]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: Trap and invalid MWAIT/MONITOR instruction
[mv-sheeva.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 /*
65  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
66  * ple_gap:    upper bound on the amount of time between two successive
67  *             executions of PAUSE in a loop. Also indicate if ple enabled.
68  *             According to test, this time is usually small than 41 cycles.
69  * ple_window: upper bound on the amount of time a guest is allowed to execute
70  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
71  *             less than 2^12 cycles
72  * Time is measured based on a counter that runs at the same rate as the TSC,
73  * refer SDM volume 3b section 21.6.13 & 22.1.3.
74  */
75 #define KVM_VMX_DEFAULT_PLE_GAP    41
76 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
77 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
78 module_param(ple_gap, int, S_IRUGO);
79
80 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
81 module_param(ple_window, int, S_IRUGO);
82
83 struct vmcs {
84         u32 revision_id;
85         u32 abort;
86         char data[0];
87 };
88
89 struct shared_msr_entry {
90         unsigned index;
91         u64 data;
92         u64 mask;
93 };
94
95 struct vcpu_vmx {
96         struct kvm_vcpu       vcpu;
97         struct list_head      local_vcpus_link;
98         unsigned long         host_rsp;
99         int                   launched;
100         u8                    fail;
101         u32                   idt_vectoring_info;
102         struct shared_msr_entry *guest_msrs;
103         int                   nmsrs;
104         int                   save_nmsrs;
105 #ifdef CONFIG_X86_64
106         u64                   msr_host_kernel_gs_base;
107         u64                   msr_guest_kernel_gs_base;
108 #endif
109         struct vmcs          *vmcs;
110         struct {
111                 int           loaded;
112                 u16           fs_sel, gs_sel, ldt_sel;
113                 int           gs_ldt_reload_needed;
114                 int           fs_reload_needed;
115         } host_state;
116         struct {
117                 int vm86_active;
118                 u8 save_iopl;
119                 struct kvm_save_segment {
120                         u16 selector;
121                         unsigned long base;
122                         u32 limit;
123                         u32 ar;
124                 } tr, es, ds, fs, gs;
125                 struct {
126                         bool pending;
127                         u8 vector;
128                         unsigned rip;
129                 } irq;
130         } rmode;
131         int vpid;
132         bool emulation_required;
133
134         /* Support for vnmi-less CPUs */
135         int soft_vnmi_blocked;
136         ktime_t entry_time;
137         s64 vnmi_blocked_time;
138         u32 exit_reason;
139 };
140
141 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_vmx, vcpu);
144 }
145
146 static int init_rmode(struct kvm *kvm);
147 static u64 construct_eptp(unsigned long root_hpa);
148
149 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
150 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
151 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
152
153 static unsigned long *vmx_io_bitmap_a;
154 static unsigned long *vmx_io_bitmap_b;
155 static unsigned long *vmx_msr_bitmap_legacy;
156 static unsigned long *vmx_msr_bitmap_longmode;
157
158 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
159 static DEFINE_SPINLOCK(vmx_vpid_lock);
160
161 static struct vmcs_config {
162         int size;
163         int order;
164         u32 revision_id;
165         u32 pin_based_exec_ctrl;
166         u32 cpu_based_exec_ctrl;
167         u32 cpu_based_2nd_exec_ctrl;
168         u32 vmexit_ctrl;
169         u32 vmentry_ctrl;
170 } vmcs_config;
171
172 static struct vmx_capability {
173         u32 ept;
174         u32 vpid;
175 } vmx_capability;
176
177 #define VMX_SEGMENT_FIELD(seg)                                  \
178         [VCPU_SREG_##seg] = {                                   \
179                 .selector = GUEST_##seg##_SELECTOR,             \
180                 .base = GUEST_##seg##_BASE,                     \
181                 .limit = GUEST_##seg##_LIMIT,                   \
182                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
183         }
184
185 static struct kvm_vmx_segment_field {
186         unsigned selector;
187         unsigned base;
188         unsigned limit;
189         unsigned ar_bytes;
190 } kvm_vmx_segment_fields[] = {
191         VMX_SEGMENT_FIELD(CS),
192         VMX_SEGMENT_FIELD(DS),
193         VMX_SEGMENT_FIELD(ES),
194         VMX_SEGMENT_FIELD(FS),
195         VMX_SEGMENT_FIELD(GS),
196         VMX_SEGMENT_FIELD(SS),
197         VMX_SEGMENT_FIELD(TR),
198         VMX_SEGMENT_FIELD(LDTR),
199 };
200
201 static u64 host_efer;
202
203 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
204
205 /*
206  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
207  * away by decrementing the array size.
208  */
209 static const u32 vmx_msr_index[] = {
210 #ifdef CONFIG_X86_64
211         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
212 #endif
213         MSR_EFER, MSR_K6_STAR,
214 };
215 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
216
217 static inline int is_page_fault(u32 intr_info)
218 {
219         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
220                              INTR_INFO_VALID_MASK)) ==
221                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
222 }
223
224 static inline int is_no_device(u32 intr_info)
225 {
226         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
227                              INTR_INFO_VALID_MASK)) ==
228                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
229 }
230
231 static inline int is_invalid_opcode(u32 intr_info)
232 {
233         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
234                              INTR_INFO_VALID_MASK)) ==
235                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
236 }
237
238 static inline int is_external_interrupt(u32 intr_info)
239 {
240         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
241                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
242 }
243
244 static inline int is_machine_check(u32 intr_info)
245 {
246         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
247                              INTR_INFO_VALID_MASK)) ==
248                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
249 }
250
251 static inline int cpu_has_vmx_msr_bitmap(void)
252 {
253         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
254 }
255
256 static inline int cpu_has_vmx_tpr_shadow(void)
257 {
258         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
259 }
260
261 static inline int vm_need_tpr_shadow(struct kvm *kvm)
262 {
263         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
264 }
265
266 static inline int cpu_has_secondary_exec_ctrls(void)
267 {
268         return vmcs_config.cpu_based_exec_ctrl &
269                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
270 }
271
272 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
273 {
274         return vmcs_config.cpu_based_2nd_exec_ctrl &
275                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
276 }
277
278 static inline bool cpu_has_vmx_flexpriority(void)
279 {
280         return cpu_has_vmx_tpr_shadow() &&
281                 cpu_has_vmx_virtualize_apic_accesses();
282 }
283
284 static inline bool cpu_has_vmx_ept_execute_only(void)
285 {
286         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
287 }
288
289 static inline bool cpu_has_vmx_eptp_uncacheable(void)
290 {
291         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
292 }
293
294 static inline bool cpu_has_vmx_eptp_writeback(void)
295 {
296         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
297 }
298
299 static inline bool cpu_has_vmx_ept_2m_page(void)
300 {
301         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
302 }
303
304 static inline int cpu_has_vmx_invept_individual_addr(void)
305 {
306         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
307 }
308
309 static inline int cpu_has_vmx_invept_context(void)
310 {
311         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
312 }
313
314 static inline int cpu_has_vmx_invept_global(void)
315 {
316         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
317 }
318
319 static inline int cpu_has_vmx_ept(void)
320 {
321         return vmcs_config.cpu_based_2nd_exec_ctrl &
322                 SECONDARY_EXEC_ENABLE_EPT;
323 }
324
325 static inline int cpu_has_vmx_unrestricted_guest(void)
326 {
327         return vmcs_config.cpu_based_2nd_exec_ctrl &
328                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
329 }
330
331 static inline int cpu_has_vmx_ple(void)
332 {
333         return vmcs_config.cpu_based_2nd_exec_ctrl &
334                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
335 }
336
337 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
338 {
339         return flexpriority_enabled &&
340                 (cpu_has_vmx_virtualize_apic_accesses()) &&
341                 (irqchip_in_kernel(kvm));
342 }
343
344 static inline int cpu_has_vmx_vpid(void)
345 {
346         return vmcs_config.cpu_based_2nd_exec_ctrl &
347                 SECONDARY_EXEC_ENABLE_VPID;
348 }
349
350 static inline int cpu_has_virtual_nmis(void)
351 {
352         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
353 }
354
355 static inline bool report_flexpriority(void)
356 {
357         return flexpriority_enabled;
358 }
359
360 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
361 {
362         int i;
363
364         for (i = 0; i < vmx->nmsrs; ++i)
365                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
366                         return i;
367         return -1;
368 }
369
370 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
371 {
372     struct {
373         u64 vpid : 16;
374         u64 rsvd : 48;
375         u64 gva;
376     } operand = { vpid, 0, gva };
377
378     asm volatile (__ex(ASM_VMX_INVVPID)
379                   /* CF==1 or ZF==1 --> rc = -1 */
380                   "; ja 1f ; ud2 ; 1:"
381                   : : "a"(&operand), "c"(ext) : "cc", "memory");
382 }
383
384 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
385 {
386         struct {
387                 u64 eptp, gpa;
388         } operand = {eptp, gpa};
389
390         asm volatile (__ex(ASM_VMX_INVEPT)
391                         /* CF==1 or ZF==1 --> rc = -1 */
392                         "; ja 1f ; ud2 ; 1:\n"
393                         : : "a" (&operand), "c" (ext) : "cc", "memory");
394 }
395
396 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
397 {
398         int i;
399
400         i = __find_msr_index(vmx, msr);
401         if (i >= 0)
402                 return &vmx->guest_msrs[i];
403         return NULL;
404 }
405
406 static void vmcs_clear(struct vmcs *vmcs)
407 {
408         u64 phys_addr = __pa(vmcs);
409         u8 error;
410
411         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
412                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
413                       : "cc", "memory");
414         if (error)
415                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
416                        vmcs, phys_addr);
417 }
418
419 static void __vcpu_clear(void *arg)
420 {
421         struct vcpu_vmx *vmx = arg;
422         int cpu = raw_smp_processor_id();
423
424         if (vmx->vcpu.cpu == cpu)
425                 vmcs_clear(vmx->vmcs);
426         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
427                 per_cpu(current_vmcs, cpu) = NULL;
428         rdtscll(vmx->vcpu.arch.host_tsc);
429         list_del(&vmx->local_vcpus_link);
430         vmx->vcpu.cpu = -1;
431         vmx->launched = 0;
432 }
433
434 static void vcpu_clear(struct vcpu_vmx *vmx)
435 {
436         if (vmx->vcpu.cpu == -1)
437                 return;
438         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
439 }
440
441 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
442 {
443         if (vmx->vpid == 0)
444                 return;
445
446         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
447 }
448
449 static inline void ept_sync_global(void)
450 {
451         if (cpu_has_vmx_invept_global())
452                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
453 }
454
455 static inline void ept_sync_context(u64 eptp)
456 {
457         if (enable_ept) {
458                 if (cpu_has_vmx_invept_context())
459                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
460                 else
461                         ept_sync_global();
462         }
463 }
464
465 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
466 {
467         if (enable_ept) {
468                 if (cpu_has_vmx_invept_individual_addr())
469                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
470                                         eptp, gpa);
471                 else
472                         ept_sync_context(eptp);
473         }
474 }
475
476 static unsigned long vmcs_readl(unsigned long field)
477 {
478         unsigned long value;
479
480         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
481                       : "=a"(value) : "d"(field) : "cc");
482         return value;
483 }
484
485 static u16 vmcs_read16(unsigned long field)
486 {
487         return vmcs_readl(field);
488 }
489
490 static u32 vmcs_read32(unsigned long field)
491 {
492         return vmcs_readl(field);
493 }
494
495 static u64 vmcs_read64(unsigned long field)
496 {
497 #ifdef CONFIG_X86_64
498         return vmcs_readl(field);
499 #else
500         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
501 #endif
502 }
503
504 static noinline void vmwrite_error(unsigned long field, unsigned long value)
505 {
506         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
507                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
508         dump_stack();
509 }
510
511 static void vmcs_writel(unsigned long field, unsigned long value)
512 {
513         u8 error;
514
515         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
516                        : "=q"(error) : "a"(value), "d"(field) : "cc");
517         if (unlikely(error))
518                 vmwrite_error(field, value);
519 }
520
521 static void vmcs_write16(unsigned long field, u16 value)
522 {
523         vmcs_writel(field, value);
524 }
525
526 static void vmcs_write32(unsigned long field, u32 value)
527 {
528         vmcs_writel(field, value);
529 }
530
531 static void vmcs_write64(unsigned long field, u64 value)
532 {
533         vmcs_writel(field, value);
534 #ifndef CONFIG_X86_64
535         asm volatile ("");
536         vmcs_writel(field+1, value >> 32);
537 #endif
538 }
539
540 static void vmcs_clear_bits(unsigned long field, u32 mask)
541 {
542         vmcs_writel(field, vmcs_readl(field) & ~mask);
543 }
544
545 static void vmcs_set_bits(unsigned long field, u32 mask)
546 {
547         vmcs_writel(field, vmcs_readl(field) | mask);
548 }
549
550 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
551 {
552         u32 eb;
553
554         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
555         if (!vcpu->fpu_active)
556                 eb |= 1u << NM_VECTOR;
557         /*
558          * Unconditionally intercept #DB so we can maintain dr6 without
559          * reading it every exit.
560          */
561         eb |= 1u << DB_VECTOR;
562         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
563                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
564                         eb |= 1u << BP_VECTOR;
565         }
566         if (to_vmx(vcpu)->rmode.vm86_active)
567                 eb = ~0;
568         if (enable_ept)
569                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
570         vmcs_write32(EXCEPTION_BITMAP, eb);
571 }
572
573 static void reload_tss(void)
574 {
575         /*
576          * VT restores TR but not its size.  Useless.
