]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         bool launched;
202         bool nmi_known_unmasked;
203         struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207         unsigned index;
208         u64 data;
209         u64 mask;
210 };
211
212 /*
213  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218  * More than one of these structures may exist, if L1 runs multiple L2 guests.
219  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220  * underlying hardware which will be used to run L2.
221  * This structure is packed to ensure that its layout is identical across
222  * machines (necessary for live migration).
223  * If there are changes in this struct, VMCS12_REVISION must be changed.
224  */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227         /* According to the Intel spec, a VMCS region must start with the
228          * following two fields. Then follow implementation-specific data.
229          */
230         u32 revision_id;
231         u32 abort;
232
233         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234         u32 padding[7]; /* room for future expansion */
235
236         u64 io_bitmap_a;
237         u64 io_bitmap_b;
238         u64 msr_bitmap;
239         u64 vm_exit_msr_store_addr;
240         u64 vm_exit_msr_load_addr;
241         u64 vm_entry_msr_load_addr;
242         u64 tsc_offset;
243         u64 virtual_apic_page_addr;
244         u64 apic_access_addr;
245         u64 posted_intr_desc_addr;
246         u64 ept_pointer;
247         u64 eoi_exit_bitmap0;
248         u64 eoi_exit_bitmap1;
249         u64 eoi_exit_bitmap2;
250         u64 eoi_exit_bitmap3;
251         u64 xss_exit_bitmap;
252         u64 guest_physical_address;
253         u64 vmcs_link_pointer;
254         u64 pml_address;
255         u64 guest_ia32_debugctl;
256         u64 guest_ia32_pat;
257         u64 guest_ia32_efer;
258         u64 guest_ia32_perf_global_ctrl;
259         u64 guest_pdptr0;
260         u64 guest_pdptr1;
261         u64 guest_pdptr2;
262         u64 guest_pdptr3;
263         u64 guest_bndcfgs;
264         u64 host_ia32_pat;
265         u64 host_ia32_efer;
266         u64 host_ia32_perf_global_ctrl;
267         u64 padding64[8]; /* room for future expansion */
268         /*
269          * To allow migration of L1 (complete with its L2 guests) between
270          * machines of different natural widths (32 or 64 bit), we cannot have
271          * unsigned long fields with no explict size. We use u64 (aliased
272          * natural_width) instead. Luckily, x86 is little-endian.
273          */
274         natural_width cr0_guest_host_mask;
275         natural_width cr4_guest_host_mask;
276         natural_width cr0_read_shadow;
277         natural_width cr4_read_shadow;
278         natural_width cr3_target_value0;
279         natural_width cr3_target_value1;
280         natural_width cr3_target_value2;
281         natural_width cr3_target_value3;
282         natural_width exit_qualification;
283         natural_width guest_linear_address;
284         natural_width guest_cr0;
285         natural_width guest_cr3;
286         natural_width guest_cr4;
287         natural_width guest_es_base;
288         natural_width guest_cs_base;
289         natural_width guest_ss_base;
290         natural_width guest_ds_base;
291         natural_width guest_fs_base;
292         natural_width guest_gs_base;
293         natural_width guest_ldtr_base;
294         natural_width guest_tr_base;
295         natural_width guest_gdtr_base;
296         natural_width guest_idtr_base;
297         natural_width guest_dr7;
298         natural_width guest_rsp;
299         natural_width guest_rip;
300         natural_width guest_rflags;
301         natural_width guest_pending_dbg_exceptions;
302         natural_width guest_sysenter_esp;
303         natural_width guest_sysenter_eip;
304         natural_width host_cr0;
305         natural_width host_cr3;
306         natural_width host_cr4;
307         natural_width host_fs_base;
308         natural_width host_gs_base;
309         natural_width host_tr_base;
310         natural_width host_gdtr_base;
311         natural_width host_idtr_base;
312         natural_width host_ia32_sysenter_esp;
313         natural_width host_ia32_sysenter_eip;
314         natural_width host_rsp;
315         natural_width host_rip;
316         natural_width paddingl[8]; /* room for future expansion */
317         u32 pin_based_vm_exec_control;
318         u32 cpu_based_vm_exec_control;
319         u32 exception_bitmap;
320         u32 page_fault_error_code_mask;
321         u32 page_fault_error_code_match;
322         u32 cr3_target_count;
323         u32 vm_exit_controls;
324         u32 vm_exit_msr_store_count;
325         u32 vm_exit_msr_load_count;
326         u32 vm_entry_controls;
327         u32 vm_entry_msr_load_count;
328         u32 vm_entry_intr_info_field;
329         u32 vm_entry_exception_error_code;
330         u32 vm_entry_instruction_len;
331         u32 tpr_threshold;
332         u32 secondary_vm_exec_control;
333         u32 vm_instruction_error;
334         u32 vm_exit_reason;
335         u32 vm_exit_intr_info;
336         u32 vm_exit_intr_error_code;
337         u32 idt_vectoring_info_field;
338         u32 idt_vectoring_error_code;
339         u32 vm_exit_instruction_len;
340         u32 vmx_instruction_info;
341         u32 guest_es_limit;
342         u32 guest_cs_limit;
343         u32 guest_ss_limit;
344         u32 guest_ds_limit;
345         u32 guest_fs_limit;
346         u32 guest_gs_limit;
347         u32 guest_ldtr_limit;
348         u32 guest_tr_limit;
349         u32 guest_gdtr_limit;
350         u32 guest_idtr_limit;
351         u32 guest_es_ar_bytes;
352         u32 guest_cs_ar_bytes;
353         u32 guest_ss_ar_bytes;
354         u32 guest_ds_ar_bytes;
355         u32 guest_fs_ar_bytes;
356         u32 guest_gs_ar_bytes;
357         u32 guest_ldtr_ar_bytes;
358         u32 guest_tr_ar_bytes;
359         u32 guest_interruptibility_info;
360         u32 guest_activity_state;
361         u32 guest_sysenter_cs;
362         u32 host_ia32_sysenter_cs;
363         u32 vmx_preemption_timer_value;
364         u32 padding32[7]; /* room for future expansion */
365         u16 virtual_processor_id;
366         u16 posted_intr_nv;
367         u16 guest_es_selector;
368         u16 guest_cs_selector;
369         u16 guest_ss_selector;
370         u16 guest_ds_selector;
371         u16 guest_fs_selector;
372         u16 guest_gs_selector;
373         u16 guest_ldtr_selector;
374         u16 guest_tr_selector;
375         u16 guest_intr_status;
376         u16 guest_pml_index;
377         u16 host_es_selector;
378         u16 host_cs_selector;
379         u16 host_ss_selector;
380         u16 host_ds_selector;
381         u16 host_fs_selector;
382         u16 host_gs_selector;
383         u16 host_tr_selector;
384 };
385
386 /*
387  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
388  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
389  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
390  */
391 #define VMCS12_REVISION 0x11e57ed0
392
393 /*
394  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
395  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
396  * current implementation, 4K are reserved to avoid future complications.
397  */
398 #define VMCS12_SIZE 0x1000
399
400 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
401 struct vmcs02_list {
402         struct list_head list;
403         gpa_t vmptr;
404         struct loaded_vmcs vmcs02;
405 };
406
407 /*
408  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
409  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
410  */
411 struct nested_vmx {
412         /* Has the level1 guest done vmxon? */
413         bool vmxon;
414         gpa_t vmxon_ptr;
415         bool pml_full;
416
417         /* The guest-physical address of the current VMCS L1 keeps for L2 */
418         gpa_t current_vmptr;
419         /*
420          * Cache of the guest's VMCS, existing outside of guest memory.
421          * Loaded from guest memory during VMPTRLD. Flushed to guest
422          * memory during VMCLEAR and VMPTRLD.
423          */
424         struct vmcs12 *cached_vmcs12;
425         /*
426          * Indicates if the shadow vmcs must be updated with the
427          * data hold by vmcs12
428          */
429         bool sync_shadow_vmcs;
430
431         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
432         struct list_head vmcs02_pool;
433         int vmcs02_num;
434         bool change_vmcs01_virtual_x2apic_mode;
435         /* L2 must run next, and mustn't decide to exit to L1. */
436         bool nested_run_pending;
437         /*
438          * Guest pages referred to in vmcs02 with host-physical pointers, so
439          * we must keep them pinned while L2 runs.
440          */
441         struct page *apic_access_page;
442         struct page *virtual_apic_page;
443         struct page *pi_desc_page;
444         struct pi_desc *pi_desc;
445         bool pi_pending;
446         u16 posted_intr_nv;
447
448         unsigned long *msr_bitmap;
449
450         struct hrtimer preemption_timer;
451         bool preemption_timer_expired;
452
453         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
454         u64 vmcs01_debugctl;
455
456         u16 vpid02;
457         u16 last_vpid;
458
459         /*
460          * We only store the "true" versions of the VMX capability MSRs. We
461          * generate the "non-true" versions by setting the must-be-1 bits
462          * according to the SDM.
463          */
464         u32 nested_vmx_procbased_ctls_low;
465         u32 nested_vmx_procbased_ctls_high;
466         u32 nested_vmx_secondary_ctls_low;
467         u32 nested_vmx_secondary_ctls_high;
468         u32 nested_vmx_pinbased_ctls_low;
469         u32 nested_vmx_pinbased_ctls_high;
470         u32 nested_vmx_exit_ctls_low;
471         u32 nested_vmx_exit_ctls_high;
472         u32 nested_vmx_entry_ctls_low;
473         u32 nested_vmx_entry_ctls_high;
474         u32 nested_vmx_misc_low;
475         u32 nested_vmx_misc_high;
476         u32 nested_vmx_ept_caps;
477         u32 nested_vmx_vpid_caps;
478         u64 nested_vmx_basic;
479         u64 nested_vmx_cr0_fixed0;
480         u64 nested_vmx_cr0_fixed1;
481         u64 nested_vmx_cr4_fixed0;
482         u64 nested_vmx_cr4_fixed1;
483         u64 nested_vmx_vmcs_enum;
484 };
485
486 #define POSTED_INTR_ON  0
487 #define POSTED_INTR_SN  1
488
489 /* Posted-Interrupt Descriptor */
490 struct pi_desc {
491         u32 pir[8];     /* Posted interrupt requested */
492         union {
493                 struct {
494                                 /* bit 256 - Outstanding Notification */
495                         u16     on      : 1,
496                                 /* bit 257 - Suppress Notification */
497                                 sn      : 1,
498                                 /* bit 271:258 - Reserved */
499                                 rsvd_1  : 14;
500                                 /* bit 279:272 - Notification Vector */
501                         u8      nv;
502                                 /* bit 287:280 - Reserved */
503                         u8      rsvd_2;
504                                 /* bit 319:288 - Notification Destination */
505                         u32     ndst;
506                 };
507                 u64 control;
508         };
509         u32 rsvd[6];
510 } __aligned(64);
511
512 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
513 {
514         return test_and_set_bit(POSTED_INTR_ON,
515                         (unsigned long *)&pi_desc->control);
516 }
517
518 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
519 {
520         return test_and_clear_bit(POSTED_INTR_ON,
521                         (unsigned long *)&pi_desc->control);
522 }
523
524 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
525 {
526         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
527 }
528
529 static inline void pi_clear_sn(struct pi_desc *pi_desc)
530 {
531         return clear_bit(POSTED_INTR_SN,
532                         (unsigned long *)&pi_desc->control);
533 }
534
535 static inline void pi_set_sn(struct pi_desc *pi_desc)
536 {
537         return set_bit(POSTED_INTR_SN,
538                         (unsigned long *)&pi_desc->control);
539 }
540
541 static inline void pi_clear_on(struct pi_desc *pi_desc)
542 {
543         clear_bit(POSTED_INTR_ON,
544                   (unsigned long *)&pi_desc->control);
545 }
546
547 static inline int pi_test_on(struct pi_desc *pi_desc)
548 {
549         return test_bit(POSTED_INTR_ON,
550                         (unsigned long *)&pi_desc->control);
551 }
552
553 static inline int pi_test_sn(struct pi_desc *pi_desc)
554 {
555         return test_bit(POSTED_INTR_SN,
556                         (unsigned long *)&pi_desc->control);
557 }
558
559 struct vcpu_vmx {
560         struct kvm_vcpu       vcpu;
561         unsigned long         host_rsp;
562         u8                    fail;
563         u32                   exit_intr_info;
564         u32                   idt_vectoring_info;
565         ulong                 rflags;
566         struct shared_msr_entry *guest_msrs;
567         int                   nmsrs;
568         int                   save_nmsrs;
569         unsigned long         host_idt_base;
570 #ifdef CONFIG_X86_64
571         u64                   msr_host_kernel_gs_base;
572         u64                   msr_guest_kernel_gs_base;
573 #endif
574         u32 vm_entry_controls_shadow;
575         u32 vm_exit_controls_shadow;
576         /*
577          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
578          * non-nested (L1) guest, it always points to vmcs01. For a nested
579          * guest (L2), it points to a different VMCS.
580          */
581         struct loaded_vmcs    vmcs01;
582         struct loaded_vmcs   *loaded_vmcs;
583         bool                  __launched; /* temporary, used in vmx_vcpu_run */
584         struct msr_autoload {
585                 unsigned nr;
586                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
587                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
588         } msr_autoload;
589         struct {
590                 int           loaded;
591                 u16           fs_sel, gs_sel, ldt_sel;
592 #ifdef CONFIG_X86_64
593                 u16           ds_sel, es_sel;
594 #endif
595                 int           gs_ldt_reload_needed;
596                 int           fs_reload_needed;
597                 u64           msr_host_bndcfgs;
598                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
599                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
600         } host_state;
601         struct {
602                 int vm86_active;
603                 ulong save_rflags;
604                 struct kvm_segment segs[8];
605         } rmode;
606         struct {
607                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
608                 struct kvm_save_segment {
609                         u16 selector;
610                         unsigned long base;
611                         u32 limit;
612                         u32 ar;
613                 } seg[8];
614         } segment_cache;
615         int vpid;
616         bool emulation_required;
617
618         u32 exit_reason;
619
620         /* Posted interrupt descriptor */
621         struct pi_desc pi_desc;
622
623         /* Support for a guest hypervisor (nested VMX) */
624         struct nested_vmx nested;
625
626         /* Dynamic PLE window. */
627         int ple_window;
628         bool ple_window_dirty;
629
630         /* Support for PML */
631 #define PML_ENTITY_NUM          512
632         struct page *pml_pg;
633
634         /* apic deadline value in host tsc */
635         u64 hv_deadline_tsc;
636
637         u64 current_tsc_ratio;
638
639         u32 host_pkru;
640
641         /*
642          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
643          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
644          * in msr_ia32_feature_control_valid_bits.
645          */
646         u64 msr_ia32_feature_control;
647         u64 msr_ia32_feature_control_valid_bits;
648 };
649
650 enum segment_cache_field {
651         SEG_FIELD_SEL = 0,
652         SEG_FIELD_BASE = 1,
653         SEG_FIELD_LIMIT = 2,
654         SEG_FIELD_AR = 3,
655
656         SEG_FIELD_NR = 4
657 };
658
659 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
660 {
661         return container_of(vcpu, struct vcpu_vmx, vcpu);
662 }
663
664 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
665 {
666         return &(to_vmx(vcpu)->pi_desc);
667 }
668
669 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
670 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
671 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
672                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
673
674
675 static unsigned long shadow_read_only_fields[] = {
676         /*
677          * We do NOT shadow fields that are modified when L0
678          * traps and emulates any vmx instruction (e.g. VMPTRLD,
679          * VMXON...) executed by L1.
680          * For example, VM_INSTRUCTION_ERROR is read
681          * by L1 if a vmx instruction fails (part of the error path).
682          * Note the code assumes this logic. If for some reason
683          * we start shadowing these fields then we need to
684          * force a shadow sync when L0 emulates vmx instructions
685          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
686          * by nested_vmx_failValid)
687          */
688         VM_EXIT_REASON,
689         VM_EXIT_INTR_INFO,
690         VM_EXIT_INSTRUCTION_LEN,
691         IDT_VECTORING_INFO_FIELD,
692         IDT_VECTORING_ERROR_CODE,
693         VM_EXIT_INTR_ERROR_CODE,
694         EXIT_QUALIFICATION,
695         GUEST_LINEAR_ADDRESS,
696         GUEST_PHYSICAL_ADDRESS
697 };
698 static int max_shadow_read_only_fields =
699         ARRAY_SIZE(shadow_read_only_fields);
700
701 static unsigned long shadow_read_write_fields[] = {
702         TPR_THRESHOLD,
703         GUEST_RIP,
704         GUEST_RSP,
705         GUEST_CR0,
706         GUEST_CR3,
707         GUEST_CR4,
708         GUEST_INTERRUPTIBILITY_INFO,
709         GUEST_RFLAGS,
710         GUEST_CS_SELECTOR,
711         GUEST_CS_AR_BYTES,
712         GUEST_CS_LIMIT,
713         GUEST_CS_BASE,
714         GUEST_ES_BASE,
715         GUEST_BNDCFGS,
716         CR0_GUEST_HOST_MASK,
717         CR0_READ_SHADOW,
718         CR4_READ_SHADOW,
719         TSC_OFFSET,
720         EXCEPTION_BITMAP,
721         CPU_BASED_VM_EXEC_CONTROL,
722         VM_ENTRY_EXCEPTION_ERROR_CODE,
723         VM_ENTRY_INTR_INFO_FIELD,
724         VM_ENTRY_INSTRUCTION_LEN,
725         VM_ENTRY_EXCEPTION_ERROR_CODE,
726         HOST_FS_BASE,
727         HOST_GS_BASE,
728         HOST_FS_SELECTOR,
729         HOST_GS_SELECTOR
730 };
731 static int max_shadow_read_write_fields =
732         ARRAY_SIZE(shadow_read_write_fields);
733
734 static const unsigned short vmcs_field_to_offset_table[] = {
735         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
736         FIELD(POSTED_INTR_NV, posted_intr_nv),
737         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
738         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
739         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
740         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
741         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
742         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
743         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
744         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
745         FIELD(GUEST_INTR_STATUS, guest_intr_status),
746         FIELD(GUEST_PML_INDEX, guest_pml_index),
747         FIELD(HOST_ES_SELECTOR, host_es_selector),
748         FIELD(HOST_CS_SELECTOR, host_cs_selector),
749         FIELD(HOST_SS_SELECTOR, host_ss_selector),
750         FIELD(HOST_DS_SELECTOR, host_ds_selector),
751         FIELD(HOST_FS_SELECTOR, host_fs_selector),
752         FIELD(HOST_GS_SELECTOR, host_gs_selector),
753         FIELD(HOST_TR_SELECTOR, host_tr_selector),
754         FIELD64(IO_BITMAP_A, io_bitmap_a),
755         FIELD64(IO_BITMAP_B, io_bitmap_b),
756         FIELD64(MSR_BITMAP, msr_bitmap),
757         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
758         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
759         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
760         FIELD64(TSC_OFFSET, tsc_offset),
761         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
762         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
763         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
764         FIELD64(EPT_POINTER, ept_pointer),
765         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
766         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
767         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
768         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
769         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
770         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
771         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
772         FIELD64(PML_ADDRESS, pml_address),
773         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
774         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
775         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
776         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
777         FIELD64(GUEST_PDPTR0, guest_pdptr0),
778         FIELD64(GUEST_PDPTR1, guest_pdptr1),
779         FIELD64(GUEST_PDPTR2, guest_pdptr2),
780         FIELD64(GUEST_PDPTR3, guest_pdptr3),
781         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
782         FIELD64(HOST_IA32_PAT, host_ia32_pat),
783         FIELD64(HOST_IA32_EFER, host_ia32_efer),
784         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
785         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
786         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
787         FIELD(EXCEPTION_BITMAP, exception_bitmap),
788         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
789         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
790         FIELD(CR3_TARGET_COUNT, cr3_target_count),
791         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
792         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
793         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
794         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
795         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
796         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
797         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
798         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
799         FIELD(TPR_THRESHOLD, tpr_threshold),
800         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
801         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
802         FIELD(VM_EXIT_REASON, vm_exit_reason),
803         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
804         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
805         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
806         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
807         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
808         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
809         FIELD(GUEST_ES_LIMIT, guest_es_limit),
810         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
811         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
812         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
813         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
814         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
815         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
816         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
817         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
818         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
819         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
820         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
821         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
822         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
823         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
824         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
825         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
826         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
827         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
828         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
829         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
830         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
831         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
832         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
833         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
834         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
835         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
836         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
837         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
838         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
839         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
840         FIELD(EXIT_QUALIFICATION, exit_qualification),
841         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
842         FIELD(GUEST_CR0, guest_cr0),
843         FIELD(GUEST_CR3, guest_cr3),
844         FIELD(GUEST_CR4, guest_cr4),
845         FIELD(GUEST_ES_BASE, guest_es_base),
846         FIELD(GUEST_CS_BASE, guest_cs_base),
847         FIELD(GUEST_SS_BASE, guest_ss_base),
848         FIELD(GUEST_DS_BASE, guest_ds_base),
849         FIELD(GUEST_FS_BASE, guest_fs_base),
850         FIELD(GUEST_GS_BASE, guest_gs_base),
851         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
852         FIELD(GUEST_TR_BASE, guest_tr_base),
853         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
854         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
855         FIELD(GUEST_DR7, guest_dr7),
856         FIELD(GUEST_RSP, guest_rsp),
857         FIELD(GUEST_RIP, guest_rip),
858         FIELD(GUEST_RFLAGS, guest_rflags),
859         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
860         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
861         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
862         FIELD(HOST_CR0, host_cr0),
863         FIELD(HOST_CR3, host_cr3),
864         FIELD(HOST_CR4, host_cr4),
865         FIELD(HOST_FS_BASE, host_fs_base),
866         FIELD(HOST_GS_BASE, host_gs_base),
867         FIELD(HOST_TR_BASE, host_tr_base),
868         FIELD(HOST_GDTR_BASE, host_gdtr_base),
869         FIELD(HOST_IDTR_BASE, host_idtr_base),
870         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
871         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
872         FIELD(HOST_RSP, host_rsp),
873         FIELD(HOST_RIP, host_rip),
874 };
875
876 static inline short vmcs_field_to_offset(unsigned long field)
877 {
878         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
879
880         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
881             vmcs_field_to_offset_table[field] == 0)
882                 return -ENOENT;
883
884         return vmcs_field_to_offset_table[field];
885 }
886
887 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
888 {
889         return to_vmx(vcpu)->nested.cached_vmcs12;
890 }
891
892 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
893 {
894         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
895         if (is_error_page(page))
896                 return NULL;
897
898         return page;
899 }
900
901 static void nested_release_page(struct page *page)
902 {
903         kvm_release_page_dirty(page);
904 }
905
906 static void nested_release_page_clean(struct page *page)
907 {
908         kvm_release_page_clean(page);
909 }
910
911 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
912 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
913 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
914 static bool vmx_xsaves_supported(void);
915 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
916 static void vmx_set_segment(struct kvm_vcpu *vcpu,
917                             struct kvm_segment *var, int seg);
918 static void vmx_get_segment(struct kvm_vcpu *vcpu,
919                             struct kvm_segment *var, int seg);
920 static bool guest_state_valid(struct kvm_vcpu *vcpu);
921 static u32 vmx_segment_access_rights(struct kvm_segment *var);
922 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
923 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
924 static int alloc_identity_pagetable(struct kvm *kvm);
925 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
926 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
927 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
928                                             u16 error_code);
929
930 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
931 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
932 /*
933  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
934  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
935  */
936 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
937
938 /*
939  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
940  * can find which vCPU should be waken up.
941  */
942 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
943 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
944
945 enum {
946         VMX_IO_BITMAP_A,
947         VMX_IO_BITMAP_B,
948         VMX_MSR_BITMAP_LEGACY,
949         VMX_MSR_BITMAP_LONGMODE,
950         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
951         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
952         VMX_MSR_BITMAP_LEGACY_X2APIC,
953         VMX_MSR_BITMAP_LONGMODE_X2APIC,
954         VMX_VMREAD_BITMAP,
955         VMX_VMWRITE_BITMAP,
956         VMX_BITMAP_NR
957 };
958
959 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
960
961 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
962 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
963 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
964 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
965 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
966 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
967 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
968 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
969 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
970 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
971
972 static bool cpu_has_load_ia32_efer;
973 static bool cpu_has_load_perf_global_ctrl;
974
975 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
976 static DEFINE_SPINLOCK(vmx_vpid_lock);
977
978 static struct vmcs_config {
979         int size;
980         int order;
981         u32 basic_cap;
982         u32 revision_id;
983         u32 pin_based_exec_ctrl;
984         u32 cpu_based_exec_ctrl;
985         u32 cpu_based_2nd_exec_ctrl;
986         u32 vmexit_ctrl;
987         u32 vmentry_ctrl;
988 } vmcs_config;
989
990 static struct vmx_capability {
991         u32 ept;
992         u32 vpid;
993 } vmx_capability;
994
995 #define VMX_SEGMENT_FIELD(seg)                                  \
996         [VCPU_SREG_##seg] = {                                   \
997                 .selector = GUEST_##seg##_SELECTOR,             \
998                 .base = GUEST_##seg##_BASE,                     \
999                 .limit = GUEST_##seg##_LIMIT,                   \
1000                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1001         }
1002
1003 static const struct kvm_vmx_segment_field {
1004         unsigned selector;
1005         unsigned base;
1006         unsigned limit;
1007         unsigned ar_bytes;
1008 } kvm_vmx_segment_fields[] = {
1009         VMX_SEGMENT_FIELD(CS),
1010         VMX_SEGMENT_FIELD(DS),
1011         VMX_SEGMENT_FIELD(ES),
1012         VMX_SEGMENT_FIELD(FS),
1013         VMX_SEGMENT_FIELD(GS),
1014         VMX_SEGMENT_FIELD(SS),
1015         VMX_SEGMENT_FIELD(TR),
1016         VMX_SEGMENT_FIELD(LDTR),
1017 };
1018
1019 static u64 host_efer;
1020
1021 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1022
1023 /*
1024  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1025  * away by decrementing the array size.
1026  */
1027 static const u32 vmx_msr_index[] = {
1028 #ifdef CONFIG_X86_64
1029         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1030 #endif
1031         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1032 };
1033
1034 static inline bool is_exception_n(u32 intr_info, u8 vector)
1035 {
1036         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1037                              INTR_INFO_VALID_MASK)) ==
1038                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1039 }
1040
1041 static inline bool is_debug(u32 intr_info)
1042 {
1043         return is_exception_n(intr_info, DB_VECTOR);
1044 }
1045
1046 static inline bool is_breakpoint(u32 intr_info)
1047 {
1048         return is_exception_n(intr_info, BP_VECTOR);
1049 }
1050
1051 static inline bool is_page_fault(u32 intr_info)
1052 {
1053         return is_exception_n(intr_info, PF_VECTOR);
1054 }
1055
1056 static inline bool is_no_device(u32 intr_info)
1057 {
1058         return is_exception_n(intr_info, NM_VECTOR);
1059 }
1060
1061 static inline bool is_invalid_opcode(u32 intr_info)
1062 {
1063         return is_exception_n(intr_info, UD_VECTOR);
1064 }
1065
1066 static inline bool is_external_interrupt(u32 intr_info)
1067 {
1068         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1069                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1070 }
1071
1072 static inline bool is_machine_check(u32 intr_info)
1073 {
1074         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1075                              INTR_INFO_VALID_MASK)) ==
1076                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1077 }
1078
1079 static inline bool cpu_has_vmx_msr_bitmap(void)
1080 {
1081         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1082 }
1083
1084 static inline bool cpu_has_vmx_tpr_shadow(void)
1085 {
1086         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1087 }
1088
1089 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1090 {
1091         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1092 }
1093
1094 static inline bool cpu_has_secondary_exec_ctrls(void)
1095 {
1096         return vmcs_config.cpu_based_exec_ctrl &
1097                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1098 }
1099
1100 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1101 {
1102         return vmcs_config.cpu_based_2nd_exec_ctrl &
1103                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1104 }
1105
1106 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1107 {
1108         return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1110 }
1111
1112 static inline bool cpu_has_vmx_apic_register_virt(void)
1113 {
1114         return vmcs_config.cpu_based_2nd_exec_ctrl &
1115                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1116 }
1117
1118 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1119 {
1120         return vmcs_config.cpu_based_2nd_exec_ctrl &
1121                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1122 }
1123
1124 /*
1125  * Comment's format: document - errata name - stepping - processor name.
1126  * Refer from
1127  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1128  */
1129 static u32 vmx_preemption_cpu_tfms[] = {
1130 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1131 0x000206E6,
1132 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1133 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1134 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1135 0x00020652,
1136 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1137 0x00020655,
1138 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1139 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1140 /*
1141  * 320767.pdf - AAP86  - B1 -
1142  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1143  */
1144 0x000106E5,
1145 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1146 0x000106A0,
1147 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1148 0x000106A1,
1149 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1150 0x000106A4,
1151  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1152  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1153  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1154 0x000106A5,
1155 };
1156
1157 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1158 {
1159         u32 eax = cpuid_eax(0x00000001), i;
1160
1161         /* Clear the reserved bits */
1162         eax &= ~(0x3U << 14 | 0xfU << 28);
1163         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1164                 if (eax == vmx_preemption_cpu_tfms[i])
1165                         return true;
1166
1167         return false;
1168 }
1169
1170 static inline bool cpu_has_vmx_preemption_timer(void)
1171 {
1172         return vmcs_config.pin_based_exec_ctrl &
1173                 PIN_BASED_VMX_PREEMPTION_TIMER;
1174 }
1175
1176 static inline bool cpu_has_vmx_posted_intr(void)
1177 {
1178         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1179                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1180 }
1181
1182 static inline bool cpu_has_vmx_apicv(void)
1183 {
1184         return cpu_has_vmx_apic_register_virt() &&
1185                 cpu_has_vmx_virtual_intr_delivery() &&
1186                 cpu_has_vmx_posted_intr();
1187 }
1188
1189 static inline bool cpu_has_vmx_flexpriority(void)
1190 {
1191         return cpu_has_vmx_tpr_shadow() &&
1192                 cpu_has_vmx_virtualize_apic_accesses();
1193 }
1194
1195 static inline bool cpu_has_vmx_ept_execute_only(void)
1196 {
1197         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1198 }
1199
1200 static inline bool cpu_has_vmx_ept_2m_page(void)
1201 {
1202         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1203 }
1204
1205 static inline bool cpu_has_vmx_ept_1g_page(void)
1206 {
1207         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1208 }
1209
1210 static inline bool cpu_has_vmx_ept_4levels(void)
1211 {
1212         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1213 }
1214
1215 static inline bool cpu_has_vmx_ept_ad_bits(void)
1216 {
1217         return vmx_capability.ept & VMX_EPT_AD_BIT;
1218 }
1219
1220 static inline bool cpu_has_vmx_invept_context(void)
1221 {
1222         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1223 }
1224
1225 static inline bool cpu_has_vmx_invept_global(void)
1226 {
1227         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1228 }
1229
1230 static inline bool cpu_has_vmx_invvpid_single(void)
1231 {
1232         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1233 }
1234
1235 static inline bool cpu_has_vmx_invvpid_global(void)
1236 {
1237         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1238 }
1239
1240 static inline bool cpu_has_vmx_invvpid(void)
1241 {
1242         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1243 }
1244
1245 static inline bool cpu_has_vmx_ept(void)
1246 {
1247         return vmcs_config.cpu_based_2nd_exec_ctrl &
1248                 SECONDARY_EXEC_ENABLE_EPT;
1249 }
1250
1251 static inline bool cpu_has_vmx_unrestricted_guest(void)
1252 {
1253         return vmcs_config.cpu_based_2nd_exec_ctrl &
1254                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1255 }
1256
1257 static inline bool cpu_has_vmx_ple(void)
1258 {
1259         return vmcs_config.cpu_based_2nd_exec_ctrl &
1260                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1261 }
1262
1263 static inline bool cpu_has_vmx_basic_inout(void)
1264 {
1265         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1266 }
1267
1268 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1269 {
1270         return flexpriority_enabled && lapic_in_kernel(vcpu);
1271 }
1272
1273 static inline bool cpu_has_vmx_vpid(void)
1274 {
1275         return vmcs_config.cpu_based_2nd_exec_ctrl &
1276                 SECONDARY_EXEC_ENABLE_VPID;
1277 }
1278
1279 static inline bool cpu_has_vmx_rdtscp(void)
1280 {
1281         return vmcs_config.cpu_based_2nd_exec_ctrl &
1282                 SECONDARY_EXEC_RDTSCP;
1283 }
1284
1285 static inline bool cpu_has_vmx_invpcid(void)
1286 {
1287         return vmcs_config.cpu_based_2nd_exec_ctrl &
1288                 SECONDARY_EXEC_ENABLE_INVPCID;
1289 }
1290
1291 static inline bool cpu_has_vmx_wbinvd_exit(void)
1292 {
1293         return vmcs_config.cpu_based_2nd_exec_ctrl &
1294                 SECONDARY_EXEC_WBINVD_EXITING;
1295 }
1296
1297 static inline bool cpu_has_vmx_shadow_vmcs(void)
1298 {
1299         u64 vmx_msr;
1300         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1301         /* check if the cpu supports writing r/o exit information fields */
1302         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1303                 return false;
1304
1305         return vmcs_config.cpu_based_2nd_exec_ctrl &
1306                 SECONDARY_EXEC_SHADOW_VMCS;
1307 }
1308
1309 static inline bool cpu_has_vmx_pml(void)
1310 {
1311         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1312 }
1313
1314 static inline bool cpu_has_vmx_tsc_scaling(void)
1315 {
1316         return vmcs_config.cpu_based_2nd_exec_ctrl &
1317                 SECONDARY_EXEC_TSC_SCALING;
1318 }
1319
1320 static inline bool report_flexpriority(void)
1321 {
1322         return flexpriority_enabled;
1323 }
1324
1325 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1326 {
1327         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1328 }
1329
1330 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1331 {
1332         return vmcs12->cpu_based_vm_exec_control & bit;
1333 }
1334
1335 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1336 {
1337         return (vmcs12->cpu_based_vm_exec_control &
1338                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1339                 (vmcs12->secondary_vm_exec_control & bit);
1340 }
1341
1342 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1343 {
1344         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1345 }
1346
1347 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1348 {
1349         return vmcs12->pin_based_vm_exec_control &
1350                 PIN_BASED_VMX_PREEMPTION_TIMER;
1351 }
1352
1353 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1354 {
1355         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1356 }
1357
1358 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1359 {
1360         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1361                 vmx_xsaves_supported();
1362 }
1363
1364 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1365 {
1366         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1367 }
1368
1369 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1370 {
1371         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1372 }
1373
1374 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1375 {
1376         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1377 }
1378
1379 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1380 {
1381         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1382 }
1383
1384 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1385 {
1386         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1387 }
1388
1389 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1390 {
1391         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1392 }
1393
1394 static inline bool is_nmi(u32 intr_info)
1395 {
1396         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1397                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1398 }
1399
1400 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1401                               u32 exit_intr_info,
1402                               unsigned long exit_qualification);
1403 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1404                         struct vmcs12 *vmcs12,
1405                         u32 reason, unsigned long qualification);
1406
1407 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1408 {
1409         int i;
1410
1411         for (i = 0; i < vmx->nmsrs; ++i)
1412                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1413                         return i;
1414         return -1;
1415 }
1416
1417 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1418 {
1419     struct {
1420         u64 vpid : 16;
1421         u64 rsvd : 48;
1422         u64 gva;
1423     } operand = { vpid, 0, gva };
1424
1425     asm volatile (__ex(ASM_VMX_INVVPID)
1426                   /* CF==1 or ZF==1 --> rc = -1 */
1427                   "; ja 1f ; ud2 ; 1:"
1428                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1429 }
1430
1431 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1432 {
1433         struct {
1434                 u64 eptp, gpa;
1435         } operand = {eptp, gpa};
1436
1437         asm volatile (__ex(ASM_VMX_INVEPT)
1438                         /* CF==1 or ZF==1 --> rc = -1 */
1439                         "; ja 1f ; ud2 ; 1:\n"
1440                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1441 }
1442
1443 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1444 {
1445         int i;
1446
1447         i = __find_msr_index(vmx, msr);
1448         if (i >= 0)
1449                 return &vmx->guest_msrs[i];
1450         return NULL;
1451 }
1452
1453 static void vmcs_clear(struct vmcs *vmcs)
1454 {
1455         u64 phys_addr = __pa(vmcs);
1456         u8 error;
1457
1458         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1459                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1460                       : "cc", "memory");
1461         if (error)
1462                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1463                        vmcs, phys_addr);
1464 }
1465
1466 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1467 {
1468         vmcs_clear(loaded_vmcs->vmcs);
1469         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1470                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1471         loaded_vmcs->cpu = -1;
1472         loaded_vmcs->launched = 0;
1473 }
1474
1475 static void vmcs_load(struct vmcs *vmcs)
1476 {
1477         u64 phys_addr = __pa(vmcs);
1478         u8 error;
1479
1480         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1481                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1482                         : "cc", "memory");
1483         if (error)
1484                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1485                        vmcs, phys_addr);
1486 }
1487
1488 #ifdef CONFIG_KEXEC_CORE
1489 /*
1490  * This bitmap is used to indicate whether the vmclear
1491  * operation is enabled on all cpus. All disabled by
1492  * default.
1493  */
1494 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1495
1496 static inline void crash_enable_local_vmclear(int cpu)
1497 {
1498         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1499 }
1500
1501 static inline void crash_disable_local_vmclear(int cpu)
1502 {
1503         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1504 }
1505
1506 static inline int crash_local_vmclear_enabled(int cpu)
1507 {
1508         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1509 }
1510
1511 static void crash_vmclear_local_loaded_vmcss(void)
1512 {
1513         int cpu = raw_smp_processor_id();
1514         struct loaded_vmcs *v;
1515
1516         if (!crash_local_vmclear_enabled(cpu))
1517                 return;
1518
1519         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1520                             loaded_vmcss_on_cpu_link)
1521                 vmcs_clear(v->vmcs);
1522 }
1523 #else
1524 static inline void crash_enable_local_vmclear(int cpu) { }
1525 static inline void crash_disable_local_vmclear(int cpu) { }
1526 #endif /* CONFIG_KEXEC_CORE */
1527
1528 static void __loaded_vmcs_clear(void *arg)
1529 {
1530         struct loaded_vmcs *loaded_vmcs = arg;
1531         int cpu = raw_smp_processor_id();
1532
1533         if (loaded_vmcs->cpu != cpu)
1534                 return; /* vcpu migration can race with cpu offline */
1535         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1536                 per_cpu(current_vmcs, cpu) = NULL;
1537         crash_disable_local_vmclear(cpu);
1538         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1539
1540         /*
1541          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1542          * is before setting loaded_vmcs->vcpu to -1 which is done in
1543          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1544          * then adds the vmcs into percpu list before it is deleted.
