]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
KVM: x86: replace vm_has_apicv hook with cpu_uses_apicv
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/fpu/internal.h>
44 #include <asm/perf_event.h>
45 #include <asm/debugreg.h>
46 #include <asm/kexec.h>
47 #include <asm/apic.h>
48
49 #include "trace.h"
50 #include "pmu.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_VMX),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76                         enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON                                            \
111         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS                                      \
113         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
114          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125  * ple_gap:    upper bound on the amount of time between two successive
126  *             executions of PAUSE in a loop. Also indicate if ple enabled.
127  *             According to test, this time is usually smaller than 128 cycles.
128  * ple_window: upper bound on the amount of time a guest is allowed to execute
129  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
130  *             less than 2^12 cycles
131  * Time is measured based on a counter that runs at the same rate as the TSC,
132  * refer SDM volume 3b section 21.6.13 & 22.1.3.
133  */
134 #define KVM_VMX_DEFAULT_PLE_GAP           128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
139                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166         u32 revision_id;
167         u32 abort;
168         char data[0];
169 };
170
171 /*
172  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174  * loaded on this CPU (so we can clear them if the CPU goes down).
175  */
176 struct loaded_vmcs {
177         struct vmcs *vmcs;
178         int cpu;
179         int launched;
180         struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184         unsigned index;
185         u64 data;
186         u64 mask;
187 };
188
189 /*
190  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195  * More than one of these structures may exist, if L1 runs multiple L2 guests.
196  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197  * underlying hardware which will be used to run L2.
198  * This structure is packed to ensure that its layout is identical across
199  * machines (necessary for live migration).
200  * If there are changes in this struct, VMCS12_REVISION must be changed.
201  */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204         /* According to the Intel spec, a VMCS region must start with the
205          * following two fields. Then follow implementation-specific data.
206          */
207         u32 revision_id;
208         u32 abort;
209
210         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211         u32 padding[7]; /* room for future expansion */
212
213         u64 io_bitmap_a;
214         u64 io_bitmap_b;
215         u64 msr_bitmap;
216         u64 vm_exit_msr_store_addr;
217         u64 vm_exit_msr_load_addr;
218         u64 vm_entry_msr_load_addr;
219         u64 tsc_offset;
220         u64 virtual_apic_page_addr;
221         u64 apic_access_addr;
222         u64 posted_intr_desc_addr;
223         u64 ept_pointer;
224         u64 eoi_exit_bitmap0;
225         u64 eoi_exit_bitmap1;
226         u64 eoi_exit_bitmap2;
227         u64 eoi_exit_bitmap3;
228         u64 xss_exit_bitmap;
229         u64 guest_physical_address;
230         u64 vmcs_link_pointer;
231         u64 guest_ia32_debugctl;
232         u64 guest_ia32_pat;
233         u64 guest_ia32_efer;
234         u64 guest_ia32_perf_global_ctrl;
235         u64 guest_pdptr0;
236         u64 guest_pdptr1;
237         u64 guest_pdptr2;
238         u64 guest_pdptr3;
239         u64 guest_bndcfgs;
240         u64 host_ia32_pat;
241         u64 host_ia32_efer;
242         u64 host_ia32_perf_global_ctrl;
243         u64 padding64[8]; /* room for future expansion */
244         /*
245          * To allow migration of L1 (complete with its L2 guests) between
246          * machines of different natural widths (32 or 64 bit), we cannot have
247          * unsigned long fields with no explict size. We use u64 (aliased
248          * natural_width) instead. Luckily, x86 is little-endian.
249          */
250         natural_width cr0_guest_host_mask;
251         natural_width cr4_guest_host_mask;
252         natural_width cr0_read_shadow;
253         natural_width cr4_read_shadow;
254         natural_width cr3_target_value0;
255         natural_width cr3_target_value1;
256         natural_width cr3_target_value2;
257         natural_width cr3_target_value3;
258         natural_width exit_qualification;
259         natural_width guest_linear_address;
260         natural_width guest_cr0;
261         natural_width guest_cr3;
262         natural_width guest_cr4;
263         natural_width guest_es_base;
264         natural_width guest_cs_base;
265         natural_width guest_ss_base;
266         natural_width guest_ds_base;
267         natural_width guest_fs_base;
268         natural_width guest_gs_base;
269         natural_width guest_ldtr_base;
270         natural_width guest_tr_base;
271         natural_width guest_gdtr_base;
272         natural_width guest_idtr_base;
273         natural_width guest_dr7;
274         natural_width guest_rsp;
275         natural_width guest_rip;
276         natural_width guest_rflags;
277         natural_width guest_pending_dbg_exceptions;
278         natural_width guest_sysenter_esp;
279         natural_width guest_sysenter_eip;
280         natural_width host_cr0;
281         natural_width host_cr3;
282         natural_width host_cr4;
283         natural_width host_fs_base;
284         natural_width host_gs_base;
285         natural_width host_tr_base;
286         natural_width host_gdtr_base;
287         natural_width host_idtr_base;
288         natural_width host_ia32_sysenter_esp;
289         natural_width host_ia32_sysenter_eip;
290         natural_width host_rsp;
291         natural_width host_rip;
292         natural_width paddingl[8]; /* room for future expansion */
293         u32 pin_based_vm_exec_control;
294         u32 cpu_based_vm_exec_control;
295         u32 exception_bitmap;
296         u32 page_fault_error_code_mask;
297         u32 page_fault_error_code_match;
298         u32 cr3_target_count;
299         u32 vm_exit_controls;
300         u32 vm_exit_msr_store_count;
301         u32 vm_exit_msr_load_count;
302         u32 vm_entry_controls;
303         u32 vm_entry_msr_load_count;
304         u32 vm_entry_intr_info_field;
305         u32 vm_entry_exception_error_code;
306         u32 vm_entry_instruction_len;
307         u32 tpr_threshold;
308         u32 secondary_vm_exec_control;
309         u32 vm_instruction_error;
310         u32 vm_exit_reason;
311         u32 vm_exit_intr_info;
312         u32 vm_exit_intr_error_code;
313         u32 idt_vectoring_info_field;
314         u32 idt_vectoring_error_code;
315         u32 vm_exit_instruction_len;
316         u32 vmx_instruction_info;
317         u32 guest_es_limit;
318         u32 guest_cs_limit;
319         u32 guest_ss_limit;
320         u32 guest_ds_limit;
321         u32 guest_fs_limit;
322         u32 guest_gs_limit;
323         u32 guest_ldtr_limit;
324         u32 guest_tr_limit;
325         u32 guest_gdtr_limit;
326         u32 guest_idtr_limit;
327         u32 guest_es_ar_bytes;
328         u32 guest_cs_ar_bytes;
329         u32 guest_ss_ar_bytes;
330         u32 guest_ds_ar_bytes;
331         u32 guest_fs_ar_bytes;
332         u32 guest_gs_ar_bytes;
333         u32 guest_ldtr_ar_bytes;
334         u32 guest_tr_ar_bytes;
335         u32 guest_interruptibility_info;
336         u32 guest_activity_state;
337         u32 guest_sysenter_cs;
338         u32 host_ia32_sysenter_cs;
339         u32 vmx_preemption_timer_value;
340         u32 padding32[7]; /* room for future expansion */
341         u16 virtual_processor_id;
342         u16 posted_intr_nv;
343         u16 guest_es_selector;
344         u16 guest_cs_selector;
345         u16 guest_ss_selector;
346         u16 guest_ds_selector;
347         u16 guest_fs_selector;
348         u16 guest_gs_selector;
349         u16 guest_ldtr_selector;
350         u16 guest_tr_selector;
351         u16 guest_intr_status;
352         u16 host_es_selector;
353         u16 host_cs_selector;
354         u16 host_ss_selector;
355         u16 host_ds_selector;
356         u16 host_fs_selector;
357         u16 host_gs_selector;
358         u16 host_tr_selector;
359 };
360
361 /*
362  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365  */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371  * current implementation, 4K are reserved to avoid future complications.
372  */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377         struct list_head list;
378         gpa_t vmptr;
379         struct loaded_vmcs vmcs02;
380 };
381
382 /*
383  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385  */
386 struct nested_vmx {
387         /* Has the level1 guest done vmxon? */
388         bool vmxon;
389         gpa_t vmxon_ptr;
390
391         /* The guest-physical address of the current VMCS L1 keeps for L2 */
392         gpa_t current_vmptr;
393         /* The host-usable pointer to the above */
394         struct page *current_vmcs12_page;
395         struct vmcs12 *current_vmcs12;
396         struct vmcs *current_shadow_vmcs;
397         /*
398          * Indicates if the shadow vmcs must be updated with the
399          * data hold by vmcs12
400          */
401         bool sync_shadow_vmcs;
402
403         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404         struct list_head vmcs02_pool;
405         int vmcs02_num;
406         u64 vmcs01_tsc_offset;
407         /* L2 must run next, and mustn't decide to exit to L1. */
408         bool nested_run_pending;
409         /*
410          * Guest pages referred to in vmcs02 with host-physical pointers, so
411          * we must keep them pinned while L2 runs.
412          */
413         struct page *apic_access_page;
414         struct page *virtual_apic_page;
415         struct page *pi_desc_page;
416         struct pi_desc *pi_desc;
417         bool pi_pending;
418         u16 posted_intr_nv;
419         u64 msr_ia32_feature_control;
420
421         struct hrtimer preemption_timer;
422         bool preemption_timer_expired;
423
424         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425         u64 vmcs01_debugctl;
426
427         u32 nested_vmx_procbased_ctls_low;
428         u32 nested_vmx_procbased_ctls_high;
429         u32 nested_vmx_true_procbased_ctls_low;
430         u32 nested_vmx_secondary_ctls_low;
431         u32 nested_vmx_secondary_ctls_high;
432         u32 nested_vmx_pinbased_ctls_low;
433         u32 nested_vmx_pinbased_ctls_high;
434         u32 nested_vmx_exit_ctls_low;
435         u32 nested_vmx_exit_ctls_high;
436         u32 nested_vmx_true_exit_ctls_low;
437         u32 nested_vmx_entry_ctls_low;
438         u32 nested_vmx_entry_ctls_high;
439         u32 nested_vmx_true_entry_ctls_low;
440         u32 nested_vmx_misc_low;
441         u32 nested_vmx_misc_high;
442         u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON  0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448         u32 pir[8];     /* Posted interrupt requested */
449         u32 control;    /* bit 0 of control is outstanding notification bit */
450         u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455         return test_and_set_bit(POSTED_INTR_ON,
456                         (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461         return test_and_clear_bit(POSTED_INTR_ON,
462                         (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471         struct kvm_vcpu       vcpu;
472         unsigned long         host_rsp;
473         u8                    fail;
474         bool                  nmi_known_unmasked;
475         u32                   exit_intr_info;
476         u32                   idt_vectoring_info;
477         ulong                 rflags;
478         struct shared_msr_entry *guest_msrs;
479         int                   nmsrs;
480         int                   save_nmsrs;
481         unsigned long         host_idt_base;
482 #ifdef CONFIG_X86_64
483         u64                   msr_host_kernel_gs_base;
484         u64                   msr_guest_kernel_gs_base;
485 #endif
486         u32 vm_entry_controls_shadow;
487         u32 vm_exit_controls_shadow;
488         /*
489          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490          * non-nested (L1) guest, it always points to vmcs01. For a nested
491          * guest (L2), it points to a different VMCS.
492          */
493         struct loaded_vmcs    vmcs01;
494         struct loaded_vmcs   *loaded_vmcs;
495         bool                  __launched; /* temporary, used in vmx_vcpu_run */
496         struct msr_autoload {
497                 unsigned nr;
498                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500         } msr_autoload;
501         struct {
502                 int           loaded;
503                 u16           fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505                 u16           ds_sel, es_sel;
506 #endif
507                 int           gs_ldt_reload_needed;
508                 int           fs_reload_needed;
509                 u64           msr_host_bndcfgs;
510                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
511         } host_state;
512         struct {
513                 int vm86_active;
514                 ulong save_rflags;
515                 struct kvm_segment segs[8];
516         } rmode;
517         struct {
518                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519                 struct kvm_save_segment {
520                         u16 selector;
521                         unsigned long base;
522                         u32 limit;
523                         u32 ar;
524                 } seg[8];
525         } segment_cache;
526         int vpid;
527         bool emulation_required;
528
529         /* Support for vnmi-less CPUs */
530         int soft_vnmi_blocked;
531         ktime_t entry_time;
532         s64 vnmi_blocked_time;
533         u32 exit_reason;
534
535         bool rdtscp_enabled;
536
537         /* Posted interrupt descriptor */
538         struct pi_desc pi_desc;
539
540         /* Support for a guest hypervisor (nested VMX) */
541         struct nested_vmx nested;
542
543         /* Dynamic PLE window. */
544         int ple_window;
545         bool ple_window_dirty;
546
547         /* Support for PML */
548 #define PML_ENTITY_NUM          512
549         struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553         SEG_FIELD_SEL = 0,
554         SEG_FIELD_BASE = 1,
555         SEG_FIELD_LIMIT = 2,
556         SEG_FIELD_AR = 3,
557
558         SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563         return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
569                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573         /*
574          * We do NOT shadow fields that are modified when L0
575          * traps and emulates any vmx instruction (e.g. VMPTRLD,
576          * VMXON...) executed by L1.
577          * For example, VM_INSTRUCTION_ERROR is read
578          * by L1 if a vmx instruction fails (part of the error path).
579          * Note the code assumes this logic. If for some reason
580          * we start shadowing these fields then we need to
581          * force a shadow sync when L0 emulates vmx instructions
582          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583          * by nested_vmx_failValid)
584          */
585         VM_EXIT_REASON,
586         VM_EXIT_INTR_INFO,
587         VM_EXIT_INSTRUCTION_LEN,
588         IDT_VECTORING_INFO_FIELD,
589         IDT_VECTORING_ERROR_CODE,
590         VM_EXIT_INTR_ERROR_CODE,
591         EXIT_QUALIFICATION,
592         GUEST_LINEAR_ADDRESS,
593         GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596         ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599         TPR_THRESHOLD,
600         GUEST_RIP,
601         GUEST_RSP,
602         GUEST_CR0,
603         GUEST_CR3,
604         GUEST_CR4,
605         GUEST_INTERRUPTIBILITY_INFO,
606         GUEST_RFLAGS,
607         GUEST_CS_SELECTOR,
608         GUEST_CS_AR_BYTES,
609         GUEST_CS_LIMIT,
610         GUEST_CS_BASE,
611         GUEST_ES_BASE,
612         GUEST_BNDCFGS,
613         CR0_GUEST_HOST_MASK,
614         CR0_READ_SHADOW,
615         CR4_READ_SHADOW,
616         TSC_OFFSET,
617         EXCEPTION_BITMAP,
618         CPU_BASED_VM_EXEC_CONTROL,
619         VM_ENTRY_EXCEPTION_ERROR_CODE,
620         VM_ENTRY_INTR_INFO_FIELD,
621         VM_ENTRY_INSTRUCTION_LEN,
622         VM_ENTRY_EXCEPTION_ERROR_CODE,
623         HOST_FS_BASE,
624         HOST_GS_BASE,
625         HOST_FS_SELECTOR,
626         HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629         ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633         FIELD(POSTED_INTR_NV, posted_intr_nv),
634         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642         FIELD(GUEST_INTR_STATUS, guest_intr_status),
643         FIELD(HOST_ES_SELECTOR, host_es_selector),
644         FIELD(HOST_CS_SELECTOR, host_cs_selector),
645         FIELD(HOST_SS_SELECTOR, host_ss_selector),
646         FIELD(HOST_DS_SELECTOR, host_ds_selector),
647         FIELD(HOST_FS_SELECTOR, host_fs_selector),
648         FIELD(HOST_GS_SELECTOR, host_gs_selector),
649         FIELD(HOST_TR_SELECTOR, host_tr_selector),
650         FIELD64(IO_BITMAP_A, io_bitmap_a),
651         FIELD64(IO_BITMAP_B, io_bitmap_b),
652         FIELD64(MSR_BITMAP, msr_bitmap),
653         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656         FIELD64(TSC_OFFSET, tsc_offset),
657         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660         FIELD64(EPT_POINTER, ept_pointer),
661         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672         FIELD64(GUEST_PDPTR0, guest_pdptr0),
673         FIELD64(GUEST_PDPTR1, guest_pdptr1),
674         FIELD64(GUEST_PDPTR2, guest_pdptr2),
675         FIELD64(GUEST_PDPTR3, guest_pdptr3),
676         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677         FIELD64(HOST_IA32_PAT, host_ia32_pat),
678         FIELD64(HOST_IA32_EFER, host_ia32_efer),
679         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682         FIELD(EXCEPTION_BITMAP, exception_bitmap),
683         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685         FIELD(CR3_TARGET_COUNT, cr3_target_count),
686         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694         FIELD(TPR_THRESHOLD, tpr_threshold),
695         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697         FIELD(VM_EXIT_REASON, vm_exit_reason),
698         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704         FIELD(GUEST_ES_LIMIT, guest_es_limit),
705         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735         FIELD(EXIT_QUALIFICATION, exit_qualification),
736         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737         FIELD(GUEST_CR0, guest_cr0),
738         FIELD(GUEST_CR3, guest_cr3),
739         FIELD(GUEST_CR4, guest_cr4),
740         FIELD(GUEST_ES_BASE, guest_es_base),
741         FIELD(GUEST_CS_BASE, guest_cs_base),
742         FIELD(GUEST_SS_BASE, guest_ss_base),
743         FIELD(GUEST_DS_BASE, guest_ds_base),
744         FIELD(GUEST_FS_BASE, guest_fs_base),
745         FIELD(GUEST_GS_BASE, guest_gs_base),
746         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747         FIELD(GUEST_TR_BASE, guest_tr_base),
748         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750         FIELD(GUEST_DR7, guest_dr7),
751         FIELD(GUEST_RSP, guest_rsp),
752         FIELD(GUEST_RIP, guest_rip),
753         FIELD(GUEST_RFLAGS, guest_rflags),
754         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757         FIELD(HOST_CR0, host_cr0),
758         FIELD(HOST_CR3, host_cr3),
759         FIELD(HOST_CR4, host_cr4),
760         FIELD(HOST_FS_BASE, host_fs_base),
761         FIELD(HOST_GS_BASE, host_gs_base),
762         FIELD(HOST_TR_BASE, host_tr_base),
763         FIELD(HOST_GDTR_BASE, host_gdtr_base),
764         FIELD(HOST_IDTR_BASE, host_idtr_base),
765         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767         FIELD(HOST_RSP, host_rsp),
768         FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776             vmcs_field_to_offset_table[field] == 0)
777                 return -ENOENT;
778
779         return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784         return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
790         if (is_error_page(page))
791                 return NULL;
792
793         return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798         kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803         kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
814 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
815 static void vmx_set_segment(struct kvm_vcpu *vcpu,
816                             struct kvm_segment *var, int seg);
817 static void vmx_get_segment(struct kvm_vcpu *vcpu,
818                             struct kvm_segment *var, int seg);
819 static bool guest_state_valid(struct kvm_vcpu *vcpu);
820 static u32 vmx_segment_access_rights(struct kvm_segment *var);
821 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
822 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
823 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
824 static int alloc_identity_pagetable(struct kvm *kvm);
825
826 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
827 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
828 /*
829  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
830  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
831  */
832 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
833 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
834
835 static unsigned long *vmx_io_bitmap_a;
836 static unsigned long *vmx_io_bitmap_b;
837 static unsigned long *vmx_msr_bitmap_legacy;
838 static unsigned long *vmx_msr_bitmap_longmode;
839 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
840 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
841 static unsigned long *vmx_msr_bitmap_nested;
842 static unsigned long *vmx_vmread_bitmap;
843 static unsigned long *vmx_vmwrite_bitmap;
844
845 static bool cpu_has_load_ia32_efer;
846 static bool cpu_has_load_perf_global_ctrl;
847
848 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
849 static DEFINE_SPINLOCK(vmx_vpid_lock);
850
851 static struct vmcs_config {
852         int size;
853         int order;
854         u32 revision_id;
855         u32 pin_based_exec_ctrl;
856         u32 cpu_based_exec_ctrl;
857         u32 cpu_based_2nd_exec_ctrl;
858         u32 vmexit_ctrl;
859         u32 vmentry_ctrl;
860 } vmcs_config;
861
862 static struct vmx_capability {
863         u32 ept;
864         u32 vpid;
865 } vmx_capability;
866
867 #define VMX_SEGMENT_FIELD(seg)                                  \
868         [VCPU_SREG_##seg] = {                                   \
869                 .selector = GUEST_##seg##_SELECTOR,             \
870                 .base = GUEST_##seg##_BASE,                     \
871                 .limit = GUEST_##seg##_LIMIT,                   \
872                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
873         }
874
875 static const struct kvm_vmx_segment_field {
876         unsigned selector;
877         unsigned base;
878         unsigned limit;
879         unsigned ar_bytes;
880 } kvm_vmx_segment_fields[] = {
881         VMX_SEGMENT_FIELD(CS),
882         VMX_SEGMENT_FIELD(DS),
883         VMX_SEGMENT_FIELD(ES),
884         VMX_SEGMENT_FIELD(FS),
885         VMX_SEGMENT_FIELD(GS),
886         VMX_SEGMENT_FIELD(SS),
887         VMX_SEGMENT_FIELD(TR),
888         VMX_SEGMENT_FIELD(LDTR),
889 };
890
891 static u64 host_efer;
892
893 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
894
895 /*
896  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
897  * away by decrementing the array size.
898  */
899 static const u32 vmx_msr_index[] = {
900 #ifdef CONFIG_X86_64
901         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
902 #endif
903         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
904 };
905
906 static inline bool is_page_fault(u32 intr_info)
907 {
908         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
909                              INTR_INFO_VALID_MASK)) ==
910                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
911 }
912
913 static inline bool is_no_device(u32 intr_info)
914 {
915         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
916                              INTR_INFO_VALID_MASK)) ==
917                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
918 }
919
920 static inline bool is_invalid_opcode(u32 intr_info)
921 {
922         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
923                              INTR_INFO_VALID_MASK)) ==
924                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
925 }
926
927 static inline bool is_external_interrupt(u32 intr_info)
928 {
929         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
930                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
931 }
932
933 static inline bool is_machine_check(u32 intr_info)
934 {
935         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
936                              INTR_INFO_VALID_MASK)) ==
937                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
938 }
939
940 static inline bool cpu_has_vmx_msr_bitmap(void)
941 {
942         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
943 }
944
945 static inline bool cpu_has_vmx_tpr_shadow(void)
946 {
947         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
948 }
949
950 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
951 {
952         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
953 }
954
955 static inline bool cpu_has_secondary_exec_ctrls(void)
956 {
957         return vmcs_config.cpu_based_exec_ctrl &
958                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
959 }
960
961 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
962 {
963         return vmcs_config.cpu_based_2nd_exec_ctrl &
964                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
965 }
966
967 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
968 {
969         return vmcs_config.cpu_based_2nd_exec_ctrl &
970                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
971 }
972
973 static inline bool cpu_has_vmx_apic_register_virt(void)
974 {
975         return vmcs_config.cpu_based_2nd_exec_ctrl &
976                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
977 }
978
979 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
980 {
981         return vmcs_config.cpu_based_2nd_exec_ctrl &
982                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
983 }
984
985 static inline bool cpu_has_vmx_posted_intr(void)
986 {
987         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
988 }
989
990 static inline bool cpu_has_vmx_apicv(void)
991 {
992         return cpu_has_vmx_apic_register_virt() &&
993                 cpu_has_vmx_virtual_intr_delivery() &&
994                 cpu_has_vmx_posted_intr();
995 }
996
997 static inline bool cpu_has_vmx_flexpriority(void)
998 {
999         return cpu_has_vmx_tpr_shadow() &&
1000                 cpu_has_vmx_virtualize_apic_accesses();
1001 }
1002
1003 static inline bool cpu_has_vmx_ept_execute_only(void)
1004 {
1005         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1006 }
1007
1008 static inline bool cpu_has_vmx_ept_2m_page(void)
1009 {
1010         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1011 }
1012
1013 static inline bool cpu_has_vmx_ept_1g_page(void)
1014 {
1015         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1016 }
1017
1018 static inline bool cpu_has_vmx_ept_4levels(void)
1019 {
1020         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1021 }
1022
1023 static inline bool cpu_has_vmx_ept_ad_bits(void)
1024 {
1025         return vmx_capability.ept & VMX_EPT_AD_BIT;
1026 }
1027
1028 static inline bool cpu_has_vmx_invept_context(void)
1029 {
1030         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1031 }
1032
1033 static inline bool cpu_has_vmx_invept_global(void)
1034 {
1035         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1036 }
1037
1038 static inline bool cpu_has_vmx_invvpid_single(void)
1039 {
1040         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1041 }
1042
1043 static inline bool cpu_has_vmx_invvpid_global(void)
1044 {
1045         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1046 }
1047
1048 static inline bool cpu_has_vmx_ept(void)
1049 {
1050         return vmcs_config.cpu_based_2nd_exec_ctrl &
1051                 SECONDARY_EXEC_ENABLE_EPT;
1052 }
1053
1054 static inline bool cpu_has_vmx_unrestricted_guest(void)
1055 {
1056         return vmcs_config.cpu_based_2nd_exec_ctrl &
1057                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1058 }
1059
1060 static inline bool cpu_has_vmx_ple(void)
1061 {
1062         return vmcs_config.cpu_based_2nd_exec_ctrl &
1063                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1064 }
1065
1066 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1067 {
1068         return flexpriority_enabled && irqchip_in_kernel(kvm);
1069 }
1070
1071 static inline bool cpu_has_vmx_vpid(void)
1072 {
1073         return vmcs_config.cpu_based_2nd_exec_ctrl &
1074                 SECONDARY_EXEC_ENABLE_VPID;
1075 }
1076
1077 static inline bool cpu_has_vmx_rdtscp(void)
1078 {
1079         return vmcs_config.cpu_based_2nd_exec_ctrl &
1080                 SECONDARY_EXEC_RDTSCP;
1081 }
1082
1083 static inline bool cpu_has_vmx_invpcid(void)
1084 {
1085         return vmcs_config.cpu_based_2nd_exec_ctrl &
1086                 SECONDARY_EXEC_ENABLE_INVPCID;
1087 }
1088
1089 static inline bool cpu_has_virtual_nmis(void)
1090 {
1091         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1092 }
1093
1094 static inline bool cpu_has_vmx_wbinvd_exit(void)
1095 {
1096         return vmcs_config.cpu_based_2nd_exec_ctrl &
1097                 SECONDARY_EXEC_WBINVD_EXITING;
1098 }
1099
1100 static inline bool cpu_has_vmx_shadow_vmcs(void)
1101 {
1102         u64 vmx_msr;
1103         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1104         /* check if the cpu supports writing r/o exit information fields */
1105         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1106                 return false;
1107
1108         return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                 SECONDARY_EXEC_SHADOW_VMCS;
1110 }
1111
1112 static inline bool cpu_has_vmx_pml(void)
1113 {
1114         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1115 }
1116
1117 static inline bool report_flexpriority(void)
1118 {
1119         return flexpriority_enabled;
1120 }
1121
1122 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1123 {
1124         return vmcs12->cpu_based_vm_exec_control & bit;
1125 }
1126
1127 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1128 {
1129         return (vmcs12->cpu_based_vm_exec_control &
1130                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1131                 (vmcs12->secondary_vm_exec_control & bit);
1132 }
1133
1134 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1135 {
1136         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1137 }
1138
1139 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1140 {
1141         return vmcs12->pin_based_vm_exec_control &
1142                 PIN_BASED_VMX_PREEMPTION_TIMER;
1143 }
1144
1145 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1146 {
1147         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1148 }
1149
1150 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1151 {
1152         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1153                 vmx_xsaves_supported();
1154 }
1155
1156 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1157 {
1158         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1159 }
1160
1161 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1162 {
1163         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1164 }
1165
1166 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1167 {
1168         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1169 }
1170
1171 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1172 {
1173         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1174 }
1175
1176 static inline bool is_exception(u32 intr_info)
1177 {
1178         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1179                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1180 }
1181
1182 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1183                               u32 exit_intr_info,
1184                               unsigned long exit_qualification);
1185 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1186                         struct vmcs12 *vmcs12,
1187                         u32 reason, unsigned long qualification);
1188
1189 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1190 {
1191         int i;
1192
1193         for (i = 0; i < vmx->nmsrs; ++i)
1194                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1195                         return i;
1196         return -1;
1197 }
1198
1199 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1200 {
1201     struct {
1202         u64 vpid : 16;
1203         u64 rsvd : 48;
1204         u64 gva;
1205     } operand = { vpid, 0, gva };
1206
1207     asm volatile (__ex(ASM_VMX_INVVPID)
1208                   /* CF==1 or ZF==1 --> rc = -1 */
1209                   "; ja 1f ; ud2 ; 1:"
1210                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1211 }
1212
1213 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1214 {
1215         struct {
1216                 u64 eptp, gpa;
1217         } operand = {eptp, gpa};
1218
1219         asm volatile (__ex(ASM_VMX_INVEPT)
1220                         /* CF==1 or ZF==1 --> rc = -1 */
1221                         "; ja 1f ; ud2 ; 1:\n"
1222                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1223 }
1224
1225 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1226 {
1227         int i;
1228
1229         i = __find_msr_index(vmx, msr);
1230         if (i >= 0)
1231                 return &vmx->guest_msrs[i];
1232         return NULL;
1233 }
1234
1235 static void vmcs_clear(struct vmcs *vmcs)
1236 {
1237         u64 phys_addr = __pa(vmcs);
1238         u8 error;
1239
1240         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1241                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1242                       : "cc", "memory");
1243         if (error)
1244                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1245                        vmcs, phys_addr);
1246 }
1247
1248 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1249 {
1250         vmcs_clear(loaded_vmcs->vmcs);
1251         loaded_vmcs->cpu = -1;
1252         loaded_vmcs->launched = 0;
1253 }
1254
1255 static void vmcs_load(struct vmcs *vmcs)
1256 {
1257         u64 phys_addr = __pa(vmcs);
1258         u8 error;
1259
1260         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1261                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1262                         : "cc", "memory");
1263         if (error)
1264                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1265                        vmcs, phys_addr);
1266 }
1267
1268 #ifdef CONFIG_KEXEC_CORE
1269 /*
1270  * This bitmap is used to indicate whether the vmclear
1271  * operation is enabled on all cpus. All disabled by
1272  * default.
1273  */
1274 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1275
1276 static inline void crash_enable_local_vmclear(int cpu)
1277 {
1278         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1279 }
1280
1281 static inline void crash_disable_local_vmclear(int cpu)
1282 {
1283         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1284 }
1285
1286 static inline int crash_local_vmclear_enabled(int cpu)
1287 {
1288         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1289 }
1290
1291 static void crash_vmclear_local_loaded_vmcss(void)
1292 {
1293         int cpu = raw_smp_processor_id();
1294         struct loaded_vmcs *v;
1295
1296         if (!crash_local_vmclear_enabled(cpu))
1297                 return;
1298
1299         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1300                             loaded_vmcss_on_cpu_link)
1301                 vmcs_clear(v->vmcs);
1302 }
1303 #else
1304 static inline void crash_enable_local_vmclear(int cpu) { }
1305 static inline void crash_disable_local_vmclear(int cpu) { }
1306 #endif /* CONFIG_KEXEC_CORE */
1307
1308 static void __loaded_vmcs_clear(void *arg)
1309 {
1310         struct loaded_vmcs *loaded_vmcs = arg;
1311         int cpu = raw_smp_processor_id();
1312
1313         if (loaded_vmcs->cpu != cpu)
1314                 return; /* vcpu migration can race with cpu offline */
1315         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1316                 per_cpu(current_vmcs, cpu) = NULL;
1317         crash_disable_local_vmclear(cpu);
1318         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1319
1320         /*
1321          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1322          * is before setting loaded_vmcs->vcpu to -1 which is done in
1323          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1324          * then adds the vmcs into percpu list before it is deleted.
1325          */
1326         smp_wmb();
1327
1328         loaded_vmcs_init(loaded_vmcs);
1329         crash_enable_local_vmclear(cpu);
1330 }
1331
1332 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1333 {
1334         int cpu = loaded_vmcs->cpu;
1335
1336         if (cpu != -1)
1337                 smp_call_function_single(cpu,
1338                          __loaded_vmcs_clear, loaded_vmcs, 1);
1339 }
1340
1341 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1342 {
1343         if (vmx->vpid == 0)
1344                 return;
1345
1346         if (cpu_has_vmx_invvpid_single())
1347                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1348 }
1349
1350 static inline void vpid_sync_vcpu_global(void)
1351 {
1352         if (cpu_has_vmx_invvpid_global())
1353                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1354 }
1355
1356 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1357 {
1358         if (cpu_has_vmx_invvpid_single())
1359                 vpid_sync_vcpu_single(vmx);
1360         else
1361                 vpid_sync_vcpu_global();
1362 }
1363
1364 static inline void ept_sync_global(void)
1365 {
1366         if (cpu_has_vmx_invept_global())
1367                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1368 }
1369
1370 static inline void ept_sync_context(u64 eptp)
1371 {
1372         if (enable_ept) {
1373                 if (cpu_has_vmx_invept_context())
1374                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1375                 else
1376                         ept_sync_global();
1377         }
1378 }
1379
1380 static __always_inline unsigned long vmcs_readl(unsigned long field)
1381 {
1382         unsigned long value;
1383
1384         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1385                       : "=a"(value) : "d"(field) : "cc");
1386         return value;
1387 }
1388
1389 static __always_inline u16 vmcs_read16(unsigned long field)
1390 {
1391         return vmcs_readl(field);
1392 }
1393
1394 static __always_inline u32 vmcs_read32(unsigned long field)
1395 {
1396         return vmcs_readl(field);
1397 }
1398
1399 static __always_inline u64 vmcs_read64(unsigned long field)
1400 {
1401 #ifdef CONFIG_X86_64
1402         return vmcs_readl(field);
1403 #else
1404         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1405 #endif
1406 }
1407
1408 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1409 {
1410         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1411                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1412         dump_stack();
1413 }
1414
1415 static void vmcs_writel(unsigned long field, unsigned long value)
1416 {
1417         u8 error;
1418
1419         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1420                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1421         if (unlikely(error))
1422                 vmwrite_error(field, value);
1423 }
1424
1425 static void vmcs_write16(unsigned long field, u16 value)
1426 {
1427         vmcs_writel(field, value);
1428 }
1429
1430 static void vmcs_write32(unsigned long field, u32 value)
1431 {
1432         vmcs_writel(field, value);
1433 }
1434
1435 static void vmcs_write64(unsigned long field, u64 value)
1436 {
1437         vmcs_writel(field, value);
1438 #ifndef CONFIG_X86_64
1439         asm volatile ("");
1440         vmcs_writel(field+1, value >> 32);
1441 #endif
1442 }
1443
1444 static void vmcs_clear_bits(unsigned long field, u32 mask)
1445 {
1446         vmcs_writel(field, vmcs_readl(field) & ~mask);
1447 }
1448
1449 static void vmcs_set_bits(unsigned long field, u32 mask)
1450 {
1451         vmcs_writel(field, vmcs_readl(field) | mask);
1452 }
1453
1454 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1455 {
1456         vmcs_write32(VM_ENTRY_CONTROLS, val);
1457         vmx->vm_entry_controls_shadow = val;
1458 }
1459
1460 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1461 {
1462         if (vmx->vm_entry_controls_shadow != val)
1463                 vm_entry_controls_init(vmx, val);
1464 }
1465
1466 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1467 {
1468         return vmx->vm_entry_controls_shadow;
1469 }
1470
1471
1472 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1473 {
1474         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1475 }
1476
1477 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1478 {
1479         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1480 }
1481
1482 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1483 {
1484         vmcs_write32(VM_EXIT_CONTROLS, val);
1485         vmx->vm_exit_controls_shadow = val;
1486 }
1487
1488 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1489 {
1490         if (vmx->vm_exit_controls_shadow != val)
1491                 vm_exit_controls_init(vmx, val);
1492 }
1493
1494 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1495 {
1496         return vmx->vm_exit_controls_shadow;
1497 }
1498
1499
1500 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1501 {
1502         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1503 }
1504
1505 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1506 {
1507         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1508 }
1509
1510 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1511 {
1512         vmx->segment_cache.bitmask = 0;
1513 }
1514
1515 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1516                                        unsigned field)
1517 {
1518         bool ret;
1519         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1520
1521         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1522                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1523                 vmx->segment_cache.bitmask = 0;
1524         }
1525         ret = vmx->segment_cache.bitmask & mask;
1526         vmx->segment_cache.bitmask |= mask;
1527         return ret;
1528 }
1529
1530 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1531 {
1532         u16 *p = &vmx->segment_cache.seg[seg].selector;
1533
1534         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1535                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1536         return *p;
1537 }
1538
1539 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1540 {
1541         ulong *p = &vmx->segment_cache.seg[seg].base;
1542
1543         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1544                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1545         return *p;
1546 }
1547
1548 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1549 {
1550         u32 *p = &vmx->segment_cache.seg[seg].limit;
1551
1552         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1553                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1554         return *p;
1555 }
1556
1557 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1558 {
1559         u32 *p = &vmx->segment_cache.seg[seg].ar;
1560
1561         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1562                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1563         return *p;
1564 }
1565
1566 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1567 {
1568         u32 eb;
1569
1570         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1571              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1572         if ((vcpu->guest_debug &
1573              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1574             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1575                 eb |= 1u << BP_VECTOR;
1576         if (to_vmx(vcpu)->rmode.vm86_active)
1577                 eb = ~0;
1578         if (enable_ept)
1579                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1580         if (vcpu->fpu_active)
1581                 eb &= ~(1u << NM_VECTOR);
1582
1583         /* When we are running a nested L2 guest and L1 specified for it a
1584          * certain exception bitmap, we must trap the same exceptions and pass
1585          * them to L1. When running L2, we will only handle the exceptions
1586          * specified above if L1 did not want them.