577          */
578         struct descriptor_table gdt;
579         struct desc_struct *descs;
580
581         kvm_get_gdt(&gdt);
582         descs = (void *)gdt.base;
583         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
584         load_TR_desc();
585 }
586
587 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
588 {
589         u64 guest_efer;
590         u64 ignore_bits;
591
592         guest_efer = vmx->vcpu.arch.shadow_efer;
593
594         /*
595          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
596          * outside long mode
597          */
598         ignore_bits = EFER_NX | EFER_SCE;
599 #ifdef CONFIG_X86_64
600         ignore_bits |= EFER_LMA | EFER_LME;
601         /* SCE is meaningful only in long mode on Intel */
602         if (guest_efer & EFER_LMA)
603                 ignore_bits &= ~(u64)EFER_SCE;
604 #endif
605         guest_efer &= ~ignore_bits;
606         guest_efer |= host_efer & ignore_bits;
607         vmx->guest_msrs[efer_offset].data = guest_efer;
608         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
609         return true;
610 }
611
612 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
613 {
614         struct vcpu_vmx *vmx = to_vmx(vcpu);
615         int i;
616
617         if (vmx->host_state.loaded)
618                 return;
619
620         vmx->host_state.loaded = 1;
621         /*
622          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
623          * allow segment selectors with cpl > 0 or ti == 1.
624          */
625         vmx->host_state.ldt_sel = kvm_read_ldt();
626         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
627         vmx->host_state.fs_sel = kvm_read_fs();
628         if (!(vmx->host_state.fs_sel & 7)) {
629                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
630                 vmx->host_state.fs_reload_needed = 0;
631         } else {
632                 vmcs_write16(HOST_FS_SELECTOR, 0);
633                 vmx->host_state.fs_reload_needed = 1;
634         }
635         vmx->host_state.gs_sel = kvm_read_gs();
636         if (!(vmx->host_state.gs_sel & 7))
637                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
638         else {
639                 vmcs_write16(HOST_GS_SELECTOR, 0);
640                 vmx->host_state.gs_ldt_reload_needed = 1;
641         }
642
643 #ifdef CONFIG_X86_64
644         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
645         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
646 #else
647         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
648         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
649 #endif
650
651 #ifdef CONFIG_X86_64
652         if (is_long_mode(&vmx->vcpu)) {
653                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
654                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
655         }
656 #endif
657         for (i = 0; i < vmx->save_nmsrs; ++i)
658                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
659                                    vmx->guest_msrs[i].data,
660                                    vmx->guest_msrs[i].mask);
661 }
662
663 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
664 {
665         unsigned long flags;
666
667         if (!vmx->host_state.loaded)
668                 return;
669
670         ++vmx->vcpu.stat.host_state_reload;
671         vmx->host_state.loaded = 0;
672         if (vmx->host_state.fs_reload_needed)
673                 kvm_load_fs(vmx->host_state.fs_sel);
674         if (vmx->host_state.gs_ldt_reload_needed) {
675                 kvm_load_ldt(vmx->host_state.ldt_sel);
676                 /*
677                  * If we have to reload gs, we must take care to
678                  * preserve our gs base.
679                  */
680                 local_irq_save(flags);
681                 kvm_load_gs(vmx->host_state.gs_sel);
682 #ifdef CONFIG_X86_64
683                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
684 #endif
685                 local_irq_restore(flags);
686         }
687         reload_tss();
688 #ifdef CONFIG_X86_64
689         if (is_long_mode(&vmx->vcpu)) {
690                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
691                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
692         }
693 #endif
694 }
695
696 static void vmx_load_host_state(struct vcpu_vmx *vmx)
697 {
698         preempt_disable();
699         __vmx_load_host_state(vmx);
700         preempt_enable();
701 }
702
703 /*
704  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
705  * vcpu mutex is already taken.
706  */
707 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
708 {
709         struct vcpu_vmx *vmx = to_vmx(vcpu);
710         u64 phys_addr = __pa(vmx->vmcs);
711         u64 tsc_this, delta, new_offset;
712
713         if (vcpu->cpu != cpu) {
714                 vcpu_clear(vmx);
715                 kvm_migrate_timers(vcpu);
716                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
717                 local_irq_disable();
718                 list_add(&vmx->local_vcpus_link,
719                          &per_cpu(vcpus_on_cpu, cpu));
720                 local_irq_enable();
721         }
722
723         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
724                 u8 error;
725
726                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
727                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
728                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
729                               : "cc");
730                 if (error)
731                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
732                                vmx->vmcs, phys_addr);
733         }
734
735         if (vcpu->cpu != cpu) {
736                 struct descriptor_table dt;
737                 unsigned long sysenter_esp;
738
739                 vcpu->cpu = cpu;
740                 /*
741                  * Linux uses per-cpu TSS and GDT, so set these when switching
742                  * processors.
743                  */
744                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
745                 kvm_get_gdt(&dt);
746                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
747
748                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
749                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
750
751                 /*
752                  * Make sure the time stamp counter is monotonous.
753                  */
754                 rdtscll(tsc_this);
755                 if (tsc_this < vcpu->arch.host_tsc) {
756                         delta = vcpu->arch.host_tsc - tsc_this;
757                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
758                         vmcs_write64(TSC_OFFSET, new_offset);
759                 }
760         }
761 }
762
763 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
764 {
765         __vmx_load_host_state(to_vmx(vcpu));
766 }
767
768 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
769 {
770         if (vcpu->fpu_active)
771                 return;
772         vcpu->fpu_active = 1;
773         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
774         if (vcpu->arch.cr0 & X86_CR0_TS)
775                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
776         update_exception_bitmap(vcpu);
777 }
778
779 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
780 {
781         if (!vcpu->fpu_active)
782                 return;
783         vcpu->fpu_active = 0;
784         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
785         update_exception_bitmap(vcpu);
786 }
787
788 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
789 {
790         unsigned long rflags;
791
792         rflags = vmcs_readl(GUEST_RFLAGS);
793         if (to_vmx(vcpu)->rmode.vm86_active)
794                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
795         return rflags;
796 }
797
798 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
799 {
800         if (to_vmx(vcpu)->rmode.vm86_active)
801                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
802         vmcs_writel(GUEST_RFLAGS, rflags);
803 }
804
805 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
806 {
807         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
808         int ret = 0;
809
810         if (interruptibility & GUEST_INTR_STATE_STI)
811                 ret |= X86_SHADOW_INT_STI;
812         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
813                 ret |= X86_SHADOW_INT_MOV_SS;
814
815         return ret & mask;
816 }
817
818 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
819 {
820         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
821         u32 interruptibility = interruptibility_old;
822
823         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
824
825         if (mask & X86_SHADOW_INT_MOV_SS)
826                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
827         if (mask & X86_SHADOW_INT_STI)
828                 interruptibility |= GUEST_INTR_STATE_STI;
829
830         if ((interruptibility != interruptibility_old))
831                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
832 }
833
834 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
835 {
836         unsigned long rip;
837
838         rip = kvm_rip_read(vcpu);
839         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
840         kvm_rip_write(vcpu, rip);
841
842         /* skipping an emulated instruction also counts */
843         vmx_set_interrupt_shadow(vcpu, 0);
844 }
845
846 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
847                                 bool has_error_code, u32 error_code)
848 {
849         struct vcpu_vmx *vmx = to_vmx(vcpu);
850         u32 intr_info = nr | INTR_INFO_VALID_MASK;
851
852         if (has_error_code) {
853                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
854                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
855         }
856
857         if (vmx->rmode.vm86_active) {
858                 vmx->rmode.irq.pending = true;
859                 vmx->rmode.irq.vector = nr;
860                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
861                 if (kvm_exception_is_soft(nr))
862                         vmx->rmode.irq.rip +=
863                                 vmx->vcpu.arch.event_exit_inst_len;
864                 intr_info |= INTR_TYPE_SOFT_INTR;
865                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
866                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
867                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
868                 return;
869         }
870
871         if (kvm_exception_is_soft(nr)) {
872                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
873                              vmx->vcpu.arch.event_exit_inst_len);
874                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
875         } else
876                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
877
878         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
879 }
880
881 /*
882  * Swap MSR entry in host/guest MSR entry array.
883  */
884 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
885 {
886         struct shared_msr_entry tmp;
887
888         tmp = vmx->guest_msrs[to];
889         vmx->guest_msrs[to] = vmx->guest_msrs[from];
890         vmx->guest_msrs[from] = tmp;
891 }
892
893 /*
894  * Set up the vmcs to automatically save and restore system
895  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
896  * mode, as fiddling with msrs is very expensive.
897  */
898 static void setup_msrs(struct vcpu_vmx *vmx)
899 {
900         int save_nmsrs, index;
901         unsigned long *msr_bitmap;
902
903         vmx_load_host_state(vmx);
904         save_nmsrs = 0;
905 #ifdef CONFIG_X86_64
906         if (is_long_mode(&vmx->vcpu)) {
907                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
908                 if (index >= 0)
909                         move_msr_up(vmx, index, save_nmsrs++);
910                 index = __find_msr_index(vmx, MSR_LSTAR);
911                 if (index >= 0)
912                         move_msr_up(vmx, index, save_nmsrs++);
913                 index = __find_msr_index(vmx, MSR_CSTAR);
914                 if (index >= 0)
915                         move_msr_up(vmx, index, save_nmsrs++);
916                 /*
917                  * MSR_K6_STAR is only needed on long mode guests, and only
918                  * if efer.sce is enabled.
919                  */
920                 index = __find_msr_index(vmx, MSR_K6_STAR);
921                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
922                         move_msr_up(vmx, index, save_nmsrs++);
923         }
924 #endif
925         index = __find_msr_index(vmx, MSR_EFER);
926         if (index >= 0 && update_transition_efer(vmx, index))
927                 move_msr_up(vmx, index, save_nmsrs++);
928
929         vmx->save_nmsrs = save_nmsrs;
930
931         if (cpu_has_vmx_msr_bitmap()) {
932                 if (is_long_mode(&vmx->vcpu))
933                         msr_bitmap = vmx_msr_bitmap_longmode;
934                 else
935                         msr_bitmap = vmx_msr_bitmap_legacy;
936
937                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
938         }
939 }
940
941 /*
942  * reads and returns guest's timestamp counter "register"
943  * guest_tsc = host_tsc + tsc_offset    -- 21.3
944  */
945 static u64 guest_read_tsc(void)
946 {
947         u64 host_tsc, tsc_offset;
948
949         rdtscll(host_tsc);
950         tsc_offset = vmcs_read64(TSC_OFFSET);
951         return host_tsc + tsc_offset;
952 }
953
954 /*
955  * writes 'guest_tsc' into guest's timestamp counter "register"
956  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
957  */
958 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
959 {
960         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
961 }
962
963 /*
964  * Reads an msr value (of 'msr_index') into 'pdata'.
965  * Returns 0 on success, non-0 otherwise.
966  * Assumes vcpu_load() was already called.
967  */
968 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
969 {
970         u64 data;
971         struct shared_msr_entry *msr;
972
973         if (!pdata) {
974                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
975                 return -EINVAL;
976         }
977
978         switch (msr_index) {
979 #ifdef CONFIG_X86_64
980         case MSR_FS_BASE:
981                 data = vmcs_readl(GUEST_FS_BASE);
982                 break;
983         case MSR_GS_BASE:
984                 data = vmcs_readl(GUEST_GS_BASE);
985                 break;
986         case MSR_KERNEL_GS_BASE:
987                 vmx_load_host_state(to_vmx(vcpu));
988                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
989                 break;
990 #endif
991         case MSR_EFER:
992                 return kvm_get_msr_common(vcpu, msr_index, pdata);
993         case MSR_IA32_TSC:
994                 data = guest_read_tsc();
995                 break;
996         case MSR_IA32_SYSENTER_CS:
997                 data = vmcs_read32(GUEST_SYSENTER_CS);
998                 break;
999         case MSR_IA32_SYSENTER_EIP:
1000                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1001                 break;
1002         case MSR_IA32_SYSENTER_ESP:
1003                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1004                 break;
1005         default:
1006                 vmx_load_host_state(to_vmx(vcpu));
1007                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1008                 if (msr) {
1009                         vmx_load_host_state(to_vmx(vcpu));
1010                         data = msr->data;
1011                         break;
1012                 }
1013                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1014         }
1015
1016         *pdata = data;
1017         return 0;
1018 }
1019
1020 /*
1021  * Writes msr value into into the appropriate "register".
1022  * Returns 0 on success, non-0 otherwise.
1023  * Assumes vcpu_load() was already called.