1545          */
1546         smp_wmb();
1547
1548         loaded_vmcs_init(loaded_vmcs);
1549         crash_enable_local_vmclear(cpu);
1550 }
1551
1552 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1553 {
1554         int cpu = loaded_vmcs->cpu;
1555
1556         if (cpu != -1)
1557                 smp_call_function_single(cpu,
1558                          __loaded_vmcs_clear, loaded_vmcs, 1);
1559 }
1560
1561 static inline void vpid_sync_vcpu_single(int vpid)
1562 {
1563         if (vpid == 0)
1564                 return;
1565
1566         if (cpu_has_vmx_invvpid_single())
1567                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1568 }
1569
1570 static inline void vpid_sync_vcpu_global(void)
1571 {
1572         if (cpu_has_vmx_invvpid_global())
1573                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1574 }
1575
1576 static inline void vpid_sync_context(int vpid)
1577 {
1578         if (cpu_has_vmx_invvpid_single())
1579                 vpid_sync_vcpu_single(vpid);
1580         else
1581                 vpid_sync_vcpu_global();
1582 }
1583
1584 static inline void ept_sync_global(void)
1585 {
1586         if (cpu_has_vmx_invept_global())
1587                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1588 }
1589
1590 static inline void ept_sync_context(u64 eptp)
1591 {
1592         if (enable_ept) {
1593                 if (cpu_has_vmx_invept_context())
1594                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1595                 else
1596                         ept_sync_global();
1597         }
1598 }
1599
1600 static __always_inline void vmcs_check16(unsigned long field)
1601 {
1602         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1603                          "16-bit accessor invalid for 64-bit field");
1604         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1605                          "16-bit accessor invalid for 64-bit high field");
1606         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1607                          "16-bit accessor invalid for 32-bit high field");
1608         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1609                          "16-bit accessor invalid for natural width field");
1610 }
1611
1612 static __always_inline void vmcs_check32(unsigned long field)
1613 {
1614         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1615                          "32-bit accessor invalid for 16-bit field");
1616         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1617                          "32-bit accessor invalid for natural width field");
1618 }
1619
1620 static __always_inline void vmcs_check64(unsigned long field)
1621 {
1622         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1623                          "64-bit accessor invalid for 16-bit field");
1624         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1625                          "64-bit accessor invalid for 64-bit high field");
1626         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1627                          "64-bit accessor invalid for 32-bit field");
1628         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1629                          "64-bit accessor invalid for natural width field");
1630 }
1631
1632 static __always_inline void vmcs_checkl(unsigned long field)
1633 {
1634         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1635                          "Natural width accessor invalid for 16-bit field");
1636         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1637                          "Natural width accessor invalid for 64-bit field");
1638         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1639                          "Natural width accessor invalid for 64-bit high field");
1640         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1641                          "Natural width accessor invalid for 32-bit field");
1642 }
1643
1644 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1645 {
1646         unsigned long value;
1647
1648         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1649                       : "=a"(value) : "d"(field) : "cc");
1650         return value;
1651 }
1652
1653 static __always_inline u16 vmcs_read16(unsigned long field)
1654 {
1655         vmcs_check16(field);
1656         return __vmcs_readl(field);
1657 }
1658
1659 static __always_inline u32 vmcs_read32(unsigned long field)
1660 {
1661         vmcs_check32(field);
1662         return __vmcs_readl(field);
1663 }
1664
1665 static __always_inline u64 vmcs_read64(unsigned long field)
1666 {
1667         vmcs_check64(field);
1668 #ifdef CONFIG_X86_64
1669         return __vmcs_readl(field);
1670 #else
1671         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1672 #endif
1673 }
1674
1675 static __always_inline unsigned long vmcs_readl(unsigned long field)
1676 {
1677         vmcs_checkl(field);
1678         return __vmcs_readl(field);
1679 }
1680
1681 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1682 {
1683         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1684                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1685         dump_stack();
1686 }
1687
1688 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1689 {
1690         u8 error;
1691
1692         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1693                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1694         if (unlikely(error))
1695                 vmwrite_error(field, value);
1696 }
1697
1698 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1699 {
1700         vmcs_check16(field);
1701         __vmcs_writel(field, value);
1702 }
1703
1704 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1705 {
1706         vmcs_check32(field);
1707         __vmcs_writel(field, value);
1708 }
1709
1710 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1711 {
1712         vmcs_check64(field);
1713         __vmcs_writel(field, value);
1714 #ifndef CONFIG_X86_64
1715         asm volatile ("");
1716         __vmcs_writel(field+1, value >> 32);
1717 #endif
1718 }
1719
1720 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1721 {
1722         vmcs_checkl(field);
1723         __vmcs_writel(field, value);
1724 }
1725
1726 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1727 {
1728         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1729                          "vmcs_clear_bits does not support 64-bit fields");
1730         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1731 }
1732
1733 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1734 {
1735         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1736                          "vmcs_set_bits does not support 64-bit fields");
1737         __vmcs_writel(field, __vmcs_readl(field) | mask);
1738 }
1739
1740 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1741 {
1742         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1743 }
1744
1745 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1746 {
1747         vmcs_write32(VM_ENTRY_CONTROLS, val);
1748         vmx->vm_entry_controls_shadow = val;
1749 }
1750
1751 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1752 {
1753         if (vmx->vm_entry_controls_shadow != val)
1754                 vm_entry_controls_init(vmx, val);
1755 }
1756
1757 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1758 {
1759         return vmx->vm_entry_controls_shadow;
1760 }
1761
1762
1763 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1764 {
1765         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1766 }
1767
1768 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1769 {
1770         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1771 }
1772
1773 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1774 {
1775         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1776 }
1777
1778 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1779 {
1780         vmcs_write32(VM_EXIT_CONTROLS, val);
1781         vmx->vm_exit_controls_shadow = val;
1782 }
1783
1784 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1785 {
1786         if (vmx->vm_exit_controls_shadow != val)
1787                 vm_exit_controls_init(vmx, val);
1788 }
1789
1790 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1791 {
1792         return vmx->vm_exit_controls_shadow;
1793 }
1794
1795
1796 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1797 {
1798         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1799 }
1800
1801 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1802 {
1803         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1804 }
1805
1806 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1807 {
1808         vmx->segment_cache.bitmask = 0;
1809 }
1810
1811 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1812                                        unsigned field)
1813 {
1814         bool ret;
1815         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1816
1817         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1818                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1819                 vmx->segment_cache.bitmask = 0;
1820         }
1821         ret = vmx->segment_cache.bitmask & mask;
1822         vmx->segment_cache.bitmask |= mask;
1823         return ret;
1824 }
1825
1826 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1827 {
1828         u16 *p = &vmx->segment_cache.seg[seg].selector;
1829
1830         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1831                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1832         return *p;
1833 }
1834
1835 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1836 {
1837         ulong *p = &vmx->segment_cache.seg[seg].base;
1838
1839         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1840                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1841         return *p;
1842 }
1843
1844 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1845 {
1846         u32 *p = &vmx->segment_cache.seg[seg].limit;
1847
1848         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1849                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1850         return *p;
1851 }
1852
1853 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1854 {
1855         u32 *p = &vmx->segment_cache.seg[seg].ar;
1856
1857         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1858                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1859         return *p;
1860 }
1861
1862 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1863 {
1864         u32 eb;
1865
1866         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1867              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1868         if ((vcpu->guest_debug &
1869              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1870             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1871                 eb |= 1u << BP_VECTOR;
1872         if (to_vmx(vcpu)->rmode.vm86_active)
1873                 eb = ~0;
1874         if (enable_ept)
1875                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1876
1877         /* When we are running a nested L2 guest and L1 specified for it a
1878          * certain exception bitmap, we must trap the same exceptions and pass
1879          * them to L1. When running L2, we will only handle the exceptions
1880          * specified above if L1 did not want them.
1881          */
1882         if (is_guest_mode(vcpu))
1883                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1884
1885         vmcs_write32(EXCEPTION_BITMAP, eb);
1886 }
1887
1888 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1889                 unsigned long entry, unsigned long exit)
1890 {
1891         vm_entry_controls_clearbit(vmx, entry);
1892         vm_exit_controls_clearbit(vmx, exit);
1893 }
1894
1895 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1896 {
1897         unsigned i;
1898         struct msr_autoload *m = &vmx->msr_autoload;
1899
1900         switch (msr) {
1901         case MSR_EFER:
1902                 if (cpu_has_load_ia32_efer) {
1903                         clear_atomic_switch_msr_special(vmx,
1904                                         VM_ENTRY_LOAD_IA32_EFER,
1905                                         VM_EXIT_LOAD_IA32_EFER);
1906                         return;
1907                 }
1908                 break;
1909         case MSR_CORE_PERF_GLOBAL_CTRL:
1910                 if (cpu_has_load_perf_global_ctrl) {
1911                         clear_atomic_switch_msr_special(vmx,
1912                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1913                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1914                         return;
1915                 }
1916                 break;
1917         }
1918
1919         for (i = 0; i < m->nr; ++i)
1920                 if (m->guest[i].index == msr)
1921                         break;
1922
1923         if (i == m->nr)
1924                 return;
1925         --m->nr;
1926         m->guest[i] = m->guest[m->nr];
1927         m->host[i] = m->host[m->nr];
1928         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1929         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1930 }
1931
1932 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1933                 unsigned long entry, unsigned long exit,
1934                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1935                 u64 guest_val, u64 host_val)
1936 {
1937         vmcs_write64(guest_val_vmcs, guest_val);
1938         vmcs_write64(host_val_vmcs, host_val);
1939         vm_entry_controls_setbit(vmx, entry);
1940         vm_exit_controls_setbit(vmx, exit);
1941 }
1942
1943 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1944                                   u64 guest_val, u64 host_val)
1945 {
1946         unsigned i;
1947         struct msr_autoload *m = &vmx->msr_autoload;
1948
1949         switch (msr) {
1950         case MSR_EFER:
1951                 if (cpu_has_load_ia32_efer) {
1952                         add_atomic_switch_msr_special(vmx,
1953                                         VM_ENTRY_LOAD_IA32_EFER,
1954                                         VM_EXIT_LOAD_IA32_EFER,
1955                                         GUEST_IA32_EFER,
1956                                         HOST_IA32_EFER,
1957                                         guest_val, host_val);
1958                         return;
1959                 }
1960                 break;
1961         case MSR_CORE_PERF_GLOBAL_CTRL:
1962                 if (cpu_has_load_perf_global_ctrl) {
1963                         add_atomic_switch_msr_special(vmx,
1964                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1965                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1966                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1967                                         HOST_IA32_PERF_GLOBAL_CTRL,
1968                                         guest_val, host_val);
1969                         return;
1970                 }
1971                 break;
1972         case MSR_IA32_PEBS_ENABLE:
1973                 /* PEBS needs a quiescent period after being disabled (to write
1974                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1975                  * provide that period, so a CPU could write host's record into
1976                  * guest's memory.
1977                  */
1978                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1979         }
1980
1981         for (i = 0; i < m->nr; ++i)
1982                 if (m->guest[i].index == msr)
1983                         break;
1984
1985         if (i == NR_AUTOLOAD_MSRS) {
1986                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1987                                 "Can't add msr %x\n", msr);
1988                 return;
1989         } else if (i == m->nr) {
1990                 ++m->nr;
1991                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1992                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1993         }
1994
1995         m->guest[i].index = msr;
1996         m->guest[i].value = guest_val;
1997         m->host[i].index = msr;
1998         m->host[i].value = host_val;
1999 }
2000
2001 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2002 {
2003         u64 guest_efer = vmx->vcpu.arch.efer;
2004         u64 ignore_bits = 0;
2005
2006         if (!enable_ept) {
2007                 /*
2008                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2009                  * host CPUID is more efficient than testing guest CPUID
2010                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2011                  */
2012                 if (boot_cpu_has(X86_FEATURE_SMEP))
2013                         guest_efer |= EFER_NX;
2014                 else if (!(guest_efer & EFER_NX))
2015                         ignore_bits |= EFER_NX;
2016         }
2017
2018         /*
2019          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2020          */
2021         ignore_bits |= EFER_SCE;
2022 #ifdef CONFIG_X86_64
2023         ignore_bits |= EFER_LMA | EFER_LME;
2024         /* SCE is meaningful only in long mode on Intel */
2025         if (guest_efer & EFER_LMA)
2026                 ignore_bits &= ~(u64)EFER_SCE;
2027 #endif
2028
2029         clear_atomic_switch_msr(vmx, MSR_EFER);
2030
2031         /*
2032          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2033          * On CPUs that support "load IA32_EFER", always switch EFER
2034          * atomically, since it's faster than switching it manually.
2035          */
2036         if (cpu_has_load_ia32_efer ||
2037             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2038                 if (!(guest_efer & EFER_LMA))
2039                         guest_efer &= ~EFER_LME;
2040                 if (guest_efer != host_efer)
2041                         add_atomic_switch_msr(vmx, MSR_EFER,
2042                                               guest_efer, host_efer);
2043                 return false;
2044         } else {
2045                 guest_efer &= ~ignore_bits;
2046                 guest_efer |= host_efer & ignore_bits;
2047
2048                 vmx->guest_msrs[efer_offset].data = guest_efer;
2049                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2050
2051                 return true;
2052         }
2053 }
2054
2055 #ifdef CONFIG_X86_32
2056 /*
2057  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2058  * VMCS rather than the segment table.  KVM uses this helper to figure
2059  * out the current bases to poke them into the VMCS before entry.
2060  */
2061 static unsigned long segment_base(u16 selector)
2062 {
2063         struct desc_struct *table;
2064         unsigned long v;
2065
2066         if (!(selector & ~SEGMENT_RPL_MASK))
2067                 return 0;
2068
2069         table = get_current_gdt_ro();
2070
2071         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2072                 u16 ldt_selector = kvm_read_ldt();
2073
2074                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2075                         return 0;
2076
2077                 table = (struct desc_struct *)segment_base(ldt_selector);
2078         }
2079         v = get_desc_base(&table[selector >> 3]);
2080         return v;
2081 }
2082 #endif
2083
2084 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2085 {
2086         struct vcpu_vmx *vmx = to_vmx(vcpu);
2087         int i;
2088
2089         if (vmx->host_state.loaded)
2090                 return;
2091
2092         vmx->host_state.loaded = 1;
2093         /*
2094          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2095          * allow segment selectors with cpl > 0 or ti == 1.
2096          */
2097         vmx->host_state.ldt_sel = kvm_read_ldt();
2098         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2099         savesegment(fs, vmx->host_state.fs_sel);
2100         if (!(vmx->host_state.fs_sel & 7)) {
2101                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2102                 vmx->host_state.fs_reload_needed = 0;
2103         } else {
2104                 vmcs_write16(HOST_FS_SELECTOR, 0);
2105                 vmx->host_state.fs_reload_needed = 1;
2106         }
2107         savesegment(gs, vmx->host_state.gs_sel);
2108         if (!(vmx->host_state.gs_sel & 7))
2109                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2110         else {
2111                 vmcs_write16(HOST_GS_SELECTOR, 0);
2112                 vmx->host_state.gs_ldt_reload_needed = 1;
2113         }
2114
2115 #ifdef CONFIG_X86_64
2116         savesegment(ds, vmx->host_state.ds_sel);
2117         savesegment(es, vmx->host_state.es_sel);
2118 #endif
2119
2120 #ifdef CONFIG_X86_64
2121         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2122         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2123 #else
2124         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2125         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2126 #endif
2127
2128 #ifdef CONFIG_X86_64
2129         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2130         if (is_long_mode(&vmx->vcpu))
2131                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2132 #endif
2133         if (boot_cpu_has(X86_FEATURE_MPX))
2134                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2135         for (i = 0; i < vmx->save_nmsrs; ++i)
2136                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2137                                    vmx->guest_msrs[i].data,
2138                                    vmx->guest_msrs[i].mask);
2139 }
2140
2141 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2142 {
2143         if (!vmx->host_state.loaded)
2144                 return;
2145
2146         ++vmx->vcpu.stat.host_state_reload;
2147         vmx->host_state.loaded = 0;
2148 #ifdef CONFIG_X86_64
2149         if (is_long_mode(&vmx->vcpu))
2150                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2151 #endif
2152         if (vmx->host_state.gs_ldt_reload_needed) {
2153                 kvm_load_ldt(vmx->host_state.ldt_sel);
2154 #ifdef CONFIG_X86_64
2155                 load_gs_index(vmx->host_state.gs_sel);
2156 #else
2157                 loadsegment(gs, vmx->host_state.gs_sel);
2158 #endif
2159         }
2160         if (vmx->host_state.fs_reload_needed)
2161                 loadsegment(fs, vmx->host_state.fs_sel);
2162 #ifdef CONFIG_X86_64
2163         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2164                 loadsegment(ds, vmx->host_state.ds_sel);
2165                 loadsegment(es, vmx->host_state.es_sel);
2166         }
2167 #endif
2168         invalidate_tss_limit();
2169 #ifdef CONFIG_X86_64
2170         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2171 #endif
2172         if (vmx->host_state.msr_host_bndcfgs)
2173                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2174         load_fixmap_gdt(raw_smp_processor_id());
2175 }
2176
2177 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2178 {
2179         preempt_disable();
2180         __vmx_load_host_state(vmx);
2181         preempt_enable();
2182 }
2183
2184 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2185 {
2186         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2187         struct pi_desc old, new;
2188         unsigned int dest;
2189
2190         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2191                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2192                 !kvm_vcpu_apicv_active(vcpu))
2193                 return;
2194
2195         do {
2196                 old.control = new.control = pi_desc->control;
2197
2198                 /*
2199                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2200                  * are two possible cases:
2201                  * 1. After running 'pre_block', context switch
2202                  *    happened. For this case, 'sn' was set in
2203                  *    vmx_vcpu_put(), so we need to clear it here.
2204                  * 2. After running 'pre_block', we were blocked,
2205                  *    and woken up by some other guy. For this case,
2206                  *    we don't need to do anything, 'pi_post_block'
2207                  *    will do everything for us. However, we cannot
2208                  *    check whether it is case #1 or case #2 here
2209                  *    (maybe, not needed), so we also clear sn here,
2210                  *    I think it is not a big deal.
2211                  */
2212                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2213                         if (vcpu->cpu != cpu) {
2214                                 dest = cpu_physical_id(cpu);
2215
2216                                 if (x2apic_enabled())
2217                                         new.ndst = dest;
2218                                 else
2219                                         new.ndst = (dest << 8) & 0xFF00;
2220                         }
2221
2222                         /* set 'NV' to 'notification vector' */
2223                         new.nv = POSTED_INTR_VECTOR;
2224                 }
2225
2226                 /* Allow posting non-urgent interrupts */
2227                 new.sn = 0;
2228         } while (cmpxchg(&pi_desc->control, old.control,
2229                         new.control) != old.control);
2230 }
2231
2232 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2233 {
2234         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2235         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2236 }
2237
2238 /*
2239  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2240  * vcpu mutex is already taken.
2241  */
2242 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2243 {
2244         struct vcpu_vmx *vmx = to_vmx(vcpu);
2245         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2246
2247         if (!already_loaded) {
2248                 loaded_vmcs_clear(vmx->loaded_vmcs);
2249                 local_irq_disable();
2250                 crash_disable_local_vmclear(cpu);
2251
2252                 /*
2253                  * Read loaded_vmcs->cpu should be before fetching
2254                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2255                  * See the comments in __loaded_vmcs_clear().
2256                  */
2257                 smp_rmb();
2258
2259                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2260                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2261                 crash_enable_local_vmclear(cpu);
2262                 local_irq_enable();
2263         }
2264
2265         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2266                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2267                 vmcs_load(vmx->loaded_vmcs->vmcs);
2268         }
2269
2270         if (!already_loaded) {
2271                 void *gdt = get_current_gdt_ro();
2272                 unsigned long sysenter_esp;
2273
2274                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2275
2276                 /*
2277                  * Linux uses per-cpu TSS and GDT, so set these when switching
2278                  * processors.  See 22.2.4.
2279                  */
2280                 vmcs_writel(HOST_TR_BASE,
2281                             (unsigned long)this_cpu_ptr(&cpu_tss));
2282                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2283
2284                 /*
2285                  * VM exits change the host TR limit to 0x67 after a VM
2286                  * exit.  This is okay, since 0x67 covers everything except
2287                  * the IO bitmap and have have code to handle the IO bitmap
2288                  * being lost after a VM exit.
2289                  */
2290                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2291
2292                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2293                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2294
2295                 vmx->loaded_vmcs->cpu = cpu;
2296         }
2297
2298         /* Setup TSC multiplier */
2299         if (kvm_has_tsc_control &&
2300             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2301                 decache_tsc_multiplier(vmx);
2302
2303         vmx_vcpu_pi_load(vcpu, cpu);
2304         vmx->host_pkru = read_pkru();
2305 }
2306
2307 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2308 {
2309         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2310
2311         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2312                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2313                 !kvm_vcpu_apicv_active(vcpu))
2314                 return;
2315
2316         /* Set SN when the vCPU is preempted */
2317         if (vcpu->preempted)
2318                 pi_set_sn(pi_desc);
2319 }
2320
2321 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2322 {
2323         vmx_vcpu_pi_put(vcpu);
2324
2325         __vmx_load_host_state(to_vmx(vcpu));
2326 }
2327
2328 static bool emulation_required(struct kvm_vcpu *vcpu)
2329 {
2330         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2331 }
2332
2333 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2334
2335 /*
2336  * Return the cr0 value that a nested guest would read. This is a combination
2337  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2338  * its hypervisor (cr0_read_shadow).
2339  */
2340 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2341 {
2342         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2343                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2344 }
2345 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2346 {
2347         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2348                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2349 }
2350
2351 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2352 {
2353         unsigned long rflags, save_rflags;
2354
2355         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2356                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2357                 rflags = vmcs_readl(GUEST_RFLAGS);
2358                 if (to_vmx(vcpu)->rmode.vm86_active) {
2359                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2360                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2361                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2362                 }
2363                 to_vmx(vcpu)->rflags = rflags;
2364         }
2365         return to_vmx(vcpu)->rflags;
2366 }
2367
2368 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2369 {
2370         unsigned long old_rflags = vmx_get_rflags(vcpu);
2371
2372         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2373         to_vmx(vcpu)->rflags = rflags;
2374         if (to_vmx(vcpu)->rmode.vm86_active) {
2375                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2376                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2377         }
2378         vmcs_writel(GUEST_RFLAGS, rflags);
2379
2380         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2381                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2382 }
2383
2384 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2385 {
2386         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2387         int ret = 0;
2388
2389         if (interruptibility & GUEST_INTR_STATE_STI)
2390                 ret |= KVM_X86_SHADOW_INT_STI;
2391         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2392                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2393
2394         return ret;
2395 }
2396
2397 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2398 {
2399         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2400         u32 interruptibility = interruptibility_old;
2401
2402         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2403
2404         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2405                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2406         else if (mask & KVM_X86_SHADOW_INT_STI)
2407                 interruptibility |= GUEST_INTR_STATE_STI;
2408
2409         if ((interruptibility != interruptibility_old))
2410                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2411 }
2412
2413 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2414 {
2415         unsigned long rip;
2416
2417         rip = kvm_rip_read(vcpu);
2418         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2419         kvm_rip_write(vcpu, rip);
2420
2421         /* skipping an emulated instruction also counts */
2422         vmx_set_interrupt_shadow(vcpu, 0);
2423 }
2424
2425 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2426                                                unsigned long exit_qual)
2427 {
2428         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2429         unsigned int nr = vcpu->arch.exception.nr;
2430         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2431
2432         if (vcpu->arch.exception.has_error_code) {
2433                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2434                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2435         }
2436
2437         if (kvm_exception_is_soft(nr))
2438                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2439         else
2440                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2441
2442         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2443             vmx_get_nmi_mask(vcpu))
2444                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2445
2446         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2447 }
2448
2449 /*
2450  * KVM wants to inject page-faults which it got to the guest. This function
2451  * checks whether in a nested guest, we need to inject them to L1 or L2.
2452  */
2453 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
2454 {
2455         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2456         unsigned int nr = vcpu->arch.exception.nr;
2457
2458         if (nr == PF_VECTOR) {
2459                 if (vcpu->arch.exception.nested_apf) {
2460                         nested_vmx_inject_exception_vmexit(vcpu,
2461                                                            vcpu->arch.apf.nested_apf_token);
2462                         return 1;
2463                 }
2464                 /*
2465                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2466                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2467                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2468                  * can be written only when inject_pending_event runs.  This should be
2469                  * conditional on a new capability---if the capability is disabled,
2470                  * kvm_multiple_exception would write the ancillary information to
2471                  * CR2 or DR6, for backwards ABI-compatibility.
2472                  */
2473                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2474                                                     vcpu->arch.exception.error_code)) {
2475                         nested_vmx_inject_exception_vmexit(vcpu, vcpu->arch.cr2);
2476                         return 1;
2477                 }
2478         } else {
2479                 unsigned long exit_qual = 0;
2480                 if (nr == DB_VECTOR)
2481                         exit_qual = vcpu->arch.dr6;
2482
2483                 if (vmcs12->exception_bitmap & (1u << nr)) {
2484                         nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
2485                         return 1;
2486                 }
2487         }
2488
2489         return 0;
2490 }
2491
2492 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2493 {
2494         struct vcpu_vmx *vmx = to_vmx(vcpu);
2495         unsigned nr = vcpu->arch.exception.nr;
2496         bool has_error_code = vcpu->arch.exception.has_error_code;
2497         bool reinject = vcpu->arch.exception.reinject;
2498         u32 error_code = vcpu->arch.exception.error_code;
2499         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2500
2501         if (!reinject && is_guest_mode(vcpu) &&
2502             nested_vmx_check_exception(vcpu))
2503                 return;
2504
2505         if (has_error_code) {
2506                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2507                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2508         }
2509
2510         if (vmx->rmode.vm86_active) {
2511                 int inc_eip = 0;
2512                 if (kvm_exception_is_soft(nr))
2513                         inc_eip = vcpu->arch.event_exit_inst_len;
2514                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2515                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2516                 return;
2517         }
2518
2519         if (kvm_exception_is_soft(nr)) {
2520                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2521                              vmx->vcpu.arch.event_exit_inst_len);
2522                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2523         } else
2524                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2525
2526         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2527 }
2528
2529 static bool vmx_rdtscp_supported(void)
2530 {
2531         return cpu_has_vmx_rdtscp();
2532 }
2533
2534 static bool vmx_invpcid_supported(void)
2535 {
2536         return cpu_has_vmx_invpcid() && enable_ept;
2537 }
2538
2539 /*
2540  * Swap MSR entry in host/guest MSR entry array.
2541  */
2542 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2543 {
2544         struct shared_msr_entry tmp;
2545
2546         tmp = vmx->guest_msrs[to];
2547         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2548         vmx->guest_msrs[from] = tmp;
2549 }
2550
2551 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2552 {
2553         unsigned long *msr_bitmap;
2554
2555         if (is_guest_mode(vcpu))
2556                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2557         else if (cpu_has_secondary_exec_ctrls() &&
2558                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2559                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2560                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2561                         if (is_long_mode(vcpu))
2562                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2563                         else
2564                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2565                 } else {
2566                         if (is_long_mode(vcpu))
2567                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2568                         else
2569                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2570                 }
2571         } else {
2572                 if (is_long_mode(vcpu))
2573                         msr_bitmap = vmx_msr_bitmap_longmode;
2574                 else
2575                         msr_bitmap = vmx_msr_bitmap_legacy;
2576         }
2577
2578         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2579 }
2580
2581 /*
2582  * Set up the vmcs to automatically save and restore system
2583  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2584  * mode, as fiddling with msrs is very expensive.
2585  */
2586 static void setup_msrs(struct vcpu_vmx *vmx)
2587 {
2588         int save_nmsrs, index;
2589
2590         save_nmsrs = 0;
2591 #ifdef CONFIG_X86_64
2592         if (is_long_mode(&vmx->vcpu)) {
2593                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2594                 if (index >= 0)
2595                         move_msr_up(vmx, index, save_nmsrs++);
2596                 index = __find_msr_index(vmx, MSR_LSTAR);
2597                 if (index >= 0)
2598                         move_msr_up(vmx, index, save_nmsrs++);
2599                 index = __find_msr_index(vmx, MSR_CSTAR);
2600                 if (index >= 0)
2601                         move_msr_up(vmx, index, save_nmsrs++);
2602                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2603                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2604                         move_msr_up(vmx, index, save_nmsrs++);
2605                 /*
2606                  * MSR_STAR is only needed on long mode guests, and only
2607                  * if efer.sce is enabled.
2608                  */
2609                 index = __find_msr_index(vmx, MSR_STAR);
2610                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2611                         move_msr_up(vmx, index, save_nmsrs++);
2612         }
2613 #endif
2614         index = __find_msr_index(vmx, MSR_EFER);
2615         if (index >= 0 && update_transition_efer(vmx, index))
2616                 move_msr_up(vmx, index, save_nmsrs++);
2617
2618         vmx->save_nmsrs = save_nmsrs;
2619
2620         if (cpu_has_vmx_msr_bitmap())
2621                 vmx_set_msr_bitmap(&vmx->vcpu);
2622 }
2623
2624 /*
2625  * reads and returns guest's timestamp counter "register"
2626  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2627  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2628  */
2629 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2630 {
2631         u64 host_tsc, tsc_offset;
2632
2633         host_tsc = rdtsc();
2634         tsc_offset = vmcs_read64(TSC_OFFSET);
2635         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2636 }
2637
2638 /*
2639  * writes 'offset' into guest's timestamp counter offset register
2640  */
2641 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2642 {
2643         if (is_guest_mode(vcpu)) {
2644                 /*
2645                  * We're here if L1 chose not to trap WRMSR to TSC. According
2646                  * to the spec, this should set L1's TSC; The offset that L1
2647                  * set for L2 remains unchanged, and still needs to be added
2648                  * to the newly set TSC to get L2's TSC.
2649                  */
2650                 struct vmcs12 *vmcs12;
2651                 /* recalculate vmcs02.TSC_OFFSET: */
2652                 vmcs12 = get_vmcs12(vcpu);
2653                 vmcs_write64(TSC_OFFSET, offset +
2654                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2655                          vmcs12->tsc_offset : 0));
2656         } else {
2657                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2658                                            vmcs_read64(TSC_OFFSET), offset);
2659                 vmcs_write64(TSC_OFFSET, offset);
2660         }
2661 }
2662
2663 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2664 {
2665         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2666         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2667 }
2668
2669 /*
2670  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2671  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2672  * all guests if the "nested" module option is off, and can also be disabled
2673  * for a single guest by disabling its VMX cpuid bit.
2674  */
2675 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2676 {
2677         return nested && guest_cpuid_has_vmx(vcpu);
2678 }
2679
2680 /*
2681  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2682  * returned for the various VMX controls MSRs when nested VMX is enabled.
2683  * The same values should also be used to verify that vmcs12 control fields are
2684  * valid during nested entry from L1 to L2.
2685  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2686  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2687  * bit in the high half is on if the corresponding bit in the control field
2688  * may be on. See also vmx_control_verify().
2689  */
2690 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2691 {
2692         /*
2693          * Note that as a general rule, the high half of the MSRs (bits in
2694          * the control fields which may be 1) should be initialized by the
2695          * intersection of the underlying hardware's MSR (i.e., features which
2696          * can be supported) and the list of features we want to expose -
2697          * because they are known to be properly supported in our code.
2698          * Also, usually, the low half of the MSRs (bits which must be 1) can
2699          * be set to 0, meaning that L1 may turn off any of these bits. The
2700          * reason is that if one of these bits is necessary, it will appear
2701          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2702          * fields of vmcs01 and vmcs02, will turn these bits off - and
2703          * nested_vmx_exit_reflected() will not pass related exits to L1.
2704          * These rules have exceptions below.
2705          */
2706
2707         /* pin-based controls */
2708         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2709                 vmx->nested.nested_vmx_pinbased_ctls_low,
2710                 vmx->nested.nested_vmx_pinbased_ctls_high);
2711         vmx->nested.nested_vmx_pinbased_ctls_low |=
2712                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2713         vmx->nested.nested_vmx_pinbased_ctls_high &=
2714                 PIN_BASED_EXT_INTR_MASK |
2715                 PIN_BASED_NMI_EXITING |
2716                 PIN_BASED_VIRTUAL_NMIS;
2717         vmx->nested.nested_vmx_pinbased_ctls_high |=
2718                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2719                 PIN_BASED_VMX_PREEMPTION_TIMER;
2720         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2721                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2722                         PIN_BASED_POSTED_INTR;
2723
2724         /* exit controls */
2725         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2726                 vmx->nested.nested_vmx_exit_ctls_low,
2727                 vmx->nested.nested_vmx_exit_ctls_high);
2728         vmx->nested.nested_vmx_exit_ctls_low =
2729                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2730
2731         vmx->nested.nested_vmx_exit_ctls_high &=
2732 #ifdef CONFIG_X86_64
2733                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2734 #endif
2735                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2736         vmx->nested.nested_vmx_exit_ctls_high |=
2737                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2738                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2739                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2740
2741         if (kvm_mpx_supported())
2742                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2743
2744         /* We support free control of debug control saving. */
2745         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2746
2747         /* entry controls */
2748         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2749                 vmx->nested.nested_vmx_entry_ctls_low,
2750                 vmx->nested.nested_vmx_entry_ctls_high);
2751         vmx->nested.nested_vmx_entry_ctls_low =
2752                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2753         vmx->nested.nested_vmx_entry_ctls_high &=
2754 #ifdef CONFIG_X86_64
2755                 VM_ENTRY_IA32E_MODE |
2756 #endif
2757                 VM_ENTRY_LOAD_IA32_PAT;
2758         vmx->nested.nested_vmx_entry_ctls_high |=
2759                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2760         if (kvm_mpx_supported())
2761                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2762
2763         /* We support free control of debug control loading. */
2764         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2765
2766         /* cpu-based controls */
2767         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2768                 vmx->nested.nested_vmx_procbased_ctls_low,
2769                 vmx->nested.nested_vmx_procbased_ctls_high);
2770         vmx->nested.nested_vmx_procbased_ctls_low =
2771                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2772         vmx->nested.nested_vmx_procbased_ctls_high &=
2773                 CPU_BASED_VIRTUAL_INTR_PENDING |
2774                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2775                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2776                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2777                 CPU_BASED_CR3_STORE_EXITING |
2778 #ifdef CONFIG_X86_64
2779                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2780 #endif
2781                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2782                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2783                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2784                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2785                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2786         /*
2787          * We can allow some features even when not supported by the
2788          * hardware. For example, L1 can specify an MSR bitmap - and we
2789          * can use it to avoid exits to L1 - even when L0 runs L2
2790          * without MSR bitmaps.
2791          */
2792         vmx->nested.nested_vmx_procbased_ctls_high |=
2793                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2794                 CPU_BASED_USE_MSR_BITMAPS;
2795
2796         /* We support free control of CR3 access interception. */
2797         vmx->nested.nested_vmx_procbased_ctls_low &=
2798                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2799
2800         /* secondary cpu-based controls */
2801         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2802                 vmx->nested.nested_vmx_secondary_ctls_low,
2803                 vmx->nested.nested_vmx_secondary_ctls_high);
2804         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2805         vmx->nested.nested_vmx_secondary_ctls_high &=
2806                 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2807                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2808                 SECONDARY_EXEC_RDTSCP |
2809                 SECONDARY_EXEC_DESC |
2810                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2811                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2812                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2813                 SECONDARY_EXEC_WBINVD_EXITING |
2814                 SECONDARY_EXEC_XSAVES;
2815
2816         if (enable_ept) {
2817                 /* nested EPT: emulate EPT also to L1 */
2818                 vmx->nested.nested_vmx_secondary_ctls_high |=
2819                         SECONDARY_EXEC_ENABLE_EPT;
2820                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2821                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2822                 if (cpu_has_vmx_ept_execute_only())
2823                         vmx->nested.nested_vmx_ept_caps |=
2824                                 VMX_EPT_EXECUTE_ONLY_BIT;
2825                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2826                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2827                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2828                         VMX_EPT_1GB_PAGE_BIT;
2829                 if (enable_ept_ad_bits) {
2830                         vmx->nested.nested_vmx_secondary_ctls_high |=
2831                                 SECONDARY_EXEC_ENABLE_PML;
2832                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2833                 }
2834         } else
2835                 vmx->nested.nested_vmx_ept_caps = 0;
2836
2837         /*
2838          * Old versions of KVM use the single-context version without
2839          * checking for support, so declare that it is supported even
2840          * though it is treated as global context.  The alternative is
2841          * not failing the single-context invvpid, and it is worse.
2842          */
2843         if (enable_vpid) {
2844                 vmx->nested.nested_vmx_secondary_ctls_high |=
2845                         SECONDARY_EXEC_ENABLE_VPID;
2846                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2847                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2848         } else
2849                 vmx->nested.nested_vmx_vpid_caps = 0;
2850
2851         if (enable_unrestricted_guest)
2852                 vmx->nested.nested_vmx_secondary_ctls_high |=
2853                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2854
2855         /* miscellaneous data */
2856         rdmsr(MSR_IA32_VMX_MISC,
2857                 vmx->nested.nested_vmx_misc_low,
2858                 vmx->nested.nested_vmx_misc_high);
2859         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2860         vmx->nested.nested_vmx_misc_low |=
2861                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2862                 VMX_MISC_ACTIVITY_HLT;
2863         vmx->nested.nested_vmx_misc_high = 0;
2864
2865         /*
2866          * This MSR reports some information about VMX support. We
2867          * should return information about the VMX we emulate for the
2868          * guest, and the VMCS structure we give it - not about the
2869          * VMX support of the underlying hardware.
2870          */
2871         vmx->nested.nested_vmx_basic =
2872                 VMCS12_REVISION |
2873                 VMX_BASIC_TRUE_CTLS |
2874                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2875                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2876
2877         if (cpu_has_vmx_basic_inout())
2878                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2879
2880         /*
2881          * These MSRs specify bits which the guest must keep fixed on
2882          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2883          * We picked the standard core2 setting.
2884          */
2885 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2886 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2887         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2888         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2889
2890         /* These MSRs specify bits which the guest must keep fixed off. */
2891         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2892         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2893
2894         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2895         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2896 }
2897
2898 /*
2899  * if fixed0[i] == 1: val[i] must be 1
2900  * if fixed1[i] == 0: val[i] must be 0
2901  */
2902 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2903 {
2904         return ((val & fixed1) | fixed0) == val;
2905 }
2906
2907 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2908 {
2909         return fixed_bits_valid(control, low, high);
2910 }
2911
2912 static inline u64 vmx_control_msr(u32 low, u32 high)
2913 {
2914         return low | ((u64)high << 32);
2915 }
2916
2917 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2918 {
2919         superset &= mask;
2920         subset &= mask;
2921
2922         return (superset | subset) == superset;
2923 }
2924
2925 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2926 {
2927         const u64 feature_and_reserved =
2928                 /* feature (except bit 48; see below) */
2929                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2930                 /* reserved */
2931                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2932         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2933
2934         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2935                 return -EINVAL;
2936
2937         /*
2938          * KVM does not emulate a version of VMX that constrains physical
2939          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2940          */
2941         if (data & BIT_ULL(48))
2942                 return -EINVAL;
2943
2944         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2945             vmx_basic_vmcs_revision_id(data))
2946                 return -EINVAL;
2947
2948         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2949                 return -EINVAL;
2950
2951         vmx->nested.nested_vmx_basic = data;
2952         return 0;
2953 }
2954
2955 static int
2956 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2957 {
2958         u64 supported;
2959         u32 *lowp, *highp;
2960
2961         switch (msr_index) {
2962         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2963                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2964                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2965                 break;
2966         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2967                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2968                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2969                 break;
2970         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2971                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2972                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2973                 break;
2974         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2975                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2976                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2977                 break;
2978         case MSR_IA32_VMX_PROCBASED_CTLS2:
2979                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2980                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2981                 break;
2982         default:
2983                 BUG();
2984         }
2985
2986         supported = vmx_control_msr(*lowp, *highp);
2987
2988         /* Check must-be-1 bits are still 1. */
2989         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2990                 return -EINVAL;
2991
2992         /* Check must-be-0 bits are still 0. */
2993         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2994                 return -EINVAL;
2995
2996         *lowp = data;
2997         *highp = data >> 32;
2998         return 0;
2999 }
3000
3001 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3002 {
3003         const u64 feature_and_reserved_bits =
3004                 /* feature */
3005                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3006                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3007                 /* reserved */
3008                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3009         u64 vmx_misc;
3010
3011         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3012                                    vmx->nested.nested_vmx_misc_high);
3013
3014         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3015                 return -EINVAL;
3016
3017         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3018              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3019             vmx_misc_preemption_timer_rate(data) !=
3020             vmx_misc_preemption_timer_rate(vmx_misc))
3021                 return -EINVAL;
3022
3023         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3024                 return -EINVAL;
3025
3026         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3027                 return -EINVAL;
3028
3029         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3030                 return -EINVAL;
3031
3032         vmx->nested.nested_vmx_misc_low = data;
3033         vmx->nested.nested_vmx_misc_high = data >> 32;
3034         return 0;
3035 }
3036
3037 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3038 {
3039         u64 vmx_ept_vpid_cap;
3040
3041         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3042                                            vmx->nested.nested_vmx_vpid_caps);
3043
3044         /* Every bit is either reserved or a feature bit. */
3045         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3046                 return -EINVAL;
3047
3048         vmx->nested.nested_vmx_ept_caps = data;
3049         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3050         return 0;
3051 }
3052
3053 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3054 {
3055         u64 *msr;
3056
3057         switch (msr_index) {
3058         case MSR_IA32_VMX_CR0_FIXED0:
3059                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3060                 break;
3061         case MSR_IA32_VMX_CR4_FIXED0:
3062                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3063                 break;
3064         default:
3065                 BUG();
3066         }
3067
3068         /*
3069          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3070          * must be 1 in the restored value.