1587          */
1588         if (is_guest_mode(vcpu))
1589                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1590
1591         vmcs_write32(EXCEPTION_BITMAP, eb);
1592 }
1593
1594 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1595                 unsigned long entry, unsigned long exit)
1596 {
1597         vm_entry_controls_clearbit(vmx, entry);
1598         vm_exit_controls_clearbit(vmx, exit);
1599 }
1600
1601 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1602 {
1603         unsigned i;
1604         struct msr_autoload *m = &vmx->msr_autoload;
1605
1606         switch (msr) {
1607         case MSR_EFER:
1608                 if (cpu_has_load_ia32_efer) {
1609                         clear_atomic_switch_msr_special(vmx,
1610                                         VM_ENTRY_LOAD_IA32_EFER,
1611                                         VM_EXIT_LOAD_IA32_EFER);
1612                         return;
1613                 }
1614                 break;
1615         case MSR_CORE_PERF_GLOBAL_CTRL:
1616                 if (cpu_has_load_perf_global_ctrl) {
1617                         clear_atomic_switch_msr_special(vmx,
1618                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1619                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1620                         return;
1621                 }
1622                 break;
1623         }
1624
1625         for (i = 0; i < m->nr; ++i)
1626                 if (m->guest[i].index == msr)
1627                         break;
1628
1629         if (i == m->nr)
1630                 return;
1631         --m->nr;
1632         m->guest[i] = m->guest[m->nr];
1633         m->host[i] = m->host[m->nr];
1634         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1635         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1636 }
1637
1638 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1639                 unsigned long entry, unsigned long exit,
1640                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1641                 u64 guest_val, u64 host_val)
1642 {
1643         vmcs_write64(guest_val_vmcs, guest_val);
1644         vmcs_write64(host_val_vmcs, host_val);
1645         vm_entry_controls_setbit(vmx, entry);
1646         vm_exit_controls_setbit(vmx, exit);
1647 }
1648
1649 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1650                                   u64 guest_val, u64 host_val)
1651 {
1652         unsigned i;
1653         struct msr_autoload *m = &vmx->msr_autoload;
1654
1655         switch (msr) {
1656         case MSR_EFER:
1657                 if (cpu_has_load_ia32_efer) {
1658                         add_atomic_switch_msr_special(vmx,
1659                                         VM_ENTRY_LOAD_IA32_EFER,
1660                                         VM_EXIT_LOAD_IA32_EFER,
1661                                         GUEST_IA32_EFER,
1662                                         HOST_IA32_EFER,
1663                                         guest_val, host_val);
1664                         return;
1665                 }
1666                 break;
1667         case MSR_CORE_PERF_GLOBAL_CTRL:
1668                 if (cpu_has_load_perf_global_ctrl) {
1669                         add_atomic_switch_msr_special(vmx,
1670                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1672                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1673                                         HOST_IA32_PERF_GLOBAL_CTRL,
1674                                         guest_val, host_val);
1675                         return;
1676                 }
1677                 break;
1678         }
1679
1680         for (i = 0; i < m->nr; ++i)
1681                 if (m->guest[i].index == msr)
1682                         break;
1683
1684         if (i == NR_AUTOLOAD_MSRS) {
1685                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1686                                 "Can't add msr %x\n", msr);
1687                 return;
1688         } else if (i == m->nr) {
1689                 ++m->nr;
1690                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1691                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1692         }
1693
1694         m->guest[i].index = msr;
1695         m->guest[i].value = guest_val;
1696         m->host[i].index = msr;
1697         m->host[i].value = host_val;
1698 }
1699
1700 static void reload_tss(void)
1701 {
1702         /*
1703          * VT restores TR but not its size.  Useless.
1704          */
1705         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1706         struct desc_struct *descs;
1707
1708         descs = (void *)gdt->address;
1709         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1710         load_TR_desc();
1711 }
1712
1713 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1714 {
1715         u64 guest_efer;
1716         u64 ignore_bits;
1717
1718         guest_efer = vmx->vcpu.arch.efer;
1719
1720         /*
1721          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1722          * outside long mode
1723          */
1724         ignore_bits = EFER_NX | EFER_SCE;
1725 #ifdef CONFIG_X86_64
1726         ignore_bits |= EFER_LMA | EFER_LME;
1727         /* SCE is meaningful only in long mode on Intel */
1728         if (guest_efer & EFER_LMA)
1729                 ignore_bits &= ~(u64)EFER_SCE;
1730 #endif
1731         guest_efer &= ~ignore_bits;
1732         guest_efer |= host_efer & ignore_bits;
1733         vmx->guest_msrs[efer_offset].data = guest_efer;
1734         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1735
1736         clear_atomic_switch_msr(vmx, MSR_EFER);
1737
1738         /*
1739          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1740          * On CPUs that support "load IA32_EFER", always switch EFER
1741          * atomically, since it's faster than switching it manually.
1742          */
1743         if (cpu_has_load_ia32_efer ||
1744             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1745                 guest_efer = vmx->vcpu.arch.efer;
1746                 if (!(guest_efer & EFER_LMA))
1747                         guest_efer &= ~EFER_LME;
1748                 if (guest_efer != host_efer)
1749                         add_atomic_switch_msr(vmx, MSR_EFER,
1750                                               guest_efer, host_efer);
1751                 return false;
1752         }
1753
1754         return true;
1755 }
1756
1757 static unsigned long segment_base(u16 selector)
1758 {
1759         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1760         struct desc_struct *d;
1761         unsigned long table_base;
1762         unsigned long v;
1763
1764         if (!(selector & ~3))
1765                 return 0;
1766
1767         table_base = gdt->address;
1768
1769         if (selector & 4) {           /* from ldt */
1770                 u16 ldt_selector = kvm_read_ldt();
1771
1772                 if (!(ldt_selector & ~3))
1773                         return 0;
1774
1775                 table_base = segment_base(ldt_selector);
1776         }
1777         d = (struct desc_struct *)(table_base + (selector & ~7));
1778         v = get_desc_base(d);
1779 #ifdef CONFIG_X86_64
1780        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1781                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1782 #endif
1783         return v;
1784 }
1785
1786 static inline unsigned long kvm_read_tr_base(void)
1787 {
1788         u16 tr;
1789         asm("str %0" : "=g"(tr));
1790         return segment_base(tr);
1791 }
1792
1793 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1794 {
1795         struct vcpu_vmx *vmx = to_vmx(vcpu);
1796         int i;
1797
1798         if (vmx->host_state.loaded)
1799                 return;
1800
1801         vmx->host_state.loaded = 1;
1802         /*
1803          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1804          * allow segment selectors with cpl > 0 or ti == 1.
1805          */
1806         vmx->host_state.ldt_sel = kvm_read_ldt();
1807         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1808         savesegment(fs, vmx->host_state.fs_sel);
1809         if (!(vmx->host_state.fs_sel & 7)) {
1810                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1811                 vmx->host_state.fs_reload_needed = 0;
1812         } else {
1813                 vmcs_write16(HOST_FS_SELECTOR, 0);
1814                 vmx->host_state.fs_reload_needed = 1;
1815         }
1816         savesegment(gs, vmx->host_state.gs_sel);
1817         if (!(vmx->host_state.gs_sel & 7))
1818                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1819         else {
1820                 vmcs_write16(HOST_GS_SELECTOR, 0);
1821                 vmx->host_state.gs_ldt_reload_needed = 1;
1822         }
1823
1824 #ifdef CONFIG_X86_64
1825         savesegment(ds, vmx->host_state.ds_sel);
1826         savesegment(es, vmx->host_state.es_sel);
1827 #endif
1828
1829 #ifdef CONFIG_X86_64
1830         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1831         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1832 #else
1833         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1834         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1835 #endif
1836
1837 #ifdef CONFIG_X86_64
1838         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1839         if (is_long_mode(&vmx->vcpu))
1840                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1841 #endif
1842         if (boot_cpu_has(X86_FEATURE_MPX))
1843                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1844         for (i = 0; i < vmx->save_nmsrs; ++i)
1845                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1846                                    vmx->guest_msrs[i].data,
1847                                    vmx->guest_msrs[i].mask);
1848 }
1849
1850 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1851 {
1852         if (!vmx->host_state.loaded)
1853                 return;
1854
1855         ++vmx->vcpu.stat.host_state_reload;
1856         vmx->host_state.loaded = 0;
1857 #ifdef CONFIG_X86_64
1858         if (is_long_mode(&vmx->vcpu))
1859                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1860 #endif
1861         if (vmx->host_state.gs_ldt_reload_needed) {
1862                 kvm_load_ldt(vmx->host_state.ldt_sel);
1863 #ifdef CONFIG_X86_64
1864                 load_gs_index(vmx->host_state.gs_sel);
1865 #else
1866                 loadsegment(gs, vmx->host_state.gs_sel);
1867 #endif
1868         }
1869         if (vmx->host_state.fs_reload_needed)
1870                 loadsegment(fs, vmx->host_state.fs_sel);
1871 #ifdef CONFIG_X86_64
1872         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1873                 loadsegment(ds, vmx->host_state.ds_sel);
1874                 loadsegment(es, vmx->host_state.es_sel);
1875         }
1876 #endif
1877         reload_tss();
1878 #ifdef CONFIG_X86_64
1879         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1880 #endif
1881         if (vmx->host_state.msr_host_bndcfgs)
1882                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1883         /*
1884          * If the FPU is not active (through the host task or
1885          * the guest vcpu), then restore the cr0.TS bit.
1886          */
1887         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1888                 stts();
1889         load_gdt(this_cpu_ptr(&host_gdt));
1890 }
1891
1892 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1893 {
1894         preempt_disable();
1895         __vmx_load_host_state(vmx);
1896         preempt_enable();
1897 }
1898
1899 /*
1900  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1901  * vcpu mutex is already taken.
1902  */
1903 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1904 {
1905         struct vcpu_vmx *vmx = to_vmx(vcpu);
1906         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1907
1908         if (!vmm_exclusive)
1909                 kvm_cpu_vmxon(phys_addr);
1910         else if (vmx->loaded_vmcs->cpu != cpu)
1911                 loaded_vmcs_clear(vmx->loaded_vmcs);
1912
1913         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1914                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1915                 vmcs_load(vmx->loaded_vmcs->vmcs);
1916         }
1917
1918         if (vmx->loaded_vmcs->cpu != cpu) {
1919                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1920                 unsigned long sysenter_esp;
1921
1922                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1923                 local_irq_disable();
1924                 crash_disable_local_vmclear(cpu);
1925
1926                 /*
1927                  * Read loaded_vmcs->cpu should be before fetching
1928                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1929                  * See the comments in __loaded_vmcs_clear().
1930                  */
1931                 smp_rmb();
1932
1933                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1934                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1935                 crash_enable_local_vmclear(cpu);
1936                 local_irq_enable();
1937
1938                 /*
1939                  * Linux uses per-cpu TSS and GDT, so set these when switching
1940                  * processors.
1941                  */
1942                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1943                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1944
1945                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1946                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1947                 vmx->loaded_vmcs->cpu = cpu;
1948         }
1949 }
1950
1951 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1952 {
1953         __vmx_load_host_state(to_vmx(vcpu));
1954         if (!vmm_exclusive) {
1955                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1956                 vcpu->cpu = -1;
1957                 kvm_cpu_vmxoff();
1958         }
1959 }
1960
1961 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1962 {
1963         ulong cr0;
1964
1965         if (vcpu->fpu_active)
1966                 return;
1967         vcpu->fpu_active = 1;
1968         cr0 = vmcs_readl(GUEST_CR0);
1969         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1970         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1971         vmcs_writel(GUEST_CR0, cr0);
1972         update_exception_bitmap(vcpu);
1973         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1974         if (is_guest_mode(vcpu))
1975                 vcpu->arch.cr0_guest_owned_bits &=
1976                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1977         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1978 }
1979
1980 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1981
1982 /*
1983  * Return the cr0 value that a nested guest would read. This is a combination
1984  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1985  * its hypervisor (cr0_read_shadow).
1986  */
1987 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1988 {
1989         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1990                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1991 }
1992 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1993 {
1994         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1995                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1996 }
1997
1998 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1999 {
2000         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2001          * set this *before* calling this function.
2002          */
2003         vmx_decache_cr0_guest_bits(vcpu);
2004         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2005         update_exception_bitmap(vcpu);
2006         vcpu->arch.cr0_guest_owned_bits = 0;
2007         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2008         if (is_guest_mode(vcpu)) {
2009                 /*
2010                  * L1's specified read shadow might not contain the TS bit,
2011                  * so now that we turned on shadowing of this bit, we need to
2012                  * set this bit of the shadow. Like in nested_vmx_run we need
2013                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2014                  * up-to-date here because we just decached cr0.TS (and we'll
2015                  * only update vmcs12->guest_cr0 on nested exit).
2016                  */
2017                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2019                         (vcpu->arch.cr0 & X86_CR0_TS);
2020                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2021         } else
2022                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2023 }
2024
2025 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2026 {
2027         unsigned long rflags, save_rflags;
2028
2029         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2030                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2031                 rflags = vmcs_readl(GUEST_RFLAGS);
2032                 if (to_vmx(vcpu)->rmode.vm86_active) {
2033                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2034                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2035                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2036                 }
2037                 to_vmx(vcpu)->rflags = rflags;
2038         }
2039         return to_vmx(vcpu)->rflags;
2040 }
2041
2042 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2043 {
2044         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2045         to_vmx(vcpu)->rflags = rflags;
2046         if (to_vmx(vcpu)->rmode.vm86_active) {
2047                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2048                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2049         }
2050         vmcs_writel(GUEST_RFLAGS, rflags);
2051 }
2052
2053 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2054 {
2055         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2056         int ret = 0;
2057
2058         if (interruptibility & GUEST_INTR_STATE_STI)
2059                 ret |= KVM_X86_SHADOW_INT_STI;
2060         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2061                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2062
2063         return ret;
2064 }
2065
2066 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2067 {
2068         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2069         u32 interruptibility = interruptibility_old;
2070
2071         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2072
2073         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2074                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2075         else if (mask & KVM_X86_SHADOW_INT_STI)
2076                 interruptibility |= GUEST_INTR_STATE_STI;
2077
2078         if ((interruptibility != interruptibility_old))
2079                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2080 }
2081
2082 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2083 {
2084         unsigned long rip;
2085
2086         rip = kvm_rip_read(vcpu);
2087         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2088         kvm_rip_write(vcpu, rip);
2089
2090         /* skipping an emulated instruction also counts */
2091         vmx_set_interrupt_shadow(vcpu, 0);
2092 }
2093
2094 /*
2095  * KVM wants to inject page-faults which it got to the guest. This function
2096  * checks whether in a nested guest, we need to inject them to L1 or L2.
2097  */
2098 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2099 {
2100         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101
2102         if (!(vmcs12->exception_bitmap & (1u << nr)))
2103                 return 0;
2104
2105         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2106                           vmcs_read32(VM_EXIT_INTR_INFO),
2107                           vmcs_readl(EXIT_QUALIFICATION));
2108         return 1;
2109 }
2110
2111 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2112                                 bool has_error_code, u32 error_code,
2113                                 bool reinject)
2114 {
2115         struct vcpu_vmx *vmx = to_vmx(vcpu);
2116         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2117
2118         if (!reinject && is_guest_mode(vcpu) &&
2119             nested_vmx_check_exception(vcpu, nr))
2120                 return;
2121
2122         if (has_error_code) {
2123                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2124                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2125         }
2126
2127         if (vmx->rmode.vm86_active) {
2128                 int inc_eip = 0;
2129                 if (kvm_exception_is_soft(nr))
2130                         inc_eip = vcpu->arch.event_exit_inst_len;
2131                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2132                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2133                 return;
2134         }
2135
2136         if (kvm_exception_is_soft(nr)) {
2137                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2138                              vmx->vcpu.arch.event_exit_inst_len);
2139                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2140         } else
2141                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2142
2143         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2144 }
2145
2146 static bool vmx_rdtscp_supported(void)
2147 {
2148         return cpu_has_vmx_rdtscp();
2149 }
2150
2151 static bool vmx_invpcid_supported(void)
2152 {
2153         return cpu_has_vmx_invpcid() && enable_ept;
2154 }
2155
2156 /*
2157  * Swap MSR entry in host/guest MSR entry array.
2158  */
2159 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2160 {
2161         struct shared_msr_entry tmp;
2162
2163         tmp = vmx->guest_msrs[to];
2164         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2165         vmx->guest_msrs[from] = tmp;
2166 }
2167
2168 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2169 {
2170         unsigned long *msr_bitmap;
2171
2172         if (is_guest_mode(vcpu))
2173                 msr_bitmap = vmx_msr_bitmap_nested;
2174         else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2175                 if (is_long_mode(vcpu))
2176                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2177                 else
2178                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2179         } else {
2180                 if (is_long_mode(vcpu))
2181                         msr_bitmap = vmx_msr_bitmap_longmode;
2182                 else
2183                         msr_bitmap = vmx_msr_bitmap_legacy;
2184         }
2185
2186         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2187 }
2188
2189 /*
2190  * Set up the vmcs to automatically save and restore system
2191  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2192  * mode, as fiddling with msrs is very expensive.
2193  */
2194 static void setup_msrs(struct vcpu_vmx *vmx)
2195 {
2196         int save_nmsrs, index;
2197
2198         save_nmsrs = 0;
2199 #ifdef CONFIG_X86_64
2200         if (is_long_mode(&vmx->vcpu)) {
2201                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2202                 if (index >= 0)
2203                         move_msr_up(vmx, index, save_nmsrs++);
2204                 index = __find_msr_index(vmx, MSR_LSTAR);
2205                 if (index >= 0)
2206                         move_msr_up(vmx, index, save_nmsrs++);
2207                 index = __find_msr_index(vmx, MSR_CSTAR);
2208                 if (index >= 0)
2209                         move_msr_up(vmx, index, save_nmsrs++);
2210                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2211                 if (index >= 0 && vmx->rdtscp_enabled)
2212                         move_msr_up(vmx, index, save_nmsrs++);
2213                 /*
2214                  * MSR_STAR is only needed on long mode guests, and only
2215                  * if efer.sce is enabled.
2216                  */
2217                 index = __find_msr_index(vmx, MSR_STAR);
2218                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2219                         move_msr_up(vmx, index, save_nmsrs++);
2220         }
2221 #endif
2222         index = __find_msr_index(vmx, MSR_EFER);
2223         if (index >= 0 && update_transition_efer(vmx, index))
2224                 move_msr_up(vmx, index, save_nmsrs++);
2225
2226         vmx->save_nmsrs = save_nmsrs;
2227
2228         if (cpu_has_vmx_msr_bitmap())
2229                 vmx_set_msr_bitmap(&vmx->vcpu);
2230 }
2231
2232 /*
2233  * reads and returns guest's timestamp counter "register"
2234  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2235  */
2236 static u64 guest_read_tsc(void)
2237 {
2238         u64 host_tsc, tsc_offset;
2239
2240         host_tsc = rdtsc();
2241         tsc_offset = vmcs_read64(TSC_OFFSET);
2242         return host_tsc + tsc_offset;
2243 }
2244
2245 /*
2246  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2247  * counter, even if a nested guest (L2) is currently running.
2248  */
2249 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2250 {
2251         u64 tsc_offset;
2252
2253         tsc_offset = is_guest_mode(vcpu) ?
2254                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2255                 vmcs_read64(TSC_OFFSET);
2256         return host_tsc + tsc_offset;
2257 }
2258
2259 /*
2260  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2261  * software catchup for faster rates on slower CPUs.
2262  */
2263 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2264 {
2265         if (!scale)
2266                 return;
2267
2268         if (user_tsc_khz > tsc_khz) {
2269                 vcpu->arch.tsc_catchup = 1;
2270                 vcpu->arch.tsc_always_catchup = 1;
2271         } else
2272                 WARN(1, "user requested TSC rate below hardware speed\n");
2273 }
2274
2275 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2276 {
2277         return vmcs_read64(TSC_OFFSET);
2278 }
2279
2280 /*
2281  * writes 'offset' into guest's timestamp counter offset register
2282  */
2283 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2284 {
2285         if (is_guest_mode(vcpu)) {
2286                 /*
2287                  * We're here if L1 chose not to trap WRMSR to TSC. According
2288                  * to the spec, this should set L1's TSC; The offset that L1
2289                  * set for L2 remains unchanged, and still needs to be added
2290                  * to the newly set TSC to get L2's TSC.
2291                  */
2292                 struct vmcs12 *vmcs12;
2293                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2294                 /* recalculate vmcs02.TSC_OFFSET: */
2295                 vmcs12 = get_vmcs12(vcpu);
2296                 vmcs_write64(TSC_OFFSET, offset +
2297                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2298                          vmcs12->tsc_offset : 0));
2299         } else {
2300                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2301                                            vmcs_read64(TSC_OFFSET), offset);
2302                 vmcs_write64(TSC_OFFSET, offset);
2303         }
2304 }
2305
2306 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2307 {
2308         u64 offset = vmcs_read64(TSC_OFFSET);
2309
2310         vmcs_write64(TSC_OFFSET, offset + adjustment);
2311         if (is_guest_mode(vcpu)) {
2312                 /* Even when running L2, the adjustment needs to apply to L1 */
2313                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2314         } else
2315                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2316                                            offset + adjustment);
2317 }
2318
2319 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2320 {
2321         return target_tsc - rdtsc();
2322 }
2323
2324 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2325 {
2326         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2327         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2328 }
2329
2330 /*
2331  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2332  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2333  * all guests if the "nested" module option is off, and can also be disabled
2334  * for a single guest by disabling its VMX cpuid bit.
2335  */
2336 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2337 {
2338         return nested && guest_cpuid_has_vmx(vcpu);
2339 }
2340
2341 /*
2342  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2343  * returned for the various VMX controls MSRs when nested VMX is enabled.
2344  * The same values should also be used to verify that vmcs12 control fields are
2345  * valid during nested entry from L1 to L2.
2346  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2347  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2348  * bit in the high half is on if the corresponding bit in the control field
2349  * may be on. See also vmx_control_verify().
2350  */
2351 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2352 {
2353         /*
2354          * Note that as a general rule, the high half of the MSRs (bits in
2355          * the control fields which may be 1) should be initialized by the
2356          * intersection of the underlying hardware's MSR (i.e., features which
2357          * can be supported) and the list of features we want to expose -
2358          * because they are known to be properly supported in our code.
2359          * Also, usually, the low half of the MSRs (bits which must be 1) can
2360          * be set to 0, meaning that L1 may turn off any of these bits. The
2361          * reason is that if one of these bits is necessary, it will appear
2362          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2363          * fields of vmcs01 and vmcs02, will turn these bits off - and
2364          * nested_vmx_exit_handled() will not pass related exits to L1.
2365          * These rules have exceptions below.
2366          */
2367
2368         /* pin-based controls */
2369         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2370                 vmx->nested.nested_vmx_pinbased_ctls_low,
2371                 vmx->nested.nested_vmx_pinbased_ctls_high);
2372         vmx->nested.nested_vmx_pinbased_ctls_low |=
2373                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2374         vmx->nested.nested_vmx_pinbased_ctls_high &=
2375                 PIN_BASED_EXT_INTR_MASK |
2376                 PIN_BASED_NMI_EXITING |
2377                 PIN_BASED_VIRTUAL_NMIS;
2378         vmx->nested.nested_vmx_pinbased_ctls_high |=
2379                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2380                 PIN_BASED_VMX_PREEMPTION_TIMER;
2381         if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2382                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2383                         PIN_BASED_POSTED_INTR;
2384
2385         /* exit controls */
2386         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2387                 vmx->nested.nested_vmx_exit_ctls_low,
2388                 vmx->nested.nested_vmx_exit_ctls_high);
2389         vmx->nested.nested_vmx_exit_ctls_low =
2390                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2391
2392         vmx->nested.nested_vmx_exit_ctls_high &=
2393 #ifdef CONFIG_X86_64
2394                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2395 #endif
2396                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2397         vmx->nested.nested_vmx_exit_ctls_high |=
2398                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2399                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2400                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2401
2402         if (vmx_mpx_supported())
2403                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2404
2405         /* We support free control of debug control saving. */
2406         vmx->nested.nested_vmx_true_exit_ctls_low =
2407                 vmx->nested.nested_vmx_exit_ctls_low &
2408                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2409
2410         /* entry controls */
2411         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2412                 vmx->nested.nested_vmx_entry_ctls_low,
2413                 vmx->nested.nested_vmx_entry_ctls_high);
2414         vmx->nested.nested_vmx_entry_ctls_low =
2415                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2416         vmx->nested.nested_vmx_entry_ctls_high &=
2417 #ifdef CONFIG_X86_64
2418                 VM_ENTRY_IA32E_MODE |
2419 #endif
2420                 VM_ENTRY_LOAD_IA32_PAT;
2421         vmx->nested.nested_vmx_entry_ctls_high |=
2422                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2423         if (vmx_mpx_supported())
2424                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2425
2426         /* We support free control of debug control loading. */
2427         vmx->nested.nested_vmx_true_entry_ctls_low =
2428                 vmx->nested.nested_vmx_entry_ctls_low &
2429                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2430
2431         /* cpu-based controls */
2432         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2433                 vmx->nested.nested_vmx_procbased_ctls_low,
2434                 vmx->nested.nested_vmx_procbased_ctls_high);
2435         vmx->nested.nested_vmx_procbased_ctls_low =
2436                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2437         vmx->nested.nested_vmx_procbased_ctls_high &=
2438                 CPU_BASED_VIRTUAL_INTR_PENDING |
2439                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2440                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2441                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2442                 CPU_BASED_CR3_STORE_EXITING |
2443 #ifdef CONFIG_X86_64
2444                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2445 #endif
2446                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2447                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2448                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2449                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2450                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2451         /*
2452          * We can allow some features even when not supported by the
2453          * hardware. For example, L1 can specify an MSR bitmap - and we
2454          * can use it to avoid exits to L1 - even when L0 runs L2
2455          * without MSR bitmaps.
2456          */
2457         vmx->nested.nested_vmx_procbased_ctls_high |=
2458                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2459                 CPU_BASED_USE_MSR_BITMAPS;
2460
2461         /* We support free control of CR3 access interception. */
2462         vmx->nested.nested_vmx_true_procbased_ctls_low =
2463                 vmx->nested.nested_vmx_procbased_ctls_low &
2464                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2465
2466         /* secondary cpu-based controls */
2467         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2468                 vmx->nested.nested_vmx_secondary_ctls_low,
2469                 vmx->nested.nested_vmx_secondary_ctls_high);
2470         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2471         vmx->nested.nested_vmx_secondary_ctls_high &=
2472                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2473                 SECONDARY_EXEC_RDTSCP |
2474                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2475                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2476                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2477                 SECONDARY_EXEC_WBINVD_EXITING |
2478                 SECONDARY_EXEC_XSAVES;
2479
2480         if (enable_ept) {
2481                 /* nested EPT: emulate EPT also to L1 */
2482                 vmx->nested.nested_vmx_secondary_ctls_high |=
2483                         SECONDARY_EXEC_ENABLE_EPT;
2484                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2485                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2486                          VMX_EPT_INVEPT_BIT;
2487                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2488                 /*
2489                  * For nested guests, we don't do anything specific
2490                  * for single context invalidation. Hence, only advertise
2491                  * support for global context invalidation.
2492                  */
2493                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2494         } else
2495                 vmx->nested.nested_vmx_ept_caps = 0;
2496
2497         if (enable_unrestricted_guest)
2498                 vmx->nested.nested_vmx_secondary_ctls_high |=
2499                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2500
2501         /* miscellaneous data */
2502         rdmsr(MSR_IA32_VMX_MISC,
2503                 vmx->nested.nested_vmx_misc_low,
2504                 vmx->nested.nested_vmx_misc_high);
2505         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2506         vmx->nested.nested_vmx_misc_low |=
2507                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2508                 VMX_MISC_ACTIVITY_HLT;
2509         vmx->nested.nested_vmx_misc_high = 0;
2510 }
2511
2512 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2513 {
2514         /*
2515          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2516          */
2517         return ((control & high) | low) == control;
2518 }
2519
2520 static inline u64 vmx_control_msr(u32 low, u32 high)
2521 {
2522         return low | ((u64)high << 32);
2523 }
2524
2525 /* Returns 0 on success, non-0 otherwise. */
2526 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2527 {
2528         struct vcpu_vmx *vmx = to_vmx(vcpu);
2529
2530         switch (msr_index) {
2531         case MSR_IA32_VMX_BASIC:
2532                 /*
2533                  * This MSR reports some information about VMX support. We
2534                  * should return information about the VMX we emulate for the
2535                  * guest, and the VMCS structure we give it - not about the
2536                  * VMX support of the underlying hardware.
2537                  */
2538                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2539                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2540                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2541                 break;
2542         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2543         case MSR_IA32_VMX_PINBASED_CTLS:
2544                 *pdata = vmx_control_msr(
2545                         vmx->nested.nested_vmx_pinbased_ctls_low,
2546                         vmx->nested.nested_vmx_pinbased_ctls_high);
2547                 break;
2548         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2549                 *pdata = vmx_control_msr(
2550                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2551                         vmx->nested.nested_vmx_procbased_ctls_high);
2552                 break;
2553         case MSR_IA32_VMX_PROCBASED_CTLS:
2554                 *pdata = vmx_control_msr(
2555                         vmx->nested.nested_vmx_procbased_ctls_low,
2556                         vmx->nested.nested_vmx_procbased_ctls_high);
2557                 break;
2558         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2559                 *pdata = vmx_control_msr(
2560                         vmx->nested.nested_vmx_true_exit_ctls_low,
2561                         vmx->nested.nested_vmx_exit_ctls_high);
2562                 break;
2563         case MSR_IA32_VMX_EXIT_CTLS:
2564                 *pdata = vmx_control_msr(
2565                         vmx->nested.nested_vmx_exit_ctls_low,
2566                         vmx->nested.nested_vmx_exit_ctls_high);
2567                 break;
2568         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2569                 *pdata = vmx_control_msr(
2570                         vmx->nested.nested_vmx_true_entry_ctls_low,
2571                         vmx->nested.nested_vmx_entry_ctls_high);
2572                 break;
2573         case MSR_IA32_VMX_ENTRY_CTLS:
2574                 *pdata = vmx_control_msr(
2575                         vmx->nested.nested_vmx_entry_ctls_low,
2576                         vmx->nested.nested_vmx_entry_ctls_high);
2577                 break;
2578         case MSR_IA32_VMX_MISC:
2579                 *pdata = vmx_control_msr(
2580                         vmx->nested.nested_vmx_misc_low,
2581                         vmx->nested.nested_vmx_misc_high);
2582                 break;
2583         /*
2584          * These MSRs specify bits which the guest must keep fixed (on or off)
2585          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2586          * We picked the standard core2 setting.
2587          */
2588 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2589 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2590         case MSR_IA32_VMX_CR0_FIXED0:
2591                 *pdata = VMXON_CR0_ALWAYSON;
2592                 break;
2593         case MSR_IA32_VMX_CR0_FIXED1:
2594                 *pdata = -1ULL;
2595                 break;
2596         case MSR_IA32_VMX_CR4_FIXED0:
2597                 *pdata = VMXON_CR4_ALWAYSON;
2598                 break;
2599         case MSR_IA32_VMX_CR4_FIXED1:
2600                 *pdata = -1ULL;
2601                 break;
2602         case MSR_IA32_VMX_VMCS_ENUM:
2603                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2604                 break;
2605         case MSR_IA32_VMX_PROCBASED_CTLS2:
2606                 *pdata = vmx_control_msr(
2607                         vmx->nested.nested_vmx_secondary_ctls_low,
2608                         vmx->nested.nested_vmx_secondary_ctls_high);
2609                 break;
2610         case MSR_IA32_VMX_EPT_VPID_CAP:
2611                 /* Currently, no nested vpid support */
2612                 *pdata = vmx->nested.nested_vmx_ept_caps;
2613                 break;
2614         default:
2615                 return 1;
2616         }
2617
2618         return 0;
2619 }
2620
2621 /*
2622  * Reads an msr value (of 'msr_index') into 'pdata'.
2623  * Returns 0 on success, non-0 otherwise.
2624  * Assumes vcpu_load() was already called.
2625  */
2626 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2627 {
2628         struct shared_msr_entry *msr;
2629
2630         switch (msr_info->index) {
2631 #ifdef CONFIG_X86_64
2632         case MSR_FS_BASE:
2633                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2634                 break;
2635         case MSR_GS_BASE:
2636                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2637                 break;
2638         case MSR_KERNEL_GS_BASE:
2639                 vmx_load_host_state(to_vmx(vcpu));
2640                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2641                 break;
2642 #endif
2643         case MSR_EFER:
2644                 return kvm_get_msr_common(vcpu, msr_info);
2645         case MSR_IA32_TSC:
2646                 msr_info->data = guest_read_tsc();
2647                 break;
2648         case MSR_IA32_SYSENTER_CS:
2649                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2650                 break;
2651         case MSR_IA32_SYSENTER_EIP:
2652                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2653                 break;
2654         case MSR_IA32_SYSENTER_ESP:
2655                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2656                 break;
2657         case MSR_IA32_BNDCFGS:
2658                 if (!vmx_mpx_supported())
2659                         return 1;
2660                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2661                 break;
2662         case MSR_IA32_FEATURE_CONTROL:
2663                 if (!nested_vmx_allowed(vcpu))
2664                         return 1;
2665                 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2666                 break;
2667         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2668                 if (!nested_vmx_allowed(vcpu))
2669                         return 1;
2670                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2671         case MSR_IA32_XSS:
2672                 if (!vmx_xsaves_supported())
2673                         return 1;
2674                 msr_info->data = vcpu->arch.ia32_xss;
2675                 break;
2676         case MSR_TSC_AUX:
2677                 if (!to_vmx(vcpu)->rdtscp_enabled)
2678                         return 1;
2679                 /* Otherwise falls through */
2680         default:
2681                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2682                 if (msr) {
2683                         msr_info->data = msr->data;
2684                         break;
2685                 }
2686                 return kvm_get_msr_common(vcpu, msr_info);
2687         }
2688
2689         return 0;
2690 }
2691
2692 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2693
2694 /*
2695  * Writes msr value into into the appropriate "register".