1024  */
1025 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1026 {
1027         struct vcpu_vmx *vmx = to_vmx(vcpu);
1028         struct shared_msr_entry *msr;
1029         u64 host_tsc;
1030         int ret = 0;
1031
1032         switch (msr_index) {
1033         case MSR_EFER:
1034                 vmx_load_host_state(vmx);
1035                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1036                 break;
1037 #ifdef CONFIG_X86_64
1038         case MSR_FS_BASE:
1039                 vmcs_writel(GUEST_FS_BASE, data);
1040                 break;
1041         case MSR_GS_BASE:
1042                 vmcs_writel(GUEST_GS_BASE, data);
1043                 break;
1044         case MSR_KERNEL_GS_BASE:
1045                 vmx_load_host_state(vmx);
1046                 vmx->msr_guest_kernel_gs_base = data;
1047                 break;
1048 #endif
1049         case MSR_IA32_SYSENTER_CS:
1050                 vmcs_write32(GUEST_SYSENTER_CS, data);
1051                 break;
1052         case MSR_IA32_SYSENTER_EIP:
1053                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1054                 break;
1055         case MSR_IA32_SYSENTER_ESP:
1056                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1057                 break;
1058         case MSR_IA32_TSC:
1059                 rdtscll(host_tsc);
1060                 guest_write_tsc(data, host_tsc);
1061                 break;
1062         case MSR_IA32_CR_PAT:
1063                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1064                         vmcs_write64(GUEST_IA32_PAT, data);
1065                         vcpu->arch.pat = data;
1066                         break;
1067                 }
1068                 /* Otherwise falls through to kvm_set_msr_common */
1069         default:
1070                 msr = find_msr_entry(vmx, msr_index);
1071                 if (msr) {
1072                         vmx_load_host_state(vmx);
1073                         msr->data = data;
1074                         break;
1075                 }
1076                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1077         }
1078
1079         return ret;
1080 }
1081
1082 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1083 {
1084         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1085         switch (reg) {
1086         case VCPU_REGS_RSP:
1087                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1088                 break;
1089         case VCPU_REGS_RIP:
1090                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1091                 break;
1092         case VCPU_EXREG_PDPTR:
1093                 if (enable_ept)
1094                         ept_save_pdptrs(vcpu);
1095                 break;
1096         default:
1097                 break;
1098         }
1099 }
1100
1101 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1102 {
1103         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1104                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1105         else
1106                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1107
1108         update_exception_bitmap(vcpu);
1109 }
1110
1111 static __init int cpu_has_kvm_support(void)
1112 {
1113         return cpu_has_vmx();
1114 }
1115
1116 static __init int vmx_disabled_by_bios(void)
1117 {
1118         u64 msr;
1119
1120         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1121         return (msr & (FEATURE_CONTROL_LOCKED |
1122                        FEATURE_CONTROL_VMXON_ENABLED))
1123             == FEATURE_CONTROL_LOCKED;
1124         /* locked but not enabled */
1125 }
1126
1127 static int hardware_enable(void *garbage)
1128 {
1129         int cpu = raw_smp_processor_id();
1130         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1131         u64 old;
1132
1133         if (read_cr4() & X86_CR4_VMXE)
1134                 return -EBUSY;
1135
1136         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1137         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1138         if ((old & (FEATURE_CONTROL_LOCKED |
1139                     FEATURE_CONTROL_VMXON_ENABLED))
1140             != (FEATURE_CONTROL_LOCKED |
1141                 FEATURE_CONTROL_VMXON_ENABLED))
1142                 /* enable and lock */
1143                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1144                        FEATURE_CONTROL_LOCKED |
1145                        FEATURE_CONTROL_VMXON_ENABLED);
1146         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1147         asm volatile (ASM_VMX_VMXON_RAX
1148                       : : "a"(&phys_addr), "m"(phys_addr)
1149                       : "memory", "cc");
1150
1151         ept_sync_global();
1152
1153         return 0;
1154 }
1155
1156 static void vmclear_local_vcpus(void)
1157 {
1158         int cpu = raw_smp_processor_id();
1159         struct vcpu_vmx *vmx, *n;
1160
1161         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1162                                  local_vcpus_link)
1163                 __vcpu_clear(vmx);
1164 }
1165
1166
1167 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1168  * tricks.
1169  */
1170 static void kvm_cpu_vmxoff(void)
1171 {
1172         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1173         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1174 }
1175
1176 static void hardware_disable(void *garbage)
1177 {
1178         vmclear_local_vcpus();
1179         kvm_cpu_vmxoff();
1180 }
1181
1182 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1183                                       u32 msr, u32 *result)
1184 {
1185         u32 vmx_msr_low, vmx_msr_high;
1186         u32 ctl = ctl_min | ctl_opt;
1187
1188         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1189
1190         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1191         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1192
1193         /* Ensure minimum (required) set of control bits are supported. */
1194         if (ctl_min & ~ctl)
1195                 return -EIO;
1196
1197         *result = ctl;
1198         return 0;
1199 }
1200
1201 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1202 {
1203         u32 vmx_msr_low, vmx_msr_high;
1204         u32 min, opt, min2, opt2;
1205         u32 _pin_based_exec_control = 0;
1206         u32 _cpu_based_exec_control = 0;
1207         u32 _cpu_based_2nd_exec_control = 0;
1208         u32 _vmexit_control = 0;
1209         u32 _vmentry_control = 0;
1210
1211         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1212         opt = PIN_BASED_VIRTUAL_NMIS;
1213         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1214                                 &_pin_based_exec_control) < 0)
1215                 return -EIO;
1216
1217         min = CPU_BASED_HLT_EXITING |
1218 #ifdef CONFIG_X86_64
1219               CPU_BASED_CR8_LOAD_EXITING |
1220               CPU_BASED_CR8_STORE_EXITING |
1221 #endif
1222               CPU_BASED_CR3_LOAD_EXITING |
1223               CPU_BASED_CR3_STORE_EXITING |
1224               CPU_BASED_USE_IO_BITMAPS |
1225               CPU_BASED_MOV_DR_EXITING |
1226               CPU_BASED_USE_TSC_OFFSETING |
1227               CPU_BASED_MWAIT_EXITING |
1228               CPU_BASED_MONITOR_EXITING |
1229               CPU_BASED_INVLPG_EXITING;
1230         opt = CPU_BASED_TPR_SHADOW |
1231               CPU_BASED_USE_MSR_BITMAPS |
1232               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1233         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1234                                 &_cpu_based_exec_control) < 0)
1235                 return -EIO;
1236 #ifdef CONFIG_X86_64
1237         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1238                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1239                                            ~CPU_BASED_CR8_STORE_EXITING;
1240 #endif
1241         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1242                 min2 = 0;
1243                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1244                         SECONDARY_EXEC_WBINVD_EXITING |
1245                         SECONDARY_EXEC_ENABLE_VPID |
1246                         SECONDARY_EXEC_ENABLE_EPT |
1247                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1248                         SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1249                 if (adjust_vmx_controls(min2, opt2,
1250                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1251                                         &_cpu_based_2nd_exec_control) < 0)
1252                         return -EIO;
1253         }
1254 #ifndef CONFIG_X86_64
1255         if (!(_cpu_based_2nd_exec_control &
1256                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1257                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1258 #endif
1259         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1260                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1261                    enabled */
1262                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1263                                              CPU_BASED_CR3_STORE_EXITING |
1264                                              CPU_BASED_INVLPG_EXITING);
1265                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1266                       vmx_capability.ept, vmx_capability.vpid);
1267         }
1268
1269         min = 0;
1270 #ifdef CONFIG_X86_64
1271         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1272 #endif
1273         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1274         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1275                                 &_vmexit_control) < 0)
1276                 return -EIO;
1277
1278         min = 0;
1279         opt = VM_ENTRY_LOAD_IA32_PAT;
1280         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1281                                 &_vmentry_control) < 0)
1282                 return -EIO;
1283
1284         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1285
1286         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1287         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1288                 return -EIO;
1289
1290 #ifdef CONFIG_X86_64
1291         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1292         if (vmx_msr_high & (1u<<16))
1293                 return -EIO;
1294 #endif
1295
1296         /* Require Write-Back (WB) memory type for VMCS accesses. */
1297         if (((vmx_msr_high >> 18) & 15) != 6)
1298                 return -EIO;
1299
1300         vmcs_conf->size = vmx_msr_high & 0x1fff;
1301         vmcs_conf->order = get_order(vmcs_config.size);
1302         vmcs_conf->revision_id = vmx_msr_low;
1303
1304         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1305         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1306         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1307         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1308         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1309
1310         return 0;
1311 }
1312
1313 static struct vmcs *alloc_vmcs_cpu(int cpu)
1314 {
1315         int node = cpu_to_node(cpu);
1316         struct page *pages;
1317         struct vmcs *vmcs;
1318
1319         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1320         if (!pages)
1321                 return NULL;
1322         vmcs = page_address(pages);
1323         memset(vmcs, 0, vmcs_config.size);
1324         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1325         return vmcs;
1326 }
1327
1328 static struct vmcs *alloc_vmcs(void)
1329 {
1330         return alloc_vmcs_cpu(raw_smp_processor_id());
1331 }
1332
1333 static void free_vmcs(struct vmcs *vmcs)
1334 {
1335         free_pages((unsigned long)vmcs, vmcs_config.order);
1336 }
1337
1338 static void free_kvm_area(void)
1339 {
1340         int cpu;
1341
1342         for_each_possible_cpu(cpu) {
1343                 free_vmcs(per_cpu(vmxarea, cpu));
1344                 per_cpu(vmxarea, cpu) = NULL;
1345         }
1346 }
1347
1348 static __init int alloc_kvm_area(void)
1349 {
1350         int cpu;
1351
1352         for_each_possible_cpu(cpu) {
1353                 struct vmcs *vmcs;
1354
1355                 vmcs = alloc_vmcs_cpu(cpu);
1356                 if (!vmcs) {
1357                         free_kvm_area();
1358                         return -ENOMEM;
1359                 }
1360
1361                 per_cpu(vmxarea, cpu) = vmcs;
1362         }
1363         return 0;
1364 }
1365
1366 static __init int hardware_setup(void)
1367 {
1368         if (setup_vmcs_config(&vmcs_config) < 0)
1369                 return -EIO;
1370
1371         if (boot_cpu_has(X86_FEATURE_NX))
1372                 kvm_enable_efer_bits(EFER_NX);
1373
1374         if (!cpu_has_vmx_vpid())
1375                 enable_vpid = 0;
1376
1377         if (!cpu_has_vmx_ept()) {
1378                 enable_ept = 0;
1379                 enable_unrestricted_guest = 0;
1380         }
1381
1382         if (!cpu_has_vmx_unrestricted_guest())
1383                 enable_unrestricted_guest = 0;
1384
1385         if (!cpu_has_vmx_flexpriority())
1386                 flexpriority_enabled = 0;
1387
1388         if (!cpu_has_vmx_tpr_shadow())
1389                 kvm_x86_ops->update_cr8_intercept = NULL;
1390
1391         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1392                 kvm_disable_largepages();
1393
1394         if (!cpu_has_vmx_ple())
1395                 ple_gap = 0;
1396
1397         return alloc_kvm_area();
1398 }
1399
1400 static __exit void hardware_unsetup(void)
1401 {
1402         free_kvm_area();
1403 }
1404
1405 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1406 {
1407         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1408
1409         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1410                 vmcs_write16(sf->selector, save->selector);
1411                 vmcs_writel(sf->base, save->base);
1412                 vmcs_write32(sf->limit, save->limit);
1413                 vmcs_write32(sf->ar_bytes, save->ar);
1414         } else {
1415                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1416                         << AR_DPL_SHIFT;
1417                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1418         }
1419 }
1420
1421 static void enter_pmode(struct kvm_vcpu *vcpu)
1422 {
1423         unsigned long flags;
1424         struct vcpu_vmx *vmx = to_vmx(vcpu);
1425
1426         vmx->emulation_required = 1;
1427         vmx->rmode.vm86_active = 0;
1428
1429         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1430         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1431         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1432
1433         flags = vmcs_readl(GUEST_RFLAGS);
1434         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1435         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1436         vmcs_writel(GUEST_RFLAGS, flags);
1437
1438         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1439                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1440
1441         update_exception_bitmap(vcpu);
1442
1443         if (emulate_invalid_guest_state)
1444                 return;
1445
1446         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1447         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1448         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1449         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1450
1451         vmcs_write16(GUEST_SS_SELECTOR, 0);
1452         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1453
1454         vmcs_write16(GUEST_CS_SELECTOR,
1455                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1456         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1457 }
1458
1459 static gva_t rmode_tss_base(struct kvm *kvm)
1460 {
1461         if (!kvm->arch.tss_addr) {
1462                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1463                                  kvm->memslots[0].npages - 3;
1464                 return base_gfn << PAGE_SHIFT;
1465         }
1466         return kvm->arch.tss_addr;
1467 }
1468
1469 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1470 {
1471         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1472
1473         save->selector = vmcs_read16(sf->selector);
1474         save->base = vmcs_readl(sf->base);
1475         save->limit = vmcs_read32(sf->limit);
1476         save->ar = vmcs_read32(sf->ar_bytes);
1477         vmcs_write16(sf->selector, save->base >> 4);
1478         vmcs_write32(sf->base, save->base & 0xfffff);
1479         vmcs_write32(sf->limit, 0xffff);
1480         vmcs_write32(sf->ar_bytes, 0xf3);
1481 }
1482
1483 static void enter_rmode(struct kvm_vcpu *vcpu)
1484 {
1485         unsigned long flags;
1486         struct vcpu_vmx *vmx = to_vmx(vcpu);
1487
1488         if (enable_unrestricted_guest)
1489                 return;
1490
1491         vmx->emulation_required = 1;
1492         vmx->rmode.vm86_active = 1;
1493
1494         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1495         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1496
1497         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1498         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1499
1500         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1501         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1502
1503         flags = vmcs_readl(GUEST_RFLAGS);
1504         vmx->rmode.save_iopl
1505                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1506
1507         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1508
1509         vmcs_writel(GUEST_RFLAGS, flags);
1510         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1511         update_exception_bitmap(vcpu);
1512
1513         if (emulate_invalid_guest_state)
1514                 goto continue_rmode;
1515
1516         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1517         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1518         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1519
1520         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1521         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1522         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1523                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1524         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1525
1526         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1527         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1528         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1529         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1530
1531 continue_rmode:
1532         kvm_mmu_reset_context(vcpu);
1533         init_rmode(vcpu->kvm);
1534 }
1535
1536 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1537 {
1538         struct vcpu_vmx *vmx = to_vmx(vcpu);
1539         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1540
1541         if (!msr)
1542                 return;
1543
1544         /*
1545          * Force kernel_gs_base reloading before EFER changes, as control
1546          * of this msr depends on is_long_mode().