3071          */
3072         if (!is_bitwise_subset(data, *msr, -1ULL))
3073                 return -EINVAL;
3074
3075         *msr = data;
3076         return 0;
3077 }
3078
3079 /*
3080  * Called when userspace is restoring VMX MSRs.
3081  *
3082  * Returns 0 on success, non-0 otherwise.
3083  */
3084 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3085 {
3086         struct vcpu_vmx *vmx = to_vmx(vcpu);
3087
3088         switch (msr_index) {
3089         case MSR_IA32_VMX_BASIC:
3090                 return vmx_restore_vmx_basic(vmx, data);
3091         case MSR_IA32_VMX_PINBASED_CTLS:
3092         case MSR_IA32_VMX_PROCBASED_CTLS:
3093         case MSR_IA32_VMX_EXIT_CTLS:
3094         case MSR_IA32_VMX_ENTRY_CTLS:
3095                 /*
3096                  * The "non-true" VMX capability MSRs are generated from the
3097                  * "true" MSRs, so we do not support restoring them directly.
3098                  *
3099                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3100                  * should restore the "true" MSRs with the must-be-1 bits
3101                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3102                  * DEFAULT SETTINGS".
3103                  */
3104                 return -EINVAL;
3105         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3106         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3107         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3108         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3109         case MSR_IA32_VMX_PROCBASED_CTLS2:
3110                 return vmx_restore_control_msr(vmx, msr_index, data);
3111         case MSR_IA32_VMX_MISC:
3112                 return vmx_restore_vmx_misc(vmx, data);
3113         case MSR_IA32_VMX_CR0_FIXED0:
3114         case MSR_IA32_VMX_CR4_FIXED0:
3115                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3116         case MSR_IA32_VMX_CR0_FIXED1:
3117         case MSR_IA32_VMX_CR4_FIXED1:
3118                 /*
3119                  * These MSRs are generated based on the vCPU's CPUID, so we
3120                  * do not support restoring them directly.
3121                  */
3122                 return -EINVAL;
3123         case MSR_IA32_VMX_EPT_VPID_CAP:
3124                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3125         case MSR_IA32_VMX_VMCS_ENUM:
3126                 vmx->nested.nested_vmx_vmcs_enum = data;
3127                 return 0;
3128         default:
3129                 /*
3130                  * The rest of the VMX capability MSRs do not support restore.
3131                  */
3132                 return -EINVAL;
3133         }
3134 }
3135
3136 /* Returns 0 on success, non-0 otherwise. */
3137 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3138 {
3139         struct vcpu_vmx *vmx = to_vmx(vcpu);
3140
3141         switch (msr_index) {
3142         case MSR_IA32_VMX_BASIC:
3143                 *pdata = vmx->nested.nested_vmx_basic;
3144                 break;
3145         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3146         case MSR_IA32_VMX_PINBASED_CTLS:
3147                 *pdata = vmx_control_msr(
3148                         vmx->nested.nested_vmx_pinbased_ctls_low,
3149                         vmx->nested.nested_vmx_pinbased_ctls_high);
3150                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3151                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3152                 break;
3153         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3154         case MSR_IA32_VMX_PROCBASED_CTLS:
3155                 *pdata = vmx_control_msr(
3156                         vmx->nested.nested_vmx_procbased_ctls_low,
3157                         vmx->nested.nested_vmx_procbased_ctls_high);
3158                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3159                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3160                 break;
3161         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3162         case MSR_IA32_VMX_EXIT_CTLS:
3163                 *pdata = vmx_control_msr(
3164                         vmx->nested.nested_vmx_exit_ctls_low,
3165                         vmx->nested.nested_vmx_exit_ctls_high);
3166                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3167                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3168                 break;
3169         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3170         case MSR_IA32_VMX_ENTRY_CTLS:
3171                 *pdata = vmx_control_msr(
3172                         vmx->nested.nested_vmx_entry_ctls_low,
3173                         vmx->nested.nested_vmx_entry_ctls_high);
3174                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3175                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3176                 break;
3177         case MSR_IA32_VMX_MISC:
3178                 *pdata = vmx_control_msr(
3179                         vmx->nested.nested_vmx_misc_low,
3180                         vmx->nested.nested_vmx_misc_high);
3181                 break;
3182         case MSR_IA32_VMX_CR0_FIXED0:
3183                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3184                 break;
3185         case MSR_IA32_VMX_CR0_FIXED1:
3186                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3187                 break;
3188         case MSR_IA32_VMX_CR4_FIXED0:
3189                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3190                 break;
3191         case MSR_IA32_VMX_CR4_FIXED1:
3192                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3193                 break;
3194         case MSR_IA32_VMX_VMCS_ENUM:
3195                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3196                 break;
3197         case MSR_IA32_VMX_PROCBASED_CTLS2:
3198                 *pdata = vmx_control_msr(
3199                         vmx->nested.nested_vmx_secondary_ctls_low,
3200                         vmx->nested.nested_vmx_secondary_ctls_high);
3201                 break;
3202         case MSR_IA32_VMX_EPT_VPID_CAP:
3203                 *pdata = vmx->nested.nested_vmx_ept_caps |
3204                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3205                 break;
3206         default:
3207                 return 1;
3208         }
3209
3210         return 0;
3211 }
3212
3213 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3214                                                  uint64_t val)
3215 {
3216         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3217
3218         return !(val & ~valid_bits);
3219 }
3220
3221 /*
3222  * Reads an msr value (of 'msr_index') into 'pdata'.
3223  * Returns 0 on success, non-0 otherwise.
3224  * Assumes vcpu_load() was already called.
3225  */
3226 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3227 {
3228         struct shared_msr_entry *msr;
3229
3230         switch (msr_info->index) {
3231 #ifdef CONFIG_X86_64
3232         case MSR_FS_BASE:
3233                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3234                 break;
3235         case MSR_GS_BASE:
3236                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3237                 break;
3238         case MSR_KERNEL_GS_BASE:
3239                 vmx_load_host_state(to_vmx(vcpu));
3240                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3241                 break;
3242 #endif
3243         case MSR_EFER:
3244                 return kvm_get_msr_common(vcpu, msr_info);
3245         case MSR_IA32_TSC:
3246                 msr_info->data = guest_read_tsc(vcpu);
3247                 break;
3248         case MSR_IA32_SYSENTER_CS:
3249                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3250                 break;
3251         case MSR_IA32_SYSENTER_EIP:
3252                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3253                 break;
3254         case MSR_IA32_SYSENTER_ESP:
3255                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3256                 break;
3257         case MSR_IA32_BNDCFGS:
3258                 if (!kvm_mpx_supported() ||
3259                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3260                         return 1;
3261                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3262                 break;
3263         case MSR_IA32_MCG_EXT_CTL:
3264                 if (!msr_info->host_initiated &&
3265                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3266                       FEATURE_CONTROL_LMCE))
3267                         return 1;
3268                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3269                 break;
3270         case MSR_IA32_FEATURE_CONTROL:
3271                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3272                 break;
3273         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3274                 if (!nested_vmx_allowed(vcpu))
3275                         return 1;
3276                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3277         case MSR_IA32_XSS:
3278                 if (!vmx_xsaves_supported())
3279                         return 1;
3280                 msr_info->data = vcpu->arch.ia32_xss;
3281                 break;
3282         case MSR_TSC_AUX:
3283                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3284                         return 1;
3285                 /* Otherwise falls through */
3286         default:
3287                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3288                 if (msr) {
3289                         msr_info->data = msr->data;
3290                         break;
3291                 }
3292                 return kvm_get_msr_common(vcpu, msr_info);
3293         }
3294
3295         return 0;
3296 }
3297
3298 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3299
3300 /*
3301  * Writes msr value into into the appropriate "register".
3302  * Returns 0 on success, non-0 otherwise.
3303  * Assumes vcpu_load() was already called.
3304  */
3305 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3306 {
3307         struct vcpu_vmx *vmx = to_vmx(vcpu);
3308         struct shared_msr_entry *msr;
3309         int ret = 0;
3310         u32 msr_index = msr_info->index;
3311         u64 data = msr_info->data;
3312
3313         switch (msr_index) {
3314         case MSR_EFER:
3315                 ret = kvm_set_msr_common(vcpu, msr_info);
3316                 break;
3317 #ifdef CONFIG_X86_64
3318         case MSR_FS_BASE:
3319                 vmx_segment_cache_clear(vmx);
3320                 vmcs_writel(GUEST_FS_BASE, data);
3321                 break;
3322         case MSR_GS_BASE:
3323                 vmx_segment_cache_clear(vmx);
3324                 vmcs_writel(GUEST_GS_BASE, data);
3325                 break;
3326         case MSR_KERNEL_GS_BASE:
3327                 vmx_load_host_state(vmx);
3328                 vmx->msr_guest_kernel_gs_base = data;
3329                 break;
3330 #endif
3331         case MSR_IA32_SYSENTER_CS:
3332                 vmcs_write32(GUEST_SYSENTER_CS, data);
3333                 break;
3334         case MSR_IA32_SYSENTER_EIP:
3335                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3336                 break;
3337         case MSR_IA32_SYSENTER_ESP:
3338                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3339                 break;
3340         case MSR_IA32_BNDCFGS:
3341                 if (!kvm_mpx_supported() ||
3342                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3343                         return 1;
3344                 if (is_noncanonical_address(data & PAGE_MASK) ||
3345                     (data & MSR_IA32_BNDCFGS_RSVD))
3346                         return 1;
3347                 vmcs_write64(GUEST_BNDCFGS, data);
3348                 break;
3349         case MSR_IA32_TSC:
3350                 kvm_write_tsc(vcpu, msr_info);
3351                 break;
3352         case MSR_IA32_CR_PAT:
3353                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3354                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3355                                 return 1;
3356                         vmcs_write64(GUEST_IA32_PAT, data);
3357                         vcpu->arch.pat = data;
3358                         break;
3359                 }
3360                 ret = kvm_set_msr_common(vcpu, msr_info);
3361                 break;
3362         case MSR_IA32_TSC_ADJUST:
3363                 ret = kvm_set_msr_common(vcpu, msr_info);
3364                 break;
3365         case MSR_IA32_MCG_EXT_CTL:
3366                 if ((!msr_info->host_initiated &&
3367                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3368                        FEATURE_CONTROL_LMCE)) ||
3369                     (data & ~MCG_EXT_CTL_LMCE_EN))
3370                         return 1;
3371                 vcpu->arch.mcg_ext_ctl = data;
3372                 break;
3373         case MSR_IA32_FEATURE_CONTROL:
3374                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3375                     (to_vmx(vcpu)->msr_ia32_feature_control &
3376                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3377                         return 1;
3378                 vmx->msr_ia32_feature_control = data;
3379                 if (msr_info->host_initiated && data == 0)
3380                         vmx_leave_nested(vcpu);
3381                 break;
3382         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3383                 if (!msr_info->host_initiated)
3384                         return 1; /* they are read-only */
3385                 if (!nested_vmx_allowed(vcpu))
3386                         return 1;
3387                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3388         case MSR_IA32_XSS:
3389                 if (!vmx_xsaves_supported())
3390                         return 1;
3391                 /*
3392                  * The only supported bit as of Skylake is bit 8, but
3393                  * it is not supported on KVM.
3394                  */
3395                 if (data != 0)
3396                         return 1;
3397                 vcpu->arch.ia32_xss = data;
3398                 if (vcpu->arch.ia32_xss != host_xss)
3399                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3400                                 vcpu->arch.ia32_xss, host_xss);
3401                 else
3402                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3403                 break;
3404         case MSR_TSC_AUX:
3405                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3406                         return 1;
3407                 /* Check reserved bit, higher 32 bits should be zero */
3408                 if ((data >> 32) != 0)
3409                         return 1;
3410                 /* Otherwise falls through */
3411         default:
3412                 msr = find_msr_entry(vmx, msr_index);
3413                 if (msr) {
3414                         u64 old_msr_data = msr->data;
3415                         msr->data = data;
3416                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3417                                 preempt_disable();
3418                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3419                                                          msr->mask);
3420                                 preempt_enable();
3421                                 if (ret)
3422                                         msr->data = old_msr_data;
3423                         }
3424                         break;
3425                 }
3426                 ret = kvm_set_msr_common(vcpu, msr_info);
3427         }
3428
3429         return ret;
3430 }
3431
3432 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3433 {
3434         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3435         switch (reg) {
3436         case VCPU_REGS_RSP:
3437                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3438                 break;
3439         case VCPU_REGS_RIP:
3440                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3441                 break;
3442         case VCPU_EXREG_PDPTR:
3443                 if (enable_ept)
3444                         ept_save_pdptrs(vcpu);
3445                 break;
3446         default:
3447                 break;
3448         }
3449 }
3450
3451 static __init int cpu_has_kvm_support(void)
3452 {
3453         return cpu_has_vmx();
3454 }
3455
3456 static __init int vmx_disabled_by_bios(void)
3457 {
3458         u64 msr;
3459
3460         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3461         if (msr & FEATURE_CONTROL_LOCKED) {
3462                 /* launched w/ TXT and VMX disabled */
3463                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3464                         && tboot_enabled())
3465                         return 1;
3466                 /* launched w/o TXT and VMX only enabled w/ TXT */
3467                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3468                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3469                         && !tboot_enabled()) {
3470                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3471                                 "activate TXT before enabling KVM\n");
3472                         return 1;
3473                 }
3474                 /* launched w/o TXT and VMX disabled */
3475                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3476                         && !tboot_enabled())
3477                         return 1;
3478         }
3479
3480         return 0;
3481 }
3482
3483 static void kvm_cpu_vmxon(u64 addr)
3484 {
3485         cr4_set_bits(X86_CR4_VMXE);
3486         intel_pt_handle_vmx(1);
3487
3488         asm volatile (ASM_VMX_VMXON_RAX
3489                         : : "a"(&addr), "m"(addr)
3490                         : "memory", "cc");
3491 }
3492
3493 static int hardware_enable(void)
3494 {
3495         int cpu = raw_smp_processor_id();
3496         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3497         u64 old, test_bits;
3498
3499         if (cr4_read_shadow() & X86_CR4_VMXE)
3500                 return -EBUSY;
3501
3502         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3503         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3504         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3505
3506         /*
3507          * Now we can enable the vmclear operation in kdump
3508          * since the loaded_vmcss_on_cpu list on this cpu
3509          * has been initialized.
3510          *
3511          * Though the cpu is not in VMX operation now, there
3512          * is no problem to enable the vmclear operation
3513          * for the loaded_vmcss_on_cpu list is empty!
3514          */
3515         crash_enable_local_vmclear(cpu);
3516
3517         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3518
3519         test_bits = FEATURE_CONTROL_LOCKED;
3520         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3521         if (tboot_enabled())
3522                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3523
3524         if ((old & test_bits) != test_bits) {
3525                 /* enable and lock */
3526                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3527         }
3528         kvm_cpu_vmxon(phys_addr);
3529         ept_sync_global();
3530
3531         return 0;
3532 }
3533
3534 static void vmclear_local_loaded_vmcss(void)
3535 {
3536         int cpu = raw_smp_processor_id();
3537         struct loaded_vmcs *v, *n;
3538
3539         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3540                                  loaded_vmcss_on_cpu_link)
3541                 __loaded_vmcs_clear(v);
3542 }
3543
3544
3545 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3546  * tricks.
3547  */
3548 static void kvm_cpu_vmxoff(void)
3549 {
3550         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3551
3552         intel_pt_handle_vmx(0);
3553         cr4_clear_bits(X86_CR4_VMXE);
3554 }
3555
3556 static void hardware_disable(void)
3557 {
3558         vmclear_local_loaded_vmcss();
3559         kvm_cpu_vmxoff();
3560 }
3561
3562 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3563                                       u32 msr, u32 *result)
3564 {
3565         u32 vmx_msr_low, vmx_msr_high;
3566         u32 ctl = ctl_min | ctl_opt;
3567
3568         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3569
3570         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3571         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3572
3573         /* Ensure minimum (required) set of control bits are supported. */
3574         if (ctl_min & ~ctl)
3575                 return -EIO;
3576
3577         *result = ctl;
3578         return 0;
3579 }
3580
3581 static __init bool allow_1_setting(u32 msr, u32 ctl)
3582 {
3583         u32 vmx_msr_low, vmx_msr_high;
3584
3585         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3586         return vmx_msr_high & ctl;
3587 }
3588
3589 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3590 {
3591         u32 vmx_msr_low, vmx_msr_high;
3592         u32 min, opt, min2, opt2;
3593         u32 _pin_based_exec_control = 0;
3594         u32 _cpu_based_exec_control = 0;
3595         u32 _cpu_based_2nd_exec_control = 0;
3596         u32 _vmexit_control = 0;
3597         u32 _vmentry_control = 0;
3598
3599         min = CPU_BASED_HLT_EXITING |
3600 #ifdef CONFIG_X86_64
3601               CPU_BASED_CR8_LOAD_EXITING |
3602               CPU_BASED_CR8_STORE_EXITING |
3603 #endif
3604               CPU_BASED_CR3_LOAD_EXITING |
3605               CPU_BASED_CR3_STORE_EXITING |
3606               CPU_BASED_USE_IO_BITMAPS |
3607               CPU_BASED_MOV_DR_EXITING |
3608               CPU_BASED_USE_TSC_OFFSETING |
3609               CPU_BASED_INVLPG_EXITING |
3610               CPU_BASED_RDPMC_EXITING;
3611
3612         if (!kvm_mwait_in_guest())
3613                 min |= CPU_BASED_MWAIT_EXITING |
3614                         CPU_BASED_MONITOR_EXITING;
3615
3616         opt = CPU_BASED_TPR_SHADOW |
3617               CPU_BASED_USE_MSR_BITMAPS |
3618               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3619         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3620                                 &_cpu_based_exec_control) < 0)
3621                 return -EIO;
3622 #ifdef CONFIG_X86_64
3623         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3624                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3625                                            ~CPU_BASED_CR8_STORE_EXITING;
3626 #endif
3627         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3628                 min2 = 0;
3629                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3630                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3631                         SECONDARY_EXEC_WBINVD_EXITING |
3632                         SECONDARY_EXEC_ENABLE_VPID |
3633                         SECONDARY_EXEC_ENABLE_EPT |
3634                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3635                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3636                         SECONDARY_EXEC_RDTSCP |
3637                         SECONDARY_EXEC_ENABLE_INVPCID |
3638                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3639                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3640                         SECONDARY_EXEC_SHADOW_VMCS |
3641                         SECONDARY_EXEC_XSAVES |
3642                         SECONDARY_EXEC_ENABLE_PML |
3643                         SECONDARY_EXEC_TSC_SCALING;
3644                 if (adjust_vmx_controls(min2, opt2,
3645                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3646                                         &_cpu_based_2nd_exec_control) < 0)
3647                         return -EIO;
3648         }
3649 #ifndef CONFIG_X86_64
3650         if (!(_cpu_based_2nd_exec_control &
3651                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3652                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3653 #endif
3654
3655         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3656                 _cpu_based_2nd_exec_control &= ~(
3657                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3658                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3659                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3660
3661         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3662                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3663                    enabled */
3664                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3665                                              CPU_BASED_CR3_STORE_EXITING |
3666                                              CPU_BASED_INVLPG_EXITING);
3667                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3668                       vmx_capability.ept, vmx_capability.vpid);
3669         }
3670
3671         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3672 #ifdef CONFIG_X86_64
3673         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3674 #endif
3675         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3676                 VM_EXIT_CLEAR_BNDCFGS;
3677         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3678                                 &_vmexit_control) < 0)
3679                 return -EIO;
3680
3681         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3682                 PIN_BASED_VIRTUAL_NMIS;
3683         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3684         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3685                                 &_pin_based_exec_control) < 0)
3686                 return -EIO;
3687
3688         if (cpu_has_broken_vmx_preemption_timer())
3689                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3690         if (!(_cpu_based_2nd_exec_control &
3691                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3692                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3693
3694         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3695         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3696         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3697                                 &_vmentry_control) < 0)
3698                 return -EIO;
3699
3700         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3701
3702         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3703         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3704                 return -EIO;
3705
3706 #ifdef CONFIG_X86_64
3707         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3708         if (vmx_msr_high & (1u<<16))
3709                 return -EIO;
3710 #endif
3711
3712         /* Require Write-Back (WB) memory type for VMCS accesses. */
3713         if (((vmx_msr_high >> 18) & 15) != 6)
3714                 return -EIO;
3715
3716         vmcs_conf->size = vmx_msr_high & 0x1fff;
3717         vmcs_conf->order = get_order(vmcs_conf->size);
3718         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3719         vmcs_conf->revision_id = vmx_msr_low;
3720
3721         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3722         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3723         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3724         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3725         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3726
3727         cpu_has_load_ia32_efer =
3728                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3729                                 VM_ENTRY_LOAD_IA32_EFER)
3730                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3731                                    VM_EXIT_LOAD_IA32_EFER);
3732
3733         cpu_has_load_perf_global_ctrl =
3734                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3735                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3736                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3737                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3738
3739         /*
3740          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3741          * but due to errata below it can't be used. Workaround is to use
3742          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3743          *
3744          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3745          *
3746          * AAK155             (model 26)
3747          * AAP115             (model 30)
3748          * AAT100             (model 37)
3749          * BC86,AAY89,BD102   (model 44)
3750          * BA97               (model 46)
3751          *
3752          */
3753         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3754                 switch (boot_cpu_data.x86_model) {
3755                 case 26:
3756                 case 30:
3757                 case 37:
3758                 case 44:
3759                 case 46:
3760                         cpu_has_load_perf_global_ctrl = false;
3761                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3762                                         "does not work properly. Using workaround\n");
3763                         break;
3764                 default:
3765                         break;
3766                 }
3767         }
3768
3769         if (boot_cpu_has(X86_FEATURE_XSAVES))
3770                 rdmsrl(MSR_IA32_XSS, host_xss);
3771
3772         return 0;
3773 }
3774
3775 static struct vmcs *alloc_vmcs_cpu(int cpu)
3776 {
3777         int node = cpu_to_node(cpu);
3778         struct page *pages;
3779         struct vmcs *vmcs;
3780
3781         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3782         if (!pages)
3783                 return NULL;
3784         vmcs = page_address(pages);
3785         memset(vmcs, 0, vmcs_config.size);
3786         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3787         return vmcs;
3788 }
3789
3790 static struct vmcs *alloc_vmcs(void)
3791 {
3792         return alloc_vmcs_cpu(raw_smp_processor_id());
3793 }
3794
3795 static void free_vmcs(struct vmcs *vmcs)
3796 {
3797         free_pages((unsigned long)vmcs, vmcs_config.order);
3798 }
3799
3800 /*
3801  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3802  */
3803 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3804 {
3805         if (!loaded_vmcs->vmcs)
3806                 return;
3807         loaded_vmcs_clear(loaded_vmcs);
3808         free_vmcs(loaded_vmcs->vmcs);
3809         loaded_vmcs->vmcs = NULL;
3810         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3811 }
3812
3813 static void free_kvm_area(void)
3814 {
3815         int cpu;
3816
3817         for_each_possible_cpu(cpu) {
3818                 free_vmcs(per_cpu(vmxarea, cpu));
3819                 per_cpu(vmxarea, cpu) = NULL;
3820         }
3821 }
3822
3823 enum vmcs_field_type {
3824         VMCS_FIELD_TYPE_U16 = 0,
3825         VMCS_FIELD_TYPE_U64 = 1,
3826         VMCS_FIELD_TYPE_U32 = 2,
3827         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3828 };
3829
3830 static inline int vmcs_field_type(unsigned long field)
3831 {
3832         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3833                 return VMCS_FIELD_TYPE_U32;
3834         return (field >> 13) & 0x3 ;
3835 }
3836
3837 static inline int vmcs_field_readonly(unsigned long field)
3838 {
3839         return (((field >> 10) & 0x3) == 1);
3840 }
3841
3842 static void init_vmcs_shadow_fields(void)
3843 {
3844         int i, j;
3845
3846         /* No checks for read only fields yet */
3847
3848         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3849                 switch (shadow_read_write_fields[i]) {
3850                 case GUEST_BNDCFGS:
3851                         if (!kvm_mpx_supported())
3852                                 continue;
3853                         break;
3854                 default:
3855                         break;
3856                 }
3857
3858                 if (j < i)
3859                         shadow_read_write_fields[j] =
3860                                 shadow_read_write_fields[i];
3861                 j++;
3862         }
3863         max_shadow_read_write_fields = j;
3864
3865         /* shadowed fields guest access without vmexit */
3866         for (i = 0; i < max_shadow_read_write_fields; i++) {
3867                 unsigned long field = shadow_read_write_fields[i];
3868
3869                 clear_bit(field, vmx_vmwrite_bitmap);
3870                 clear_bit(field, vmx_vmread_bitmap);
3871                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3872                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3873                         clear_bit(field + 1, vmx_vmread_bitmap);
3874                 }
3875         }
3876         for (i = 0; i < max_shadow_read_only_fields; i++) {
3877                 unsigned long field = shadow_read_only_fields[i];
3878
3879                 clear_bit(field, vmx_vmread_bitmap);
3880                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3881                         clear_bit(field + 1, vmx_vmread_bitmap);
3882         }
3883 }
3884
3885 static __init int alloc_kvm_area(void)
3886 {
3887         int cpu;
3888
3889         for_each_possible_cpu(cpu) {
3890                 struct vmcs *vmcs;
3891
3892                 vmcs = alloc_vmcs_cpu(cpu);
3893                 if (!vmcs) {
3894                         free_kvm_area();
3895                         return -ENOMEM;
3896                 }
3897
3898                 per_cpu(vmxarea, cpu) = vmcs;
3899         }
3900         return 0;
3901 }
3902
3903 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3904                 struct kvm_segment *save)
3905 {
3906         if (!emulate_invalid_guest_state) {
3907                 /*
3908                  * CS and SS RPL should be equal during guest entry according
3909                  * to VMX spec, but in reality it is not always so. Since vcpu
3910                  * is in the middle of the transition from real mode to
3911                  * protected mode it is safe to assume that RPL 0 is a good
3912                  * default value.
3913                  */
3914                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3915                         save->selector &= ~SEGMENT_RPL_MASK;
3916                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3917                 save->s = 1;
3918         }
3919         vmx_set_segment(vcpu, save, seg);
3920 }
3921
3922 static void enter_pmode(struct kvm_vcpu *vcpu)
3923 {
3924         unsigned long flags;
3925         struct vcpu_vmx *vmx = to_vmx(vcpu);
3926
3927         /*
3928          * Update real mode segment cache. It may be not up-to-date if sement
3929          * register was written while vcpu was in a guest mode.
3930          */
3931         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3932         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3933         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3934         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3935         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3936         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3937
3938         vmx->rmode.vm86_active = 0;
3939
3940         vmx_segment_cache_clear(vmx);
3941
3942         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3943
3944         flags = vmcs_readl(GUEST_RFLAGS);
3945         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3946         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3947         vmcs_writel(GUEST_RFLAGS, flags);
3948
3949         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3950                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3951
3952         update_exception_bitmap(vcpu);
3953
3954         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3955         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3956         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3957         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3958         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3959         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3960 }
3961
3962 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3963 {
3964         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3965         struct kvm_segment var = *save;
3966
3967         var.dpl = 0x3;
3968         if (seg == VCPU_SREG_CS)
3969                 var.type = 0x3;
3970
3971         if (!emulate_invalid_guest_state) {
3972                 var.selector = var.base >> 4;
3973                 var.base = var.base & 0xffff0;
3974                 var.limit = 0xffff;
3975                 var.g = 0;
3976                 var.db = 0;
3977                 var.present = 1;
3978                 var.s = 1;
3979                 var.l = 0;
3980                 var.unusable = 0;
3981                 var.type = 0x3;
3982                 var.avl = 0;
3983                 if (save->base & 0xf)
3984                         printk_once(KERN_WARNING "kvm: segment base is not "
3985                                         "paragraph aligned when entering "
3986                                         "protected mode (seg=%d)", seg);
3987         }
3988
3989         vmcs_write16(sf->selector, var.selector);
3990         vmcs_writel(sf->base, var.base);
3991         vmcs_write32(sf->limit, var.limit);
3992         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3993 }
3994
3995 static void enter_rmode(struct kvm_vcpu *vcpu)
3996 {
3997         unsigned long flags;
3998         struct vcpu_vmx *vmx = to_vmx(vcpu);
3999
4000         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4001         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4002         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4003         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4004         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4005         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4006         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4007
4008         vmx->rmode.vm86_active = 1;
4009
4010         /*
4011          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4012          * vcpu. Warn the user that an update is overdue.
4013          */
4014         if (!vcpu->kvm->arch.tss_addr)
4015                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4016                              "called before entering vcpu\n");
4017
4018         vmx_segment_cache_clear(vmx);
4019
4020         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4021         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4022         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4023
4024         flags = vmcs_readl(GUEST_RFLAGS);
4025         vmx->rmode.save_rflags = flags;
4026
4027         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4028
4029         vmcs_writel(GUEST_RFLAGS, flags);
4030         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4031         update_exception_bitmap(vcpu);
4032
4033         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4034         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4035         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4036         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4037         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4038         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4039
4040         kvm_mmu_reset_context(vcpu);
4041 }
4042
4043 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4044 {
4045         struct vcpu_vmx *vmx = to_vmx(vcpu);
4046         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4047
4048         if (!msr)
4049                 return;
4050
4051         /*
4052          * Force kernel_gs_base reloading before EFER changes, as control
4053          * of this msr depends on is_long_mode().
4054          */
4055         vmx_load_host_state(to_vmx(vcpu));
4056         vcpu->arch.efer = efer;
4057         if (efer & EFER_LMA) {
4058                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4059                 msr->data = efer;
4060         } else {
4061                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4062
4063                 msr->data = efer & ~EFER_LME;
4064         }
4065         setup_msrs(vmx);
4066 }
4067
4068 #ifdef CONFIG_X86_64
4069
4070 static void enter_lmode(struct kvm_vcpu *vcpu)
4071 {
4072         u32 guest_tr_ar;
4073
4074         vmx_segment_cache_clear(to_vmx(vcpu));
4075
4076         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4077         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4078                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4079                                      __func__);
4080                 vmcs_write32(GUEST_TR_AR_BYTES,
4081                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4082                              | VMX_AR_TYPE_BUSY_64_TSS);
4083         }
4084         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4085 }
4086
4087 static void exit_lmode(struct kvm_vcpu *vcpu)
4088 {
4089         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4090         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4091 }
4092
4093 #endif
4094
4095 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4096 {
4097         if (enable_ept) {
4098                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4099                         return;
4100                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4101         } else {
4102                 vpid_sync_context(vpid);
4103         }
4104 }
4105
4106 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4107 {
4108         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4109 }
4110
4111 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4112 {
4113         if (enable_ept)
4114                 vmx_flush_tlb(vcpu);
4115 }
4116
4117 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4118 {
4119         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4120
4121         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4122         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4123 }
4124
4125 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4126 {
4127         if (enable_ept && is_paging(vcpu))
4128                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4129         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4130 }
4131
4132 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4133 {
4134         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4135
4136         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4137         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4138 }
4139
4140 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4141 {
4142         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4143
4144         if (!test_bit(VCPU_EXREG_PDPTR,
4145                       (unsigned long *)&vcpu->arch.regs_dirty))
4146                 return;
4147
4148         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4149                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4150                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4151                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4152                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4153         }
4154 }
4155
4156 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4157 {
4158         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4159
4160         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4161                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4162                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4163                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4164                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4165         }
4166
4167         __set_bit(VCPU_EXREG_PDPTR,
4168                   (unsigned long *)&vcpu->arch.regs_avail);
4169         __set_bit(VCPU_EXREG_PDPTR,
4170                   (unsigned long *)&vcpu->arch.regs_dirty);
4171 }
4172
4173 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4174 {
4175         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4176         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4177         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4178
4179         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4180                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4181             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4182                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4183
4184         return fixed_bits_valid(val, fixed0, fixed1);
4185 }
4186
4187 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4188 {
4189         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4190         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4191
4192         return fixed_bits_valid(val, fixed0, fixed1);
4193 }
4194
4195 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4196 {
4197         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4198         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4199
4200         return fixed_bits_valid(val, fixed0, fixed1);
4201 }
4202
4203 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4204 #define nested_guest_cr4_valid  nested_cr4_valid
4205 #define nested_host_cr4_valid   nested_cr4_valid
4206
4207 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4208
4209 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4210                                         unsigned long cr0,
4211                                         struct kvm_vcpu *vcpu)
4212 {
4213         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4214                 vmx_decache_cr3(vcpu);
4215         if (!(cr0 & X86_CR0_PG)) {
4216                 /* From paging/starting to nonpaging */
4217                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4218                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4219                              (CPU_BASED_CR3_LOAD_EXITING |
4220                               CPU_BASED_CR3_STORE_EXITING));
4221                 vcpu->arch.cr0 = cr0;
4222                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4223         } else if (!is_paging(vcpu)) {
4224                 /* From nonpaging to paging */
4225                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4226                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4227                              ~(CPU_BASED_CR3_LOAD_EXITING |
4228                                CPU_BASED_CR3_STORE_EXITING));
4229                 vcpu->arch.cr0 = cr0;
4230                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4231         }
4232
4233         if (!(cr0 & X86_CR0_WP))
4234                 *hw_cr0 &= ~X86_CR0_WP;
4235 }
4236
4237 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4238 {
4239         struct vcpu_vmx *vmx = to_vmx(vcpu);
4240         unsigned long hw_cr0;
4241
4242         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4243         if (enable_unrestricted_guest)
4244                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4245         else {
4246                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4247
4248                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4249                         enter_pmode(vcpu);
4250
4251                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4252                         enter_rmode(vcpu);
4253         }
4254
4255 #ifdef CONFIG_X86_64
4256         if (vcpu->arch.efer & EFER_LME) {
4257                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4258                         enter_lmode(vcpu);
4259                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4260                         exit_lmode(vcpu);
4261         }
4262 #endif
4263
4264         if (enable_ept)
4265                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4266
4267         vmcs_writel(CR0_READ_SHADOW, cr0);
4268         vmcs_writel(GUEST_CR0, hw_cr0);
4269         vcpu->arch.cr0 = cr0;
4270
4271         /* depends on vcpu->arch.cr0 to be set to a new value */
4272         vmx->emulation_required = emulation_required(vcpu);
4273 }
4274
4275 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4276 {
4277         u64 eptp;
4278
4279         /* TODO write the value reading from MSR */
4280         eptp = VMX_EPT_DEFAULT_MT |
4281                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4282         if (enable_ept_ad_bits &&
4283             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4284                 eptp |= VMX_EPT_AD_ENABLE_BIT;
4285         eptp |= (root_hpa & PAGE_MASK);
4286
4287         return eptp;
4288 }
4289
4290 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4291 {
4292         unsigned long guest_cr3;
4293         u64 eptp;
4294
4295         guest_cr3 = cr3;
4296         if (enable_ept) {
4297                 eptp = construct_eptp(vcpu, cr3);
4298                 vmcs_write64(EPT_POINTER, eptp);
4299                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4300                         guest_cr3 = kvm_read_cr3(vcpu);
4301                 else
4302                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4303                 ept_load_pdptrs(vcpu);
4304         }
4305
4306         vmx_flush_tlb(vcpu);
4307         vmcs_writel(GUEST_CR3, guest_cr3);
4308 }
4309
4310 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4311 {
4312         /*
4313          * Pass through host's Machine Check Enable value to hw_cr4, which
4314          * is in force while we are in guest mode.  Do not let guests control
4315          * this bit, even if host CR4.MCE == 0.
4316          */
4317         unsigned long hw_cr4 =
4318                 (cr4_read_shadow() & X86_CR4_MCE) |
4319                 (cr4 & ~X86_CR4_MCE) |
4320                 (to_vmx(vcpu)->rmode.vm86_active ?
4321                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4322
4323         if (cr4 & X86_CR4_VMXE) {
4324                 /*
4325                  * To use VMXON (and later other VMX instructions), a guest
4326                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4327                  * So basically the check on whether to allow nested VMX
4328                  * is here.
4329                  */
4330                 if (!nested_vmx_allowed(vcpu))
4331                         return 1;
4332         }
4333
4334         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4335                 return 1;
4336
4337         vcpu->arch.cr4 = cr4;
4338         if (enable_ept) {
4339                 if (!is_paging(vcpu)) {
4340                         hw_cr4 &= ~X86_CR4_PAE;
4341                         hw_cr4 |= X86_CR4_PSE;
4342                 } else if (!(cr4 & X86_CR4_PAE)) {
4343                         hw_cr4 &= ~X86_CR4_PAE;
4344                 }
4345         }
4346
4347         if (!enable_unrestricted_guest && !is_paging(vcpu))
4348                 /*
4349                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4350                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4351                  * to be manually disabled when guest switches to non-paging
4352                  * mode.
4353                  *
4354                  * If !enable_unrestricted_guest, the CPU is always running
4355                  * with CR0.PG=1 and CR4 needs to be modified.
4356                  * If enable_unrestricted_guest, the CPU automatically
4357                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4358                  */
4359                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4360
4361         vmcs_writel(CR4_READ_SHADOW, cr4);
4362         vmcs_writel(GUEST_CR4, hw_cr4);
4363         return 0;
4364 }
4365
4366 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4367                             struct kvm_segment *var, int seg)
4368 {
4369         struct vcpu_vmx *vmx = to_vmx(vcpu);
4370         u32 ar;
4371
4372         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4373                 *var = vmx->rmode.segs[seg];
4374                 if (seg == VCPU_SREG_TR
4375                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4376                         return;
4377                 var->base = vmx_read_guest_seg_base(vmx, seg);
4378                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4379                 return;
4380         }
4381         var->base = vmx_read_guest_seg_base(vmx, seg);
4382         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4383         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4384         ar = vmx_read_guest_seg_ar(vmx, seg);
4385         var->unusable = (ar >> 16) & 1;
4386         var->type = ar & 15;
4387         var->s = (ar >> 4) & 1;
4388         var->dpl = (ar >> 5) & 3;
4389         /*
4390          * Some userspaces do not preserve unusable property. Since usable
4391          * segment has to be present according to VMX spec we can use present
4392          * property to amend userspace bug by making unusable segment always
4393          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4394          * segment as unusable.
