 exit_intr_info;
8630
8631         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8632               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8633                 return;
8634
8635         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8636         exit_intr_info = vmx->exit_intr_info;
8637
8638         /* Handle machine checks before interrupts are enabled */
8639         if (is_machine_check(exit_intr_info))
8640                 kvm_machine_check();
8641
8642         /* We need to handle NMIs before interrupts are enabled */
8643         if (is_nmi(exit_intr_info)) {
8644                 kvm_before_handle_nmi(&vmx->vcpu);
8645                 asm("int $2");
8646                 kvm_after_handle_nmi(&vmx->vcpu);
8647         }
8648 }
8649
8650 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8651 {
8652         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8653         register void *__sp asm(_ASM_SP);
8654
8655         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8656                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8657                 unsigned int vector;
8658                 unsigned long entry;
8659                 gate_desc *desc;
8660                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8661 #ifdef CONFIG_X86_64
8662                 unsigned long tmp;
8663 #endif
8664
8665                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8666                 desc = (gate_desc *)vmx->host_idt_base + vector;
8667                 entry = gate_offset(*desc);
8668                 asm volatile(
8669 #ifdef CONFIG_X86_64
8670                         "mov %%" _ASM_SP ", %[sp]\n\t"
8671                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8672                         "push $%c[ss]\n\t"
8673                         "push %[sp]\n\t"
8674 #endif
8675                         "pushf\n\t"
8676                         __ASM_SIZE(push) " $%c[cs]\n\t"
8677                         "call *%[entry]\n\t"
8678                         :
8679 #ifdef CONFIG_X86_64
8680                         [sp]"=&r"(tmp),
8681 #endif
8682                         "+r"(__sp)
8683                         :
8684                         [entry]"r"(entry),
8685                         [ss]"i"(__KERNEL_DS),
8686                         [cs]"i"(__KERNEL_CS)
8687                         );
8688         }
8689 }
8690
8691 static bool vmx_has_high_real_mode_segbase(void)
8692 {
8693         return enable_unrestricted_guest || emulate_invalid_guest_state;
8694 }
8695
8696 static bool vmx_mpx_supported(void)
8697 {
8698         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8699                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8700 }
8701
8702 static bool vmx_xsaves_supported(void)
8703 {
8704         return vmcs_config.cpu_based_2nd_exec_ctrl &
8705                 SECONDARY_EXEC_XSAVES;
8706 }
8707
8708 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8709 {
8710         u32 exit_intr_info;
8711         bool unblock_nmi;
8712         u8 vector;
8713         bool idtv_info_valid;
8714
8715         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8716
8717         if (vmx->nmi_known_unmasked)
8718                 return;
8719         /*
8720          * Can't use vmx->exit_intr_info since we're not sure what
8721          * the exit reason is.
8722          */
8723         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8724         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8725         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8726         /*
8727          * SDM 3: 27.7.1.2 (September 2008)
8728          * Re-set bit "block by NMI" before VM entry if vmexit caused by
8729          * a guest IRET fault.
8730          * SDM 3: 23.2.2 (September 2008)
8731          * Bit 12 is undefined in any of the following cases:
8732          *  If the VM exit sets the valid bit in the IDT-vectoring
8733          *   information field.
8734          *  If the VM exit is due to a double fault.
8735          */
8736         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8737             vector != DF_VECTOR && !idtv_info_valid)
8738                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8739                               GUEST_INTR_STATE_NMI);
8740         else
8741                 vmx->nmi_known_unmasked =
8742                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8743                           & GUEST_INTR_STATE_NMI);
8744 }
8745
8746 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8747                                       u32 idt_vectoring_info,
8748                                       int instr_len_field,
8749                                       int error_code_field)
8750 {
8751         u8 vector;
8752         int type;
8753         bool idtv_info_valid;
8754
8755         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8756
8757         vcpu->arch.nmi_injected = false;
8758         kvm_clear_exception_queue(vcpu);
8759         kvm_clear_interrupt_queue(vcpu);
8760
8761         if (!idtv_info_valid)
8762                 return;
8763
8764         kvm_make_request(KVM_REQ_EVENT, vcpu);
8765
8766         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8767         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8768
8769         switch (type) {
8770         case INTR_TYPE_NMI_INTR:
8771                 vcpu->arch.nmi_injected = true;
8772                 /*
8773                  * SDM 3: 27.7.1.2 (September 2008)
8774                  * Clear bit "block by NMI" before VM entry if a NMI
8775                  * delivery faulted.
8776                  */
8777                 vmx_set_nmi_mask(vcpu, false);
8778                 break;
8779         case INTR_TYPE_SOFT_EXCEPTION:
8780                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8781                 /* fall through */
8782         case INTR_TYPE_HARD_EXCEPTION:
8783                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8784                         u32 err = vmcs_read32(error_code_field);
8785                         kvm_requeue_exception_e(vcpu, vector, err);
8786                 } else
8787                         kvm_requeue_exception(vcpu, vector);
8788                 break;
8789         case INTR_TYPE_SOFT_INTR:
8790                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8791                 /* fall through */
8792         case INTR_TYPE_EXT_INTR:
8793                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8794                 break;
8795         default:
8796                 break;
8797         }
8798 }
8799
8800 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8801 {
8802         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8803                                   VM_EXIT_INSTRUCTION_LEN,
8804                                   IDT_VECTORING_ERROR_CODE);
8805 }
8806
8807 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8808 {
8809         __vmx_complete_interrupts(vcpu,
8810                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8811                                   VM_ENTRY_INSTRUCTION_LEN,
8812                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8813
8814         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8815 }
8816
8817 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8818 {
8819         int i, nr_msrs;
8820         struct perf_guest_switch_msr *msrs;
8821
8822         msrs = perf_guest_get_msrs(&nr_msrs);
8823
8824         if (!msrs)
8825                 return;
8826
8827         for (i = 0; i < nr_msrs; i++)
8828                 if (msrs[i].host == msrs[i].guest)
8829                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8830                 else
8831                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8832                                         msrs[i].host);
8833 }
8834
8835 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8836 {
8837         struct vcpu_vmx *vmx = to_vmx(vcpu);
8838         u64 tscl;
8839         u32 delta_tsc;
8840
8841         if (vmx->hv_deadline_tsc == -1)
8842                 return;
8843
8844         tscl = rdtsc();
8845         if (vmx->hv_deadline_tsc > tscl)
8846                 /* sure to be 32 bit only because checked on set_hv_timer */
8847                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8848                         cpu_preemption_timer_multi);
8849         else
8850                 delta_tsc = 0;
8851
8852         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8853 }
8854
8855 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8856 {
8857         struct vcpu_vmx *vmx = to_vmx(vcpu);
8858         unsigned long debugctlmsr, cr4;
8859
8860         /* Don't enter VMX if guest state is invalid, let the exit handler
8861            start emulation until we arrive back to a valid state */
8862         if (vmx->emulation_required)
8863                 return;
8864
8865         if (vmx->ple_window_dirty) {
8866                 vmx->ple_window_dirty = false;
8867                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8868         }
8869
8870         if (vmx->nested.sync_shadow_vmcs) {
8871                 copy_vmcs12_to_shadow(vmx);
8872                 vmx->nested.sync_shadow_vmcs = false;
8873         }
8874
8875         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8876                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8877         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8878                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8879
8880         cr4 = cr4_read_shadow();
8881         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8882                 vmcs_writel(HOST_CR4, cr4);
8883                 vmx->host_state.vmcs_host_cr4 = cr4;
8884         }
8885
8886         /* When single-stepping over STI and MOV SS, we must clear the
8887          * corresponding interruptibility bits in the guest state. Otherwise
8888          * vmentry fails as it then expects bit 14 (BS) in pending debug
8889          * exceptions being set, but that's not correct for the guest debugging
8890          * case. */
8891         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8892                 vmx_set_interrupt_shadow(vcpu, 0);
8893
8894         if (vmx->guest_pkru_valid)
8895                 __write_pkru(vmx->guest_pkru);
8896
8897         atomic_switch_perf_msrs(vmx);
8898         debugctlmsr = get_debugctlmsr();
8899
8900         vmx_arm_hv_timer(vcpu);
8901
8902         vmx->__launched = vmx->loaded_vmcs->launched;
8903         asm(
8904                 /* Store host registers */
8905                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8906                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8907                 "push %%" _ASM_CX " \n\t"
8908                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8909                 "je 1f \n\t"
8910                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8911                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8912                 "1: \n\t"
8913                 /* Reload cr2 if changed */
8914                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8915                 "mov %%cr2, %%" _ASM_DX " \n\t"
8916                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8917                 "je 2f \n\t"
8918                 "mov %%" _ASM_AX", %%cr2 \n\t"
8919                 "2: \n\t"
8920                 /* Check if vmlaunch of vmresume is needed */
8921                 "cmpl $0, %c[launched](%0) \n\t"
8922                 /* Load guest registers.  Don't clobber flags. */
8923                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8924                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8925                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8926                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8927                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8928                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8929 #ifdef CONFIG_X86_64
8930                 "mov %c[r8](%0),  %%r8  \n\t"
8931                 "mov %c[r9](%0),  %%r9  \n\t"
8932                 "mov %c[r10](%0), %%r10 \n\t"
8933                 "mov %c[r11](%0), %%r11 \n\t"
8934                 "mov %c[r12](%0), %%r12 \n\t"
8935                 "mov %c[r13](%0), %%r13 \n\t"
8936                 "mov %c[r14](%0), %%r14 \n\t"
8937                 "mov %c[r15](%0), %%r15 \n\t"
8938 #endif
8939                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8940
8941                 /* Enter guest mode */
8942                 "jne 1f \n\t"
8943                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8944                 "jmp 2f \n\t"
8945                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8946                 "2: "
8947                 /* Save guest registers, load host registers, keep flags */
8948                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8949                 "pop %0 \n\t"
8950                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8951                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8952                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8953                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8954                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8955                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8956                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8957 #ifdef CONFIG_X86_64
8958                 "mov %%r8,  %c[r8](%0) \n\t"
8959                 "mov %%r9,  %c[r9](%0) \n\t"
8960                 "mov %%r10, %c[r10](%0) \n\t"
8961                 "mov %%r11, %c[r11](%0) \n\t"
8962                 "mov %%r12, %c[r12](%0) \n\t"
8963                 "mov %%r13, %c[r13](%0) \n\t"
8964                 "mov %%r14, %c[r14](%0) \n\t"
8965                 "mov %%r15, %c[r15](%0) \n\t"
8966 #endif
8967                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8968                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8969
8970                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8971                 "setbe %c[fail](%0) \n\t"
8972                 ".pushsection .rodata \n\t"
8973                 ".global vmx_return \n\t"
8974                 "vmx_return: " _ASM_PTR " 2b \n\t"
8975                 ".popsection"
8976               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8977                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8978                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8979                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8980                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8981                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8982                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8983                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8984                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8985                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8986                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8987 #ifdef CONFIG_X86_64
8988                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8989                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8990                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8991                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8992                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8993                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8994                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8995                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8996 #endif
8997                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8998                 [wordsize]"i"(sizeof(ulong))
8999               : "cc", "memory"
9000 #ifdef CONFIG_X86_64
9001                 , "rax", "rbx", "rdi", "rsi"
9002                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9003 #else
9004                 , "eax", "ebx", "edi", "esi"
9005 #endif
9006               );
9007
9008         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9009         if (debugctlmsr)
9010                 update_debugctlmsr(debugctlmsr);
9011
9012 #ifndef CONFIG_X86_64
9013         /*
9014          * The sysexit path does not restore ds/es, so we must set them to
9015          * a reasonable value ourselves.