1547          */
1548         vmx_load_host_state(to_vmx(vcpu));
1549         vcpu->arch.shadow_efer = efer;
1550         if (!msr)
1551                 return;
1552         if (efer & EFER_LMA) {
1553                 vmcs_write32(VM_ENTRY_CONTROLS,
1554                              vmcs_read32(VM_ENTRY_CONTROLS) |
1555                              VM_ENTRY_IA32E_MODE);
1556                 msr->data = efer;
1557         } else {
1558                 vmcs_write32(VM_ENTRY_CONTROLS,
1559                              vmcs_read32(VM_ENTRY_CONTROLS) &
1560                              ~VM_ENTRY_IA32E_MODE);
1561
1562                 msr->data = efer & ~EFER_LME;
1563         }
1564         setup_msrs(vmx);
1565 }
1566
1567 #ifdef CONFIG_X86_64
1568
1569 static void enter_lmode(struct kvm_vcpu *vcpu)
1570 {
1571         u32 guest_tr_ar;
1572
1573         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1574         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1575                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1576                        __func__);
1577                 vmcs_write32(GUEST_TR_AR_BYTES,
1578                              (guest_tr_ar & ~AR_TYPE_MASK)
1579                              | AR_TYPE_BUSY_64_TSS);
1580         }
1581         vcpu->arch.shadow_efer |= EFER_LMA;
1582         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1583 }
1584
1585 static void exit_lmode(struct kvm_vcpu *vcpu)
1586 {
1587         vcpu->arch.shadow_efer &= ~EFER_LMA;
1588
1589         vmcs_write32(VM_ENTRY_CONTROLS,
1590                      vmcs_read32(VM_ENTRY_CONTROLS)
1591                      & ~VM_ENTRY_IA32E_MODE);
1592 }
1593
1594 #endif
1595
1596 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1597 {
1598         vpid_sync_vcpu_all(to_vmx(vcpu));
1599         if (enable_ept)
1600                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1601 }
1602
1603 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1604 {
1605         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1606         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1607 }
1608
1609 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1610 {
1611         if (!test_bit(VCPU_EXREG_PDPTR,
1612                       (unsigned long *)&vcpu->arch.regs_dirty))
1613                 return;
1614
1615         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1616                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1617                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1618                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1619                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1620         }
1621 }
1622
1623 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1624 {
1625         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1626                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1627                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1628                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1629                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1630         }
1631
1632         __set_bit(VCPU_EXREG_PDPTR,
1633                   (unsigned long *)&vcpu->arch.regs_avail);
1634         __set_bit(VCPU_EXREG_PDPTR,
1635                   (unsigned long *)&vcpu->arch.regs_dirty);
1636 }
1637
1638 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1639
1640 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1641                                         unsigned long cr0,
1642                                         struct kvm_vcpu *vcpu)
1643 {
1644         if (!(cr0 & X86_CR0_PG)) {
1645                 /* From paging/starting to nonpaging */
1646                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1647                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1648                              (CPU_BASED_CR3_LOAD_EXITING |
1649                               CPU_BASED_CR3_STORE_EXITING));
1650                 vcpu->arch.cr0 = cr0;
1651                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1652         } else if (!is_paging(vcpu)) {
1653                 /* From nonpaging to paging */
1654                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1655                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1656                              ~(CPU_BASED_CR3_LOAD_EXITING |
1657                                CPU_BASED_CR3_STORE_EXITING));
1658                 vcpu->arch.cr0 = cr0;
1659                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1660         }
1661
1662         if (!(cr0 & X86_CR0_WP))
1663                 *hw_cr0 &= ~X86_CR0_WP;
1664 }
1665
1666 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1667                                         struct kvm_vcpu *vcpu)
1668 {
1669         if (!is_paging(vcpu)) {
1670                 *hw_cr4 &= ~X86_CR4_PAE;
1671                 *hw_cr4 |= X86_CR4_PSE;
1672         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1673                 *hw_cr4 &= ~X86_CR4_PAE;
1674 }
1675
1676 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1677 {
1678         struct vcpu_vmx *vmx = to_vmx(vcpu);
1679         unsigned long hw_cr0;
1680
1681         if (enable_unrestricted_guest)
1682                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1683                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1684         else
1685                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1686
1687         vmx_fpu_deactivate(vcpu);
1688
1689         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1690                 enter_pmode(vcpu);
1691
1692         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1693                 enter_rmode(vcpu);
1694
1695 #ifdef CONFIG_X86_64
1696         if (vcpu->arch.shadow_efer & EFER_LME) {
1697                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1698                         enter_lmode(vcpu);
1699                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1700                         exit_lmode(vcpu);
1701         }
1702 #endif
1703
1704         if (enable_ept)
1705                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1706
1707         vmcs_writel(CR0_READ_SHADOW, cr0);
1708         vmcs_writel(GUEST_CR0, hw_cr0);
1709         vcpu->arch.cr0 = cr0;
1710
1711         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1712                 vmx_fpu_activate(vcpu);
1713 }
1714
1715 static u64 construct_eptp(unsigned long root_hpa)
1716 {
1717         u64 eptp;
1718
1719         /* TODO write the value reading from MSR */
1720         eptp = VMX_EPT_DEFAULT_MT |
1721                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1722         eptp |= (root_hpa & PAGE_MASK);
1723
1724         return eptp;
1725 }
1726
1727 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1728 {
1729         unsigned long guest_cr3;
1730         u64 eptp;
1731
1732         guest_cr3 = cr3;
1733         if (enable_ept) {
1734                 eptp = construct_eptp(cr3);
1735                 vmcs_write64(EPT_POINTER, eptp);
1736                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1737                         vcpu->kvm->arch.ept_identity_map_addr;
1738                 ept_load_pdptrs(vcpu);
1739         }
1740
1741         vmx_flush_tlb(vcpu);
1742         vmcs_writel(GUEST_CR3, guest_cr3);
1743         if (vcpu->arch.cr0 & X86_CR0_PE)
1744                 vmx_fpu_deactivate(vcpu);
1745 }
1746
1747 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1748 {
1749         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1750                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1751
1752         vcpu->arch.cr4 = cr4;
1753         if (enable_ept)
1754                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1755
1756         vmcs_writel(CR4_READ_SHADOW, cr4);
1757         vmcs_writel(GUEST_CR4, hw_cr4);
1758 }
1759
1760 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1761 {
1762         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1763
1764         return vmcs_readl(sf->base);
1765 }
1766
1767 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1768                             struct kvm_segment *var, int seg)
1769 {
1770         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1771         u32 ar;
1772
1773         var->base = vmcs_readl(sf->base);
1774         var->limit = vmcs_read32(sf->limit);
1775         var->selector = vmcs_read16(sf->selector);
1776         ar = vmcs_read32(sf->ar_bytes);
1777         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1778                 ar = 0;
1779         var->type = ar & 15;
1780         var->s = (ar >> 4) & 1;
1781         var->dpl = (ar >> 5) & 3;
1782         var->present = (ar >> 7) & 1;
1783         var->avl = (ar >> 12) & 1;
1784         var->l = (ar >> 13) & 1;
1785         var->db = (ar >> 14) & 1;
1786         var->g = (ar >> 15) & 1;
1787         var->unusable = (ar >> 16) & 1;
1788 }
1789
1790 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1791 {
1792         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1793                 return 0;
1794
1795         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1796                 return 3;
1797
1798         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1799 }
1800
1801 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1802 {
1803         u32 ar;
1804
1805         if (var->unusable)
1806                 ar = 1 << 16;
1807         else {
1808                 ar = var->type & 15;
1809                 ar |= (var->s & 1) << 4;
1810                 ar |= (var->dpl & 3) << 5;
1811                 ar |= (var->present & 1) << 7;
1812                 ar |= (var->avl & 1) << 12;
1813                 ar |= (var->l & 1) << 13;
1814                 ar |= (var->db & 1) << 14;
1815                 ar |= (var->g & 1) << 15;
1816         }
1817         if (ar == 0) /* a 0 value means unusable */
1818                 ar = AR_UNUSABLE_MASK;
1819
1820         return ar;
1821 }
1822
1823 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1824                             struct kvm_segment *var, int seg)
1825 {
1826         struct vcpu_vmx *vmx = to_vmx(vcpu);
1827         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1828         u32 ar;
1829
1830         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1831                 vmx->rmode.tr.selector = var->selector;
1832                 vmx->rmode.tr.base = var->base;
1833                 vmx->rmode.tr.limit = var->limit;
1834                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1835                 return;
1836         }
1837         vmcs_writel(sf->base, var->base);
1838         vmcs_write32(sf->limit, var->limit);
1839         vmcs_write16(sf->selector, var->selector);
1840         if (vmx->rmode.vm86_active && var->s) {
1841                 /*
1842                  * Hack real-mode segments into vm86 compatibility.
1843                  */
1844                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1845                         vmcs_writel(sf->base, 0xf0000);
1846                 ar = 0xf3;
1847         } else
1848                 ar = vmx_segment_access_rights(var);
1849
1850         /*
1851          *   Fix the "Accessed" bit in AR field of segment registers for older
1852          * qemu binaries.
1853          *   IA32 arch specifies that at the time of processor reset the
1854          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1855          * is setting it to 0 in the usedland code. This causes invalid guest
1856          * state vmexit when "unrestricted guest" mode is turned on.
1857          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1858          * tree. Newer qemu binaries with that qemu fix would not need this
1859          * kvm hack.
1860          */
1861         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1862                 ar |= 0x1; /* Accessed */
1863
1864         vmcs_write32(sf->ar_bytes, ar);
1865 }
1866
1867 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1868 {
1869         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1870
1871         *db = (ar >> 14) & 1;
1872         *l = (ar >> 13) & 1;
1873 }
1874
1875 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1876 {
1877         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1878         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1879 }
1880
1881 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1882 {
1883         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1884         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1885 }
1886
1887 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1888 {
1889         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1890         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1891 }
1892
1893 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1894 {
1895         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1896         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1897 }
1898
1899 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1900 {
1901         struct kvm_segment var;
1902         u32 ar;
1903
1904         vmx_get_segment(vcpu, &var, seg);
1905         ar = vmx_segment_access_rights(&var);
1906
1907         if (var.base != (var.selector << 4))
1908                 return false;
1909         if (var.limit != 0xffff)
1910                 return false;
1911         if (ar != 0xf3)
1912                 return false;
1913
1914         return true;
1915 }
1916
1917 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1918 {
1919         struct kvm_segment cs;
1920         unsigned int cs_rpl;
1921
1922         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1923         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1924
1925         if (cs.unusable)
1926                 return false;
1927         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1928                 return false;
1929         if (!cs.s)
1930                 return false;
1931         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1932                 if (cs.dpl > cs_rpl)
1933                         return false;
1934         } else {
1935                 if (cs.dpl != cs_rpl)
1936                         return false;
1937         }
1938         if (!cs.present)
1939                 return false;
1940
1941         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1942         return true;
1943 }
1944
1945 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1946 {
1947         struct kvm_segment ss;
1948         unsigned int ss_rpl;
1949
1950         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1951         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1952
1953         if (ss.unusable)
1954                 return true;
1955         if (ss.type != 3 && ss.type != 7)
1956                 return false;
1957         if (!ss.s)
1958                 return false;
1959         if (ss.dpl != ss_rpl) /* DPL != RPL */
1960                 return false;
1961         if (!ss.present)
1962                 return false;
1963
1964         return true;
1965 }
1966
1967 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1968 {
1969         struct kvm_segment var;
1970         unsigned int rpl;
1971
1972         vmx_get_segment(vcpu, &var, seg);
1973         rpl = var.selector & SELECTOR_RPL_MASK;
1974
1975         if (var.unusable)
1976                 return true;
1977         if (!var.s)
1978                 return false;
1979         if (!var.present)
1980                 return false;
1981         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1982                 if (var.dpl < rpl) /* DPL < RPL */
1983                         return false;
1984         }
1985
1986         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1987          * rights flags
1988          */
1989         return true;
1990 }
1991
1992 static bool tr_valid(struct kvm_vcpu *vcpu)
1993 {
1994         struct kvm_segment tr;
1995
1996         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1997
1998         if (tr.unusable)
1999                 return false;
2000         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2001                 return false;
2002         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2003                 return false;
2004         if (!tr.present)
2005                 return false;
2006
2007         return true;
2008 }
2009
2010 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2011 {
2012         struct kvm_segment ldtr;
2013
2014         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2015
2016         if (ldtr.unusable)
2017                 return true;
2018         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2019                 return false;
2020         if (ldtr.type != 2)
2021                 return false;
2022         if (!ldtr.present)
2023                 return false;
2024
2025         return true;
2026 }
2027
2028 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2029 {
2030         struct kvm_segment cs, ss;
2031
2032         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2033         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2034
2035         return ((cs.selector & SELECTOR_RPL_MASK) ==
2036                  (ss.selector & SELECTOR_RPL_MASK));
2037 }
2038
2039 /*
2040  * Check if guest state is valid. Returns true if valid, false if
2041  * not.