4395          */
4396         var->present = !var->unusable;
4397         var->avl = (ar >> 12) & 1;
4398         var->l = (ar >> 13) & 1;
4399         var->db = (ar >> 14) & 1;
4400         var->g = (ar >> 15) & 1;
4401 }
4402
4403 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4404 {
4405         struct kvm_segment s;
4406
4407         if (to_vmx(vcpu)->rmode.vm86_active) {
4408                 vmx_get_segment(vcpu, &s, seg);
4409                 return s.base;
4410         }
4411         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4412 }
4413
4414 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4415 {
4416         struct vcpu_vmx *vmx = to_vmx(vcpu);
4417
4418         if (unlikely(vmx->rmode.vm86_active))
4419                 return 0;
4420         else {
4421                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4422                 return VMX_AR_DPL(ar);
4423         }
4424 }
4425
4426 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4427 {
4428         u32 ar;
4429
4430         if (var->unusable || !var->present)
4431                 ar = 1 << 16;
4432         else {
4433                 ar = var->type & 15;
4434                 ar |= (var->s & 1) << 4;
4435                 ar |= (var->dpl & 3) << 5;
4436                 ar |= (var->present & 1) << 7;
4437                 ar |= (var->avl & 1) << 12;
4438                 ar |= (var->l & 1) << 13;
4439                 ar |= (var->db & 1) << 14;
4440                 ar |= (var->g & 1) << 15;
4441         }
4442
4443         return ar;
4444 }
4445
4446 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4447                             struct kvm_segment *var, int seg)
4448 {
4449         struct vcpu_vmx *vmx = to_vmx(vcpu);
4450         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4451
4452         vmx_segment_cache_clear(vmx);
4453
4454         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4455                 vmx->rmode.segs[seg] = *var;
4456                 if (seg == VCPU_SREG_TR)
4457                         vmcs_write16(sf->selector, var->selector);
4458                 else if (var->s)
4459                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4460                 goto out;
4461         }
4462
4463         vmcs_writel(sf->base, var->base);
4464         vmcs_write32(sf->limit, var->limit);
4465         vmcs_write16(sf->selector, var->selector);
4466
4467         /*
4468          *   Fix the "Accessed" bit in AR field of segment registers for older
4469          * qemu binaries.
4470          *   IA32 arch specifies that at the time of processor reset the
4471          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4472          * is setting it to 0 in the userland code. This causes invalid guest
4473          * state vmexit when "unrestricted guest" mode is turned on.
4474          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4475          * tree. Newer qemu binaries with that qemu fix would not need this
4476          * kvm hack.
4477          */
4478         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4479                 var->type |= 0x1; /* Accessed */
4480
4481         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4482
4483 out:
4484         vmx->emulation_required = emulation_required(vcpu);
4485 }
4486
4487 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4488 {
4489         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4490
4491         *db = (ar >> 14) & 1;
4492         *l = (ar >> 13) & 1;
4493 }
4494
4495 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4496 {
4497         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4498         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4499 }
4500
4501 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4502 {
4503         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4504         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4505 }
4506
4507 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4508 {
4509         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4510         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4511 }
4512
4513 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4514 {
4515         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4516         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4517 }
4518
4519 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4520 {
4521         struct kvm_segment var;
4522         u32 ar;
4523
4524         vmx_get_segment(vcpu, &var, seg);
4525         var.dpl = 0x3;
4526         if (seg == VCPU_SREG_CS)
4527                 var.type = 0x3;
4528         ar = vmx_segment_access_rights(&var);
4529
4530         if (var.base != (var.selector << 4))
4531                 return false;
4532         if (var.limit != 0xffff)
4533                 return false;
4534         if (ar != 0xf3)
4535                 return false;
4536
4537         return true;
4538 }
4539
4540 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4541 {
4542         struct kvm_segment cs;
4543         unsigned int cs_rpl;
4544
4545         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4546         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4547
4548         if (cs.unusable)
4549                 return false;
4550         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4551                 return false;
4552         if (!cs.s)
4553                 return false;
4554         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4555                 if (cs.dpl > cs_rpl)
4556                         return false;
4557         } else {
4558                 if (cs.dpl != cs_rpl)
4559                         return false;
4560         }
4561         if (!cs.present)
4562                 return false;
4563
4564         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4565         return true;
4566 }
4567
4568 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4569 {
4570         struct kvm_segment ss;
4571         unsigned int ss_rpl;
4572
4573         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4574         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4575
4576         if (ss.unusable)
4577                 return true;
4578         if (ss.type != 3 && ss.type != 7)
4579                 return false;
4580         if (!ss.s)
4581                 return false;
4582         if (ss.dpl != ss_rpl) /* DPL != RPL */
4583                 return false;
4584         if (!ss.present)
4585                 return false;
4586
4587         return true;
4588 }
4589
4590 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4591 {
4592         struct kvm_segment var;
4593         unsigned int rpl;
4594
4595         vmx_get_segment(vcpu, &var, seg);
4596         rpl = var.selector & SEGMENT_RPL_MASK;
4597
4598         if (var.unusable)
4599                 return true;
4600         if (!var.s)
4601                 return false;
4602         if (!var.present)
4603                 return false;
4604         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4605                 if (var.dpl < rpl) /* DPL < RPL */
4606                         return false;
4607         }
4608
4609         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4610          * rights flags
4611          */
4612         return true;
4613 }
4614
4615 static bool tr_valid(struct kvm_vcpu *vcpu)
4616 {
4617         struct kvm_segment tr;
4618
4619         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4620
4621         if (tr.unusable)
4622                 return false;
4623         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4624                 return false;
4625         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4626                 return false;
4627         if (!tr.present)
4628                 return false;
4629
4630         return true;
4631 }
4632
4633 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4634 {
4635         struct kvm_segment ldtr;
4636
4637         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4638
4639         if (ldtr.unusable)
4640                 return true;
4641         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4642                 return false;
4643         if (ldtr.type != 2)
4644                 return false;
4645         if (!ldtr.present)
4646                 return false;
4647
4648         return true;
4649 }
4650
4651 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4652 {
4653         struct kvm_segment cs, ss;
4654
4655         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4656         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4657
4658         return ((cs.selector & SEGMENT_RPL_MASK) ==
4659                  (ss.selector & SEGMENT_RPL_MASK));
4660 }
4661
4662 /*
4663  * Check if guest state is valid. Returns true if valid, false if
4664  * not.
4665  * We assume that registers are always usable
4666  */
4667 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4668 {
4669         if (enable_unrestricted_guest)
4670                 return true;
4671
4672         /* real mode guest state checks */
4673         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4674                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4675                         return false;
4676                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4677                         return false;
4678                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4679                         return false;
4680                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4681                         return false;
4682                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4683                         return false;
4684                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4685                         return false;
4686         } else {
4687         /* protected mode guest state checks */
4688                 if (!cs_ss_rpl_check(vcpu))
4689                         return false;
4690                 if (!code_segment_valid(vcpu))
4691                         return false;
4692                 if (!stack_segment_valid(vcpu))
4693                         return false;
4694                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4695                         return false;
4696                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4697                         return false;
4698                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4699                         return false;
4700                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4701                         return false;
4702                 if (!tr_valid(vcpu))
4703                         return false;
4704                 if (!ldtr_valid(vcpu))
4705                         return false;
4706         }
4707         /* TODO:
4708          * - Add checks on RIP
4709          * - Add checks on RFLAGS
4710          */
4711
4712         return true;
4713 }
4714
4715 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4716 {
4717         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4718 }
4719
4720 static int init_rmode_tss(struct kvm *kvm)
4721 {
4722         gfn_t fn;
4723         u16 data = 0;
4724         int idx, r;
4725
4726         idx = srcu_read_lock(&kvm->srcu);
4727         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4728         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4729         if (r < 0)
4730                 goto out;
4731         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4732         r = kvm_write_guest_page(kvm, fn++, &data,
4733                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4734         if (r < 0)
4735                 goto out;
4736         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4737         if (r < 0)
4738                 goto out;
4739         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4740         if (r < 0)
4741                 goto out;
4742         data = ~0;
4743         r = kvm_write_guest_page(kvm, fn, &data,
4744                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4745                                  sizeof(u8));
4746 out:
4747         srcu_read_unlock(&kvm->srcu, idx);
4748         return r;
4749 }
4750
4751 static int init_rmode_identity_map(struct kvm *kvm)
4752 {
4753         int i, idx, r = 0;
4754         kvm_pfn_t identity_map_pfn;
4755         u32 tmp;
4756
4757         if (!enable_ept)
4758                 return 0;
4759
4760         /* Protect kvm->arch.ept_identity_pagetable_done. */
4761         mutex_lock(&kvm->slots_lock);
4762
4763         if (likely(kvm->arch.ept_identity_pagetable_done))
4764                 goto out2;
4765
4766         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4767
4768         r = alloc_identity_pagetable(kvm);
4769         if (r < 0)
4770                 goto out2;
4771
4772         idx = srcu_read_lock(&kvm->srcu);
4773         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4774         if (r < 0)
4775                 goto out;
4776         /* Set up identity-mapping pagetable for EPT in real mode */
4777         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4778                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4779                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4780                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4781                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4782                 if (r < 0)
4783                         goto out;
4784         }
4785         kvm->arch.ept_identity_pagetable_done = true;
4786
4787 out:
4788         srcu_read_unlock(&kvm->srcu, idx);
4789
4790 out2:
4791         mutex_unlock(&kvm->slots_lock);
4792         return r;
4793 }
4794
4795 static void seg_setup(int seg)
4796 {
4797         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4798         unsigned int ar;
4799
4800         vmcs_write16(sf->selector, 0);
4801         vmcs_writel(sf->base, 0);
4802         vmcs_write32(sf->limit, 0xffff);
4803         ar = 0x93;
4804         if (seg == VCPU_SREG_CS)
4805                 ar |= 0x08; /* code segment */
4806
4807         vmcs_write32(sf->ar_bytes, ar);
4808 }
4809
4810 static int alloc_apic_access_page(struct kvm *kvm)
4811 {
4812         struct page *page;
4813         int r = 0;
4814
4815         mutex_lock(&kvm->slots_lock);
4816         if (kvm->arch.apic_access_page_done)
4817                 goto out;
4818         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4819                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4820         if (r)
4821                 goto out;
4822
4823         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4824         if (is_error_page(page)) {
4825                 r = -EFAULT;
4826                 goto out;
4827         }
4828
4829         /*
4830          * Do not pin the page in memory, so that memory hot-unplug
4831          * is able to migrate it.
4832          */
4833         put_page(page);
4834         kvm->arch.apic_access_page_done = true;
4835 out:
4836         mutex_unlock(&kvm->slots_lock);
4837         return r;
4838 }
4839
4840 static int alloc_identity_pagetable(struct kvm *kvm)
4841 {
4842         /* Called with kvm->slots_lock held. */
4843
4844         int r = 0;
4845
4846         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4847
4848         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4849                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4850
4851         return r;
4852 }
4853
4854 static int allocate_vpid(void)
4855 {
4856         int vpid;
4857
4858         if (!enable_vpid)
4859                 return 0;
4860         spin_lock(&vmx_vpid_lock);
4861         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4862         if (vpid < VMX_NR_VPIDS)
4863                 __set_bit(vpid, vmx_vpid_bitmap);
4864         else
4865                 vpid = 0;
4866         spin_unlock(&vmx_vpid_lock);
4867         return vpid;
4868 }
4869
4870 static void free_vpid(int vpid)
4871 {
4872         if (!enable_vpid || vpid == 0)
4873                 return;
4874         spin_lock(&vmx_vpid_lock);
4875         __clear_bit(vpid, vmx_vpid_bitmap);
4876         spin_unlock(&vmx_vpid_lock);
4877 }
4878
4879 #define MSR_TYPE_R      1
4880 #define MSR_TYPE_W      2
4881 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4882                                                 u32 msr, int type)
4883 {
4884         int f = sizeof(unsigned long);
4885
4886         if (!cpu_has_vmx_msr_bitmap())
4887                 return;
4888
4889         /*
4890          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4891          * have the write-low and read-high bitmap offsets the wrong way round.
4892          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4893          */
4894         if (msr <= 0x1fff) {
4895                 if (type & MSR_TYPE_R)
4896                         /* read-low */
4897                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4898
4899                 if (type & MSR_TYPE_W)
4900                         /* write-low */
4901                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4902
4903         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4904                 msr &= 0x1fff;
4905                 if (type & MSR_TYPE_R)
4906                         /* read-high */
4907                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4908
4909                 if (type & MSR_TYPE_W)
4910                         /* write-high */
4911                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4912
4913         }
4914 }
4915
4916 /*
4917  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4918  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4919  */
4920 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4921                                                unsigned long *msr_bitmap_nested,
4922                                                u32 msr, int type)
4923 {
4924         int f = sizeof(unsigned long);
4925
4926         if (!cpu_has_vmx_msr_bitmap()) {
4927                 WARN_ON(1);
4928                 return;
4929         }
4930
4931         /*
4932          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4933          * have the write-low and read-high bitmap offsets the wrong way round.
4934          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4935          */
4936         if (msr <= 0x1fff) {
4937                 if (type & MSR_TYPE_R &&
4938                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4939                         /* read-low */
4940                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4941
4942                 if (type & MSR_TYPE_W &&
4943                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4944                         /* write-low */
4945                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4946
4947         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4948                 msr &= 0x1fff;
4949                 if (type & MSR_TYPE_R &&
4950                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4951                         /* read-high */
4952                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4953
4954                 if (type & MSR_TYPE_W &&
4955                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4956                         /* write-high */
4957                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4958
4959         }
4960 }
4961
4962 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4963 {
4964         if (!longmode_only)
4965                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4966                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4967         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4968                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4969 }
4970
4971 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4972 {
4973         if (apicv_active) {
4974                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4975                                 msr, type);
4976                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4977                                 msr, type);
4978         } else {
4979                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4980                                 msr, type);
4981                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4982                                 msr, type);
4983         }
4984 }
4985
4986 static bool vmx_get_enable_apicv(void)
4987 {
4988         return enable_apicv;
4989 }
4990
4991 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4992 {
4993         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4994         gfn_t gfn;
4995
4996         /*
4997          * Don't need to mark the APIC access page dirty; it is never
4998          * written to by the CPU during APIC virtualization.
4999          */
5000
5001         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5002                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5003                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5004         }
5005
5006         if (nested_cpu_has_posted_intr(vmcs12)) {
5007                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5008                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5009         }
5010 }
5011
5012
5013 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5014 {
5015         struct vcpu_vmx *vmx = to_vmx(vcpu);
5016         int max_irr;
5017         void *vapic_page;
5018         u16 status;
5019
5020         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5021                 return;
5022
5023         vmx->nested.pi_pending = false;
5024         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5025                 return;
5026
5027         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5028         if (max_irr != 256) {
5029                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5030                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5031                 kunmap(vmx->nested.virtual_apic_page);
5032
5033                 status = vmcs_read16(GUEST_INTR_STATUS);
5034                 if ((u8)max_irr > ((u8)status & 0xff)) {
5035                         status &= ~0xff;
5036                         status |= (u8)max_irr;
5037                         vmcs_write16(GUEST_INTR_STATUS, status);
5038                 }
5039         }
5040
5041         nested_mark_vmcs12_pages_dirty(vcpu);
5042 }
5043
5044 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5045                                                      bool nested)
5046 {
5047 #ifdef CONFIG_SMP
5048         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5049
5050         if (vcpu->mode == IN_GUEST_MODE) {
5051                 struct vcpu_vmx *vmx = to_vmx(vcpu);
5052
5053                 /*
5054                  * Currently, we don't support urgent interrupt,
5055                  * all interrupts are recognized as non-urgent
5056                  * interrupt, so we cannot post interrupts when
5057                  * 'SN' is set.
5058                  *
5059                  * If the vcpu is in guest mode, it means it is
5060                  * running instead of being scheduled out and
5061                  * waiting in the run queue, and that's the only
5062                  * case when 'SN' is set currently, warning if
5063                  * 'SN' is set.
5064                  */
5065                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5066
5067                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5068                 return true;
5069         }
5070 #endif
5071         return false;
5072 }
5073
5074 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5075                                                 int vector)
5076 {
5077         struct vcpu_vmx *vmx = to_vmx(vcpu);
5078
5079         if (is_guest_mode(vcpu) &&
5080             vector == vmx->nested.posted_intr_nv) {
5081                 /* the PIR and ON have been set by L1. */
5082                 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5083                 /*
5084                  * If a posted intr is not recognized by hardware,
5085                  * we will accomplish it in the next vmentry.
5086                  */
5087                 vmx->nested.pi_pending = true;
5088                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5089                 return 0;
5090         }
5091         return -1;
5092 }
5093 /*
5094  * Send interrupt to vcpu via posted interrupt way.
5095  * 1. If target vcpu is running(non-root mode), send posted interrupt
5096  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5097  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5098  * interrupt from PIR in next vmentry.
5099  */
5100 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5101 {
5102         struct vcpu_vmx *vmx = to_vmx(vcpu);
5103         int r;
5104
5105         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5106         if (!r)
5107                 return;
5108
5109         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5110                 return;
5111
5112         /* If a previous notification has sent the IPI, nothing to do.  */
5113         if (pi_test_and_set_on(&vmx->pi_desc))
5114                 return;
5115
5116         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5117                 kvm_vcpu_kick(vcpu);
5118 }
5119
5120 /*
5121  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5122  * will not change in the lifetime of the guest.
5123  * Note that host-state that does change is set elsewhere. E.g., host-state
5124  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5125  */
5126 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5127 {
5128         u32 low32, high32;
5129         unsigned long tmpl;
5130         struct desc_ptr dt;
5131         unsigned long cr0, cr3, cr4;
5132
5133         cr0 = read_cr0();
5134         WARN_ON(cr0 & X86_CR0_TS);
5135         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5136
5137         /*
5138          * Save the most likely value for this task's CR3 in the VMCS.
5139          * We can't use __get_current_cr3_fast() because we're not atomic.
5140          */
5141         cr3 = __read_cr3();
5142         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5143         vmx->host_state.vmcs_host_cr3 = cr3;
5144
5145         /* Save the most likely value for this task's CR4 in the VMCS. */
5146         cr4 = cr4_read_shadow();
5147         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5148         vmx->host_state.vmcs_host_cr4 = cr4;
5149
5150         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5151 #ifdef CONFIG_X86_64
5152         /*
5153          * Load null selectors, so we can avoid reloading them in
5154          * __vmx_load_host_state(), in case userspace uses the null selectors
5155          * too (the expected case).
5156          */
5157         vmcs_write16(HOST_DS_SELECTOR, 0);
5158         vmcs_write16(HOST_ES_SELECTOR, 0);
5159 #else
5160         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5161         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5162 #endif
5163         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5164         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5165
5166         native_store_idt(&dt);
5167         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5168         vmx->host_idt_base = dt.address;
5169
5170         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5171
5172         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5173         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5174         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5175         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5176
5177         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5178                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5179                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5180         }
5181 }
5182
5183 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5184 {
5185         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5186         if (enable_ept)
5187                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5188         if (is_guest_mode(&vmx->vcpu))
5189                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5190                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5191         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5192 }
5193
5194 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5195 {
5196         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5197
5198         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5199                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5200         /* Enable the preemption timer dynamically */
5201         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5202         return pin_based_exec_ctrl;
5203 }
5204
5205 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5206 {
5207         struct vcpu_vmx *vmx = to_vmx(vcpu);
5208
5209         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5210         if (cpu_has_secondary_exec_ctrls()) {
5211                 if (kvm_vcpu_apicv_active(vcpu))
5212                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5213                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5214                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5215                 else
5216                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5217                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5218                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5219         }
5220
5221         if (cpu_has_vmx_msr_bitmap())
5222                 vmx_set_msr_bitmap(vcpu);
5223 }
5224
5225 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5226 {
5227         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5228
5229         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5230                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5231
5232         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5233                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5234 #ifdef CONFIG_X86_64
5235                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5236                                 CPU_BASED_CR8_LOAD_EXITING;
5237 #endif
5238         }
5239         if (!enable_ept)
5240                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5241                                 CPU_BASED_CR3_LOAD_EXITING  |
5242                                 CPU_BASED_INVLPG_EXITING;
5243         return exec_control;
5244 }
5245
5246 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5247 {
5248         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5249         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5250                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5251         if (vmx->vpid == 0)
5252                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5253         if (!enable_ept) {
5254                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5255                 enable_unrestricted_guest = 0;
5256                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5257                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5258         }
5259         if (!enable_unrestricted_guest)
5260                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5261         if (!ple_gap)
5262                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5263         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5264                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5265                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5266         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5267         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5268            (handle_vmptrld).
5269            We can NOT enable shadow_vmcs here because we don't have yet
5270            a current VMCS12
5271         */
5272         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5273
5274         if (!enable_pml)
5275                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5276
5277         return exec_control;
5278 }
5279
5280 static void ept_set_mmio_spte_mask(void)
5281 {
5282         /*
5283          * EPT Misconfigurations can be generated if the value of bits 2:0
5284          * of an EPT paging-structure entry is 110b (write/execute).
5285          */
5286         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5287                                    VMX_EPT_MISCONFIG_WX_VALUE);
5288 }
5289
5290 #define VMX_XSS_EXIT_BITMAP 0
5291 /*
5292  * Sets up the vmcs for emulated real mode.
5293  */
5294 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5295 {
5296 #ifdef CONFIG_X86_64
5297         unsigned long a;
5298 #endif
5299         int i;
5300
5301         /* I/O */
5302         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5303         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5304
5305         if (enable_shadow_vmcs) {
5306                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5307                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5308         }
5309         if (cpu_has_vmx_msr_bitmap())
5310                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5311
5312         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5313
5314         /* Control */
5315         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5316         vmx->hv_deadline_tsc = -1;
5317
5318         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5319
5320         if (cpu_has_secondary_exec_ctrls()) {
5321                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5322                                 vmx_secondary_exec_control(vmx));
5323         }
5324
5325         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5326                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5327                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5328                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5329                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5330
5331                 vmcs_write16(GUEST_INTR_STATUS, 0);
5332
5333                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5334                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5335         }
5336
5337         if (ple_gap) {
5338                 vmcs_write32(PLE_GAP, ple_gap);
5339                 vmx->ple_window = ple_window;
5340                 vmx->ple_window_dirty = true;
5341         }
5342
5343         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5344         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5345         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5346
5347         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5348         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5349         vmx_set_constant_host_state(vmx);
5350 #ifdef CONFIG_X86_64
5351         rdmsrl(MSR_FS_BASE, a);
5352         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5353         rdmsrl(MSR_GS_BASE, a);
5354         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5355 #else
5356         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5357         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5358 #endif
5359
5360         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5361         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5362         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5363         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5364         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5365
5366         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5367                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5368
5369         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5370                 u32 index = vmx_msr_index[i];
5371                 u32 data_low, data_high;
5372                 int j = vmx->nmsrs;
5373
5374                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5375                         continue;
5376                 if (wrmsr_safe(index, data_low, data_high) < 0)
5377                         continue;
5378                 vmx->guest_msrs[j].index = i;
5379                 vmx->guest_msrs[j].data = 0;
5380                 vmx->guest_msrs[j].mask = -1ull;
5381                 ++vmx->nmsrs;
5382         }
5383
5384
5385         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5386
5387         /* 22.2.1, 20.8.1 */
5388         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5389
5390         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5391         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5392
5393         set_cr4_guest_host_mask(vmx);
5394
5395         if (vmx_xsaves_supported())
5396                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5397
5398         if (enable_pml) {
5399                 ASSERT(vmx->pml_pg);
5400                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5401                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5402         }
5403
5404         return 0;
5405 }
5406
5407 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5408 {
5409         struct vcpu_vmx *vmx = to_vmx(vcpu);
5410         struct msr_data apic_base_msr;
5411         u64 cr0;
5412
5413         vmx->rmode.vm86_active = 0;
5414
5415         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5416         kvm_set_cr8(vcpu, 0);
5417
5418         if (!init_event) {
5419                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5420                                      MSR_IA32_APICBASE_ENABLE;
5421                 if (kvm_vcpu_is_reset_bsp(vcpu))
5422                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5423                 apic_base_msr.host_initiated = true;
5424                 kvm_set_apic_base(vcpu, &apic_base_msr);
5425         }
5426
5427         vmx_segment_cache_clear(vmx);
5428
5429         seg_setup(VCPU_SREG_CS);
5430         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5431         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5432
5433         seg_setup(VCPU_SREG_DS);
5434         seg_setup(VCPU_SREG_ES);
5435         seg_setup(VCPU_SREG_FS);
5436         seg_setup(VCPU_SREG_GS);
5437         seg_setup(VCPU_SREG_SS);
5438
5439         vmcs_write16(GUEST_TR_SELECTOR, 0);
5440         vmcs_writel(GUEST_TR_BASE, 0);
5441         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5442         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5443
5444         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5445         vmcs_writel(GUEST_LDTR_BASE, 0);
5446         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5447         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5448
5449         if (!init_event) {
5450                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5451                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5452                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5453                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5454         }
5455
5456         vmcs_writel(GUEST_RFLAGS, 0x02);
5457         kvm_rip_write(vcpu, 0xfff0);
5458
5459         vmcs_writel(GUEST_GDTR_BASE, 0);
5460         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5461
5462         vmcs_writel(GUEST_IDTR_BASE, 0);
5463         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5464
5465         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5466         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5467         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5468
5469         setup_msrs(vmx);
5470
5471         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5472
5473         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5474                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5475                 if (cpu_need_tpr_shadow(vcpu))
5476                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5477                                      __pa(vcpu->arch.apic->regs));
5478                 vmcs_write32(TPR_THRESHOLD, 0);
5479         }
5480
5481         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5482
5483         if (kvm_vcpu_apicv_active(vcpu))
5484                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5485
5486         if (vmx->vpid != 0)
5487                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5488
5489         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5490         vmx->vcpu.arch.cr0 = cr0;
5491         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5492         vmx_set_cr4(vcpu, 0);
5493         vmx_set_efer(vcpu, 0);
5494
5495         update_exception_bitmap(vcpu);
5496
5497         vpid_sync_context(vmx->vpid);
5498 }
5499
5500 /*
5501  * In nested virtualization, check if L1 asked to exit on external interrupts.
5502  * For most existing hypervisors, this will always return true.
5503  */
5504 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5505 {
5506         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5507                 PIN_BASED_EXT_INTR_MASK;
5508 }
5509
5510 /*
5511  * In nested virtualization, check if L1 has set
5512  * VM_EXIT_ACK_INTR_ON_EXIT
5513  */
5514 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5515 {
5516         return get_vmcs12(vcpu)->vm_exit_controls &
5517                 VM_EXIT_ACK_INTR_ON_EXIT;
5518 }
5519
5520 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5521 {
5522         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5523                 PIN_BASED_NMI_EXITING;
5524 }
5525
5526 static void enable_irq_window(struct kvm_vcpu *vcpu)
5527 {
5528         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5529                       CPU_BASED_VIRTUAL_INTR_PENDING);
5530 }
5531
5532 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5533 {
5534         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5535                 enable_irq_window(vcpu);
5536                 return;
5537         }
5538
5539         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5540                       CPU_BASED_VIRTUAL_NMI_PENDING);
5541 }
5542
5543 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5544 {
5545         struct vcpu_vmx *vmx = to_vmx(vcpu);
5546         uint32_t intr;
5547         int irq = vcpu->arch.interrupt.nr;
5548
5549         trace_kvm_inj_virq(irq);
5550
5551         ++vcpu->stat.irq_injections;
5552         if (vmx->rmode.vm86_active) {
5553                 int inc_eip = 0;
5554                 if (vcpu->arch.interrupt.soft)
5555                         inc_eip = vcpu->arch.event_exit_inst_len;
5556                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5557                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5558                 return;
5559         }
5560         intr = irq | INTR_INFO_VALID_MASK;
5561         if (vcpu->arch.interrupt.soft) {
5562                 intr |= INTR_TYPE_SOFT_INTR;
5563                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5564                              vmx->vcpu.arch.event_exit_inst_len);
5565         } else
5566                 intr |= INTR_TYPE_EXT_INTR;
5567         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5568 }
5569
5570 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5571 {
5572         struct vcpu_vmx *vmx = to_vmx(vcpu);
5573
5574         ++vcpu->stat.nmi_injections;
5575         vmx->loaded_vmcs->nmi_known_unmasked = false;
5576
5577         if (vmx->rmode.vm86_active) {
5578                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5579                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5580                 return;
5581         }
5582
5583         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5584                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5585 }
5586
5587 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5588 {
5589         struct vcpu_vmx *vmx = to_vmx(vcpu);
5590         bool masked;
5591
5592         if (vmx->loaded_vmcs->nmi_known_unmasked)
5593                 return false;
5594         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5595         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5596         return masked;
5597 }
5598
5599 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5600 {
5601         struct vcpu_vmx *vmx = to_vmx(vcpu);
5602
5603         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5604         if (masked)
5605                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5606                               GUEST_INTR_STATE_NMI);
5607         else
5608                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5609                                 GUEST_INTR_STATE_NMI);
5610 }
5611
5612 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5613 {
5614         if (to_vmx(vcpu)->nested.nested_run_pending)
5615                 return 0;
5616
5617         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5618                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5619                    | GUEST_INTR_STATE_NMI));
5620 }
5621
5622 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5623 {
5624         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5625                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5626                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5627                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5628 }
5629
5630 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5631 {
5632         int ret;
5633
5634         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5635                                     PAGE_SIZE * 3);
5636         if (ret)
5637                 return ret;
5638         kvm->arch.tss_addr = addr;
5639         return init_rmode_tss(kvm);
5640 }
5641
5642 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5643 {
5644         switch (vec) {
5645         case BP_VECTOR:
5646                 /*
5647                  * Update instruction length as we may reinject the exception
5648                  * from user space while in guest debugging mode.
5649                  */
5650                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5651                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5652                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5653                         return false;
5654                 /* fall through */
5655         case DB_VECTOR:
5656                 if (vcpu->guest_debug &
5657                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5658                         return false;
5659                 /* fall through */
5660         case DE_VECTOR:
5661         case OF_VECTOR:
5662         case BR_VECTOR:
5663         case UD_VECTOR:
5664         case DF_VECTOR:
5665         case SS_VECTOR:
5666         case GP_VECTOR:
5667         case MF_VECTOR:
5668                 return true;
5669         break;
5670         }
5671         return false;
5672 }
5673
5674 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5675                                   int vec, u32 err_code)
5676 {
5677         /*
5678          * Instruction with address size override prefix opcode 0x67
5679          * Cause the #SS fault with 0 error code in VM86 mode.
5680          */
5681         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5682                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5683                         if (vcpu->arch.halt_request) {
5684                                 vcpu->arch.halt_request = 0;
5685                                 return kvm_vcpu_halt(vcpu);
5686                         }
5687                         return 1;
5688                 }
5689                 return 0;
5690         }
5691
5692         /*
5693          * Forward all other exceptions that are valid in real mode.
5694          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5695          *        the required debugging infrastructure rework.
5696          */
5697         kvm_queue_exception(vcpu, vec);
5698         return 1;
5699 }
5700
5701 /*
5702  * Trigger machine check on the host. We assume all the MSRs are already set up
5703  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5704  * We pass a fake environment to the machine check handler because we want
5705  * the guest to be always treated like user space, no matter what context
5706  * it used internally.
5707  */
5708 static void kvm_machine_check(void)
5709 {
5710 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5711         struct pt_regs regs = {
5712                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5713                 .flags = X86_EFLAGS_IF,
5714         };
5715
5716         do_machine_check(&regs, 0);
5717 #endif
5718 }
5719
5720 static int handle_machine_check(struct kvm_vcpu *vcpu)
5721 {
5722         /* already handled by vcpu_run */
5723         return 1;
5724 }
5725
5726 static int handle_exception(struct kvm_vcpu *vcpu)
5727 {
5728         struct vcpu_vmx *vmx = to_vmx(vcpu);
5729         struct kvm_run *kvm_run = vcpu->run;
5730         u32 intr_info, ex_no, error_code;
5731         unsigned long cr2, rip, dr6;
5732         u32 vect_info;
5733         enum emulation_result er;
5734
5735         vect_info = vmx->idt_vectoring_info;
5736         intr_info = vmx->exit_intr_info;
5737
5738         if (is_machine_check(intr_info))
5739                 return handle_machine_check(vcpu);
5740
5741         if (is_nmi(intr_info))
5742                 return 1;  /* already handled by vmx_vcpu_run() */
5743
5744         if (is_invalid_opcode(intr_info)) {
5745                 if (is_guest_mode(vcpu)) {
5746                         kvm_queue_exception(vcpu, UD_VECTOR);
5747                         return 1;
5748                 }
5749                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5750                 if (er != EMULATE_DONE)
5751                         kvm_queue_exception(vcpu, UD_VECTOR);
5752                 return 1;
5753         }
5754
5755         error_code = 0;
5756         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5757                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5758
5759         /*
5760          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5761          * MMIO, it is better to report an internal error.
5762          * See the comments in vmx_handle_exit.
5763          */
5764         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5765             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5766                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5767                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5768                 vcpu->run->internal.ndata = 3;
5769                 vcpu->run->internal.data[0] = vect_info;
5770                 vcpu->run->internal.data[1] = intr_info;
5771                 vcpu->run->internal.data[2] = error_code;
5772                 return 0;
5773         }
5774
5775         if (is_page_fault(intr_info)) {
5776                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5777                 /* EPT won't cause page fault directly */
5778                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5779                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5780                                 true);
5781         }
5782
5783         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5784
5785         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5786                 return handle_rmode_exception(vcpu, ex_no, error_code);
5787
5788         switch (ex_no) {
5789         case AC_VECTOR:
5790                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5791                 return 1;
5792         case DB_VECTOR:
5793                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5794                 if (!(vcpu->guest_debug &
5795                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5796                         vcpu->arch.dr6 &= ~15;
5797                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5798                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5799                                 skip_emulated_instruction(vcpu);
5800
5801                         kvm_queue_exception(vcpu, DB_VECTOR);
5802                         return 1;
5803                 }
5804                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5805                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5806                 /* fall through */
5807         case BP_VECTOR:
5808                 /*
5809                  * Update instruction length as we may reinject #BP from
5810                  * user space while in guest debugging mode. Reading it for
5811                  * #DB as well causes no harm, it is not used in that case.
5812                  */
5813                 vmx->vcpu.arch.event_exit_inst_len =
5814                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5815                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5816                 rip = kvm_rip_read(vcpu);
5817                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5818                 kvm_run->debug.arch.exception = ex_no;
5819                 break;
5820         default:
5821                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5822                 kvm_run->ex.exception = ex_no;
5823                 kvm_run->ex.error_code = error_code;
5824                 break;
5825         }
5826         return 0;
5827 }
5828
5829 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5830 {
5831         ++vcpu->stat.irq_exits;
5832         return 1;
5833 }
5834
5835 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5836 {
5837         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5838         return 0;
5839 }
5840
5841 static int handle_io(struct kvm_vcpu *vcpu)
5842 {
5843         unsigned long exit_qualification;
5844         int size, in, string, ret;
5845         unsigned port;
5846
5847         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5848         string = (exit_qualification & 16) != 0;
5849         in = (exit_qualification & 8) != 0;
5850
5851         ++vcpu->stat.io_exits;
5852
5853         if (string || in)
5854                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5855
5856         port = exit_qualification >> 16;
5857         size = (exit_qualification & 7) + 1;
5858
5859         ret = kvm_skip_emulated_instruction(vcpu);
5860
5861         /*
5862          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5863          * KVM_EXIT_DEBUG here.
5864          */
5865         return kvm_fast_pio_out(vcpu, size, port) && ret;
5866 }
5867
5868 static void
5869 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5870 {
5871         /*
5872          * Patch in the VMCALL instruction:
5873          */
5874         hypercall[0] = 0x0f;
5875         hypercall[1] = 0x01;
5876         hypercall[2] = 0xc1;
5877 }
5878
5879 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5880 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5881 {
5882         if (is_guest_mode(vcpu)) {
5883                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5884                 unsigned long orig_val = val;
5885
5886                 /*
5887                  * We get here when L2 changed cr0 in a way that did not change
5888                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5889                  * but did change L0 shadowed bits. So we first calculate the
5890                  * effective cr0 value that L1 would like to write into the
5891                  * hardware. It consists of the L2-owned bits from the new
5892                  * value combined with the L1-owned bits from L1's guest_cr0.
5893                  */
5894                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5895                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5896
5897                 if (!nested_guest_cr0_valid(vcpu, val))
5898                         return 1;
5899
5900                 if (kvm_set_cr0(vcpu, val))
5901                         return 1;
5902                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5903                 return 0;
5904         } else {
5905                 if (to_vmx(vcpu)->nested.vmxon &&
5906                     !nested_host_cr0_valid(vcpu, val))
5907                         return 1;
5908
5909                 return kvm_set_cr0(vcpu, val);
5910         }
5911 }
5912
5913 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5914 {
5915         if (is_guest_mode(vcpu)) {
5916                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5917                 unsigned long orig_val = val;
5918
5919                 /* analogously to handle_set_cr0 */
5920                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5921                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5922                 if (kvm_set_cr4(vcpu, val))
5923                         return 1;
5924                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5925                 return 0;
5926         } else
5927                 return kvm_set_cr4(vcpu, val);
5928 }
5929
5930 static int handle_cr(struct kvm_vcpu *vcpu)
5931 {
5932         unsigned long exit_qualification, val;
5933         int cr;
5934         int reg;
5935         int err;
5936         int ret;
5937
5938         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5939         cr = exit_qualification & 15;
5940         reg = (exit_qualification >> 8) & 15;
5941         switch ((exit_qualification >> 4) & 3) {
5942         case 0: /* mov to cr */
5943                 val = kvm_register_readl(vcpu, reg);
5944                 trace_kvm_cr_write(cr, val);
5945                 switch (cr) {
5946                 case 0:
5947                         err = handle_set_cr0(vcpu, val);
5948                         return kvm_complete_insn_gp(vcpu, err);
5949                 case 3:
5950                         err = kvm_set_cr3(vcpu, val);
5951                         return kvm_complete_insn_gp(vcpu, err);
5952                 case 4:
5953                         err = handle_set_cr4(vcpu, val);
5954                         return kvm_complete_insn_gp(vcpu, err);
5955                 case 8: {
5956                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5957                                 u8 cr8 = (u8)val;
5958                                 err = kvm_set_cr8(vcpu, cr8);
5959                                 ret = kvm_complete_insn_gp(vcpu, err);
5960                                 if (lapic_in_kernel(vcpu))
5961                                         return ret;
5962                                 if (cr8_prev <= cr8)
5963                                         return ret;
5964                                 /*
5965                                  * TODO: we might be squashing a
5966                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5967                                  * KVM_EXIT_DEBUG here.
5968                                  */
5969                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5970                                 return 0;
5971                         }
5972                 }
5973                 break;
5974         case 2: /* clts */
5975                 WARN_ONCE(1, "Guest should always own CR0.TS");
5976                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5977                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5978                 return kvm_skip_emulated_instruction(vcpu);
5979         case 1: /*mov from cr*/
5980                 switch (cr) {
5981                 case 3:
5982                         val = kvm_read_cr3(vcpu);
5983                         kvm_register_write(vcpu, reg, val);
5984                         trace_kvm_cr_read(cr, val);
5985                         return kvm_skip_emulated_instruction(vcpu);
5986                 case 8:
5987                         val = kvm_get_cr8(vcpu);
5988                         kvm_register_write(vcpu, reg, val);
5989                         trace_kvm_cr_read(cr, val);
5990                         return kvm_skip_emulated_instruction(vcpu);
5991                 }
5992                 break;
5993         case 3: /* lmsw */
5994                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5995                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5996                 kvm_lmsw(vcpu, val);
5997
5998                 return kvm_skip_emulated_instruction(vcpu);
5999         default:
6000                 break;
6001         }
6002         vcpu->run->exit_reason = 0;
6003         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6004                (int)(exit_qualification >> 4) & 3, cr);
6005         return 0;
6006 }
6007
6008 static int handle_dr(struct kvm_vcpu *vcpu)
6009 {
6010         unsigned long exit_qualification;
6011         int dr, dr7, reg;
6012
6013         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6014         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6015
6016         /* First, if DR does not exist, trigger UD */
6017         if (!kvm_require_dr(vcpu, dr))
6018                 return 1;
6019
6020         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6021         if (!kvm_require_cpl(vcpu, 0))
6022                 return 1;
6023         dr7 = vmcs_readl(GUEST_DR7);
6024         if (dr7 & DR7_GD) {
6025                 /*
6026                  * As the vm-exit takes precedence over the debug trap, we
6027                  * need to emulate the latter, either for the host or the
6028                  * guest debugging itself.