2696  * Returns 0 on success, non-0 otherwise.
2697  * Assumes vcpu_load() was already called.
2698  */
2699 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2700 {
2701         struct vcpu_vmx *vmx = to_vmx(vcpu);
2702         struct shared_msr_entry *msr;
2703         int ret = 0;
2704         u32 msr_index = msr_info->index;
2705         u64 data = msr_info->data;
2706
2707         switch (msr_index) {
2708         case MSR_EFER:
2709                 ret = kvm_set_msr_common(vcpu, msr_info);
2710                 break;
2711 #ifdef CONFIG_X86_64
2712         case MSR_FS_BASE:
2713                 vmx_segment_cache_clear(vmx);
2714                 vmcs_writel(GUEST_FS_BASE, data);
2715                 break;
2716         case MSR_GS_BASE:
2717                 vmx_segment_cache_clear(vmx);
2718                 vmcs_writel(GUEST_GS_BASE, data);
2719                 break;
2720         case MSR_KERNEL_GS_BASE:
2721                 vmx_load_host_state(vmx);
2722                 vmx->msr_guest_kernel_gs_base = data;
2723                 break;
2724 #endif
2725         case MSR_IA32_SYSENTER_CS:
2726                 vmcs_write32(GUEST_SYSENTER_CS, data);
2727                 break;
2728         case MSR_IA32_SYSENTER_EIP:
2729                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2730                 break;
2731         case MSR_IA32_SYSENTER_ESP:
2732                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2733                 break;
2734         case MSR_IA32_BNDCFGS:
2735                 if (!vmx_mpx_supported())
2736                         return 1;
2737                 vmcs_write64(GUEST_BNDCFGS, data);
2738                 break;
2739         case MSR_IA32_TSC:
2740                 kvm_write_tsc(vcpu, msr_info);
2741                 break;
2742         case MSR_IA32_CR_PAT:
2743                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2744                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2745                                 return 1;
2746                         vmcs_write64(GUEST_IA32_PAT, data);
2747                         vcpu->arch.pat = data;
2748                         break;
2749                 }
2750                 ret = kvm_set_msr_common(vcpu, msr_info);
2751                 break;
2752         case MSR_IA32_TSC_ADJUST:
2753                 ret = kvm_set_msr_common(vcpu, msr_info);
2754                 break;
2755         case MSR_IA32_FEATURE_CONTROL:
2756                 if (!nested_vmx_allowed(vcpu) ||
2757                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2758                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2759                         return 1;
2760                 vmx->nested.msr_ia32_feature_control = data;
2761                 if (msr_info->host_initiated && data == 0)
2762                         vmx_leave_nested(vcpu);
2763                 break;
2764         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2765                 return 1; /* they are read-only */
2766         case MSR_IA32_XSS:
2767                 if (!vmx_xsaves_supported())
2768                         return 1;
2769                 /*
2770                  * The only supported bit as of Skylake is bit 8, but
2771                  * it is not supported on KVM.
2772                  */
2773                 if (data != 0)
2774                         return 1;
2775                 vcpu->arch.ia32_xss = data;
2776                 if (vcpu->arch.ia32_xss != host_xss)
2777                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2778                                 vcpu->arch.ia32_xss, host_xss);
2779                 else
2780                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2781                 break;
2782         case MSR_TSC_AUX:
2783                 if (!vmx->rdtscp_enabled)
2784                         return 1;
2785                 /* Check reserved bit, higher 32 bits should be zero */
2786                 if ((data >> 32) != 0)
2787                         return 1;
2788                 /* Otherwise falls through */
2789         default:
2790                 msr = find_msr_entry(vmx, msr_index);
2791                 if (msr) {
2792                         u64 old_msr_data = msr->data;
2793                         msr->data = data;
2794                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2795                                 preempt_disable();
2796                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2797                                                          msr->mask);
2798                                 preempt_enable();
2799                                 if (ret)
2800                                         msr->data = old_msr_data;
2801                         }
2802                         break;
2803                 }
2804                 ret = kvm_set_msr_common(vcpu, msr_info);
2805         }
2806
2807         return ret;
2808 }
2809
2810 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2811 {
2812         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2813         switch (reg) {
2814         case VCPU_REGS_RSP:
2815                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2816                 break;
2817         case VCPU_REGS_RIP:
2818                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2819                 break;
2820         case VCPU_EXREG_PDPTR:
2821                 if (enable_ept)
2822                         ept_save_pdptrs(vcpu);
2823                 break;
2824         default:
2825                 break;
2826         }
2827 }
2828
2829 static __init int cpu_has_kvm_support(void)
2830 {
2831         return cpu_has_vmx();
2832 }
2833
2834 static __init int vmx_disabled_by_bios(void)
2835 {
2836         u64 msr;
2837
2838         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2839         if (msr & FEATURE_CONTROL_LOCKED) {
2840                 /* launched w/ TXT and VMX disabled */
2841                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2842                         && tboot_enabled())
2843                         return 1;
2844                 /* launched w/o TXT and VMX only enabled w/ TXT */
2845                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2846                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2847                         && !tboot_enabled()) {
2848                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2849                                 "activate TXT before enabling KVM\n");
2850                         return 1;
2851                 }
2852                 /* launched w/o TXT and VMX disabled */
2853                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2854                         && !tboot_enabled())
2855                         return 1;
2856         }
2857
2858         return 0;
2859 }
2860
2861 static void kvm_cpu_vmxon(u64 addr)
2862 {
2863         asm volatile (ASM_VMX_VMXON_RAX
2864                         : : "a"(&addr), "m"(addr)
2865                         : "memory", "cc");
2866 }
2867
2868 static int hardware_enable(void)
2869 {
2870         int cpu = raw_smp_processor_id();
2871         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2872         u64 old, test_bits;
2873
2874         if (cr4_read_shadow() & X86_CR4_VMXE)
2875                 return -EBUSY;
2876
2877         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2878
2879         /*
2880          * Now we can enable the vmclear operation in kdump
2881          * since the loaded_vmcss_on_cpu list on this cpu
2882          * has been initialized.
2883          *
2884          * Though the cpu is not in VMX operation now, there
2885          * is no problem to enable the vmclear operation
2886          * for the loaded_vmcss_on_cpu list is empty!
2887          */
2888         crash_enable_local_vmclear(cpu);
2889
2890         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2891
2892         test_bits = FEATURE_CONTROL_LOCKED;
2893         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2894         if (tboot_enabled())
2895                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2896
2897         if ((old & test_bits) != test_bits) {
2898                 /* enable and lock */
2899                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2900         }
2901         cr4_set_bits(X86_CR4_VMXE);
2902
2903         if (vmm_exclusive) {
2904                 kvm_cpu_vmxon(phys_addr);
2905                 ept_sync_global();
2906         }
2907
2908         native_store_gdt(this_cpu_ptr(&host_gdt));
2909
2910         return 0;
2911 }
2912
2913 static void vmclear_local_loaded_vmcss(void)
2914 {
2915         int cpu = raw_smp_processor_id();
2916         struct loaded_vmcs *v, *n;
2917
2918         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2919                                  loaded_vmcss_on_cpu_link)
2920                 __loaded_vmcs_clear(v);
2921 }
2922
2923
2924 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2925  * tricks.
2926  */
2927 static void kvm_cpu_vmxoff(void)
2928 {
2929         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2930 }
2931
2932 static void hardware_disable(void)
2933 {
2934         if (vmm_exclusive) {
2935                 vmclear_local_loaded_vmcss();
2936                 kvm_cpu_vmxoff();
2937         }
2938         cr4_clear_bits(X86_CR4_VMXE);
2939 }
2940
2941 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2942                                       u32 msr, u32 *result)
2943 {
2944         u32 vmx_msr_low, vmx_msr_high;
2945         u32 ctl = ctl_min | ctl_opt;
2946
2947         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2948
2949         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2950         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2951
2952         /* Ensure minimum (required) set of control bits are supported. */
2953         if (ctl_min & ~ctl)
2954                 return -EIO;
2955
2956         *result = ctl;
2957         return 0;
2958 }
2959
2960 static __init bool allow_1_setting(u32 msr, u32 ctl)
2961 {
2962         u32 vmx_msr_low, vmx_msr_high;
2963
2964         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2965         return vmx_msr_high & ctl;
2966 }
2967
2968 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2969 {
2970         u32 vmx_msr_low, vmx_msr_high;
2971         u32 min, opt, min2, opt2;
2972         u32 _pin_based_exec_control = 0;
2973         u32 _cpu_based_exec_control = 0;
2974         u32 _cpu_based_2nd_exec_control = 0;
2975         u32 _vmexit_control = 0;
2976         u32 _vmentry_control = 0;
2977
2978         min = CPU_BASED_HLT_EXITING |
2979 #ifdef CONFIG_X86_64
2980               CPU_BASED_CR8_LOAD_EXITING |
2981               CPU_BASED_CR8_STORE_EXITING |
2982 #endif
2983               CPU_BASED_CR3_LOAD_EXITING |
2984               CPU_BASED_CR3_STORE_EXITING |
2985               CPU_BASED_USE_IO_BITMAPS |
2986               CPU_BASED_MOV_DR_EXITING |
2987               CPU_BASED_USE_TSC_OFFSETING |
2988               CPU_BASED_MWAIT_EXITING |
2989               CPU_BASED_MONITOR_EXITING |
2990               CPU_BASED_INVLPG_EXITING |
2991               CPU_BASED_RDPMC_EXITING;
2992
2993         opt = CPU_BASED_TPR_SHADOW |
2994               CPU_BASED_USE_MSR_BITMAPS |
2995               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2996         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2997                                 &_cpu_based_exec_control) < 0)
2998                 return -EIO;
2999 #ifdef CONFIG_X86_64
3000         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3001                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3002                                            ~CPU_BASED_CR8_STORE_EXITING;
3003 #endif
3004         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3005                 min2 = 0;
3006                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3007                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3008                         SECONDARY_EXEC_WBINVD_EXITING |
3009                         SECONDARY_EXEC_ENABLE_VPID |
3010                         SECONDARY_EXEC_ENABLE_EPT |
3011                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3012                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3013                         SECONDARY_EXEC_RDTSCP |
3014                         SECONDARY_EXEC_ENABLE_INVPCID |
3015                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3016                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3017                         SECONDARY_EXEC_SHADOW_VMCS |
3018                         SECONDARY_EXEC_XSAVES |
3019                         SECONDARY_EXEC_ENABLE_PML;
3020                 if (adjust_vmx_controls(min2, opt2,
3021                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3022                                         &_cpu_based_2nd_exec_control) < 0)
3023                         return -EIO;
3024         }
3025 #ifndef CONFIG_X86_64
3026         if (!(_cpu_based_2nd_exec_control &
3027                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3028                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3029 #endif
3030
3031         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3032                 _cpu_based_2nd_exec_control &= ~(
3033                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3034                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3035                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3036
3037         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3038                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3039                    enabled */
3040                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3041                                              CPU_BASED_CR3_STORE_EXITING |
3042                                              CPU_BASED_INVLPG_EXITING);
3043                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3044                       vmx_capability.ept, vmx_capability.vpid);
3045         }
3046
3047         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3048 #ifdef CONFIG_X86_64
3049         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3050 #endif
3051         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3052                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3053         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3054                                 &_vmexit_control) < 0)
3055                 return -EIO;
3056
3057         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3058         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3059         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3060                                 &_pin_based_exec_control) < 0)
3061                 return -EIO;
3062
3063         if (!(_cpu_based_2nd_exec_control &
3064                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3065                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3066                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3067
3068         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3069         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3070         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3071                                 &_vmentry_control) < 0)
3072                 return -EIO;
3073
3074         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3075
3076         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3077         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3078                 return -EIO;
3079
3080 #ifdef CONFIG_X86_64
3081         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3082         if (vmx_msr_high & (1u<<16))
3083                 return -EIO;
3084 #endif
3085
3086         /* Require Write-Back (WB) memory type for VMCS accesses. */
3087         if (((vmx_msr_high >> 18) & 15) != 6)
3088                 return -EIO;
3089
3090         vmcs_conf->size = vmx_msr_high & 0x1fff;
3091         vmcs_conf->order = get_order(vmcs_config.size);
3092         vmcs_conf->revision_id = vmx_msr_low;
3093
3094         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3095         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3096         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3097         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3098         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3099
3100         cpu_has_load_ia32_efer =
3101                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3102                                 VM_ENTRY_LOAD_IA32_EFER)
3103                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3104                                    VM_EXIT_LOAD_IA32_EFER);
3105
3106         cpu_has_load_perf_global_ctrl =
3107                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3108                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3109                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3110                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3111
3112         /*
3113          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3114          * but due to arrata below it can't be used. Workaround is to use
3115          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3116          *
3117          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3118          *
3119          * AAK155             (model 26)
3120          * AAP115             (model 30)
3121          * AAT100             (model 37)
3122          * BC86,AAY89,BD102   (model 44)
3123          * BA97               (model 46)
3124          *
3125          */
3126         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3127                 switch (boot_cpu_data.x86_model) {
3128                 case 26:
3129                 case 30:
3130                 case 37:
3131                 case 44:
3132                 case 46:
3133                         cpu_has_load_perf_global_ctrl = false;
3134                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3135                                         "does not work properly. Using workaround\n");
3136                         break;
3137                 default:
3138                         break;
3139                 }
3140         }
3141
3142         if (cpu_has_xsaves)
3143                 rdmsrl(MSR_IA32_XSS, host_xss);
3144
3145         return 0;
3146 }
3147
3148 static struct vmcs *alloc_vmcs_cpu(int cpu)
3149 {
3150         int node = cpu_to_node(cpu);
3151         struct page *pages;
3152         struct vmcs *vmcs;
3153
3154         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3155         if (!pages)
3156                 return NULL;
3157         vmcs = page_address(pages);
3158         memset(vmcs, 0, vmcs_config.size);
3159         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3160         return vmcs;
3161 }
3162
3163 static struct vmcs *alloc_vmcs(void)
3164 {
3165         return alloc_vmcs_cpu(raw_smp_processor_id());
3166 }
3167
3168 static void free_vmcs(struct vmcs *vmcs)
3169 {
3170         free_pages((unsigned long)vmcs, vmcs_config.order);
3171 }
3172
3173 /*
3174  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3175  */
3176 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3177 {
3178         if (!loaded_vmcs->vmcs)
3179                 return;
3180         loaded_vmcs_clear(loaded_vmcs);
3181         free_vmcs(loaded_vmcs->vmcs);
3182         loaded_vmcs->vmcs = NULL;
3183 }
3184
3185 static void free_kvm_area(void)
3186 {
3187         int cpu;
3188
3189         for_each_possible_cpu(cpu) {
3190                 free_vmcs(per_cpu(vmxarea, cpu));
3191                 per_cpu(vmxarea, cpu) = NULL;
3192         }
3193 }
3194
3195 static void init_vmcs_shadow_fields(void)
3196 {
3197         int i, j;
3198
3199         /* No checks for read only fields yet */
3200
3201         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3202                 switch (shadow_read_write_fields[i]) {
3203                 case GUEST_BNDCFGS:
3204                         if (!vmx_mpx_supported())
3205                                 continue;
3206                         break;
3207                 default:
3208                         break;
3209                 }
3210
3211                 if (j < i)
3212                         shadow_read_write_fields[j] =
3213                                 shadow_read_write_fields[i];
3214                 j++;
3215         }
3216         max_shadow_read_write_fields = j;
3217
3218         /* shadowed fields guest access without vmexit */
3219         for (i = 0; i < max_shadow_read_write_fields; i++) {
3220                 clear_bit(shadow_read_write_fields[i],
3221                           vmx_vmwrite_bitmap);
3222                 clear_bit(shadow_read_write_fields[i],
3223                           vmx_vmread_bitmap);
3224         }
3225         for (i = 0; i < max_shadow_read_only_fields; i++)
3226                 clear_bit(shadow_read_only_fields[i],
3227                           vmx_vmread_bitmap);
3228 }
3229
3230 static __init int alloc_kvm_area(void)
3231 {
3232         int cpu;
3233
3234         for_each_possible_cpu(cpu) {
3235                 struct vmcs *vmcs;
3236
3237                 vmcs = alloc_vmcs_cpu(cpu);
3238                 if (!vmcs) {
3239                         free_kvm_area();
3240                         return -ENOMEM;
3241                 }
3242
3243                 per_cpu(vmxarea, cpu) = vmcs;
3244         }
3245         return 0;
3246 }
3247
3248 static bool emulation_required(struct kvm_vcpu *vcpu)
3249 {
3250         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3251 }
3252
3253 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3254                 struct kvm_segment *save)
3255 {
3256         if (!emulate_invalid_guest_state) {
3257                 /*
3258                  * CS and SS RPL should be equal during guest entry according
3259                  * to VMX spec, but in reality it is not always so. Since vcpu
3260                  * is in the middle of the transition from real mode to
3261                  * protected mode it is safe to assume that RPL 0 is a good
3262                  * default value.
3263                  */
3264                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3265                         save->selector &= ~SEGMENT_RPL_MASK;
3266                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3267                 save->s = 1;
3268         }
3269         vmx_set_segment(vcpu, save, seg);
3270 }
3271
3272 static void enter_pmode(struct kvm_vcpu *vcpu)
3273 {
3274         unsigned long flags;
3275         struct vcpu_vmx *vmx = to_vmx(vcpu);
3276
3277         /*
3278          * Update real mode segment cache. It may be not up-to-date if sement
3279          * register was written while vcpu was in a guest mode.
3280          */
3281         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3286         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3287
3288         vmx->rmode.vm86_active = 0;
3289
3290         vmx_segment_cache_clear(vmx);
3291
3292         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3293
3294         flags = vmcs_readl(GUEST_RFLAGS);
3295         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3296         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3297         vmcs_writel(GUEST_RFLAGS, flags);
3298
3299         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3300                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3301
3302         update_exception_bitmap(vcpu);
3303
3304         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3305         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3306         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3307         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3308         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3309         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3310 }
3311
3312 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3313 {
3314         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3315         struct kvm_segment var = *save;
3316
3317         var.dpl = 0x3;
3318         if (seg == VCPU_SREG_CS)
3319                 var.type = 0x3;
3320
3321         if (!emulate_invalid_guest_state) {
3322                 var.selector = var.base >> 4;
3323                 var.base = var.base & 0xffff0;
3324                 var.limit = 0xffff;
3325                 var.g = 0;
3326                 var.db = 0;
3327                 var.present = 1;
3328                 var.s = 1;
3329                 var.l = 0;
3330                 var.unusable = 0;
3331                 var.type = 0x3;
3332                 var.avl = 0;
3333                 if (save->base & 0xf)
3334                         printk_once(KERN_WARNING "kvm: segment base is not "
3335                                         "paragraph aligned when entering "
3336                                         "protected mode (seg=%d)", seg);
3337         }
3338
3339         vmcs_write16(sf->selector, var.selector);
3340         vmcs_write32(sf->base, var.base);
3341         vmcs_write32(sf->limit, var.limit);
3342         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3343 }
3344
3345 static void enter_rmode(struct kvm_vcpu *vcpu)
3346 {
3347         unsigned long flags;
3348         struct vcpu_vmx *vmx = to_vmx(vcpu);
3349
3350         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3351         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3352         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3353         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3354         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3355         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3356         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3357
3358         vmx->rmode.vm86_active = 1;
3359
3360         /*
3361          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3362          * vcpu. Warn the user that an update is overdue.
3363          */
3364         if (!vcpu->kvm->arch.tss_addr)
3365                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3366                              "called before entering vcpu\n");
3367
3368         vmx_segment_cache_clear(vmx);
3369
3370         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3371         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3372         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3373
3374         flags = vmcs_readl(GUEST_RFLAGS);
3375         vmx->rmode.save_rflags = flags;
3376
3377         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3378
3379         vmcs_writel(GUEST_RFLAGS, flags);
3380         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3381         update_exception_bitmap(vcpu);
3382
3383         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3384         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3385         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3386         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3387         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3388         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3389
3390         kvm_mmu_reset_context(vcpu);
3391 }
3392
3393 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3394 {
3395         struct vcpu_vmx *vmx = to_vmx(vcpu);
3396         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3397
3398         if (!msr)
3399                 return;
3400
3401         /*
3402          * Force kernel_gs_base reloading before EFER changes, as control
3403          * of this msr depends on is_long_mode().
3404          */
3405         vmx_load_host_state(to_vmx(vcpu));
3406         vcpu->arch.efer = efer;
3407         if (efer & EFER_LMA) {
3408                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3409                 msr->data = efer;
3410         } else {
3411                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3412
3413                 msr->data = efer & ~EFER_LME;
3414         }
3415         setup_msrs(vmx);
3416 }
3417
3418 #ifdef CONFIG_X86_64
3419
3420 static void enter_lmode(struct kvm_vcpu *vcpu)
3421 {
3422         u32 guest_tr_ar;
3423
3424         vmx_segment_cache_clear(to_vmx(vcpu));
3425
3426         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3427         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3428                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3429                                      __func__);
3430                 vmcs_write32(GUEST_TR_AR_BYTES,
3431                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3432                              | VMX_AR_TYPE_BUSY_64_TSS);
3433         }
3434         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3435 }
3436
3437 static void exit_lmode(struct kvm_vcpu *vcpu)
3438 {
3439         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3440         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3441 }
3442
3443 #endif
3444
3445 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3446 {
3447         vpid_sync_context(to_vmx(vcpu));
3448         if (enable_ept) {
3449                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3450                         return;
3451                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3452         }
3453 }
3454
3455 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3456 {
3457         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3458
3459         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3460         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3461 }
3462
3463 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3464 {
3465         if (enable_ept && is_paging(vcpu))
3466                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3467         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3468 }
3469
3470 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3471 {
3472         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3473
3474         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3475         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3476 }
3477
3478 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3479 {
3480         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3481
3482         if (!test_bit(VCPU_EXREG_PDPTR,
3483                       (unsigned long *)&vcpu->arch.regs_dirty))
3484                 return;
3485
3486         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3487                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3488                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3489                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3490                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3491         }
3492 }
3493
3494 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3495 {
3496         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3497
3498         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3499                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3500                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3501                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3502                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3503         }
3504
3505         __set_bit(VCPU_EXREG_PDPTR,
3506                   (unsigned long *)&vcpu->arch.regs_avail);
3507         __set_bit(VCPU_EXREG_PDPTR,
3508                   (unsigned long *)&vcpu->arch.regs_dirty);
3509 }
3510
3511 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3512
3513 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3514                                         unsigned long cr0,
3515                                         struct kvm_vcpu *vcpu)
3516 {
3517         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3518                 vmx_decache_cr3(vcpu);
3519         if (!(cr0 & X86_CR0_PG)) {
3520                 /* From paging/starting to nonpaging */
3521                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3522                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3523                              (CPU_BASED_CR3_LOAD_EXITING |
3524                               CPU_BASED_CR3_STORE_EXITING));
3525                 vcpu->arch.cr0 = cr0;
3526                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3527         } else if (!is_paging(vcpu)) {
3528                 /* From nonpaging to paging */
3529                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3530                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3531                              ~(CPU_BASED_CR3_LOAD_EXITING |
3532                                CPU_BASED_CR3_STORE_EXITING));
3533                 vcpu->arch.cr0 = cr0;
3534                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3535         }
3536
3537         if (!(cr0 & X86_CR0_WP))
3538                 *hw_cr0 &= ~X86_CR0_WP;
3539 }
3540
3541 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3542 {
3543         struct vcpu_vmx *vmx = to_vmx(vcpu);
3544         unsigned long hw_cr0;
3545
3546         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3547         if (enable_unrestricted_guest)
3548                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3549         else {
3550                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3551
3552                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3553                         enter_pmode(vcpu);
3554
3555                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3556                         enter_rmode(vcpu);
3557         }
3558
3559 #ifdef CONFIG_X86_64
3560         if (vcpu->arch.efer & EFER_LME) {
3561                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3562                         enter_lmode(vcpu);
3563                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3564                         exit_lmode(vcpu);
3565         }
3566 #endif
3567
3568         if (enable_ept)
3569                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3570
3571         if (!vcpu->fpu_active)
3572                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3573
3574         vmcs_writel(CR0_READ_SHADOW, cr0);
3575         vmcs_writel(GUEST_CR0, hw_cr0);
3576         vcpu->arch.cr0 = cr0;
3577
3578         /* depends on vcpu->arch.cr0 to be set to a new value */
3579         vmx->emulation_required = emulation_required(vcpu);
3580 }
3581
3582 static u64 construct_eptp(unsigned long root_hpa)
3583 {
3584         u64 eptp;
3585
3586         /* TODO write the value reading from MSR */
3587         eptp = VMX_EPT_DEFAULT_MT |
3588                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3589         if (enable_ept_ad_bits)
3590                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3591         eptp |= (root_hpa & PAGE_MASK);
3592
3593         return eptp;
3594 }
3595
3596 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3597 {
3598         unsigned long guest_cr3;
3599         u64 eptp;
3600
3601         guest_cr3 = cr3;
3602         if (enable_ept) {
3603                 eptp = construct_eptp(cr3);
3604                 vmcs_write64(EPT_POINTER, eptp);
3605                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3606                         guest_cr3 = kvm_read_cr3(vcpu);
3607                 else
3608                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3609                 ept_load_pdptrs(vcpu);
3610         }
3611
3612         vmx_flush_tlb(vcpu);
3613         vmcs_writel(GUEST_CR3, guest_cr3);
3614 }
3615
3616 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3617 {
3618         /*
3619          * Pass through host's Machine Check Enable value to hw_cr4, which
3620          * is in force while we are in guest mode.  Do not let guests control
3621          * this bit, even if host CR4.MCE == 0.
3622          */
3623         unsigned long hw_cr4 =
3624                 (cr4_read_shadow() & X86_CR4_MCE) |
3625                 (cr4 & ~X86_CR4_MCE) |
3626                 (to_vmx(vcpu)->rmode.vm86_active ?
3627                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3628
3629         if (cr4 & X86_CR4_VMXE) {
3630                 /*
3631                  * To use VMXON (and later other VMX instructions), a guest
3632                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3633                  * So basically the check on whether to allow nested VMX
3634                  * is here.
3635                  */
3636                 if (!nested_vmx_allowed(vcpu))
3637                         return 1;
3638         }
3639         if (to_vmx(vcpu)->nested.vmxon &&
3640             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3641                 return 1;
3642
3643         vcpu->arch.cr4 = cr4;
3644         if (enable_ept) {
3645                 if (!is_paging(vcpu)) {
3646                         hw_cr4 &= ~X86_CR4_PAE;
3647                         hw_cr4 |= X86_CR4_PSE;
3648                         /*
3649                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3650                          * in hardware. However KVM always uses paging mode to
3651                          * emulate guest non-paging mode with TDP.
3652                          * To emulate this behavior, SMEP/SMAP needs to be
3653                          * manually disabled when guest switches to non-paging
3654                          * mode.
3655                          */
3656                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3657                 } else if (!(cr4 & X86_CR4_PAE)) {
3658                         hw_cr4 &= ~X86_CR4_PAE;
3659                 }
3660         }
3661
3662         vmcs_writel(CR4_READ_SHADOW, cr4);
3663         vmcs_writel(GUEST_CR4, hw_cr4);
3664         return 0;
3665 }
3666
3667 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3668                             struct kvm_segment *var, int seg)
3669 {
3670         struct vcpu_vmx *vmx = to_vmx(vcpu);
3671         u32 ar;
3672
3673         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3674                 *var = vmx->rmode.segs[seg];
3675                 if (seg == VCPU_SREG_TR
3676                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3677                         return;
3678                 var->base = vmx_read_guest_seg_base(vmx, seg);
3679                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3680                 return;
3681         }
3682         var->base = vmx_read_guest_seg_base(vmx, seg);
3683         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3684         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3685         ar = vmx_read_guest_seg_ar(vmx, seg);
3686         var->unusable = (ar >> 16) & 1;
3687         var->type = ar & 15;
3688         var->s = (ar >> 4) & 1;
3689         var->dpl = (ar >> 5) & 3;
3690         /*
3691          * Some userspaces do not preserve unusable property. Since usable
3692          * segment has to be present according to VMX spec we can use present
3693          * property to amend userspace bug by making unusable segment always
3694          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3695          * segment as unusable.
3696          */
3697         var->present = !var->unusable;
3698         var->avl = (ar >> 12) & 1;
3699         var->l = (ar >> 13) & 1;
3700         var->db = (ar >> 14) & 1;
3701         var->g = (ar >> 15) & 1;
3702 }
3703
3704 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3705 {
3706         struct kvm_segment s;
3707
3708         if (to_vmx(vcpu)->rmode.vm86_active) {
3709                 vmx_get_segment(vcpu, &s, seg);
3710                 return s.base;
3711         }
3712         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3713 }
3714
3715 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3716 {
3717         struct vcpu_vmx *vmx = to_vmx(vcpu);
3718
3719         if (unlikely(vmx->rmode.vm86_active))
3720                 return 0;
3721         else {
3722                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3723                 return VMX_AR_DPL(ar);
3724         }
3725 }
3726
3727 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3728 {
3729         u32 ar;
3730
3731         if (var->unusable || !var->present)
3732                 ar = 1 << 16;
3733         else {
3734                 ar = var->type & 15;
3735                 ar |= (var->s & 1) << 4;
3736                 ar |= (var->dpl & 3) << 5;
3737                 ar |= (var->present & 1) << 7;
3738                 ar |= (var->avl & 1) << 12;
3739                 ar |= (var->l & 1) << 13;
3740                 ar |= (var->db & 1) << 14;
3741                 ar |= (var->g & 1) << 15;
3742         }
3743
3744         return ar;
3745 }
3746
3747 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3748                             struct kvm_segment *var, int seg)
3749 {
3750         struct vcpu_vmx *vmx = to_vmx(vcpu);
3751         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3752
3753         vmx_segment_cache_clear(vmx);
3754
3755         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3756                 vmx->rmode.segs[seg] = *var;
3757                 if (seg == VCPU_SREG_TR)
3758                         vmcs_write16(sf->selector, var->selector);
3759                 else if (var->s)
3760                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3761                 goto out;
3762         }
3763
3764         vmcs_writel(sf->base, var->base);
3765         vmcs_write32(sf->limit, var->limit);
3766         vmcs_write16(sf->selector, var->selector);
3767
3768         /*
3769          *   Fix the "Accessed" bit in AR field of segment registers for older
3770          * qemu binaries.
3771          *   IA32 arch specifies that at the time of processor reset the
3772          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3773          * is setting it to 0 in the userland code. This causes invalid guest
3774          * state vmexit when "unrestricted guest" mode is turned on.
3775          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3776          * tree. Newer qemu binaries with that qemu fix would not need this
3777          * kvm hack.
3778          */
3779         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3780                 var->type |= 0x1; /* Accessed */
3781
3782         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3783
3784 out:
3785         vmx->emulation_required = emulation_required(vcpu);
3786 }
3787
3788 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3789 {
3790         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3791
3792         *db = (ar >> 14) & 1;
3793         *l = (ar >> 13) & 1;
3794 }
3795
3796 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3797 {
3798         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3799         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3800 }
3801
3802 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3803 {
3804         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3805         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3806 }
3807
3808 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3809 {
3810         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3811         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3812 }
3813
3814 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3815 {
3816         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3817         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3818 }
3819
3820 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3821 {
3822         struct kvm_segment var;
3823         u32 ar;
3824
3825         vmx_get_segment(vcpu, &var, seg);
3826         var.dpl = 0x3;
3827         if (seg == VCPU_SREG_CS)
3828                 var.type = 0x3;
3829         ar = vmx_segment_access_rights(&var);
3830
3831         if (var.base != (var.selector << 4))
3832                 return false;
3833         if (var.limit != 0xffff)
3834                 return false;
3835         if (ar != 0xf3)
3836                 return false;
3837
3838         return true;
3839 }
3840
3841 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3842 {
3843         struct kvm_segment cs;
3844         unsigned int cs_rpl;
3845
3846         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3847         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3848
3849         if (cs.unusable)
3850                 return false;
3851         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3852                 return false;
3853         if (!cs.s)
3854                 return false;
3855         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3856                 if (cs.dpl > cs_rpl)
3857                         return false;
3858         } else {
3859                 if (cs.dpl != cs_rpl)
3860                         return false;
3861         }
3862         if (!cs.present)
3863                 return false;
3864
3865         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3866         return true;
3867 }
3868
3869 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3870 {
3871         struct kvm_segment ss;
3872         unsigned int ss_rpl;
3873
3874         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3875         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3876
3877         if (ss.unusable)
3878                 return true;
3879         if (ss.type != 3 && ss.type != 7)
3880                 return false;
3881         if (!ss.s)
3882                 return false;
3883         if (ss.dpl != ss_rpl) /* DPL != RPL */
3884                 return false;
3885         if (!ss.present)
3886                 return false;
3887
3888         return true;
3889 }
3890
3891 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3892 {
3893         struct kvm_segment var;
3894         unsigned int rpl;
3895
3896         vmx_get_segment(vcpu, &var, seg);
3897         rpl = var.selector & SEGMENT_RPL_MASK;
3898
3899         if (var.unusable)
3900                 return true;
3901         if (!var.s)
3902                 return false;
3903         if (!var.present)
3904                 return false;
3905         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3906                 if (var.dpl < rpl) /* DPL < RPL */
3907                         return false;
3908         }
3909
3910         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3911          * rights flags
3912          */
3913         return true;
3914 }
3915
3916 static bool tr_valid(struct kvm_vcpu *vcpu)
3917 {
3918         struct kvm_segment tr;
3919
3920         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3921
3922         if (tr.unusable)
3923                 return false;
3924         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3925                 return false;
3926         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3927                 return false;
3928         if (!tr.present)
3929                 return false;
3930
3931         return true;
3932 }
3933
3934 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3935 {
3936         struct kvm_segment ldtr;
3937
3938         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3939
3940         if (ldtr.unusable)
3941                 return true;
3942         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3943                 return false;
3944         if (ldtr.type != 2)
3945                 return false;
3946         if (!ldtr.present)
3947                 return false;
3948
3949         return true;
3950 }
3951
3952 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3953 {
3954         struct kvm_segment cs, ss;
3955
3956         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3957         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3958
3959         return ((cs.selector & SEGMENT_RPL_MASK) ==
3960                  (ss.selector & SEGMENT_RPL_MASK));
3961 }
3962
3963 /*
3964  * Check if guest state is valid. Returns true if valid, false if
3965  * not.