2042  * We assume that registers are always usable
2043  */
2044 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2045 {
2046         /* real mode guest state checks */
2047         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2048                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2049                         return false;
2050                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2051                         return false;
2052                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2053                         return false;
2054                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2055                         return false;
2056                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2057                         return false;
2058                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2059                         return false;
2060         } else {
2061         /* protected mode guest state checks */
2062                 if (!cs_ss_rpl_check(vcpu))
2063                         return false;
2064                 if (!code_segment_valid(vcpu))
2065                         return false;
2066                 if (!stack_segment_valid(vcpu))
2067                         return false;
2068                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2069                         return false;
2070                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2071                         return false;
2072                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2073                         return false;
2074                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2075                         return false;
2076                 if (!tr_valid(vcpu))
2077                         return false;
2078                 if (!ldtr_valid(vcpu))
2079                         return false;
2080         }
2081         /* TODO:
2082          * - Add checks on RIP
2083          * - Add checks on RFLAGS
2084          */
2085
2086         return true;
2087 }
2088
2089 static int init_rmode_tss(struct kvm *kvm)
2090 {
2091         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2092         u16 data = 0;
2093         int ret = 0;
2094         int r;
2095
2096         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2097         if (r < 0)
2098                 goto out;
2099         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2100         r = kvm_write_guest_page(kvm, fn++, &data,
2101                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2102         if (r < 0)
2103                 goto out;
2104         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2105         if (r < 0)
2106                 goto out;
2107         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2108         if (r < 0)
2109                 goto out;
2110         data = ~0;
2111         r = kvm_write_guest_page(kvm, fn, &data,
2112                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2113                                  sizeof(u8));
2114         if (r < 0)
2115                 goto out;
2116
2117         ret = 1;
2118 out:
2119         return ret;
2120 }
2121
2122 static int init_rmode_identity_map(struct kvm *kvm)
2123 {
2124         int i, r, ret;
2125         pfn_t identity_map_pfn;
2126         u32 tmp;
2127
2128         if (!enable_ept)
2129                 return 1;
2130         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2131                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2132                         "haven't been allocated!\n");
2133                 return 0;
2134         }
2135         if (likely(kvm->arch.ept_identity_pagetable_done))
2136                 return 1;
2137         ret = 0;
2138         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2139         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2140         if (r < 0)
2141                 goto out;
2142         /* Set up identity-mapping pagetable for EPT in real mode */
2143         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2144                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2145                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2146                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2147                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2148                 if (r < 0)
2149                         goto out;
2150         }
2151         kvm->arch.ept_identity_pagetable_done = true;
2152         ret = 1;
2153 out:
2154         return ret;
2155 }
2156
2157 static void seg_setup(int seg)
2158 {
2159         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2160         unsigned int ar;
2161
2162         vmcs_write16(sf->selector, 0);
2163         vmcs_writel(sf->base, 0);
2164         vmcs_write32(sf->limit, 0xffff);
2165         if (enable_unrestricted_guest) {
2166                 ar = 0x93;
2167                 if (seg == VCPU_SREG_CS)
2168                         ar |= 0x08; /* code segment */
2169         } else
2170                 ar = 0xf3;
2171
2172         vmcs_write32(sf->ar_bytes, ar);
2173 }
2174
2175 static int alloc_apic_access_page(struct kvm *kvm)
2176 {
2177         struct kvm_userspace_memory_region kvm_userspace_mem;
2178         int r = 0;
2179
2180         down_write(&kvm->slots_lock);
2181         if (kvm->arch.apic_access_page)
2182                 goto out;
2183         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2184         kvm_userspace_mem.flags = 0;
2185         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2186         kvm_userspace_mem.memory_size = PAGE_SIZE;
2187         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2188         if (r)
2189                 goto out;
2190
2191         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2192 out:
2193         up_write(&kvm->slots_lock);
2194         return r;
2195 }
2196
2197 static int alloc_identity_pagetable(struct kvm *kvm)
2198 {
2199         struct kvm_userspace_memory_region kvm_userspace_mem;
2200         int r = 0;
2201
2202         down_write(&kvm->slots_lock);
2203         if (kvm->arch.ept_identity_pagetable)
2204                 goto out;
2205         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2206         kvm_userspace_mem.flags = 0;
2207         kvm_userspace_mem.guest_phys_addr =
2208                 kvm->arch.ept_identity_map_addr;
2209         kvm_userspace_mem.memory_size = PAGE_SIZE;
2210         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2211         if (r)
2212                 goto out;
2213
2214         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2215                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2216 out:
2217         up_write(&kvm->slots_lock);
2218         return r;
2219 }
2220
2221 static void allocate_vpid(struct vcpu_vmx *vmx)
2222 {
2223         int vpid;
2224
2225         vmx->vpid = 0;
2226         if (!enable_vpid)
2227                 return;
2228         spin_lock(&vmx_vpid_lock);
2229         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2230         if (vpid < VMX_NR_VPIDS) {
2231                 vmx->vpid = vpid;
2232                 __set_bit(vpid, vmx_vpid_bitmap);
2233         }
2234         spin_unlock(&vmx_vpid_lock);
2235 }
2236
2237 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2238 {
2239         int f = sizeof(unsigned long);
2240
2241         if (!cpu_has_vmx_msr_bitmap())
2242                 return;
2243
2244         /*
2245          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2246          * have the write-low and read-high bitmap offsets the wrong way round.
2247          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2248          */
2249         if (msr <= 0x1fff) {
2250                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2251                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2252         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2253                 msr &= 0x1fff;
2254                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2255                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2256         }
2257 }
2258
2259 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2260 {
2261         if (!longmode_only)
2262                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2263         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2264 }
2265
2266 /*
2267  * Sets up the vmcs for emulated real mode.
2268  */
2269 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2270 {
2271         u32 host_sysenter_cs, msr_low, msr_high;
2272         u32 junk;
2273         u64 host_pat, tsc_this, tsc_base;
2274         unsigned long a;
2275         struct descriptor_table dt;
2276         int i;
2277         unsigned long kvm_vmx_return;
2278         u32 exec_control;
2279
2280         /* I/O */
2281         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2282         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2283
2284         if (cpu_has_vmx_msr_bitmap())
2285                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2286
2287         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2288
2289         /* Control */
2290         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2291                 vmcs_config.pin_based_exec_ctrl);
2292
2293         exec_control = vmcs_config.cpu_based_exec_ctrl;
2294         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2295                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2296 #ifdef CONFIG_X86_64
2297                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2298                                 CPU_BASED_CR8_LOAD_EXITING;
2299 #endif
2300         }
2301         if (!enable_ept)
2302                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2303                                 CPU_BASED_CR3_LOAD_EXITING  |
2304                                 CPU_BASED_INVLPG_EXITING;
2305         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2306
2307         if (cpu_has_secondary_exec_ctrls()) {
2308                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2309                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2310                         exec_control &=
2311                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2312                 if (vmx->vpid == 0)
2313                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2314                 if (!enable_ept) {
2315                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2316                         enable_unrestricted_guest = 0;
2317                 }
2318                 if (!enable_unrestricted_guest)
2319                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2320                 if (!ple_gap)
2321                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2322                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2323         }
2324
2325         if (ple_gap) {
2326                 vmcs_write32(PLE_GAP, ple_gap);
2327                 vmcs_write32(PLE_WINDOW, ple_window);
2328         }
2329
2330         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2331         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2332         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2333
2334         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2335         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2336         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2337
2338         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2339         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2340         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2341         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2342         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2343         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2344 #ifdef CONFIG_X86_64
2345         rdmsrl(MSR_FS_BASE, a);
2346         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2347         rdmsrl(MSR_GS_BASE, a);
2348         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2349 #else
2350         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2351         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2352 #endif
2353
2354         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2355
2356         kvm_get_idt(&dt);
2357         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2358
2359         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2360         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2361         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2362         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2363         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2364
2365         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2366         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2367         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2368         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2369         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2370         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2371
2372         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2373                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2374                 host_pat = msr_low | ((u64) msr_high << 32);
2375                 vmcs_write64(HOST_IA32_PAT, host_pat);
2376         }
2377         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2378                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2379                 host_pat = msr_low | ((u64) msr_high << 32);
2380                 /* Write the default value follow host pat */
2381                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2382                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2383                 vmx->vcpu.arch.pat = host_pat;
2384         }
2385
2386         for (i = 0; i < NR_VMX_MSR; ++i) {
2387                 u32 index = vmx_msr_index[i];
2388                 u32 data_low, data_high;
2389                 u64 data;
2390                 int j = vmx->nmsrs;
2391
2392                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2393                         continue;
2394                 if (wrmsr_safe(index, data_low, data_high) < 0)
2395                         continue;
2396                 data = data_low | ((u64)data_high << 32);
2397                 vmx->guest_msrs[j].index = i;
2398                 vmx->guest_msrs[j].data = 0;
2399                 vmx->guest_msrs[j].mask = -1ull;
2400                 ++vmx->nmsrs;
2401         }
2402
2403         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2404
2405         /* 22.2.1, 20.8.1 */
2406         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2407
2408         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2409         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2410
2411         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2412         rdtscll(tsc_this);
2413         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2414                 tsc_base = tsc_this;
2415
2416         guest_write_tsc(0, tsc_base);
2417
2418         return 0;
2419 }
2420
2421 static int init_rmode(struct kvm *kvm)
2422 {
2423         if (!init_rmode_tss(kvm))
2424                 return 0;
2425         if (!init_rmode_identity_map(kvm))
2426                 return 0;
2427         return 1;
2428 }
2429
2430 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2431 {
2432         struct vcpu_vmx *vmx = to_vmx(vcpu);
2433         u64 msr;
2434         int ret;
2435
2436         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2437         down_read(&vcpu->kvm->slots_lock);
2438         if (!init_rmode(vmx->vcpu.kvm)) {
2439                 ret = -ENOMEM;
2440                 goto out;
2441         }
2442
2443         vmx->rmode.vm86_active = 0;
2444
2445         vmx->soft_vnmi_blocked = 0;
2446
2447         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2448         kvm_set_cr8(&vmx->vcpu, 0);
2449         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2450         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2451                 msr |= MSR_IA32_APICBASE_BSP;
2452         kvm_set_apic_base(&vmx->vcpu, msr);
2453
2454         fx_init(&vmx->vcpu);
2455
2456         seg_setup(VCPU_SREG_CS);
2457         /*
2458          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2459          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2460          */
2461         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2462                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2463                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2464         } else {
2465                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2466                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2467         }
2468
2469         seg_setup(VCPU_SREG_DS);
2470         seg_setup(VCPU_SREG_ES);
2471         seg_setup(VCPU_SREG_FS);
2472         seg_setup(VCPU_SREG_GS);
2473         seg_setup(VCPU_SREG_SS);
2474
2475         vmcs_write16(GUEST_TR_SELECTOR, 0);
2476         vmcs_writel(GUEST_TR_BASE, 0);
2477         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2478         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2479
2480         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2481         vmcs_writel(GUEST_LDTR_BASE, 0);
2482         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2483         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2484
2485         vmcs_write32(GUEST_SYSENTER_CS, 0);
2486         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2487         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2488
2489         vmcs_writel(GUEST_RFLAGS, 0x02);
2490         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2491                 kvm_rip_write(vcpu, 0xfff0);
2492         else
2493                 kvm_rip_write(vcpu, 0);
2494         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2495
2496         vmcs_writel(GUEST_DR7, 0x400);
2497
2498         vmcs_writel(GUEST_GDTR_BASE, 0);
2499         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2500
2501         vmcs_writel(GUEST_IDTR_BASE, 0);
2502         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2503
2504         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2505         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2506         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2507
2508         /* Special registers */
2509         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2510
2511         setup_msrs(vmx);
2512
2513         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2514
2515         if (cpu_has_vmx_tpr_shadow()) {
2516                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2517                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2518                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2519                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2520                 vmcs_write32(TPR_THRESHOLD, 0);
2521         }
2522
2523         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2524                 vmcs_write64(APIC_ACCESS_ADDR,
2525                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2526
2527         if (vmx->vpid != 0)
2528                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2529
2530         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2531         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2532         vmx_set_cr4(&vmx->vcpu, 0);
2533         vmx_set_efer(&vmx->vcpu, 0);
2534         vmx_fpu_activate(&vmx->vcpu);
2535         update_exception_bitmap(&vmx->vcpu);
2536
2537         vpid_sync_vcpu_all(vmx);
2538
2539         ret = 0;
2540
2541         /* HACK: Don't enable emulation on guest boot/reset */
2542         vmx->emulation_required = 0;
2543
2544 out:
2545         up_read(&vcpu->kvm->slots_lock);
2546         return ret;
2547 }
2548
2549 static void enable_irq_window(struct kvm_vcpu *vcpu)
2550 {
2551         u32 cpu_based_vm_exec_control;
2552
2553         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2554         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2555         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2556 }
2557
2558 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2559 {
2560         u32 cpu_based_vm_exec_control;
2561
2562         if (!cpu_has_virtual_nmis()) {
2563                 enable_irq_window(vcpu);
2564                 return;
2565         }
2566
2567         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2568         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2569         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2570 }
2571
2572 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2573 {
2574         struct vcpu_vmx *vmx = to_vmx(vcpu);
2575         uint32_t intr;
2576         int irq = vcpu->arch.interrupt.nr;
2577
2578         trace_kvm_inj_virq(irq);
2579
2580         ++vcpu->stat.irq_injections;
2581         if (vmx->rmode.vm86_active) {
2582                 vmx->rmode.irq.pending = true;
2583                 vmx->rmode.irq.vector = irq;
2584                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2585                 if (vcpu->arch.interrupt.soft)
2586                         vmx->rmode.irq.rip +=
2587                                 vmx->vcpu.arch.event_exit_inst_len;
2588                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2589                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2590                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2591                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2592                 return;
2593         }
2594         intr = irq | INTR_INFO_VALID_MASK;
2595         if (vcpu->arch.interrupt.soft) {
2596                 intr |= INTR_TYPE_SOFT_INTR;
2597                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2598                              vmx->vcpu.arch.event_exit_inst_len);
2599         } else
2600                 intr |= INTR_TYPE_EXT_INTR;
2601         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2602 }
2603
2604 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2605 {
2606         struct vcpu_vmx *vmx = to_vmx(vcpu);
2607
2608         if (!cpu_has_virtual_nmis()) {
2609                 /*
2610                  * Tracking the NMI-blocked state in software is built upon
2611                  * finding the next open IRQ window. This, in turn, depends on
2612                  * well-behaving guests: They have to keep IRQs disabled at
2613                  * least as long as the NMI handler runs. Otherwise we may
2614                  * cause NMI nesting, maybe breaking the guest. But as this is
2615                  * highly unlikely, we can live with the residual risk.