6029                  */
6030                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6031                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6032                         vcpu->run->debug.arch.dr7 = dr7;
6033                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6034                         vcpu->run->debug.arch.exception = DB_VECTOR;
6035                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6036                         return 0;
6037                 } else {
6038                         vcpu->arch.dr6 &= ~15;
6039                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6040                         kvm_queue_exception(vcpu, DB_VECTOR);
6041                         return 1;
6042                 }
6043         }
6044
6045         if (vcpu->guest_debug == 0) {
6046                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6047                                 CPU_BASED_MOV_DR_EXITING);
6048
6049                 /*
6050                  * No more DR vmexits; force a reload of the debug registers
6051                  * and reenter on this instruction.  The next vmexit will
6052                  * retrieve the full state of the debug registers.
6053                  */
6054                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6055                 return 1;
6056         }
6057
6058         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6059         if (exit_qualification & TYPE_MOV_FROM_DR) {
6060                 unsigned long val;
6061
6062                 if (kvm_get_dr(vcpu, dr, &val))
6063                         return 1;
6064                 kvm_register_write(vcpu, reg, val);
6065         } else
6066                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6067                         return 1;
6068
6069         return kvm_skip_emulated_instruction(vcpu);
6070 }
6071
6072 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6073 {
6074         return vcpu->arch.dr6;
6075 }
6076
6077 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6078 {
6079 }
6080
6081 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6082 {
6083         get_debugreg(vcpu->arch.db[0], 0);
6084         get_debugreg(vcpu->arch.db[1], 1);
6085         get_debugreg(vcpu->arch.db[2], 2);
6086         get_debugreg(vcpu->arch.db[3], 3);
6087         get_debugreg(vcpu->arch.dr6, 6);
6088         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6089
6090         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6091         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6092 }
6093
6094 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6095 {
6096         vmcs_writel(GUEST_DR7, val);
6097 }
6098
6099 static int handle_cpuid(struct kvm_vcpu *vcpu)
6100 {
6101         return kvm_emulate_cpuid(vcpu);
6102 }
6103
6104 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6105 {
6106         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6107         struct msr_data msr_info;
6108
6109         msr_info.index = ecx;
6110         msr_info.host_initiated = false;
6111         if (vmx_get_msr(vcpu, &msr_info)) {
6112                 trace_kvm_msr_read_ex(ecx);
6113                 kvm_inject_gp(vcpu, 0);
6114                 return 1;
6115         }
6116
6117         trace_kvm_msr_read(ecx, msr_info.data);
6118
6119         /* FIXME: handling of bits 32:63 of rax, rdx */
6120         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6121         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6122         return kvm_skip_emulated_instruction(vcpu);
6123 }
6124
6125 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6126 {
6127         struct msr_data msr;
6128         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6129         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6130                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6131
6132         msr.data = data;
6133         msr.index = ecx;
6134         msr.host_initiated = false;
6135         if (kvm_set_msr(vcpu, &msr) != 0) {
6136                 trace_kvm_msr_write_ex(ecx, data);
6137                 kvm_inject_gp(vcpu, 0);
6138                 return 1;
6139         }
6140
6141         trace_kvm_msr_write(ecx, data);
6142         return kvm_skip_emulated_instruction(vcpu);
6143 }
6144
6145 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6146 {
6147         kvm_apic_update_ppr(vcpu);
6148         return 1;
6149 }
6150
6151 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6152 {
6153         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6154                         CPU_BASED_VIRTUAL_INTR_PENDING);
6155
6156         kvm_make_request(KVM_REQ_EVENT, vcpu);
6157
6158         ++vcpu->stat.irq_window_exits;
6159         return 1;
6160 }
6161
6162 static int handle_halt(struct kvm_vcpu *vcpu)
6163 {
6164         return kvm_emulate_halt(vcpu);
6165 }
6166
6167 static int handle_vmcall(struct kvm_vcpu *vcpu)
6168 {
6169         return kvm_emulate_hypercall(vcpu);
6170 }
6171
6172 static int handle_invd(struct kvm_vcpu *vcpu)
6173 {
6174         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6175 }
6176
6177 static int handle_invlpg(struct kvm_vcpu *vcpu)
6178 {
6179         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6180
6181         kvm_mmu_invlpg(vcpu, exit_qualification);
6182         return kvm_skip_emulated_instruction(vcpu);
6183 }
6184
6185 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6186 {
6187         int err;
6188
6189         err = kvm_rdpmc(vcpu);
6190         return kvm_complete_insn_gp(vcpu, err);
6191 }
6192
6193 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6194 {
6195         return kvm_emulate_wbinvd(vcpu);
6196 }
6197
6198 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6199 {
6200         u64 new_bv = kvm_read_edx_eax(vcpu);
6201         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6202
6203         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6204                 return kvm_skip_emulated_instruction(vcpu);
6205         return 1;
6206 }
6207
6208 static int handle_xsaves(struct kvm_vcpu *vcpu)
6209 {
6210         kvm_skip_emulated_instruction(vcpu);
6211         WARN(1, "this should never happen\n");
6212         return 1;
6213 }
6214
6215 static int handle_xrstors(struct kvm_vcpu *vcpu)
6216 {
6217         kvm_skip_emulated_instruction(vcpu);
6218         WARN(1, "this should never happen\n");
6219         return 1;
6220 }
6221
6222 static int handle_apic_access(struct kvm_vcpu *vcpu)
6223 {
6224         if (likely(fasteoi)) {
6225                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6226                 int access_type, offset;
6227
6228                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6229                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6230                 /*
6231                  * Sane guest uses MOV to write EOI, with written value
6232                  * not cared. So make a short-circuit here by avoiding
6233                  * heavy instruction emulation.
6234                  */
6235                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6236                     (offset == APIC_EOI)) {
6237                         kvm_lapic_set_eoi(vcpu);
6238                         return kvm_skip_emulated_instruction(vcpu);
6239                 }
6240         }
6241         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6242 }
6243
6244 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6245 {
6246         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6247         int vector = exit_qualification & 0xff;
6248
6249         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6250         kvm_apic_set_eoi_accelerated(vcpu, vector);
6251         return 1;
6252 }
6253
6254 static int handle_apic_write(struct kvm_vcpu *vcpu)
6255 {
6256         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6257         u32 offset = exit_qualification & 0xfff;
6258
6259         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6260         kvm_apic_write_nodecode(vcpu, offset);
6261         return 1;
6262 }
6263
6264 static int handle_task_switch(struct kvm_vcpu *vcpu)
6265 {
6266         struct vcpu_vmx *vmx = to_vmx(vcpu);
6267         unsigned long exit_qualification;
6268         bool has_error_code = false;
6269         u32 error_code = 0;
6270         u16 tss_selector;
6271         int reason, type, idt_v, idt_index;
6272
6273         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6274         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6275         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6276
6277         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6278
6279         reason = (u32)exit_qualification >> 30;
6280         if (reason == TASK_SWITCH_GATE && idt_v) {
6281                 switch (type) {
6282                 case INTR_TYPE_NMI_INTR:
6283                         vcpu->arch.nmi_injected = false;
6284                         vmx_set_nmi_mask(vcpu, true);
6285                         break;
6286                 case INTR_TYPE_EXT_INTR:
6287                 case INTR_TYPE_SOFT_INTR:
6288                         kvm_clear_interrupt_queue(vcpu);
6289                         break;
6290                 case INTR_TYPE_HARD_EXCEPTION:
6291                         if (vmx->idt_vectoring_info &
6292                             VECTORING_INFO_DELIVER_CODE_MASK) {
6293                                 has_error_code = true;
6294                                 error_code =
6295                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6296                         }
6297                         /* fall through */
6298                 case INTR_TYPE_SOFT_EXCEPTION:
6299                         kvm_clear_exception_queue(vcpu);
6300                         break;
6301                 default:
6302                         break;
6303                 }
6304         }
6305         tss_selector = exit_qualification;
6306
6307         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6308                        type != INTR_TYPE_EXT_INTR &&
6309                        type != INTR_TYPE_NMI_INTR))
6310                 skip_emulated_instruction(vcpu);
6311
6312         if (kvm_task_switch(vcpu, tss_selector,
6313                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6314                             has_error_code, error_code) == EMULATE_FAIL) {
6315                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6316                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6317                 vcpu->run->internal.ndata = 0;
6318                 return 0;
6319         }
6320
6321         /*
6322          * TODO: What about debug traps on tss switch?
6323          *       Are we supposed to inject them and update dr6?
6324          */
6325
6326         return 1;
6327 }
6328
6329 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6330 {
6331         unsigned long exit_qualification;
6332         gpa_t gpa;
6333         u32 error_code;
6334
6335         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6336
6337         /*
6338          * EPT violation happened while executing iret from NMI,
6339          * "blocked by NMI" bit has to be set before next VM entry.
6340          * There are errata that may cause this bit to not be set:
6341          * AAK134, BY25.
6342          */
6343         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6344                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6345                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6346
6347         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6348         trace_kvm_page_fault(gpa, exit_qualification);
6349
6350         /* Is it a read fault? */
6351         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6352                      ? PFERR_USER_MASK : 0;
6353         /* Is it a write fault? */
6354         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6355                       ? PFERR_WRITE_MASK : 0;
6356         /* Is it a fetch fault? */
6357         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6358                       ? PFERR_FETCH_MASK : 0;
6359         /* ept page table entry is present? */
6360         error_code |= (exit_qualification &
6361                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6362                         EPT_VIOLATION_EXECUTABLE))
6363                       ? PFERR_PRESENT_MASK : 0;
6364
6365         vcpu->arch.gpa_available = true;
6366         vcpu->arch.exit_qualification = exit_qualification;
6367
6368         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6369 }
6370
6371 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6372 {
6373         int ret;
6374         gpa_t gpa;
6375
6376         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6377         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6378                 trace_kvm_fast_mmio(gpa);
6379                 return kvm_skip_emulated_instruction(vcpu);
6380         }
6381
6382         ret = handle_mmio_page_fault(vcpu, gpa, true);
6383         vcpu->arch.gpa_available = true;
6384         if (likely(ret == RET_MMIO_PF_EMULATE))
6385                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6386                                               EMULATE_DONE;
6387
6388         if (unlikely(ret == RET_MMIO_PF_INVALID))
6389                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6390
6391         if (unlikely(ret == RET_MMIO_PF_RETRY))
6392                 return 1;
6393
6394         /* It is the real ept misconfig */
6395         WARN_ON(1);
6396
6397         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6398         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6399
6400         return 0;
6401 }
6402
6403 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6404 {
6405         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6406                         CPU_BASED_VIRTUAL_NMI_PENDING);
6407         ++vcpu->stat.nmi_window_exits;
6408         kvm_make_request(KVM_REQ_EVENT, vcpu);
6409
6410         return 1;
6411 }
6412
6413 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6414 {
6415         struct vcpu_vmx *vmx = to_vmx(vcpu);
6416         enum emulation_result err = EMULATE_DONE;
6417         int ret = 1;
6418         u32 cpu_exec_ctrl;
6419         bool intr_window_requested;
6420         unsigned count = 130;
6421
6422         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6423         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6424
6425         while (vmx->emulation_required && count-- != 0) {
6426                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6427                         return handle_interrupt_window(&vmx->vcpu);
6428
6429                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6430                         return 1;
6431
6432                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6433
6434                 if (err == EMULATE_USER_EXIT) {
6435                         ++vcpu->stat.mmio_exits;
6436                         ret = 0;
6437                         goto out;
6438                 }
6439
6440                 if (err != EMULATE_DONE) {
6441                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6442                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6443                         vcpu->run->internal.ndata = 0;
6444                         return 0;
6445                 }
6446
6447                 if (vcpu->arch.halt_request) {
6448                         vcpu->arch.halt_request = 0;
6449                         ret = kvm_vcpu_halt(vcpu);
6450                         goto out;
6451                 }
6452
6453                 if (signal_pending(current))
6454                         goto out;
6455                 if (need_resched())
6456                         schedule();
6457         }
6458
6459 out:
6460         return ret;
6461 }
6462
6463 static int __grow_ple_window(int val)
6464 {
6465         if (ple_window_grow < 1)
6466                 return ple_window;
6467
6468         val = min(val, ple_window_actual_max);
6469
6470         if (ple_window_grow < ple_window)
6471                 val *= ple_window_grow;
6472         else
6473                 val += ple_window_grow;
6474
6475         return val;
6476 }
6477
6478 static int __shrink_ple_window(int val, int modifier, int minimum)
6479 {
6480         if (modifier < 1)
6481                 return ple_window;
6482
6483         if (modifier < ple_window)
6484                 val /= modifier;
6485         else
6486                 val -= modifier;
6487
6488         return max(val, minimum);
6489 }
6490
6491 static void grow_ple_window(struct kvm_vcpu *vcpu)
6492 {
6493         struct vcpu_vmx *vmx = to_vmx(vcpu);
6494         int old = vmx->ple_window;
6495
6496         vmx->ple_window = __grow_ple_window(old);
6497
6498         if (vmx->ple_window != old)
6499                 vmx->ple_window_dirty = true;
6500
6501         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6502 }
6503
6504 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6505 {
6506         struct vcpu_vmx *vmx = to_vmx(vcpu);
6507         int old = vmx->ple_window;
6508
6509         vmx->ple_window = __shrink_ple_window(old,
6510                                               ple_window_shrink, ple_window);
6511
6512         if (vmx->ple_window != old)
6513                 vmx->ple_window_dirty = true;
6514
6515         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6516 }
6517
6518 /*
6519  * ple_window_actual_max is computed to be one grow_ple_window() below
6520  * ple_window_max. (See __grow_ple_window for the reason.)
6521  * This prevents overflows, because ple_window_max is int.
6522  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6523  * this process.
6524  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6525  */
6526 static void update_ple_window_actual_max(void)
6527 {
6528         ple_window_actual_max =
6529                         __shrink_ple_window(max(ple_window_max, ple_window),
6530                                             ple_window_grow, INT_MIN);
6531 }
6532
6533 /*
6534  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6535  */
6536 static void wakeup_handler(void)
6537 {
6538         struct kvm_vcpu *vcpu;
6539         int cpu = smp_processor_id();
6540
6541         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6542         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6543                         blocked_vcpu_list) {
6544                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6545
6546                 if (pi_test_on(pi_desc) == 1)
6547                         kvm_vcpu_kick(vcpu);
6548         }
6549         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6550 }
6551
6552 void vmx_enable_tdp(void)
6553 {
6554         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6555                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6556                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6557                 0ull, VMX_EPT_EXECUTABLE_MASK,
6558                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6559                 VMX_EPT_RWX_MASK);
6560
6561         ept_set_mmio_spte_mask();
6562         kvm_enable_tdp();
6563 }
6564
6565 static __init int hardware_setup(void)
6566 {
6567         int r = -ENOMEM, i, msr;
6568
6569         rdmsrl_safe(MSR_EFER, &host_efer);
6570
6571         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6572                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6573
6574         for (i = 0; i < VMX_BITMAP_NR; i++) {
6575                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6576                 if (!vmx_bitmap[i])
6577                         goto out;
6578         }
6579
6580         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6581         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6582         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6583
6584         /*
6585          * Allow direct access to the PC debug port (it is often used for I/O
6586          * delays, but the vmexits simply slow things down).
6587          */
6588         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6589         clear_bit(0x80, vmx_io_bitmap_a);
6590
6591         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6592
6593         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6594         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6595
6596         if (setup_vmcs_config(&vmcs_config) < 0) {
6597                 r = -EIO;
6598                 goto out;
6599         }
6600
6601         if (boot_cpu_has(X86_FEATURE_NX))
6602                 kvm_enable_efer_bits(EFER_NX);
6603
6604         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6605                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6606                 enable_vpid = 0;
6607
6608         if (!cpu_has_vmx_shadow_vmcs())
6609                 enable_shadow_vmcs = 0;
6610         if (enable_shadow_vmcs)
6611                 init_vmcs_shadow_fields();
6612
6613         if (!cpu_has_vmx_ept() ||
6614             !cpu_has_vmx_ept_4levels()) {
6615                 enable_ept = 0;
6616                 enable_unrestricted_guest = 0;
6617                 enable_ept_ad_bits = 0;
6618         }
6619
6620         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6621                 enable_ept_ad_bits = 0;
6622
6623         if (!cpu_has_vmx_unrestricted_guest())
6624                 enable_unrestricted_guest = 0;
6625
6626         if (!cpu_has_vmx_flexpriority())
6627                 flexpriority_enabled = 0;
6628
6629         /*
6630          * set_apic_access_page_addr() is used to reload apic access
6631          * page upon invalidation.  No need to do anything if not
6632          * using the APIC_ACCESS_ADDR VMCS field.
6633          */
6634         if (!flexpriority_enabled)
6635                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6636
6637         if (!cpu_has_vmx_tpr_shadow())
6638                 kvm_x86_ops->update_cr8_intercept = NULL;
6639
6640         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6641                 kvm_disable_largepages();
6642
6643         if (!cpu_has_vmx_ple())
6644                 ple_gap = 0;
6645
6646         if (!cpu_has_vmx_apicv()) {
6647                 enable_apicv = 0;
6648                 kvm_x86_ops->sync_pir_to_irr = NULL;
6649         }
6650
6651         if (cpu_has_vmx_tsc_scaling()) {
6652                 kvm_has_tsc_control = true;
6653                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6654                 kvm_tsc_scaling_ratio_frac_bits = 48;
6655         }
6656
6657         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6658         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6659         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6660         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6661         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6662         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6663
6664         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6665                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6666         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6667                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6668         memcpy(vmx_msr_bitmap_legacy_x2apic,
6669                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6670         memcpy(vmx_msr_bitmap_longmode_x2apic,
6671                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6672
6673         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6674
6675         for (msr = 0x800; msr <= 0x8ff; msr++) {
6676                 if (msr == 0x839 /* TMCCT */)
6677                         continue;
6678                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6679         }
6680
6681         /*
6682          * TPR reads and writes can be virtualized even if virtual interrupt
6683          * delivery is not in use.
6684          */
6685         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6686         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6687
6688         /* EOI */
6689         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6690         /* SELF-IPI */
6691         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6692
6693         if (enable_ept)
6694                 vmx_enable_tdp();
6695         else
6696                 kvm_disable_tdp();
6697
6698         update_ple_window_actual_max();
6699
6700         /*
6701          * Only enable PML when hardware supports PML feature, and both EPT
6702          * and EPT A/D bit features are enabled -- PML depends on them to work.
6703          */
6704         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6705                 enable_pml = 0;
6706
6707         if (!enable_pml) {
6708                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6709                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6710                 kvm_x86_ops->flush_log_dirty = NULL;
6711                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6712         }
6713
6714         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6715                 u64 vmx_msr;
6716
6717                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6718                 cpu_preemption_timer_multi =
6719                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6720         } else {
6721                 kvm_x86_ops->set_hv_timer = NULL;
6722                 kvm_x86_ops->cancel_hv_timer = NULL;
6723         }
6724
6725         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6726
6727         kvm_mce_cap_supported |= MCG_LMCE_P;
6728
6729         return alloc_kvm_area();
6730
6731 out:
6732         for (i = 0; i < VMX_BITMAP_NR; i++)
6733                 free_page((unsigned long)vmx_bitmap[i]);
6734
6735     return r;
6736 }
6737
6738 static __exit void hardware_unsetup(void)
6739 {
6740         int i;
6741
6742         for (i = 0; i < VMX_BITMAP_NR; i++)
6743                 free_page((unsigned long)vmx_bitmap[i]);
6744
6745         free_kvm_area();
6746 }
6747
6748 /*
6749  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6750  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6751  */
6752 static int handle_pause(struct kvm_vcpu *vcpu)
6753 {
6754         if (ple_gap)
6755                 grow_ple_window(vcpu);
6756
6757         kvm_vcpu_on_spin(vcpu);
6758         return kvm_skip_emulated_instruction(vcpu);
6759 }
6760
6761 static int handle_nop(struct kvm_vcpu *vcpu)
6762 {
6763         return kvm_skip_emulated_instruction(vcpu);
6764 }
6765
6766 static int handle_mwait(struct kvm_vcpu *vcpu)
6767 {
6768         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6769         return handle_nop(vcpu);
6770 }
6771
6772 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6773 {
6774         return 1;
6775 }
6776
6777 static int handle_monitor(struct kvm_vcpu *vcpu)
6778 {
6779         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6780         return handle_nop(vcpu);
6781 }
6782
6783 /*
6784  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6785  * We could reuse a single VMCS for all the L2 guests, but we also want the
6786  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6787  * allows keeping them loaded on the processor, and in the future will allow
6788  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6789  * every entry if they never change.
6790  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6791  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6792  *
6793  * The following functions allocate and free a vmcs02 in this pool.
6794  */
6795
6796 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6797 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6798 {
6799         struct vmcs02_list *item;
6800         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6801                 if (item->vmptr == vmx->nested.current_vmptr) {
6802                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6803                         return &item->vmcs02;
6804                 }
6805
6806         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6807                 /* Recycle the least recently used VMCS. */
6808                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6809                                        struct vmcs02_list, list);
6810                 item->vmptr = vmx->nested.current_vmptr;
6811                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6812                 return &item->vmcs02;
6813         }
6814
6815         /* Create a new VMCS */
6816         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6817         if (!item)
6818                 return NULL;
6819         item->vmcs02.vmcs = alloc_vmcs();
6820         item->vmcs02.shadow_vmcs = NULL;
6821         if (!item->vmcs02.vmcs) {
6822                 kfree(item);
6823                 return NULL;
6824         }
6825         loaded_vmcs_init(&item->vmcs02);
6826         item->vmptr = vmx->nested.current_vmptr;
6827         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6828         vmx->nested.vmcs02_num++;
6829         return &item->vmcs02;
6830 }
6831
6832 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6833 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6834 {
6835         struct vmcs02_list *item;
6836         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6837                 if (item->vmptr == vmptr) {
6838                         free_loaded_vmcs(&item->vmcs02);
6839                         list_del(&item->list);
6840                         kfree(item);
6841                         vmx->nested.vmcs02_num--;
6842                         return;
6843                 }
6844 }
6845
6846 /*
6847  * Free all VMCSs saved for this vcpu, except the one pointed by
6848  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6849  * must be &vmx->vmcs01.
6850  */
6851 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6852 {
6853         struct vmcs02_list *item, *n;
6854
6855         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6856         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6857                 /*
6858                  * Something will leak if the above WARN triggers.  Better than
6859                  * a use-after-free.
6860                  */
6861                 if (vmx->loaded_vmcs == &item->vmcs02)
6862                         continue;
6863
6864                 free_loaded_vmcs(&item->vmcs02);
6865                 list_del(&item->list);
6866                 kfree(item);
6867                 vmx->nested.vmcs02_num--;
6868         }
6869 }
6870
6871 /*
6872  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6873  * set the success or error code of an emulated VMX instruction, as specified
6874  * by Vol 2B, VMX Instruction Reference, "Conventions".
6875  */
6876 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6877 {
6878         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6879                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6880                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6881 }
6882
6883 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6884 {
6885         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6886                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6887                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6888                         | X86_EFLAGS_CF);
6889 }
6890
6891 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6892                                         u32 vm_instruction_error)
6893 {
6894         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6895                 /*
6896                  * failValid writes the error number to the current VMCS, which
6897                  * can't be done there isn't a current VMCS.
6898                  */
6899                 nested_vmx_failInvalid(vcpu);
6900                 return;
6901         }
6902         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6903                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6904                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6905                         | X86_EFLAGS_ZF);
6906         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6907         /*
6908          * We don't need to force a shadow sync because
6909          * VM_INSTRUCTION_ERROR is not shadowed
6910          */
6911 }
6912
6913 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6914 {
6915         /* TODO: not to reset guest simply here. */
6916         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6917         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6918 }
6919
6920 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6921 {
6922         struct vcpu_vmx *vmx =
6923                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6924
6925         vmx->nested.preemption_timer_expired = true;
6926         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6927         kvm_vcpu_kick(&vmx->vcpu);
6928
6929         return HRTIMER_NORESTART;
6930 }
6931
6932 /*
6933  * Decode the memory-address operand of a vmx instruction, as recorded on an
6934  * exit caused by such an instruction (run by a guest hypervisor).
6935  * On success, returns 0. When the operand is invalid, returns 1 and throws
6936  * #UD or #GP.
6937  */
6938 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6939                                  unsigned long exit_qualification,
6940                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6941 {
6942         gva_t off;
6943         bool exn;
6944         struct kvm_segment s;
6945
6946         /*
6947          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6948          * Execution", on an exit, vmx_instruction_info holds most of the
6949          * addressing components of the operand. Only the displacement part
6950          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6951          * For how an actual address is calculated from all these components,
6952          * refer to Vol. 1, "Operand Addressing".
6953          */
6954         int  scaling = vmx_instruction_info & 3;
6955         int  addr_size = (vmx_instruction_info >> 7) & 7;
6956         bool is_reg = vmx_instruction_info & (1u << 10);
6957         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6958         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6959         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6960         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6961         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6962
6963         if (is_reg) {
6964                 kvm_queue_exception(vcpu, UD_VECTOR);
6965                 return 1;
6966         }
6967
6968         /* Addr = segment_base + offset */
6969         /* offset = base + [index * scale] + displacement */
6970         off = exit_qualification; /* holds the displacement */
6971         if (base_is_valid)
6972                 off += kvm_register_read(vcpu, base_reg);
6973         if (index_is_valid)
6974                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6975         vmx_get_segment(vcpu, &s, seg_reg);
6976         *ret = s.base + off;
6977
6978         if (addr_size == 1) /* 32 bit */
6979                 *ret &= 0xffffffff;
6980
6981         /* Checks for #GP/#SS exceptions. */
6982         exn = false;
6983         if (is_long_mode(vcpu)) {
6984                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6985                  * non-canonical form. This is the only check on the memory
6986                  * destination for long mode!
6987                  */
6988                 exn = is_noncanonical_address(*ret);
6989         } else if (is_protmode(vcpu)) {
6990                 /* Protected mode: apply checks for segment validity in the
6991                  * following order:
6992                  * - segment type check (#GP(0) may be thrown)
6993                  * - usability check (#GP(0)/#SS(0))
6994                  * - limit check (#GP(0)/#SS(0))
6995                  */
6996                 if (wr)
6997                         /* #GP(0) if the destination operand is located in a
6998                          * read-only data segment or any code segment.
6999                          */
7000                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7001                 else
7002                         /* #GP(0) if the source operand is located in an
7003                          * execute-only code segment
7004                          */
7005                         exn = ((s.type & 0xa) == 8);
7006                 if (exn) {
7007                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7008                         return 1;
7009                 }
7010                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7011                  */
7012                 exn = (s.unusable != 0);
7013                 /* Protected mode: #GP(0)/#SS(0) if the memory
7014                  * operand is outside the segment limit.
7015                  */
7016                 exn = exn || (off + sizeof(u64) > s.limit);
7017         }
7018         if (exn) {
7019                 kvm_queue_exception_e(vcpu,
7020                                       seg_reg == VCPU_SREG_SS ?
7021                                                 SS_VECTOR : GP_VECTOR,
7022                                       0);
7023                 return 1;
7024         }
7025
7026         return 0;
7027 }
7028
7029 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7030 {
7031         gva_t gva;
7032         struct x86_exception e;
7033
7034         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7035                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7036                 return 1;
7037
7038         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7039                                 sizeof(*vmpointer), &e)) {
7040                 kvm_inject_page_fault(vcpu, &e);
7041                 return 1;
7042         }
7043
7044         return 0;
7045 }
7046
7047 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7048 {
7049         struct vcpu_vmx *vmx = to_vmx(vcpu);
7050         struct vmcs *shadow_vmcs;
7051
7052         if (cpu_has_vmx_msr_bitmap()) {
7053                 vmx->nested.msr_bitmap =
7054                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7055                 if (!vmx->nested.msr_bitmap)
7056                         goto out_msr_bitmap;
7057         }
7058
7059         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7060         if (!vmx->nested.cached_vmcs12)
7061                 goto out_cached_vmcs12;
7062
7063         if (enable_shadow_vmcs) {
7064                 shadow_vmcs = alloc_vmcs();
7065                 if (!shadow_vmcs)
7066                         goto out_shadow_vmcs;
7067                 /* mark vmcs as shadow */
7068                 shadow_vmcs->revision_id |= (1u << 31);
7069                 /* init shadow vmcs */
7070                 vmcs_clear(shadow_vmcs);
7071                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7072         }
7073
7074         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7075         vmx->nested.vmcs02_num = 0;
7076
7077         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7078                      HRTIMER_MODE_REL_PINNED);
7079         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7080
7081         vmx->nested.vmxon = true;
7082         return 0;
7083
7084 out_shadow_vmcs:
7085         kfree(vmx->nested.cached_vmcs12);
7086
7087 out_cached_vmcs12:
7088         free_page((unsigned long)vmx->nested.msr_bitmap);
7089
7090 out_msr_bitmap:
7091         return -ENOMEM;
7092 }
7093
7094 /*
7095  * Emulate the VMXON instruction.
7096  * Currently, we just remember that VMX is active, and do not save or even
7097  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7098  * do not currently need to store anything in that guest-allocated memory
7099  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7100  * argument is different from the VMXON pointer (which the spec says they do).
7101  */
7102 static int handle_vmon(struct kvm_vcpu *vcpu)
7103 {
7104         int ret;
7105         gpa_t vmptr;
7106         struct page *page;
7107         struct vcpu_vmx *vmx = to_vmx(vcpu);
7108         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7109                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7110
7111         /*
7112          * The Intel VMX Instruction Reference lists a bunch of bits that are
7113          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7114          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7115          * Otherwise, we should fail with #UD.  But most faulting conditions
7116          * have already been checked by hardware, prior to the VM-exit for
7117          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7118          * that bit set to 1 in non-root mode.
7119          */
7120         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7121                 kvm_queue_exception(vcpu, UD_VECTOR);
7122                 return 1;
7123         }
7124
7125         if (vmx->nested.vmxon) {
7126                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7127                 return kvm_skip_emulated_instruction(vcpu);
7128         }
7129
7130         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7131                         != VMXON_NEEDED_FEATURES) {
7132                 kvm_inject_gp(vcpu, 0);
7133                 return 1;
7134         }
7135
7136         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7137                 return 1;
7138
7139         /*
7140          * SDM 3: 24.11.5
7141          * The first 4 bytes of VMXON region contain the supported
7142          * VMCS revision identifier
7143          *
7144          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7145          * which replaces physical address width with 32
7146          */
7147         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7148                 nested_vmx_failInvalid(vcpu);
7149                 return kvm_skip_emulated_instruction(vcpu);
7150         }
7151
7152         page = nested_get_page(vcpu, vmptr);
7153         if (page == NULL) {
7154                 nested_vmx_failInvalid(vcpu);
7155                 return kvm_skip_emulated_instruction(vcpu);
7156         }
7157         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7158                 kunmap(page);
7159                 nested_release_page_clean(page);
7160                 nested_vmx_failInvalid(vcpu);
7161                 return kvm_skip_emulated_instruction(vcpu);
7162         }
7163         kunmap(page);
7164         nested_release_page_clean(page);
7165
7166         vmx->nested.vmxon_ptr = vmptr;
7167         ret = enter_vmx_operation(vcpu);
7168         if (ret)
7169                 return ret;
7170
7171         nested_vmx_succeed(vcpu);
7172         return kvm_skip_emulated_instruction(vcpu);
7173 }
7174
7175 /*
7176  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7177  * for running VMX instructions (except VMXON, whose prerequisites are
7178  * slightly different). It also specifies what exception to inject otherwise.
7179  * Note that many of these exceptions have priority over VM exits, so they
7180  * don't have to be checked again here.
7181  */
7182 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7183 {
7184         if (!to_vmx(vcpu)->nested.vmxon) {
7185                 kvm_queue_exception(vcpu, UD_VECTOR);
7186                 return 0;
7187         }
7188         return 1;
7189 }
7190
7191 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7192 {
7193         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7194         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7195 }
7196
7197 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7198 {
7199         if (vmx->nested.current_vmptr == -1ull)
7200                 return;
7201
7202         if (enable_shadow_vmcs) {
7203                 /* copy to memory all shadowed fields in case
7204                    they were modified */
7205                 copy_shadow_to_vmcs12(vmx);
7206                 vmx->nested.sync_shadow_vmcs = false;
7207                 vmx_disable_shadow_vmcs(vmx);
7208         }
7209         vmx->nested.posted_intr_nv = -1;
7210
7211         /* Flush VMCS12 to guest memory */
7212         kvm_vcpu_write_guest_page(&vmx->vcpu,
7213                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
7214                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7215
7216         vmx->nested.current_vmptr = -1ull;
7217 }
7218
7219 /*
7220  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7221  * just stops using VMX.
7222  */
7223 static void free_nested(struct vcpu_vmx *vmx)
7224 {
7225         if (!vmx->nested.vmxon)
7226                 return;
7227
7228         vmx->nested.vmxon = false;
7229         free_vpid(vmx->nested.vpid02);
7230         vmx->nested.posted_intr_nv = -1;
7231         vmx->nested.current_vmptr = -1ull;
7232         if (vmx->nested.msr_bitmap) {
7233                 free_page((unsigned long)vmx->nested.msr_bitmap);
7234                 vmx->nested.msr_bitmap = NULL;
7235         }
7236         if (enable_shadow_vmcs) {
7237                 vmx_disable_shadow_vmcs(vmx);
7238                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7239                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7240                 vmx->vmcs01.shadow_vmcs = NULL;
7241         }
7242         kfree(vmx->nested.cached_vmcs12);
7243         /* Unpin physical memory we referred to in current vmcs02 */
7244         if (vmx->nested.apic_access_page) {
7245                 nested_release_page(vmx->nested.apic_access_page);
7246                 vmx->nested.apic_access_page = NULL;
7247         }
7248         if (vmx->nested.virtual_apic_page) {
7249                 nested_release_page(vmx->nested.virtual_apic_page);
7250                 vmx->nested.virtual_apic_page = NULL;
7251         }
7252         if (vmx->nested.pi_desc_page) {
7253                 kunmap(vmx->nested.pi_desc_page);
7254                 nested_release_page(vmx->nested.pi_desc_page);
7255                 vmx->nested.pi_desc_page = NULL;
7256                 vmx->nested.pi_desc = NULL;
7257         }
7258
7259         nested_free_all_saved_vmcss(vmx);
7260 }
7261
7262 /* Emulate the VMXOFF instruction */
7263 static int handle_vmoff(struct kvm_vcpu *vcpu)
7264 {
7265         if (!nested_vmx_check_permission(vcpu))
7266                 return 1;
7267         free_nested(to_vmx(vcpu));
7268         nested_vmx_succeed(vcpu);
7269         return kvm_skip_emulated_instruction(vcpu);
7270 }
7271
7272 /* Emulate the VMCLEAR instruction */
7273 static int handle_vmclear(struct kvm_vcpu *vcpu)
7274 {
7275         struct vcpu_vmx *vmx = to_vmx(vcpu);
7276         u32 zero = 0;
7277         gpa_t vmptr;
7278
7279         if (!nested_vmx_check_permission(vcpu))
7280                 return 1;
7281
7282         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7283                 return 1;
7284
7285         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7286                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7287                 return kvm_skip_emulated_instruction(vcpu);
7288         }
7289
7290         if (vmptr == vmx->nested.vmxon_ptr) {
7291                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7292                 return kvm_skip_emulated_instruction(vcpu);
7293         }
7294
7295         if (vmptr == vmx->nested.current_vmptr)
7296                 nested_release_vmcs12(vmx);
7297
7298         kvm_vcpu_write_guest(vcpu,
7299                         vmptr + offsetof(struct vmcs12, launch_state),
7300                         &zero, sizeof(zero));
7301
7302         nested_free_vmcs02(vmx, vmptr);
7303
7304         nested_vmx_succeed(vcpu);
7305         return kvm_skip_emulated_instruction(vcpu);
7306 }
7307
7308 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7309
7310 /* Emulate the VMLAUNCH instruction */
7311 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7312 {
7313         return nested_vmx_run(vcpu, true);
7314 }
7315
7316 /* Emulate the VMRESUME instruction */
7317 static int handle_vmresume(struct kvm_vcpu *vcpu)
7318 {
7319
7320         return nested_vmx_run(vcpu, false);
7321 }
7322
7323 /*
7324  * Read a vmcs12 field. Since these can have varying lengths and we return
7325  * one type, we chose the biggest type (u64) and zero-extend the return value
7326  * to that size. Note that the caller, handle_vmread, might need to use only
7327  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7328  * 64-bit fields are to be returned).
7329  */
7330 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7331                                   unsigned long field, u64 *ret)
7332 {
7333         short offset = vmcs_field_to_offset(field);
7334         char *p;
7335
7336         if (offset < 0)
7337                 return offset;
7338
7339         p = ((char *)(get_vmcs12(vcpu))) + offset;
7340
7341         switch (vmcs_field_type(field)) {
7342         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7343                 *ret = *((natural_width *)p);
7344                 return 0;
7345         case VMCS_FIELD_TYPE_U16:
7346                 *ret = *((u16 *)p);
7347                 return 0;
7348         case VMCS_FIELD_TYPE_U32:
7349                 *ret = *((u32 *)p);
7350                 return 0;
7351         case VMCS_FIELD_TYPE_U64:
7352                 *ret = *((u64 *)p);
7353                 return 0;
7354         default:
7355                 WARN_ON(1);
7356                 return -ENOENT;
7357         }
7358 }
7359
7360
7361 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7362                                    unsigned long field, u64 field_value){
7363         short offset = vmcs_field_to_offset(field);
7364         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7365         if (offset < 0)
7366                 return offset;
7367
7368         switch (vmcs_field_type(field)) {
7369         case VMCS_FIELD_TYPE_U16:
7370                 *(u16 *)p = field_value;
7371                 return 0;
7372         case VMCS_FIELD_TYPE_U32:
7373                 *(u32 *)p = field_value;
7374                 return 0;
7375         case VMCS_FIELD_TYPE_U64:
7376                 *(u64 *)p = field_value;
7377                 return 0;
7378         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7379                 *(natural_width *)p = field_value;
7380                 return 0;
7381         default:
7382                 WARN_ON(1);
7383                 return -ENOENT;
7384         }
7385
7386 }
7387
7388 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7389 {
7390         int i;
7391         unsigned long field;
7392         u64 field_value;
7393         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7394         const unsigned long *fields = shadow_read_write_fields;
7395         const int num_fields = max_shadow_read_write_fields;
7396
7397         preempt_disable();
7398
7399         vmcs_load(shadow_vmcs);
7400
7401         for (i = 0; i < num_fields; i++) {
7402                 field = fields[i];
7403                 switch (vmcs_field_type(field)) {
7404                 case VMCS_FIELD_TYPE_U16:
7405                         field_value = vmcs_read16(field);
7406                         break;
7407                 case VMCS_FIELD_TYPE_U32:
7408                         field_value = vmcs_read32(field);
7409                         break;
7410                 case VMCS_FIELD_TYPE_U64:
7411                         field_value = vmcs_read64(field);
7412                         break;
7413                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7414                         field_value = vmcs_readl(field);
7415                         break;
7416                 default:
7417                         WARN_ON(1);
7418                         continue;
7419                 }
7420                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7421         }
7422
7423         vmcs_clear(shadow_vmcs);
7424         vmcs_load(vmx->loaded_vmcs->vmcs);
7425
7426         preempt_enable();
7427 }
7428
7429 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7430 {
7431         const unsigned long *fields[] = {
7432                 shadow_read_write_fields,
7433                 shadow_read_only_fields
7434         };
7435         const int max_fields[] = {
7436                 max_shadow_read_write_fields,
7437                 max_shadow_read_only_fields
7438         };
7439         int i, q;
7440         unsigned long field;
7441         u64 field_value = 0;
7442         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7443
7444         vmcs_load(shadow_vmcs);
7445
7446         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7447                 for (i = 0; i < max_fields[q]; i++) {
7448                         field = fields[q][i];
7449                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7450
7451                         switch (vmcs_field_type(field)) {
7452                         case VMCS_FIELD_TYPE_U16:
7453                                 vmcs_write16(field, (u16)field_value);
7454                                 break;
7455                         case VMCS_FIELD_TYPE_U32:
7456                                 vmcs_write32(field, (u32)field_value);
7457                                 break;
7458                         case VMCS_FIELD_TYPE_U64:
7459                                 vmcs_write64(field, (u64)field_value);
7460                                 break;
7461                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7462                                 vmcs_writel(field, (long)field_value);
7463                                 break;
7464                         default:
7465                                 WARN_ON(1);
7466                                 break;
7467                         }
7468                 }
7469         }
7470
7471         vmcs_clear(shadow_vmcs);
7472         vmcs_load(vmx->loaded_vmcs->vmcs);
7473 }
7474
7475 /*
7476  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7477  * used before) all generate the same failure when it is missing.