3966  * We assume that registers are always usable
3967  */
3968 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3969 {
3970         if (enable_unrestricted_guest)
3971                 return true;
3972
3973         /* real mode guest state checks */
3974         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3975                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3976                         return false;
3977                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3978                         return false;
3979                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3980                         return false;
3981                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3982                         return false;
3983                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3984                         return false;
3985                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3986                         return false;
3987         } else {
3988         /* protected mode guest state checks */
3989                 if (!cs_ss_rpl_check(vcpu))
3990                         return false;
3991                 if (!code_segment_valid(vcpu))
3992                         return false;
3993                 if (!stack_segment_valid(vcpu))
3994                         return false;
3995                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3996                         return false;
3997                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3998                         return false;
3999                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4000                         return false;
4001                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4002                         return false;
4003                 if (!tr_valid(vcpu))
4004                         return false;
4005                 if (!ldtr_valid(vcpu))
4006                         return false;
4007         }
4008         /* TODO:
4009          * - Add checks on RIP
4010          * - Add checks on RFLAGS
4011          */
4012
4013         return true;
4014 }
4015
4016 static int init_rmode_tss(struct kvm *kvm)
4017 {
4018         gfn_t fn;
4019         u16 data = 0;
4020         int idx, r;
4021
4022         idx = srcu_read_lock(&kvm->srcu);
4023         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4024         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4025         if (r < 0)
4026                 goto out;
4027         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4028         r = kvm_write_guest_page(kvm, fn++, &data,
4029                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4030         if (r < 0)
4031                 goto out;
4032         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4033         if (r < 0)
4034                 goto out;
4035         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4036         if (r < 0)
4037                 goto out;
4038         data = ~0;
4039         r = kvm_write_guest_page(kvm, fn, &data,
4040                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4041                                  sizeof(u8));
4042 out:
4043         srcu_read_unlock(&kvm->srcu, idx);
4044         return r;
4045 }
4046
4047 static int init_rmode_identity_map(struct kvm *kvm)
4048 {
4049         int i, idx, r = 0;
4050         pfn_t identity_map_pfn;
4051         u32 tmp;
4052
4053         if (!enable_ept)
4054                 return 0;
4055
4056         /* Protect kvm->arch.ept_identity_pagetable_done. */
4057         mutex_lock(&kvm->slots_lock);
4058
4059         if (likely(kvm->arch.ept_identity_pagetable_done))
4060                 goto out2;
4061
4062         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4063
4064         r = alloc_identity_pagetable(kvm);
4065         if (r < 0)
4066                 goto out2;
4067
4068         idx = srcu_read_lock(&kvm->srcu);
4069         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4070         if (r < 0)
4071                 goto out;
4072         /* Set up identity-mapping pagetable for EPT in real mode */
4073         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4074                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4075                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4076                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4077                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4078                 if (r < 0)
4079                         goto out;
4080         }
4081         kvm->arch.ept_identity_pagetable_done = true;
4082
4083 out:
4084         srcu_read_unlock(&kvm->srcu, idx);
4085
4086 out2:
4087         mutex_unlock(&kvm->slots_lock);
4088         return r;
4089 }
4090
4091 static void seg_setup(int seg)
4092 {
4093         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4094         unsigned int ar;
4095
4096         vmcs_write16(sf->selector, 0);
4097         vmcs_writel(sf->base, 0);
4098         vmcs_write32(sf->limit, 0xffff);
4099         ar = 0x93;
4100         if (seg == VCPU_SREG_CS)
4101                 ar |= 0x08; /* code segment */
4102
4103         vmcs_write32(sf->ar_bytes, ar);
4104 }
4105
4106 static int alloc_apic_access_page(struct kvm *kvm)
4107 {
4108         struct page *page;
4109         struct kvm_userspace_memory_region kvm_userspace_mem;
4110         int r = 0;
4111
4112         mutex_lock(&kvm->slots_lock);
4113         if (kvm->arch.apic_access_page_done)
4114                 goto out;
4115         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4116         kvm_userspace_mem.flags = 0;
4117         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4118         kvm_userspace_mem.memory_size = PAGE_SIZE;
4119         r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4120         if (r)
4121                 goto out;
4122
4123         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4124         if (is_error_page(page)) {
4125                 r = -EFAULT;
4126                 goto out;
4127         }
4128
4129         /*
4130          * Do not pin the page in memory, so that memory hot-unplug
4131          * is able to migrate it.
4132          */
4133         put_page(page);
4134         kvm->arch.apic_access_page_done = true;
4135 out:
4136         mutex_unlock(&kvm->slots_lock);
4137         return r;
4138 }
4139
4140 static int alloc_identity_pagetable(struct kvm *kvm)
4141 {
4142         /* Called with kvm->slots_lock held. */
4143
4144         struct kvm_userspace_memory_region kvm_userspace_mem;
4145         int r = 0;
4146
4147         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4148
4149         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4150         kvm_userspace_mem.flags = 0;
4151         kvm_userspace_mem.guest_phys_addr =
4152                 kvm->arch.ept_identity_map_addr;
4153         kvm_userspace_mem.memory_size = PAGE_SIZE;
4154         r = __x86_set_memory_region(kvm, &kvm_userspace_mem);
4155
4156         return r;
4157 }
4158
4159 static void allocate_vpid(struct vcpu_vmx *vmx)
4160 {
4161         int vpid;
4162
4163         vmx->vpid = 0;
4164         if (!enable_vpid)
4165                 return;
4166         spin_lock(&vmx_vpid_lock);
4167         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4168         if (vpid < VMX_NR_VPIDS) {
4169                 vmx->vpid = vpid;
4170                 __set_bit(vpid, vmx_vpid_bitmap);
4171         }
4172         spin_unlock(&vmx_vpid_lock);
4173 }
4174
4175 static void free_vpid(struct vcpu_vmx *vmx)
4176 {
4177         if (!enable_vpid)
4178                 return;
4179         spin_lock(&vmx_vpid_lock);
4180         if (vmx->vpid != 0)
4181                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4182         spin_unlock(&vmx_vpid_lock);
4183 }
4184
4185 #define MSR_TYPE_R      1
4186 #define MSR_TYPE_W      2
4187 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4188                                                 u32 msr, int type)
4189 {
4190         int f = sizeof(unsigned long);
4191
4192         if (!cpu_has_vmx_msr_bitmap())
4193                 return;
4194
4195         /*
4196          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4197          * have the write-low and read-high bitmap offsets the wrong way round.
4198          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4199          */
4200         if (msr <= 0x1fff) {
4201                 if (type & MSR_TYPE_R)
4202                         /* read-low */
4203                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4204
4205                 if (type & MSR_TYPE_W)
4206                         /* write-low */
4207                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4208
4209         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4210                 msr &= 0x1fff;
4211                 if (type & MSR_TYPE_R)
4212                         /* read-high */
4213                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4214
4215                 if (type & MSR_TYPE_W)
4216                         /* write-high */
4217                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4218
4219         }
4220 }
4221
4222 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4223                                                 u32 msr, int type)
4224 {
4225         int f = sizeof(unsigned long);
4226
4227         if (!cpu_has_vmx_msr_bitmap())
4228                 return;
4229
4230         /*
4231          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4232          * have the write-low and read-high bitmap offsets the wrong way round.
4233          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4234          */
4235         if (msr <= 0x1fff) {
4236                 if (type & MSR_TYPE_R)
4237                         /* read-low */
4238                         __set_bit(msr, msr_bitmap + 0x000 / f);
4239
4240                 if (type & MSR_TYPE_W)
4241                         /* write-low */
4242                         __set_bit(msr, msr_bitmap + 0x800 / f);
4243
4244         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4245                 msr &= 0x1fff;
4246                 if (type & MSR_TYPE_R)
4247                         /* read-high */
4248                         __set_bit(msr, msr_bitmap + 0x400 / f);
4249
4250                 if (type & MSR_TYPE_W)
4251                         /* write-high */
4252                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4253
4254         }
4255 }
4256
4257 /*
4258  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4259  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4260  */
4261 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4262                                                unsigned long *msr_bitmap_nested,
4263                                                u32 msr, int type)
4264 {
4265         int f = sizeof(unsigned long);
4266
4267         if (!cpu_has_vmx_msr_bitmap()) {
4268                 WARN_ON(1);
4269                 return;
4270         }
4271
4272         /*
4273          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4274          * have the write-low and read-high bitmap offsets the wrong way round.
4275          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4276          */
4277         if (msr <= 0x1fff) {
4278                 if (type & MSR_TYPE_R &&
4279                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4280                         /* read-low */
4281                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4282
4283                 if (type & MSR_TYPE_W &&
4284                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4285                         /* write-low */
4286                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4287
4288         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4289                 msr &= 0x1fff;
4290                 if (type & MSR_TYPE_R &&
4291                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4292                         /* read-high */
4293                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4294
4295                 if (type & MSR_TYPE_W &&
4296                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4297                         /* write-high */
4298                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4299
4300         }
4301 }
4302
4303 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4304 {
4305         if (!longmode_only)
4306                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4307                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4308         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4309                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4310 }
4311
4312 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4313 {
4314         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4315                         msr, MSR_TYPE_R);
4316         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4317                         msr, MSR_TYPE_R);
4318 }
4319
4320 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4321 {
4322         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4323                         msr, MSR_TYPE_R);
4324         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4325                         msr, MSR_TYPE_R);
4326 }
4327
4328 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4329 {
4330         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4331                         msr, MSR_TYPE_W);
4332         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4333                         msr, MSR_TYPE_W);
4334 }
4335
4336 static int vmx_vm_has_apicv(struct kvm *kvm)
4337 {
4338         return enable_apicv && irqchip_in_kernel(kvm);
4339 }
4340
4341 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4342 {
4343         return vmx_vm_has_apicv(vcpu->kvm);
4344 }
4345
4346 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4347 {
4348         struct vcpu_vmx *vmx = to_vmx(vcpu);
4349         int max_irr;
4350         void *vapic_page;
4351         u16 status;
4352
4353         if (vmx->nested.pi_desc &&
4354             vmx->nested.pi_pending) {
4355                 vmx->nested.pi_pending = false;
4356                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4357                         return 0;
4358
4359                 max_irr = find_last_bit(
4360                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4361
4362                 if (max_irr == 256)
4363                         return 0;
4364
4365                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4366                 if (!vapic_page) {
4367                         WARN_ON(1);
4368                         return -ENOMEM;
4369                 }
4370                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4371                 kunmap(vmx->nested.virtual_apic_page);
4372
4373                 status = vmcs_read16(GUEST_INTR_STATUS);
4374                 if ((u8)max_irr > ((u8)status & 0xff)) {
4375                         status &= ~0xff;
4376                         status |= (u8)max_irr;
4377                         vmcs_write16(GUEST_INTR_STATUS, status);
4378                 }
4379         }
4380         return 0;
4381 }
4382
4383 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4384 {
4385 #ifdef CONFIG_SMP
4386         if (vcpu->mode == IN_GUEST_MODE) {
4387                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4388                                 POSTED_INTR_VECTOR);
4389                 return true;
4390         }
4391 #endif
4392         return false;
4393 }
4394
4395 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4396                                                 int vector)
4397 {
4398         struct vcpu_vmx *vmx = to_vmx(vcpu);
4399
4400         if (is_guest_mode(vcpu) &&
4401             vector == vmx->nested.posted_intr_nv) {
4402                 /* the PIR and ON have been set by L1. */
4403                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4404                 /*
4405                  * If a posted intr is not recognized by hardware,
4406                  * we will accomplish it in the next vmentry.
4407                  */
4408                 vmx->nested.pi_pending = true;
4409                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4410                 return 0;
4411         }
4412         return -1;
4413 }
4414 /*
4415  * Send interrupt to vcpu via posted interrupt way.
4416  * 1. If target vcpu is running(non-root mode), send posted interrupt
4417  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4418  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4419  * interrupt from PIR in next vmentry.
4420  */
4421 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4422 {
4423         struct vcpu_vmx *vmx = to_vmx(vcpu);
4424         int r;
4425
4426         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4427         if (!r)
4428                 return;
4429
4430         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4431                 return;
4432
4433         r = pi_test_and_set_on(&vmx->pi_desc);
4434         kvm_make_request(KVM_REQ_EVENT, vcpu);
4435         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4436                 kvm_vcpu_kick(vcpu);
4437 }
4438
4439 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4440 {
4441         struct vcpu_vmx *vmx = to_vmx(vcpu);
4442
4443         if (!pi_test_and_clear_on(&vmx->pi_desc))
4444                 return;
4445
4446         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4447 }
4448
4449 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4450 {
4451         return;
4452 }
4453
4454 /*
4455  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4456  * will not change in the lifetime of the guest.
4457  * Note that host-state that does change is set elsewhere. E.g., host-state
4458  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4459  */
4460 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4461 {
4462         u32 low32, high32;
4463         unsigned long tmpl;
4464         struct desc_ptr dt;
4465         unsigned long cr4;
4466
4467         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4468         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4469
4470         /* Save the most likely value for this task's CR4 in the VMCS. */
4471         cr4 = cr4_read_shadow();
4472         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4473         vmx->host_state.vmcs_host_cr4 = cr4;
4474
4475         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4476 #ifdef CONFIG_X86_64
4477         /*
4478          * Load null selectors, so we can avoid reloading them in
4479          * __vmx_load_host_state(), in case userspace uses the null selectors
4480          * too (the expected case).
4481          */
4482         vmcs_write16(HOST_DS_SELECTOR, 0);
4483         vmcs_write16(HOST_ES_SELECTOR, 0);
4484 #else
4485         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4486         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4487 #endif
4488         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4489         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4490
4491         native_store_idt(&dt);
4492         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4493         vmx->host_idt_base = dt.address;
4494
4495         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4496
4497         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4498         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4499         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4500         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4501
4502         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4503                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4504                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4505         }
4506 }
4507
4508 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4509 {
4510         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4511         if (enable_ept)
4512                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4513         if (is_guest_mode(&vmx->vcpu))
4514                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4515                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4516         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4517 }
4518
4519 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4520 {
4521         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4522
4523         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4524                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4525         return pin_based_exec_ctrl;
4526 }
4527
4528 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4529 {
4530         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4531
4532         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4533                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4534
4535         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4536                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4537 #ifdef CONFIG_X86_64
4538                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4539                                 CPU_BASED_CR8_LOAD_EXITING;
4540 #endif
4541         }
4542         if (!enable_ept)
4543                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4544                                 CPU_BASED_CR3_LOAD_EXITING  |
4545                                 CPU_BASED_INVLPG_EXITING;
4546         return exec_control;
4547 }
4548
4549 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4550 {
4551         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4552         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4553                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4554         if (vmx->vpid == 0)
4555                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4556         if (!enable_ept) {
4557                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4558                 enable_unrestricted_guest = 0;
4559                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4560                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4561         }
4562         if (!enable_unrestricted_guest)
4563                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4564         if (!ple_gap)
4565                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4566         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4567                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4568                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4569         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4570         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4571            (handle_vmptrld).
4572            We can NOT enable shadow_vmcs here because we don't have yet
4573            a current VMCS12
4574         */
4575         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4576         /* PML is enabled/disabled in creating/destorying vcpu */
4577         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4578
4579         return exec_control;
4580 }
4581
4582 static void ept_set_mmio_spte_mask(void)
4583 {
4584         /*
4585          * EPT Misconfigurations can be generated if the value of bits 2:0
4586          * of an EPT paging-structure entry is 110b (write/execute).
4587          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4588          * spte.
4589          */
4590         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4591 }
4592
4593 #define VMX_XSS_EXIT_BITMAP 0
4594 /*
4595  * Sets up the vmcs for emulated real mode.
4596  */
4597 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4598 {
4599 #ifdef CONFIG_X86_64
4600         unsigned long a;
4601 #endif
4602         int i;
4603
4604         /* I/O */
4605         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4606         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4607
4608         if (enable_shadow_vmcs) {
4609                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4610                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4611         }
4612         if (cpu_has_vmx_msr_bitmap())
4613                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4614
4615         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4616
4617         /* Control */
4618         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4619
4620         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4621
4622         if (cpu_has_secondary_exec_ctrls()) {
4623                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4624                                 vmx_secondary_exec_control(vmx));
4625         }
4626
4627         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4628                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4629                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4630                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4631                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4632
4633                 vmcs_write16(GUEST_INTR_STATUS, 0);
4634
4635                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4636                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4637         }
4638
4639         if (ple_gap) {
4640                 vmcs_write32(PLE_GAP, ple_gap);
4641                 vmx->ple_window = ple_window;
4642                 vmx->ple_window_dirty = true;
4643         }
4644
4645         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4646         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4647         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4648
4649         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4650         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4651         vmx_set_constant_host_state(vmx);
4652 #ifdef CONFIG_X86_64
4653         rdmsrl(MSR_FS_BASE, a);
4654         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4655         rdmsrl(MSR_GS_BASE, a);
4656         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4657 #else
4658         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4659         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4660 #endif
4661
4662         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4663         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4664         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4665         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4666         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4667
4668         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4669                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4670
4671         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4672                 u32 index = vmx_msr_index[i];
4673                 u32 data_low, data_high;
4674                 int j = vmx->nmsrs;
4675
4676                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4677                         continue;
4678                 if (wrmsr_safe(index, data_low, data_high) < 0)
4679                         continue;
4680                 vmx->guest_msrs[j].index = i;
4681                 vmx->guest_msrs[j].data = 0;
4682                 vmx->guest_msrs[j].mask = -1ull;
4683                 ++vmx->nmsrs;
4684         }
4685
4686
4687         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4688
4689         /* 22.2.1, 20.8.1 */
4690         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4691
4692         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4693         set_cr4_guest_host_mask(vmx);
4694
4695         if (vmx_xsaves_supported())
4696                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4697
4698         return 0;
4699 }
4700
4701 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4702 {
4703         struct vcpu_vmx *vmx = to_vmx(vcpu);
4704         struct msr_data apic_base_msr;
4705         u64 cr0;
4706
4707         vmx->rmode.vm86_active = 0;
4708
4709         vmx->soft_vnmi_blocked = 0;
4710
4711         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4712         kvm_set_cr8(vcpu, 0);
4713
4714         if (!init_event) {
4715                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4716                                      MSR_IA32_APICBASE_ENABLE;
4717                 if (kvm_vcpu_is_reset_bsp(vcpu))
4718                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4719                 apic_base_msr.host_initiated = true;
4720                 kvm_set_apic_base(vcpu, &apic_base_msr);
4721         }
4722
4723         vmx_segment_cache_clear(vmx);
4724
4725         seg_setup(VCPU_SREG_CS);
4726         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4727         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4728
4729         seg_setup(VCPU_SREG_DS);
4730         seg_setup(VCPU_SREG_ES);
4731         seg_setup(VCPU_SREG_FS);
4732         seg_setup(VCPU_SREG_GS);
4733         seg_setup(VCPU_SREG_SS);
4734
4735         vmcs_write16(GUEST_TR_SELECTOR, 0);
4736         vmcs_writel(GUEST_TR_BASE, 0);
4737         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4738         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4739
4740         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4741         vmcs_writel(GUEST_LDTR_BASE, 0);
4742         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4743         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4744
4745         if (!init_event) {
4746                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4747                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4748                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4749                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4750         }
4751
4752         vmcs_writel(GUEST_RFLAGS, 0x02);
4753         kvm_rip_write(vcpu, 0xfff0);
4754
4755         vmcs_writel(GUEST_GDTR_BASE, 0);
4756         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4757
4758         vmcs_writel(GUEST_IDTR_BASE, 0);
4759         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4760
4761         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4762         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4763         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4764
4765         setup_msrs(vmx);
4766
4767         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4768
4769         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4770                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4771                 if (vm_need_tpr_shadow(vcpu->kvm))
4772                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4773                                      __pa(vcpu->arch.apic->regs));
4774                 vmcs_write32(TPR_THRESHOLD, 0);
4775         }
4776
4777         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4778
4779         if (vmx_vm_has_apicv(vcpu->kvm))
4780                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4781
4782         if (vmx->vpid != 0)
4783                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
4785         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4786         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4787         vmx->vcpu.arch.cr0 = cr0;
4788         vmx_set_cr4(vcpu, 0);
4789         if (!init_event)
4790                 vmx_set_efer(vcpu, 0);
4791         vmx_fpu_activate(vcpu);
4792         update_exception_bitmap(vcpu);
4793
4794         vpid_sync_context(vmx);
4795 }
4796
4797 /*
4798  * In nested virtualization, check if L1 asked to exit on external interrupts.
4799  * For most existing hypervisors, this will always return true.
4800  */
4801 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4802 {
4803         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4804                 PIN_BASED_EXT_INTR_MASK;
4805 }
4806
4807 /*
4808  * In nested virtualization, check if L1 has set
4809  * VM_EXIT_ACK_INTR_ON_EXIT
4810  */
4811 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4812 {
4813         return get_vmcs12(vcpu)->vm_exit_controls &
4814                 VM_EXIT_ACK_INTR_ON_EXIT;
4815 }
4816
4817 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4818 {
4819         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4820                 PIN_BASED_NMI_EXITING;
4821 }
4822
4823 static void enable_irq_window(struct kvm_vcpu *vcpu)
4824 {
4825         u32 cpu_based_vm_exec_control;
4826
4827         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4828         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4829         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4830 }
4831
4832 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4833 {
4834         u32 cpu_based_vm_exec_control;
4835
4836         if (!cpu_has_virtual_nmis() ||
4837             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4838                 enable_irq_window(vcpu);
4839                 return;
4840         }
4841
4842         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4843         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4844         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4845 }
4846
4847 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4848 {
4849         struct vcpu_vmx *vmx = to_vmx(vcpu);
4850         uint32_t intr;
4851         int irq = vcpu->arch.interrupt.nr;
4852
4853         trace_kvm_inj_virq(irq);
4854
4855         ++vcpu->stat.irq_injections;
4856         if (vmx->rmode.vm86_active) {
4857                 int inc_eip = 0;
4858                 if (vcpu->arch.interrupt.soft)
4859                         inc_eip = vcpu->arch.event_exit_inst_len;
4860                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4861                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4862                 return;
4863         }
4864         intr = irq | INTR_INFO_VALID_MASK;
4865         if (vcpu->arch.interrupt.soft) {
4866                 intr |= INTR_TYPE_SOFT_INTR;
4867                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4868                              vmx->vcpu.arch.event_exit_inst_len);
4869         } else
4870                 intr |= INTR_TYPE_EXT_INTR;
4871         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4872 }
4873
4874 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4875 {
4876         struct vcpu_vmx *vmx = to_vmx(vcpu);
4877
4878         if (is_guest_mode(vcpu))
4879                 return;
4880
4881         if (!cpu_has_virtual_nmis()) {
4882                 /*
4883                  * Tracking the NMI-blocked state in software is built upon
4884                  * finding the next open IRQ window. This, in turn, depends on
4885                  * well-behaving guests: They have to keep IRQs disabled at
4886                  * least as long as the NMI handler runs. Otherwise we may
4887                  * cause NMI nesting, maybe breaking the guest. But as this is
4888                  * highly unlikely, we can live with the residual risk.
4889                  */
4890                 vmx->soft_vnmi_blocked = 1;
4891                 vmx->vnmi_blocked_time = 0;
4892         }
4893
4894         ++vcpu->stat.nmi_injections;
4895         vmx->nmi_known_unmasked = false;
4896         if (vmx->rmode.vm86_active) {
4897                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4898                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4899                 return;
4900         }
4901         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4902                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4903 }
4904
4905 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4906 {
4907         if (!cpu_has_virtual_nmis())
4908                 return to_vmx(vcpu)->soft_vnmi_blocked;
4909         if (to_vmx(vcpu)->nmi_known_unmasked)
4910                 return false;
4911         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4912 }
4913
4914 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4915 {
4916         struct vcpu_vmx *vmx = to_vmx(vcpu);
4917
4918         if (!cpu_has_virtual_nmis()) {
4919                 if (vmx->soft_vnmi_blocked != masked) {
4920                         vmx->soft_vnmi_blocked = masked;
4921                         vmx->vnmi_blocked_time = 0;
4922                 }
4923         } else {
4924                 vmx->nmi_known_unmasked = !masked;
4925                 if (masked)
4926                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4927                                       GUEST_INTR_STATE_NMI);
4928                 else
4929                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4930                                         GUEST_INTR_STATE_NMI);
4931         }
4932 }
4933
4934 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4935 {
4936         if (to_vmx(vcpu)->nested.nested_run_pending)
4937                 return 0;
4938
4939         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4940                 return 0;
4941
4942         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4943                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4944                    | GUEST_INTR_STATE_NMI));
4945 }
4946
4947 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4948 {
4949         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4950                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4951                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4952                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4953 }
4954
4955 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4956 {
4957         int ret;
4958         struct kvm_userspace_memory_region tss_mem = {
4959                 .slot = TSS_PRIVATE_MEMSLOT,
4960                 .guest_phys_addr = addr,
4961                 .memory_size = PAGE_SIZE * 3,
4962                 .flags = 0,
4963         };
4964
4965         ret = x86_set_memory_region(kvm, &tss_mem);
4966         if (ret)
4967                 return ret;
4968         kvm->arch.tss_addr = addr;
4969         return init_rmode_tss(kvm);
4970 }
4971
4972 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4973 {
4974         switch (vec) {
4975         case BP_VECTOR:
4976                 /*
4977                  * Update instruction length as we may reinject the exception
4978                  * from user space while in guest debugging mode.
4979                  */
4980                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4981                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4982                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4983                         return false;
4984                 /* fall through */
4985         case DB_VECTOR:
4986                 if (vcpu->guest_debug &
4987                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4988                         return false;
4989                 /* fall through */
4990         case DE_VECTOR:
4991         case OF_VECTOR:
4992         case BR_VECTOR:
4993         case UD_VECTOR:
4994         case DF_VECTOR:
4995         case SS_VECTOR:
4996         case GP_VECTOR:
4997         case MF_VECTOR:
4998                 return true;
4999         break;
5000         }
5001         return false;
5002 }
5003
5004 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5005                                   int vec, u32 err_code)
5006 {
5007         /*
5008          * Instruction with address size override prefix opcode 0x67
5009          * Cause the #SS fault with 0 error code in VM86 mode.
5010          */
5011         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5012                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5013                         if (vcpu->arch.halt_request) {
5014                                 vcpu->arch.halt_request = 0;
5015                                 return kvm_vcpu_halt(vcpu);
5016                         }
5017                         return 1;
5018                 }
5019                 return 0;
5020         }
5021
5022         /*
5023          * Forward all other exceptions that are valid in real mode.
5024          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5025          *        the required debugging infrastructure rework.
5026          */
5027         kvm_queue_exception(vcpu, vec);
5028         return 1;
5029 }
5030
5031 /*
5032  * Trigger machine check on the host. We assume all the MSRs are already set up
5033  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5034  * We pass a fake environment to the machine check handler because we want
5035  * the guest to be always treated like user space, no matter what context
5036  * it used internally.
5037  */
5038 static void kvm_machine_check(void)
5039 {
5040 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5041         struct pt_regs regs = {
5042                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5043                 .flags = X86_EFLAGS_IF,
5044         };
5045
5046         do_machine_check(&regs, 0);
5047 #endif
5048 }
5049
5050 static int handle_machine_check(struct kvm_vcpu *vcpu)
5051 {
5052         /* already handled by vcpu_run */
5053         return 1;
5054 }
5055
5056 static int handle_exception(struct kvm_vcpu *vcpu)
5057 {
5058         struct vcpu_vmx *vmx = to_vmx(vcpu);
5059         struct kvm_run *kvm_run = vcpu->run;
5060         u32 intr_info, ex_no, error_code;
5061         unsigned long cr2, rip, dr6;
5062         u32 vect_info;
5063         enum emulation_result er;
5064
5065         vect_info = vmx->idt_vectoring_info;
5066         intr_info = vmx->exit_intr_info;
5067
5068         if (is_machine_check(intr_info))
5069                 return handle_machine_check(vcpu);
5070
5071         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5072                 return 1;  /* already handled by vmx_vcpu_run() */
5073
5074         if (is_no_device(intr_info)) {
5075                 vmx_fpu_activate(vcpu);
5076                 return 1;
5077         }
5078
5079         if (is_invalid_opcode(intr_info)) {
5080                 if (is_guest_mode(vcpu)) {
5081                         kvm_queue_exception(vcpu, UD_VECTOR);
5082                         return 1;
5083                 }
5084                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5085                 if (er != EMULATE_DONE)
5086                         kvm_queue_exception(vcpu, UD_VECTOR);
5087                 return 1;
5088         }
5089
5090         error_code = 0;
5091         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5092                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5093
5094         /*
5095          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5096          * MMIO, it is better to report an internal error.
5097          * See the comments in vmx_handle_exit.
5098          */
5099         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5100             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5101                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5102                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5103                 vcpu->run->internal.ndata = 3;
5104                 vcpu->run->internal.data[0] = vect_info;
5105                 vcpu->run->internal.data[1] = intr_info;
5106                 vcpu->run->internal.data[2] = error_code;
5107                 return 0;
5108         }
5109
5110         if (is_page_fault(intr_info)) {
5111                 /* EPT won't cause page fault directly */
5112                 BUG_ON(enable_ept);
5113                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5114                 trace_kvm_page_fault(cr2, error_code);
5115
5116                 if (kvm_event_needs_reinjection(vcpu))
5117                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5118                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5119         }
5120
5121         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5122
5123         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5124                 return handle_rmode_exception(vcpu, ex_no, error_code);
5125
5126         switch (ex_no) {
5127         case DB_VECTOR:
5128                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5129                 if (!(vcpu->guest_debug &
5130                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5131                         vcpu->arch.dr6 &= ~15;
5132                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5133                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5134                                 skip_emulated_instruction(vcpu);
5135
5136                         kvm_queue_exception(vcpu, DB_VECTOR);
5137                         return 1;
5138                 }
5139                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5140                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5141                 /* fall through */
5142         case BP_VECTOR:
5143                 /*
5144                  * Update instruction length as we may reinject #BP from
5145                  * user space while in guest debugging mode. Reading it for
5146                  * #DB as well causes no harm, it is not used in that case.
5147                  */
5148                 vmx->vcpu.arch.event_exit_inst_len =
5149                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5150                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5151                 rip = kvm_rip_read(vcpu);
5152                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5153                 kvm_run->debug.arch.exception = ex_no;
5154                 break;
5155         default:
5156                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5157                 kvm_run->ex.exception = ex_no;
5158                 kvm_run->ex.error_code = error_code;
5159                 break;
5160         }
5161         return 0;
5162 }
5163
5164 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5165 {
5166         ++vcpu->stat.irq_exits;
5167         return 1;
5168 }
5169
5170 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5171 {
5172         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5173         return 0;
5174 }
5175
5176 static int handle_io(struct kvm_vcpu *vcpu)
5177 {
5178         unsigned long exit_qualification;
5179         int size, in, string;
5180         unsigned port;
5181
5182         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5183         string = (exit_qualification & 16) != 0;
5184         in = (exit_qualification & 8) != 0;
5185
5186         ++vcpu->stat.io_exits;
5187
5188         if (string || in)
5189                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5190
5191         port = exit_qualification >> 16;
5192         size = (exit_qualification & 7) + 1;
5193         skip_emulated_instruction(vcpu);
5194
5195         return kvm_fast_pio_out(vcpu, size, port);
5196 }
5197
5198 static void
5199 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5200 {
5201         /*
5202          * Patch in the VMCALL instruction:
5203          */
5204         hypercall[0] = 0x0f;
5205         hypercall[1] = 0x01;
5206         hypercall[2] = 0xc1;
5207 }
5208
5209 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5210 {
5211         unsigned long always_on = VMXON_CR0_ALWAYSON;
5212         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5213
5214         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5215                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5216             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5217                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5218         return (val & always_on) == always_on;
5219 }
5220
5221 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5222 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5223 {
5224         if (is_guest_mode(vcpu)) {
5225                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5226                 unsigned long orig_val = val;
5227
5228                 /*
5229                  * We get here when L2 changed cr0 in a way that did not change
5230                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5231                  * but did change L0 shadowed bits. So we first calculate the
5232                  * effective cr0 value that L1 would like to write into the
5233                  * hardware. It consists of the L2-owned bits from the new
5234                  * value combined with the L1-owned bits from L1's guest_cr0.
5235                  */
5236                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5237                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5238
5239                 if (!nested_cr0_valid(vcpu, val))
5240                         return 1;
5241
5242                 if (kvm_set_cr0(vcpu, val))
5243                         return 1;
5244                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5245                 return 0;
5246         } else {
5247                 if (to_vmx(vcpu)->nested.vmxon &&
5248                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5249                         return 1;
5250                 return kvm_set_cr0(vcpu, val);
5251         }
5252 }
5253
5254 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5255 {
5256         if (is_guest_mode(vcpu)) {
5257                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5258                 unsigned long orig_val = val;
5259
5260                 /* analogously to handle_set_cr0 */
5261                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5262                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5263                 if (kvm_set_cr4(vcpu, val))
5264                         return 1;
5265                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5266                 return 0;
5267         } else
5268                 return kvm_set_cr4(vcpu, val);
5269 }
5270
5271 /* called to set cr0 as approriate for clts instruction exit. */
5272 static void handle_clts(struct kvm_vcpu *vcpu)
5273 {
5274         if (is_guest_mode(vcpu)) {
5275                 /*
5276                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5277                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5278                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5279                  */
5280                 vmcs_writel(CR0_READ_SHADOW,
5281                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5282                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5283         } else
5284                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5285 }
5286
5287 static int handle_cr(struct kvm_vcpu *vcpu)
5288 {
5289         unsigned long exit_qualification, val;
5290         int cr;
5291         int reg;
5292         int err;
5293
5294         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5295         cr = exit_qualification & 15;
5296         reg = (exit_qualification >> 8) & 15;
5297         switch ((exit_qualification >> 4) & 3) {
5298         case 0: /* mov to cr */
5299                 val = kvm_register_readl(vcpu, reg);
5300                 trace_kvm_cr_write(cr, val);
5301                 switch (cr) {
5302                 case 0:
5303                         err = handle_set_cr0(vcpu, val);
5304                         kvm_complete_insn_gp(vcpu, err);
5305                         return 1;
5306                 case 3:
5307                         err = kvm_set_cr3(vcpu, val);
5308                         kvm_complete_insn_gp(vcpu, err);
5309                         return 1;
5310                 case 4:
5311                         err = handle_set_cr4(vcpu, val);
5312                         kvm_complete_insn_gp(vcpu, err);
5313                         return 1;
5314                 case 8: {
5315                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5316                                 u8 cr8 = (u8)val;
5317                                 err = kvm_set_cr8(vcpu, cr8);
5318                                 kvm_complete_insn_gp(vcpu, err);
5319                                 if (irqchip_in_kernel(vcpu->kvm))
5320                                         return 1;
5321                                 if (cr8_prev <= cr8)
5322                                         return 1;
5323                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5324                                 return 0;
5325                         }
5326                 }
5327                 break;
5328         case 2: /* clts */
5329                 handle_clts(vcpu);
5330                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5331                 skip_emulated_instruction(vcpu);
5332                 vmx_fpu_activate(vcpu);
5333                 return 1;
5334         case 1: /*mov from cr*/
5335                 switch (cr) {
5336                 case 3:
5337                         val = kvm_read_cr3(vcpu);
5338                         kvm_register_write(vcpu, reg, val);
5339                         trace_kvm_cr_read(cr, val);
5340                         skip_emulated_instruction(vcpu);
5341                         return 1;
5342                 case 8:
5343                         val = kvm_get_cr8(vcpu);
5344                         kvm_register_write(vcpu, reg, val);
5345                         trace_kvm_cr_read(cr, val);
5346                         skip_emulated_instruction(vcpu);
5347                         return 1;
5348                 }
5349                 break;
5350         case 3: /* lmsw */
5351                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5352                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5353                 kvm_lmsw(vcpu, val);
5354
5355                 skip_emulated_instruction(vcpu);
5356                 return 1;
5357         default:
5358                 break;
5359         }
5360         vcpu->run->exit_reason = 0;
5361         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5362                (int)(exit_qualification >> 4) & 3, cr);
5363         return 0;
5364 }
5365
5366 static int handle_dr(struct kvm_vcpu *vcpu)
5367 {
5368         unsigned long exit_qualification;
5369         int dr, dr7, reg;
5370
5371         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5372         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5373
5374         /* First, if DR does not exist, trigger UD */
5375         if (!kvm_require_dr(vcpu, dr))
5376                 return 1;
5377
5378         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5379         if (!kvm_require_cpl(vcpu, 0))
5380                 return 1;
5381         dr7 = vmcs_readl(GUEST_DR7);
5382         if (dr7 & DR7_GD) {
5383                 /*
5384                  * As the vm-exit takes precedence over the debug trap, we
5385                  * need to emulate the latter, either for the host or the
5386                  * guest debugging itself.