2616                  */
2617                 vmx->soft_vnmi_blocked = 1;
2618                 vmx->vnmi_blocked_time = 0;
2619         }
2620
2621         ++vcpu->stat.nmi_injections;
2622         if (vmx->rmode.vm86_active) {
2623                 vmx->rmode.irq.pending = true;
2624                 vmx->rmode.irq.vector = NMI_VECTOR;
2625                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2626                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2627                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2628                              INTR_INFO_VALID_MASK);
2629                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2630                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2631                 return;
2632         }
2633         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2634                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2635 }
2636
2637 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2638 {
2639         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2640                 return 0;
2641
2642         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2643                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2644                                 GUEST_INTR_STATE_NMI));
2645 }
2646
2647 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2648 {
2649         if (!cpu_has_virtual_nmis())
2650                 return to_vmx(vcpu)->soft_vnmi_blocked;
2651         else
2652                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2653                           GUEST_INTR_STATE_NMI);
2654 }
2655
2656 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2657 {
2658         struct vcpu_vmx *vmx = to_vmx(vcpu);
2659
2660         if (!cpu_has_virtual_nmis()) {
2661                 if (vmx->soft_vnmi_blocked != masked) {
2662                         vmx->soft_vnmi_blocked = masked;
2663                         vmx->vnmi_blocked_time = 0;
2664                 }
2665         } else {
2666                 if (masked)
2667                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2668                                       GUEST_INTR_STATE_NMI);
2669                 else
2670                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2671                                         GUEST_INTR_STATE_NMI);
2672         }
2673 }
2674
2675 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2676 {
2677         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2678                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2679                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2680 }
2681
2682 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2683 {
2684         int ret;
2685         struct kvm_userspace_memory_region tss_mem = {
2686                 .slot = TSS_PRIVATE_MEMSLOT,
2687                 .guest_phys_addr = addr,
2688                 .memory_size = PAGE_SIZE * 3,
2689                 .flags = 0,
2690         };
2691
2692         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2693         if (ret)
2694                 return ret;
2695         kvm->arch.tss_addr = addr;
2696         return 0;
2697 }
2698
2699 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2700                                   int vec, u32 err_code)
2701 {
2702         /*
2703          * Instruction with address size override prefix opcode 0x67
2704          * Cause the #SS fault with 0 error code in VM86 mode.
2705          */
2706         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2707                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2708                         return 1;
2709         /*
2710          * Forward all other exceptions that are valid in real mode.
2711          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2712          *        the required debugging infrastructure rework.
2713          */
2714         switch (vec) {
2715         case DB_VECTOR:
2716                 if (vcpu->guest_debug &
2717                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2718                         return 0;
2719                 kvm_queue_exception(vcpu, vec);
2720                 return 1;
2721         case BP_VECTOR:
2722                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2723                         return 0;
2724                 /* fall through */
2725         case DE_VECTOR:
2726         case OF_VECTOR:
2727         case BR_VECTOR:
2728         case UD_VECTOR:
2729         case DF_VECTOR:
2730         case SS_VECTOR:
2731         case GP_VECTOR:
2732         case MF_VECTOR:
2733                 kvm_queue_exception(vcpu, vec);
2734                 return 1;
2735         }
2736         return 0;
2737 }
2738
2739 /*
2740  * Trigger machine check on the host. We assume all the MSRs are already set up
2741  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2742  * We pass a fake environment to the machine check handler because we want
2743  * the guest to be always treated like user space, no matter what context
2744  * it used internally.
2745  */
2746 static void kvm_machine_check(void)
2747 {
2748 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2749         struct pt_regs regs = {
2750                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2751                 .flags = X86_EFLAGS_IF,
2752         };
2753
2754         do_machine_check(&regs, 0);
2755 #endif
2756 }
2757
2758 static int handle_machine_check(struct kvm_vcpu *vcpu)
2759 {
2760         /* already handled by vcpu_run */
2761         return 1;
2762 }
2763
2764 static int handle_exception(struct kvm_vcpu *vcpu)
2765 {
2766         struct vcpu_vmx *vmx = to_vmx(vcpu);
2767         struct kvm_run *kvm_run = vcpu->run;
2768         u32 intr_info, ex_no, error_code;
2769         unsigned long cr2, rip, dr6;
2770         u32 vect_info;
2771         enum emulation_result er;
2772
2773         vect_info = vmx->idt_vectoring_info;
2774         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2775
2776         if (is_machine_check(intr_info))
2777                 return handle_machine_check(vcpu);
2778
2779         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2780             !is_page_fault(intr_info)) {
2781                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2782                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2783                 vcpu->run->internal.ndata = 2;
2784                 vcpu->run->internal.data[0] = vect_info;
2785                 vcpu->run->internal.data[1] = intr_info;
2786                 return 0;
2787         }
2788
2789         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2790                 return 1;  /* already handled by vmx_vcpu_run() */
2791
2792         if (is_no_device(intr_info)) {
2793                 vmx_fpu_activate(vcpu);
2794                 return 1;
2795         }
2796
2797         if (is_invalid_opcode(intr_info)) {
2798                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2799                 if (er != EMULATE_DONE)
2800                         kvm_queue_exception(vcpu, UD_VECTOR);
2801                 return 1;
2802         }
2803
2804         error_code = 0;
2805         rip = kvm_rip_read(vcpu);
2806         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2807                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2808         if (is_page_fault(intr_info)) {
2809                 /* EPT won't cause page fault directly */
2810                 if (enable_ept)
2811                         BUG();
2812                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2813                 trace_kvm_page_fault(cr2, error_code);
2814
2815                 if (kvm_event_needs_reinjection(vcpu))
2816                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2817                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2818         }
2819
2820         if (vmx->rmode.vm86_active &&
2821             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2822                                                                 error_code)) {
2823                 if (vcpu->arch.halt_request) {
2824                         vcpu->arch.halt_request = 0;
2825                         return kvm_emulate_halt(vcpu);
2826                 }
2827                 return 1;
2828         }
2829
2830         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2831         switch (ex_no) {
2832         case DB_VECTOR:
2833                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2834                 if (!(vcpu->guest_debug &
2835                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2836                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2837                         kvm_queue_exception(vcpu, DB_VECTOR);
2838                         return 1;
2839                 }
2840                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2841                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2842                 /* fall through */
2843         case BP_VECTOR:
2844                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2845                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2846                 kvm_run->debug.arch.exception = ex_no;
2847                 break;
2848         default:
2849                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2850                 kvm_run->ex.exception = ex_no;
2851                 kvm_run->ex.error_code = error_code;
2852                 break;
2853         }
2854         return 0;
2855 }
2856
2857 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2858 {
2859         ++vcpu->stat.irq_exits;
2860         return 1;
2861 }
2862
2863 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2864 {
2865         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2866         return 0;
2867 }
2868
2869 static int handle_io(struct kvm_vcpu *vcpu)
2870 {
2871         unsigned long exit_qualification;
2872         int size, in, string;
2873         unsigned port;
2874
2875         ++vcpu->stat.io_exits;
2876         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2877         string = (exit_qualification & 16) != 0;
2878
2879         if (string) {
2880                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2881                         return 0;
2882                 return 1;
2883         }
2884
2885         size = (exit_qualification & 7) + 1;
2886         in = (exit_qualification & 8) != 0;
2887         port = exit_qualification >> 16;
2888
2889         skip_emulated_instruction(vcpu);
2890         return kvm_emulate_pio(vcpu, in, size, port);
2891 }
2892
2893 static void
2894 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2895 {
2896         /*
2897          * Patch in the VMCALL instruction:
2898          */
2899         hypercall[0] = 0x0f;
2900         hypercall[1] = 0x01;
2901         hypercall[2] = 0xc1;
2902 }
2903
2904 static int handle_cr(struct kvm_vcpu *vcpu)
2905 {
2906         unsigned long exit_qualification, val;
2907         int cr;
2908         int reg;
2909
2910         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2911         cr = exit_qualification & 15;
2912         reg = (exit_qualification >> 8) & 15;
2913         switch ((exit_qualification >> 4) & 3) {
2914         case 0: /* mov to cr */
2915                 val = kvm_register_read(vcpu, reg);
2916                 trace_kvm_cr_write(cr, val);
2917                 switch (cr) {
2918                 case 0:
2919                         kvm_set_cr0(vcpu, val);
2920                         skip_emulated_instruction(vcpu);
2921                         return 1;
2922                 case 3:
2923                         kvm_set_cr3(vcpu, val);
2924                         skip_emulated_instruction(vcpu);
2925                         return 1;
2926                 case 4:
2927                         kvm_set_cr4(vcpu, val);
2928                         skip_emulated_instruction(vcpu);
2929                         return 1;
2930                 case 8: {
2931                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2932                                 u8 cr8 = kvm_register_read(vcpu, reg);
2933                                 kvm_set_cr8(vcpu, cr8);
2934                                 skip_emulated_instruction(vcpu);
2935                                 if (irqchip_in_kernel(vcpu->kvm))
2936                                         return 1;
2937                                 if (cr8_prev <= cr8)
2938                                         return 1;
2939                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2940                                 return 0;
2941                         }
2942                 };
2943                 break;
2944         case 2: /* clts */
2945                 vmx_fpu_deactivate(vcpu);
2946                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2947                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2948                 vmx_fpu_activate(vcpu);
2949                 skip_emulated_instruction(vcpu);
2950                 return 1;
2951         case 1: /*mov from cr*/
2952                 switch (cr) {
2953                 case 3:
2954                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2955                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2956                         skip_emulated_instruction(vcpu);
2957                         return 1;
2958                 case 8:
2959                         val = kvm_get_cr8(vcpu);
2960                         kvm_register_write(vcpu, reg, val);
2961                         trace_kvm_cr_read(cr, val);
2962                         skip_emulated_instruction(vcpu);
2963                         return 1;
2964                 }
2965                 break;
2966         case 3: /* lmsw */
2967                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2968
2969                 skip_emulated_instruction(vcpu);
2970                 return 1;
2971         default:
2972                 break;
2973         }
2974         vcpu->run->exit_reason = 0;
2975         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2976                (int)(exit_qualification >> 4) & 3, cr);
2977         return 0;
2978 }
2979
2980 static int handle_dr(struct kvm_vcpu *vcpu)
2981 {
2982         unsigned long exit_qualification;
2983         unsigned long val;
2984         int dr, reg;
2985
2986         if (!kvm_require_cpl(vcpu, 0))
2987                 return 1;
2988         dr = vmcs_readl(GUEST_DR7);
2989         if (dr & DR7_GD) {
2990                 /*
2991                  * As the vm-exit takes precedence over the debug trap, we
2992                  * need to emulate the latter, either for the host or the
2993                  * guest debugging itself.
2994                  */
2995                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2996                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
2997                         vcpu->run->debug.arch.dr7 = dr;
2998                         vcpu->run->debug.arch.pc =
2999                                 vmcs_readl(GUEST_CS_BASE) +
3000                                 vmcs_readl(GUEST_RIP);
3001                         vcpu->run->debug.arch.exception = DB_VECTOR;
3002                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3003                         return 0;
3004                 } else {
3005                         vcpu->arch.dr7 &= ~DR7_GD;
3006                         vcpu->arch.dr6 |= DR6_BD;
3007                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3008                         kvm_queue_exception(vcpu, DB_VECTOR);
3009                         return 1;
3010                 }
3011         }
3012
3013         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3014         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3015         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3016         if (exit_qualification & TYPE_MOV_FROM_DR) {
3017                 switch (dr) {
3018                 case 0 ... 3:
3019                         val = vcpu->arch.db[dr];
3020                         break;
3021                 case 6:
3022                         val = vcpu->arch.dr6;
3023                         break;
3024                 case 7:
3025                         val = vcpu->arch.dr7;
3026                         break;
3027                 default:
3028                         val = 0;
3029                 }
3030                 kvm_register_write(vcpu, reg, val);
3031         } else {
3032                 val = vcpu->arch.regs[reg];
3033                 switch (dr) {
3034                 case 0 ... 3:
3035                         vcpu->arch.db[dr] = val;
3036                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3037                                 vcpu->arch.eff_db[dr] = val;
3038                         break;
3039                 case 4 ... 5:
3040                         if (vcpu->arch.cr4 & X86_CR4_DE)
3041                                 kvm_queue_exception(vcpu, UD_VECTOR);
3042                         break;
3043                 case 6:
3044                         if (val & 0xffffffff00000000ULL) {
3045                                 kvm_queue_exception(vcpu, GP_VECTOR);
3046                                 break;
3047                         }
3048                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3049                         break;
3050                 case 7:
3051                         if (val & 0xffffffff00000000ULL) {
3052                                 kvm_queue_exception(vcpu, GP_VECTOR);
3053                                 break;
3054                         }
3055                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3056                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3057                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3058                                 vcpu->arch.switch_db_regs =
3059                                         (val & DR7_BP_EN_MASK);
3060                         }
3061                         break;
3062                 }
3063         }
3064         skip_emulated_instruction(vcpu);
3065         return 1;
3066 }
3067
3068 static int handle_cpuid(struct kvm_vcpu *vcpu)
3069 {
3070         kvm_emulate_cpuid(vcpu);
3071         return 1;
3072 }
3073
3074 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3075 {
3076         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3077         u64 data;
3078
3079         if (vmx_get_msr(vcpu, ecx, &data)) {
3080                 kvm_inject_gp(vcpu, 0);
3081                 return 1;
3082         }
3083
3084         trace_kvm_msr_read(ecx, data);
3085
3086         /* FIXME: handling of bits 32:63 of rax, rdx */
3087         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3088         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3089         skip_emulated_instruction(vcpu);
3090         return 1;
3091 }
3092
3093 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3094 {
3095         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3096         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3097                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3098
3099         trace_kvm_msr_write(ecx, data);
3100
3101         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3102                 kvm_inject_gp(vcpu, 0);
3103                 return 1;
3104         }
3105
3106         skip_emulated_instruction(vcpu);
3107         return 1;
3108 }
3109
3110 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3111 {
3112         return 1;
3113 }
3114
3115 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3116 {
3117         u32 cpu_based_vm_exec_control;
3118
3119         /* clear pending irq */
3120         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3121         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3122         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3123
3124         ++vcpu->stat.irq_window_exits;
3125
3126         /*
3127          * If the user space waits to inject interrupts, exit as soon as
3128          * possible
3129          */
3130         if (!irqchip_in_kernel(vcpu->kvm) &&
3131             vcpu->run->request_interrupt_window &&
3132             !kvm_cpu_has_interrupt(vcpu)) {
3133                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3134                 return 0;
3135         }
3136         return 1;
3137 }
3138
3139 static int handle_halt(struct kvm_vcpu *vcpu)
3140 {
3141         skip_emulated_instruction(vcpu);
3142         return kvm_emulate_halt(vcpu);
3143 }
3144
3145 static int handle_vmcall(struct kvm_vcpu *vcpu)
3146 {
3147         skip_emulated_instruction(vcpu);
3148         kvm_emulate_hypercall(vcpu);
3149         return 1;
3150 }
3151
3152 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3153 {
3154         kvm_queue_exception(vcpu, UD_VECTOR);
3155         return 1;
3156 }
3157
3158 static int handle_invlpg(struct kvm_vcpu *vcpu)
3159 {
3160         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3161
3162         kvm_mmu_invlpg(vcpu, exit_qualification);
3163         skip_emulated_instruction(vcpu);
3164         return 1;
3165 }
3166
3167 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3168 {
3169         skip_emulated_instruction(vcpu);
3170         /* TODO: Add support for VT-d/pass-through device */
3171         return 1;
3172 }
3173
3174 static int handle_apic_access(struct kvm_vcpu *vcpu)
3175 {
3176         unsigned long exit_qualification;
3177         enum emulation_result er;
3178         unsigned long offset;
3179
3180         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3181         offset = exit_qualification & 0xffful;
3182
3183         er = emulate_instruction(vcpu, 0, 0, 0);
3184
3185         if (er !=  EMULATE_DONE) {
3186                 printk(KERN_ERR
3187                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3188                        offset);
3189                 return -ENOEXEC;
3190         }
3191         return 1;
3192 }
3193
3194 static int handle_task_switch(struct kvm_vcpu *vcpu)
3195 {
3196         struct vcpu_vmx *vmx = to_vmx(vcpu);
3197         unsigned long exit_qualification;
3198         u16 tss_selector;
3199         int reason, type, idt_v;
3200
3201         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3202         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3203
3204         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3205
3206         reason = (u32)exit_qualification >> 30;
3207         if (reason == TASK_SWITCH_GATE && idt_v) {
3208                 switch (type) {
3209                 case INTR_TYPE_NMI_INTR:
3210                         vcpu->arch.nmi_injected = false;
3211                         if (cpu_has_virtual_nmis())
3212                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3213                                               GUEST_INTR_STATE_NMI);
3214                         break;
3215                 case INTR_TYPE_EXT_INTR:
3216                 case INTR_TYPE_SOFT_INTR:
3217                         kvm_clear_interrupt_queue(vcpu);
3218                         break;
3219                 case INTR_TYPE_HARD_EXCEPTION:
3220                 case INTR_TYPE_SOFT_EXCEPTION:
3221                         kvm_clear_exception_queue(vcpu);
3222                         break;
3223                 default:
3224                         break;
3225                 }
3226         }
3227         tss_selector = exit_qualification;
3228
3229         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3230                        type != INTR_TYPE_EXT_INTR &&
3231                        type != INTR_TYPE_NMI_INTR))
3232                 skip_emulated_instruction(vcpu);
3233
3234         if (!kvm_task_switch(vcpu, tss_selector, reason))
3235                 return 0;
3236
3237         /* clear all local breakpoint enable flags */
3238         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3239
3240         /*
3241          * TODO: What about debug traps on tss switch?