7478  */
7479 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7480 {
7481         struct vcpu_vmx *vmx = to_vmx(vcpu);
7482         if (vmx->nested.current_vmptr == -1ull) {
7483                 nested_vmx_failInvalid(vcpu);
7484                 return 0;
7485         }
7486         return 1;
7487 }
7488
7489 static int handle_vmread(struct kvm_vcpu *vcpu)
7490 {
7491         unsigned long field;
7492         u64 field_value;
7493         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7494         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7495         gva_t gva = 0;
7496
7497         if (!nested_vmx_check_permission(vcpu))
7498                 return 1;
7499
7500         if (!nested_vmx_check_vmcs12(vcpu))
7501                 return kvm_skip_emulated_instruction(vcpu);
7502
7503         /* Decode instruction info and find the field to read */
7504         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7505         /* Read the field, zero-extended to a u64 field_value */
7506         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7507                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7508                 return kvm_skip_emulated_instruction(vcpu);
7509         }
7510         /*
7511          * Now copy part of this value to register or memory, as requested.
7512          * Note that the number of bits actually copied is 32 or 64 depending
7513          * on the guest's mode (32 or 64 bit), not on the given field's length.
7514          */
7515         if (vmx_instruction_info & (1u << 10)) {
7516                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7517                         field_value);
7518         } else {
7519                 if (get_vmx_mem_address(vcpu, exit_qualification,
7520                                 vmx_instruction_info, true, &gva))
7521                         return 1;
7522                 /* _system ok, as hardware has verified cpl=0 */
7523                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7524                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7525         }
7526
7527         nested_vmx_succeed(vcpu);
7528         return kvm_skip_emulated_instruction(vcpu);
7529 }
7530
7531
7532 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7533 {
7534         unsigned long field;
7535         gva_t gva;
7536         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7537         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7538         /* The value to write might be 32 or 64 bits, depending on L1's long
7539          * mode, and eventually we need to write that into a field of several
7540          * possible lengths. The code below first zero-extends the value to 64
7541          * bit (field_value), and then copies only the appropriate number of
7542          * bits into the vmcs12 field.
7543          */
7544         u64 field_value = 0;
7545         struct x86_exception e;
7546
7547         if (!nested_vmx_check_permission(vcpu))
7548                 return 1;
7549
7550         if (!nested_vmx_check_vmcs12(vcpu))
7551                 return kvm_skip_emulated_instruction(vcpu);
7552
7553         if (vmx_instruction_info & (1u << 10))
7554                 field_value = kvm_register_readl(vcpu,
7555                         (((vmx_instruction_info) >> 3) & 0xf));
7556         else {
7557                 if (get_vmx_mem_address(vcpu, exit_qualification,
7558                                 vmx_instruction_info, false, &gva))
7559                         return 1;
7560                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7561                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7562                         kvm_inject_page_fault(vcpu, &e);
7563                         return 1;
7564                 }
7565         }
7566
7567
7568         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7569         if (vmcs_field_readonly(field)) {
7570                 nested_vmx_failValid(vcpu,
7571                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7572                 return kvm_skip_emulated_instruction(vcpu);
7573         }
7574
7575         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7576                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7577                 return kvm_skip_emulated_instruction(vcpu);
7578         }
7579
7580         nested_vmx_succeed(vcpu);
7581         return kvm_skip_emulated_instruction(vcpu);
7582 }
7583
7584 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7585 {
7586         vmx->nested.current_vmptr = vmptr;
7587         if (enable_shadow_vmcs) {
7588                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7589                               SECONDARY_EXEC_SHADOW_VMCS);
7590                 vmcs_write64(VMCS_LINK_POINTER,
7591                              __pa(vmx->vmcs01.shadow_vmcs));
7592                 vmx->nested.sync_shadow_vmcs = true;
7593         }
7594 }
7595
7596 /* Emulate the VMPTRLD instruction */
7597 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7598 {
7599         struct vcpu_vmx *vmx = to_vmx(vcpu);
7600         gpa_t vmptr;
7601
7602         if (!nested_vmx_check_permission(vcpu))
7603                 return 1;
7604
7605         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7606                 return 1;
7607
7608         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7609                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7610                 return kvm_skip_emulated_instruction(vcpu);
7611         }
7612
7613         if (vmptr == vmx->nested.vmxon_ptr) {
7614                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7615                 return kvm_skip_emulated_instruction(vcpu);
7616         }
7617
7618         if (vmx->nested.current_vmptr != vmptr) {
7619                 struct vmcs12 *new_vmcs12;
7620                 struct page *page;
7621                 page = nested_get_page(vcpu, vmptr);
7622                 if (page == NULL) {
7623                         nested_vmx_failInvalid(vcpu);
7624                         return kvm_skip_emulated_instruction(vcpu);
7625                 }
7626                 new_vmcs12 = kmap(page);
7627                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7628                         kunmap(page);
7629                         nested_release_page_clean(page);
7630                         nested_vmx_failValid(vcpu,
7631                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7632                         return kvm_skip_emulated_instruction(vcpu);
7633                 }
7634
7635                 nested_release_vmcs12(vmx);
7636                 /*
7637                  * Load VMCS12 from guest memory since it is not already
7638                  * cached.
7639                  */
7640                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7641                 kunmap(page);
7642                 nested_release_page_clean(page);
7643
7644                 set_current_vmptr(vmx, vmptr);
7645         }
7646
7647         nested_vmx_succeed(vcpu);
7648         return kvm_skip_emulated_instruction(vcpu);
7649 }
7650
7651 /* Emulate the VMPTRST instruction */
7652 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7653 {
7654         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7655         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7656         gva_t vmcs_gva;
7657         struct x86_exception e;
7658
7659         if (!nested_vmx_check_permission(vcpu))
7660                 return 1;
7661
7662         if (get_vmx_mem_address(vcpu, exit_qualification,
7663                         vmx_instruction_info, true, &vmcs_gva))
7664                 return 1;
7665         /* ok to use *_system, as hardware has verified cpl=0 */
7666         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7667                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7668                                  sizeof(u64), &e)) {
7669                 kvm_inject_page_fault(vcpu, &e);
7670                 return 1;
7671         }
7672         nested_vmx_succeed(vcpu);
7673         return kvm_skip_emulated_instruction(vcpu);
7674 }
7675
7676 /* Emulate the INVEPT instruction */
7677 static int handle_invept(struct kvm_vcpu *vcpu)
7678 {
7679         struct vcpu_vmx *vmx = to_vmx(vcpu);
7680         u32 vmx_instruction_info, types;
7681         unsigned long type;
7682         gva_t gva;
7683         struct x86_exception e;
7684         struct {
7685                 u64 eptp, gpa;
7686         } operand;
7687
7688         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7689               SECONDARY_EXEC_ENABLE_EPT) ||
7690             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7691                 kvm_queue_exception(vcpu, UD_VECTOR);
7692                 return 1;
7693         }
7694
7695         if (!nested_vmx_check_permission(vcpu))
7696                 return 1;
7697
7698         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7699         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7700
7701         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7702
7703         if (type >= 32 || !(types & (1 << type))) {
7704                 nested_vmx_failValid(vcpu,
7705                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7706                 return kvm_skip_emulated_instruction(vcpu);
7707         }
7708
7709         /* According to the Intel VMX instruction reference, the memory
7710          * operand is read even if it isn't needed (e.g., for type==global)
7711          */
7712         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7713                         vmx_instruction_info, false, &gva))
7714                 return 1;
7715         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7716                                 sizeof(operand), &e)) {
7717                 kvm_inject_page_fault(vcpu, &e);
7718                 return 1;
7719         }
7720
7721         switch (type) {
7722         case VMX_EPT_EXTENT_GLOBAL:
7723         /*
7724          * TODO: track mappings and invalidate
7725          * single context requests appropriately
7726          */
7727         case VMX_EPT_EXTENT_CONTEXT:
7728                 kvm_mmu_sync_roots(vcpu);
7729                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7730                 nested_vmx_succeed(vcpu);
7731                 break;
7732         default:
7733                 BUG_ON(1);
7734                 break;
7735         }
7736
7737         return kvm_skip_emulated_instruction(vcpu);
7738 }
7739
7740 static int handle_invvpid(struct kvm_vcpu *vcpu)
7741 {
7742         struct vcpu_vmx *vmx = to_vmx(vcpu);
7743         u32 vmx_instruction_info;
7744         unsigned long type, types;
7745         gva_t gva;
7746         struct x86_exception e;
7747         struct {
7748                 u64 vpid;
7749                 u64 gla;
7750         } operand;
7751
7752         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7753               SECONDARY_EXEC_ENABLE_VPID) ||
7754                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7755                 kvm_queue_exception(vcpu, UD_VECTOR);
7756                 return 1;
7757         }
7758
7759         if (!nested_vmx_check_permission(vcpu))
7760                 return 1;
7761
7762         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7763         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7764
7765         types = (vmx->nested.nested_vmx_vpid_caps &
7766                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7767
7768         if (type >= 32 || !(types & (1 << type))) {
7769                 nested_vmx_failValid(vcpu,
7770                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7771                 return kvm_skip_emulated_instruction(vcpu);
7772         }
7773
7774         /* according to the intel vmx instruction reference, the memory
7775          * operand is read even if it isn't needed (e.g., for type==global)
7776          */
7777         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7778                         vmx_instruction_info, false, &gva))
7779                 return 1;
7780         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7781                                 sizeof(operand), &e)) {
7782                 kvm_inject_page_fault(vcpu, &e);
7783                 return 1;
7784         }
7785         if (operand.vpid >> 16) {
7786                 nested_vmx_failValid(vcpu,
7787                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7788                 return kvm_skip_emulated_instruction(vcpu);
7789         }
7790
7791         switch (type) {
7792         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7793                 if (is_noncanonical_address(operand.gla)) {
7794                         nested_vmx_failValid(vcpu,
7795                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7796                         return kvm_skip_emulated_instruction(vcpu);
7797                 }
7798                 /* fall through */
7799         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7800         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7801                 if (!operand.vpid) {
7802                         nested_vmx_failValid(vcpu,
7803                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7804                         return kvm_skip_emulated_instruction(vcpu);
7805                 }
7806                 break;
7807         case VMX_VPID_EXTENT_ALL_CONTEXT:
7808                 break;
7809         default:
7810                 WARN_ON_ONCE(1);
7811                 return kvm_skip_emulated_instruction(vcpu);
7812         }
7813
7814         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7815         nested_vmx_succeed(vcpu);
7816
7817         return kvm_skip_emulated_instruction(vcpu);
7818 }
7819
7820 static int handle_pml_full(struct kvm_vcpu *vcpu)
7821 {
7822         unsigned long exit_qualification;
7823
7824         trace_kvm_pml_full(vcpu->vcpu_id);
7825
7826         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7827
7828         /*
7829          * PML buffer FULL happened while executing iret from NMI,
7830          * "blocked by NMI" bit has to be set before next VM entry.
7831          */
7832         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7833                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7834                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7835                                 GUEST_INTR_STATE_NMI);
7836
7837         /*
7838          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7839          * here.., and there's no userspace involvement needed for PML.
7840          */
7841         return 1;
7842 }
7843
7844 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7845 {
7846         kvm_lapic_expired_hv_timer(vcpu);
7847         return 1;
7848 }
7849
7850 /*
7851  * The exit handlers return 1 if the exit was handled fully and guest execution
7852  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7853  * to be done to userspace and return 0.
7854  */
7855 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7856         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7857         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7858         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7859         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7860         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7861         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7862         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7863         [EXIT_REASON_CPUID]                   = handle_cpuid,
7864         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7865         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7866         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7867         [EXIT_REASON_HLT]                     = handle_halt,
7868         [EXIT_REASON_INVD]                    = handle_invd,
7869         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7870         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7871         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7872         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7873         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7874         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7875         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7876         [EXIT_REASON_VMREAD]                  = handle_vmread,
7877         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7878         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7879         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7880         [EXIT_REASON_VMON]                    = handle_vmon,
7881         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7882         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7883         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7884         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7885         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7886         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7887         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7888         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7889         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7890         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7891         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7892         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7893         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7894         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7895         [EXIT_REASON_INVEPT]                  = handle_invept,
7896         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7897         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7898         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7899         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7900         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7901 };
7902
7903 static const int kvm_vmx_max_exit_handlers =
7904         ARRAY_SIZE(kvm_vmx_exit_handlers);
7905
7906 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7907                                        struct vmcs12 *vmcs12)
7908 {
7909         unsigned long exit_qualification;
7910         gpa_t bitmap, last_bitmap;
7911         unsigned int port;
7912         int size;
7913         u8 b;
7914
7915         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7916                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7917
7918         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7919
7920         port = exit_qualification >> 16;
7921         size = (exit_qualification & 7) + 1;
7922
7923         last_bitmap = (gpa_t)-1;
7924         b = -1;
7925
7926         while (size > 0) {
7927                 if (port < 0x8000)
7928                         bitmap = vmcs12->io_bitmap_a;
7929                 else if (port < 0x10000)
7930                         bitmap = vmcs12->io_bitmap_b;
7931                 else
7932                         return true;
7933                 bitmap += (port & 0x7fff) / 8;
7934
7935                 if (last_bitmap != bitmap)
7936                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7937                                 return true;
7938                 if (b & (1 << (port & 7)))
7939                         return true;
7940
7941                 port++;
7942                 size--;
7943                 last_bitmap = bitmap;
7944         }
7945
7946         return false;
7947 }
7948
7949 /*
7950  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7951  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7952  * disinterest in the current event (read or write a specific MSR) by using an
7953  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7954  */
7955 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7956         struct vmcs12 *vmcs12, u32 exit_reason)
7957 {
7958         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7959         gpa_t bitmap;
7960
7961         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7962                 return true;
7963
7964         /*
7965          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7966          * for the four combinations of read/write and low/high MSR numbers.
7967          * First we need to figure out which of the four to use:
7968          */
7969         bitmap = vmcs12->msr_bitmap;
7970         if (exit_reason == EXIT_REASON_MSR_WRITE)
7971                 bitmap += 2048;
7972         if (msr_index >= 0xc0000000) {
7973                 msr_index -= 0xc0000000;
7974                 bitmap += 1024;
7975         }
7976
7977         /* Then read the msr_index'th bit from this bitmap: */
7978         if (msr_index < 1024*8) {
7979                 unsigned char b;
7980                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7981                         return true;
7982                 return 1 & (b >> (msr_index & 7));
7983         } else
7984                 return true; /* let L1 handle the wrong parameter */
7985 }
7986
7987 /*
7988  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7989  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7990  * intercept (via guest_host_mask etc.) the current event.
7991  */
7992 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7993         struct vmcs12 *vmcs12)
7994 {
7995         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7996         int cr = exit_qualification & 15;
7997         int reg;
7998         unsigned long val;
7999
8000         switch ((exit_qualification >> 4) & 3) {
8001         case 0: /* mov to cr */
8002                 reg = (exit_qualification >> 8) & 15;
8003                 val = kvm_register_readl(vcpu, reg);
8004                 switch (cr) {
8005                 case 0:
8006                         if (vmcs12->cr0_guest_host_mask &
8007                             (val ^ vmcs12->cr0_read_shadow))
8008                                 return true;
8009                         break;
8010                 case 3:
8011                         if ((vmcs12->cr3_target_count >= 1 &&
8012                                         vmcs12->cr3_target_value0 == val) ||
8013                                 (vmcs12->cr3_target_count >= 2 &&
8014                                         vmcs12->cr3_target_value1 == val) ||
8015                                 (vmcs12->cr3_target_count >= 3 &&
8016                                         vmcs12->cr3_target_value2 == val) ||
8017                                 (vmcs12->cr3_target_count >= 4 &&
8018                                         vmcs12->cr3_target_value3 == val))
8019                                 return false;
8020                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8021                                 return true;
8022                         break;
8023                 case 4:
8024                         if (vmcs12->cr4_guest_host_mask &
8025                             (vmcs12->cr4_read_shadow ^ val))
8026                                 return true;
8027                         break;
8028                 case 8:
8029                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8030                                 return true;
8031                         break;
8032                 }
8033                 break;
8034         case 2: /* clts */
8035                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8036                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8037                         return true;
8038                 break;
8039         case 1: /* mov from cr */
8040                 switch (cr) {
8041                 case 3:
8042                         if (vmcs12->cpu_based_vm_exec_control &
8043                             CPU_BASED_CR3_STORE_EXITING)
8044                                 return true;
8045                         break;
8046                 case 8:
8047                         if (vmcs12->cpu_based_vm_exec_control &
8048                             CPU_BASED_CR8_STORE_EXITING)
8049                                 return true;
8050                         break;
8051                 }
8052                 break;
8053         case 3: /* lmsw */
8054                 /*
8055                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8056                  * cr0. Other attempted changes are ignored, with no exit.
8057                  */
8058                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8059                 if (vmcs12->cr0_guest_host_mask & 0xe &
8060                     (val ^ vmcs12->cr0_read_shadow))
8061                         return true;
8062                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8063                     !(vmcs12->cr0_read_shadow & 0x1) &&
8064                     (val & 0x1))
8065                         return true;
8066                 break;
8067         }
8068         return false;
8069 }
8070
8071 /*
8072  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8073  * should handle it ourselves in L0 (and then continue L2). Only call this
8074  * when in is_guest_mode (L2).
8075  */
8076 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8077 {
8078         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8079         struct vcpu_vmx *vmx = to_vmx(vcpu);
8080         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8081
8082         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8083                                 vmcs_readl(EXIT_QUALIFICATION),
8084                                 vmx->idt_vectoring_info,
8085                                 intr_info,
8086                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8087                                 KVM_ISA_VMX);
8088
8089         /*
8090          * The host physical addresses of some pages of guest memory
8091          * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8092          * may write to these pages via their host physical address while
8093          * L2 is running, bypassing any address-translation-based dirty
8094          * tracking (e.g. EPT write protection).
8095          *
8096          * Mark them dirty on every exit from L2 to prevent them from
8097          * getting out of sync with dirty tracking.
8098          */
8099         nested_mark_vmcs12_pages_dirty(vcpu);
8100
8101         if (vmx->nested.nested_run_pending)
8102                 return false;
8103
8104         if (unlikely(vmx->fail)) {
8105                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8106                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8107                 return true;
8108         }
8109
8110         switch (exit_reason) {
8111         case EXIT_REASON_EXCEPTION_NMI:
8112                 if (is_nmi(intr_info))
8113                         return false;
8114                 else if (is_page_fault(intr_info))
8115                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8116                 else if (is_no_device(intr_info) &&
8117                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8118                         return false;
8119                 else if (is_debug(intr_info) &&
8120                          vcpu->guest_debug &
8121                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8122                         return false;
8123                 else if (is_breakpoint(intr_info) &&
8124                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8125                         return false;
8126                 return vmcs12->exception_bitmap &
8127                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8128         case EXIT_REASON_EXTERNAL_INTERRUPT:
8129                 return false;
8130         case EXIT_REASON_TRIPLE_FAULT:
8131                 return true;
8132         case EXIT_REASON_PENDING_INTERRUPT:
8133                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8134         case EXIT_REASON_NMI_WINDOW:
8135                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8136         case EXIT_REASON_TASK_SWITCH:
8137                 return true;
8138         case EXIT_REASON_CPUID:
8139                 return true;
8140         case EXIT_REASON_HLT:
8141                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8142         case EXIT_REASON_INVD:
8143                 return true;
8144         case EXIT_REASON_INVLPG:
8145                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8146         case EXIT_REASON_RDPMC:
8147                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8148         case EXIT_REASON_RDRAND:
8149                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8150         case EXIT_REASON_RDSEED:
8151                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8152         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8153                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8154         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8155         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8156         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8157         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8158         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8159         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8160                 /*
8161                  * VMX instructions trap unconditionally. This allows L1 to
8162                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8163                  */
8164                 return true;
8165         case EXIT_REASON_CR_ACCESS:
8166                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8167         case EXIT_REASON_DR_ACCESS:
8168                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8169         case EXIT_REASON_IO_INSTRUCTION:
8170                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8171         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8172                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8173         case EXIT_REASON_MSR_READ:
8174         case EXIT_REASON_MSR_WRITE:
8175                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8176         case EXIT_REASON_INVALID_STATE:
8177                 return true;
8178         case EXIT_REASON_MWAIT_INSTRUCTION:
8179                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8180         case EXIT_REASON_MONITOR_TRAP_FLAG:
8181                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8182         case EXIT_REASON_MONITOR_INSTRUCTION:
8183                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8184         case EXIT_REASON_PAUSE_INSTRUCTION:
8185                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8186                         nested_cpu_has2(vmcs12,
8187                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8188         case EXIT_REASON_MCE_DURING_VMENTRY:
8189                 return false;
8190         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8191                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8192         case EXIT_REASON_APIC_ACCESS:
8193                 return nested_cpu_has2(vmcs12,
8194                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8195         case EXIT_REASON_APIC_WRITE:
8196         case EXIT_REASON_EOI_INDUCED:
8197                 /* apic_write and eoi_induced should exit unconditionally. */
8198                 return true;
8199         case EXIT_REASON_EPT_VIOLATION:
8200                 /*
8201                  * L0 always deals with the EPT violation. If nested EPT is
8202                  * used, and the nested mmu code discovers that the address is
8203                  * missing in the guest EPT table (EPT12), the EPT violation
8204                  * will be injected with nested_ept_inject_page_fault()
8205                  */
8206                 return false;
8207         case EXIT_REASON_EPT_MISCONFIG:
8208                 /*
8209                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8210                  * table (shadow on EPT) or a merged EPT table that L0 built
8211                  * (EPT on EPT). So any problems with the structure of the
8212                  * table is L0's fault.
8213                  */
8214                 return false;
8215         case EXIT_REASON_WBINVD:
8216                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8217         case EXIT_REASON_XSETBV:
8218                 return true;
8219         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8220                 /*
8221                  * This should never happen, since it is not possible to
8222                  * set XSS to a non-zero value---neither in L1 nor in L2.
8223                  * If if it were, XSS would have to be checked against
8224                  * the XSS exit bitmap in vmcs12.
8225                  */
8226                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8227         case EXIT_REASON_PREEMPTION_TIMER:
8228                 return false;
8229         case EXIT_REASON_PML_FULL:
8230                 /* We emulate PML support to L1. */
8231                 return false;
8232         default:
8233                 return true;
8234         }
8235 }
8236
8237 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8238 {
8239         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8240
8241         /*
8242          * At this point, the exit interruption info in exit_intr_info
8243          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8244          * we need to query the in-kernel LAPIC.
8245          */
8246         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8247         if ((exit_intr_info &
8248              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8249             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8250                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8251                 vmcs12->vm_exit_intr_error_code =
8252                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8253         }
8254
8255         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8256                           vmcs_readl(EXIT_QUALIFICATION));
8257         return 1;
8258 }
8259
8260 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8261 {
8262         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8263         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8264 }
8265
8266 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8267 {
8268         if (vmx->pml_pg) {
8269                 __free_page(vmx->pml_pg);
8270                 vmx->pml_pg = NULL;
8271         }
8272 }
8273
8274 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8275 {
8276         struct vcpu_vmx *vmx = to_vmx(vcpu);
8277         u64 *pml_buf;
8278         u16 pml_idx;
8279
8280         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8281
8282         /* Do nothing if PML buffer is empty */
8283         if (pml_idx == (PML_ENTITY_NUM - 1))
8284                 return;
8285
8286         /* PML index always points to next available PML buffer entity */
8287         if (pml_idx >= PML_ENTITY_NUM)
8288                 pml_idx = 0;
8289         else
8290                 pml_idx++;
8291
8292         pml_buf = page_address(vmx->pml_pg);
8293         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8294                 u64 gpa;
8295
8296                 gpa = pml_buf[pml_idx];
8297                 WARN_ON(gpa & (PAGE_SIZE - 1));
8298                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8299         }
8300
8301         /* reset PML index */
8302         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8303 }
8304
8305 /*
8306  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8307  * Called before reporting dirty_bitmap to userspace.
8308  */
8309 static void kvm_flush_pml_buffers(struct kvm *kvm)
8310 {
8311         int i;
8312         struct kvm_vcpu *vcpu;
8313         /*
8314          * We only need to kick vcpu out of guest mode here, as PML buffer
8315          * is flushed at beginning of all VMEXITs, and it's obvious that only
8316          * vcpus running in guest are possible to have unflushed GPAs in PML
8317          * buffer.
8318          */
8319         kvm_for_each_vcpu(i, vcpu, kvm)
8320                 kvm_vcpu_kick(vcpu);
8321 }
8322
8323 static void vmx_dump_sel(char *name, uint32_t sel)
8324 {
8325         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8326                name, vmcs_read16(sel),
8327                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8328                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8329                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8330 }
8331
8332 static void vmx_dump_dtsel(char *name, uint32_t limit)
8333 {
8334         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8335                name, vmcs_read32(limit),
8336                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8337 }
8338
8339 static void dump_vmcs(void)
8340 {
8341         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8342         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8343         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8344         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8345         u32 secondary_exec_control = 0;
8346         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8347         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8348         int i, n;
8349
8350         if (cpu_has_secondary_exec_ctrls())
8351                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8352
8353         pr_err("*** Guest State ***\n");
8354         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8355                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8356                vmcs_readl(CR0_GUEST_HOST_MASK));
8357         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8358                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8359         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8360         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8361             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8362         {
8363                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8364                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8365                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8366                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8367         }
8368         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8369                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8370         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8371                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8372         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8373                vmcs_readl(GUEST_SYSENTER_ESP),
8374                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8375         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8376         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8377         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8378         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8379         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8380         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8381         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8382         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8383         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8384         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8385         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8386             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8387                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8388                        efer, vmcs_read64(GUEST_IA32_PAT));
8389         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8390                vmcs_read64(GUEST_IA32_DEBUGCTL),
8391                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8392         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8393                 pr_err("PerfGlobCtl = 0x%016llx\n",
8394                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8395         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8396                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8397         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8398                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8399                vmcs_read32(GUEST_ACTIVITY_STATE));
8400         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8401                 pr_err("InterruptStatus = %04x\n",
8402                        vmcs_read16(GUEST_INTR_STATUS));
8403
8404         pr_err("*** Host State ***\n");
8405         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8406                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8407         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8408                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8409                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8410                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8411                vmcs_read16(HOST_TR_SELECTOR));
8412         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8413                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8414                vmcs_readl(HOST_TR_BASE));
8415         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8416                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8417         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8418                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8419                vmcs_readl(HOST_CR4));
8420         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8421                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8422                vmcs_read32(HOST_IA32_SYSENTER_CS),
8423                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8424         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8425                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8426                        vmcs_read64(HOST_IA32_EFER),
8427                        vmcs_read64(HOST_IA32_PAT));
8428         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8429                 pr_err("PerfGlobCtl = 0x%016llx\n",
8430                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8431
8432         pr_err("*** Control State ***\n");
8433         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8434                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8435         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8436         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8437                vmcs_read32(EXCEPTION_BITMAP),
8438                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8439                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8440         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8441                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8442                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8443                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8444         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8445                vmcs_read32(VM_EXIT_INTR_INFO),
8446                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8447                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8448         pr_err("        reason=%08x qualification=%016lx\n",
8449                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8450         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8451                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8452                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8453         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8454         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8455                 pr_err("TSC Multiplier = 0x%016llx\n",
8456                        vmcs_read64(TSC_MULTIPLIER));
8457         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8458                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8459         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8460                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8461         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8462                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8463         n = vmcs_read32(CR3_TARGET_COUNT);
8464         for (i = 0; i + 1 < n; i += 4)
8465                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8466                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8467                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8468         if (i < n)
8469                 pr_err("CR3 target%u=%016lx\n",
8470                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8471         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8472                 pr_err("PLE Gap=%08x Window=%08x\n",
8473                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8474         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8475                 pr_err("Virtual processor ID = 0x%04x\n",
8476                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8477 }
8478
8479 /*
8480  * The guest has exited.  See if we can fix it or if we need userspace
8481  * assistance.
8482  */
8483 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8484 {
8485         struct vcpu_vmx *vmx = to_vmx(vcpu);
8486         u32 exit_reason = vmx->exit_reason;
8487         u32 vectoring_info = vmx->idt_vectoring_info;
8488
8489         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8490         vcpu->arch.gpa_available = false;
8491
8492         /*
8493          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8494          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8495          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8496          * mode as if vcpus is in root mode, the PML buffer must has been
8497          * flushed already.
8498          */
8499         if (enable_pml)
8500                 vmx_flush_pml_buffer(vcpu);
8501
8502         /* If guest state is invalid, start emulating */
8503         if (vmx->emulation_required)
8504                 return handle_invalid_guest_state(vcpu);
8505
8506         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8507                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8508
8509         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8510                 dump_vmcs();
8511                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8512                 vcpu->run->fail_entry.hardware_entry_failure_reason
8513                         = exit_reason;
8514                 return 0;
8515         }
8516
8517         if (unlikely(vmx->fail)) {
8518                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8519                 vcpu->run->fail_entry.hardware_entry_failure_reason
8520                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8521                 return 0;
8522         }
8523
8524         /*
8525          * Note:
8526          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8527          * delivery event since it indicates guest is accessing MMIO.
8528          * The vm-exit can be triggered again after return to guest that
8529          * will cause infinite loop.
8530          */
8531         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8532                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8533                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8534                         exit_reason != EXIT_REASON_PML_FULL &&
8535                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8536                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8537                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8538                 vcpu->run->internal.ndata = 3;
8539                 vcpu->run->internal.data[0] = vectoring_info;
8540                 vcpu->run->internal.data[1] = exit_reason;
8541                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8542                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8543                         vcpu->run->internal.ndata++;
8544                         vcpu->run->internal.data[3] =
8545                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8546                 }
8547                 return 0;
8548         }
8549
8550         if (exit_reason < kvm_vmx_max_exit_handlers
8551             && kvm_vmx_exit_handlers[exit_reason])
8552                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8553         else {
8554                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8555                                 exit_reason);
8556                 kvm_queue_exception(vcpu, UD_VECTOR);
8557                 return 1;
8558         }
8559 }
8560
8561 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8562 {
8563         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8564
8565         if (is_guest_mode(vcpu) &&
8566                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8567                 return;
8568
8569         if (irr == -1 || tpr < irr) {
8570                 vmcs_write32(TPR_THRESHOLD, 0);
8571                 return;
8572         }
8573
8574         vmcs_write32(TPR_THRESHOLD, irr);
8575 }
8576
8577 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8578 {
8579         u32 sec_exec_control;
8580
8581         /* Postpone execution until vmcs01 is the current VMCS. */
8582         if (is_guest_mode(vcpu)) {
8583                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8584                 return;
8585         }
8586
8587         if (!cpu_has_vmx_virtualize_x2apic_mode())
8588                 return;
8589
8590         if (!cpu_need_tpr_shadow(vcpu))
8591                 return;
8592
8593         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8594
8595         if (set) {
8596                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8597                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8598         } else {
8599                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8600                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8601                 vmx_flush_tlb_ept_only(vcpu);
8602         }
8603         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8604
8605         vmx_set_msr_bitmap(vcpu);
8606 }
8607
8608 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8609 {
8610         struct vcpu_vmx *vmx = to_vmx(vcpu);
8611
8612         /*
8613          * Currently we do not handle the nested case where L2 has an
8614          * APIC access page of its own; that page is still pinned.
8615          * Hence, we skip the case where the VCPU is in guest mode _and_
8616          * L1 prepared an APIC access page for L2.
8617          *
8618          * For the case where L1 and L2 share the same APIC access page
8619          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8620          * in the vmcs12), this function will only update either the vmcs01
8621          * or the vmcs02.  If the former, the vmcs02 will be updated by
8622          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8623          * the next L2->L1 exit.
8624          */
8625         if (!is_guest_mode(vcpu) ||
8626             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8627                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8628                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8629                 vmx_flush_tlb_ept_only(vcpu);
8630         }
8631 }
8632
8633 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8634 {
8635         u16 status;
8636         u8 old;
8637
8638         if (max_isr == -1)
8639                 max_isr = 0;
8640
8641         status = vmcs_read16(GUEST_INTR_STATUS);
8642         old = status >> 8;
8643         if (max_isr != old) {
8644                 status &= 0xff;
8645                 status |= max_isr << 8;
8646                 vmcs_write16(GUEST_INTR_STATUS, status);
8647         }
8648 }
8649
8650 static void vmx_set_rvi(int vector)
8651 {
8652         u16 status;
8653         u8 old;
8654
8655         if (vector == -1)
8656                 vector = 0;
8657
8658         status = vmcs_read16(GUEST_INTR_STATUS);
8659         old = (u8)status & 0xff;
8660         if ((u8)vector != old) {
8661                 status &= ~0xff;
8662                 status |= (u8)vector;
8663                 vmcs_write16(GUEST_INTR_STATUS, status);
8664         }
8665 }
8666
8667 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8668 {
8669         if (!is_guest_mode(vcpu)) {
8670                 vmx_set_rvi(max_irr);
8671                 return;
8672         }
8673
8674         if (max_irr == -1)
8675                 return;
8676
8677         /*
8678          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8679          * handles it.
8680          */
8681         if (nested_exit_on_intr(vcpu))
8682                 return;
8683
8684         /*
8685          * Else, fall back to pre-APICv interrupt injection since L2
8686          * is run without virtual interrupt delivery.
8687          */
8688         if (!kvm_event_needs_reinjection(vcpu) &&
8689             vmx_interrupt_allowed(vcpu)) {
8690                 kvm_queue_interrupt(vcpu, max_irr, false);
8691                 vmx_inject_irq(vcpu);
8692         }
8693 }
8694
8695 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8696 {
8697         struct vcpu_vmx *vmx = to_vmx(vcpu);
8698         int max_irr;
8699
8700         WARN_ON(!vcpu->arch.apicv_active);
8701         if (pi_test_on(&vmx->pi_desc)) {
8702                 pi_clear_on(&vmx->pi_desc);
8703                 /*
8704                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8705                  * But on x86 this is just a compiler barrier anyway.
8706                  */
8707                 smp_mb__after_atomic();
8708                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8709         } else {
8710                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8711         }
8712         vmx_hwapic_irr_update(vcpu, max_irr);
8713         return max_irr;
8714 }
8715
8716 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8717 {
8718         if (!kvm_vcpu_apicv_active(vcpu))
8719                 return;
8720
8721         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8722         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8723         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8724         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8725 }
8726
8727 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8728 {
8729         struct vcpu_vmx *vmx = to_vmx(vcpu);
8730
8731         pi_clear_on(&vmx->pi_desc);
8732         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8733 }
8734
8735 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8736 {
8737         u32 exit_intr_info = 0;
8738         u16 basic_exit_reason = (u16)vmx->exit_reason;
8739
8740         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8741               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8742                 return;
8743
8744         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8745                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8746         vmx->exit_intr_info = exit_intr_info;
8747
8748         /* if exit due to PF check for async PF */
8749         if (is_page_fault(exit_intr_info))
8750                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8751
8752         /* Handle machine checks before interrupts are enabled */
8753         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8754             is_machine_check(exit_intr_info))
8755                 kvm_machine_check();
8756
8757         /* We need to handle NMIs before interrupts are enabled */
8758         if (is_nmi(exit_intr_info)) {
8759                 kvm_before_handle_nmi(&vmx->vcpu);
8760                 asm("int $2");
8761                 kvm_after_handle_nmi(&vmx->vcpu);
8762         }
8763 }
8764
8765 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8766 {
8767         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8768         register void *__sp asm(_ASM_SP);
8769
8770         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8771                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8772                 unsigned int vector;
8773                 unsigned long entry;
8774                 gate_desc *desc;
8775                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8776 #ifdef CONFIG_X86_64
8777                 unsigned long tmp;
8778 #endif
8779
8780                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8781                 desc = (gate_desc *)vmx->host_idt_base + vector;
8782                 entry = gate_offset(*desc);
8783                 asm volatile(
8784 #ifdef CONFIG_X86_64
8785                         "mov %%" _ASM_SP ", %[sp]\n\t"
8786                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8787                         "push $%c[ss]\n\t"
8788                         "push %[sp]\n\t"
8789 #endif
8790                         "pushf\n\t"
8791                         __ASM_SIZE(push) " $%c[cs]\n\t"
8792                         "call *%[entry]\n\t"
8793                         :
8794 #ifdef CONFIG_X86_64
8795                         [sp]"=&r"(tmp),
8796 #endif
8797                         "+r"(__sp)
8798                         :
8799                         [entry]"r"(entry),
8800                         [ss]"i"(__KERNEL_DS),
8801                         [cs]"i"(__KERNEL_CS)
8802                         );
8803         }
8804 }
8805 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8806
8807 static bool vmx_has_high_real_mode_segbase(void)
8808 {
8809         return enable_unrestricted_guest || emulate_invalid_guest_state;
8810 }
8811
8812 static bool vmx_mpx_supported(void)
8813 {
8814         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8815                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8816 }
8817
8818 static bool vmx_xsaves_supported(void)
8819 {
8820         return vmcs_config.cpu_based_2nd_exec_ctrl &
8821                 SECONDARY_EXEC_XSAVES;
8822 }
8823
8824 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8825 {
8826         u32 exit_intr_info;
8827         bool unblock_nmi;
8828         u8 vector;
8829         bool idtv_info_valid;
8830
8831         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8832
8833         if (vmx->loaded_vmcs->nmi_known_unmasked)
8834                 return;
8835         /*
8836          * Can't use vmx->exit_intr_info since we're not sure what
8837          * the exit reason is.
8838          */
8839         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8840         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8841         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8842         /*
8843          * SDM 3: 27.7.1.2 (September 2008)
8844          * Re-set bit "block by NMI" before VM entry if vmexit caused by
8845          * a guest IRET fault.
8846          * SDM 3: 23.2.2 (September 2008)
8847          * Bit 12 is undefined in any of the following cases:
8848          *  If the VM exit sets the valid bit in the IDT-vectoring
8849          *   information field.
8850          *  If the VM exit is due to a double fault.
8851          */
8852         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8853             vector != DF_VECTOR && !idtv_info_valid)
8854                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8855                               GUEST_INTR_STATE_NMI);
8856         else
8857                 vmx->loaded_vmcs->nmi_known_unmasked =
8858                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8859                           & GUEST_INTR_STATE_NMI);
8860 }
8861
8862 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8863                                       u32 idt_vectoring_info,
8864                                       int instr_len_field,
8865                                       int error_code_field)
8866 {
8867         u8 vector;
8868         int type;
8869         bool idtv_info_valid;
8870
8871         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8872
8873         vcpu->arch.nmi_injected = false;
8874         kvm_clear_exception_queue(vcpu);
8875         kvm_clear_interrupt_queue(vcpu);
8876
8877         if (!idtv_info_valid)
8878                 return;
8879
8880         kvm_make_request(KVM_REQ_EVENT, vcpu);
8881
8882         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8883         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8884
8885         switch (type) {
8886         case INTR_TYPE_NMI_INTR:
8887                 vcpu->arch.nmi_injected = true;
8888                 /*
8889                  * SDM 3: 27.7.1.2 (September 2008)
8890                  * Clear bit "block by NMI" before VM entry if a NMI
8891                  * delivery faulted.