5387                  */
5388                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5389                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5390                         vcpu->run->debug.arch.dr7 = dr7;
5391                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5392                         vcpu->run->debug.arch.exception = DB_VECTOR;
5393                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5394                         return 0;
5395                 } else {
5396                         vcpu->arch.dr6 &= ~15;
5397                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5398                         kvm_queue_exception(vcpu, DB_VECTOR);
5399                         return 1;
5400                 }
5401         }
5402
5403         if (vcpu->guest_debug == 0) {
5404                 u32 cpu_based_vm_exec_control;
5405
5406                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5407                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5408                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5409
5410                 /*
5411                  * No more DR vmexits; force a reload of the debug registers
5412                  * and reenter on this instruction.  The next vmexit will
5413                  * retrieve the full state of the debug registers.
5414                  */
5415                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5416                 return 1;
5417         }
5418
5419         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5420         if (exit_qualification & TYPE_MOV_FROM_DR) {
5421                 unsigned long val;
5422
5423                 if (kvm_get_dr(vcpu, dr, &val))
5424                         return 1;
5425                 kvm_register_write(vcpu, reg, val);
5426         } else
5427                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5428                         return 1;
5429
5430         skip_emulated_instruction(vcpu);
5431         return 1;
5432 }
5433
5434 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5435 {
5436         return vcpu->arch.dr6;
5437 }
5438
5439 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5440 {
5441 }
5442
5443 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5444 {
5445         u32 cpu_based_vm_exec_control;
5446
5447         get_debugreg(vcpu->arch.db[0], 0);
5448         get_debugreg(vcpu->arch.db[1], 1);
5449         get_debugreg(vcpu->arch.db[2], 2);
5450         get_debugreg(vcpu->arch.db[3], 3);
5451         get_debugreg(vcpu->arch.dr6, 6);
5452         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5453
5454         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5455
5456         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5457         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5458         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5459 }
5460
5461 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5462 {
5463         vmcs_writel(GUEST_DR7, val);
5464 }
5465
5466 static int handle_cpuid(struct kvm_vcpu *vcpu)
5467 {
5468         kvm_emulate_cpuid(vcpu);
5469         return 1;
5470 }
5471
5472 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5473 {
5474         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5475         struct msr_data msr_info;
5476
5477         msr_info.index = ecx;
5478         msr_info.host_initiated = false;
5479         if (vmx_get_msr(vcpu, &msr_info)) {
5480                 trace_kvm_msr_read_ex(ecx);
5481                 kvm_inject_gp(vcpu, 0);
5482                 return 1;
5483         }
5484
5485         trace_kvm_msr_read(ecx, msr_info.data);
5486
5487         /* FIXME: handling of bits 32:63 of rax, rdx */
5488         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5489         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5490         skip_emulated_instruction(vcpu);
5491         return 1;
5492 }
5493
5494 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5495 {
5496         struct msr_data msr;
5497         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5498         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5499                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5500
5501         msr.data = data;
5502         msr.index = ecx;
5503         msr.host_initiated = false;
5504         if (kvm_set_msr(vcpu, &msr) != 0) {
5505                 trace_kvm_msr_write_ex(ecx, data);
5506                 kvm_inject_gp(vcpu, 0);
5507                 return 1;
5508         }
5509
5510         trace_kvm_msr_write(ecx, data);
5511         skip_emulated_instruction(vcpu);
5512         return 1;
5513 }
5514
5515 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5516 {
5517         kvm_make_request(KVM_REQ_EVENT, vcpu);
5518         return 1;
5519 }
5520
5521 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5522 {
5523         u32 cpu_based_vm_exec_control;
5524
5525         /* clear pending irq */
5526         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5527         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5528         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5529
5530         kvm_make_request(KVM_REQ_EVENT, vcpu);
5531
5532         ++vcpu->stat.irq_window_exits;
5533
5534         /*
5535          * If the user space waits to inject interrupts, exit as soon as
5536          * possible
5537          */
5538         if (!irqchip_in_kernel(vcpu->kvm) &&
5539             vcpu->run->request_interrupt_window &&
5540             !kvm_cpu_has_interrupt(vcpu)) {
5541                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5542                 return 0;
5543         }
5544         return 1;
5545 }
5546
5547 static int handle_halt(struct kvm_vcpu *vcpu)
5548 {
5549         return kvm_emulate_halt(vcpu);
5550 }
5551
5552 static int handle_vmcall(struct kvm_vcpu *vcpu)
5553 {
5554         kvm_emulate_hypercall(vcpu);
5555         return 1;
5556 }
5557
5558 static int handle_invd(struct kvm_vcpu *vcpu)
5559 {
5560         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5561 }
5562
5563 static int handle_invlpg(struct kvm_vcpu *vcpu)
5564 {
5565         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5566
5567         kvm_mmu_invlpg(vcpu, exit_qualification);
5568         skip_emulated_instruction(vcpu);
5569         return 1;
5570 }
5571
5572 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5573 {
5574         int err;
5575
5576         err = kvm_rdpmc(vcpu);
5577         kvm_complete_insn_gp(vcpu, err);
5578
5579         return 1;
5580 }
5581
5582 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5583 {
5584         kvm_emulate_wbinvd(vcpu);
5585         return 1;
5586 }
5587
5588 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5589 {
5590         u64 new_bv = kvm_read_edx_eax(vcpu);
5591         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5592
5593         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5594                 skip_emulated_instruction(vcpu);
5595         return 1;
5596 }
5597
5598 static int handle_xsaves(struct kvm_vcpu *vcpu)
5599 {
5600         skip_emulated_instruction(vcpu);
5601         WARN(1, "this should never happen\n");
5602         return 1;
5603 }
5604
5605 static int handle_xrstors(struct kvm_vcpu *vcpu)
5606 {
5607         skip_emulated_instruction(vcpu);
5608         WARN(1, "this should never happen\n");
5609         return 1;
5610 }
5611
5612 static int handle_apic_access(struct kvm_vcpu *vcpu)
5613 {
5614         if (likely(fasteoi)) {
5615                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5616                 int access_type, offset;
5617
5618                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5619                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5620                 /*
5621                  * Sane guest uses MOV to write EOI, with written value
5622                  * not cared. So make a short-circuit here by avoiding
5623                  * heavy instruction emulation.
5624                  */
5625                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5626                     (offset == APIC_EOI)) {
5627                         kvm_lapic_set_eoi(vcpu);
5628                         skip_emulated_instruction(vcpu);
5629                         return 1;
5630                 }
5631         }
5632         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5633 }
5634
5635 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5636 {
5637         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5638         int vector = exit_qualification & 0xff;
5639
5640         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5641         kvm_apic_set_eoi_accelerated(vcpu, vector);
5642         return 1;
5643 }
5644
5645 static int handle_apic_write(struct kvm_vcpu *vcpu)
5646 {
5647         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5648         u32 offset = exit_qualification & 0xfff;
5649
5650         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5651         kvm_apic_write_nodecode(vcpu, offset);
5652         return 1;
5653 }
5654
5655 static int handle_task_switch(struct kvm_vcpu *vcpu)
5656 {
5657         struct vcpu_vmx *vmx = to_vmx(vcpu);
5658         unsigned long exit_qualification;
5659         bool has_error_code = false;
5660         u32 error_code = 0;
5661         u16 tss_selector;
5662         int reason, type, idt_v, idt_index;
5663
5664         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5665         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5666         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5667
5668         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5669
5670         reason = (u32)exit_qualification >> 30;
5671         if (reason == TASK_SWITCH_GATE && idt_v) {
5672                 switch (type) {
5673                 case INTR_TYPE_NMI_INTR:
5674                         vcpu->arch.nmi_injected = false;
5675                         vmx_set_nmi_mask(vcpu, true);
5676                         break;
5677                 case INTR_TYPE_EXT_INTR:
5678                 case INTR_TYPE_SOFT_INTR:
5679                         kvm_clear_interrupt_queue(vcpu);
5680                         break;
5681                 case INTR_TYPE_HARD_EXCEPTION:
5682                         if (vmx->idt_vectoring_info &
5683                             VECTORING_INFO_DELIVER_CODE_MASK) {
5684                                 has_error_code = true;
5685                                 error_code =
5686                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5687                         }
5688                         /* fall through */
5689                 case INTR_TYPE_SOFT_EXCEPTION:
5690                         kvm_clear_exception_queue(vcpu);
5691                         break;
5692                 default:
5693                         break;
5694                 }
5695         }
5696         tss_selector = exit_qualification;
5697
5698         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5699                        type != INTR_TYPE_EXT_INTR &&
5700                        type != INTR_TYPE_NMI_INTR))
5701                 skip_emulated_instruction(vcpu);
5702
5703         if (kvm_task_switch(vcpu, tss_selector,
5704                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5705                             has_error_code, error_code) == EMULATE_FAIL) {
5706                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5707                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5708                 vcpu->run->internal.ndata = 0;
5709                 return 0;
5710         }
5711
5712         /*
5713          * TODO: What about debug traps on tss switch?
5714          *       Are we supposed to inject them and update dr6?
5715          */
5716
5717         return 1;
5718 }
5719
5720 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5721 {
5722         unsigned long exit_qualification;
5723         gpa_t gpa;
5724         u32 error_code;
5725         int gla_validity;
5726
5727         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5728
5729         gla_validity = (exit_qualification >> 7) & 0x3;
5730         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5731                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5732                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5733                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5734                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5735                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5736                         (long unsigned int)exit_qualification);
5737                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5738                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5739                 return 0;
5740         }
5741
5742         /*
5743          * EPT violation happened while executing iret from NMI,
5744          * "blocked by NMI" bit has to be set before next VM entry.
5745          * There are errata that may cause this bit to not be set:
5746          * AAK134, BY25.
5747          */
5748         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5749                         cpu_has_virtual_nmis() &&
5750                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5751                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5752
5753         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5754         trace_kvm_page_fault(gpa, exit_qualification);
5755
5756         /* It is a write fault? */
5757         error_code = exit_qualification & PFERR_WRITE_MASK;
5758         /* It is a fetch fault? */
5759         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5760         /* ept page table is present? */
5761         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5762
5763         vcpu->arch.exit_qualification = exit_qualification;
5764
5765         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5766 }
5767
5768 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5769 {
5770         int ret;
5771         gpa_t gpa;
5772
5773         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5774         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5775                 skip_emulated_instruction(vcpu);
5776                 return 1;
5777         }
5778
5779         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5780         if (likely(ret == RET_MMIO_PF_EMULATE))
5781                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5782                                               EMULATE_DONE;
5783
5784         if (unlikely(ret == RET_MMIO_PF_INVALID))
5785                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5786
5787         if (unlikely(ret == RET_MMIO_PF_RETRY))
5788                 return 1;
5789
5790         /* It is the real ept misconfig */
5791         WARN_ON(1);
5792
5793         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5794         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5795
5796         return 0;
5797 }
5798
5799 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5800 {
5801         u32 cpu_based_vm_exec_control;
5802
5803         /* clear pending NMI */
5804         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5805         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5806         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5807         ++vcpu->stat.nmi_window_exits;
5808         kvm_make_request(KVM_REQ_EVENT, vcpu);
5809
5810         return 1;
5811 }
5812
5813 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5814 {
5815         struct vcpu_vmx *vmx = to_vmx(vcpu);
5816         enum emulation_result err = EMULATE_DONE;
5817         int ret = 1;
5818         u32 cpu_exec_ctrl;
5819         bool intr_window_requested;
5820         unsigned count = 130;
5821
5822         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5823         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5824
5825         while (vmx->emulation_required && count-- != 0) {
5826                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5827                         return handle_interrupt_window(&vmx->vcpu);
5828
5829                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5830                         return 1;
5831
5832                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5833
5834                 if (err == EMULATE_USER_EXIT) {
5835                         ++vcpu->stat.mmio_exits;
5836                         ret = 0;
5837                         goto out;
5838                 }
5839
5840                 if (err != EMULATE_DONE) {
5841                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5842                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5843                         vcpu->run->internal.ndata = 0;
5844                         return 0;
5845                 }
5846
5847                 if (vcpu->arch.halt_request) {
5848                         vcpu->arch.halt_request = 0;
5849                         ret = kvm_vcpu_halt(vcpu);
5850                         goto out;
5851                 }
5852
5853                 if (signal_pending(current))
5854                         goto out;
5855                 if (need_resched())
5856                         schedule();
5857         }
5858
5859 out:
5860         return ret;
5861 }
5862
5863 static int __grow_ple_window(int val)
5864 {
5865         if (ple_window_grow < 1)
5866                 return ple_window;
5867
5868         val = min(val, ple_window_actual_max);
5869
5870         if (ple_window_grow < ple_window)
5871                 val *= ple_window_grow;
5872         else
5873                 val += ple_window_grow;
5874
5875         return val;
5876 }
5877
5878 static int __shrink_ple_window(int val, int modifier, int minimum)
5879 {
5880         if (modifier < 1)
5881                 return ple_window;
5882
5883         if (modifier < ple_window)
5884                 val /= modifier;
5885         else
5886                 val -= modifier;
5887
5888         return max(val, minimum);
5889 }
5890
5891 static void grow_ple_window(struct kvm_vcpu *vcpu)
5892 {
5893         struct vcpu_vmx *vmx = to_vmx(vcpu);
5894         int old = vmx->ple_window;
5895
5896         vmx->ple_window = __grow_ple_window(old);
5897
5898         if (vmx->ple_window != old)
5899                 vmx->ple_window_dirty = true;
5900
5901         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5902 }
5903
5904 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5905 {
5906         struct vcpu_vmx *vmx = to_vmx(vcpu);
5907         int old = vmx->ple_window;
5908
5909         vmx->ple_window = __shrink_ple_window(old,
5910                                               ple_window_shrink, ple_window);
5911
5912         if (vmx->ple_window != old)
5913                 vmx->ple_window_dirty = true;
5914
5915         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5916 }
5917
5918 /*
5919  * ple_window_actual_max is computed to be one grow_ple_window() below
5920  * ple_window_max. (See __grow_ple_window for the reason.)
5921  * This prevents overflows, because ple_window_max is int.
5922  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5923  * this process.
5924  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5925  */
5926 static void update_ple_window_actual_max(void)
5927 {
5928         ple_window_actual_max =
5929                         __shrink_ple_window(max(ple_window_max, ple_window),
5930                                             ple_window_grow, INT_MIN);
5931 }
5932
5933 static __init int hardware_setup(void)
5934 {
5935         int r = -ENOMEM, i, msr;
5936
5937         rdmsrl_safe(MSR_EFER, &host_efer);
5938
5939         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5940                 kvm_define_shared_msr(i, vmx_msr_index[i]);
5941
5942         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5943         if (!vmx_io_bitmap_a)
5944                 return r;
5945
5946         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5947         if (!vmx_io_bitmap_b)
5948                 goto out;
5949
5950         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5951         if (!vmx_msr_bitmap_legacy)
5952                 goto out1;
5953
5954         vmx_msr_bitmap_legacy_x2apic =
5955                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5956         if (!vmx_msr_bitmap_legacy_x2apic)
5957                 goto out2;
5958
5959         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5960         if (!vmx_msr_bitmap_longmode)
5961                 goto out3;
5962
5963         vmx_msr_bitmap_longmode_x2apic =
5964                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5965         if (!vmx_msr_bitmap_longmode_x2apic)
5966                 goto out4;
5967
5968         if (nested) {
5969                 vmx_msr_bitmap_nested =
5970                         (unsigned long *)__get_free_page(GFP_KERNEL);
5971                 if (!vmx_msr_bitmap_nested)
5972                         goto out5;
5973         }
5974
5975         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5976         if (!vmx_vmread_bitmap)
5977                 goto out6;
5978
5979         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5980         if (!vmx_vmwrite_bitmap)
5981                 goto out7;
5982
5983         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5984         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5985
5986         /*
5987          * Allow direct access to the PC debug port (it is often used for I/O
5988          * delays, but the vmexits simply slow things down).
5989          */
5990         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5991         clear_bit(0x80, vmx_io_bitmap_a);
5992
5993         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5994
5995         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5996         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5997         if (nested)
5998                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
5999
6000         if (setup_vmcs_config(&vmcs_config) < 0) {
6001                 r = -EIO;
6002                 goto out8;
6003         }
6004
6005         if (boot_cpu_has(X86_FEATURE_NX))
6006                 kvm_enable_efer_bits(EFER_NX);
6007
6008         if (!cpu_has_vmx_vpid())
6009                 enable_vpid = 0;
6010         if (!cpu_has_vmx_shadow_vmcs())
6011                 enable_shadow_vmcs = 0;
6012         if (enable_shadow_vmcs)
6013                 init_vmcs_shadow_fields();
6014
6015         if (!cpu_has_vmx_ept() ||
6016             !cpu_has_vmx_ept_4levels()) {
6017                 enable_ept = 0;
6018                 enable_unrestricted_guest = 0;
6019                 enable_ept_ad_bits = 0;
6020         }
6021
6022         if (!cpu_has_vmx_ept_ad_bits())
6023                 enable_ept_ad_bits = 0;
6024
6025         if (!cpu_has_vmx_unrestricted_guest())
6026                 enable_unrestricted_guest = 0;
6027
6028         if (!cpu_has_vmx_flexpriority())
6029                 flexpriority_enabled = 0;
6030
6031         /*
6032          * set_apic_access_page_addr() is used to reload apic access
6033          * page upon invalidation.  No need to do anything if not
6034          * using the APIC_ACCESS_ADDR VMCS field.
6035          */
6036         if (!flexpriority_enabled)
6037                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6038
6039         if (!cpu_has_vmx_tpr_shadow())
6040                 kvm_x86_ops->update_cr8_intercept = NULL;
6041
6042         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6043                 kvm_disable_largepages();
6044
6045         if (!cpu_has_vmx_ple())
6046                 ple_gap = 0;
6047
6048         if (!cpu_has_vmx_apicv())
6049                 enable_apicv = 0;
6050
6051         if (enable_apicv)
6052                 kvm_x86_ops->update_cr8_intercept = NULL;
6053         else {
6054                 kvm_x86_ops->hwapic_irr_update = NULL;
6055                 kvm_x86_ops->hwapic_isr_update = NULL;
6056                 kvm_x86_ops->deliver_posted_interrupt = NULL;
6057                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6058         }
6059
6060         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6061         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6062         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6063         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6064         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6065         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6066         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6067
6068         memcpy(vmx_msr_bitmap_legacy_x2apic,
6069                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6070         memcpy(vmx_msr_bitmap_longmode_x2apic,
6071                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6072
6073         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6074
6075         if (enable_apicv) {
6076                 for (msr = 0x800; msr <= 0x8ff; msr++)
6077                         vmx_disable_intercept_msr_read_x2apic(msr);
6078
6079                 /* According SDM, in x2apic mode, the whole id reg is used.
6080                  * But in KVM, it only use the highest eight bits. Need to
6081                  * intercept it */
6082                 vmx_enable_intercept_msr_read_x2apic(0x802);
6083                 /* TMCCT */
6084                 vmx_enable_intercept_msr_read_x2apic(0x839);
6085                 /* TPR */
6086                 vmx_disable_intercept_msr_write_x2apic(0x808);
6087                 /* EOI */
6088                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6089                 /* SELF-IPI */
6090                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6091         }
6092
6093         if (enable_ept) {
6094                 kvm_mmu_set_mask_ptes(0ull,
6095                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6096                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6097                         0ull, VMX_EPT_EXECUTABLE_MASK);
6098                 ept_set_mmio_spte_mask();
6099                 kvm_enable_tdp();
6100         } else
6101                 kvm_disable_tdp();
6102
6103         update_ple_window_actual_max();
6104
6105         /*
6106          * Only enable PML when hardware supports PML feature, and both EPT
6107          * and EPT A/D bit features are enabled -- PML depends on them to work.
6108          */
6109         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6110                 enable_pml = 0;
6111
6112         if (!enable_pml) {
6113                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6114                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6115                 kvm_x86_ops->flush_log_dirty = NULL;
6116                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6117         }
6118
6119         return alloc_kvm_area();
6120
6121 out8:
6122         free_page((unsigned long)vmx_vmwrite_bitmap);
6123 out7:
6124         free_page((unsigned long)vmx_vmread_bitmap);
6125 out6:
6126         if (nested)
6127                 free_page((unsigned long)vmx_msr_bitmap_nested);
6128 out5:
6129         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6130 out4:
6131         free_page((unsigned long)vmx_msr_bitmap_longmode);
6132 out3:
6133         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6134 out2:
6135         free_page((unsigned long)vmx_msr_bitmap_legacy);
6136 out1:
6137         free_page((unsigned long)vmx_io_bitmap_b);
6138 out:
6139         free_page((unsigned long)vmx_io_bitmap_a);
6140
6141     return r;
6142 }
6143
6144 static __exit void hardware_unsetup(void)
6145 {
6146         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6147         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6148         free_page((unsigned long)vmx_msr_bitmap_legacy);
6149         free_page((unsigned long)vmx_msr_bitmap_longmode);
6150         free_page((unsigned long)vmx_io_bitmap_b);
6151         free_page((unsigned long)vmx_io_bitmap_a);
6152         free_page((unsigned long)vmx_vmwrite_bitmap);
6153         free_page((unsigned long)vmx_vmread_bitmap);
6154         if (nested)
6155                 free_page((unsigned long)vmx_msr_bitmap_nested);
6156
6157         free_kvm_area();
6158 }
6159
6160 /*
6161  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6162  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6163  */
6164 static int handle_pause(struct kvm_vcpu *vcpu)
6165 {
6166         if (ple_gap)
6167                 grow_ple_window(vcpu);
6168
6169         skip_emulated_instruction(vcpu);
6170         kvm_vcpu_on_spin(vcpu);
6171
6172         return 1;
6173 }
6174
6175 static int handle_nop(struct kvm_vcpu *vcpu)
6176 {
6177         skip_emulated_instruction(vcpu);
6178         return 1;
6179 }
6180
6181 static int handle_mwait(struct kvm_vcpu *vcpu)
6182 {
6183         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6184         return handle_nop(vcpu);
6185 }
6186
6187 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6188 {
6189         return 1;
6190 }
6191
6192 static int handle_monitor(struct kvm_vcpu *vcpu)
6193 {
6194         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6195         return handle_nop(vcpu);
6196 }
6197
6198 /*
6199  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6200  * We could reuse a single VMCS for all the L2 guests, but we also want the
6201  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6202  * allows keeping them loaded on the processor, and in the future will allow
6203  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6204  * every entry if they never change.
6205  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6206  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6207  *
6208  * The following functions allocate and free a vmcs02 in this pool.
6209  */
6210
6211 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6212 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6213 {
6214         struct vmcs02_list *item;
6215         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6216                 if (item->vmptr == vmx->nested.current_vmptr) {
6217                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6218                         return &item->vmcs02;
6219                 }
6220
6221         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6222                 /* Recycle the least recently used VMCS. */
6223                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6224                         struct vmcs02_list, list);
6225                 item->vmptr = vmx->nested.current_vmptr;
6226                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6227                 return &item->vmcs02;
6228         }
6229
6230         /* Create a new VMCS */
6231         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6232         if (!item)
6233                 return NULL;
6234         item->vmcs02.vmcs = alloc_vmcs();
6235         if (!item->vmcs02.vmcs) {
6236                 kfree(item);
6237                 return NULL;
6238         }
6239         loaded_vmcs_init(&item->vmcs02);
6240         item->vmptr = vmx->nested.current_vmptr;
6241         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6242         vmx->nested.vmcs02_num++;
6243         return &item->vmcs02;
6244 }
6245
6246 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6247 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6248 {
6249         struct vmcs02_list *item;
6250         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6251                 if (item->vmptr == vmptr) {
6252                         free_loaded_vmcs(&item->vmcs02);
6253                         list_del(&item->list);
6254                         kfree(item);
6255                         vmx->nested.vmcs02_num--;
6256                         return;
6257                 }
6258 }
6259
6260 /*
6261  * Free all VMCSs saved for this vcpu, except the one pointed by
6262  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6263  * must be &vmx->vmcs01.
6264  */
6265 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6266 {
6267         struct vmcs02_list *item, *n;
6268
6269         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6270         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6271                 /*
6272                  * Something will leak if the above WARN triggers.  Better than
6273                  * a use-after-free.
6274                  */
6275                 if (vmx->loaded_vmcs == &item->vmcs02)
6276                         continue;
6277
6278                 free_loaded_vmcs(&item->vmcs02);
6279                 list_del(&item->list);
6280                 kfree(item);
6281                 vmx->nested.vmcs02_num--;
6282         }
6283 }
6284
6285 /*
6286  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6287  * set the success or error code of an emulated VMX instruction, as specified
6288  * by Vol 2B, VMX Instruction Reference, "Conventions".
6289  */
6290 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6291 {
6292         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6293                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6294                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6295 }
6296
6297 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6298 {
6299         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6300                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6301                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6302                         | X86_EFLAGS_CF);
6303 }
6304
6305 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6306                                         u32 vm_instruction_error)
6307 {
6308         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6309                 /*
6310                  * failValid writes the error number to the current VMCS, which
6311                  * can't be done there isn't a current VMCS.
6312                  */
6313                 nested_vmx_failInvalid(vcpu);
6314                 return;
6315         }
6316         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6317                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6318                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6319                         | X86_EFLAGS_ZF);
6320         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6321         /*
6322          * We don't need to force a shadow sync because
6323          * VM_INSTRUCTION_ERROR is not shadowed
6324          */
6325 }
6326
6327 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6328 {
6329         /* TODO: not to reset guest simply here. */
6330         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6331         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6332 }
6333
6334 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6335 {
6336         struct vcpu_vmx *vmx =
6337                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6338
6339         vmx->nested.preemption_timer_expired = true;
6340         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6341         kvm_vcpu_kick(&vmx->vcpu);
6342
6343         return HRTIMER_NORESTART;
6344 }
6345
6346 /*
6347  * Decode the memory-address operand of a vmx instruction, as recorded on an
6348  * exit caused by such an instruction (run by a guest hypervisor).
6349  * On success, returns 0. When the operand is invalid, returns 1 and throws
6350  * #UD or #GP.
6351  */
6352 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6353                                  unsigned long exit_qualification,
6354                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6355 {
6356         gva_t off;
6357         bool exn;
6358         struct kvm_segment s;
6359
6360         /*
6361          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6362          * Execution", on an exit, vmx_instruction_info holds most of the
6363          * addressing components of the operand. Only the displacement part
6364          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6365          * For how an actual address is calculated from all these components,
6366          * refer to Vol. 1, "Operand Addressing".
6367          */
6368         int  scaling = vmx_instruction_info & 3;
6369         int  addr_size = (vmx_instruction_info >> 7) & 7;
6370         bool is_reg = vmx_instruction_info & (1u << 10);
6371         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6372         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6373         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6374         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6375         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6376
6377         if (is_reg) {
6378                 kvm_queue_exception(vcpu, UD_VECTOR);
6379                 return 1;
6380         }
6381
6382         /* Addr = segment_base + offset */
6383         /* offset = base + [index * scale] + displacement */
6384         off = exit_qualification; /* holds the displacement */
6385         if (base_is_valid)
6386                 off += kvm_register_read(vcpu, base_reg);
6387         if (index_is_valid)
6388                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6389         vmx_get_segment(vcpu, &s, seg_reg);
6390         *ret = s.base + off;
6391
6392         if (addr_size == 1) /* 32 bit */
6393                 *ret &= 0xffffffff;
6394
6395         /* Checks for #GP/#SS exceptions. */
6396         exn = false;
6397         if (is_protmode(vcpu)) {
6398                 /* Protected mode: apply checks for segment validity in the
6399                  * following order:
6400                  * - segment type check (#GP(0) may be thrown)
6401                  * - usability check (#GP(0)/#SS(0))
6402                  * - limit check (#GP(0)/#SS(0))
6403                  */
6404                 if (wr)
6405                         /* #GP(0) if the destination operand is located in a
6406                          * read-only data segment or any code segment.
6407                          */
6408                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6409                 else
6410                         /* #GP(0) if the source operand is located in an
6411                          * execute-only code segment
6412                          */
6413                         exn = ((s.type & 0xa) == 8);
6414         }
6415         if (exn) {
6416                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6417                 return 1;
6418         }
6419         if (is_long_mode(vcpu)) {
6420                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6421                  * non-canonical form. This is an only check for long mode.
6422                  */
6423                 exn = is_noncanonical_address(*ret);
6424         } else if (is_protmode(vcpu)) {
6425                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6426                  */
6427                 exn = (s.unusable != 0);
6428                 /* Protected mode: #GP(0)/#SS(0) if the memory
6429                  * operand is outside the segment limit.
6430                  */
6431                 exn = exn || (off + sizeof(u64) > s.limit);
6432         }
6433         if (exn) {
6434                 kvm_queue_exception_e(vcpu,
6435                                       seg_reg == VCPU_SREG_SS ?
6436                                                 SS_VECTOR : GP_VECTOR,
6437                                       0);
6438                 return 1;
6439         }
6440
6441         return 0;
6442 }
6443
6444 /*
6445  * This function performs the various checks including
6446  * - if it's 4KB aligned
6447  * - No bits beyond the physical address width are set
6448  * - Returns 0 on success or else 1
6449  * (Intel SDM Section 30.3)
6450  */
6451 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6452                                   gpa_t *vmpointer)
6453 {
6454         gva_t gva;
6455         gpa_t vmptr;
6456         struct x86_exception e;
6457         struct page *page;
6458         struct vcpu_vmx *vmx = to_vmx(vcpu);
6459         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6460
6461         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6462                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6463                 return 1;
6464
6465         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6466                                 sizeof(vmptr), &e)) {
6467                 kvm_inject_page_fault(vcpu, &e);
6468                 return 1;
6469         }
6470
6471         switch (exit_reason) {
6472         case EXIT_REASON_VMON:
6473                 /*
6474                  * SDM 3: 24.11.5
6475                  * The first 4 bytes of VMXON region contain the supported
6476                  * VMCS revision identifier
6477                  *
6478                  * Note - IA32_VMX_BASIC[48] will never be 1
6479                  * for the nested case;
6480                  * which replaces physical address width with 32
6481                  *
6482                  */
6483                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6484                         nested_vmx_failInvalid(vcpu);
6485                         skip_emulated_instruction(vcpu);
6486                         return 1;
6487                 }
6488
6489                 page = nested_get_page(vcpu, vmptr);
6490                 if (page == NULL ||
6491                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6492                         nested_vmx_failInvalid(vcpu);
6493                         kunmap(page);
6494                         skip_emulated_instruction(vcpu);
6495                         return 1;
6496                 }
6497                 kunmap(page);
6498                 vmx->nested.vmxon_ptr = vmptr;
6499                 break;
6500         case EXIT_REASON_VMCLEAR:
6501                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6502                         nested_vmx_failValid(vcpu,
6503                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6504                         skip_emulated_instruction(vcpu);
6505                         return 1;
6506                 }
6507
6508                 if (vmptr == vmx->nested.vmxon_ptr) {
6509                         nested_vmx_failValid(vcpu,
6510                                              VMXERR_VMCLEAR_VMXON_POINTER);
6511                         skip_emulated_instruction(vcpu);
6512                         return 1;
6513                 }
6514                 break;
6515         case EXIT_REASON_VMPTRLD:
6516                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6517                         nested_vmx_failValid(vcpu,
6518                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6519                         skip_emulated_instruction(vcpu);
6520                         return 1;
6521                 }
6522
6523                 if (vmptr == vmx->nested.vmxon_ptr) {
6524                         nested_vmx_failValid(vcpu,
6525                                              VMXERR_VMCLEAR_VMXON_POINTER);
6526                         skip_emulated_instruction(vcpu);
6527                         return 1;
6528                 }
6529                 break;
6530         default:
6531                 return 1; /* shouldn't happen */
6532         }
6533
6534         if (vmpointer)
6535                 *vmpointer = vmptr;
6536         return 0;
6537 }
6538
6539 /*
6540  * Emulate the VMXON instruction.
6541  * Currently, we just remember that VMX is active, and do not save or even
6542  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6543  * do not currently need to store anything in that guest-allocated memory
6544  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6545  * argument is different from the VMXON pointer (which the spec says they do).
6546  */
6547 static int handle_vmon(struct kvm_vcpu *vcpu)
6548 {
6549         struct kvm_segment cs;
6550         struct vcpu_vmx *vmx = to_vmx(vcpu);
6551         struct vmcs *shadow_vmcs;
6552         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6553                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6554
6555         /* The Intel VMX Instruction Reference lists a bunch of bits that
6556          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6557          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6558          * Otherwise, we should fail with #UD. We test these now:
6559          */
6560         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6561             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6562             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6563                 kvm_queue_exception(vcpu, UD_VECTOR);
6564                 return 1;
6565         }
6566
6567         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6568         if (is_long_mode(vcpu) && !cs.l) {
6569                 kvm_queue_exception(vcpu, UD_VECTOR);
6570                 return 1;
6571         }
6572
6573         if (vmx_get_cpl(vcpu)) {
6574                 kvm_inject_gp(vcpu, 0);
6575                 return 1;
6576         }
6577
6578         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6579                 return 1;
6580
6581         if (vmx->nested.vmxon) {
6582                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6583                 skip_emulated_instruction(vcpu);
6584                 return 1;
6585         }
6586
6587         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6588                         != VMXON_NEEDED_FEATURES) {
6589                 kvm_inject_gp(vcpu, 0);
6590                 return 1;
6591         }
6592
6593         if (enable_shadow_vmcs) {
6594                 shadow_vmcs = alloc_vmcs();
6595                 if (!shadow_vmcs)
6596                         return -ENOMEM;
6597                 /* mark vmcs as shadow */
6598                 shadow_vmcs->revision_id |= (1u << 31);
6599                 /* init shadow vmcs */
6600                 vmcs_clear(shadow_vmcs);
6601                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6602         }
6603
6604         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6605         vmx->nested.vmcs02_num = 0;
6606
6607         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6608                      HRTIMER_MODE_REL);
6609         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6610
6611         vmx->nested.vmxon = true;
6612
6613         skip_emulated_instruction(vcpu);
6614         nested_vmx_succeed(vcpu);
6615         return 1;
6616 }
6617
6618 /*
6619  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6620  * for running VMX instructions (except VMXON, whose prerequisites are
6621  * slightly different). It also specifies what exception to inject otherwise.
6622  */
6623 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6624 {
6625         struct kvm_segment cs;
6626         struct vcpu_vmx *vmx = to_vmx(vcpu);
6627
6628         if (!vmx->nested.vmxon) {
6629                 kvm_queue_exception(vcpu, UD_VECTOR);
6630                 return 0;
6631         }
6632
6633         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6634         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6635             (is_long_mode(vcpu) && !cs.l)) {
6636                 kvm_queue_exception(vcpu, UD_VECTOR);
6637                 return 0;
6638         }
6639
6640         if (vmx_get_cpl(vcpu)) {
6641                 kvm_inject_gp(vcpu, 0);
6642                 return 0;
6643         }
6644
6645         return 1;
6646 }
6647
6648 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6649 {
6650         u32 exec_control;
6651         if (vmx->nested.current_vmptr == -1ull)
6652                 return;
6653
6654         /* current_vmptr and current_vmcs12 are always set/reset together */
6655         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6656                 return;
6657
6658         if (enable_shadow_vmcs) {
6659                 /* copy to memory all shadowed fields in case
6660                    they were modified */
6661                 copy_shadow_to_vmcs12(vmx);
6662                 vmx->nested.sync_shadow_vmcs = false;
6663                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6664                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6665                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6666                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6667         }
6668         vmx->nested.posted_intr_nv = -1;
6669         kunmap(vmx->nested.current_vmcs12_page);
6670         nested_release_page(vmx->nested.current_vmcs12_page);
6671         vmx->nested.current_vmptr = -1ull;
6672         vmx->nested.current_vmcs12 = NULL;
6673 }
6674
6675 /*
6676  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6677  * just stops using VMX.