9016          *
9017          * We can't defer this to vmx_load_host_state() since that function
9018          * may be executed in interrupt context, which saves and restore segments
9019          * around it, nullifying its effect.
9020          */
9021         loadsegment(ds, __USER_DS);
9022         loadsegment(es, __USER_DS);
9023 #endif
9024
9025         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9026                                   | (1 << VCPU_EXREG_RFLAGS)
9027                                   | (1 << VCPU_EXREG_PDPTR)
9028                                   | (1 << VCPU_EXREG_SEGMENTS)
9029                                   | (1 << VCPU_EXREG_CR3));
9030         vcpu->arch.regs_dirty = 0;
9031
9032         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9033
9034         vmx->loaded_vmcs->launched = 1;
9035
9036         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9037
9038         /*
9039          * eager fpu is enabled if PKEY is supported and CR4 is switched
9040          * back on host, so it is safe to read guest PKRU from current
9041          * XSAVE.
9042          */
9043         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9044                 vmx->guest_pkru = __read_pkru();
9045                 if (vmx->guest_pkru != vmx->host_pkru) {
9046                         vmx->guest_pkru_valid = true;
9047                         __write_pkru(vmx->host_pkru);
9048                 } else
9049                         vmx->guest_pkru_valid = false;
9050         }
9051
9052         /*
9053          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9054          * we did not inject a still-pending event to L1 now because of
9055          * nested_run_pending, we need to re-enable this bit.
9056          */
9057         if (vmx->nested.nested_run_pending)
9058                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9059
9060         vmx->nested.nested_run_pending = 0;
9061
9062         vmx_complete_atomic_exit(vmx);
9063         vmx_recover_nmi_blocking(vmx);
9064         vmx_complete_interrupts(vmx);
9065 }
9066
9067 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9068 {
9069         struct vcpu_vmx *vmx = to_vmx(vcpu);
9070         int cpu;
9071
9072         if (vmx->loaded_vmcs == vmcs)
9073                 return;
9074
9075         cpu = get_cpu();
9076         vmx->loaded_vmcs = vmcs;
9077         vmx_vcpu_put(vcpu);
9078         vmx_vcpu_load(vcpu, cpu);
9079         vcpu->cpu = cpu;
9080         put_cpu();
9081 }
9082
9083 /*
9084  * Ensure that the current vmcs of the logical processor is the
9085  * vmcs01 of the vcpu before calling free_nested().
9086  */
9087 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9088 {
9089        struct vcpu_vmx *vmx = to_vmx(vcpu);
9090        int r;
9091
9092        r = vcpu_load(vcpu);
9093        BUG_ON(r);
9094        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9095        free_nested(vmx);
9096        vcpu_put(vcpu);
9097 }
9098
9099 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9100 {
9101         struct vcpu_vmx *vmx = to_vmx(vcpu);
9102
9103         if (enable_pml)
9104                 vmx_destroy_pml_buffer(vmx);
9105         free_vpid(vmx->vpid);
9106         leave_guest_mode(vcpu);
9107         vmx_free_vcpu_nested(vcpu);
9108         free_loaded_vmcs(vmx->loaded_vmcs);
9109         kfree(vmx->guest_msrs);
9110         kvm_vcpu_uninit(vcpu);
9111         kmem_cache_free(kvm_vcpu_cache, vmx);
9112 }
9113
9114 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9115 {
9116         int err;
9117         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9118         int cpu;
9119
9120         if (!vmx)
9121                 return ERR_PTR(-ENOMEM);
9122
9123         vmx->vpid = allocate_vpid();
9124
9125         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9126         if (err)
9127                 goto free_vcpu;
9128
9129         err = -ENOMEM;
9130
9131         /*
9132          * If PML is turned on, failure on enabling PML just results in failure
9133          * of creating the vcpu, therefore we can simplify PML logic (by
9134          * avoiding dealing with cases, such as enabling PML partially on vcpus
9135          * for the guest, etc.
9136          */
9137         if (enable_pml) {
9138                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9139                 if (!vmx->pml_pg)
9140                         goto uninit_vcpu;
9141         }
9142
9143         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9144         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9145                      > PAGE_SIZE);
9146
9147         if (!vmx->guest_msrs)
9148                 goto free_pml;
9149
9150         vmx->loaded_vmcs = &vmx->vmcs01;
9151         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9152         vmx->loaded_vmcs->shadow_vmcs = NULL;
9153         if (!vmx->loaded_vmcs->vmcs)
9154                 goto free_msrs;
9155         loaded_vmcs_init(vmx->loaded_vmcs);
9156
9157         cpu = get_cpu();
9158         vmx_vcpu_load(&vmx->vcpu, cpu);
9159         vmx->vcpu.cpu = cpu;
9160         err = vmx_vcpu_setup(vmx);
9161         vmx_vcpu_put(&vmx->vcpu);
9162         put_cpu();
9163         if (err)
9164                 goto free_vmcs;
9165         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9166                 err = alloc_apic_access_page(kvm);
9167                 if (err)
9168                         goto free_vmcs;
9169         }
9170
9171         if (enable_ept) {
9172                 if (!kvm->arch.ept_identity_map_addr)
9173                         kvm->arch.ept_identity_map_addr =
9174                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9175                 err = init_rmode_identity_map(kvm);
9176                 if (err)
9177                         goto free_vmcs;
9178         }
9179
9180         if (nested) {
9181                 nested_vmx_setup_ctls_msrs(vmx);
9182                 vmx->nested.vpid02 = allocate_vpid();
9183         }
9184
9185         vmx->nested.posted_intr_nv = -1;
9186         vmx->nested.current_vmptr = -1ull;
9187         vmx->nested.current_vmcs12 = NULL;
9188
9189         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9190
9191         return &vmx->vcpu;
9192
9193 free_vmcs:
9194         free_vpid(vmx->nested.vpid02);
9195         free_loaded_vmcs(vmx->loaded_vmcs);
9196 free_msrs:
9197         kfree(vmx->guest_msrs);
9198 free_pml:
9199         vmx_destroy_pml_buffer(vmx);
9200 uninit_vcpu:
9201         kvm_vcpu_uninit(&vmx->vcpu);
9202 free_vcpu:
9203         free_vpid(vmx->vpid);
9204         kmem_cache_free(kvm_vcpu_cache, vmx);
9205         return ERR_PTR(err);
9206 }
9207
9208 static void __init vmx_check_processor_compat(void *rtn)
9209 {
9210         struct vmcs_config vmcs_conf;
9211
9212         *(int *)rtn = 0;
9213         if (setup_vmcs_config(&vmcs_conf) < 0)
9214                 *(int *)rtn = -EIO;
9215         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9216                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9217                                 smp_processor_id());
9218                 *(int *)rtn = -EIO;
9219         }
9220 }
9221
9222 static int get_ept_level(void)
9223 {
9224         return VMX_EPT_DEFAULT_GAW + 1;
9225 }
9226
9227 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9228 {
9229         u8 cache;
9230         u64 ipat = 0;
9231
9232         /* For VT-d and EPT combination
9233          * 1. MMIO: always map as UC
9234          * 2. EPT with VT-d:
9235          *   a. VT-d without snooping control feature: can't guarantee the
9236          *      result, try to trust guest.
9237          *   b. VT-d with snooping control feature: snooping control feature of
9238          *      VT-d engine can guarantee the cache correctness. Just set it
9239          *      to WB to keep consistent with host. So the same as item 3.
9240          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9241          *    consistent with host MTRR
9242          */
9243         if (is_mmio) {
9244                 cache = MTRR_TYPE_UNCACHABLE;
9245                 goto exit;
9246         }
9247
9248         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9249                 ipat = VMX_EPT_IPAT_BIT;
9250                 cache = MTRR_TYPE_WRBACK;
9251                 goto exit;
9252         }
9253
9254         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9255                 ipat = VMX_EPT_IPAT_BIT;
9256                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9257                         cache = MTRR_TYPE_WRBACK;
9258                 else
9259                         cache = MTRR_TYPE_UNCACHABLE;
9260                 goto exit;
9261         }
9262
9263         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9264
9265 exit:
9266         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9267 }
9268
9269 static int vmx_get_lpage_level(void)
9270 {
9271         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9272                 return PT_DIRECTORY_LEVEL;
9273         else
9274                 /* For shadow and EPT supported 1GB page */
9275                 return PT_PDPE_LEVEL;
9276 }
9277
9278 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9279 {
9280         /*
9281          * These bits in the secondary execution controls field
9282          * are dynamic, the others are mostly based on the hypervisor
9283          * architecture and the guest's CPUID.  Do not touch the
9284          * dynamic bits.