8892                  */
8893                 vmx_set_nmi_mask(vcpu, false);
8894                 break;
8895         case INTR_TYPE_SOFT_EXCEPTION:
8896                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8897                 /* fall through */
8898         case INTR_TYPE_HARD_EXCEPTION:
8899                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8900                         u32 err = vmcs_read32(error_code_field);
8901                         kvm_requeue_exception_e(vcpu, vector, err);
8902                 } else
8903                         kvm_requeue_exception(vcpu, vector);
8904                 break;
8905         case INTR_TYPE_SOFT_INTR:
8906                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8907                 /* fall through */
8908         case INTR_TYPE_EXT_INTR:
8909                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8910                 break;
8911         default:
8912                 break;
8913         }
8914 }
8915
8916 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8917 {
8918         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8919                                   VM_EXIT_INSTRUCTION_LEN,
8920                                   IDT_VECTORING_ERROR_CODE);
8921 }
8922
8923 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8924 {
8925         __vmx_complete_interrupts(vcpu,
8926                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8927                                   VM_ENTRY_INSTRUCTION_LEN,
8928                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8929
8930         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8931 }
8932
8933 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8934 {
8935         int i, nr_msrs;
8936         struct perf_guest_switch_msr *msrs;
8937
8938         msrs = perf_guest_get_msrs(&nr_msrs);
8939
8940         if (!msrs)
8941                 return;
8942
8943         for (i = 0; i < nr_msrs; i++)
8944                 if (msrs[i].host == msrs[i].guest)
8945                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8946                 else
8947                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8948                                         msrs[i].host);
8949 }
8950
8951 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8952 {
8953         struct vcpu_vmx *vmx = to_vmx(vcpu);
8954         u64 tscl;
8955         u32 delta_tsc;
8956
8957         if (vmx->hv_deadline_tsc == -1)
8958                 return;
8959
8960         tscl = rdtsc();
8961         if (vmx->hv_deadline_tsc > tscl)
8962                 /* sure to be 32 bit only because checked on set_hv_timer */
8963                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8964                         cpu_preemption_timer_multi);
8965         else
8966                 delta_tsc = 0;
8967
8968         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8969 }
8970
8971 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8972 {
8973         struct vcpu_vmx *vmx = to_vmx(vcpu);
8974         unsigned long debugctlmsr, cr3, cr4;
8975
8976         /* Don't enter VMX if guest state is invalid, let the exit handler
8977            start emulation until we arrive back to a valid state */
8978         if (vmx->emulation_required)
8979                 return;
8980
8981         if (vmx->ple_window_dirty) {
8982                 vmx->ple_window_dirty = false;
8983                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8984         }
8985
8986         if (vmx->nested.sync_shadow_vmcs) {
8987                 copy_vmcs12_to_shadow(vmx);
8988                 vmx->nested.sync_shadow_vmcs = false;
8989         }
8990
8991         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8992                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8993         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8994                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8995
8996         cr3 = __get_current_cr3_fast();
8997         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8998                 vmcs_writel(HOST_CR3, cr3);
8999                 vmx->host_state.vmcs_host_cr3 = cr3;
9000         }
9001
9002         cr4 = cr4_read_shadow();
9003         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9004                 vmcs_writel(HOST_CR4, cr4);
9005                 vmx->host_state.vmcs_host_cr4 = cr4;
9006         }
9007
9008         /* When single-stepping over STI and MOV SS, we must clear the
9009          * corresponding interruptibility bits in the guest state. Otherwise
9010          * vmentry fails as it then expects bit 14 (BS) in pending debug
9011          * exceptions being set, but that's not correct for the guest debugging
9012          * case. */
9013         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9014                 vmx_set_interrupt_shadow(vcpu, 0);
9015
9016         if (static_cpu_has(X86_FEATURE_PKU) &&
9017             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9018             vcpu->arch.pkru != vmx->host_pkru)
9019                 __write_pkru(vcpu->arch.pkru);
9020
9021         atomic_switch_perf_msrs(vmx);
9022         debugctlmsr = get_debugctlmsr();
9023
9024         vmx_arm_hv_timer(vcpu);
9025
9026         vmx->__launched = vmx->loaded_vmcs->launched;
9027         asm(
9028                 /* Store host registers */
9029                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9030                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9031                 "push %%" _ASM_CX " \n\t"
9032                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9033                 "je 1f \n\t"
9034                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9035                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9036                 "1: \n\t"
9037                 /* Reload cr2 if changed */
9038                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9039                 "mov %%cr2, %%" _ASM_DX " \n\t"
9040                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9041                 "je 2f \n\t"
9042                 "mov %%" _ASM_AX", %%cr2 \n\t"
9043                 "2: \n\t"
9044                 /* Check if vmlaunch of vmresume is needed */
9045                 "cmpl $0, %c[launched](%0) \n\t"
9046                 /* Load guest registers.  Don't clobber flags. */
9047                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9048                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9049                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9050                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9051                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9052                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9053 #ifdef CONFIG_X86_64
9054                 "mov %c[r8](%0),  %%r8  \n\t"
9055                 "mov %c[r9](%0),  %%r9  \n\t"
9056                 "mov %c[r10](%0), %%r10 \n\t"
9057                 "mov %c[r11](%0), %%r11 \n\t"
9058                 "mov %c[r12](%0), %%r12 \n\t"
9059                 "mov %c[r13](%0), %%r13 \n\t"
9060                 "mov %c[r14](%0), %%r14 \n\t"
9061                 "mov %c[r15](%0), %%r15 \n\t"
9062 #endif
9063                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9064
9065                 /* Enter guest mode */
9066                 "jne 1f \n\t"
9067                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9068                 "jmp 2f \n\t"
9069                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9070                 "2: "
9071                 /* Save guest registers, load host registers, keep flags */
9072                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9073                 "pop %0 \n\t"
9074                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9075                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9076                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9077                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9078                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9079                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9080                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9081 #ifdef CONFIG_X86_64
9082                 "mov %%r8,  %c[r8](%0) \n\t"
9083                 "mov %%r9,  %c[r9](%0) \n\t"
9084                 "mov %%r10, %c[r10](%0) \n\t"
9085                 "mov %%r11, %c[r11](%0) \n\t"
9086                 "mov %%r12, %c[r12](%0) \n\t"
9087                 "mov %%r13, %c[r13](%0) \n\t"
9088                 "mov %%r14, %c[r14](%0) \n\t"
9089                 "mov %%r15, %c[r15](%0) \n\t"
9090 #endif
9091                 "mov %%cr2, %%" _ASM_AX "   \n\t"
9092                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9093
9094                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9095                 "setbe %c[fail](%0) \n\t"
9096                 ".pushsection .rodata \n\t"
9097                 ".global vmx_return \n\t"
9098                 "vmx_return: " _ASM_PTR " 2b \n\t"
9099                 ".popsection"
9100               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9101                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9102                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9103                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9104                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9105                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9106                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9107                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9108                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9109                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9110                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9111 #ifdef CONFIG_X86_64
9112                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9113                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9114                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9115                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9116                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9117                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9118                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9119                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9120 #endif
9121                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9122                 [wordsize]"i"(sizeof(ulong))
9123               : "cc", "memory"
9124 #ifdef CONFIG_X86_64
9125                 , "rax", "rbx", "rdi", "rsi"
9126                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9127 #else
9128                 , "eax", "ebx", "edi", "esi"
9129 #endif
9130               );
9131
9132         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9133         if (debugctlmsr)
9134                 update_debugctlmsr(debugctlmsr);
9135
9136 #ifndef CONFIG_X86_64
9137         /*
9138          * The sysexit path does not restore ds/es, so we must set them to
9139          * a reasonable value ourselves.
9140          *
9141          * We can't defer this to vmx_load_host_state() since that function
9142          * may be executed in interrupt context, which saves and restore segments
9143          * around it, nullifying its effect.
9144          */
9145         loadsegment(ds, __USER_DS);
9146         loadsegment(es, __USER_DS);
9147 #endif
9148
9149         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9150                                   | (1 << VCPU_EXREG_RFLAGS)
9151                                   | (1 << VCPU_EXREG_PDPTR)
9152                                   | (1 << VCPU_EXREG_SEGMENTS)
9153                                   | (1 << VCPU_EXREG_CR3));
9154         vcpu->arch.regs_dirty = 0;
9155
9156         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9157
9158         vmx->loaded_vmcs->launched = 1;
9159
9160         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9161
9162         /*
9163          * eager fpu is enabled if PKEY is supported and CR4 is switched
9164          * back on host, so it is safe to read guest PKRU from current
9165          * XSAVE.
9166          */
9167         if (static_cpu_has(X86_FEATURE_PKU) &&
9168             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9169                 vcpu->arch.pkru = __read_pkru();
9170                 if (vcpu->arch.pkru != vmx->host_pkru)
9171                         __write_pkru(vmx->host_pkru);
9172         }
9173
9174         /*
9175          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9176          * we did not inject a still-pending event to L1 now because of
9177          * nested_run_pending, we need to re-enable this bit.
9178          */
9179         if (vmx->nested.nested_run_pending)
9180                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9181
9182         vmx->nested.nested_run_pending = 0;
9183
9184         vmx_complete_atomic_exit(vmx);
9185         vmx_recover_nmi_blocking(vmx);
9186         vmx_complete_interrupts(vmx);
9187 }
9188 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9189
9190 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9191 {
9192         struct vcpu_vmx *vmx = to_vmx(vcpu);
9193         int cpu;
9194
9195         if (vmx->loaded_vmcs == vmcs)
9196                 return;
9197
9198         cpu = get_cpu();
9199         vmx->loaded_vmcs = vmcs;
9200         vmx_vcpu_put(vcpu);
9201         vmx_vcpu_load(vcpu, cpu);
9202         vcpu->cpu = cpu;
9203         put_cpu();
9204 }
9205
9206 /*
9207  * Ensure that the current vmcs of the logical processor is the
9208  * vmcs01 of the vcpu before calling free_nested().
9209  */
9210 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9211 {
9212        struct vcpu_vmx *vmx = to_vmx(vcpu);
9213        int r;
9214
9215        r = vcpu_load(vcpu);
9216        BUG_ON(r);
9217        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9218        free_nested(vmx);
9219        vcpu_put(vcpu);
9220 }
9221
9222 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9223 {
9224         struct vcpu_vmx *vmx = to_vmx(vcpu);
9225
9226         if (enable_pml)
9227                 vmx_destroy_pml_buffer(vmx);
9228         free_vpid(vmx->vpid);
9229         leave_guest_mode(vcpu);
9230         vmx_free_vcpu_nested(vcpu);
9231         free_loaded_vmcs(vmx->loaded_vmcs);
9232         kfree(vmx->guest_msrs);
9233         kvm_vcpu_uninit(vcpu);
9234         kmem_cache_free(kvm_vcpu_cache, vmx);
9235 }
9236
9237 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9238 {
9239         int err;
9240         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9241         int cpu;
9242
9243         if (!vmx)
9244                 return ERR_PTR(-ENOMEM);
9245
9246         vmx->vpid = allocate_vpid();
9247
9248         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9249         if (err)
9250                 goto free_vcpu;
9251
9252         err = -ENOMEM;
9253
9254         /*
9255          * If PML is turned on, failure on enabling PML just results in failure
9256          * of creating the vcpu, therefore we can simplify PML logic (by
9257          * avoiding dealing with cases, such as enabling PML partially on vcpus
9258          * for the guest, etc.
9259          */
9260         if (enable_pml) {
9261                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9262                 if (!vmx->pml_pg)
9263                         goto uninit_vcpu;
9264         }
9265
9266         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9267         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9268                      > PAGE_SIZE);
9269
9270         if (!vmx->guest_msrs)
9271                 goto free_pml;
9272
9273         vmx->loaded_vmcs = &vmx->vmcs01;
9274         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9275         vmx->loaded_vmcs->shadow_vmcs = NULL;
9276         if (!vmx->loaded_vmcs->vmcs)
9277                 goto free_msrs;
9278         loaded_vmcs_init(vmx->loaded_vmcs);
9279
9280         cpu = get_cpu();
9281         vmx_vcpu_load(&vmx->vcpu, cpu);
9282         vmx->vcpu.cpu = cpu;
9283         err = vmx_vcpu_setup(vmx);
9284         vmx_vcpu_put(&vmx->vcpu);
9285         put_cpu();
9286         if (err)
9287                 goto free_vmcs;
9288         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9289                 err = alloc_apic_access_page(kvm);
9290                 if (err)
9291                         goto free_vmcs;
9292         }
9293
9294         if (enable_ept) {
9295                 if (!kvm->arch.ept_identity_map_addr)
9296                         kvm->arch.ept_identity_map_addr =
9297                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9298                 err = init_rmode_identity_map(kvm);
9299                 if (err)
9300                         goto free_vmcs;
9301         }
9302
9303         if (nested) {
9304                 nested_vmx_setup_ctls_msrs(vmx);
9305                 vmx->nested.vpid02 = allocate_vpid();
9306         }
9307
9308         vmx->nested.posted_intr_nv = -1;
9309         vmx->nested.current_vmptr = -1ull;
9310
9311         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9312
9313         return &vmx->vcpu;
9314
9315 free_vmcs:
9316         free_vpid(vmx->nested.vpid02);
9317         free_loaded_vmcs(vmx->loaded_vmcs);
9318 free_msrs:
9319         kfree(vmx->guest_msrs);
9320 free_pml:
9321         vmx_destroy_pml_buffer(vmx);
9322 uninit_vcpu:
9323         kvm_vcpu_uninit(&vmx->vcpu);
9324 free_vcpu:
9325         free_vpid(vmx->vpid);
9326         kmem_cache_free(kvm_vcpu_cache, vmx);
9327         return ERR_PTR(err);
9328 }
9329
9330 static void __init vmx_check_processor_compat(void *rtn)
9331 {
9332         struct vmcs_config vmcs_conf;
9333
9334         *(int *)rtn = 0;
9335         if (setup_vmcs_config(&vmcs_conf) < 0)
9336                 *(int *)rtn = -EIO;
9337         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9338                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9339                                 smp_processor_id());
9340                 *(int *)rtn = -EIO;
9341         }
9342 }
9343
9344 static int get_ept_level(void)
9345 {
9346         return VMX_EPT_DEFAULT_GAW + 1;
9347 }
9348
9349 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9350 {
9351         u8 cache;
9352         u64 ipat = 0;
9353
9354         /* For VT-d and EPT combination
9355          * 1. MMIO: always map as UC
9356          * 2. EPT with VT-d:
9357          *   a. VT-d without snooping control feature: can't guarantee the
9358          *      result, try to trust guest.
9359          *   b. VT-d with snooping control feature: snooping control feature of
9360          *      VT-d engine can guarantee the cache correctness. Just set it
9361          *      to WB to keep consistent with host. So the same as item 3.
9362          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9363          *    consistent with host MTRR
9364          */
9365         if (is_mmio) {
9366                 cache = MTRR_TYPE_UNCACHABLE;
9367                 goto exit;
9368         }
9369
9370         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9371                 ipat = VMX_EPT_IPAT_BIT;
9372                 cache = MTRR_TYPE_WRBACK;
9373                 goto exit;
9374         }
9375
9376         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9377                 ipat = VMX_EPT_IPAT_BIT;
9378                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9379                         cache = MTRR_TYPE_WRBACK;
9380                 else
9381                         cache = MTRR_TYPE_UNCACHABLE;
9382                 goto exit;
9383         }
9384
9385         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9386
9387 exit:
9388         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9389 }
9390
9391 static int vmx_get_lpage_level(void)
9392 {
9393         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9394                 return PT_DIRECTORY_LEVEL;
9395         else
9396                 /* For shadow and EPT supported 1GB page */
9397                 return PT_PDPE_LEVEL;
9398 }
9399
9400 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9401 {
9402         /*
9403          * These bits in the secondary execution controls field
9404          * are dynamic, the others are mostly based on the hypervisor
9405          * architecture and the guest's CPUID.  Do not touch the
9406          * dynamic bits.
9407          */
9408         u32 mask =
9409                 SECONDARY_EXEC_SHADOW_VMCS |
9410                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9411                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9412
9413         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9414
9415         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9416                      (new_ctl & ~mask) | (cur_ctl & mask));
9417 }
9418
9419 /*
9420  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9421  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9422  */
9423 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9424 {
9425         struct vcpu_vmx *vmx = to_vmx(vcpu);
9426         struct kvm_cpuid_entry2 *entry;
9427
9428         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9429         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9430
9431 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9432         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9433                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9434 } while (0)
9435
9436         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9437         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9438         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9439         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9440         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9441         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9442         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9443         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9444         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9445         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9446         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9447         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9448         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9449         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9450         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9451
9452         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9453         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9454         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9455         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9456         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9457         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9458         cr4_fixed1_update(bit(11),            ecx, bit(2));
9459
9460 #undef cr4_fixed1_update
9461 }
9462
9463 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9464 {
9465         struct kvm_cpuid_entry2 *best;
9466         struct vcpu_vmx *vmx = to_vmx(vcpu);
9467         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9468
9469         if (vmx_rdtscp_supported()) {
9470                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9471                 if (!rdtscp_enabled)
9472                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9473
9474                 if (nested) {
9475                         if (rdtscp_enabled)
9476                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9477                                         SECONDARY_EXEC_RDTSCP;
9478                         else
9479                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9480                                         ~SECONDARY_EXEC_RDTSCP;
9481                 }
9482         }
9483
9484         /* Exposing INVPCID only when PCID is exposed */
9485         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9486         if (vmx_invpcid_supported() &&
9487             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9488             !guest_cpuid_has_pcid(vcpu))) {
9489                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9490
9491                 if (best)
9492                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9493         }
9494
9495         if (cpu_has_secondary_exec_ctrls())
9496                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9497
9498         if (nested_vmx_allowed(vcpu))
9499                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9500                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9501         else
9502                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9503                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9504
9505         if (nested_vmx_allowed(vcpu))
9506                 nested_vmx_cr_fixed1_bits_update(vcpu);
9507 }
9508
9509 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9510 {
9511         if (func == 1 && nested)
9512                 entry->ecx |= bit(X86_FEATURE_VMX);
9513 }
9514
9515 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9516                 struct x86_exception *fault)
9517 {
9518         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9519         struct vcpu_vmx *vmx = to_vmx(vcpu);
9520         u32 exit_reason;
9521         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9522
9523         if (vmx->nested.pml_full) {
9524                 exit_reason = EXIT_REASON_PML_FULL;
9525                 vmx->nested.pml_full = false;
9526                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9527         } else if (fault->error_code & PFERR_RSVD_MASK)
9528                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9529         else
9530                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9531
9532         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9533         vmcs12->guest_physical_address = fault->address;
9534 }
9535
9536 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9537 {
9538         return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9539 }
9540
9541 /* Callbacks for nested_ept_init_mmu_context: */
9542
9543 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9544 {
9545         /* return the page table to be shadowed - in our case, EPT12 */
9546         return get_vmcs12(vcpu)->ept_pointer;
9547 }
9548
9549 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9550 {
9551         bool wants_ad;
9552
9553         WARN_ON(mmu_is_nested(vcpu));
9554         wants_ad = nested_ept_ad_enabled(vcpu);
9555         if (wants_ad && !enable_ept_ad_bits)
9556                 return 1;
9557
9558         kvm_mmu_unload(vcpu);
9559         kvm_init_shadow_ept_mmu(vcpu,
9560                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9561                         VMX_EPT_EXECUTE_ONLY_BIT,
9562                         wants_ad);
9563         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9564         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9565         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9566
9567         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9568         return 0;
9569 }
9570
9571 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9572 {
9573         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9574 }
9575
9576 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9577                                             u16 error_code)
9578 {
9579         bool inequality, bit;
9580
9581         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9582         inequality =
9583                 (error_code & vmcs12->page_fault_error_code_mask) !=
9584                  vmcs12->page_fault_error_code_match;
9585         return inequality ^ bit;
9586 }
9587
9588 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9589                 struct x86_exception *fault)
9590 {
9591         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9592
9593         WARN_ON(!is_guest_mode(vcpu));
9594
9595         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
9596                 vmcs12->vm_exit_intr_error_code = fault->error_code;
9597                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9598                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9599                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9600                                   fault->address);
9601         } else {
9602                 kvm_inject_page_fault(vcpu, fault);
9603         }
9604 }
9605
9606 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9607                                                struct vmcs12 *vmcs12);
9608
9609 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9610                                         struct vmcs12 *vmcs12)
9611 {
9612         struct vcpu_vmx *vmx = to_vmx(vcpu);
9613         u64 hpa;
9614
9615         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9616                 /*
9617                  * Translate L1 physical address to host physical
9618                  * address for vmcs02. Keep the page pinned, so this
9619                  * physical address remains valid. We keep a reference
9620                  * to it so we can release it later.
9621                  */
9622                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9623                         nested_release_page(vmx->nested.apic_access_page);
9624                 vmx->nested.apic_access_page =
9625                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9626                 /*
9627                  * If translation failed, no matter: This feature asks
9628                  * to exit when accessing the given address, and if it
9629                  * can never be accessed, this feature won't do
9630                  * anything anyway.
9631                  */
9632                 if (vmx->nested.apic_access_page) {
9633                         hpa = page_to_phys(vmx->nested.apic_access_page);
9634                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9635                 } else {
9636                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9637                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9638                 }
9639         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9640                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9641                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9642                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9643                 kvm_vcpu_reload_apic_access_page(vcpu);
9644         }
9645
9646         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9647                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9648                         nested_release_page(vmx->nested.virtual_apic_page);
9649                 vmx->nested.virtual_apic_page =
9650                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9651
9652                 /*
9653                  * If translation failed, VM entry will fail because
9654                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9655                  * Failing the vm entry is _not_ what the processor
9656                  * does but it's basically the only possibility we
9657                  * have.  We could still enter the guest if CR8 load
9658                  * exits are enabled, CR8 store exits are enabled, and
9659                  * virtualize APIC access is disabled; in this case
9660                  * the processor would never use the TPR shadow and we
9661                  * could simply clear the bit from the execution
9662                  * control.  But such a configuration is useless, so
9663                  * let's keep the code simple.
9664                  */
9665                 if (vmx->nested.virtual_apic_page) {
9666                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9667                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9668                 }
9669         }
9670
9671         if (nested_cpu_has_posted_intr(vmcs12)) {
9672                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9673                         kunmap(vmx->nested.pi_desc_page);
9674                         nested_release_page(vmx->nested.pi_desc_page);
9675                 }
9676                 vmx->nested.pi_desc_page =
9677                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9678                 vmx->nested.pi_desc =
9679                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9680                 if (!vmx->nested.pi_desc) {
9681                         nested_release_page_clean(vmx->nested.pi_desc_page);
9682                         return;
9683                 }
9684                 vmx->nested.pi_desc =
9685                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9686                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9687                         (PAGE_SIZE - 1)));
9688                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9689                         page_to_phys(vmx->nested.pi_desc_page) +
9690                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9691                         (PAGE_SIZE - 1)));
9692         }
9693         if (cpu_has_vmx_msr_bitmap() &&
9694             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9695             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9696                 ;
9697         else
9698                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9699                                 CPU_BASED_USE_MSR_BITMAPS);
9700 }
9701
9702 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9703 {
9704         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9705         struct vcpu_vmx *vmx = to_vmx(vcpu);
9706
9707         if (vcpu->arch.virtual_tsc_khz == 0)
9708                 return;
9709
9710         /* Make sure short timeouts reliably trigger an immediate vmexit.
9711          * hrtimer_start does not guarantee this. */
9712         if (preemption_timeout <= 1) {
9713                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9714                 return;
9715         }
9716
9717         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9718         preemption_timeout *= 1000000;
9719         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9720         hrtimer_start(&vmx->nested.preemption_timer,
9721                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9722 }
9723
9724 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9725                                                struct vmcs12 *vmcs12)
9726 {
9727         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9728                 return 0;
9729
9730         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9731             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9732                 return -EINVAL;
9733
9734         return 0;
9735 }
9736
9737 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9738                                                 struct vmcs12 *vmcs12)
9739 {
9740         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9741                 return 0;
9742
9743         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9744                 return -EINVAL;
9745
9746         return 0;
9747 }
9748
9749 /*
9750  * Merge L0's and L1's MSR bitmap, return false to indicate that
9751  * we do not use the hardware.
9752  */
9753 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9754                                                struct vmcs12 *vmcs12)
9755 {
9756         int msr;
9757         struct page *page;
9758         unsigned long *msr_bitmap_l1;
9759         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9760
9761         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9762         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9763                 return false;
9764
9765         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9766         if (!page)
9767                 return false;
9768         msr_bitmap_l1 = (unsigned long *)kmap(page);
9769
9770         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9771
9772         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9773                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9774                         for (msr = 0x800; msr <= 0x8ff; msr++)
9775                                 nested_vmx_disable_intercept_for_msr(
9776                                         msr_bitmap_l1, msr_bitmap_l0,
9777                                         msr, MSR_TYPE_R);
9778
9779                 nested_vmx_disable_intercept_for_msr(
9780                                 msr_bitmap_l1, msr_bitmap_l0,
9781                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9782                                 MSR_TYPE_R | MSR_TYPE_W);
9783
9784                 if (nested_cpu_has_vid(vmcs12)) {
9785                         nested_vmx_disable_intercept_for_msr(
9786                                 msr_bitmap_l1, msr_bitmap_l0,
9787                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9788                                 MSR_TYPE_W);
9789                         nested_vmx_disable_intercept_for_msr(
9790                                 msr_bitmap_l1, msr_bitmap_l0,
9791                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9792                                 MSR_TYPE_W);
9793                 }
9794         }
9795         kunmap(page);
9796         nested_release_page_clean(page);
9797
9798         return true;
9799 }
9800
9801 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9802                                            struct vmcs12 *vmcs12)
9803 {
9804         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9805             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9806             !nested_cpu_has_vid(vmcs12) &&
9807             !nested_cpu_has_posted_intr(vmcs12))
9808                 return 0;
9809
9810         /*
9811          * If virtualize x2apic mode is enabled,
9812          * virtualize apic access must be disabled.
9813          */
9814         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9815             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9816                 return -EINVAL;
9817
9818         /*
9819          * If virtual interrupt delivery is enabled,
9820          * we must exit on external interrupts.
9821          */
9822         if (nested_cpu_has_vid(vmcs12) &&
9823            !nested_exit_on_intr(vcpu))
9824                 return -EINVAL;
9825
9826         /*
9827          * bits 15:8 should be zero in posted_intr_nv,
9828          * the descriptor address has been already checked
9829          * in nested_get_vmcs12_pages.
9830          */
9831         if (nested_cpu_has_posted_intr(vmcs12) &&
9832            (!nested_cpu_has_vid(vmcs12) ||
9833             !nested_exit_intr_ack_set(vcpu) ||
9834             vmcs12->posted_intr_nv & 0xff00))
9835                 return -EINVAL;
9836
9837         /* tpr shadow is needed by all apicv features. */
9838         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9839                 return -EINVAL;
9840
9841         return 0;
9842 }
9843
9844 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9845                                        unsigned long count_field,
9846                                        unsigned long addr_field)
9847 {
9848         int maxphyaddr;
9849         u64 count, addr;
9850
9851         if (vmcs12_read_any(vcpu, count_field, &count) ||
9852             vmcs12_read_any(vcpu, addr_field, &addr)) {
9853                 WARN_ON(1);
9854                 return -EINVAL;
9855         }
9856         if (count == 0)
9857                 return 0;
9858         maxphyaddr = cpuid_maxphyaddr(vcpu);
9859         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9860             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9861                 pr_debug_ratelimited(
9862                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9863                         addr_field, maxphyaddr, count, addr);
9864                 return -EINVAL;
9865         }
9866         return 0;
9867 }
9868
9869 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9870                                                 struct vmcs12 *vmcs12)
9871 {
9872         if (vmcs12->vm_exit_msr_load_count == 0 &&
9873             vmcs12->vm_exit_msr_store_count == 0 &&
9874             vmcs12->vm_entry_msr_load_count == 0)
9875                 return 0; /* Fast path */
9876         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9877                                         VM_EXIT_MSR_LOAD_ADDR) ||
9878             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9879                                         VM_EXIT_MSR_STORE_ADDR) ||
9880             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9881                                         VM_ENTRY_MSR_LOAD_ADDR))
9882                 return -EINVAL;
9883         return 0;
9884 }
9885
9886 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9887                                          struct vmcs12 *vmcs12)
9888 {
9889         u64 address = vmcs12->pml_address;
9890         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9891
9892         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9893                 if (!nested_cpu_has_ept(vmcs12) ||
9894                     !IS_ALIGNED(address, 4096)  ||
9895                     address >> maxphyaddr)
9896                         return -EINVAL;
9897         }
9898
9899         return 0;
9900 }
9901
9902 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9903                                        struct vmx_msr_entry *e)
9904 {
9905         /* x2APIC MSR accesses are not allowed */
9906         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9907                 return -EINVAL;
9908         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9909             e->index == MSR_IA32_UCODE_REV)
9910                 return -EINVAL;
9911         if (e->reserved != 0)
9912                 return -EINVAL;
9913         return 0;
9914 }
9915
9916 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9917                                      struct vmx_msr_entry *e)
9918 {
9919         if (e->index == MSR_FS_BASE ||
9920             e->index == MSR_GS_BASE ||
9921             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9922             nested_vmx_msr_check_common(vcpu, e))
9923                 return -EINVAL;
9924         return 0;
9925 }
9926
9927 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9928                                       struct vmx_msr_entry *e)
9929 {
9930         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9931             nested_vmx_msr_check_common(vcpu, e))
9932                 return -EINVAL;
9933         return 0;
9934 }
9935
9936 /*
9937  * Load guest's/host's msr at nested entry/exit.
9938  * return 0 for success, entry index for failure.
9939  */
9940 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9941 {
9942         u32 i;
9943         struct vmx_msr_entry e;
9944         struct msr_data msr;
9945
9946         msr.host_initiated = false;
9947         for (i = 0; i < count; i++) {
9948                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9949                                         &e, sizeof(e))) {
9950                         pr_debug_ratelimited(
9951                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9952                                 __func__, i, gpa + i * sizeof(e));
9953                         goto fail;
9954                 }
9955                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9956                         pr_debug_ratelimited(
9957                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9958                                 __func__, i, e.index, e.reserved);
9959                         goto fail;
9960                 }
9961                 msr.index = e.index;
9962                 msr.data = e.value;
9963                 if (kvm_set_msr(vcpu, &msr)) {
9964                         pr_debug_ratelimited(
9965                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9966                                 __func__, i, e.index, e.value);
9967                         goto fail;
9968                 }
9969         }
9970         return 0;
9971 fail:
9972         return i + 1;
9973 }
9974
9975 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9976 {
9977         u32 i;
9978         struct vmx_msr_entry e;
9979
9980         for (i = 0; i < count; i++) {
9981                 struct msr_data msr_info;
9982                 if (kvm_vcpu_read_guest(vcpu,
9983                                         gpa + i * sizeof(e),
9984                                         &e, 2 * sizeof(u32))) {
9985                         pr_debug_ratelimited(
9986                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9987                                 __func__, i, gpa + i * sizeof(e));
9988                         return -EINVAL;
9989                 }
9990                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9991                         pr_debug_ratelimited(
9992                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9993                                 __func__, i, e.index, e.reserved);
9994                         return -EINVAL;
9995                 }
9996                 msr_info.host_initiated = false;
9997                 msr_info.index = e.index;
9998                 if (kvm_get_msr(vcpu, &msr_info)) {
9999                         pr_debug_ratelimited(
10000                                 "%s cannot read MSR (%u, 0x%x)\n",
10001                                 __func__, i, e.index);
10002                         return -EINVAL;
10003                 }
10004                 if (kvm_vcpu_write_guest(vcpu,
10005                                          gpa + i * sizeof(e) +
10006                                              offsetof(struct vmx_msr_entry, value),
10007                                          &msr_info.data, sizeof(msr_info.data))) {
10008                         pr_debug_ratelimited(
10009                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10010                                 __func__, i, e.index, msr_info.data);
10011                         return -EINVAL;
10012                 }
10013         }
10014         return 0;
10015 }
10016
10017 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10018 {
10019         unsigned long invalid_mask;
10020
10021         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10022         return (val & invalid_mask) == 0;
10023 }
10024
10025 /*
10026  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10027  * emulating VM entry into a guest with EPT enabled.
10028  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10029  * is assigned to entry_failure_code on failure.
10030  */
10031 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10032                                u32 *entry_failure_code)
10033 {
10034         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10035                 if (!nested_cr3_valid(vcpu, cr3)) {
10036                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10037                         return 1;
10038                 }
10039
10040                 /*
10041                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10042                  * must not be dereferenced.
10043                  */
10044                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10045                     !nested_ept) {
10046                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10047                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
10048                                 return 1;
10049                         }
10050                 }
10051
10052                 vcpu->arch.cr3 = cr3;
10053                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10054         }
10055
10056         kvm_mmu_reset_context(vcpu);
10057         return 0;
10058 }
10059
10060 /*
10061  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10062  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10063  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10064  * guest in a way that will both be appropriate to L1's requests, and our
10065  * needs. In addition to modifying the active vmcs (which is vmcs02), this
10066  * function also has additional necessary side-effects, like setting various
10067  * vcpu->arch fields.
10068  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10069  * is assigned to entry_failure_code on failure.
10070  */
10071 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10072                           bool from_vmentry, u32 *entry_failure_code)
10073 {
10074         struct vcpu_vmx *vmx = to_vmx(vcpu);
10075         u32 exec_control, vmcs12_exec_ctrl;
10076
10077         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10078         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10079         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10080         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10081         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10082         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10083         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10084         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10085         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10086         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10087         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10088         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10089         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10090         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10091         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10092         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10093         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10094         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10095         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10096         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10097         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10098         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10099         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10100         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10101         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10102         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10103         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10104         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10105         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10106         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10107         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10108         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10109         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10110         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10111         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10112         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10113
10114         if (from_vmentry &&
10115             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10116                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10117                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10118         } else {
10119                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10120                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10121         }
10122         if (from_vmentry) {
10123                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10124                              vmcs12->vm_entry_intr_info_field);
10125                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10126                              vmcs12->vm_entry_exception_error_code);
10127                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10128                              vmcs12->vm_entry_instruction_len);
10129                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10130                              vmcs12->guest_interruptibility_info);
10131                 vmx->loaded_vmcs->nmi_known_unmasked =
10132                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10133         } else {
10134                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10135         }
10136         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10137         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10138         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10139                 vmcs12->guest_pending_dbg_exceptions);
10140         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10141         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10142
10143         if (nested_cpu_has_xsaves(vmcs12))
10144                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10145         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10146
10147         exec_control = vmcs12->pin_based_vm_exec_control;
10148
10149         /* Preemption timer setting is only taken from vmcs01.  */
10150         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10151         exec_control |= vmcs_config.pin_based_exec_ctrl;
10152         if (vmx->hv_deadline_tsc == -1)
10153                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10154
10155         /* Posted interrupts setting is only taken from vmcs12.  */
10156         if (nested_cpu_has_posted_intr(vmcs12)) {
10157                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10158                 vmx->nested.pi_pending = false;
10159                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10160         } else {
10161                 exec_control &= ~PIN_BASED_POSTED_INTR;
10162         }
10163
10164         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10165
10166         vmx->nested.preemption_timer_expired = false;
10167         if (nested_cpu_has_preemption_timer(vmcs12))
10168                 vmx_start_preemption_timer(vcpu);
10169
10170         /*
10171          * Whether page-faults are trapped is determined by a combination of
10172          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10173          * If enable_ept, L0 doesn't care about page faults and we should
10174          * set all of these to L1's desires. However, if !enable_ept, L0 does
10175          * care about (at least some) page faults, and because it is not easy
10176          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10177          * to exit on each and every L2 page fault. This is done by setting
10178          * MASK=MATCH=0 and (see below) EB.PF=1.
10179          * Note that below we don't need special code to set EB.PF beyond the
10180          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10181          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10182          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10183          */
10184         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10185                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10186         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10187                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10188
10189         if (cpu_has_secondary_exec_ctrls()) {
10190                 exec_control = vmx_secondary_exec_control(vmx);
10191
10192                 /* Take the following fields only from vmcs12 */
10193                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10194                                   SECONDARY_EXEC_RDTSCP |
10195                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10196                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
10197                 if (nested_cpu_has(vmcs12,
10198                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10199                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10200                                 ~SECONDARY_EXEC_ENABLE_PML;
10201                         exec_control |= vmcs12_exec_ctrl;
10202                 }
10203
10204                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10205                         vmcs_write64(EOI_EXIT_BITMAP0,
10206                                 vmcs12->eoi_exit_bitmap0);
10207                         vmcs_write64(EOI_EXIT_BITMAP1,
10208                                 vmcs12->eoi_exit_bitmap1);
10209                         vmcs_write64(EOI_EXIT_BITMAP2,
10210                                 vmcs12->eoi_exit_bitmap2);
10211                         vmcs_write64(EOI_EXIT_BITMAP3,
10212                                 vmcs12->eoi_exit_bitmap3);
10213                         vmcs_write16(GUEST_INTR_STATUS,
10214                                 vmcs12->guest_intr_status);
10215                 }
10216
10217                 /*
10218                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10219                  * nested_get_vmcs12_pages will either fix it up or
10220                  * remove the VM execution control.
10221                  */
10222                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10223                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10224
10225                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10226         }
10227
10228
10229         /*
10230          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10231          * Some constant fields are set here by vmx_set_constant_host_state().
10232          * Other fields are different per CPU, and will be set later when
10233          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10234          */
10235         vmx_set_constant_host_state(vmx);
10236
10237         /*
10238          * Set the MSR load/store lists to match L0's settings.
10239          */
10240         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10241         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10242         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10243         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10244         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10245
10246         /*
10247          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10248          * entry, but only if the current (host) sp changed from the value
10249          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10250          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10251          * here we just force the write to happen on entry.
10252          */
10253         vmx->host_rsp = 0;
10254
10255         exec_control = vmx_exec_control(vmx); /* L0's desires */
10256         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10257         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10258         exec_control &= ~CPU_BASED_TPR_SHADOW;
10259         exec_control |= vmcs12->cpu_based_vm_exec_control;
10260
10261         /*
10262          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10263          * nested_get_vmcs12_pages can't fix it up, the illegal value
10264          * will result in a VM entry failure.
10265          */
10266         if (exec_control & CPU_BASED_TPR_SHADOW) {
10267                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10268                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10269         }
10270
10271         /*
10272          * Merging of IO bitmap not currently supported.
10273          * Rather, exit every time.
10274          */
10275         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10276         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10277
10278         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10279
10280         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10281          * bitwise-or of what L1 wants to trap for L2, and what we want to
10282          * trap. Note that CR0.TS also needs updating - we do this later.
10283          */
10284         update_exception_bitmap(vcpu);
10285         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10286         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10287
10288         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10289          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10290          * bits are further modified by vmx_set_efer() below.
10291          */
10292         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10293
10294         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10295          * emulated by vmx_set_efer(), below.
10296          */
10297         vm_entry_controls_init(vmx, 
10298                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10299                         ~VM_ENTRY_IA32E_MODE) |
10300                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10301
10302         if (from_vmentry &&
10303             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10304                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10305                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10306         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10307                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10308         }
10309
10310         set_cr4_guest_host_mask(vmx);
10311
10312         if (from_vmentry &&
10313             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10314                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10315
10316         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10317                 vmcs_write64(TSC_OFFSET,
10318                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10319         else
10320                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10321         if (kvm_has_tsc_control)
10322                 decache_tsc_multiplier(vmx);
10323
10324         if (enable_vpid) {
10325                 /*
10326                  * There is no direct mapping between vpid02 and vpid12, the
10327                  * vpid02 is per-vCPU for L0 and reused while the value of
10328                  * vpid12 is changed w/ one invvpid during nested vmentry.
10329                  * The vpid12 is allocated by L1 for L2, so it will not
10330                  * influence global bitmap(for vpid01 and vpid02 allocation)
10331                  * even if spawn a lot of nested vCPUs.
10332                  */
10333                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10334                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10335                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10336                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10337                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10338                         }
10339                 } else {
10340                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10341                         vmx_flush_tlb(vcpu);
10342                 }
10343
10344         }
10345
10346         if (enable_pml) {
10347                 /*
10348                  * Conceptually we want to copy the PML address and index from
10349                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10350                  * since we always flush the log on each vmexit, this happens
10351                  * to be equivalent to simply resetting the fields in vmcs02.