6678  */
6679 static void free_nested(struct vcpu_vmx *vmx)
6680 {
6681         if (!vmx->nested.vmxon)
6682                 return;
6683
6684         vmx->nested.vmxon = false;
6685         nested_release_vmcs12(vmx);
6686         if (enable_shadow_vmcs)
6687                 free_vmcs(vmx->nested.current_shadow_vmcs);
6688         /* Unpin physical memory we referred to in current vmcs02 */
6689         if (vmx->nested.apic_access_page) {
6690                 nested_release_page(vmx->nested.apic_access_page);
6691                 vmx->nested.apic_access_page = NULL;
6692         }
6693         if (vmx->nested.virtual_apic_page) {
6694                 nested_release_page(vmx->nested.virtual_apic_page);
6695                 vmx->nested.virtual_apic_page = NULL;
6696         }
6697         if (vmx->nested.pi_desc_page) {
6698                 kunmap(vmx->nested.pi_desc_page);
6699                 nested_release_page(vmx->nested.pi_desc_page);
6700                 vmx->nested.pi_desc_page = NULL;
6701                 vmx->nested.pi_desc = NULL;
6702         }
6703
6704         nested_free_all_saved_vmcss(vmx);
6705 }
6706
6707 /* Emulate the VMXOFF instruction */
6708 static int handle_vmoff(struct kvm_vcpu *vcpu)
6709 {
6710         if (!nested_vmx_check_permission(vcpu))
6711                 return 1;
6712         free_nested(to_vmx(vcpu));
6713         skip_emulated_instruction(vcpu);
6714         nested_vmx_succeed(vcpu);
6715         return 1;
6716 }
6717
6718 /* Emulate the VMCLEAR instruction */
6719 static int handle_vmclear(struct kvm_vcpu *vcpu)
6720 {
6721         struct vcpu_vmx *vmx = to_vmx(vcpu);
6722         gpa_t vmptr;
6723         struct vmcs12 *vmcs12;
6724         struct page *page;
6725
6726         if (!nested_vmx_check_permission(vcpu))
6727                 return 1;
6728
6729         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6730                 return 1;
6731
6732         if (vmptr == vmx->nested.current_vmptr)
6733                 nested_release_vmcs12(vmx);
6734
6735         page = nested_get_page(vcpu, vmptr);
6736         if (page == NULL) {
6737                 /*
6738                  * For accurate processor emulation, VMCLEAR beyond available
6739                  * physical memory should do nothing at all. However, it is
6740                  * possible that a nested vmx bug, not a guest hypervisor bug,
6741                  * resulted in this case, so let's shut down before doing any
6742                  * more damage:
6743                  */
6744                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6745                 return 1;
6746         }
6747         vmcs12 = kmap(page);
6748         vmcs12->launch_state = 0;
6749         kunmap(page);
6750         nested_release_page(page);
6751
6752         nested_free_vmcs02(vmx, vmptr);
6753
6754         skip_emulated_instruction(vcpu);
6755         nested_vmx_succeed(vcpu);
6756         return 1;
6757 }
6758
6759 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6760
6761 /* Emulate the VMLAUNCH instruction */
6762 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6763 {
6764         return nested_vmx_run(vcpu, true);
6765 }
6766
6767 /* Emulate the VMRESUME instruction */
6768 static int handle_vmresume(struct kvm_vcpu *vcpu)
6769 {
6770
6771         return nested_vmx_run(vcpu, false);
6772 }
6773
6774 enum vmcs_field_type {
6775         VMCS_FIELD_TYPE_U16 = 0,
6776         VMCS_FIELD_TYPE_U64 = 1,
6777         VMCS_FIELD_TYPE_U32 = 2,
6778         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6779 };
6780
6781 static inline int vmcs_field_type(unsigned long field)
6782 {
6783         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6784                 return VMCS_FIELD_TYPE_U32;
6785         return (field >> 13) & 0x3 ;
6786 }
6787
6788 static inline int vmcs_field_readonly(unsigned long field)
6789 {
6790         return (((field >> 10) & 0x3) == 1);
6791 }
6792
6793 /*
6794  * Read a vmcs12 field. Since these can have varying lengths and we return
6795  * one type, we chose the biggest type (u64) and zero-extend the return value
6796  * to that size. Note that the caller, handle_vmread, might need to use only
6797  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6798  * 64-bit fields are to be returned).
6799  */
6800 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6801                                   unsigned long field, u64 *ret)
6802 {
6803         short offset = vmcs_field_to_offset(field);
6804         char *p;
6805
6806         if (offset < 0)
6807                 return offset;
6808
6809         p = ((char *)(get_vmcs12(vcpu))) + offset;
6810
6811         switch (vmcs_field_type(field)) {
6812         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6813                 *ret = *((natural_width *)p);
6814                 return 0;
6815         case VMCS_FIELD_TYPE_U16:
6816                 *ret = *((u16 *)p);
6817                 return 0;
6818         case VMCS_FIELD_TYPE_U32:
6819                 *ret = *((u32 *)p);
6820                 return 0;
6821         case VMCS_FIELD_TYPE_U64:
6822                 *ret = *((u64 *)p);
6823                 return 0;
6824         default:
6825                 WARN_ON(1);
6826                 return -ENOENT;
6827         }
6828 }
6829
6830
6831 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6832                                    unsigned long field, u64 field_value){
6833         short offset = vmcs_field_to_offset(field);
6834         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6835         if (offset < 0)
6836                 return offset;
6837
6838         switch (vmcs_field_type(field)) {
6839         case VMCS_FIELD_TYPE_U16:
6840                 *(u16 *)p = field_value;
6841                 return 0;
6842         case VMCS_FIELD_TYPE_U32:
6843                 *(u32 *)p = field_value;
6844                 return 0;
6845         case VMCS_FIELD_TYPE_U64:
6846                 *(u64 *)p = field_value;
6847                 return 0;
6848         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6849                 *(natural_width *)p = field_value;
6850                 return 0;
6851         default:
6852                 WARN_ON(1);
6853                 return -ENOENT;
6854         }
6855
6856 }
6857
6858 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6859 {
6860         int i;
6861         unsigned long field;
6862         u64 field_value;
6863         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6864         const unsigned long *fields = shadow_read_write_fields;
6865         const int num_fields = max_shadow_read_write_fields;
6866
6867         preempt_disable();
6868
6869         vmcs_load(shadow_vmcs);
6870
6871         for (i = 0; i < num_fields; i++) {
6872                 field = fields[i];
6873                 switch (vmcs_field_type(field)) {
6874                 case VMCS_FIELD_TYPE_U16:
6875                         field_value = vmcs_read16(field);
6876                         break;
6877                 case VMCS_FIELD_TYPE_U32:
6878                         field_value = vmcs_read32(field);
6879                         break;
6880                 case VMCS_FIELD_TYPE_U64:
6881                         field_value = vmcs_read64(field);
6882                         break;
6883                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6884                         field_value = vmcs_readl(field);
6885                         break;
6886                 default:
6887                         WARN_ON(1);
6888                         continue;
6889                 }
6890                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6891         }
6892
6893         vmcs_clear(shadow_vmcs);
6894         vmcs_load(vmx->loaded_vmcs->vmcs);
6895
6896         preempt_enable();
6897 }
6898
6899 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6900 {
6901         const unsigned long *fields[] = {
6902                 shadow_read_write_fields,
6903                 shadow_read_only_fields
6904         };
6905         const int max_fields[] = {
6906                 max_shadow_read_write_fields,
6907                 max_shadow_read_only_fields
6908         };
6909         int i, q;
6910         unsigned long field;
6911         u64 field_value = 0;
6912         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6913
6914         vmcs_load(shadow_vmcs);
6915
6916         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6917                 for (i = 0; i < max_fields[q]; i++) {
6918                         field = fields[q][i];
6919                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6920
6921                         switch (vmcs_field_type(field)) {
6922                         case VMCS_FIELD_TYPE_U16:
6923                                 vmcs_write16(field, (u16)field_value);
6924                                 break;
6925                         case VMCS_FIELD_TYPE_U32:
6926                                 vmcs_write32(field, (u32)field_value);
6927                                 break;
6928                         case VMCS_FIELD_TYPE_U64:
6929                                 vmcs_write64(field, (u64)field_value);
6930                                 break;
6931                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6932                                 vmcs_writel(field, (long)field_value);
6933                                 break;
6934                         default:
6935                                 WARN_ON(1);
6936                                 break;
6937                         }
6938                 }
6939         }
6940
6941         vmcs_clear(shadow_vmcs);
6942         vmcs_load(vmx->loaded_vmcs->vmcs);
6943 }
6944
6945 /*
6946  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6947  * used before) all generate the same failure when it is missing.
6948  */
6949 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6950 {
6951         struct vcpu_vmx *vmx = to_vmx(vcpu);
6952         if (vmx->nested.current_vmptr == -1ull) {
6953                 nested_vmx_failInvalid(vcpu);
6954                 skip_emulated_instruction(vcpu);
6955                 return 0;
6956         }
6957         return 1;
6958 }
6959
6960 static int handle_vmread(struct kvm_vcpu *vcpu)
6961 {
6962         unsigned long field;
6963         u64 field_value;
6964         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6965         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6966         gva_t gva = 0;
6967
6968         if (!nested_vmx_check_permission(vcpu) ||
6969             !nested_vmx_check_vmcs12(vcpu))
6970                 return 1;
6971
6972         /* Decode instruction info and find the field to read */
6973         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6974         /* Read the field, zero-extended to a u64 field_value */
6975         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6976                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6977                 skip_emulated_instruction(vcpu);
6978                 return 1;
6979         }
6980         /*
6981          * Now copy part of this value to register or memory, as requested.
6982          * Note that the number of bits actually copied is 32 or 64 depending
6983          * on the guest's mode (32 or 64 bit), not on the given field's length.
6984          */
6985         if (vmx_instruction_info & (1u << 10)) {
6986                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6987                         field_value);
6988         } else {
6989                 if (get_vmx_mem_address(vcpu, exit_qualification,
6990                                 vmx_instruction_info, true, &gva))
6991                         return 1;
6992                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6993                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6994                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6995         }
6996
6997         nested_vmx_succeed(vcpu);
6998         skip_emulated_instruction(vcpu);
6999         return 1;
7000 }
7001
7002
7003 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7004 {
7005         unsigned long field;
7006         gva_t gva;
7007         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7008         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7009         /* The value to write might be 32 or 64 bits, depending on L1's long
7010          * mode, and eventually we need to write that into a field of several
7011          * possible lengths. The code below first zero-extends the value to 64
7012          * bit (field_value), and then copies only the approriate number of
7013          * bits into the vmcs12 field.
7014          */
7015         u64 field_value = 0;
7016         struct x86_exception e;
7017
7018         if (!nested_vmx_check_permission(vcpu) ||
7019             !nested_vmx_check_vmcs12(vcpu))
7020                 return 1;
7021
7022         if (vmx_instruction_info & (1u << 10))
7023                 field_value = kvm_register_readl(vcpu,
7024                         (((vmx_instruction_info) >> 3) & 0xf));
7025         else {
7026                 if (get_vmx_mem_address(vcpu, exit_qualification,
7027                                 vmx_instruction_info, false, &gva))
7028                         return 1;
7029                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7030                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7031                         kvm_inject_page_fault(vcpu, &e);
7032                         return 1;
7033                 }
7034         }
7035
7036
7037         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7038         if (vmcs_field_readonly(field)) {
7039                 nested_vmx_failValid(vcpu,
7040                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7041                 skip_emulated_instruction(vcpu);
7042                 return 1;
7043         }
7044
7045         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7046                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7047                 skip_emulated_instruction(vcpu);
7048                 return 1;
7049         }
7050
7051         nested_vmx_succeed(vcpu);
7052         skip_emulated_instruction(vcpu);
7053         return 1;
7054 }
7055
7056 /* Emulate the VMPTRLD instruction */
7057 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7058 {
7059         struct vcpu_vmx *vmx = to_vmx(vcpu);
7060         gpa_t vmptr;
7061         u32 exec_control;
7062
7063         if (!nested_vmx_check_permission(vcpu))
7064                 return 1;
7065
7066         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7067                 return 1;
7068
7069         if (vmx->nested.current_vmptr != vmptr) {
7070                 struct vmcs12 *new_vmcs12;
7071                 struct page *page;
7072                 page = nested_get_page(vcpu, vmptr);
7073                 if (page == NULL) {
7074                         nested_vmx_failInvalid(vcpu);
7075                         skip_emulated_instruction(vcpu);
7076                         return 1;
7077                 }
7078                 new_vmcs12 = kmap(page);
7079                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7080                         kunmap(page);
7081                         nested_release_page_clean(page);
7082                         nested_vmx_failValid(vcpu,
7083                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7084                         skip_emulated_instruction(vcpu);
7085                         return 1;
7086                 }
7087
7088                 nested_release_vmcs12(vmx);
7089                 vmx->nested.current_vmptr = vmptr;
7090                 vmx->nested.current_vmcs12 = new_vmcs12;
7091                 vmx->nested.current_vmcs12_page = page;
7092                 if (enable_shadow_vmcs) {
7093                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7094                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7095                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7096                         vmcs_write64(VMCS_LINK_POINTER,
7097                                      __pa(vmx->nested.current_shadow_vmcs));
7098                         vmx->nested.sync_shadow_vmcs = true;
7099                 }
7100         }
7101
7102         nested_vmx_succeed(vcpu);
7103         skip_emulated_instruction(vcpu);
7104         return 1;
7105 }
7106
7107 /* Emulate the VMPTRST instruction */
7108 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7109 {
7110         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7111         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7112         gva_t vmcs_gva;
7113         struct x86_exception e;
7114
7115         if (!nested_vmx_check_permission(vcpu))
7116                 return 1;
7117
7118         if (get_vmx_mem_address(vcpu, exit_qualification,
7119                         vmx_instruction_info, true, &vmcs_gva))
7120                 return 1;
7121         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7122         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7123                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7124                                  sizeof(u64), &e)) {
7125                 kvm_inject_page_fault(vcpu, &e);
7126                 return 1;
7127         }
7128         nested_vmx_succeed(vcpu);
7129         skip_emulated_instruction(vcpu);
7130         return 1;
7131 }
7132
7133 /* Emulate the INVEPT instruction */
7134 static int handle_invept(struct kvm_vcpu *vcpu)
7135 {
7136         struct vcpu_vmx *vmx = to_vmx(vcpu);
7137         u32 vmx_instruction_info, types;
7138         unsigned long type;
7139         gva_t gva;
7140         struct x86_exception e;
7141         struct {
7142                 u64 eptp, gpa;
7143         } operand;
7144
7145         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7146               SECONDARY_EXEC_ENABLE_EPT) ||
7147             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7148                 kvm_queue_exception(vcpu, UD_VECTOR);
7149                 return 1;
7150         }
7151
7152         if (!nested_vmx_check_permission(vcpu))
7153                 return 1;
7154
7155         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7156                 kvm_queue_exception(vcpu, UD_VECTOR);
7157                 return 1;
7158         }
7159
7160         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7161         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7162
7163         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7164
7165         if (!(types & (1UL << type))) {
7166                 nested_vmx_failValid(vcpu,
7167                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7168                 return 1;
7169         }
7170
7171         /* According to the Intel VMX instruction reference, the memory
7172          * operand is read even if it isn't needed (e.g., for type==global)
7173          */
7174         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7175                         vmx_instruction_info, false, &gva))
7176                 return 1;
7177         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7178                                 sizeof(operand), &e)) {
7179                 kvm_inject_page_fault(vcpu, &e);
7180                 return 1;
7181         }
7182
7183         switch (type) {
7184         case VMX_EPT_EXTENT_GLOBAL:
7185                 kvm_mmu_sync_roots(vcpu);
7186                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7187                 nested_vmx_succeed(vcpu);
7188                 break;
7189         default:
7190                 /* Trap single context invalidation invept calls */
7191                 BUG_ON(1);
7192                 break;
7193         }
7194
7195         skip_emulated_instruction(vcpu);
7196         return 1;
7197 }
7198
7199 static int handle_invvpid(struct kvm_vcpu *vcpu)
7200 {
7201         kvm_queue_exception(vcpu, UD_VECTOR);
7202         return 1;
7203 }
7204
7205 static int handle_pml_full(struct kvm_vcpu *vcpu)
7206 {
7207         unsigned long exit_qualification;
7208
7209         trace_kvm_pml_full(vcpu->vcpu_id);
7210
7211         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7212
7213         /*
7214          * PML buffer FULL happened while executing iret from NMI,
7215          * "blocked by NMI" bit has to be set before next VM entry.
7216          */
7217         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7218                         cpu_has_virtual_nmis() &&
7219                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7220                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7221                                 GUEST_INTR_STATE_NMI);
7222
7223         /*
7224          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7225          * here.., and there's no userspace involvement needed for PML.
7226          */
7227         return 1;
7228 }
7229
7230 /*
7231  * The exit handlers return 1 if the exit was handled fully and guest execution
7232  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7233  * to be done to userspace and return 0.
7234  */
7235 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7236         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7237         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7238         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7239         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7240         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7241         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7242         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7243         [EXIT_REASON_CPUID]                   = handle_cpuid,
7244         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7245         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7246         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7247         [EXIT_REASON_HLT]                     = handle_halt,
7248         [EXIT_REASON_INVD]                    = handle_invd,
7249         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7250         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7251         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7252         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7253         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7254         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7255         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7256         [EXIT_REASON_VMREAD]                  = handle_vmread,
7257         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7258         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7259         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7260         [EXIT_REASON_VMON]                    = handle_vmon,
7261         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7262         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7263         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7264         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7265         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7266         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7267         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7268         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7269         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7270         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7271         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7272         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7273         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7274         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7275         [EXIT_REASON_INVEPT]                  = handle_invept,
7276         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7277         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7278         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7279         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7280 };
7281
7282 static const int kvm_vmx_max_exit_handlers =
7283         ARRAY_SIZE(kvm_vmx_exit_handlers);
7284
7285 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7286                                        struct vmcs12 *vmcs12)
7287 {
7288         unsigned long exit_qualification;
7289         gpa_t bitmap, last_bitmap;
7290         unsigned int port;
7291         int size;
7292         u8 b;
7293
7294         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7295                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7296
7297         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7298
7299         port = exit_qualification >> 16;
7300         size = (exit_qualification & 7) + 1;
7301
7302         last_bitmap = (gpa_t)-1;
7303         b = -1;
7304
7305         while (size > 0) {
7306                 if (port < 0x8000)
7307                         bitmap = vmcs12->io_bitmap_a;
7308                 else if (port < 0x10000)
7309                         bitmap = vmcs12->io_bitmap_b;
7310                 else
7311                         return true;
7312                 bitmap += (port & 0x7fff) / 8;
7313
7314                 if (last_bitmap != bitmap)
7315                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7316                                 return true;
7317                 if (b & (1 << (port & 7)))
7318                         return true;
7319
7320                 port++;
7321                 size--;
7322                 last_bitmap = bitmap;
7323         }
7324
7325         return false;
7326 }
7327
7328 /*
7329  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7330  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7331  * disinterest in the current event (read or write a specific MSR) by using an
7332  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7333  */
7334 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7335         struct vmcs12 *vmcs12, u32 exit_reason)
7336 {
7337         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7338         gpa_t bitmap;
7339
7340         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7341                 return true;
7342
7343         /*
7344          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7345          * for the four combinations of read/write and low/high MSR numbers.
7346          * First we need to figure out which of the four to use:
7347          */
7348         bitmap = vmcs12->msr_bitmap;
7349         if (exit_reason == EXIT_REASON_MSR_WRITE)
7350                 bitmap += 2048;
7351         if (msr_index >= 0xc0000000) {
7352                 msr_index -= 0xc0000000;
7353                 bitmap += 1024;
7354         }
7355
7356         /* Then read the msr_index'th bit from this bitmap: */
7357         if (msr_index < 1024*8) {
7358                 unsigned char b;
7359                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7360                         return true;
7361                 return 1 & (b >> (msr_index & 7));
7362         } else
7363                 return true; /* let L1 handle the wrong parameter */
7364 }
7365
7366 /*
7367  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7368  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7369  * intercept (via guest_host_mask etc.) the current event.
7370  */
7371 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7372         struct vmcs12 *vmcs12)
7373 {
7374         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7375         int cr = exit_qualification & 15;
7376         int reg = (exit_qualification >> 8) & 15;
7377         unsigned long val = kvm_register_readl(vcpu, reg);
7378
7379         switch ((exit_qualification >> 4) & 3) {
7380         case 0: /* mov to cr */
7381                 switch (cr) {
7382                 case 0:
7383                         if (vmcs12->cr0_guest_host_mask &
7384                             (val ^ vmcs12->cr0_read_shadow))
7385                                 return true;
7386                         break;
7387                 case 3:
7388                         if ((vmcs12->cr3_target_count >= 1 &&
7389                                         vmcs12->cr3_target_value0 == val) ||
7390                                 (vmcs12->cr3_target_count >= 2 &&
7391                                         vmcs12->cr3_target_value1 == val) ||
7392                                 (vmcs12->cr3_target_count >= 3 &&
7393                                         vmcs12->cr3_target_value2 == val) ||
7394                                 (vmcs12->cr3_target_count >= 4 &&
7395                                         vmcs12->cr3_target_value3 == val))
7396                                 return false;
7397                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7398                                 return true;
7399                         break;
7400                 case 4:
7401                         if (vmcs12->cr4_guest_host_mask &
7402                             (vmcs12->cr4_read_shadow ^ val))
7403                                 return true;
7404                         break;
7405                 case 8:
7406                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7407                                 return true;
7408                         break;
7409                 }
7410                 break;
7411         case 2: /* clts */
7412                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7413                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7414                         return true;
7415                 break;
7416         case 1: /* mov from cr */
7417                 switch (cr) {
7418                 case 3:
7419                         if (vmcs12->cpu_based_vm_exec_control &
7420                             CPU_BASED_CR3_STORE_EXITING)
7421                                 return true;
7422                         break;
7423                 case 8:
7424                         if (vmcs12->cpu_based_vm_exec_control &
7425                             CPU_BASED_CR8_STORE_EXITING)
7426                                 return true;
7427                         break;
7428                 }
7429                 break;
7430         case 3: /* lmsw */
7431                 /*
7432                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7433                  * cr0. Other attempted changes are ignored, with no exit.
7434                  */
7435                 if (vmcs12->cr0_guest_host_mask & 0xe &
7436                     (val ^ vmcs12->cr0_read_shadow))
7437                         return true;
7438                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7439                     !(vmcs12->cr0_read_shadow & 0x1) &&
7440                     (val & 0x1))
7441                         return true;
7442                 break;
7443         }
7444         return false;
7445 }
7446
7447 /*
7448  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7449  * should handle it ourselves in L0 (and then continue L2). Only call this
7450  * when in is_guest_mode (L2).
7451  */
7452 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7453 {
7454         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7455         struct vcpu_vmx *vmx = to_vmx(vcpu);
7456         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7457         u32 exit_reason = vmx->exit_reason;
7458
7459         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7460                                 vmcs_readl(EXIT_QUALIFICATION),
7461                                 vmx->idt_vectoring_info,
7462                                 intr_info,
7463                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7464                                 KVM_ISA_VMX);
7465
7466         if (vmx->nested.nested_run_pending)
7467                 return false;
7468
7469         if (unlikely(vmx->fail)) {
7470                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7471                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7472                 return true;
7473         }
7474
7475         switch (exit_reason) {
7476         case EXIT_REASON_EXCEPTION_NMI:
7477                 if (!is_exception(intr_info))
7478                         return false;
7479                 else if (is_page_fault(intr_info))
7480                         return enable_ept;
7481                 else if (is_no_device(intr_info) &&
7482                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7483                         return false;
7484                 return vmcs12->exception_bitmap &
7485                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7486         case EXIT_REASON_EXTERNAL_INTERRUPT:
7487                 return false;
7488         case EXIT_REASON_TRIPLE_FAULT:
7489                 return true;
7490         case EXIT_REASON_PENDING_INTERRUPT:
7491                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7492         case EXIT_REASON_NMI_WINDOW:
7493                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7494         case EXIT_REASON_TASK_SWITCH:
7495                 return true;
7496         case EXIT_REASON_CPUID:
7497                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7498                         return false;
7499                 return true;
7500         case EXIT_REASON_HLT:
7501                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7502         case EXIT_REASON_INVD:
7503                 return true;
7504         case EXIT_REASON_INVLPG:
7505                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7506         case EXIT_REASON_RDPMC:
7507                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7508         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7509                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7510         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7511         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7512         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7513         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7514         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7515         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7516                 /*
7517                  * VMX instructions trap unconditionally. This allows L1 to
7518                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7519                  */
7520                 return true;
7521         case EXIT_REASON_CR_ACCESS:
7522                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7523         case EXIT_REASON_DR_ACCESS:
7524                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7525         case EXIT_REASON_IO_INSTRUCTION:
7526                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7527         case EXIT_REASON_MSR_READ:
7528         case EXIT_REASON_MSR_WRITE:
7529                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7530         case EXIT_REASON_INVALID_STATE:
7531                 return true;
7532         case EXIT_REASON_MWAIT_INSTRUCTION:
7533                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7534         case EXIT_REASON_MONITOR_TRAP_FLAG:
7535                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7536         case EXIT_REASON_MONITOR_INSTRUCTION:
7537                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7538         case EXIT_REASON_PAUSE_INSTRUCTION:
7539                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7540                         nested_cpu_has2(vmcs12,
7541                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7542         case EXIT_REASON_MCE_DURING_VMENTRY:
7543                 return false;
7544         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7545                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7546         case EXIT_REASON_APIC_ACCESS:
7547                 return nested_cpu_has2(vmcs12,
7548                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7549         case EXIT_REASON_APIC_WRITE:
7550         case EXIT_REASON_EOI_INDUCED:
7551                 /* apic_write and eoi_induced should exit unconditionally. */
7552                 return true;
7553         case EXIT_REASON_EPT_VIOLATION:
7554                 /*
7555                  * L0 always deals with the EPT violation. If nested EPT is
7556                  * used, and the nested mmu code discovers that the address is
7557                  * missing in the guest EPT table (EPT12), the EPT violation
7558                  * will be injected with nested_ept_inject_page_fault()
7559                  */
7560                 return false;
7561         case EXIT_REASON_EPT_MISCONFIG:
7562                 /*
7563                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7564                  * table (shadow on EPT) or a merged EPT table that L0 built
7565                  * (EPT on EPT). So any problems with the structure of the
7566                  * table is L0's fault.
7567                  */
7568                 return false;
7569         case EXIT_REASON_WBINVD:
7570                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7571         case EXIT_REASON_XSETBV:
7572                 return true;
7573         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7574                 /*
7575                  * This should never happen, since it is not possible to
7576                  * set XSS to a non-zero value---neither in L1 nor in L2.
7577                  * If if it were, XSS would have to be checked against
7578                  * the XSS exit bitmap in vmcs12.
7579                  */
7580                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7581         default:
7582                 return true;
7583         }
7584 }
7585
7586 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7587 {
7588         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7589         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7590 }
7591
7592 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7593 {
7594         struct page *pml_pg;
7595         u32 exec_control;
7596
7597         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7598         if (!pml_pg)
7599                 return -ENOMEM;
7600
7601         vmx->pml_pg = pml_pg;
7602
7603         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7604         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7605
7606         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7607         exec_control |= SECONDARY_EXEC_ENABLE_PML;
7608         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7609
7610         return 0;
7611 }
7612
7613 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7614 {
7615         u32 exec_control;
7616
7617         ASSERT(vmx->pml_pg);
7618         __free_page(vmx->pml_pg);
7619         vmx->pml_pg = NULL;
7620
7621         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7622         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7623         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7624 }
7625
7626 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7627 {
7628         struct vcpu_vmx *vmx = to_vmx(vcpu);
7629         u64 *pml_buf;
7630         u16 pml_idx;
7631
7632         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7633
7634         /* Do nothing if PML buffer is empty */
7635         if (pml_idx == (PML_ENTITY_NUM - 1))
7636                 return;
7637
7638         /* PML index always points to next available PML buffer entity */
7639         if (pml_idx >= PML_ENTITY_NUM)
7640                 pml_idx = 0;
7641         else
7642                 pml_idx++;
7643
7644         pml_buf = page_address(vmx->pml_pg);
7645         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7646                 u64 gpa;
7647
7648                 gpa = pml_buf[pml_idx];
7649                 WARN_ON(gpa & (PAGE_SIZE - 1));
7650                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7651         }
7652
7653         /* reset PML index */
7654         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7655 }
7656
7657 /*
7658  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7659  * Called before reporting dirty_bitmap to userspace.
7660  */
7661 static void kvm_flush_pml_buffers(struct kvm *kvm)
7662 {
7663         int i;
7664         struct kvm_vcpu *vcpu;
7665         /*
7666          * We only need to kick vcpu out of guest mode here, as PML buffer
7667          * is flushed at beginning of all VMEXITs, and it's obvious that only
7668          * vcpus running in guest are possible to have unflushed GPAs in PML
7669          * buffer.
7670          */
7671         kvm_for_each_vcpu(i, vcpu, kvm)
7672                 kvm_vcpu_kick(vcpu);
7673 }
7674
7675 static void vmx_dump_sel(char *name, uint32_t sel)
7676 {
7677         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7678                name, vmcs_read32(sel),
7679                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7680                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7681                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7682 }
7683
7684 static void vmx_dump_dtsel(char *name, uint32_t limit)
7685 {
7686         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
7687                name, vmcs_read32(limit),
7688                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7689 }
7690
7691 static void dump_vmcs(void)
7692 {
7693         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7694         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7695         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7696         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7697         u32 secondary_exec_control = 0;
7698         unsigned long cr4 = vmcs_readl(GUEST_CR4);
7699         u64 efer = vmcs_readl(GUEST_IA32_EFER);
7700         int i, n;
7701
7702         if (cpu_has_secondary_exec_ctrls())
7703                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7704
7705         pr_err("*** Guest State ***\n");
7706         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7707                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7708                vmcs_readl(CR0_GUEST_HOST_MASK));
7709         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7710                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7711         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7712         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7713             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7714         {
7715                 pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
7716                        vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7717                 pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
7718                        vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7719         }
7720         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
7721                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7722         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
7723                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7724         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7725                vmcs_readl(GUEST_SYSENTER_ESP),
7726                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7727         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
7728         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
7729         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
7730         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
7731         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
7732         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
7733         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7734         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7735         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7736         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
7737         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7738             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7739                 pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
7740                        efer, vmcs_readl(GUEST_IA32_PAT));
7741         pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
7742                vmcs_readl(GUEST_IA32_DEBUGCTL),
7743                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7744         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7745                 pr_err("PerfGlobCtl = 0x%016lx\n",
7746                        vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7747         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7748                 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7749         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
7750                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7751                vmcs_read32(GUEST_ACTIVITY_STATE));
7752         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7753                 pr_err("InterruptStatus = %04x\n",
7754                        vmcs_read16(GUEST_INTR_STATUS));
7755
7756         pr_err("*** Host State ***\n");
7757         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
7758                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7759         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7760                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7761                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7762                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7763                vmcs_read16(HOST_TR_SELECTOR));
7764         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7765                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7766                vmcs_readl(HOST_TR_BASE));
7767         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7768                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7769         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7770                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7771                vmcs_readl(HOST_CR4));
7772         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7773                vmcs_readl(HOST_IA32_SYSENTER_ESP),
7774                vmcs_read32(HOST_IA32_SYSENTER_CS),
7775                vmcs_readl(HOST_IA32_SYSENTER_EIP));
7776         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7777                 pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
7778                        vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7779         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7780                 pr_err("PerfGlobCtl = 0x%016lx\n",
7781                        vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7782
7783         pr_err("*** Control State ***\n");
7784         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7785                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7786         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7787         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7788                vmcs_read32(EXCEPTION_BITMAP),
7789                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7790                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7791         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7792                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7793                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7794                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7795         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7796                vmcs_read32(VM_EXIT_INTR_INFO),
7797                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7798                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7799         pr_err("        reason=%08x qualification=%016lx\n",
7800                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7801         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7802                vmcs_read32(IDT_VECTORING_INFO_FIELD),
7803                vmcs_read32(IDT_VECTORING_ERROR_CODE));
7804         pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7805         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7806                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7807         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7808                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7809         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7810                 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7811         n = vmcs_read32(CR3_TARGET_COUNT);
7812         for (i = 0; i + 1 < n; i += 4)
7813                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7814                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7815                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7816         if (i < n)
7817                 pr_err("CR3 target%u=%016lx\n",
7818                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7819         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7820                 pr_err("PLE Gap=%08x Window=%08x\n",
7821                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7822         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7823                 pr_err("Virtual processor ID = 0x%04x\n",
7824                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
7825 }
7826
7827 /*
7828  * The guest has exited.  See if we can fix it or if we need userspace
7829  * assistance.
7830  */
7831 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7832 {
7833         struct vcpu_vmx *vmx = to_vmx(vcpu);
7834         u32 exit_reason = vmx->exit_reason;
7835         u32 vectoring_info = vmx->idt_vectoring_info;
7836
7837         /*
7838          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7839          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7840          * querying dirty_bitmap, we only need to kick all vcpus out of guest
7841          * mode as if vcpus is in root mode, the PML buffer must has been
7842          * flushed already.
7843          */
7844         if (enable_pml)
7845                 vmx_flush_pml_buffer(vcpu);
7846
7847         /* If guest state is invalid, start emulating */
7848         if (vmx->emulation_required)
7849                 return handle_invalid_guest_state(vcpu);
7850
7851         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7852                 nested_vmx_vmexit(vcpu, exit_reason,
7853                                   vmcs_read32(VM_EXIT_INTR_INFO),
7854                                   vmcs_readl(EXIT_QUALIFICATION));
7855                 return 1;
7856         }
7857
7858         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7859                 dump_vmcs();
7860                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7861                 vcpu->run->fail_entry.hardware_entry_failure_reason
7862                         = exit_reason;
7863                 return 0;
7864         }
7865
7866         if (unlikely(vmx->fail)) {
7867                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7868                 vcpu->run->fail_entry.hardware_entry_failure_reason
7869                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7870                 return 0;
7871         }
7872
7873         /*
7874          * Note:
7875          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7876          * delivery event since it indicates guest is accessing MMIO.
7877          * The vm-exit can be triggered again after return to guest that
7878          * will cause infinite loop.
7879          */
7880         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7881                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7882                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7883                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7884                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7885                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7886                 vcpu->run->internal.ndata = 2;
7887                 vcpu->run->internal.data[0] = vectoring_info;
7888                 vcpu->run->internal.data[1] = exit_reason;
7889                 return 0;
7890         }
7891
7892         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7893             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7894                                         get_vmcs12(vcpu))))) {
7895                 if (vmx_interrupt_allowed(vcpu)) {
7896                         vmx->soft_vnmi_blocked = 0;
7897                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7898                            vcpu->arch.nmi_pending) {
7899                         /*
7900                          * This CPU don't support us in finding the end of an
7901                          * NMI-blocked window if the guest runs with IRQs
7902                          * disabled. So we pull the trigger after 1 s of
7903                          * futile waiting, but inform the user about this.