9285          */
9286         u32 mask =
9287                 SECONDARY_EXEC_SHADOW_VMCS |
9288                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9289                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9290
9291         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9292
9293         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9294                      (new_ctl & ~mask) | (cur_ctl & mask));
9295 }
9296
9297 /*
9298  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9299  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9300  */
9301 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9302 {
9303         struct vcpu_vmx *vmx = to_vmx(vcpu);
9304         struct kvm_cpuid_entry2 *entry;
9305
9306         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9307         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9308
9309 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9310         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9311                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9312 } while (0)
9313
9314         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9315         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9316         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9317         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9318         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9319         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9320         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9321         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9322         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9323         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9324         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9325         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9326         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9327         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9328         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9329
9330         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9331         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9332         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9333         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9334         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9335         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9336         cr4_fixed1_update(bit(11),            ecx, bit(2));
9337
9338 #undef cr4_fixed1_update
9339 }
9340
9341 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9342 {
9343         struct kvm_cpuid_entry2 *best;
9344         struct vcpu_vmx *vmx = to_vmx(vcpu);
9345         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9346
9347         if (vmx_rdtscp_supported()) {
9348                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9349                 if (!rdtscp_enabled)
9350                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9351
9352                 if (nested) {
9353                         if (rdtscp_enabled)
9354                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9355                                         SECONDARY_EXEC_RDTSCP;
9356                         else
9357                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9358                                         ~SECONDARY_EXEC_RDTSCP;
9359                 }
9360         }
9361
9362         /* Exposing INVPCID only when PCID is exposed */
9363         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9364         if (vmx_invpcid_supported() &&
9365             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9366             !guest_cpuid_has_pcid(vcpu))) {
9367                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9368
9369                 if (best)
9370                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9371         }
9372
9373         if (cpu_has_secondary_exec_ctrls())
9374                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9375
9376         if (nested_vmx_allowed(vcpu))
9377                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9378                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9379         else
9380                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9381                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9382
9383         if (nested_vmx_allowed(vcpu))
9384                 nested_vmx_cr_fixed1_bits_update(vcpu);
9385 }
9386
9387 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9388 {
9389         if (func == 1 && nested)
9390                 entry->ecx |= bit(X86_FEATURE_VMX);
9391 }
9392
9393 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9394                 struct x86_exception *fault)
9395 {
9396         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9397         u32 exit_reason;
9398
9399         if (fault->error_code & PFERR_RSVD_MASK)
9400                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9401         else
9402                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9403         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9404         vmcs12->guest_physical_address = fault->address;
9405 }
9406
9407 /* Callbacks for nested_ept_init_mmu_context: */
9408
9409 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9410 {
9411         /* return the page table to be shadowed - in our case, EPT12 */
9412         return get_vmcs12(vcpu)->ept_pointer;
9413 }
9414
9415 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9416 {
9417         u64 eptp;
9418
9419         WARN_ON(mmu_is_nested(vcpu));
9420         eptp = nested_ept_get_cr3(vcpu);
9421         if ((eptp & VMX_EPT_AD_ENABLE_BIT) && !enable_ept_ad_bits)
9422                 return 1;
9423
9424         kvm_mmu_unload(vcpu);
9425         kvm_init_shadow_ept_mmu(vcpu,
9426                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9427                         VMX_EPT_EXECUTE_ONLY_BIT,
9428                         eptp & VMX_EPT_AD_ENABLE_BIT);
9429         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9430         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9431         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9432
9433         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9434         return 0;
9435 }
9436
9437 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9438 {
9439         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9440 }
9441
9442 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9443                                             u16 error_code)
9444 {
9445         bool inequality, bit;
9446
9447         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9448         inequality =
9449                 (error_code & vmcs12->page_fault_error_code_mask) !=
9450                  vmcs12->page_fault_error_code_match;
9451         return inequality ^ bit;
9452 }
9453
9454 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9455                 struct x86_exception *fault)
9456 {
9457         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9458
9459         WARN_ON(!is_guest_mode(vcpu));
9460
9461         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9462                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9463                                   vmcs_read32(VM_EXIT_INTR_INFO),
9464                                   vmcs_readl(EXIT_QUALIFICATION));
9465         else
9466                 kvm_inject_page_fault(vcpu, fault);
9467 }
9468
9469 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9470                                                struct vmcs12 *vmcs12);
9471
9472 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9473                                         struct vmcs12 *vmcs12)
9474 {
9475         struct vcpu_vmx *vmx = to_vmx(vcpu);
9476         u64 hpa;
9477
9478         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9479                 /*
9480                  * Translate L1 physical address to host physical
9481                  * address for vmcs02. Keep the page pinned, so this
9482                  * physical address remains valid. We keep a reference
9483                  * to it so we can release it later.
9484                  */
9485                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9486                         nested_release_page(vmx->nested.apic_access_page);
9487                 vmx->nested.apic_access_page =
9488                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9489                 /*
9490                  * If translation failed, no matter: This feature asks
9491                  * to exit when accessing the given address, and if it
9492                  * can never be accessed, this feature won't do
9493                  * anything anyway.
9494                  */
9495                 if (vmx->nested.apic_access_page) {
9496                         hpa = page_to_phys(vmx->nested.apic_access_page);
9497                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9498                 } else {
9499                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9500                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9501                 }
9502         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9503                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9504                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9505                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9506                 kvm_vcpu_reload_apic_access_page(vcpu);
9507         }
9508
9509         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9510                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9511                         nested_release_page(vmx->nested.virtual_apic_page);
9512                 vmx->nested.virtual_apic_page =
9513                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9514
9515                 /*
9516                  * If translation failed, VM entry will fail because
9517                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9518                  * Failing the vm entry is _not_ what the processor
9519                  * does but it's basically the only possibility we
9520                  * have.  We could still enter the guest if CR8 load
9521                  * exits are enabled, CR8 store exits are enabled, and
9522                  * virtualize APIC access is disabled; in this case
9523                  * the processor would never use the TPR shadow and we
9524                  * could simply clear the bit from the execution
9525                  * control.  But such a configuration is useless, so
9526                  * let's keep the code simple.
9527                  */
9528                 if (vmx->nested.virtual_apic_page) {
9529                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9530                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9531                 }
9532         }
9533
9534         if (nested_cpu_has_posted_intr(vmcs12)) {
9535                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9536                         kunmap(vmx->nested.pi_desc_page);
9537                         nested_release_page(vmx->nested.pi_desc_page);
9538                 }
9539                 vmx->nested.pi_desc_page =
9540                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9541                 vmx->nested.pi_desc =
9542                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9543                 if (!vmx->nested.pi_desc) {
9544                         nested_release_page_clean(vmx->nested.pi_desc_page);
9545                         return;
9546                 }
9547                 vmx->nested.pi_desc =
9548                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9549                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9550                         (PAGE_SIZE - 1)));
9551                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9552                         page_to_phys(vmx->nested.pi_desc_page) +
9553                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9554                         (PAGE_SIZE - 1)));
9555         }
9556         if (cpu_has_vmx_msr_bitmap() &&
9557             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9558             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9559                 ;
9560         else
9561                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9562                                 CPU_BASED_USE_MSR_BITMAPS);
9563 }
9564
9565 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9566 {
9567         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9568         struct vcpu_vmx *vmx = to_vmx(vcpu);
9569
9570         if (vcpu->arch.virtual_tsc_khz == 0)
9571                 return;
9572
9573         /* Make sure short timeouts reliably trigger an immediate vmexit.
9574          * hrtimer_start does not guarantee this. */
9575         if (preemption_timeout <= 1) {
9576                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9577                 return;
9578         }
9579
9580         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9581         preemption_timeout *= 1000000;
9582         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9583         hrtimer_start(&vmx->nested.preemption_timer,
9584                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9585 }
9586
9587 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9588                                                 struct vmcs12 *vmcs12)
9589 {
9590         int maxphyaddr;
9591         u64 addr;
9592
9593         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9594                 return 0;
9595
9596         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9597                 WARN_ON(1);
9598                 return -EINVAL;
9599         }
9600         maxphyaddr = cpuid_maxphyaddr(vcpu);
9601
9602         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9603            ((addr + PAGE_SIZE) >> maxphyaddr))
9604                 return -EINVAL;
9605
9606         return 0;
9607 }
9608
9609 /*
9610  * Merge L0's and L1's MSR bitmap, return false to indicate that
9611  * we do not use the hardware.
9612  */
9613 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9614                                                struct vmcs12 *vmcs12)
9615 {
9616         int msr;
9617         struct page *page;
9618         unsigned long *msr_bitmap_l1;
9619         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9620
9621         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9622         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9623                 return false;
9624
9625         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9626         if (!page)
9627                 return false;
9628         msr_bitmap_l1 = (unsigned long *)kmap(page);
9629
9630         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9631
9632         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9633                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9634                         for (msr = 0x800; msr <= 0x8ff; msr++)
9635                                 nested_vmx_disable_intercept_for_msr(
9636                                         msr_bitmap_l1, msr_bitmap_l0,
9637                                         msr, MSR_TYPE_R);
9638
9639                 nested_vmx_disable_intercept_for_msr(
9640                                 msr_bitmap_l1, msr_bitmap_l0,
9641                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9642                                 MSR_TYPE_R | MSR_TYPE_W);
9643
9644                 if (nested_cpu_has_vid(vmcs12)) {
9645                         nested_vmx_disable_intercept_for_msr(
9646                                 msr_bitmap_l1, msr_bitmap_l0,
9647                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9648                                 MSR_TYPE_W);
9649                         nested_vmx_disable_intercept_for_msr(
9650                                 msr_bitmap_l1, msr_bitmap_l0,
9651                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9652                                 MSR_TYPE_W);
9653                 }
9654         }
9655         kunmap(page);
9656         nested_release_page_clean(page);
9657
9658         return true;
9659 }
9660
9661 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9662                                            struct vmcs12 *vmcs12)
9663 {
9664         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9665             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9666             !nested_cpu_has_vid(vmcs12) &&
9667             !nested_cpu_has_posted_intr(vmcs12))
9668                 return 0;
9669
9670         /*
9671          * If virtualize x2apic mode is enabled,
9672          * virtualize apic access must be disabled.
9673          */
9674         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9675             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9676                 return -EINVAL;
9677
9678         /*
9679          * If virtual interrupt delivery is enabled,
9680          * we must exit on external interrupts.
9681          */
9682         if (nested_cpu_has_vid(vmcs12) &&
9683            !nested_exit_on_intr(vcpu))
9684                 return -EINVAL;
9685
9686         /*
9687          * bits 15:8 should be zero in posted_intr_nv,
9688          * the descriptor address has been already checked
9689          * in nested_get_vmcs12_pages.