10352                  */
10353                 ASSERT(vmx->pml_pg);
10354                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10355                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10356         }
10357
10358         if (nested_cpu_has_ept(vmcs12)) {
10359                 if (nested_ept_init_mmu_context(vcpu)) {
10360                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10361                         return 1;
10362                 }
10363         } else if (nested_cpu_has2(vmcs12,
10364                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10365                 vmx_flush_tlb_ept_only(vcpu);
10366         }
10367
10368         /*
10369          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10370          * bits which we consider mandatory enabled.
10371          * The CR0_READ_SHADOW is what L2 should have expected to read given
10372          * the specifications by L1; It's not enough to take
10373          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10374          * have more bits than L1 expected.
10375          */
10376         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10377         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10378
10379         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10380         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10381
10382         if (from_vmentry &&
10383             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10384                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10385         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10386                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10387         else
10388                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10389         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10390         vmx_set_efer(vcpu, vcpu->arch.efer);
10391
10392         /* Shadow page tables on either EPT or shadow page tables. */
10393         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10394                                 entry_failure_code))
10395                 return 1;
10396
10397         if (!enable_ept)
10398                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10399
10400         /*
10401          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10402          */
10403         if (enable_ept) {
10404                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10405                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10406                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10407                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10408         }
10409
10410         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10411         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10412         return 0;
10413 }
10414
10415 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10416 {
10417         struct vcpu_vmx *vmx = to_vmx(vcpu);
10418
10419         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10420             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10421                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10422
10423         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10424                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10425
10426         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10427                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10428
10429         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10430                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10431
10432         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10433                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10434
10435         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10436                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10437
10438         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10439                                 vmx->nested.nested_vmx_procbased_ctls_low,
10440                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10441             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10442              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10443                                  vmx->nested.nested_vmx_secondary_ctls_low,
10444                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10445             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10446                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10447                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10448             !vmx_control_verify(vmcs12->vm_exit_controls,
10449                                 vmx->nested.nested_vmx_exit_ctls_low,
10450                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10451             !vmx_control_verify(vmcs12->vm_entry_controls,
10452                                 vmx->nested.nested_vmx_entry_ctls_low,
10453                                 vmx->nested.nested_vmx_entry_ctls_high))
10454                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10455
10456         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10457                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10458
10459         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10460             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10461             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10462                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10463
10464         return 0;
10465 }
10466
10467 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10468                                   u32 *exit_qual)
10469 {
10470         bool ia32e;
10471
10472         *exit_qual = ENTRY_FAIL_DEFAULT;
10473
10474         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10475             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10476                 return 1;
10477
10478         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10479             vmcs12->vmcs_link_pointer != -1ull) {
10480                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10481                 return 1;
10482         }
10483
10484         /*
10485          * If the load IA32_EFER VM-entry control is 1, the following checks
10486          * are performed on the field for the IA32_EFER MSR:
10487          * - Bits reserved in the IA32_EFER MSR must be 0.
10488          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10489          *   the IA-32e mode guest VM-exit control. It must also be identical
10490          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10491          *   CR0.PG) is 1.
10492          */
10493         if (to_vmx(vcpu)->nested.nested_run_pending &&
10494             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10495                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10496                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10497                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10498                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10499                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10500                         return 1;
10501         }
10502
10503         /*
10504          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10505          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10506          * the values of the LMA and LME bits in the field must each be that of
10507          * the host address-space size VM-exit control.
10508          */
10509         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10510                 ia32e = (vmcs12->vm_exit_controls &
10511                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10512                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10513                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10514                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10515                         return 1;
10516         }
10517
10518         return 0;
10519 }
10520
10521 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10522 {
10523         struct vcpu_vmx *vmx = to_vmx(vcpu);
10524         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10525         struct loaded_vmcs *vmcs02;
10526         u32 msr_entry_idx;
10527         u32 exit_qual;
10528
10529         vmcs02 = nested_get_current_vmcs02(vmx);
10530         if (!vmcs02)
10531                 return -ENOMEM;
10532
10533         enter_guest_mode(vcpu);
10534
10535         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10536                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10537
10538         vmx_switch_vmcs(vcpu, vmcs02);
10539         vmx_segment_cache_clear(vmx);
10540
10541         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10542                 leave_guest_mode(vcpu);
10543                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10544                 nested_vmx_entry_failure(vcpu, vmcs12,
10545                                          EXIT_REASON_INVALID_STATE, exit_qual);
10546                 return 1;
10547         }
10548
10549         nested_get_vmcs12_pages(vcpu, vmcs12);
10550
10551         msr_entry_idx = nested_vmx_load_msr(vcpu,
10552                                             vmcs12->vm_entry_msr_load_addr,
10553                                             vmcs12->vm_entry_msr_load_count);
10554         if (msr_entry_idx) {
10555                 leave_guest_mode(vcpu);
10556                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10557                 nested_vmx_entry_failure(vcpu, vmcs12,
10558                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10559                 return 1;
10560         }
10561
10562         /*
10563          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10564          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10565          * returned as far as L1 is concerned. It will only return (and set
10566          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10567          */
10568         return 0;
10569 }
10570
10571 /*
10572  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10573  * for running an L2 nested guest.
10574  */
10575 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10576 {
10577         struct vmcs12 *vmcs12;
10578         struct vcpu_vmx *vmx = to_vmx(vcpu);
10579         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10580         u32 exit_qual;
10581         int ret;
10582
10583         if (!nested_vmx_check_permission(vcpu))
10584                 return 1;
10585
10586         if (!nested_vmx_check_vmcs12(vcpu))
10587                 goto out;
10588
10589         vmcs12 = get_vmcs12(vcpu);
10590
10591         if (enable_shadow_vmcs)
10592                 copy_shadow_to_vmcs12(vmx);
10593
10594         /*
10595          * The nested entry process starts with enforcing various prerequisites
10596          * on vmcs12 as required by the Intel SDM, and act appropriately when
10597          * they fail: As the SDM explains, some conditions should cause the
10598          * instruction to fail, while others will cause the instruction to seem
10599          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10600          * To speed up the normal (success) code path, we should avoid checking
10601          * for misconfigurations which will anyway be caught by the processor
10602          * when using the merged vmcs02.
10603          */
10604         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10605                 nested_vmx_failValid(vcpu,
10606                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10607                 goto out;
10608         }
10609
10610         if (vmcs12->launch_state == launch) {
10611                 nested_vmx_failValid(vcpu,
10612                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10613                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10614                 goto out;
10615         }
10616
10617         ret = check_vmentry_prereqs(vcpu, vmcs12);
10618         if (ret) {
10619                 nested_vmx_failValid(vcpu, ret);
10620                 goto out;
10621         }
10622
10623         /*
10624          * After this point, the trap flag no longer triggers a singlestep trap
10625          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10626          * This is not 100% correct; for performance reasons, we delegate most
10627          * of the checks on host state to the processor.  If those fail,
10628          * the singlestep trap is missed.
10629          */
10630         skip_emulated_instruction(vcpu);
10631
10632         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10633         if (ret) {
10634                 nested_vmx_entry_failure(vcpu, vmcs12,
10635                                          EXIT_REASON_INVALID_STATE, exit_qual);
10636                 return 1;
10637         }
10638
10639         /*
10640          * We're finally done with prerequisite checking, and can start with
10641          * the nested entry.
10642          */
10643
10644         ret = enter_vmx_non_root_mode(vcpu, true);
10645         if (ret)
10646                 return ret;
10647
10648         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10649                 return kvm_vcpu_halt(vcpu);
10650
10651         vmx->nested.nested_run_pending = 1;
10652
10653         return 1;
10654
10655 out:
10656         return kvm_skip_emulated_instruction(vcpu);
10657 }
10658
10659 /*
10660  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10661  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10662  * This function returns the new value we should put in vmcs12.guest_cr0.
10663  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10664  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10665  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10666  *     didn't trap the bit, because if L1 did, so would L0).
10667  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10668  *     been modified by L2, and L1 knows it. So just leave the old value of
10669  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10670  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10671  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10672  *     changed these bits, and therefore they need to be updated, but L0
10673  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10674  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10675  */
10676 static inline unsigned long
10677 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10678 {
10679         return
10680         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10681         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10682         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10683                         vcpu->arch.cr0_guest_owned_bits));
10684 }
10685
10686 static inline unsigned long
10687 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10688 {
10689         return
10690         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10691         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10692         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10693                         vcpu->arch.cr4_guest_owned_bits));
10694 }
10695
10696 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10697                                        struct vmcs12 *vmcs12)
10698 {
10699         u32 idt_vectoring;
10700         unsigned int nr;
10701
10702         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10703                 nr = vcpu->arch.exception.nr;
10704                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10705
10706                 if (kvm_exception_is_soft(nr)) {
10707                         vmcs12->vm_exit_instruction_len =
10708                                 vcpu->arch.event_exit_inst_len;
10709                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10710                 } else
10711                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10712
10713                 if (vcpu->arch.exception.has_error_code) {
10714                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10715                         vmcs12->idt_vectoring_error_code =
10716                                 vcpu->arch.exception.error_code;
10717                 }
10718
10719                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10720         } else if (vcpu->arch.nmi_injected) {
10721                 vmcs12->idt_vectoring_info_field =
10722                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10723         } else if (vcpu->arch.interrupt.pending) {
10724                 nr = vcpu->arch.interrupt.nr;
10725                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10726
10727                 if (vcpu->arch.interrupt.soft) {
10728                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10729                         vmcs12->vm_entry_instruction_len =
10730                                 vcpu->arch.event_exit_inst_len;
10731                 } else
10732                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10733
10734                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10735         }
10736 }
10737
10738 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10739 {
10740         struct vcpu_vmx *vmx = to_vmx(vcpu);
10741
10742         if (vcpu->arch.exception.pending ||
10743                 vcpu->arch.nmi_injected ||
10744                 vcpu->arch.interrupt.pending)
10745                 return -EBUSY;
10746
10747         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10748             vmx->nested.preemption_timer_expired) {
10749                 if (vmx->nested.nested_run_pending)
10750                         return -EBUSY;
10751                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10752                 return 0;
10753         }
10754
10755         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10756                 if (vmx->nested.nested_run_pending)
10757                         return -EBUSY;
10758                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10759                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10760                                   INTR_INFO_VALID_MASK, 0);
10761                 /*
10762                  * The NMI-triggered VM exit counts as injection:
10763                  * clear this one and block further NMIs.
10764                  */
10765                 vcpu->arch.nmi_pending = 0;
10766                 vmx_set_nmi_mask(vcpu, true);
10767                 return 0;
10768         }
10769
10770         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10771             nested_exit_on_intr(vcpu)) {
10772                 if (vmx->nested.nested_run_pending)
10773                         return -EBUSY;
10774                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10775                 return 0;
10776         }
10777
10778         vmx_complete_nested_posted_interrupt(vcpu);
10779         return 0;
10780 }
10781
10782 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10783 {
10784         ktime_t remaining =
10785                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10786         u64 value;
10787
10788         if (ktime_to_ns(remaining) <= 0)
10789                 return 0;
10790
10791         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10792         do_div(value, 1000000);
10793         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10794 }
10795
10796 /*
10797  * Update the guest state fields of vmcs12 to reflect changes that
10798  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10799  * VM-entry controls is also updated, since this is really a guest
10800  * state bit.)
10801  */
10802 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10803 {
10804         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10805         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10806
10807         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10808         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10809         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10810
10811         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10812         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10813         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10814         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10815         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10816         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10817         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10818         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10819         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10820         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10821         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10822         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10823         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10824         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10825         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10826         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10827         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10828         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10829         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10830         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10831         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10832         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10833         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10834         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10835         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10836         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10837         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10838         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10839         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10840         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10841         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10842         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10843         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10844         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10845         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10846         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10847
10848         vmcs12->guest_interruptibility_info =
10849                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10850         vmcs12->guest_pending_dbg_exceptions =
10851                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10852         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10853                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10854         else
10855                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10856
10857         if (nested_cpu_has_preemption_timer(vmcs12)) {
10858                 if (vmcs12->vm_exit_controls &
10859                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10860                         vmcs12->vmx_preemption_timer_value =
10861                                 vmx_get_preemption_timer_value(vcpu);
10862                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10863         }
10864
10865         /*
10866          * In some cases (usually, nested EPT), L2 is allowed to change its
10867          * own CR3 without exiting. If it has changed it, we must keep it.
10868          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10869          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10870          *
10871          * Additionally, restore L2's PDPTR to vmcs12.
10872          */
10873         if (enable_ept) {
10874                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10875                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10876                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10877                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10878                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10879         }
10880
10881         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10882
10883         if (nested_cpu_has_vid(vmcs12))
10884                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10885
10886         vmcs12->vm_entry_controls =
10887                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10888                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10889
10890         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10891                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10892                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10893         }
10894
10895         /* TODO: These cannot have changed unless we have MSR bitmaps and
10896          * the relevant bit asks not to trap the change */
10897         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10898                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10899         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10900                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10901         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10902         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10903         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10904         if (kvm_mpx_supported())
10905                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10906 }
10907
10908 /*
10909  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10910  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10911  * and this function updates it to reflect the changes to the guest state while
10912  * L2 was running (and perhaps made some exits which were handled directly by L0
10913  * without going back to L1), and to reflect the exit reason.
10914  * Note that we do not have to copy here all VMCS fields, just those that
10915  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10916  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10917  * which already writes to vmcs12 directly.
10918  */
10919 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10920                            u32 exit_reason, u32 exit_intr_info,
10921                            unsigned long exit_qualification)
10922 {
10923         /* update guest state fields: */
10924         sync_vmcs12(vcpu, vmcs12);
10925
10926         /* update exit information fields: */
10927
10928         vmcs12->vm_exit_reason = exit_reason;
10929         vmcs12->exit_qualification = exit_qualification;
10930         vmcs12->vm_exit_intr_info = exit_intr_info;
10931
10932         vmcs12->idt_vectoring_info_field = 0;
10933         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10934         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10935
10936         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10937                 vmcs12->launch_state = 1;
10938
10939                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10940                  * instead of reading the real value. */
10941                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10942
10943                 /*
10944                  * Transfer the event that L0 or L1 may wanted to inject into
10945                  * L2 to IDT_VECTORING_INFO_FIELD.
10946                  */
10947                 vmcs12_save_pending_event(vcpu, vmcs12);
10948         }
10949
10950         /*
10951          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10952          * preserved above and would only end up incorrectly in L1.
10953          */
10954         vcpu->arch.nmi_injected = false;
10955         kvm_clear_exception_queue(vcpu);
10956         kvm_clear_interrupt_queue(vcpu);
10957 }
10958
10959 /*
10960  * A part of what we need to when the nested L2 guest exits and we want to
10961  * run its L1 parent, is to reset L1's guest state to the host state specified
10962  * in vmcs12.
10963  * This function is to be called not only on normal nested exit, but also on
10964  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10965  * Failures During or After Loading Guest State").
10966  * This function should be called when the active VMCS is L1's (vmcs01).
10967  */
10968 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10969                                    struct vmcs12 *vmcs12)
10970 {
10971         struct kvm_segment seg;
10972         u32 entry_failure_code;
10973
10974         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10975                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10976         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10977                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10978         else
10979                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10980         vmx_set_efer(vcpu, vcpu->arch.efer);
10981
10982         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10983         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10984         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10985         /*
10986          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10987          * actually changed, because vmx_set_cr0 refers to efer set above.
10988          *
10989          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10990          * (KVM doesn't change it);
10991          */
10992         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10993         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10994
10995         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
10996         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10997         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10998
10999         nested_ept_uninit_mmu_context(vcpu);
11000
11001         /*
11002          * Only PDPTE load can fail as the value of cr3 was checked on entry and
11003          * couldn't have changed.
11004          */
11005         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11006                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11007
11008         if (!enable_ept)
11009                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11010
11011         if (enable_vpid) {
11012                 /*
11013                  * Trivially support vpid by letting L2s share their parent
11014                  * L1's vpid. TODO: move to a more elaborate solution, giving
11015                  * each L2 its own vpid and exposing the vpid feature to L1.
11016                  */
11017                 vmx_flush_tlb(vcpu);
11018         }
11019         /* Restore posted intr vector. */
11020         if (nested_cpu_has_posted_intr(vmcs12))
11021                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11022
11023         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11024         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11025         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11026         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11027         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11028
11029         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11030         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11031                 vmcs_write64(GUEST_BNDCFGS, 0);
11032
11033         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11034                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11035                 vcpu->arch.pat = vmcs12->host_ia32_pat;
11036         }
11037         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11038                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11039                         vmcs12->host_ia32_perf_global_ctrl);
11040
11041         /* Set L1 segment info according to Intel SDM
11042             27.5.2 Loading Host Segment and Descriptor-Table Registers */
11043         seg = (struct kvm_segment) {
11044                 .base = 0,
11045                 .limit = 0xFFFFFFFF,
11046                 .selector = vmcs12->host_cs_selector,
11047                 .type = 11,
11048                 .present = 1,
11049                 .s = 1,
11050                 .g = 1
11051         };
11052         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11053                 seg.l = 1;
11054         else
11055                 seg.db = 1;
11056         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11057         seg = (struct kvm_segment) {
11058                 .base = 0,
11059                 .limit = 0xFFFFFFFF,
11060                 .type = 3,
11061                 .present = 1,
11062                 .s = 1,
11063                 .db = 1,
11064                 .g = 1
11065         };
11066         seg.selector = vmcs12->host_ds_selector;
11067         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11068         seg.selector = vmcs12->host_es_selector;
11069         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11070         seg.selector = vmcs12->host_ss_selector;
11071         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11072         seg.selector = vmcs12->host_fs_selector;
11073         seg.base = vmcs12->host_fs_base;
11074         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11075         seg.selector = vmcs12->host_gs_selector;
11076         seg.base = vmcs12->host_gs_base;
11077         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11078         seg = (struct kvm_segment) {
11079                 .base = vmcs12->host_tr_base,
11080                 .limit = 0x67,
11081                 .selector = vmcs12->host_tr_selector,
11082                 .type = 11,
11083                 .present = 1
11084         };
11085         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11086
11087         kvm_set_dr(vcpu, 7, 0x400);
11088         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11089
11090         if (cpu_has_vmx_msr_bitmap())
11091                 vmx_set_msr_bitmap(vcpu);
11092
11093         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11094                                 vmcs12->vm_exit_msr_load_count))
11095                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11096 }
11097
11098 /*
11099  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11100  * and modify vmcs12 to make it see what it would expect to see there if
11101  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11102  */
11103 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11104                               u32 exit_intr_info,
11105                               unsigned long exit_qualification)
11106 {
11107         struct vcpu_vmx *vmx = to_vmx(vcpu);
11108         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11109         u32 vm_inst_error = 0;
11110
11111         /* trying to cancel vmlaunch/vmresume is a bug */
11112         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11113
11114         leave_guest_mode(vcpu);
11115         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11116                        exit_qualification);
11117
11118         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11119                                  vmcs12->vm_exit_msr_store_count))
11120                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11121
11122         if (unlikely(vmx->fail))
11123                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11124
11125         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11126
11127         /*
11128          * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11129          * the VM-exit interrupt information (valid interrupt) is always set to
11130          * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11131          * kvm_cpu_has_interrupt().  See the commit message for details.
11132          */
11133         if (nested_exit_intr_ack_set(vcpu) &&
11134             exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11135             kvm_cpu_has_interrupt(vcpu)) {
11136                 int irq = kvm_cpu_get_interrupt(vcpu);
11137                 WARN_ON(irq < 0);
11138                 vmcs12->vm_exit_intr_info = irq |
11139                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11140         }
11141
11142         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11143                                        vmcs12->exit_qualification,
11144                                        vmcs12->idt_vectoring_info_field,
11145                                        vmcs12->vm_exit_intr_info,
11146                                        vmcs12->vm_exit_intr_error_code,
11147                                        KVM_ISA_VMX);
11148
11149         vm_entry_controls_reset_shadow(vmx);
11150         vm_exit_controls_reset_shadow(vmx);
11151         vmx_segment_cache_clear(vmx);
11152
11153         /* if no vmcs02 cache requested, remove the one we used */
11154         if (VMCS02_POOL_SIZE == 0)
11155                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11156
11157         load_vmcs12_host_state(vcpu, vmcs12);
11158
11159         /* Update any VMCS fields that might have changed while L2 ran */
11160         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11161         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11162         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11163         if (vmx->hv_deadline_tsc == -1)
11164                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11165                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11166         else
11167                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11168                               PIN_BASED_VMX_PREEMPTION_TIMER);
11169         if (kvm_has_tsc_control)
11170                 decache_tsc_multiplier(vmx);
11171
11172         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11173                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11174                 vmx_set_virtual_x2apic_mode(vcpu,
11175                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11176         } else if (!nested_cpu_has_ept(vmcs12) &&
11177                    nested_cpu_has2(vmcs12,
11178                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11179                 vmx_flush_tlb_ept_only(vcpu);
11180         }
11181
11182         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11183         vmx->host_rsp = 0;
11184
11185         /* Unpin physical memory we referred to in vmcs02 */
11186         if (vmx->nested.apic_access_page) {
11187                 nested_release_page(vmx->nested.apic_access_page);
11188                 vmx->nested.apic_access_page = NULL;
11189         }
11190         if (vmx->nested.virtual_apic_page) {
11191                 nested_release_page(vmx->nested.virtual_apic_page);
11192                 vmx->nested.virtual_apic_page = NULL;
11193         }
11194         if (vmx->nested.pi_desc_page) {
11195                 kunmap(vmx->nested.pi_desc_page);
11196                 nested_release_page(vmx->nested.pi_desc_page);
11197                 vmx->nested.pi_desc_page = NULL;
11198                 vmx->nested.pi_desc = NULL;
11199         }
11200
11201         /*
11202          * We are now running in L2, mmu_notifier will force to reload the
11203          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11204          */
11205         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11206
11207         /*
11208          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11209          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11210          * success or failure flag accordingly.
11211          */
11212         if (unlikely(vmx->fail)) {
11213                 vmx->fail = 0;
11214                 nested_vmx_failValid(vcpu, vm_inst_error);
11215         } else
11216                 nested_vmx_succeed(vcpu);
11217         if (enable_shadow_vmcs)
11218                 vmx->nested.sync_shadow_vmcs = true;
11219
11220         /* in case we halted in L2 */
11221         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11222 }
11223
11224 /*
11225  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11226  */
11227 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11228 {
11229         if (is_guest_mode(vcpu)) {
11230                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11231                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11232         }
11233         free_nested(to_vmx(vcpu));
11234 }
11235
11236 /*
11237  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11238  * 23.7 "VM-entry failures during or after loading guest state" (this also
11239  * lists the acceptable exit-reason and exit-qualification parameters).
11240  * It should only be called before L2 actually succeeded to run, and when
11241  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11242  */
11243 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11244                         struct vmcs12 *vmcs12,
11245                         u32 reason, unsigned long qualification)
11246 {
11247         load_vmcs12_host_state(vcpu, vmcs12);
11248         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11249         vmcs12->exit_qualification = qualification;
11250         nested_vmx_succeed(vcpu);
11251         if (enable_shadow_vmcs)
11252                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11253 }
11254
11255 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11256                                struct x86_instruction_info *info,
11257                                enum x86_intercept_stage stage)
11258 {
11259         return X86EMUL_CONTINUE;
11260 }
11261
11262 #ifdef CONFIG_X86_64
11263 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11264 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11265                                   u64 divisor, u64 *result)
11266 {
11267         u64 low = a << shift, high = a >> (64 - shift);
11268
11269         /* To avoid the overflow on divq */
11270         if (high >= divisor)
11271                 return 1;
11272
11273         /* Low hold the result, high hold rem which is discarded */
11274         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11275             "rm" (divisor), "0" (low), "1" (high));
11276         *result = low;
11277
11278         return 0;
11279 }
11280
11281 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11282 {
11283         struct vcpu_vmx *vmx = to_vmx(vcpu);
11284         u64 tscl = rdtsc();
11285         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11286         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11287
11288         /* Convert to host delta tsc if tsc scaling is enabled */
11289         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11290                         u64_shl_div_u64(delta_tsc,
11291                                 kvm_tsc_scaling_ratio_frac_bits,
11292                                 vcpu->arch.tsc_scaling_ratio,
11293                                 &delta_tsc))
11294                 return -ERANGE;
11295
11296         /*
11297          * If the delta tsc can't fit in the 32 bit after the multi shift,
11298          * we can't use the preemption timer.
11299          * It's possible that it fits on later vmentries, but checking
11300          * on every vmentry is costly so we just use an hrtimer.
11301          */
11302         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11303                 return -ERANGE;
11304
11305         vmx->hv_deadline_tsc = tscl + delta_tsc;
11306         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11307                         PIN_BASED_VMX_PREEMPTION_TIMER);
11308
11309         return delta_tsc == 0;
11310 }
11311
11312 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11313 {
11314         struct vcpu_vmx *vmx = to_vmx(vcpu);
11315         vmx->hv_deadline_tsc = -1;
11316         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11317                         PIN_BASED_VMX_PREEMPTION_TIMER);
11318 }
11319 #endif
11320
11321 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11322 {
11323         if (ple_gap)
11324                 shrink_ple_window(vcpu);
11325 }
11326
11327 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11328                                      struct kvm_memory_slot *slot)
11329 {
11330         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11331         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11332 }
11333
11334 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11335                                        struct kvm_memory_slot *slot)
11336 {
11337         kvm_mmu_slot_set_dirty(kvm, slot);
11338 }
11339
11340 static void vmx_flush_log_dirty(struct kvm *kvm)
11341 {
11342         kvm_flush_pml_buffers(kvm);
11343 }
11344
11345 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11346 {
11347         struct vmcs12 *vmcs12;
11348         struct vcpu_vmx *vmx = to_vmx(vcpu);
11349         gpa_t gpa;
11350         struct page *page = NULL;
11351         u64 *pml_address;
11352
11353         if (is_guest_mode(vcpu)) {
11354                 WARN_ON_ONCE(vmx->nested.pml_full);
11355
11356                 /*
11357                  * Check if PML is enabled for the nested guest.
11358                  * Whether eptp bit 6 is set is already checked
11359                  * as part of A/D emulation.
11360                  */
11361                 vmcs12 = get_vmcs12(vcpu);
11362                 if (!nested_cpu_has_pml(vmcs12))
11363                         return 0;
11364
11365                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11366                         vmx->nested.pml_full = true;
11367                         return 1;
11368                 }
11369
11370                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11371
11372                 page = nested_get_page(vcpu, vmcs12->pml_address);
11373                 if (!page)
11374                         return 0;
11375
11376                 pml_address = kmap(page);
11377                 pml_address[vmcs12->guest_pml_index--] = gpa;
11378                 kunmap(page);
11379                 nested_release_page_clean(page);
11380         }
11381
11382         return 0;
11383 }
11384
11385 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11386                                            struct kvm_memory_slot *memslot,
11387                                            gfn_t offset, unsigned long mask)
11388 {
11389         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11390 }
11391
11392 /*
11393  * This routine does the following things for vCPU which is going
11394  * to be blocked if VT-d PI is enabled.
11395  * - Store the vCPU to the wakeup list, so when interrupts happen
11396  *   we can find the right vCPU to wake up.
11397  * - Change the Posted-interrupt descriptor as below:
11398  *      'NDST' <-- vcpu->pre_pcpu
11399  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11400  * - If 'ON' is set during this process, which means at least one
11401  *   interrupt is posted for this vCPU, we cannot block it, in
11402  *   this case, return 1, otherwise, return 0.
11403  *
11404  */
11405 static int pi_pre_block(struct kvm_vcpu *vcpu)
11406 {
11407         unsigned long flags;
11408         unsigned int dest;
11409         struct pi_desc old, new;
11410         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11411
11412         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11413                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11414                 !kvm_vcpu_apicv_active(vcpu))
11415                 return 0;
11416
11417         vcpu->pre_pcpu = vcpu->cpu;
11418         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11419                           vcpu->pre_pcpu), flags);
11420         list_add_tail(&vcpu->blocked_vcpu_list,
11421                       &per_cpu(blocked_vcpu_on_cpu,
11422                       vcpu->pre_pcpu));
11423         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11424                                vcpu->pre_pcpu), flags);
11425
11426         do {
11427                 old.control = new.control = pi_desc->control;
11428
11429                 /*
11430                  * We should not block the vCPU if
11431                  * an interrupt is posted for it.
11432                  */
11433                 if (pi_test_on(pi_desc) == 1) {
11434                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11435                                           vcpu->pre_pcpu), flags);
11436                         list_del(&vcpu->blocked_vcpu_list);
11437                         spin_unlock_irqrestore(
11438                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11439                                         vcpu->pre_pcpu), flags);
11440                         vcpu->pre_pcpu = -1;
11441
11442                         return 1;
11443                 }
11444
11445                 WARN((pi_desc->sn == 1),
11446                      "Warning: SN field of posted-interrupts "
11447                      "is set before blocking\n");
11448
11449                 /*
11450                  * Since vCPU can be preempted during this process,
11451                  * vcpu->cpu could be different with pre_pcpu, we
11452                  * need to set pre_pcpu as the destination of wakeup
11453                  * notification event, then we can find the right vCPU
11454                  * to wakeup in wakeup handler if interrupts happen
11455                  * when the vCPU is in blocked state.
11456                  */
11457                 dest = cpu_physical_id(vcpu->pre_pcpu);
11458
11459                 if (x2apic_enabled())
11460                         new.ndst = dest;
11461                 else
11462                         new.ndst = (dest << 8) & 0xFF00;
11463
11464                 /* set 'NV' to 'wakeup vector' */
11465                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11466         } while (cmpxchg(&pi_desc->control, old.control,
11467                         new.control) != old.control);
11468
11469         return 0;
11470 }
11471
11472 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11473 {
11474         if (pi_pre_block(vcpu))
11475                 return 1;
11476
11477         if (kvm_lapic_hv_timer_in_use(vcpu))
11478                 kvm_lapic_switch_to_sw_timer(vcpu);
11479
11480         return 0;
11481 }
11482
11483 static void pi_post_block(struct kvm_vcpu *vcpu)
11484 {
11485         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11486         struct pi_desc old, new;
11487         unsigned int dest;
11488         unsigned long flags;
11489
11490         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11491                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11492                 !kvm_vcpu_apicv_active(vcpu))
11493                 return;
11494
11495         do {
11496                 old.control = new.control = pi_desc->control;
11497
11498                 dest = cpu_physical_id(vcpu->cpu);
11499
11500                 if (x2apic_enabled())
11501                         new.ndst = dest;
11502                 else
11503                         new.ndst = (dest << 8) & 0xFF00;
11504
11505                 /* Allow posting non-urgent interrupts */
11506                 new.sn = 0;
11507
11508                 /* set 'NV' to 'notification vector' */
11509                 new.nv = POSTED_INTR_VECTOR;
11510         } while (cmpxchg(&pi_desc->control, old.control,
11511                         new.control) != old.control);
11512
11513         if(vcpu->pre_pcpu != -1) {
11514                 spin_lock_irqsave(
11515                         &per_cpu(blocked_vcpu_on_cpu_lock,
11516                         vcpu->pre_pcpu), flags);
11517                 list_del(&vcpu->blocked_vcpu_list);
11518                 spin_unlock_irqrestore(
11519                         &per_cpu(blocked_vcpu_on_cpu_lock,
11520                         vcpu->pre_pcpu), flags);
11521                 vcpu->pre_pcpu = -1;
11522         }
11523 }
11524
11525 static void vmx_post_block(struct kvm_vcpu *vcpu)
11526 {
11527         if (kvm_x86_ops->set_hv_timer)
11528                 kvm_lapic_switch_to_hv_timer(vcpu);
11529
11530         pi_post_block(vcpu);
11531 }
11532
11533 /*
11534  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11535  *
11536  * @kvm: kvm
11537  * @host_irq: host irq of the interrupt
11538  * @guest_irq: gsi of the interrupt
11539  * @set: set or unset PI
11540  * returns 0 on success, < 0 on failure
11541  */
11542 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11543                               uint32_t guest_irq, bool set)
11544 {
11545         struct kvm_kernel_irq_routing_entry *e;
11546         struct kvm_irq_routing_table *irq_rt;
11547         struct kvm_lapic_irq irq;
11548         struct kvm_vcpu *vcpu;
11549         struct vcpu_data vcpu_info;
11550         int idx, ret = -EINVAL;
11551
11552         if (!kvm_arch_has_assigned_device(kvm) ||
11553                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11554                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11555                 return 0;
11556
11557         idx = srcu_read_lock(&kvm->irq_srcu);
11558         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11559         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11560
11561         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11562                 if (e->type != KVM_IRQ_ROUTING_MSI)
11563                         continue;
11564                 /*
11565                  * VT-d PI cannot support posting multicast/broadcast
11566                  * interrupts to a vCPU, we still use interrupt remapping
11567                  * for these kind of interrupts.
11568                  *
11569                  * For lowest-priority interrupts, we only support
11570                  * those with single CPU as the destination, e.g. user
11571                  * configures the interrupts via /proc/irq or uses
11572                  * irqbalance to make the interrupts single-CPU.
11573                  *
11574                  * We will support full lowest-priority interrupt later.
11575                  */
11576
11577                 kvm_set_msi_irq(kvm, e, &irq);
11578                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11579                         /*
11580                          * Make sure the IRTE is in remapped mode if
11581                          * we don't handle it in posted mode.
11582                          */
11583                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11584                         if (ret < 0) {
11585                                 printk(KERN_INFO
11586                                    "failed to back to remapped mode, irq: %u\n",
11587                                    host_irq);
11588                                 goto out;
11589                         }
11590
11591                         continue;
11592                 }
11593
11594                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11595                 vcpu_info.vector = irq.vector;
11596
11597                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11598                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11599
11600                 if (set)
11601                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11602                 else {
11603                         /* suppress notification event before unposting */
11604                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11605                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11606                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11607                 }
11608
11609                 if (ret < 0) {
11610                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11611                                         __func__);
11612                         goto out;
11613                 }
11614         }
11615
11616         ret = 0;
11617 out:
11618         srcu_read_unlock(&kvm->irq_srcu, idx);
11619         return ret;
11620 }
11621
11622 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11623 {
11624         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11625                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11626                         FEATURE_CONTROL_LMCE;
11627         else
11628                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11629                         ~FEATURE_CONTROL_LMCE;
11630 }
11631
11632 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11633         .cpu_has_kvm_support = cpu_has_kvm_support,
11634         .disabled_by_bios = vmx_disabled_by_bios,
11635         .hardware_setup = hardware_setup,
11636         .hardware_unsetup = hardware_unsetup,
11637         .check_processor_compatibility = vmx_check_processor_compat,
11638         .hardware_enable = hardware_enable,
11639         .hardware_disable = hardware_disable,
11640         .cpu_has_accelerated_tpr = report_flexpriority,
11641         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11642
11643         .vcpu_create = vmx_create_vcpu,
11644         .vcpu_free = vmx_free_vcpu,
11645         .vcpu_reset = vmx_vcpu_reset,
11646
11647         .prepare_guest_switch = vmx_save_host_state,
11648         .vcpu_load = vmx_vcpu_load,
11649         .vcpu_put = vmx_vcpu_put,
11650
11651         .update_bp_intercept = update_exception_bitmap,
11652         .get_msr = vmx_get_msr,
11653         .set_msr = vmx_set_msr,
11654         .get_segment_base = vmx_get_segment_base,
11655         .get_segment = vmx_get_segment,
11656         .set_segment = vmx_set_segment,
11657         .get_cpl = vmx_get_cpl,
11658         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11659         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11660         .decache_cr3 = vmx_decache_cr3,
11661         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11662         .set_cr0 = vmx_set_cr0,
11663         .set_cr3 = vmx_set_cr3,
11664         .set_cr4 = vmx_set_cr4,
11665         .set_efer = vmx_set_efer,
11666         .get_idt = vmx_get_idt,
11667         .set_idt = vmx_set_idt,
11668         .get_gdt = vmx_get_gdt,
11669         .set_gdt = vmx_set_gdt,
11670         .get_dr6 = vmx_get_dr6,
11671         .set_dr6 = vmx_set_dr6,
11672         .set_dr7 = vmx_set_dr7,
11673         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11674         .cache_reg = vmx_cache_reg,
11675         .get_rflags = vmx_get_rflags,
11676         .set_rflags = vmx_set_rflags,
11677
11678         .tlb_flush = vmx_flush_tlb,
11679
11680         .run = vmx_vcpu_run,
11681         .handle_exit = vmx_handle_exit,
11682         .skip_emulated_instruction = skip_emulated_instruction,
11683         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11684         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11685         .patch_hypercall = vmx_patch_hypercall,
11686         .set_irq = vmx_inject_irq,
11687         .set_nmi = vmx_inject_nmi,
11688         .queue_exception = vmx_queue_exception,
11689         .cancel_injection = vmx_cancel_injection,
11690         .interrupt_allowed = vmx_interrupt_allowed,
11691         .nmi_allowed = vmx_nmi_allowed,
11692         .get_nmi_mask = vmx_get_nmi_mask,
11693         .set_nmi_mask = vmx_set_nmi_mask,
11694         .enable_nmi_window = enable_nmi_window,
11695         .enable_irq_window = enable_irq_window,
11696         .update_cr8_intercept = update_cr8_intercept,
11697         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11698         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11699         .get_enable_apicv = vmx_get_enable_apicv,
11700         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11701         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11702         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11703         .hwapic_irr_update = vmx_hwapic_irr_update,
11704         .hwapic_isr_update = vmx_hwapic_isr_update,
11705         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11706         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11707
11708         .set_tss_addr = vmx_set_tss_addr,
11709         .get_tdp_level = get_ept_level,
11710         .get_mt_mask = vmx_get_mt_mask,
11711
11712         .get_exit_info = vmx_get_exit_info,
11713
11714         .get_lpage_level = vmx_get_lpage_level,
11715
11716         .cpuid_update = vmx_cpuid_update,
11717
11718         .rdtscp_supported = vmx_rdtscp_supported,
11719         .invpcid_supported = vmx_invpcid_supported,
11720
11721         .set_supported_cpuid = vmx_set_supported_cpuid,
11722
11723         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11724
11725         .write_tsc_offset = vmx_write_tsc_offset,
11726
11727         .set_tdp_cr3 = vmx_set_cr3,
11728
11729         .check_intercept = vmx_check_intercept,
11730         .handle_external_intr = vmx_handle_external_intr,
11731         .mpx_supported = vmx_mpx_supported,
11732         .xsaves_supported = vmx_xsaves_supported,
11733
11734         .check_nested_events = vmx_check_nested_events,
11735
11736         .sched_in = vmx_sched_in,
11737
11738         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11739         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11740         .flush_log_dirty = vmx_flush_log_dirty,
11741         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11742         .write_log_dirty = vmx_write_pml_buffer,
11743
11744         .pre_block = vmx_pre_block,
11745         .post_block = vmx_post_block,
11746
11747         .pmu_ops = &intel_pmu_ops,
11748
11749         .update_pi_irte = vmx_update_pi_irte,
11750
11751 #ifdef CONFIG_X86_64
11752         .set_hv_timer = vmx_set_hv_timer,
11753         .cancel_hv_timer = vmx_cancel_hv_timer,
11754 #endif
11755
11756         .setup_mce = vmx_setup_mce,
11757 };
11758
11759 static int __init vmx_init(void)
11760 {
11761         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11762                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11763         if (r)
11764                 return r;
11765
11766 #ifdef CONFIG_KEXEC_CORE
11767         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11768                            crash_vmclear_local_loaded_vmcss);
11769 #endif
11770
11771         return 0;
11772 }
11773
11774 static void __exit vmx_exit(void)
11775 {
11776 #ifdef CONFIG_KEXEC_CORE
11777         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11778         synchronize_rcu();
11779 #endif
11780
11781         kvm_exit();
11782 }
11783
11784 module_init(vmx_init)
11785 module_exit(vmx_exit)