7904                          */
7905                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7906                                "state on VCPU %d after 1 s timeout\n",
7907                                __func__, vcpu->vcpu_id);
7908                         vmx->soft_vnmi_blocked = 0;
7909                 }
7910         }
7911
7912         if (exit_reason < kvm_vmx_max_exit_handlers
7913             && kvm_vmx_exit_handlers[exit_reason])
7914                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7915         else {
7916                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7917                 kvm_queue_exception(vcpu, UD_VECTOR);
7918                 return 1;
7919         }
7920 }
7921
7922 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7923 {
7924         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7925
7926         if (is_guest_mode(vcpu) &&
7927                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7928                 return;
7929
7930         if (irr == -1 || tpr < irr) {
7931                 vmcs_write32(TPR_THRESHOLD, 0);
7932                 return;
7933         }
7934
7935         vmcs_write32(TPR_THRESHOLD, irr);
7936 }
7937
7938 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7939 {
7940         u32 sec_exec_control;
7941
7942         /*
7943          * There is not point to enable virtualize x2apic without enable
7944          * apicv
7945          */
7946         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7947                                 !vmx_vm_has_apicv(vcpu->kvm))
7948                 return;
7949
7950         if (!vm_need_tpr_shadow(vcpu->kvm))
7951                 return;
7952
7953         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7954
7955         if (set) {
7956                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7957                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7958         } else {
7959                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7960                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7961         }
7962         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7963
7964         vmx_set_msr_bitmap(vcpu);
7965 }
7966
7967 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7968 {
7969         struct vcpu_vmx *vmx = to_vmx(vcpu);
7970
7971         /*
7972          * Currently we do not handle the nested case where L2 has an
7973          * APIC access page of its own; that page is still pinned.
7974          * Hence, we skip the case where the VCPU is in guest mode _and_
7975          * L1 prepared an APIC access page for L2.
7976          *
7977          * For the case where L1 and L2 share the same APIC access page
7978          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7979          * in the vmcs12), this function will only update either the vmcs01
7980          * or the vmcs02.  If the former, the vmcs02 will be updated by
7981          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7982          * the next L2->L1 exit.
7983          */
7984         if (!is_guest_mode(vcpu) ||
7985             !nested_cpu_has2(vmx->nested.current_vmcs12,
7986                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7987                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7988 }
7989
7990 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7991 {
7992         u16 status;
7993         u8 old;
7994
7995         if (isr == -1)
7996                 isr = 0;
7997
7998         status = vmcs_read16(GUEST_INTR_STATUS);
7999         old = status >> 8;
8000         if (isr != old) {
8001                 status &= 0xff;
8002                 status |= isr << 8;
8003                 vmcs_write16(GUEST_INTR_STATUS, status);
8004         }
8005 }
8006
8007 static void vmx_set_rvi(int vector)
8008 {
8009         u16 status;
8010         u8 old;
8011
8012         if (vector == -1)
8013                 vector = 0;
8014
8015         status = vmcs_read16(GUEST_INTR_STATUS);
8016         old = (u8)status & 0xff;
8017         if ((u8)vector != old) {
8018                 status &= ~0xff;
8019                 status |= (u8)vector;
8020                 vmcs_write16(GUEST_INTR_STATUS, status);
8021         }
8022 }
8023
8024 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8025 {
8026         if (!is_guest_mode(vcpu)) {
8027                 vmx_set_rvi(max_irr);
8028                 return;
8029         }
8030
8031         if (max_irr == -1)
8032                 return;
8033
8034         /*
8035          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8036          * handles it.
8037          */
8038         if (nested_exit_on_intr(vcpu))
8039                 return;
8040
8041         /*
8042          * Else, fall back to pre-APICv interrupt injection since L2
8043          * is run without virtual interrupt delivery.
8044          */
8045         if (!kvm_event_needs_reinjection(vcpu) &&
8046             vmx_interrupt_allowed(vcpu)) {
8047                 kvm_queue_interrupt(vcpu, max_irr, false);
8048                 vmx_inject_irq(vcpu);
8049         }
8050 }
8051
8052 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8053 {
8054         u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8055         if (!vmx_vm_has_apicv(vcpu->kvm))
8056                 return;
8057
8058         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8059         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8060         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8061         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8062 }
8063
8064 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8065 {
8066         u32 exit_intr_info;
8067
8068         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8069               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8070                 return;
8071
8072         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8073         exit_intr_info = vmx->exit_intr_info;
8074
8075         /* Handle machine checks before interrupts are enabled */
8076         if (is_machine_check(exit_intr_info))
8077                 kvm_machine_check();
8078
8079         /* We need to handle NMIs before interrupts are enabled */
8080         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8081             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8082                 kvm_before_handle_nmi(&vmx->vcpu);
8083                 asm("int $2");
8084                 kvm_after_handle_nmi(&vmx->vcpu);
8085         }
8086 }
8087
8088 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8089 {
8090         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8091
8092         /*
8093          * If external interrupt exists, IF bit is set in rflags/eflags on the
8094          * interrupt stack frame, and interrupt will be enabled on a return
8095          * from interrupt handler.
8096          */
8097         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8098                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8099                 unsigned int vector;
8100                 unsigned long entry;
8101                 gate_desc *desc;
8102                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8103 #ifdef CONFIG_X86_64
8104                 unsigned long tmp;
8105 #endif
8106
8107                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8108                 desc = (gate_desc *)vmx->host_idt_base + vector;
8109                 entry = gate_offset(*desc);
8110                 asm volatile(
8111 #ifdef CONFIG_X86_64
8112                         "mov %%" _ASM_SP ", %[sp]\n\t"
8113                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8114                         "push $%c[ss]\n\t"
8115                         "push %[sp]\n\t"
8116 #endif
8117                         "pushf\n\t"
8118                         "orl $0x200, (%%" _ASM_SP ")\n\t"
8119                         __ASM_SIZE(push) " $%c[cs]\n\t"
8120                         "call *%[entry]\n\t"
8121                         :
8122 #ifdef CONFIG_X86_64
8123                         [sp]"=&r"(tmp)
8124 #endif
8125                         :
8126                         [entry]"r"(entry),
8127                         [ss]"i"(__KERNEL_DS),
8128                         [cs]"i"(__KERNEL_CS)
8129                         );
8130         } else
8131                 local_irq_enable();
8132 }
8133
8134 static bool vmx_has_high_real_mode_segbase(void)
8135 {
8136         return enable_unrestricted_guest || emulate_invalid_guest_state;
8137 }
8138
8139 static bool vmx_mpx_supported(void)
8140 {
8141         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8142                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8143 }
8144
8145 static bool vmx_xsaves_supported(void)
8146 {
8147         return vmcs_config.cpu_based_2nd_exec_ctrl &
8148                 SECONDARY_EXEC_XSAVES;
8149 }
8150
8151 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8152 {
8153         u32 exit_intr_info;
8154         bool unblock_nmi;
8155         u8 vector;
8156         bool idtv_info_valid;
8157
8158         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8159
8160         if (cpu_has_virtual_nmis()) {
8161                 if (vmx->nmi_known_unmasked)
8162                         return;
8163                 /*
8164                  * Can't use vmx->exit_intr_info since we're not sure what
8165                  * the exit reason is.
8166                  */
8167                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8168                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8169                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8170                 /*
8171                  * SDM 3: 27.7.1.2 (September 2008)
8172                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8173                  * a guest IRET fault.
8174                  * SDM 3: 23.2.2 (September 2008)
8175                  * Bit 12 is undefined in any of the following cases:
8176                  *  If the VM exit sets the valid bit in the IDT-vectoring
8177                  *   information field.
8178                  *  If the VM exit is due to a double fault.
8179                  */
8180                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8181                     vector != DF_VECTOR && !idtv_info_valid)
8182                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8183                                       GUEST_INTR_STATE_NMI);
8184                 else
8185                         vmx->nmi_known_unmasked =
8186                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8187                                   & GUEST_INTR_STATE_NMI);
8188         } else if (unlikely(vmx->soft_vnmi_blocked))
8189                 vmx->vnmi_blocked_time +=
8190                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8191 }
8192
8193 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8194                                       u32 idt_vectoring_info,
8195                                       int instr_len_field,
8196                                       int error_code_field)
8197 {
8198         u8 vector;
8199         int type;
8200         bool idtv_info_valid;
8201
8202         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8203
8204         vcpu->arch.nmi_injected = false;
8205         kvm_clear_exception_queue(vcpu);
8206         kvm_clear_interrupt_queue(vcpu);
8207
8208         if (!idtv_info_valid)
8209                 return;
8210
8211         kvm_make_request(KVM_REQ_EVENT, vcpu);
8212
8213         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8214         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8215
8216         switch (type) {
8217         case INTR_TYPE_NMI_INTR:
8218                 vcpu->arch.nmi_injected = true;
8219                 /*
8220                  * SDM 3: 27.7.1.2 (September 2008)
8221                  * Clear bit "block by NMI" before VM entry if a NMI
8222                  * delivery faulted.
8223                  */
8224                 vmx_set_nmi_mask(vcpu, false);
8225                 break;
8226         case INTR_TYPE_SOFT_EXCEPTION:
8227                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8228                 /* fall through */
8229         case INTR_TYPE_HARD_EXCEPTION:
8230                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8231                         u32 err = vmcs_read32(error_code_field);
8232                         kvm_requeue_exception_e(vcpu, vector, err);
8233                 } else
8234                         kvm_requeue_exception(vcpu, vector);
8235                 break;
8236         case INTR_TYPE_SOFT_INTR:
8237                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8238                 /* fall through */
8239         case INTR_TYPE_EXT_INTR:
8240                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8241                 break;
8242         default:
8243                 break;
8244         }
8245 }
8246
8247 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8248 {
8249         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8250                                   VM_EXIT_INSTRUCTION_LEN,
8251                                   IDT_VECTORING_ERROR_CODE);
8252 }
8253
8254 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8255 {
8256         __vmx_complete_interrupts(vcpu,
8257                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8258                                   VM_ENTRY_INSTRUCTION_LEN,
8259                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8260
8261         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8262 }
8263
8264 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8265 {
8266         int i, nr_msrs;
8267         struct perf_guest_switch_msr *msrs;
8268
8269         msrs = perf_guest_get_msrs(&nr_msrs);
8270
8271         if (!msrs)
8272                 return;
8273
8274         for (i = 0; i < nr_msrs; i++)
8275                 if (msrs[i].host == msrs[i].guest)
8276                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8277                 else
8278                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8279                                         msrs[i].host);
8280 }
8281
8282 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8283 {
8284         struct vcpu_vmx *vmx = to_vmx(vcpu);
8285         unsigned long debugctlmsr, cr4;
8286
8287         /* Record the guest's net vcpu time for enforced NMI injections. */
8288         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8289                 vmx->entry_time = ktime_get();
8290
8291         /* Don't enter VMX if guest state is invalid, let the exit handler
8292            start emulation until we arrive back to a valid state */
8293         if (vmx->emulation_required)
8294                 return;
8295
8296         if (vmx->ple_window_dirty) {
8297                 vmx->ple_window_dirty = false;
8298                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8299         }
8300
8301         if (vmx->nested.sync_shadow_vmcs) {
8302                 copy_vmcs12_to_shadow(vmx);
8303                 vmx->nested.sync_shadow_vmcs = false;
8304         }
8305
8306         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8307                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8308         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8309                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8310
8311         cr4 = cr4_read_shadow();
8312         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8313                 vmcs_writel(HOST_CR4, cr4);
8314                 vmx->host_state.vmcs_host_cr4 = cr4;
8315         }
8316
8317         /* When single-stepping over STI and MOV SS, we must clear the
8318          * corresponding interruptibility bits in the guest state. Otherwise
8319          * vmentry fails as it then expects bit 14 (BS) in pending debug
8320          * exceptions being set, but that's not correct for the guest debugging
8321          * case. */
8322         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8323                 vmx_set_interrupt_shadow(vcpu, 0);
8324
8325         atomic_switch_perf_msrs(vmx);
8326         debugctlmsr = get_debugctlmsr();
8327
8328         vmx->__launched = vmx->loaded_vmcs->launched;
8329         asm(
8330                 /* Store host registers */
8331                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8332                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8333                 "push %%" _ASM_CX " \n\t"
8334                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8335                 "je 1f \n\t"
8336                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8337                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8338                 "1: \n\t"
8339                 /* Reload cr2 if changed */
8340                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8341                 "mov %%cr2, %%" _ASM_DX " \n\t"
8342                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8343                 "je 2f \n\t"
8344                 "mov %%" _ASM_AX", %%cr2 \n\t"
8345                 "2: \n\t"
8346                 /* Check if vmlaunch of vmresume is needed */
8347                 "cmpl $0, %c[launched](%0) \n\t"
8348                 /* Load guest registers.  Don't clobber flags. */
8349                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8350                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8351                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8352                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8353                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8354                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8355 #ifdef CONFIG_X86_64
8356                 "mov %c[r8](%0),  %%r8  \n\t"
8357                 "mov %c[r9](%0),  %%r9  \n\t"
8358                 "mov %c[r10](%0), %%r10 \n\t"
8359                 "mov %c[r11](%0), %%r11 \n\t"
8360                 "mov %c[r12](%0), %%r12 \n\t"
8361                 "mov %c[r13](%0), %%r13 \n\t"
8362                 "mov %c[r14](%0), %%r14 \n\t"
8363                 "mov %c[r15](%0), %%r15 \n\t"
8364 #endif
8365                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8366
8367                 /* Enter guest mode */
8368                 "jne 1f \n\t"
8369                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8370                 "jmp 2f \n\t"
8371                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8372                 "2: "
8373                 /* Save guest registers, load host registers, keep flags */
8374                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8375                 "pop %0 \n\t"
8376                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8377                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8378                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8379                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8380                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8381                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8382                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8383 #ifdef CONFIG_X86_64
8384                 "mov %%r8,  %c[r8](%0) \n\t"
8385                 "mov %%r9,  %c[r9](%0) \n\t"
8386                 "mov %%r10, %c[r10](%0) \n\t"
8387                 "mov %%r11, %c[r11](%0) \n\t"
8388                 "mov %%r12, %c[r12](%0) \n\t"
8389                 "mov %%r13, %c[r13](%0) \n\t"
8390                 "mov %%r14, %c[r14](%0) \n\t"
8391                 "mov %%r15, %c[r15](%0) \n\t"
8392 #endif
8393                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8394                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8395
8396                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8397                 "setbe %c[fail](%0) \n\t"
8398                 ".pushsection .rodata \n\t"
8399                 ".global vmx_return \n\t"
8400                 "vmx_return: " _ASM_PTR " 2b \n\t"
8401                 ".popsection"
8402               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8403                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8404                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8405                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8406                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8407                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8408                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8409                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8410                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8411                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8412                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8413 #ifdef CONFIG_X86_64
8414                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8415                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8416                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8417                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8418                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8419                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8420                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8421                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8422 #endif
8423                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8424                 [wordsize]"i"(sizeof(ulong))
8425               : "cc", "memory"
8426 #ifdef CONFIG_X86_64
8427                 , "rax", "rbx", "rdi", "rsi"
8428                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8429 #else
8430                 , "eax", "ebx", "edi", "esi"
8431 #endif
8432               );
8433
8434         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8435         if (debugctlmsr)
8436                 update_debugctlmsr(debugctlmsr);
8437
8438 #ifndef CONFIG_X86_64
8439         /*
8440          * The sysexit path does not restore ds/es, so we must set them to
8441          * a reasonable value ourselves.
8442          *
8443          * We can't defer this to vmx_load_host_state() since that function
8444          * may be executed in interrupt context, which saves and restore segments
8445          * around it, nullifying its effect.
8446          */
8447         loadsegment(ds, __USER_DS);
8448         loadsegment(es, __USER_DS);
8449 #endif
8450
8451         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8452                                   | (1 << VCPU_EXREG_RFLAGS)
8453                                   | (1 << VCPU_EXREG_PDPTR)
8454                                   | (1 << VCPU_EXREG_SEGMENTS)
8455                                   | (1 << VCPU_EXREG_CR3));
8456         vcpu->arch.regs_dirty = 0;
8457
8458         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8459
8460         vmx->loaded_vmcs->launched = 1;
8461
8462         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8463         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8464
8465         /*
8466          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8467          * we did not inject a still-pending event to L1 now because of
8468          * nested_run_pending, we need to re-enable this bit.
8469          */
8470         if (vmx->nested.nested_run_pending)
8471                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8472
8473         vmx->nested.nested_run_pending = 0;
8474
8475         vmx_complete_atomic_exit(vmx);
8476         vmx_recover_nmi_blocking(vmx);
8477         vmx_complete_interrupts(vmx);
8478 }
8479
8480 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8481 {
8482         struct vcpu_vmx *vmx = to_vmx(vcpu);
8483         int cpu;
8484
8485         if (vmx->loaded_vmcs == &vmx->vmcs01)
8486                 return;
8487
8488         cpu = get_cpu();
8489         vmx->loaded_vmcs = &vmx->vmcs01;
8490         vmx_vcpu_put(vcpu);
8491         vmx_vcpu_load(vcpu, cpu);
8492         vcpu->cpu = cpu;
8493         put_cpu();
8494 }
8495
8496 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8497 {
8498         struct vcpu_vmx *vmx = to_vmx(vcpu);
8499
8500         if (enable_pml)
8501                 vmx_disable_pml(vmx);
8502         free_vpid(vmx);
8503         leave_guest_mode(vcpu);
8504         vmx_load_vmcs01(vcpu);
8505         free_nested(vmx);
8506         free_loaded_vmcs(vmx->loaded_vmcs);
8507         kfree(vmx->guest_msrs);
8508         kvm_vcpu_uninit(vcpu);
8509         kmem_cache_free(kvm_vcpu_cache, vmx);
8510 }
8511
8512 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8513 {
8514         int err;
8515         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8516         int cpu;
8517
8518         if (!vmx)
8519                 return ERR_PTR(-ENOMEM);
8520
8521         allocate_vpid(vmx);
8522
8523         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8524         if (err)
8525                 goto free_vcpu;
8526
8527         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8528         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8529                      > PAGE_SIZE);
8530
8531         err = -ENOMEM;
8532         if (!vmx->guest_msrs) {
8533                 goto uninit_vcpu;
8534         }
8535
8536         vmx->loaded_vmcs = &vmx->vmcs01;
8537         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8538         if (!vmx->loaded_vmcs->vmcs)
8539                 goto free_msrs;
8540         if (!vmm_exclusive)
8541                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8542         loaded_vmcs_init(vmx->loaded_vmcs);
8543         if (!vmm_exclusive)
8544                 kvm_cpu_vmxoff();
8545
8546         cpu = get_cpu();
8547         vmx_vcpu_load(&vmx->vcpu, cpu);
8548         vmx->vcpu.cpu = cpu;
8549         err = vmx_vcpu_setup(vmx);
8550         vmx_vcpu_put(&vmx->vcpu);
8551         put_cpu();
8552         if (err)
8553                 goto free_vmcs;
8554         if (vm_need_virtualize_apic_accesses(kvm)) {
8555                 err = alloc_apic_access_page(kvm);
8556                 if (err)
8557                         goto free_vmcs;
8558         }
8559
8560         if (enable_ept) {
8561                 if (!kvm->arch.ept_identity_map_addr)
8562                         kvm->arch.ept_identity_map_addr =
8563                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8564                 err = init_rmode_identity_map(kvm);
8565                 if (err)
8566                         goto free_vmcs;
8567         }
8568
8569         if (nested)
8570                 nested_vmx_setup_ctls_msrs(vmx);
8571
8572         vmx->nested.posted_intr_nv = -1;
8573         vmx->nested.current_vmptr = -1ull;
8574         vmx->nested.current_vmcs12 = NULL;
8575
8576         /*
8577          * If PML is turned on, failure on enabling PML just results in failure
8578          * of creating the vcpu, therefore we can simplify PML logic (by
8579          * avoiding dealing with cases, such as enabling PML partially on vcpus
8580          * for the guest, etc.
8581          */
8582         if (enable_pml) {
8583                 err = vmx_enable_pml(vmx);
8584                 if (err)
8585                         goto free_vmcs;
8586         }
8587
8588         return &vmx->vcpu;
8589
8590 free_vmcs:
8591         free_loaded_vmcs(vmx->loaded_vmcs);
8592 free_msrs:
8593         kfree(vmx->guest_msrs);
8594 uninit_vcpu:
8595         kvm_vcpu_uninit(&vmx->vcpu);
8596 free_vcpu:
8597         free_vpid(vmx);
8598         kmem_cache_free(kvm_vcpu_cache, vmx);
8599         return ERR_PTR(err);
8600 }
8601
8602 static void __init vmx_check_processor_compat(void *rtn)
8603 {
8604         struct vmcs_config vmcs_conf;
8605
8606         *(int *)rtn = 0;
8607         if (setup_vmcs_config(&vmcs_conf) < 0)
8608                 *(int *)rtn = -EIO;
8609         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8610                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8611                                 smp_processor_id());
8612                 *(int *)rtn = -EIO;
8613         }
8614 }
8615
8616 static int get_ept_level(void)
8617 {
8618         return VMX_EPT_DEFAULT_GAW + 1;
8619 }
8620
8621 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8622 {
8623         u8 cache;
8624         u64 ipat = 0;
8625
8626         /* For VT-d and EPT combination
8627          * 1. MMIO: always map as UC
8628          * 2. EPT with VT-d:
8629          *   a. VT-d without snooping control feature: can't guarantee the
8630          *      result, try to trust guest.
8631          *   b. VT-d with snooping control feature: snooping control feature of
8632          *      VT-d engine can guarantee the cache correctness. Just set it
8633          *      to WB to keep consistent with host. So the same as item 3.
8634          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8635          *    consistent with host MTRR
8636          */
8637         if (is_mmio) {
8638                 cache = MTRR_TYPE_UNCACHABLE;
8639                 goto exit;
8640         }
8641
8642         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8643                 ipat = VMX_EPT_IPAT_BIT;
8644                 cache = MTRR_TYPE_WRBACK;
8645                 goto exit;
8646         }
8647
8648         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8649                 ipat = VMX_EPT_IPAT_BIT;
8650                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8651                         cache = MTRR_TYPE_WRBACK;
8652                 else
8653                         cache = MTRR_TYPE_UNCACHABLE;
8654                 goto exit;
8655         }
8656
8657         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8658
8659 exit:
8660         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8661 }
8662
8663 static int vmx_get_lpage_level(void)
8664 {
8665         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8666                 return PT_DIRECTORY_LEVEL;
8667         else
8668                 /* For shadow and EPT supported 1GB page */
8669                 return PT_PDPE_LEVEL;
8670 }
8671
8672 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8673 {
8674         struct kvm_cpuid_entry2 *best;
8675         struct vcpu_vmx *vmx = to_vmx(vcpu);
8676         u32 exec_control;
8677
8678         vmx->rdtscp_enabled = false;
8679         if (vmx_rdtscp_supported()) {
8680                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8682                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8683                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8684                                 vmx->rdtscp_enabled = true;
8685                         else {
8686                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8687                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8688                                                 exec_control);
8689                         }
8690                 }
8691                 if (nested && !vmx->rdtscp_enabled)
8692                         vmx->nested.nested_vmx_secondary_ctls_high &=
8693                                 ~SECONDARY_EXEC_RDTSCP;
8694         }
8695
8696         /* Exposing INVPCID only when PCID is exposed */
8697         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8698         if (vmx_invpcid_supported() &&
8699             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8700             guest_cpuid_has_pcid(vcpu)) {
8701                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8702                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8703                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8704                              exec_control);
8705         } else {
8706                 if (cpu_has_secondary_exec_ctrls()) {
8707                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8708                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8709                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8710                                      exec_control);
8711                 }
8712                 if (best)
8713                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8714         }
8715 }
8716
8717 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8718 {
8719         if (func == 1 && nested)
8720                 entry->ecx |= bit(X86_FEATURE_VMX);
8721 }
8722
8723 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8724                 struct x86_exception *fault)
8725 {
8726         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8727         u32 exit_reason;
8728
8729         if (fault->error_code & PFERR_RSVD_MASK)
8730                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8731         else
8732                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8733         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8734         vmcs12->guest_physical_address = fault->address;
8735 }
8736
8737 /* Callbacks for nested_ept_init_mmu_context: */
8738
8739 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8740 {
8741         /* return the page table to be shadowed - in our case, EPT12 */
8742         return get_vmcs12(vcpu)->ept_pointer;
8743 }
8744
8745 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8746 {
8747         WARN_ON(mmu_is_nested(vcpu));
8748         kvm_init_shadow_ept_mmu(vcpu,
8749                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8750                         VMX_EPT_EXECUTE_ONLY_BIT);
8751         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8752         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8753         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8754
8755         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8756 }
8757
8758 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8759 {
8760         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8761 }
8762
8763 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8764                                             u16 error_code)
8765 {
8766         bool inequality, bit;
8767
8768         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8769         inequality =
8770                 (error_code & vmcs12->page_fault_error_code_mask) !=
8771                  vmcs12->page_fault_error_code_match;
8772         return inequality ^ bit;
8773 }
8774
8775 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8776                 struct x86_exception *fault)
8777 {
8778         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8779
8780         WARN_ON(!is_guest_mode(vcpu));
8781
8782         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8783                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8784                                   vmcs_read32(VM_EXIT_INTR_INFO),
8785                                   vmcs_readl(EXIT_QUALIFICATION));
8786         else
8787                 kvm_inject_page_fault(vcpu, fault);
8788 }
8789
8790 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8791                                         struct vmcs12 *vmcs12)
8792 {
8793         struct vcpu_vmx *vmx = to_vmx(vcpu);
8794         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8795
8796         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8797                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8798                     vmcs12->apic_access_addr >> maxphyaddr)
8799                         return false;
8800
8801                 /*
8802                  * Translate L1 physical address to host physical
8803                  * address for vmcs02. Keep the page pinned, so this
8804                  * physical address remains valid. We keep a reference
8805                  * to it so we can release it later.
8806                  */
8807                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8808                         nested_release_page(vmx->nested.apic_access_page);
8809                 vmx->nested.apic_access_page =
8810                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8811         }
8812
8813         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8814                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8815                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
8816                         return false;
8817
8818                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8819                         nested_release_page(vmx->nested.virtual_apic_page);
8820                 vmx->nested.virtual_apic_page =
8821                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8822
8823                 /*
8824                  * Failing the vm entry is _not_ what the processor does
8825                  * but it's basically the only possibility we have.
8826                  * We could still enter the guest if CR8 load exits are
8827                  * enabled, CR8 store exits are enabled, and virtualize APIC
8828                  * access is disabled; in this case the processor would never
8829                  * use the TPR shadow and we could simply clear the bit from
8830                  * the execution control.  But such a configuration is useless,
8831                  * so let's keep the code simple.
8832                  */
8833                 if (!vmx->nested.virtual_apic_page)
8834                         return false;
8835         }
8836
8837         if (nested_cpu_has_posted_intr(vmcs12)) {
8838                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8839                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
8840                         return false;
8841
8842                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8843                         kunmap(vmx->nested.pi_desc_page);
8844                         nested_release_page(vmx->nested.pi_desc_page);
8845                 }
8846                 vmx->nested.pi_desc_page =
8847                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8848                 if (!vmx->nested.pi_desc_page)
8849                         return false;
8850
8851                 vmx->nested.pi_desc =
8852                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8853                 if (!vmx->nested.pi_desc) {
8854                         nested_release_page_clean(vmx->nested.pi_desc_page);
8855                         return false;
8856                 }
8857                 vmx->nested.pi_desc =
8858                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
8859                         (unsigned long)(vmcs12->posted_intr_desc_addr &
8860                         (PAGE_SIZE - 1)));
8861         }
8862
8863         return true;
8864 }
8865
8866 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8867 {
8868         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8869         struct vcpu_vmx *vmx = to_vmx(vcpu);
8870
8871         if (vcpu->arch.virtual_tsc_khz == 0)
8872                 return;
8873
8874         /* Make sure short timeouts reliably trigger an immediate vmexit.
8875          * hrtimer_start does not guarantee this. */
8876         if (preemption_timeout <= 1) {
8877                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8878                 return;
8879         }
8880
8881         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8882         preemption_timeout *= 1000000;
8883         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8884         hrtimer_start(&vmx->nested.preemption_timer,
8885                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8886 }
8887
8888 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8889                                                 struct vmcs12 *vmcs12)
8890 {
8891         int maxphyaddr;
8892         u64 addr;
8893
8894         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8895                 return 0;
8896
8897         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8898                 WARN_ON(1);
8899                 return -EINVAL;
8900         }
8901         maxphyaddr = cpuid_maxphyaddr(vcpu);
8902
8903         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8904            ((addr + PAGE_SIZE) >> maxphyaddr))
8905                 return -EINVAL;
8906
8907         return 0;
8908 }
8909
8910 /*
8911  * Merge L0's and L1's MSR bitmap, return false to indicate that
8912  * we do not use the hardware.
8913  */
8914 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8915                                                struct vmcs12 *vmcs12)
8916 {
8917         int msr;
8918         struct page *page;
8919         unsigned long *msr_bitmap;
8920
8921         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8922                 return false;
8923
8924         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8925         if (!page) {
8926                 WARN_ON(1);
8927                 return false;
8928         }
8929         msr_bitmap = (unsigned long *)kmap(page);
8930         if (!msr_bitmap) {
8931                 nested_release_page_clean(page);
8932                 WARN_ON(1);
8933                 return false;
8934         }
8935
8936         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8937                 if (nested_cpu_has_apic_reg_virt(vmcs12))
8938                         for (msr = 0x800; msr <= 0x8ff; msr++)
8939                                 nested_vmx_disable_intercept_for_msr(
8940                                         msr_bitmap,
8941                                         vmx_msr_bitmap_nested,
8942                                         msr, MSR_TYPE_R);
8943                 /* TPR is allowed */
8944                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8945                                 vmx_msr_bitmap_nested,
8946                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8947                                 MSR_TYPE_R | MSR_TYPE_W);
8948                 if (nested_cpu_has_vid(vmcs12)) {
8949                         /* EOI and self-IPI are allowed */
8950                         nested_vmx_disable_intercept_for_msr(
8951                                 msr_bitmap,
8952                                 vmx_msr_bitmap_nested,
8953                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8954                                 MSR_TYPE_W);
8955                         nested_vmx_disable_intercept_for_msr(
8956                                 msr_bitmap,
8957                                 vmx_msr_bitmap_nested,
8958                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8959                                 MSR_TYPE_W);
8960                 }
8961         } else {
8962                 /*
8963                  * Enable reading intercept of all the x2apic
8964                  * MSRs. We should not rely on vmcs12 to do any
8965                  * optimizations here, it may have been modified
8966                  * by L1.
8967                  */
8968                 for (msr = 0x800; msr <= 0x8ff; msr++)
8969                         __vmx_enable_intercept_for_msr(
8970                                 vmx_msr_bitmap_nested,
8971                                 msr,
8972                                 MSR_TYPE_R);
8973
8974                 __vmx_enable_intercept_for_msr(
8975                                 vmx_msr_bitmap_nested,
8976                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8977                                 MSR_TYPE_W);
8978                 __vmx_enable_intercept_for_msr(
8979                                 vmx_msr_bitmap_nested,
8980                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8981                                 MSR_TYPE_W);
8982                 __vmx_enable_intercept_for_msr(
8983                                 vmx_msr_bitmap_nested,
8984                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8985                                 MSR_TYPE_W);
8986         }
8987         kunmap(page);
8988         nested_release_page_clean(page);
8989
8990         return true;
8991 }
8992
8993 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8994                                            struct vmcs12 *vmcs12)
8995 {
8996         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8997             !nested_cpu_has_apic_reg_virt(vmcs12) &&
8998             !nested_cpu_has_vid(vmcs12) &&
8999             !nested_cpu_has_posted_intr(vmcs12))
9000                 return 0;
9001
9002         /*
9003          * If virtualize x2apic mode is enabled,
9004          * virtualize apic access must be disabled.
9005          */
9006         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9007             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9008                 return -EINVAL;
9009
9010         /*
9011          * If virtual interrupt delivery is enabled,
9012          * we must exit on external interrupts.
9013          */
9014         if (nested_cpu_has_vid(vmcs12) &&
9015            !nested_exit_on_intr(vcpu))
9016                 return -EINVAL;
9017
9018         /*
9019          * bits 15:8 should be zero in posted_intr_nv,
9020          * the descriptor address has been already checked
9021          * in nested_get_vmcs12_pages.
9022          */
9023         if (nested_cpu_has_posted_intr(vmcs12) &&
9024            (!nested_cpu_has_vid(vmcs12) ||
9025             !nested_exit_intr_ack_set(vcpu) ||
9026             vmcs12->posted_intr_nv & 0xff00))
9027                 return -EINVAL;
9028
9029         /* tpr shadow is needed by all apicv features. */
9030         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9031                 return -EINVAL;
9032
9033         return 0;
9034 }
9035
9036 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9037                                        unsigned long count_field,
9038                                        unsigned long addr_field)
9039 {
9040         int maxphyaddr;
9041         u64 count, addr;
9042
9043         if (vmcs12_read_any(vcpu, count_field, &count) ||
9044             vmcs12_read_any(vcpu, addr_field, &addr)) {
9045                 WARN_ON(1);
9046                 return -EINVAL;
9047         }
9048         if (count == 0)
9049                 return 0;
9050         maxphyaddr = cpuid_maxphyaddr(vcpu);
9051         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9052             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9053                 pr_warn_ratelimited(
9054                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9055                         addr_field, maxphyaddr, count, addr);
9056                 return -EINVAL;
9057         }
9058         return 0;
9059 }
9060
9061 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9062                                                 struct vmcs12 *vmcs12)
9063 {
9064         if (vmcs12->vm_exit_msr_load_count == 0 &&
9065             vmcs12->vm_exit_msr_store_count == 0 &&
9066             vmcs12->vm_entry_msr_load_count == 0)
9067                 return 0; /* Fast path */
9068         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9069                                         VM_EXIT_MSR_LOAD_ADDR) ||
9070             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9071                                         VM_EXIT_MSR_STORE_ADDR) ||
9072             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9073                                         VM_ENTRY_MSR_LOAD_ADDR))
9074                 return -EINVAL;
9075         return 0;
9076 }
9077
9078 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9079                                        struct vmx_msr_entry *e)
9080 {
9081         /* x2APIC MSR accesses are not allowed */
9082         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9083                 return -EINVAL;
9084         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9085             e->index == MSR_IA32_UCODE_REV)
9086                 return -EINVAL;
9087         if (e->reserved != 0)
9088                 return -EINVAL;
9089         return 0;
9090 }
9091
9092 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9093                                      struct vmx_msr_entry *e)
9094 {
9095         if (e->index == MSR_FS_BASE ||
9096             e->index == MSR_GS_BASE ||
9097             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9098             nested_vmx_msr_check_common(vcpu, e))
9099                 return -EINVAL;
9100         return 0;
9101 }
9102
9103 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9104                                       struct vmx_msr_entry *e)
9105 {
9106         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9107             nested_vmx_msr_check_common(vcpu, e))
9108                 return -EINVAL;
9109         return 0;
9110 }
9111
9112 /*
9113  * Load guest's/host's msr at nested entry/exit.
9114  * return 0 for success, entry index for failure.