9690          */
9691         if (nested_cpu_has_posted_intr(vmcs12) &&
9692            (!nested_cpu_has_vid(vmcs12) ||
9693             !nested_exit_intr_ack_set(vcpu) ||
9694             vmcs12->posted_intr_nv & 0xff00))
9695                 return -EINVAL;
9696
9697         /* tpr shadow is needed by all apicv features. */
9698         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9699                 return -EINVAL;
9700
9701         return 0;
9702 }
9703
9704 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9705                                        unsigned long count_field,
9706                                        unsigned long addr_field)
9707 {
9708         int maxphyaddr;
9709         u64 count, addr;
9710
9711         if (vmcs12_read_any(vcpu, count_field, &count) ||
9712             vmcs12_read_any(vcpu, addr_field, &addr)) {
9713                 WARN_ON(1);
9714                 return -EINVAL;
9715         }
9716         if (count == 0)
9717                 return 0;
9718         maxphyaddr = cpuid_maxphyaddr(vcpu);
9719         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9720             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9721                 pr_debug_ratelimited(
9722                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9723                         addr_field, maxphyaddr, count, addr);
9724                 return -EINVAL;
9725         }
9726         return 0;
9727 }
9728
9729 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9730                                                 struct vmcs12 *vmcs12)
9731 {
9732         if (vmcs12->vm_exit_msr_load_count == 0 &&
9733             vmcs12->vm_exit_msr_store_count == 0 &&
9734             vmcs12->vm_entry_msr_load_count == 0)
9735                 return 0; /* Fast path */
9736         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9737                                         VM_EXIT_MSR_LOAD_ADDR) ||
9738             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9739                                         VM_EXIT_MSR_STORE_ADDR) ||
9740             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9741                                         VM_ENTRY_MSR_LOAD_ADDR))
9742                 return -EINVAL;
9743         return 0;
9744 }
9745
9746 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9747                                        struct vmx_msr_entry *e)
9748 {
9749         /* x2APIC MSR accesses are not allowed */
9750         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9751                 return -EINVAL;
9752         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9753             e->index == MSR_IA32_UCODE_REV)
9754                 return -EINVAL;
9755         if (e->reserved != 0)
9756                 return -EINVAL;
9757         return 0;
9758 }
9759
9760 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9761                                      struct vmx_msr_entry *e)
9762 {
9763         if (e->index == MSR_FS_BASE ||
9764             e->index == MSR_GS_BASE ||
9765             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9766             nested_vmx_msr_check_common(vcpu, e))
9767                 return -EINVAL;
9768         return 0;
9769 }
9770
9771 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9772                                       struct vmx_msr_entry *e)
9773 {
9774         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9775             nested_vmx_msr_check_common(vcpu, e))
9776                 return -EINVAL;
9777         return 0;
9778 }
9779
9780 /*
9781  * Load guest's/host's msr at nested entry/exit.
9782  * return 0 for success, entry index for failure.
9783  */
9784 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9785 {
9786         u32 i;
9787         struct vmx_msr_entry e;
9788         struct msr_data msr;
9789
9790         msr.host_initiated = false;
9791         for (i = 0; i < count; i++) {
9792                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9793                                         &e, sizeof(e))) {
9794                         pr_debug_ratelimited(
9795                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9796                                 __func__, i, gpa + i * sizeof(e));
9797                         goto fail;
9798                 }
9799                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9800                         pr_debug_ratelimited(
9801                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9802                                 __func__, i, e.index, e.reserved);
9803                         goto fail;
9804                 }
9805                 msr.index = e.index;
9806                 msr.data = e.value;
9807                 if (kvm_set_msr(vcpu, &msr)) {
9808                         pr_debug_ratelimited(
9809                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9810                                 __func__, i, e.index, e.value);
9811                         goto fail;
9812                 }
9813         }
9814         return 0;
9815 fail:
9816         return i + 1;
9817 }
9818
9819 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9820 {
9821         u32 i;
9822         struct vmx_msr_entry e;
9823
9824         for (i = 0; i < count; i++) {
9825                 struct msr_data msr_info;
9826                 if (kvm_vcpu_read_guest(vcpu,
9827                                         gpa + i * sizeof(e),
9828                                         &e, 2 * sizeof(u32))) {
9829                         pr_debug_ratelimited(
9830                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9831                                 __func__, i, gpa + i * sizeof(e));
9832                         return -EINVAL;
9833                 }
9834                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9835                         pr_debug_ratelimited(
9836                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9837                                 __func__, i, e.index, e.reserved);
9838                         return -EINVAL;
9839                 }
9840                 msr_info.host_initiated = false;
9841                 msr_info.index = e.index;
9842                 if (kvm_get_msr(vcpu, &msr_info)) {
9843                         pr_debug_ratelimited(
9844                                 "%s cannot read MSR (%u, 0x%x)\n",
9845                                 __func__, i, e.index);
9846                         return -EINVAL;
9847                 }
9848                 if (kvm_vcpu_write_guest(vcpu,
9849                                          gpa + i * sizeof(e) +
9850                                              offsetof(struct vmx_msr_entry, value),
9851                                          &msr_info.data, sizeof(msr_info.data))) {
9852                         pr_debug_ratelimited(
9853                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9854                                 __func__, i, e.index, msr_info.data);
9855                         return -EINVAL;
9856                 }
9857         }
9858         return 0;
9859 }
9860
9861 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9862 {
9863         unsigned long invalid_mask;
9864
9865         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9866         return (val & invalid_mask) == 0;
9867 }
9868
9869 /*
9870  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9871  * emulating VM entry into a guest with EPT enabled.
9872  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9873  * is assigned to entry_failure_code on failure.
9874  */
9875 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9876                                u32 *entry_failure_code)
9877 {
9878         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9879                 if (!nested_cr3_valid(vcpu, cr3)) {
9880                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
9881                         return 1;
9882                 }
9883
9884                 /*
9885                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9886                  * must not be dereferenced.
9887                  */
9888                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9889                     !nested_ept) {
9890                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9891                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
9892                                 return 1;
9893                         }
9894                 }
9895
9896                 vcpu->arch.cr3 = cr3;
9897                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9898         }
9899
9900         kvm_mmu_reset_context(vcpu);
9901         return 0;
9902 }
9903
9904 /*
9905  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9906  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9907  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9908  * guest in a way that will both be appropriate to L1's requests, and our
9909  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9910  * function also has additional necessary side-effects, like setting various
9911  * vcpu->arch fields.
9912  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9913  * is assigned to entry_failure_code on failure.
9914  */
9915 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9916                           bool from_vmentry, u32 *entry_failure_code)
9917 {
9918         struct vcpu_vmx *vmx = to_vmx(vcpu);
9919         u32 exec_control;
9920
9921         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9922         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9923         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9924         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9925         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9926         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9927         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9928         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9929         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9930         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9931         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9932         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9933         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9934         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9935         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9936         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9937         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9938         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9939         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9940         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9941         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9942         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9943         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9944         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9945         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9946         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9947         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9948         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9949         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9950         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9951         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9952         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9953         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9954         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9955         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9956         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9957
9958         if (from_vmentry &&
9959             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
9960                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9961                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9962         } else {
9963                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9964                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9965         }
9966         if (from_vmentry) {
9967                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9968                              vmcs12->vm_entry_intr_info_field);
9969                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9970                              vmcs12->vm_entry_exception_error_code);
9971                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9972                              vmcs12->vm_entry_instruction_len);
9973                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9974                              vmcs12->guest_interruptibility_info);
9975         } else {
9976                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9977         }
9978         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9979         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9980         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9981                 vmcs12->guest_pending_dbg_exceptions);
9982         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9983         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9984
9985         if (nested_cpu_has_xsaves(vmcs12))
9986                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9987         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9988
9989         exec_control = vmcs12->pin_based_vm_exec_control;
9990
9991         /* Preemption timer setting is only taken from vmcs01.  */
9992         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9993         exec_control |= vmcs_config.pin_based_exec_ctrl;
9994         if (vmx->hv_deadline_tsc == -1)
9995                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9996
9997         /* Posted interrupts setting is only taken from vmcs12.  */
9998         if (nested_cpu_has_posted_intr(vmcs12)) {
9999                 /*
10000                  * Note that we use L0's vector here and in
10001                  * vmx_deliver_nested_posted_interrupt.
10002                  */
10003                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10004                 vmx->nested.pi_pending = false;
10005                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10006         } else {
10007                 exec_control &= ~PIN_BASED_POSTED_INTR;
10008         }
10009
10010         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10011
10012         vmx->nested.preemption_timer_expired = false;
10013         if (nested_cpu_has_preemption_timer(vmcs12))
10014                 vmx_start_preemption_timer(vcpu);
10015
10016         /*
10017          * Whether page-faults are trapped is determined by a combination of
10018          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10019          * If enable_ept, L0 doesn't care about page faults and we should
10020          * set all of these to L1's desires. However, if !enable_ept, L0 does
10021          * care about (at least some) page faults, and because it is not easy
10022          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10023          * to exit on each and every L2 page fault. This is done by setting
10024          * MASK=MATCH=0 and (see below) EB.PF=1.
10025          * Note that below we don't need special code to set EB.PF beyond the
10026          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10027          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10028          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10029          *
10030          * A problem with this approach (when !enable_ept) is that L1 may be
10031          * injected with more page faults than it asked for. This could have
10032          * caused problems, but in practice existing hypervisors don't care.
10033          * To fix this, we will need to emulate the PFEC checking (on the L1
10034          * page tables), using walk_addr(), when injecting PFs to L1.
10035          */
10036         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10037                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10038         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10039                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10040
10041         if (cpu_has_secondary_exec_ctrls()) {
10042                 exec_control = vmx_secondary_exec_control(vmx);
10043
10044                 /* Take the following fields only from vmcs12 */
10045                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10046                                   SECONDARY_EXEC_RDTSCP |
10047                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10048                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
10049                 if (nested_cpu_has(vmcs12,
10050                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10051                         exec_control |= vmcs12->secondary_vm_exec_control;
10052
10053                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10054                         vmcs_write64(EOI_EXIT_BITMAP0,
10055                                 vmcs12->eoi_exit_bitmap0);
10056                         vmcs_write64(EOI_EXIT_BITMAP1,
10057                                 vmcs12->eoi_exit_bitmap1);
10058                         vmcs_write64(EOI_EXIT_BITMAP2,
10059                                 vmcs12->eoi_exit_bitmap2);
10060                         vmcs_write64(EOI_EXIT_BITMAP3,
10061                                 vmcs12->eoi_exit_bitmap3);
10062                         vmcs_write16(GUEST_INTR_STATUS,
10063                                 vmcs12->guest_intr_status);
10064                 }
10065
10066                 /*
10067                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10068                  * nested_get_vmcs12_pages will either fix it up or
10069                  * remove the VM execution control.
10070                  */
10071                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10072                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10073
10074                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10075         }
10076
10077
10078         /*
10079          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10080          * Some constant fields are set here by vmx_set_constant_host_state().