3242          *       Are we supposed to inject them and update dr6?
3243          */
3244
3245         return 1;
3246 }
3247
3248 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3249 {
3250         unsigned long exit_qualification;
3251         gpa_t gpa;
3252         int gla_validity;
3253
3254         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3255
3256         if (exit_qualification & (1 << 6)) {
3257                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3258                 return -EINVAL;
3259         }
3260
3261         gla_validity = (exit_qualification >> 7) & 0x3;
3262         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3263                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3264                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3265                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3266                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3267                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3268                         (long unsigned int)exit_qualification);
3269                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3270                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3271                 return 0;
3272         }
3273
3274         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3275         trace_kvm_page_fault(gpa, exit_qualification);
3276         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3277 }
3278
3279 static u64 ept_rsvd_mask(u64 spte, int level)
3280 {
3281         int i;
3282         u64 mask = 0;
3283
3284         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3285                 mask |= (1ULL << i);
3286
3287         if (level > 2)
3288                 /* bits 7:3 reserved */
3289                 mask |= 0xf8;
3290         else if (level == 2) {
3291                 if (spte & (1ULL << 7))
3292                         /* 2MB ref, bits 20:12 reserved */
3293                         mask |= 0x1ff000;
3294                 else
3295                         /* bits 6:3 reserved */
3296                         mask |= 0x78;
3297         }
3298
3299         return mask;
3300 }
3301
3302 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3303                                        int level)
3304 {
3305         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3306
3307         /* 010b (write-only) */
3308         WARN_ON((spte & 0x7) == 0x2);
3309
3310         /* 110b (write/execute) */
3311         WARN_ON((spte & 0x7) == 0x6);
3312
3313         /* 100b (execute-only) and value not supported by logical processor */
3314         if (!cpu_has_vmx_ept_execute_only())
3315                 WARN_ON((spte & 0x7) == 0x4);
3316
3317         /* not 000b */
3318         if ((spte & 0x7)) {
3319                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3320
3321                 if (rsvd_bits != 0) {
3322                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3323                                          __func__, rsvd_bits);
3324                         WARN_ON(1);
3325                 }
3326
3327                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3328                         u64 ept_mem_type = (spte & 0x38) >> 3;
3329
3330                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3331                             ept_mem_type == 7) {
3332                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3333                                                 __func__, ept_mem_type);
3334                                 WARN_ON(1);
3335                         }
3336                 }
3337         }
3338 }
3339
3340 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3341 {
3342         u64 sptes[4];
3343         int nr_sptes, i;
3344         gpa_t gpa;
3345
3346         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3347
3348         printk(KERN_ERR "EPT: Misconfiguration.\n");
3349         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3350
3351         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3352
3353         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3354                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3355
3356         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3357         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3358
3359         return 0;
3360 }
3361
3362 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3363 {
3364         u32 cpu_based_vm_exec_control;
3365
3366         /* clear pending NMI */
3367         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3368         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3369         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3370         ++vcpu->stat.nmi_window_exits;
3371
3372         return 1;
3373 }
3374
3375 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3376 {
3377         struct vcpu_vmx *vmx = to_vmx(vcpu);
3378         enum emulation_result err = EMULATE_DONE;
3379         int ret = 1;
3380
3381         while (!guest_state_valid(vcpu)) {
3382                 err = emulate_instruction(vcpu, 0, 0, 0);
3383
3384                 if (err == EMULATE_DO_MMIO) {
3385                         ret = 0;
3386                         goto out;
3387                 }
3388
3389                 if (err != EMULATE_DONE) {
3390                         kvm_report_emulation_failure(vcpu, "emulation failure");
3391                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3392                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3393                         vcpu->run->internal.ndata = 0;
3394                         ret = 0;
3395                         goto out;
3396                 }
3397
3398                 if (signal_pending(current))
3399                         goto out;
3400                 if (need_resched())
3401                         schedule();
3402         }
3403
3404         vmx->emulation_required = 0;
3405 out:
3406         return ret;
3407 }
3408
3409 /*
3410  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3411  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3412  */
3413 static int handle_pause(struct kvm_vcpu *vcpu)
3414 {
3415         skip_emulated_instruction(vcpu);
3416         kvm_vcpu_on_spin(vcpu);
3417
3418         return 1;
3419 }
3420
3421 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3422 {
3423         kvm_queue_exception(vcpu, UD_VECTOR);
3424         return 1;
3425 }
3426
3427 /*
3428  * The exit handlers return 1 if the exit was handled fully and guest execution
3429  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3430  * to be done to userspace and return 0.
3431  */
3432 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3433         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3434         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3435         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3436         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3437         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3438         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3439         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3440         [EXIT_REASON_CPUID]                   = handle_cpuid,
3441         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3442         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3443         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3444         [EXIT_REASON_HLT]                     = handle_halt,
3445         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3446         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3447         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3448         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3449         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3450         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3451         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3452         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3453         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3454         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3455         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3456         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3457         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3458         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3459         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3460         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3461         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3462         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3463         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3464         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3465         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3466 };
3467
3468 static const int kvm_vmx_max_exit_handlers =
3469         ARRAY_SIZE(kvm_vmx_exit_handlers);
3470
3471 /*
3472  * The guest has exited.  See if we can fix it or if we need userspace
3473  * assistance.
3474  */
3475 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3476 {
3477         struct vcpu_vmx *vmx = to_vmx(vcpu);
3478         u32 exit_reason = vmx->exit_reason;
3479         u32 vectoring_info = vmx->idt_vectoring_info;
3480
3481         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3482
3483         /* If guest state is invalid, start emulating */
3484         if (vmx->emulation_required && emulate_invalid_guest_state)
3485                 return handle_invalid_guest_state(vcpu);
3486
3487         /* Access CR3 don't cause VMExit in paging mode, so we need
3488          * to sync with guest real CR3. */
3489         if (enable_ept && is_paging(vcpu))
3490                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3491
3492         if (unlikely(vmx->fail)) {
3493                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3494                 vcpu->run->fail_entry.hardware_entry_failure_reason
3495                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3496                 return 0;
3497         }
3498
3499         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3500                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3501                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3502                         exit_reason != EXIT_REASON_TASK_SWITCH))
3503                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3504                        "(0x%x) and exit reason is 0x%x\n",
3505                        __func__, vectoring_info, exit_reason);
3506
3507         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3508                 if (vmx_interrupt_allowed(vcpu)) {
3509                         vmx->soft_vnmi_blocked = 0;
3510                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3511                            vcpu->arch.nmi_pending) {
3512                         /*
3513                          * This CPU don't support us in finding the end of an
3514                          * NMI-blocked window if the guest runs with IRQs
3515                          * disabled. So we pull the trigger after 1 s of
3516                          * futile waiting, but inform the user about this.
3517                          */
3518                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3519                                "state on VCPU %d after 1 s timeout\n",
3520                                __func__, vcpu->vcpu_id);
3521                         vmx->soft_vnmi_blocked = 0;
3522                 }
3523         }
3524
3525         if (exit_reason < kvm_vmx_max_exit_handlers
3526             && kvm_vmx_exit_handlers[exit_reason])
3527                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3528         else {
3529                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3530                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3531         }
3532         return 0;
3533 }
3534
3535 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3536 {
3537         if (irr == -1 || tpr < irr) {
3538                 vmcs_write32(TPR_THRESHOLD, 0);
3539                 return;
3540         }
3541
3542         vmcs_write32(TPR_THRESHOLD, irr);
3543 }
3544
3545 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3546 {
3547         u32 exit_intr_info;
3548         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3549         bool unblock_nmi;
3550         u8 vector;
3551         int type;
3552         bool idtv_info_valid;
3553
3554         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3555
3556         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3557
3558         /* Handle machine checks before interrupts are enabled */
3559         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3560             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3561                 && is_machine_check(exit_intr_info)))
3562                 kvm_machine_check();
3563
3564         /* We need to handle NMIs before interrupts are enabled */
3565         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3566             (exit_intr_info & INTR_INFO_VALID_MASK))
3567                 asm("int $2");
3568
3569         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3570
3571         if (cpu_has_virtual_nmis()) {
3572                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3573                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3574                 /*
3575                  * SDM 3: 27.7.1.2 (September 2008)
3576                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3577                  * a guest IRET fault.
3578                  * SDM 3: 23.2.2 (September 2008)
3579                  * Bit 12 is undefined in any of the following cases:
3580                  *  If the VM exit sets the valid bit in the IDT-vectoring
3581                  *   information field.
3582                  *  If the VM exit is due to a double fault.
3583                  */
3584                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3585                     vector != DF_VECTOR && !idtv_info_valid)
3586                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3587                                       GUEST_INTR_STATE_NMI);
3588         } else if (unlikely(vmx->soft_vnmi_blocked))
3589                 vmx->vnmi_blocked_time +=
3590                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3591
3592         vmx->vcpu.arch.nmi_injected = false;
3593         kvm_clear_exception_queue(&vmx->vcpu);
3594         kvm_clear_interrupt_queue(&vmx->vcpu);
3595
3596         if (!idtv_info_valid)
3597                 return;
3598
3599         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3600         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3601
3602         switch (type) {
3603         case INTR_TYPE_NMI_INTR:
3604                 vmx->vcpu.arch.nmi_injected = true;
3605                 /*
3606                  * SDM 3: 27.7.1.2 (September 2008)
3607                  * Clear bit "block by NMI" before VM entry if a NMI
3608                  * delivery faulted.
3609                  */
3610                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3611                                 GUEST_INTR_STATE_NMI);
3612                 break;
3613         case INTR_TYPE_SOFT_EXCEPTION:
3614                 vmx->vcpu.arch.event_exit_inst_len =
3615                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3616                 /* fall through */
3617         case INTR_TYPE_HARD_EXCEPTION:
3618                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3619                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3620                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3621                 } else
3622                         kvm_queue_exception(&vmx->vcpu, vector);
3623                 break;
3624         case INTR_TYPE_SOFT_INTR:
3625                 vmx->vcpu.arch.event_exit_inst_len =
3626                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3627                 /* fall through */
3628         case INTR_TYPE_EXT_INTR:
3629                 kvm_queue_interrupt(&vmx->vcpu, vector,
3630                         type == INTR_TYPE_SOFT_INTR);
3631                 break;
3632         default:
3633                 break;
3634         }
3635 }
3636
3637 /*
3638  * Failure to inject an interrupt should give us the information
3639  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3640  * when fetching the interrupt redirection bitmap in the real-mode
3641  * tss, this doesn't happen.  So we do it ourselves.