9115  */
9116 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9117 {
9118         u32 i;
9119         struct vmx_msr_entry e;
9120         struct msr_data msr;
9121
9122         msr.host_initiated = false;
9123         for (i = 0; i < count; i++) {
9124                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9125                                         &e, sizeof(e))) {
9126                         pr_warn_ratelimited(
9127                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9128                                 __func__, i, gpa + i * sizeof(e));
9129                         goto fail;
9130                 }
9131                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9132                         pr_warn_ratelimited(
9133                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9134                                 __func__, i, e.index, e.reserved);
9135                         goto fail;
9136                 }
9137                 msr.index = e.index;
9138                 msr.data = e.value;
9139                 if (kvm_set_msr(vcpu, &msr)) {
9140                         pr_warn_ratelimited(
9141                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9142                                 __func__, i, e.index, e.value);
9143                         goto fail;
9144                 }
9145         }
9146         return 0;
9147 fail:
9148         return i + 1;
9149 }
9150
9151 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9152 {
9153         u32 i;
9154         struct vmx_msr_entry e;
9155
9156         for (i = 0; i < count; i++) {
9157                 struct msr_data msr_info;
9158                 if (kvm_vcpu_read_guest(vcpu,
9159                                         gpa + i * sizeof(e),
9160                                         &e, 2 * sizeof(u32))) {
9161                         pr_warn_ratelimited(
9162                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9163                                 __func__, i, gpa + i * sizeof(e));
9164                         return -EINVAL;
9165                 }
9166                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9167                         pr_warn_ratelimited(
9168                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9169                                 __func__, i, e.index, e.reserved);
9170                         return -EINVAL;
9171                 }
9172                 msr_info.host_initiated = false;
9173                 msr_info.index = e.index;
9174                 if (kvm_get_msr(vcpu, &msr_info)) {
9175                         pr_warn_ratelimited(
9176                                 "%s cannot read MSR (%u, 0x%x)\n",
9177                                 __func__, i, e.index);
9178                         return -EINVAL;
9179                 }
9180                 if (kvm_vcpu_write_guest(vcpu,
9181                                          gpa + i * sizeof(e) +
9182                                              offsetof(struct vmx_msr_entry, value),
9183                                          &msr_info.data, sizeof(msr_info.data))) {
9184                         pr_warn_ratelimited(
9185                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9186                                 __func__, i, e.index, msr_info.data);
9187                         return -EINVAL;
9188                 }
9189         }
9190         return 0;
9191 }
9192
9193 /*
9194  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9195  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9196  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9197  * guest in a way that will both be appropriate to L1's requests, and our
9198  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9199  * function also has additional necessary side-effects, like setting various
9200  * vcpu->arch fields.
9201  */
9202 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9203 {
9204         struct vcpu_vmx *vmx = to_vmx(vcpu);
9205         u32 exec_control;
9206
9207         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9208         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9209         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9210         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9211         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9212         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9213         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9214         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9215         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9216         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9217         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9218         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9219         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9220         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9221         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9222         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9223         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9224         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9225         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9226         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9227         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9228         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9229         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9230         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9231         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9232         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9233         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9234         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9235         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9236         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9237         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9238         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9239         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9240         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9241         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9242         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9243
9244         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9245                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9246                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9247         } else {
9248                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9249                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9250         }
9251         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9252                 vmcs12->vm_entry_intr_info_field);
9253         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9254                 vmcs12->vm_entry_exception_error_code);
9255         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9256                 vmcs12->vm_entry_instruction_len);
9257         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9258                 vmcs12->guest_interruptibility_info);
9259         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9260         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9261         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9262                 vmcs12->guest_pending_dbg_exceptions);
9263         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9264         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9265
9266         if (nested_cpu_has_xsaves(vmcs12))
9267                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9268         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9269
9270         exec_control = vmcs12->pin_based_vm_exec_control;
9271         exec_control |= vmcs_config.pin_based_exec_ctrl;
9272         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9273
9274         if (nested_cpu_has_posted_intr(vmcs12)) {
9275                 /*
9276                  * Note that we use L0's vector here and in
9277                  * vmx_deliver_nested_posted_interrupt.
9278                  */
9279                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9280                 vmx->nested.pi_pending = false;
9281                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9282                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9283                         page_to_phys(vmx->nested.pi_desc_page) +
9284                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9285                         (PAGE_SIZE - 1)));
9286         } else
9287                 exec_control &= ~PIN_BASED_POSTED_INTR;
9288
9289         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9290
9291         vmx->nested.preemption_timer_expired = false;
9292         if (nested_cpu_has_preemption_timer(vmcs12))
9293                 vmx_start_preemption_timer(vcpu);
9294
9295         /*
9296          * Whether page-faults are trapped is determined by a combination of
9297          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9298          * If enable_ept, L0 doesn't care about page faults and we should
9299          * set all of these to L1's desires. However, if !enable_ept, L0 does
9300          * care about (at least some) page faults, and because it is not easy
9301          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9302          * to exit on each and every L2 page fault. This is done by setting
9303          * MASK=MATCH=0 and (see below) EB.PF=1.
9304          * Note that below we don't need special code to set EB.PF beyond the
9305          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9306          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9307          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9308          *
9309          * A problem with this approach (when !enable_ept) is that L1 may be
9310          * injected with more page faults than it asked for. This could have
9311          * caused problems, but in practice existing hypervisors don't care.
9312          * To fix this, we will need to emulate the PFEC checking (on the L1
9313          * page tables), using walk_addr(), when injecting PFs to L1.
9314          */
9315         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9316                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9317         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9318                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9319
9320         if (cpu_has_secondary_exec_ctrls()) {
9321                 exec_control = vmx_secondary_exec_control(vmx);
9322                 if (!vmx->rdtscp_enabled)
9323                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
9324                 /* Take the following fields only from vmcs12 */
9325                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9326                                   SECONDARY_EXEC_RDTSCP |
9327                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9328                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9329                 if (nested_cpu_has(vmcs12,
9330                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9331                         exec_control |= vmcs12->secondary_vm_exec_control;
9332
9333                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9334                         /*
9335                          * If translation failed, no matter: This feature asks
9336                          * to exit when accessing the given address, and if it
9337                          * can never be accessed, this feature won't do
9338                          * anything anyway.
9339                          */
9340                         if (!vmx->nested.apic_access_page)
9341                                 exec_control &=
9342                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9343                         else
9344                                 vmcs_write64(APIC_ACCESS_ADDR,
9345                                   page_to_phys(vmx->nested.apic_access_page));
9346                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9347                             (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9348                         exec_control |=
9349                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9350                         kvm_vcpu_reload_apic_access_page(vcpu);
9351                 }
9352
9353                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9354                         vmcs_write64(EOI_EXIT_BITMAP0,
9355                                 vmcs12->eoi_exit_bitmap0);
9356                         vmcs_write64(EOI_EXIT_BITMAP1,
9357                                 vmcs12->eoi_exit_bitmap1);
9358                         vmcs_write64(EOI_EXIT_BITMAP2,
9359                                 vmcs12->eoi_exit_bitmap2);
9360                         vmcs_write64(EOI_EXIT_BITMAP3,
9361                                 vmcs12->eoi_exit_bitmap3);
9362                         vmcs_write16(GUEST_INTR_STATUS,
9363                                 vmcs12->guest_intr_status);
9364                 }
9365
9366                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9367         }
9368
9369
9370         /*
9371          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9372          * Some constant fields are set here by vmx_set_constant_host_state().
9373          * Other fields are different per CPU, and will be set later when
9374          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9375          */
9376         vmx_set_constant_host_state(vmx);
9377
9378         /*
9379          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9380          * entry, but only if the current (host) sp changed from the value
9381          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9382          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9383          * here we just force the write to happen on entry.
9384          */
9385         vmx->host_rsp = 0;
9386
9387         exec_control = vmx_exec_control(vmx); /* L0's desires */
9388         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9389         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9390         exec_control &= ~CPU_BASED_TPR_SHADOW;
9391         exec_control |= vmcs12->cpu_based_vm_exec_control;
9392
9393         if (exec_control & CPU_BASED_TPR_SHADOW) {
9394                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9395                                 page_to_phys(vmx->nested.virtual_apic_page));
9396                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9397         }
9398
9399         if (cpu_has_vmx_msr_bitmap() &&
9400             exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9401                 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9402                 /* MSR_BITMAP will be set by following vmx_set_efer. */
9403         } else
9404                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9405
9406         /*
9407          * Merging of IO bitmap not currently supported.
9408          * Rather, exit every time.
9409          */
9410         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9411         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9412
9413         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9414
9415         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9416          * bitwise-or of what L1 wants to trap for L2, and what we want to
9417          * trap. Note that CR0.TS also needs updating - we do this later.
9418          */
9419         update_exception_bitmap(vcpu);
9420         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9421         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9422
9423         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9424          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9425          * bits are further modified by vmx_set_efer() below.
9426          */
9427         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9428
9429         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9430          * emulated by vmx_set_efer(), below.
9431          */
9432         vm_entry_controls_init(vmx, 
9433                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9434                         ~VM_ENTRY_IA32E_MODE) |
9435                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9436
9437         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9438                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9439                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9440         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9441                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9442
9443
9444         set_cr4_guest_host_mask(vmx);
9445
9446         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9447                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9448
9449         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9450                 vmcs_write64(TSC_OFFSET,
9451                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9452         else
9453                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9454
9455         if (enable_vpid) {
9456                 /*
9457                  * Trivially support vpid by letting L2s share their parent
9458                  * L1's vpid. TODO: move to a more elaborate solution, giving
9459                  * each L2 its own vpid and exposing the vpid feature to L1.
9460                  */
9461                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9462                 vmx_flush_tlb(vcpu);
9463         }
9464
9465         if (nested_cpu_has_ept(vmcs12)) {
9466                 kvm_mmu_unload(vcpu);
9467                 nested_ept_init_mmu_context(vcpu);
9468         }
9469
9470         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9471                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9472         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9473                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9474         else
9475                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9476         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9477         vmx_set_efer(vcpu, vcpu->arch.efer);
9478
9479         /*
9480          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9481          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9482          * The CR0_READ_SHADOW is what L2 should have expected to read given
9483          * the specifications by L1; It's not enough to take
9484          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9485          * have more bits than L1 expected.
9486          */
9487         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9488         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9489
9490         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9491         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9492
9493         /* shadow page tables on either EPT or shadow page tables */
9494         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9495         kvm_mmu_reset_context(vcpu);
9496
9497         if (!enable_ept)
9498                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9499
9500         /*
9501          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9502          */
9503         if (enable_ept) {
9504                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9505                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9506                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9507                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9508         }
9509
9510         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9511         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9512 }
9513
9514 /*
9515  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9516  * for running an L2 nested guest.
9517  */
9518 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9519 {
9520         struct vmcs12 *vmcs12;
9521         struct vcpu_vmx *vmx = to_vmx(vcpu);
9522         int cpu;
9523         struct loaded_vmcs *vmcs02;
9524         bool ia32e;
9525         u32 msr_entry_idx;
9526
9527         if (!nested_vmx_check_permission(vcpu) ||
9528             !nested_vmx_check_vmcs12(vcpu))
9529                 return 1;
9530
9531         skip_emulated_instruction(vcpu);
9532         vmcs12 = get_vmcs12(vcpu);
9533
9534         if (enable_shadow_vmcs)
9535                 copy_shadow_to_vmcs12(vmx);
9536
9537         /*
9538          * The nested entry process starts with enforcing various prerequisites
9539          * on vmcs12 as required by the Intel SDM, and act appropriately when
9540          * they fail: As the SDM explains, some conditions should cause the
9541          * instruction to fail, while others will cause the instruction to seem
9542          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9543          * To speed up the normal (success) code path, we should avoid checking
9544          * for misconfigurations which will anyway be caught by the processor
9545          * when using the merged vmcs02.
9546          */
9547         if (vmcs12->launch_state == launch) {
9548                 nested_vmx_failValid(vcpu,
9549                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9550                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9551                 return 1;
9552         }
9553
9554         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9555             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9556                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9557                 return 1;
9558         }
9559
9560         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9561                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9562                 return 1;
9563         }
9564
9565         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9566                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9567                 return 1;
9568         }
9569
9570         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9571                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9572                 return 1;
9573         }
9574
9575         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9576                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9577                 return 1;
9578         }
9579
9580         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9581                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9582                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9583             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9584                                 vmx->nested.nested_vmx_secondary_ctls_low,
9585                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9586             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9587                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9588                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9589             !vmx_control_verify(vmcs12->vm_exit_controls,
9590                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9591                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9592             !vmx_control_verify(vmcs12->vm_entry_controls,
9593                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9594                                 vmx->nested.nested_vmx_entry_ctls_high))
9595         {
9596                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9597                 return 1;
9598         }
9599
9600         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9601             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9602                 nested_vmx_failValid(vcpu,
9603                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9604                 return 1;
9605         }
9606
9607         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9608             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9609                 nested_vmx_entry_failure(vcpu, vmcs12,
9610                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9611                 return 1;
9612         }
9613         if (vmcs12->vmcs_link_pointer != -1ull) {
9614                 nested_vmx_entry_failure(vcpu, vmcs12,
9615                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9616                 return 1;
9617         }
9618
9619         /*
9620          * If the load IA32_EFER VM-entry control is 1, the following checks
9621          * are performed on the field for the IA32_EFER MSR:
9622          * - Bits reserved in the IA32_EFER MSR must be 0.
9623          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9624          *   the IA-32e mode guest VM-exit control. It must also be identical
9625          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9626          *   CR0.PG) is 1.
9627          */
9628         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9629                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9630                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9631                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9632                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9633                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9634                         nested_vmx_entry_failure(vcpu, vmcs12,
9635                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9636                         return 1;
9637                 }
9638         }
9639
9640         /*
9641          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9642          * IA32_EFER MSR must be 0 in the field for that register. In addition,
9643          * the values of the LMA and LME bits in the field must each be that of
9644          * the host address-space size VM-exit control.
9645          */
9646         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9647                 ia32e = (vmcs12->vm_exit_controls &
9648                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9649                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9650                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9651                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9652                         nested_vmx_entry_failure(vcpu, vmcs12,
9653                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9654                         return 1;
9655                 }
9656         }
9657
9658         /*
9659          * We're finally done with prerequisite checking, and can start with
9660          * the nested entry.
9661          */
9662
9663         vmcs02 = nested_get_current_vmcs02(vmx);
9664         if (!vmcs02)
9665                 return -ENOMEM;
9666
9667         enter_guest_mode(vcpu);
9668
9669         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9670
9671         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9672                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9673
9674         cpu = get_cpu();
9675         vmx->loaded_vmcs = vmcs02;
9676         vmx_vcpu_put(vcpu);
9677         vmx_vcpu_load(vcpu, cpu);
9678         vcpu->cpu = cpu;
9679         put_cpu();
9680
9681         vmx_segment_cache_clear(vmx);
9682
9683         prepare_vmcs02(vcpu, vmcs12);
9684
9685         msr_entry_idx = nested_vmx_load_msr(vcpu,
9686                                             vmcs12->vm_entry_msr_load_addr,
9687                                             vmcs12->vm_entry_msr_load_count);
9688         if (msr_entry_idx) {
9689                 leave_guest_mode(vcpu);
9690                 vmx_load_vmcs01(vcpu);
9691                 nested_vmx_entry_failure(vcpu, vmcs12,
9692                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9693                 return 1;
9694         }
9695
9696         vmcs12->launch_state = 1;
9697
9698         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9699                 return kvm_vcpu_halt(vcpu);
9700
9701         vmx->nested.nested_run_pending = 1;
9702
9703         /*
9704          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9705          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9706          * returned as far as L1 is concerned. It will only return (and set
9707          * the success flag) when L2 exits (see nested_vmx_vmexit()).
9708          */
9709         return 1;
9710 }
9711
9712 /*
9713  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9714  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9715  * This function returns the new value we should put in vmcs12.guest_cr0.
9716  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9717  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9718  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9719  *     didn't trap the bit, because if L1 did, so would L0).
9720  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9721  *     been modified by L2, and L1 knows it. So just leave the old value of
9722  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9723  *     isn't relevant, because if L0 traps this bit it can set it to anything.
9724  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9725  *     changed these bits, and therefore they need to be updated, but L0
9726  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9727  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9728  */
9729 static inline unsigned long
9730 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9731 {
9732         return
9733         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9734         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9735         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9736                         vcpu->arch.cr0_guest_owned_bits));
9737 }
9738
9739 static inline unsigned long
9740 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9741 {
9742         return
9743         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9744         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9745         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9746                         vcpu->arch.cr4_guest_owned_bits));
9747 }
9748
9749 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9750                                        struct vmcs12 *vmcs12)
9751 {
9752         u32 idt_vectoring;
9753         unsigned int nr;
9754
9755         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9756                 nr = vcpu->arch.exception.nr;
9757                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759                 if (kvm_exception_is_soft(nr)) {
9760                         vmcs12->vm_exit_instruction_len =
9761                                 vcpu->arch.event_exit_inst_len;
9762                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9763                 } else
9764                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9765
9766                 if (vcpu->arch.exception.has_error_code) {
9767                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9768                         vmcs12->idt_vectoring_error_code =
9769                                 vcpu->arch.exception.error_code;
9770                 }
9771
9772                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9773         } else if (vcpu->arch.nmi_injected) {
9774                 vmcs12->idt_vectoring_info_field =
9775                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9776         } else if (vcpu->arch.interrupt.pending) {
9777                 nr = vcpu->arch.interrupt.nr;
9778                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9779
9780                 if (vcpu->arch.interrupt.soft) {
9781                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
9782                         vmcs12->vm_entry_instruction_len =
9783                                 vcpu->arch.event_exit_inst_len;
9784                 } else
9785                         idt_vectoring |= INTR_TYPE_EXT_INTR;
9786
9787                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9788         }
9789 }
9790
9791 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9792 {
9793         struct vcpu_vmx *vmx = to_vmx(vcpu);
9794
9795         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9796             vmx->nested.preemption_timer_expired) {
9797                 if (vmx->nested.nested_run_pending)
9798                         return -EBUSY;
9799                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9800                 return 0;
9801         }
9802
9803         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9804                 if (vmx->nested.nested_run_pending ||
9805                     vcpu->arch.interrupt.pending)
9806                         return -EBUSY;
9807                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9808                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
9809                                   INTR_INFO_VALID_MASK, 0);
9810                 /*
9811                  * The NMI-triggered VM exit counts as injection:
9812                  * clear this one and block further NMIs.
9813                  */
9814                 vcpu->arch.nmi_pending = 0;
9815                 vmx_set_nmi_mask(vcpu, true);
9816                 return 0;
9817         }
9818
9819         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9820             nested_exit_on_intr(vcpu)) {
9821                 if (vmx->nested.nested_run_pending)
9822                         return -EBUSY;
9823                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9824                 return 0;
9825         }
9826
9827         return vmx_complete_nested_posted_interrupt(vcpu);
9828 }
9829
9830 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9831 {
9832         ktime_t remaining =
9833                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9834         u64 value;
9835
9836         if (ktime_to_ns(remaining) <= 0)
9837                 return 0;
9838
9839         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9840         do_div(value, 1000000);
9841         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9842 }
9843
9844 /*
9845  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9846  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9847  * and this function updates it to reflect the changes to the guest state while
9848  * L2 was running (and perhaps made some exits which were handled directly by L0
9849  * without going back to L1), and to reflect the exit reason.
9850  * Note that we do not have to copy here all VMCS fields, just those that
9851  * could have changed by the L2 guest or the exit - i.e., the guest-state and
9852  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9853  * which already writes to vmcs12 directly.
9854  */
9855 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9856                            u32 exit_reason, u32 exit_intr_info,
9857                            unsigned long exit_qualification)
9858 {
9859         /* update guest state fields: */
9860         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9861         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9862
9863         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9864         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9865         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9866
9867         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9868         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9869         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9870         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9871         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9872         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9873         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9874         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9875         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9876         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9877         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9878         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9879         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9880         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9881         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9882         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9883         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9884         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9885         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9886         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9887         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9888         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9889         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9890         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9891         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9892         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9893         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9894         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9895         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9896         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9897         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9898         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9899         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9900         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9901         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9902         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9903
9904         vmcs12->guest_interruptibility_info =
9905                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9906         vmcs12->guest_pending_dbg_exceptions =
9907                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9908         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9909                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9910         else
9911                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9912
9913         if (nested_cpu_has_preemption_timer(vmcs12)) {
9914                 if (vmcs12->vm_exit_controls &
9915                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9916                         vmcs12->vmx_preemption_timer_value =
9917                                 vmx_get_preemption_timer_value(vcpu);
9918                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9919         }
9920
9921         /*
9922          * In some cases (usually, nested EPT), L2 is allowed to change its
9923          * own CR3 without exiting. If it has changed it, we must keep it.
9924          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9925          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9926          *
9927          * Additionally, restore L2's PDPTR to vmcs12.
9928          */
9929         if (enable_ept) {
9930                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9931                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9932                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9933                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9934                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9935         }
9936
9937         if (nested_cpu_has_vid(vmcs12))
9938                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9939
9940         vmcs12->vm_entry_controls =
9941                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9942                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9943
9944         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9945                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9946                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9947         }
9948
9949         /* TODO: These cannot have changed unless we have MSR bitmaps and
9950          * the relevant bit asks not to trap the change */
9951         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9952                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9953         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9954                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9955         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9956         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9957         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9958         if (vmx_mpx_supported())
9959                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9960         if (nested_cpu_has_xsaves(vmcs12))
9961                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9962
9963         /* update exit information fields: */
9964
9965         vmcs12->vm_exit_reason = exit_reason;
9966         vmcs12->exit_qualification = exit_qualification;
9967
9968         vmcs12->vm_exit_intr_info = exit_intr_info;
9969         if ((vmcs12->vm_exit_intr_info &
9970              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9971             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9972                 vmcs12->vm_exit_intr_error_code =
9973                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9974         vmcs12->idt_vectoring_info_field = 0;
9975         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9976         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9977
9978         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9979                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9980                  * instead of reading the real value. */
9981                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9982
9983                 /*
9984                  * Transfer the event that L0 or L1 may wanted to inject into
9985                  * L2 to IDT_VECTORING_INFO_FIELD.
9986                  */
9987                 vmcs12_save_pending_event(vcpu, vmcs12);
9988         }
9989
9990         /*
9991          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9992          * preserved above and would only end up incorrectly in L1.
9993          */
9994         vcpu->arch.nmi_injected = false;
9995         kvm_clear_exception_queue(vcpu);
9996         kvm_clear_interrupt_queue(vcpu);
9997 }
9998
9999 /*
10000  * A part of what we need to when the nested L2 guest exits and we want to
10001  * run its L1 parent, is to reset L1's guest state to the host state specified
10002  * in vmcs12.
10003  * This function is to be called not only on normal nested exit, but also on
10004  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10005  * Failures During or After Loading Guest State").
10006  * This function should be called when the active VMCS is L1's (vmcs01).
10007  */
10008 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10009                                    struct vmcs12 *vmcs12)
10010 {
10011         struct kvm_segment seg;
10012
10013         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10014                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10015         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10016                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10017         else
10018                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10019         vmx_set_efer(vcpu, vcpu->arch.efer);
10020
10021         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10022         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10023         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10024         /*
10025          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10026          * actually changed, because it depends on the current state of
10027          * fpu_active (which may have changed).
10028          * Note that vmx_set_cr0 refers to efer set above.
10029          */
10030         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10031         /*
10032          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10033          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10034          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10035          */
10036         update_exception_bitmap(vcpu);
10037         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10038         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10039
10040         /*
10041          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10042          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10043          */
10044         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10045         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10046
10047         nested_ept_uninit_mmu_context(vcpu);
10048
10049         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10050         kvm_mmu_reset_context(vcpu);
10051
10052         if (!enable_ept)
10053                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10054
10055         if (enable_vpid) {
10056                 /*
10057                  * Trivially support vpid by letting L2s share their parent
10058                  * L1's vpid. TODO: move to a more elaborate solution, giving
10059                  * each L2 its own vpid and exposing the vpid feature to L1.
10060                  */
10061                 vmx_flush_tlb(vcpu);
10062         }
10063
10064
10065         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10066         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10067         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10068         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10069         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10070
10071         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10072         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10073                 vmcs_write64(GUEST_BNDCFGS, 0);
10074
10075         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10076                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10077                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10078         }
10079         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10080                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10081                         vmcs12->host_ia32_perf_global_ctrl);
10082
10083         /* Set L1 segment info according to Intel SDM
10084             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10085         seg = (struct kvm_segment) {
10086                 .base = 0,
10087                 .limit = 0xFFFFFFFF,
10088                 .selector = vmcs12->host_cs_selector,
10089                 .type = 11,
10090                 .present = 1,
10091                 .s = 1,
10092                 .g = 1
10093         };
10094         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10095                 seg.l = 1;
10096         else
10097                 seg.db = 1;
10098         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10099         seg = (struct kvm_segment) {
10100                 .base = 0,
10101                 .limit = 0xFFFFFFFF,
10102                 .type = 3,
10103                 .present = 1,
10104                 .s = 1,
10105                 .db = 1,
10106                 .g = 1
10107         };
10108         seg.selector = vmcs12->host_ds_selector;
10109         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10110         seg.selector = vmcs12->host_es_selector;
10111         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10112         seg.selector = vmcs12->host_ss_selector;
10113         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10114         seg.selector = vmcs12->host_fs_selector;
10115         seg.base = vmcs12->host_fs_base;
10116         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10117         seg.selector = vmcs12->host_gs_selector;
10118         seg.base = vmcs12->host_gs_base;
10119         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10120         seg = (struct kvm_segment) {
10121                 .base = vmcs12->host_tr_base,
10122                 .limit = 0x67,
10123                 .selector = vmcs12->host_tr_selector,
10124                 .type = 11,
10125                 .present = 1
10126         };
10127         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10128
10129         kvm_set_dr(vcpu, 7, 0x400);
10130         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10131
10132         if (cpu_has_vmx_msr_bitmap())
10133                 vmx_set_msr_bitmap(vcpu);
10134
10135         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10136                                 vmcs12->vm_exit_msr_load_count))
10137                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10138 }
10139
10140 /*
10141  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10142  * and modify vmcs12 to make it see what it would expect to see there if
10143  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10144  */
10145 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10146                               u32 exit_intr_info,
10147                               unsigned long exit_qualification)
10148 {
10149         struct vcpu_vmx *vmx = to_vmx(vcpu);
10150         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10151
10152         /* trying to cancel vmlaunch/vmresume is a bug */
10153         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10154
10155         leave_guest_mode(vcpu);
10156         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10157                        exit_qualification);
10158
10159         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10160                                  vmcs12->vm_exit_msr_store_count))
10161                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10162
10163         vmx_load_vmcs01(vcpu);
10164
10165         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10166             && nested_exit_intr_ack_set(vcpu)) {
10167                 int irq = kvm_cpu_get_interrupt(vcpu);
10168                 WARN_ON(irq < 0);
10169                 vmcs12->vm_exit_intr_info = irq |
10170                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10171         }
10172
10173         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10174                                        vmcs12->exit_qualification,
10175                                        vmcs12->idt_vectoring_info_field,
10176                                        vmcs12->vm_exit_intr_info,
10177                                        vmcs12->vm_exit_intr_error_code,
10178                                        KVM_ISA_VMX);
10179
10180         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10181         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10182         vmx_segment_cache_clear(vmx);
10183
10184         /* if no vmcs02 cache requested, remove the one we used */
10185         if (VMCS02_POOL_SIZE == 0)
10186                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10187
10188         load_vmcs12_host_state(vcpu, vmcs12);
10189
10190         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10191         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10192
10193         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10194         vmx->host_rsp = 0;
10195
10196         /* Unpin physical memory we referred to in vmcs02 */
10197         if (vmx->nested.apic_access_page) {
10198                 nested_release_page(vmx->nested.apic_access_page);
10199                 vmx->nested.apic_access_page = NULL;
10200         }
10201         if (vmx->nested.virtual_apic_page) {
10202                 nested_release_page(vmx->nested.virtual_apic_page);
10203                 vmx->nested.virtual_apic_page = NULL;
10204         }
10205         if (vmx->nested.pi_desc_page) {
10206                 kunmap(vmx->nested.pi_desc_page);
10207                 nested_release_page(vmx->nested.pi_desc_page);
10208                 vmx->nested.pi_desc_page = NULL;
10209                 vmx->nested.pi_desc = NULL;
10210         }
10211
10212         /*
10213          * We are now running in L2, mmu_notifier will force to reload the
10214          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10215          */
10216         kvm_vcpu_reload_apic_access_page(vcpu);
10217
10218         /*
10219          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10220          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10221          * success or failure flag accordingly.
10222          */
10223         if (unlikely(vmx->fail)) {
10224                 vmx->fail = 0;
10225                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10226         } else
10227                 nested_vmx_succeed(vcpu);
10228         if (enable_shadow_vmcs)
10229                 vmx->nested.sync_shadow_vmcs = true;
10230
10231         /* in case we halted in L2 */
10232         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10233 }
10234
10235 /*
10236  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10237  */
10238 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10239 {
10240         if (is_guest_mode(vcpu))
10241                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10242         free_nested(to_vmx(vcpu));
10243 }
10244
10245 /*
10246  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10247  * 23.7 "VM-entry failures during or after loading guest state" (this also
10248  * lists the acceptable exit-reason and exit-qualification parameters).
10249  * It should only be called before L2 actually succeeded to run, and when
10250  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10251  */
10252 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10253                         struct vmcs12 *vmcs12,
10254                         u32 reason, unsigned long qualification)
10255 {
10256         load_vmcs12_host_state(vcpu, vmcs12);
10257         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10258         vmcs12->exit_qualification = qualification;
10259         nested_vmx_succeed(vcpu);
10260         if (enable_shadow_vmcs)
10261                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10262 }
10263
10264 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10265                                struct x86_instruction_info *info,
10266                                enum x86_intercept_stage stage)
10267 {
10268         return X86EMUL_CONTINUE;
10269 }
10270
10271 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10272 {
10273         if (ple_gap)
10274                 shrink_ple_window(vcpu);
10275 }
10276
10277 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10278                                      struct kvm_memory_slot *slot)
10279 {
10280         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10281         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10282 }
10283
10284 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10285                                        struct kvm_memory_slot *slot)
10286 {
10287         kvm_mmu_slot_set_dirty(kvm, slot);
10288 }
10289
10290 static void vmx_flush_log_dirty(struct kvm *kvm)
10291 {
10292         kvm_flush_pml_buffers(kvm);
10293 }
10294
10295 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10296                                            struct kvm_memory_slot *memslot,
10297                                            gfn_t offset, unsigned long mask)
10298 {
10299         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10300 }
10301
10302 static struct kvm_x86_ops vmx_x86_ops = {
10303         .cpu_has_kvm_support = cpu_has_kvm_support,
10304         .disabled_by_bios = vmx_disabled_by_bios,
10305         .hardware_setup = hardware_setup,
10306         .hardware_unsetup = hardware_unsetup,
10307         .check_processor_compatibility = vmx_check_processor_compat,
10308         .hardware_enable = hardware_enable,
10309         .hardware_disable = hardware_disable,
10310         .cpu_has_accelerated_tpr = report_flexpriority,
10311         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10312
10313         .vcpu_create = vmx_create_vcpu,
10314         .vcpu_free = vmx_free_vcpu,
10315         .vcpu_reset = vmx_vcpu_reset,
10316
10317         .prepare_guest_switch = vmx_save_host_state,
10318         .vcpu_load = vmx_vcpu_load,
10319         .vcpu_put = vmx_vcpu_put,
10320
10321         .update_db_bp_intercept = update_exception_bitmap,
10322         .get_msr = vmx_get_msr,
10323         .set_msr = vmx_set_msr,
10324         .get_segment_base = vmx_get_segment_base,
10325         .get_segment = vmx_get_segment,
10326         .set_segment = vmx_set_segment,
10327         .get_cpl = vmx_get_cpl,
10328         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10329         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10330         .decache_cr3 = vmx_decache_cr3,
10331         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10332         .set_cr0 = vmx_set_cr0,
10333         .set_cr3 = vmx_set_cr3,
10334         .set_cr4 = vmx_set_cr4,
10335         .set_efer = vmx_set_efer,
10336         .get_idt = vmx_get_idt,
10337         .set_idt = vmx_set_idt,
10338         .get_gdt = vmx_get_gdt,
10339         .set_gdt = vmx_set_gdt,
10340         .get_dr6 = vmx_get_dr6,
10341         .set_dr6 = vmx_set_dr6,
10342         .set_dr7 = vmx_set_dr7,
10343         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10344         .cache_reg = vmx_cache_reg,
10345         .get_rflags = vmx_get_rflags,
10346         .set_rflags = vmx_set_rflags,
10347         .fpu_activate = vmx_fpu_activate,
10348         .fpu_deactivate = vmx_fpu_deactivate,
10349
10350         .tlb_flush = vmx_flush_tlb,
10351
10352         .run = vmx_vcpu_run,
10353         .handle_exit = vmx_handle_exit,
10354         .skip_emulated_instruction = skip_emulated_instruction,
10355         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10356         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10357         .patch_hypercall = vmx_patch_hypercall,
10358         .set_irq = vmx_inject_irq,
10359         .set_nmi = vmx_inject_nmi,
10360         .queue_exception = vmx_queue_exception,
10361         .cancel_injection = vmx_cancel_injection,
10362         .interrupt_allowed = vmx_interrupt_allowed,
10363         .nmi_allowed = vmx_nmi_allowed,
10364         .get_nmi_mask = vmx_get_nmi_mask,
10365         .set_nmi_mask = vmx_set_nmi_mask,
10366         .enable_nmi_window = enable_nmi_window,
10367         .enable_irq_window = enable_irq_window,
10368         .update_cr8_intercept = update_cr8_intercept,
10369         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10370         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10371         .cpu_uses_apicv = vmx_cpu_uses_apicv,
10372         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10373         .hwapic_irr_update = vmx_hwapic_irr_update,
10374         .hwapic_isr_update = vmx_hwapic_isr_update,
10375         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10376         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10377
10378         .set_tss_addr = vmx_set_tss_addr,
10379         .get_tdp_level = get_ept_level,
10380         .get_mt_mask = vmx_get_mt_mask,
10381
10382         .get_exit_info = vmx_get_exit_info,
10383
10384         .get_lpage_level = vmx_get_lpage_level,
10385
10386         .cpuid_update = vmx_cpuid_update,
10387
10388         .rdtscp_supported = vmx_rdtscp_supported,
10389         .invpcid_supported = vmx_invpcid_supported,
10390
10391         .set_supported_cpuid = vmx_set_supported_cpuid,
10392
10393         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10394
10395         .set_tsc_khz = vmx_set_tsc_khz,
10396         .read_tsc_offset = vmx_read_tsc_offset,
10397         .write_tsc_offset = vmx_write_tsc_offset,
10398         .adjust_tsc_offset = vmx_adjust_tsc_offset,
10399         .compute_tsc_offset = vmx_compute_tsc_offset,
10400         .read_l1_tsc = vmx_read_l1_tsc,
10401
10402         .set_tdp_cr3 = vmx_set_cr3,
10403
10404         .check_intercept = vmx_check_intercept,
10405         .handle_external_intr = vmx_handle_external_intr,
10406         .mpx_supported = vmx_mpx_supported,
10407         .xsaves_supported = vmx_xsaves_supported,
10408
10409         .check_nested_events = vmx_check_nested_events,
10410
10411         .sched_in = vmx_sched_in,
10412
10413         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10414         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10415         .flush_log_dirty = vmx_flush_log_dirty,
10416         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10417
10418         .pmu_ops = &intel_pmu_ops,
10419 };
10420
10421 static int __init vmx_init(void)
10422 {
10423         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10424                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10425         if (r)
10426                 return r;
10427
10428 #ifdef CONFIG_KEXEC_CORE
10429         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10430                            crash_vmclear_local_loaded_vmcss);
10431 #endif
10432
10433         return 0;
10434 }
10435
10436 static void __exit vmx_exit(void)
10437 {
10438 #ifdef CONFIG_KEXEC_CORE
10439         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10440         synchronize_rcu();
10441 #endif
10442
10443         kvm_exit();
10444 }
10445
10446 module_init(vmx_init)
10447 module_exit(vmx_exit)