10081          * Other fields are different per CPU, and will be set later when
10082          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10083          */
10084         vmx_set_constant_host_state(vmx);
10085
10086         /*
10087          * Set the MSR load/store lists to match L0's settings.
10088          */
10089         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10090         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10091         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10092         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10093         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10094
10095         /*
10096          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10097          * entry, but only if the current (host) sp changed from the value
10098          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10099          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10100          * here we just force the write to happen on entry.
10101          */
10102         vmx->host_rsp = 0;
10103
10104         exec_control = vmx_exec_control(vmx); /* L0's desires */
10105         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10106         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10107         exec_control &= ~CPU_BASED_TPR_SHADOW;
10108         exec_control |= vmcs12->cpu_based_vm_exec_control;
10109
10110         /*
10111          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10112          * nested_get_vmcs12_pages can't fix it up, the illegal value
10113          * will result in a VM entry failure.
10114          */
10115         if (exec_control & CPU_BASED_TPR_SHADOW) {
10116                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10117                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10118         }
10119
10120         /*
10121          * Merging of IO bitmap not currently supported.
10122          * Rather, exit every time.
10123          */
10124         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10125         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10126
10127         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10128
10129         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10130          * bitwise-or of what L1 wants to trap for L2, and what we want to
10131          * trap. Note that CR0.TS also needs updating - we do this later.
10132          */
10133         update_exception_bitmap(vcpu);
10134         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10135         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10136
10137         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10138          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10139          * bits are further modified by vmx_set_efer() below.
10140          */
10141         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10142
10143         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10144          * emulated by vmx_set_efer(), below.
10145          */
10146         vm_entry_controls_init(vmx, 
10147                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10148                         ~VM_ENTRY_IA32E_MODE) |
10149                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10150
10151         if (from_vmentry &&
10152             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10153                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10154                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10155         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10156                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10157         }
10158
10159         set_cr4_guest_host_mask(vmx);
10160
10161         if (from_vmentry &&
10162             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10163                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10164
10165         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10166                 vmcs_write64(TSC_OFFSET,
10167                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10168         else
10169                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10170         if (kvm_has_tsc_control)
10171                 decache_tsc_multiplier(vmx);
10172
10173         if (enable_vpid) {
10174                 /*
10175                  * There is no direct mapping between vpid02 and vpid12, the
10176                  * vpid02 is per-vCPU for L0 and reused while the value of
10177                  * vpid12 is changed w/ one invvpid during nested vmentry.
10178                  * The vpid12 is allocated by L1 for L2, so it will not
10179                  * influence global bitmap(for vpid01 and vpid02 allocation)
10180                  * even if spawn a lot of nested vCPUs.
10181                  */
10182                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10183                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10184                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10185                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10186                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10187                         }
10188                 } else {
10189                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10190                         vmx_flush_tlb(vcpu);
10191                 }
10192
10193         }
10194
10195         if (nested_cpu_has_ept(vmcs12)) {
10196                 if (nested_ept_init_mmu_context(vcpu)) {
10197                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10198                         return 1;
10199                 }
10200         } else if (nested_cpu_has2(vmcs12,
10201                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10202                 vmx_flush_tlb_ept_only(vcpu);
10203         }
10204
10205         /*
10206          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10207          * bits which we consider mandatory enabled.
10208          * The CR0_READ_SHADOW is what L2 should have expected to read given
10209          * the specifications by L1; It's not enough to take
10210          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10211          * have more bits than L1 expected.
10212          */
10213         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10214         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10215
10216         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10217         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10218
10219         if (from_vmentry &&
10220             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10221                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10222         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10223                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10224         else
10225                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10226         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10227         vmx_set_efer(vcpu, vcpu->arch.efer);
10228
10229         /* Shadow page tables on either EPT or shadow page tables. */
10230         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10231                                 entry_failure_code))
10232                 return 1;
10233
10234         if (!enable_ept)
10235                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10236
10237         /*
10238          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10239          */
10240         if (enable_ept) {
10241                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10242                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10243                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10244                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10245         }
10246
10247         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10248         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10249         return 0;
10250 }
10251
10252 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10253 {
10254         struct vcpu_vmx *vmx = to_vmx(vcpu);
10255
10256         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10257             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10258                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10259
10260         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10261                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10262
10263         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10264                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10265
10266         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10267                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10268
10269         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10270                                 vmx->nested.nested_vmx_procbased_ctls_low,
10271                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10272             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10273                                 vmx->nested.nested_vmx_secondary_ctls_low,
10274                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
10275             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10276                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10277                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10278             !vmx_control_verify(vmcs12->vm_exit_controls,
10279                                 vmx->nested.nested_vmx_exit_ctls_low,
10280                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10281             !vmx_control_verify(vmcs12->vm_entry_controls,
10282                                 vmx->nested.nested_vmx_entry_ctls_low,
10283                                 vmx->nested.nested_vmx_entry_ctls_high))
10284                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10285
10286         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10287             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10288             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10289                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10290
10291         return 0;
10292 }
10293
10294 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10295                                   u32 *exit_qual)
10296 {
10297         bool ia32e;
10298
10299         *exit_qual = ENTRY_FAIL_DEFAULT;
10300
10301         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10302             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10303                 return 1;
10304
10305         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10306             vmcs12->vmcs_link_pointer != -1ull) {
10307                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10308                 return 1;
10309         }
10310
10311         /*
10312          * If the load IA32_EFER VM-entry control is 1, the following checks
10313          * are performed on the field for the IA32_EFER MSR:
10314          * - Bits reserved in the IA32_EFER MSR must be 0.
10315          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10316          *   the IA-32e mode guest VM-exit control. It must also be identical
10317          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10318          *   CR0.PG) is 1.
10319          */
10320         if (to_vmx(vcpu)->nested.nested_run_pending &&
10321             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10322                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10323                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10324                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10325                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10326                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10327                         return 1;
10328         }
10329
10330         /*
10331          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10332          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10333          * the values of the LMA and LME bits in the field must each be that of
10334          * the host address-space size VM-exit control.
10335          */
10336         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10337                 ia32e = (vmcs12->vm_exit_controls &
10338                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10339                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10340                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10341                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10342                         return 1;
10343         }
10344
10345         return 0;
10346 }
10347
10348 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10349 {
10350         struct vcpu_vmx *vmx = to_vmx(vcpu);
10351         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10352         struct loaded_vmcs *vmcs02;
10353         u32 msr_entry_idx;
10354         u32 exit_qual;
10355
10356         vmcs02 = nested_get_current_vmcs02(vmx);
10357         if (!vmcs02)
10358                 return -ENOMEM;
10359
10360         enter_guest_mode(vcpu);
10361
10362         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10363                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10364
10365         vmx_switch_vmcs(vcpu, vmcs02);
10366         vmx_segment_cache_clear(vmx);
10367
10368         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10369                 leave_guest_mode(vcpu);
10370                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10371                 nested_vmx_entry_failure(vcpu, vmcs12,
10372                                          EXIT_REASON_INVALID_STATE, exit_qual);
10373                 return 1;
10374         }
10375
10376         nested_get_vmcs12_pages(vcpu, vmcs12);
10377
10378         msr_entry_idx = nested_vmx_load_msr(vcpu,
10379                                             vmcs12->vm_entry_msr_load_addr,
10380                                             vmcs12->vm_entry_msr_load_count);
10381         if (msr_entry_idx) {
10382                 leave_guest_mode(vcpu);
10383                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10384                 nested_vmx_entry_failure(vcpu, vmcs12,
10385                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10386                 return 1;
10387         }
10388
10389         vmcs12->launch_state = 1;
10390
10391         /*
10392          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10393          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10394          * returned as far as L1 is concerned. It will only return (and set
10395          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10396          */
10397         return 0;
10398 }
10399
10400 /*
10401  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10402  * for running an L2 nested guest.
10403  */
10404 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10405 {
10406         struct vmcs12 *vmcs12;
10407         struct vcpu_vmx *vmx = to_vmx(vcpu);
10408         u32 exit_qual;
10409         int ret;
10410
10411         if (!nested_vmx_check_permission(vcpu))
10412                 return 1;
10413
10414         if (!nested_vmx_check_vmcs12(vcpu))
10415                 goto out;
10416
10417         vmcs12 = get_vmcs12(vcpu);
10418
10419         if (enable_shadow_vmcs)
10420                 copy_shadow_to_vmcs12(vmx);
10421
10422         /*
10423          * The nested entry process starts with enforcing various prerequisites
10424          * on vmcs12 as required by the Intel SDM, and act appropriately when
10425          * they fail: As the SDM explains, some conditions should cause the
10426          * instruction to fail, while others will cause the instruction to seem
10427          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10428          * To speed up the normal (success) code path, we should avoid checking
10429          * for misconfigurations which will anyway be caught by the processor
10430          * when using the merged vmcs02.
10431          */
10432         if (vmcs12->launch_state == launch) {
10433                 nested_vmx_failValid(vcpu,
10434                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10435                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10436                 goto out;
10437         }
10438
10439         ret = check_vmentry_prereqs(vcpu, vmcs12);
10440         if (ret) {
10441                 nested_vmx_failValid(vcpu, ret);
10442                 goto out;
10443         }
10444
10445         /*
10446          * After this point, the trap flag no longer triggers a singlestep trap
10447          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10448          * This is not 100% correct; for performance reasons, we delegate most
10449          * of the checks on host state to the processor.  If those fail,
10450          * the singlestep trap is missed.
10451          */
10452         skip_emulated_instruction(vcpu);
10453
10454         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10455         if (ret) {
10456                 nested_vmx_entry_failure(vcpu, vmcs12,
10457                                          EXIT_REASON_INVALID_STATE, exit_qual);
10458                 return 1;
10459         }
10460
10461         /*
10462          * We're finally done with prerequisite checking, and can start with
10463          * the nested entry.
10464          */
10465
10466         ret = enter_vmx_non_root_mode(vcpu, true);
10467         if (ret)
10468                 return ret;
10469
10470         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10471                 return kvm_vcpu_halt(vcpu);
10472
10473         vmx->nested.nested_run_pending = 1;
10474
10475         return 1;
10476
10477 out:
10478         return kvm_skip_emulated_instruction(vcpu);
10479 }
10480
10481 /*
10482  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10483  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10484  * This function returns the new value we should put in vmcs12.guest_cr0.
10485  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10486  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10487  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10488  *     didn't trap the bit, because if L1 did, so would L0).
10489  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10490  *     been modified by L2, and L1 knows it. So just leave the old value of
10491  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10492  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10493  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10494  *     changed these bits, and therefore they need to be updated, but L0
10495  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10496  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10497  */
10498 static inline unsigned long
10499 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10500 {
10501         return
10502         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10503         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10504         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10505                         vcpu->arch.cr0_guest_owned_bits));
10506 }
10507
10508 static inline unsigned long
10509 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10510 {
10511         return
10512         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10513         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10514         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10515                         vcpu->arch.cr4_guest_owned_bits));
10516 }
10517
10518 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10519                                        struct vmcs12 *vmcs12)
10520 {
10521         u32 idt_vectoring;
10522         unsigned int nr;
10523
10524         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10525                 nr = vcpu->arch.exception.nr;
10526                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10527
10528                 if (kvm_exception_is_soft(nr)) {
10529                         vmcs12->vm_exit_instruction_len =
10530                                 vcpu->arch.event_exit_inst_len;
10531                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10532                 } else
10533                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10534
10535                 if (vcpu->arch.exception.has_error_code) {
10536                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10537                         vmcs12->idt_vectoring_error_code =
10538                                 vcpu->arch.exception.error_code;
10539                 }
10540
10541                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10542         } else if (vcpu->arch.nmi_injected) {
10543                 vmcs12->idt_vectoring_info_field =
10544                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10545         } else if (vcpu->arch.interrupt.pending) {
10546                 nr = vcpu->arch.interrupt.nr;
10547                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10548
10549                 if (vcpu->arch.interrupt.soft) {
10550                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10551                         vmcs12->vm_entry_instruction_len =
10552                                 vcpu->arch.event_exit_inst_len;
10553                 } else
10554                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10555
10556                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10557         }
10558 }
10559
10560 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10561 {
10562         struct vcpu_vmx *vmx = to_vmx(vcpu);
10563
10564         if (vcpu->arch.exception.pending ||
10565                 vcpu->arch.nmi_injected ||
10566                 vcpu->arch.interrupt.pending)
10567                 return -EBUSY;
10568
10569         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10570             vmx->nested.preemption_timer_expired) {
10571                 if (vmx->nested.nested_run_pending)
10572                         return -EBUSY;
10573                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10574                 return 0;
10575         }
10576
10577         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10578                 if (vmx->nested.nested_run_pending)
10579                         return -EBUSY;
10580                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10581                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10582                                   INTR_INFO_VALID_MASK, 0);
10583                 /*
10584                  * The NMI-triggered VM exit counts as injection:
10585                  * clear this one and block further NMIs.
10586                  */
10587                 vcpu->arch.nmi_pending = 0;
10588                 vmx_set_nmi_mask(vcpu, true);
10589                 return 0;
10590         }
10591
10592         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10593             nested_exit_on_intr(vcpu)) {
10594                 if (vmx->nested.nested_run_pending)
10595                         return -EBUSY;
10596                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10597                 return 0;
10598         }
10599
10600         vmx_complete_nested_posted_interrupt(vcpu);
10601         return 0;
10602 }
10603
10604 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10605 {
10606         ktime_t remaining =
10607                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10608         u64 value;
10609
10610         if (ktime_to_ns(remaining) <= 0)
10611                 return 0;
10612
10613         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10614         do_div(value, 1000000);
10615         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10616 }
10617
10618 /*
10619  * Update the guest state fields of vmcs12 to reflect changes that
10620  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10621  * VM-entry controls is also updated, since this is really a guest
10622  * state bit.)
10623  */
10624 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10625 {
10626         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10627         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10628
10629         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10630         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10631         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10632
10633         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10634         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10635         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10636         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10637         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10638         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10639         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10640         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10641         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10642         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10643         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10644         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10645         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10646         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10647         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10648         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10649         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10650         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10651         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10652         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10653         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10654         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10655         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10656         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10657         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10658         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10659         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10660         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10661         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10662         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10663         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10664         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10665         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10666         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10667         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10668         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10669
10670         vmcs12->guest_interruptibility_info =
10671                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10672         vmcs12->guest_pending_dbg_exceptions =
10673                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10674         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10675                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10676         else
10677                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10678
10679         if (nested_cpu_has_preemption_timer(vmcs12)) {
10680                 if (vmcs12->vm_exit_controls &
10681                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10682                         vmcs12->vmx_preemption_timer_value =
10683                                 vmx_get_preemption_timer_value(vcpu);
10684                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10685         }
10686
10687         /*
10688          * In some cases (usually, nested EPT), L2 is allowed to change its
10689          * own CR3 without exiting. If it has changed it, we must keep it.
10690          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10691          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10692          *
10693          * Additionally, restore L2's PDPTR to vmcs12.
10694          */
10695         if (enable_ept) {
10696                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10697                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10698                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10699                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10700                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10701         }
10702
10703         if (nested_cpu_has_ept(vmcs12))
10704                 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10705
10706         if (nested_cpu_has_vid(vmcs12))
10707                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10708
10709         vmcs12->vm_entry_controls =
10710                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10711                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10712
10713         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10714                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10715                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10716         }
10717
10718         /* TODO: These cannot have changed unless we have MSR bitmaps and
10719          * the relevant bit asks not to trap the change */
10720         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10721                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10722         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10723                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10724         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10725         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10726         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10727         if (kvm_mpx_supported())
10728                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10729         if (nested_cpu_has_xsaves(vmcs12))
10730                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10731 }
10732
10733 /*
10734  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10735  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10736  * and this function updates it to reflect the changes to the guest state while
10737  * L2 was running (and perhaps made some exits which were handled directly by L0
10738  * without going back to L1), and to reflect the exit reason.
10739  * Note that we do not have to copy here all VMCS fields, just those that
10740  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10741  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10742  * which already writes to vmcs12 directly.
10743  */
10744 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10745                            u32 exit_reason, u32 exit_intr_info,
10746                            unsigned long exit_qualification)
10747 {
10748         /* update guest state fields: */
10749         sync_vmcs12(vcpu, vmcs12);
10750
10751         /* update exit information fields: */
10752
10753         vmcs12->vm_exit_reason = exit_reason;
10754         vmcs12->exit_qualification = exit_qualification;
10755
10756         vmcs12->vm_exit_intr_info = exit_intr_info;
10757         if ((vmcs12->vm_exit_intr_info &
10758              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10759             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10760                 vmcs12->vm_exit_intr_error_code =
10761                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10762         vmcs12->idt_vectoring_info_field = 0;
10763         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10764         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10765
10766         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10767                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10768                  * instead of reading the real value. */
10769                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10770
10771                 /*
10772                  * Transfer the event that L0 or L1 may wanted to inject into
10773                  * L2 to IDT_VECTORING_INFO_FIELD.
10774                  */
10775                 vmcs12_save_pending_event(vcpu, vmcs12);
10776         }
10777
10778         /*
10779          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10780          * preserved above and would only end up incorrectly in L1.
10781          */
10782         vcpu->arch.nmi_injected = false;
10783         kvm_clear_exception_queue(vcpu);
10784         kvm_clear_interrupt_queue(vcpu);
10785 }
10786
10787 /*
10788  * A part of what we need to when the nested L2 guest exits and we want to
10789  * run its L1 parent, is to reset L1's guest state to the host state specified
10790  * in vmcs12.
10791  * This function is to be called not only on normal nested exit, but also on
10792  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10793  * Failures During or After Loading Guest State").
10794  * This function should be called when the active VMCS is L1's (vmcs01).
10795  */
10796 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10797                                    struct vmcs12 *vmcs12)
10798 {
10799         struct kvm_segment seg;
10800         u32 entry_failure_code;
10801
10802         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10803                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10804         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10805                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10806         else
10807                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10808         vmx_set_efer(vcpu, vcpu->arch.efer);
10809
10810         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10811         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10812         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10813         /*
10814          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10815          * actually changed, because vmx_set_cr0 refers to efer set above.
10816          *
10817          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10818          * (KVM doesn't change it);
10819          */
10820         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10821         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10822
10823         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
10824         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10825         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10826
10827         nested_ept_uninit_mmu_context(vcpu);
10828
10829         /*
10830          * Only PDPTE load can fail as the value of cr3 was checked on entry and
10831          * couldn't have changed.
10832          */
10833         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10834                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10835
10836         if (!enable_ept)
10837                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10838
10839         if (enable_vpid) {
10840                 /*
10841                  * Trivially support vpid by letting L2s share their parent
10842                  * L1's vpid. TODO: move to a more elaborate solution, giving
10843                  * each L2 its own vpid and exposing the vpid feature to L1.
10844                  */
10845                 vmx_flush_tlb(vcpu);
10846         }
10847
10848
10849         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10850         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10851         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10852         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10853         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10854
10855         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10856         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10857                 vmcs_write64(GUEST_BNDCFGS, 0);
10858
10859         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10860                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10861                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10862         }
10863         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10864                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10865                         vmcs12->host_ia32_perf_global_ctrl);
10866
10867         /* Set L1 segment info according to Intel SDM
10868             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10869         seg = (struct kvm_segment) {
10870                 .base = 0,
10871                 .limit = 0xFFFFFFFF,
10872                 .selector = vmcs12->host_cs_selector,
10873                 .type = 11,
10874                 .present = 1,
10875                 .s = 1,
10876                 .g = 1
10877         };
10878         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10879                 seg.l = 1;
10880         else
10881                 seg.db = 1;
10882         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10883         seg = (struct kvm_segment) {
10884                 .base = 0,
10885                 .limit = 0xFFFFFFFF,
10886                 .type = 3,
10887                 .present = 1,
10888                 .s = 1,
10889                 .db = 1,
10890                 .g = 1
10891         };
10892         seg.selector = vmcs12->host_ds_selector;
10893         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10894         seg.selector = vmcs12->host_es_selector;
10895         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10896         seg.selector = vmcs12->host_ss_selector;
10897         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10898         seg.selector = vmcs12->host_fs_selector;
10899         seg.base = vmcs12->host_fs_base;
10900         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10901         seg.selector = vmcs12->host_gs_selector;
10902         seg.base = vmcs12->host_gs_base;
10903         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10904         seg = (struct kvm_segment) {
10905                 .base = vmcs12->host_tr_base,
10906                 .limit = 0x67,
10907                 .selector = vmcs12->host_tr_selector,
10908                 .type = 11,
10909                 .present = 1
10910         };
10911         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10912
10913         kvm_set_dr(vcpu, 7, 0x400);
10914         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10915
10916         if (cpu_has_vmx_msr_bitmap())
10917                 vmx_set_msr_bitmap(vcpu);
10918
10919         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10920                                 vmcs12->vm_exit_msr_load_count))
10921                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10922 }
10923
10924 /*
10925  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10926  * and modify vmcs12 to make it see what it would expect to see there if
10927  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10928  */
10929 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10930                               u32 exit_intr_info,
10931                               unsigned long exit_qualification)
10932 {
10933         struct vcpu_vmx *vmx = to_vmx(vcpu);
10934         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10935         u32 vm_inst_error = 0;
10936
10937         /* trying to cancel vmlaunch/vmresume is a bug */
10938         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10939
10940         leave_guest_mode(vcpu);
10941         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10942                        exit_qualification);
10943
10944         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10945                                  vmcs12->vm_exit_msr_store_count))
10946                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10947
10948         if (unlikely(vmx->fail))
10949                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
10950
10951         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10952
10953         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10954             && nested_exit_intr_ack_set(vcpu)) {
10955                 int irq = kvm_cpu_get_interrupt(vcpu);
10956                 WARN_ON(irq < 0);
10957                 vmcs12->vm_exit_intr_info = irq |
10958                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10959         }
10960
10961         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10962                                        vmcs12->exit_qualification,
10963                                        vmcs12->idt_vectoring_info_field,
10964                                        vmcs12->vm_exit_intr_info,
10965                                        vmcs12->vm_exit_intr_error_code,
10966                                        KVM_ISA_VMX);
10967
10968         vm_entry_controls_reset_shadow(vmx);
10969         vm_exit_controls_reset_shadow(vmx);
10970         vmx_segment_cache_clear(vmx);
10971
10972         /* if no vmcs02 cache requested, remove the one we used */
10973         if (VMCS02_POOL_SIZE == 0)
10974                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10975
10976         load_vmcs12_host_state(vcpu, vmcs12);
10977
10978         /* Update any VMCS fields that might have changed while L2 ran */
10979         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10980         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10981         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10982         if (vmx->hv_deadline_tsc == -1)
10983                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10984                                 PIN_BASED_VMX_PREEMPTION_TIMER);
10985         else
10986                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10987                               PIN_BASED_VMX_PREEMPTION_TIMER);
10988         if (kvm_has_tsc_control)
10989                 decache_tsc_multiplier(vmx);
10990
10991         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10992                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10993                 vmx_set_virtual_x2apic_mode(vcpu,
10994                                 vcpu->arch.apic_base & X2APIC_ENABLE);
10995         } else if (!nested_cpu_has_ept(vmcs12) &&
10996                    nested_cpu_has2(vmcs12,
10997                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10998                 vmx_flush_tlb_ept_only(vcpu);
10999         }
11000
11001         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11002         vmx->host_rsp = 0;
11003
11004         /* Unpin physical memory we referred to in vmcs02 */
11005         if (vmx->nested.apic_access_page) {
11006                 nested_release_page(vmx->nested.apic_access_page);
11007                 vmx->nested.apic_access_page = NULL;
11008         }
11009         if (vmx->nested.virtual_apic_page) {
11010                 nested_release_page(vmx->nested.virtual_apic_page);
11011                 vmx->nested.virtual_apic_page = NULL;
11012         }
11013         if (vmx->nested.pi_desc_page) {
11014                 kunmap(vmx->nested.pi_desc_page);
11015                 nested_release_page(vmx->nested.pi_desc_page);
11016                 vmx->nested.pi_desc_page = NULL;
11017                 vmx->nested.pi_desc = NULL;
11018         }
11019
11020         /*
11021          * We are now running in L2, mmu_notifier will force to reload the
11022          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11023          */
11024         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11025
11026         /*
11027          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11028          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11029          * success or failure flag accordingly.
11030          */
11031         if (unlikely(vmx->fail)) {
11032                 vmx->fail = 0;
11033                 nested_vmx_failValid(vcpu, vm_inst_error);
11034         } else
11035                 nested_vmx_succeed(vcpu);
11036         if (enable_shadow_vmcs)
11037                 vmx->nested.sync_shadow_vmcs = true;
11038
11039         /* in case we halted in L2 */
11040         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11041 }
11042
11043 /*
11044  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11045  */
11046 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11047 {
11048         if (is_guest_mode(vcpu)) {
11049                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11050                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11051         }
11052         free_nested(to_vmx(vcpu));
11053 }
11054
11055 /*
11056  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11057  * 23.7 "VM-entry failures during or after loading guest state" (this also
11058  * lists the acceptable exit-reason and exit-qualification parameters).
11059  * It should only be called before L2 actually succeeded to run, and when
11060  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11061  */
11062 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11063                         struct vmcs12 *vmcs12,
11064                         u32 reason, unsigned long qualification)
11065 {
11066         load_vmcs12_host_state(vcpu, vmcs12);
11067         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11068         vmcs12->exit_qualification = qualification;
11069         nested_vmx_succeed(vcpu);
11070         if (enable_shadow_vmcs)
11071                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11072 }
11073
11074 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11075                                struct x86_instruction_info *info,
11076                                enum x86_intercept_stage stage)
11077 {
11078         return X86EMUL_CONTINUE;
11079 }
11080
11081 #ifdef CONFIG_X86_64
11082 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11083 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11084                                   u64 divisor, u64 *result)
11085 {
11086         u64 low = a << shift, high = a >> (64 - shift);
11087
11088         /* To avoid the overflow on divq */
11089         if (high >= divisor)
11090                 return 1;
11091
11092         /* Low hold the result, high hold rem which is discarded */
11093         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11094             "rm" (divisor), "0" (low), "1" (high));
11095         *result = low;
11096
11097         return 0;
11098 }
11099
11100 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11101 {
11102         struct vcpu_vmx *vmx = to_vmx(vcpu);
11103         u64 tscl = rdtsc();
11104         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11105         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11106
11107         /* Convert to host delta tsc if tsc scaling is enabled */
11108         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11109                         u64_shl_div_u64(delta_tsc,
11110                                 kvm_tsc_scaling_ratio_frac_bits,
11111                                 vcpu->arch.tsc_scaling_ratio,
11112                                 &delta_tsc))
11113                 return -ERANGE;
11114
11115         /*
11116          * If the delta tsc can't fit in the 32 bit after the multi shift,
11117          * we can't use the preemption timer.
11118          * It's possible that it fits on later vmentries, but checking
11119          * on every vmentry is costly so we just use an hrtimer.
11120          */
11121         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11122                 return -ERANGE;
11123
11124         vmx->hv_deadline_tsc = tscl + delta_tsc;
11125         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11126                         PIN_BASED_VMX_PREEMPTION_TIMER);
11127         return 0;
11128 }
11129
11130 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11131 {
11132         struct vcpu_vmx *vmx = to_vmx(vcpu);
11133         vmx->hv_deadline_tsc = -1;
11134         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11135                         PIN_BASED_VMX_PREEMPTION_TIMER);
11136 }
11137 #endif
11138
11139 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11140 {
11141         if (ple_gap)
11142                 shrink_ple_window(vcpu);
11143 }
11144
11145 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11146                                      struct kvm_memory_slot *slot)
11147 {
11148         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11149         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11150 }
11151
11152 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11153                                        struct kvm_memory_slot *slot)
11154 {
11155         kvm_mmu_slot_set_dirty(kvm, slot);
11156 }
11157
11158 static void vmx_flush_log_dirty(struct kvm *kvm)
11159 {
11160         kvm_flush_pml_buffers(kvm);
11161 }
11162
11163 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11164                                            struct kvm_memory_slot *memslot,
11165                                            gfn_t offset, unsigned long mask)
11166 {
11167         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11168 }
11169
11170 /*
11171  * This routine does the following things for vCPU which is going
11172  * to be blocked if VT-d PI is enabled.
11173  * - Store the vCPU to the wakeup list, so when interrupts happen
11174  *   we can find the right vCPU to wake up.
11175  * - Change the Posted-interrupt descriptor as below:
11176  *      'NDST' <-- vcpu->pre_pcpu
11177  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11178  * - If 'ON' is set during this process, which means at least one
11179  *   interrupt is posted for this vCPU, we cannot block it, in
11180  *   this case, return 1, otherwise, return 0.
11181  *
11182  */
11183 static int pi_pre_block(struct kvm_vcpu *vcpu)
11184 {
11185         unsigned long flags;
11186         unsigned int dest;
11187         struct pi_desc old, new;
11188         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11189
11190         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11191                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11192                 !kvm_vcpu_apicv_active(vcpu))
11193                 return 0;
11194
11195         vcpu->pre_pcpu = vcpu->cpu;
11196         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11197                           vcpu->pre_pcpu), flags);
11198         list_add_tail(&vcpu->blocked_vcpu_list,
11199                       &per_cpu(blocked_vcpu_on_cpu,
11200                       vcpu->pre_pcpu));
11201         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11202                                vcpu->pre_pcpu), flags);
11203
11204         do {
11205                 old.control = new.control = pi_desc->control;
11206
11207                 /*
11208                  * We should not block the vCPU if
11209                  * an interrupt is posted for it.
11210                  */
11211                 if (pi_test_on(pi_desc) == 1) {
11212                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11213                                           vcpu->pre_pcpu), flags);
11214                         list_del(&vcpu->blocked_vcpu_list);
11215                         spin_unlock_irqrestore(
11216                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11217                                         vcpu->pre_pcpu), flags);
11218                         vcpu->pre_pcpu = -1;
11219
11220                         return 1;
11221                 }
11222
11223                 WARN((pi_desc->sn == 1),
11224                      "Warning: SN field of posted-interrupts "
11225                      "is set before blocking\n");
11226
11227                 /*
11228                  * Since vCPU can be preempted during this process,
11229                  * vcpu->cpu could be different with pre_pcpu, we
11230                  * need to set pre_pcpu as the destination of wakeup
11231                  * notification event, then we can find the right vCPU
11232                  * to wakeup in wakeup handler if interrupts happen
11233                  * when the vCPU is in blocked state.
11234                  */
11235                 dest = cpu_physical_id(vcpu->pre_pcpu);
11236
11237                 if (x2apic_enabled())
11238                         new.ndst = dest;
11239                 else
11240                         new.ndst = (dest << 8) & 0xFF00;
11241
11242                 /* set 'NV' to 'wakeup vector' */
11243                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11244         } while (cmpxchg(&pi_desc->control, old.control,
11245                         new.control) != old.control);
11246
11247         return 0;
11248 }
11249
11250 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11251 {
11252         if (pi_pre_block(vcpu))
11253                 return 1;
11254
11255         if (kvm_lapic_hv_timer_in_use(vcpu))
11256                 kvm_lapic_switch_to_sw_timer(vcpu);
11257
11258         return 0;
11259 }
11260
11261 static void pi_post_block(struct kvm_vcpu *vcpu)
11262 {
11263         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11264         struct pi_desc old, new;
11265         unsigned int dest;
11266         unsigned long flags;
11267
11268         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11269                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11270                 !kvm_vcpu_apicv_active(vcpu))
11271                 return;
11272
11273         do {
11274                 old.control = new.control = pi_desc->control;
11275
11276                 dest = cpu_physical_id(vcpu->cpu);
11277
11278                 if (x2apic_enabled())
11279                         new.ndst = dest;
11280                 else
11281                         new.ndst = (dest << 8) & 0xFF00;
11282
11283                 /* Allow posting non-urgent interrupts */
11284                 new.sn = 0;
11285
11286                 /* set 'NV' to 'notification vector' */
11287                 new.nv = POSTED_INTR_VECTOR;
11288         } while (cmpxchg(&pi_desc->control, old.control,
11289                         new.control) != old.control);
11290
11291         if(vcpu->pre_pcpu != -1) {
11292                 spin_lock_irqsave(
11293                         &per_cpu(blocked_vcpu_on_cpu_lock,
11294                         vcpu->pre_pcpu), flags);
11295                 list_del(&vcpu->blocked_vcpu_list);
11296                 spin_unlock_irqrestore(
11297                         &per_cpu(blocked_vcpu_on_cpu_lock,
11298                         vcpu->pre_pcpu), flags);
11299                 vcpu->pre_pcpu = -1;
11300         }
11301 }
11302
11303 static void vmx_post_block(struct kvm_vcpu *vcpu)
11304 {
11305         if (kvm_x86_ops->set_hv_timer)
11306                 kvm_lapic_switch_to_hv_timer(vcpu);
11307
11308         pi_post_block(vcpu);
11309 }
11310
11311 /*
11312  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11313  *
11314  * @kvm: kvm
11315  * @host_irq: host irq of the interrupt
11316  * @guest_irq: gsi of the interrupt
11317  * @set: set or unset PI
11318  * returns 0 on success, < 0 on failure
11319  */
11320 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11321                               uint32_t guest_irq, bool set)
11322 {
11323         struct kvm_kernel_irq_routing_entry *e;
11324         struct kvm_irq_routing_table *irq_rt;
11325         struct kvm_lapic_irq irq;
11326         struct kvm_vcpu *vcpu;
11327         struct vcpu_data vcpu_info;
11328         int idx, ret = -EINVAL;
11329
11330         if (!kvm_arch_has_assigned_device(kvm) ||
11331                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11332                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11333                 return 0;
11334
11335         idx = srcu_read_lock(&kvm->irq_srcu);
11336         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11337         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11338
11339         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11340                 if (e->type != KVM_IRQ_ROUTING_MSI)
11341                         continue;
11342                 /*
11343                  * VT-d PI cannot support posting multicast/broadcast
11344                  * interrupts to a vCPU, we still use interrupt remapping
11345                  * for these kind of interrupts.
11346                  *
11347                  * For lowest-priority interrupts, we only support
11348                  * those with single CPU as the destination, e.g. user
11349                  * configures the interrupts via /proc/irq or uses
11350                  * irqbalance to make the interrupts single-CPU.
11351                  *
11352                  * We will support full lowest-priority interrupt later.
11353                  */
11354
11355                 kvm_set_msi_irq(kvm, e, &irq);
11356                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11357                         /*
11358                          * Make sure the IRTE is in remapped mode if
11359                          * we don't handle it in posted mode.
11360                          */
11361                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11362                         if (ret < 0) {
11363                                 printk(KERN_INFO
11364                                    "failed to back to remapped mode, irq: %u\n",
11365                                    host_irq);
11366                                 goto out;
11367                         }
11368
11369                         continue;
11370                 }
11371
11372                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11373                 vcpu_info.vector = irq.vector;
11374
11375                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11376                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11377
11378                 if (set)
11379                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11380                 else {
11381                         /* suppress notification event before unposting */
11382                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11383                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11384                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11385                 }
11386
11387                 if (ret < 0) {
11388                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11389                                         __func__);
11390                         goto out;
11391                 }
11392         }
11393
11394         ret = 0;
11395 out:
11396         srcu_read_unlock(&kvm->irq_srcu, idx);
11397         return ret;
11398 }
11399
11400 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11401 {
11402         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11403                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11404                         FEATURE_CONTROL_LMCE;
11405         else
11406                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11407                         ~FEATURE_CONTROL_LMCE;
11408 }
11409
11410 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11411         .cpu_has_kvm_support = cpu_has_kvm_support,
11412         .disabled_by_bios = vmx_disabled_by_bios,
11413         .hardware_setup = hardware_setup,
11414         .hardware_unsetup = hardware_unsetup,
11415         .check_processor_compatibility = vmx_check_processor_compat,
11416         .hardware_enable = hardware_enable,
11417         .hardware_disable = hardware_disable,
11418         .cpu_has_accelerated_tpr = report_flexpriority,
11419         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11420
11421         .vcpu_create = vmx_create_vcpu,
11422         .vcpu_free = vmx_free_vcpu,
11423         .vcpu_reset = vmx_vcpu_reset,
11424
11425         .prepare_guest_switch = vmx_save_host_state,
11426         .vcpu_load = vmx_vcpu_load,
11427         .vcpu_put = vmx_vcpu_put,
11428
11429         .update_bp_intercept = update_exception_bitmap,
11430         .get_msr = vmx_get_msr,
11431         .set_msr = vmx_set_msr,
11432         .get_segment_base = vmx_get_segment_base,
11433         .get_segment = vmx_get_segment,
11434         .set_segment = vmx_set_segment,
11435         .get_cpl = vmx_get_cpl,
11436         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11437         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11438         .decache_cr3 = vmx_decache_cr3,
11439         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11440         .set_cr0 = vmx_set_cr0,
11441         .set_cr3 = vmx_set_cr3,
11442         .set_cr4 = vmx_set_cr4,
11443         .set_efer = vmx_set_efer,
11444         .get_idt = vmx_get_idt,
11445         .set_idt = vmx_set_idt,
11446         .get_gdt = vmx_get_gdt,
11447         .set_gdt = vmx_set_gdt,
11448         .get_dr6 = vmx_get_dr6,
11449         .set_dr6 = vmx_set_dr6,
11450         .set_dr7 = vmx_set_dr7,
11451         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11452         .cache_reg = vmx_cache_reg,
11453         .get_rflags = vmx_get_rflags,
11454         .set_rflags = vmx_set_rflags,
11455
11456         .get_pkru = vmx_get_pkru,
11457
11458         .tlb_flush = vmx_flush_tlb,
11459
11460         .run = vmx_vcpu_run,
11461         .handle_exit = vmx_handle_exit,
11462         .skip_emulated_instruction = skip_emulated_instruction,
11463         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11464         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11465         .patch_hypercall = vmx_patch_hypercall,
11466         .set_irq = vmx_inject_irq,
11467         .set_nmi = vmx_inject_nmi,
11468         .queue_exception = vmx_queue_exception,
11469         .cancel_injection = vmx_cancel_injection,
11470         .interrupt_allowed = vmx_interrupt_allowed,
11471         .nmi_allowed = vmx_nmi_allowed,
11472         .get_nmi_mask = vmx_get_nmi_mask,
11473         .set_nmi_mask = vmx_set_nmi_mask,
11474         .enable_nmi_window = enable_nmi_window,
11475         .enable_irq_window = enable_irq_window,
11476         .update_cr8_intercept = update_cr8_intercept,
11477         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11478         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11479         .get_enable_apicv = vmx_get_enable_apicv,
11480         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11481         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11482         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11483         .hwapic_irr_update = vmx_hwapic_irr_update,
11484         .hwapic_isr_update = vmx_hwapic_isr_update,
11485         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11486         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11487
11488         .set_tss_addr = vmx_set_tss_addr,
11489         .get_tdp_level = get_ept_level,
11490         .get_mt_mask = vmx_get_mt_mask,
11491
11492         .get_exit_info = vmx_get_exit_info,
11493
11494         .get_lpage_level = vmx_get_lpage_level,
11495
11496         .cpuid_update = vmx_cpuid_update,
11497
11498         .rdtscp_supported = vmx_rdtscp_supported,
11499         .invpcid_supported = vmx_invpcid_supported,
11500
11501         .set_supported_cpuid = vmx_set_supported_cpuid,
11502
11503         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11504
11505         .write_tsc_offset = vmx_write_tsc_offset,
11506
11507         .set_tdp_cr3 = vmx_set_cr3,
11508
11509         .check_intercept = vmx_check_intercept,
11510         .handle_external_intr = vmx_handle_external_intr,
11511         .mpx_supported = vmx_mpx_supported,
11512         .xsaves_supported = vmx_xsaves_supported,
11513
11514         .check_nested_events = vmx_check_nested_events,
11515
11516         .sched_in = vmx_sched_in,
11517
11518         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11519         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11520         .flush_log_dirty = vmx_flush_log_dirty,
11521         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11522
11523         .pre_block = vmx_pre_block,
11524         .post_block = vmx_post_block,
11525
11526         .pmu_ops = &intel_pmu_ops,
11527
11528         .update_pi_irte = vmx_update_pi_irte,
11529
11530 #ifdef CONFIG_X86_64
11531         .set_hv_timer = vmx_set_hv_timer,
11532         .cancel_hv_timer = vmx_cancel_hv_timer,
11533 #endif
11534
11535         .setup_mce = vmx_setup_mce,
11536 };
11537
11538 static int __init vmx_init(void)
11539 {
11540         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11541                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11542         if (r)
11543                 return r;
11544
11545 #ifdef CONFIG_KEXEC_CORE
11546         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11547                            crash_vmclear_local_loaded_vmcss);
11548 #endif
11549
11550         return 0;
11551 }
11552
11553 static void __exit vmx_exit(void)
11554 {
11555 #ifdef CONFIG_KEXEC_CORE
11556         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11557         synchronize_rcu();
11558 #endif
11559
11560         kvm_exit();
11561 }
11562
11563 module_init(vmx_init)
11564 module_exit(vmx_exit)