3642  */
3643 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3644 {
3645         vmx->rmode.irq.pending = 0;
3646         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3647                 return;
3648         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3649         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3650                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3651                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3652                 return;
3653         }
3654         vmx->idt_vectoring_info =
3655                 VECTORING_INFO_VALID_MASK
3656                 | INTR_TYPE_EXT_INTR
3657                 | vmx->rmode.irq.vector;
3658 }
3659
3660 #ifdef CONFIG_X86_64
3661 #define R "r"
3662 #define Q "q"
3663 #else
3664 #define R "e"
3665 #define Q "l"
3666 #endif
3667
3668 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3669 {
3670         struct vcpu_vmx *vmx = to_vmx(vcpu);
3671
3672         /* Record the guest's net vcpu time for enforced NMI injections. */
3673         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3674                 vmx->entry_time = ktime_get();
3675
3676         /* Don't enter VMX if guest state is invalid, let the exit handler
3677            start emulation until we arrive back to a valid state */
3678         if (vmx->emulation_required && emulate_invalid_guest_state)
3679                 return;
3680
3681         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3682                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3683         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3684                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3685
3686         /* When single-stepping over STI and MOV SS, we must clear the
3687          * corresponding interruptibility bits in the guest state. Otherwise
3688          * vmentry fails as it then expects bit 14 (BS) in pending debug
3689          * exceptions being set, but that's not correct for the guest debugging
3690          * case. */
3691         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3692                 vmx_set_interrupt_shadow(vcpu, 0);
3693
3694         /*
3695          * Loading guest fpu may have cleared host cr0.ts
3696          */
3697         vmcs_writel(HOST_CR0, read_cr0());
3698
3699         if (vcpu->arch.switch_db_regs)
3700                 set_debugreg(vcpu->arch.dr6, 6);
3701
3702         asm(
3703                 /* Store host registers */
3704                 "push %%"R"dx; push %%"R"bp;"
3705                 "push %%"R"cx \n\t"
3706                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3707                 "je 1f \n\t"
3708                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3709                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3710                 "1: \n\t"
3711                 /* Reload cr2 if changed */
3712                 "mov %c[cr2](%0), %%"R"ax \n\t"
3713                 "mov %%cr2, %%"R"dx \n\t"
3714                 "cmp %%"R"ax, %%"R"dx \n\t"
3715                 "je 2f \n\t"
3716                 "mov %%"R"ax, %%cr2 \n\t"
3717                 "2: \n\t"
3718                 /* Check if vmlaunch of vmresume is needed */
3719                 "cmpl $0, %c[launched](%0) \n\t"
3720                 /* Load guest registers.  Don't clobber flags. */
3721                 "mov %c[rax](%0), %%"R"ax \n\t"
3722                 "mov %c[rbx](%0), %%"R"bx \n\t"
3723                 "mov %c[rdx](%0), %%"R"dx \n\t"
3724                 "mov %c[rsi](%0), %%"R"si \n\t"
3725                 "mov %c[rdi](%0), %%"R"di \n\t"
3726                 "mov %c[rbp](%0), %%"R"bp \n\t"
3727 #ifdef CONFIG_X86_64
3728                 "mov %c[r8](%0),  %%r8  \n\t"
3729                 "mov %c[r9](%0),  %%r9  \n\t"
3730                 "mov %c[r10](%0), %%r10 \n\t"
3731                 "mov %c[r11](%0), %%r11 \n\t"
3732                 "mov %c[r12](%0), %%r12 \n\t"
3733                 "mov %c[r13](%0), %%r13 \n\t"
3734                 "mov %c[r14](%0), %%r14 \n\t"
3735                 "mov %c[r15](%0), %%r15 \n\t"
3736 #endif
3737                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3738
3739                 /* Enter guest mode */
3740                 "jne .Llaunched \n\t"
3741                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3742                 "jmp .Lkvm_vmx_return \n\t"
3743                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3744                 ".Lkvm_vmx_return: "
3745                 /* Save guest registers, load host registers, keep flags */
3746                 "xchg %0,     (%%"R"sp) \n\t"
3747                 "mov %%"R"ax, %c[rax](%0) \n\t"
3748                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3749                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3750                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3751                 "mov %%"R"si, %c[rsi](%0) \n\t"
3752                 "mov %%"R"di, %c[rdi](%0) \n\t"
3753                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3754 #ifdef CONFIG_X86_64
3755                 "mov %%r8,  %c[r8](%0) \n\t"
3756                 "mov %%r9,  %c[r9](%0) \n\t"
3757                 "mov %%r10, %c[r10](%0) \n\t"
3758                 "mov %%r11, %c[r11](%0) \n\t"
3759                 "mov %%r12, %c[r12](%0) \n\t"
3760                 "mov %%r13, %c[r13](%0) \n\t"
3761                 "mov %%r14, %c[r14](%0) \n\t"
3762                 "mov %%r15, %c[r15](%0) \n\t"
3763 #endif
3764                 "mov %%cr2, %%"R"ax   \n\t"
3765                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3766
3767                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3768                 "setbe %c[fail](%0) \n\t"
3769               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3770                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3771                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3772                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3773                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3774                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3775                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3776                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3777                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3778                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3779                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3780 #ifdef CONFIG_X86_64
3781                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3782                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3783                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3784                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3785                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3786                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3787                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3788                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3789 #endif
3790                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3791               : "cc", "memory"
3792                 , R"bx", R"di", R"si"
3793 #ifdef CONFIG_X86_64
3794                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3795 #endif
3796               );
3797
3798         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3799                                   | (1 << VCPU_EXREG_PDPTR));
3800         vcpu->arch.regs_dirty = 0;
3801
3802         if (vcpu->arch.switch_db_regs)
3803                 get_debugreg(vcpu->arch.dr6, 6);
3804
3805         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3806         if (vmx->rmode.irq.pending)
3807                 fixup_rmode_irq(vmx);
3808
3809         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3810         vmx->launched = 1;
3811
3812         vmx_complete_interrupts(vmx);
3813 }
3814
3815 #undef R
3816 #undef Q
3817
3818 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3819 {
3820         struct vcpu_vmx *vmx = to_vmx(vcpu);
3821
3822         if (vmx->vmcs) {
3823                 vcpu_clear(vmx);
3824                 free_vmcs(vmx->vmcs);
3825                 vmx->vmcs = NULL;
3826         }
3827 }
3828
3829 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3830 {
3831         struct vcpu_vmx *vmx = to_vmx(vcpu);
3832
3833         spin_lock(&vmx_vpid_lock);
3834         if (vmx->vpid != 0)
3835                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3836         spin_unlock(&vmx_vpid_lock);
3837         vmx_free_vmcs(vcpu);
3838         kfree(vmx->guest_msrs);
3839         kvm_vcpu_uninit(vcpu);
3840         kmem_cache_free(kvm_vcpu_cache, vmx);
3841 }
3842
3843 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3844 {
3845         int err;
3846         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3847         int cpu;
3848
3849         if (!vmx)
3850                 return ERR_PTR(-ENOMEM);
3851
3852         allocate_vpid(vmx);
3853
3854         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3855         if (err)
3856                 goto free_vcpu;
3857
3858         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3859         if (!vmx->guest_msrs) {
3860                 err = -ENOMEM;
3861                 goto uninit_vcpu;
3862         }
3863
3864         vmx->vmcs = alloc_vmcs();
3865         if (!vmx->vmcs)
3866                 goto free_msrs;
3867
3868         vmcs_clear(vmx->vmcs);
3869
3870         cpu = get_cpu();
3871         vmx_vcpu_load(&vmx->vcpu, cpu);
3872         err = vmx_vcpu_setup(vmx);
3873         vmx_vcpu_put(&vmx->vcpu);
3874         put_cpu();
3875         if (err)
3876                 goto free_vmcs;
3877         if (vm_need_virtualize_apic_accesses(kvm))
3878                 if (alloc_apic_access_page(kvm) != 0)
3879                         goto free_vmcs;
3880
3881         if (enable_ept) {
3882                 if (!kvm->arch.ept_identity_map_addr)
3883                         kvm->arch.ept_identity_map_addr =
3884                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3885                 if (alloc_identity_pagetable(kvm) != 0)
3886                         goto free_vmcs;
3887         }
3888
3889         return &vmx->vcpu;
3890
3891 free_vmcs:
3892         free_vmcs(vmx->vmcs);
3893 free_msrs:
3894         kfree(vmx->guest_msrs);
3895 uninit_vcpu:
3896         kvm_vcpu_uninit(&vmx->vcpu);
3897 free_vcpu:
3898         kmem_cache_free(kvm_vcpu_cache, vmx);
3899         return ERR_PTR(err);
3900 }
3901
3902 static void __init vmx_check_processor_compat(void *rtn)
3903 {
3904         struct vmcs_config vmcs_conf;
3905
3906         *(int *)rtn = 0;
3907         if (setup_vmcs_config(&vmcs_conf) < 0)
3908                 *(int *)rtn = -EIO;
3909         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3910                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3911                                 smp_processor_id());
3912                 *(int *)rtn = -EIO;
3913         }
3914 }
3915
3916 static int get_ept_level(void)
3917 {
3918         return VMX_EPT_DEFAULT_GAW + 1;
3919 }
3920
3921 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3922 {
3923         u64 ret;
3924
3925         /* For VT-d and EPT combination
3926          * 1. MMIO: always map as UC
3927          * 2. EPT with VT-d:
3928          *   a. VT-d without snooping control feature: can't guarantee the
3929          *      result, try to trust guest.
3930          *   b. VT-d with snooping control feature: snooping control feature of
3931          *      VT-d engine can guarantee the cache correctness. Just set it
3932          *      to WB to keep consistent with host. So the same as item 3.
3933          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3934          *    consistent with host MTRR
3935          */
3936         if (is_mmio)
3937                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3938         else if (vcpu->kvm->arch.iommu_domain &&
3939                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3940                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3941                       VMX_EPT_MT_EPTE_SHIFT;
3942         else
3943                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3944                         | VMX_EPT_IGMT_BIT;
3945
3946         return ret;
3947 }
3948
3949 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3950         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3951         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3952         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3953         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3954         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3955         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3956         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3957         { EXIT_REASON_CPUID,                   "cpuid" },
3958         { EXIT_REASON_MSR_READ,                "rdmsr" },
3959         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3960         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3961         { EXIT_REASON_HLT,                     "halt" },
3962         { EXIT_REASON_INVLPG,                  "invlpg" },
3963         { EXIT_REASON_VMCALL,                  "hypercall" },
3964         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3965         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3966         { EXIT_REASON_WBINVD,                  "wbinvd" },
3967         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3968         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3969         { -1, NULL }
3970 };
3971
3972 static bool vmx_gb_page_enable(void)
3973 {
3974         return false;
3975 }
3976
3977 static struct kvm_x86_ops vmx_x86_ops = {
3978         .cpu_has_kvm_support = cpu_has_kvm_support,
3979         .disabled_by_bios = vmx_disabled_by_bios,
3980         .hardware_setup = hardware_setup,
3981         .hardware_unsetup = hardware_unsetup,
3982         .check_processor_compatibility = vmx_check_processor_compat,
3983         .hardware_enable = hardware_enable,
3984         .hardware_disable = hardware_disable,
3985         .cpu_has_accelerated_tpr = report_flexpriority,
3986
3987         .vcpu_create = vmx_create_vcpu,
3988         .vcpu_free = vmx_free_vcpu,
3989         .vcpu_reset = vmx_vcpu_reset,
3990
3991         .prepare_guest_switch = vmx_save_host_state,
3992         .vcpu_load = vmx_vcpu_load,
3993         .vcpu_put = vmx_vcpu_put,
3994
3995         .set_guest_debug = set_guest_debug,
3996         .get_msr = vmx_get_msr,
3997         .set_msr = vmx_set_msr,
3998         .get_segment_base = vmx_get_segment_base,
3999         .get_segment = vmx_get_segment,
4000         .set_segment = vmx_set_segment,
4001         .get_cpl = vmx_get_cpl,
4002         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4003         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4004         .set_cr0 = vmx_set_cr0,
4005         .set_cr3 = vmx_set_cr3,
4006         .set_cr4 = vmx_set_cr4,
4007         .set_efer = vmx_set_efer,
4008         .get_idt = vmx_get_idt,
4009         .set_idt = vmx_set_idt,
4010         .get_gdt = vmx_get_gdt,
4011         .set_gdt = vmx_set_gdt,
4012         .cache_reg = vmx_cache_reg,
4013         .get_rflags = vmx_get_rflags,
4014         .set_rflags = vmx_set_rflags,
4015
4016         .tlb_flush = vmx_flush_tlb,
4017
4018         .run = vmx_vcpu_run,
4019         .handle_exit = vmx_handle_exit,
4020         .skip_emulated_instruction = skip_emulated_instruction,
4021         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4022         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4023         .patch_hypercall = vmx_patch_hypercall,
4024         .set_irq = vmx_inject_irq,
4025         .set_nmi = vmx_inject_nmi,
4026         .queue_exception = vmx_queue_exception,
4027         .interrupt_allowed = vmx_interrupt_allowed,
4028         .nmi_allowed = vmx_nmi_allowed,
4029         .get_nmi_mask = vmx_get_nmi_mask,
4030         .set_nmi_mask = vmx_set_nmi_mask,
4031         .enable_nmi_window = enable_nmi_window,
4032         .enable_irq_window = enable_irq_window,
4033         .update_cr8_intercept = update_cr8_intercept,
4034
4035         .set_tss_addr = vmx_set_tss_addr,
4036         .get_tdp_level = get_ept_level,
4037         .get_mt_mask = vmx_get_mt_mask,
4038
4039         .exit_reasons_str = vmx_exit_reasons_str,
4040         .gb_page_enable = vmx_gb_page_enable,
4041 };
4042
4043 static int __init vmx_init(void)
4044 {
4045         int r, i;
4046
4047         rdmsrl_safe(MSR_EFER, &host_efer);
4048
4049         for (i = 0; i < NR_VMX_MSR; ++i)
4050                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4051
4052         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4053         if (!vmx_io_bitmap_a)
4054                 return -ENOMEM;
4055
4056         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4057         if (!vmx_io_bitmap_b) {
4058                 r = -ENOMEM;
4059                 goto out;
4060         }
4061
4062         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4063         if (!vmx_msr_bitmap_legacy) {
4064                 r = -ENOMEM;
4065                 goto out1;
4066         }
4067
4068         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4069         if (!vmx_msr_bitmap_longmode) {
4070                 r = -ENOMEM;
4071                 goto out2;
4072         }
4073
4074         /*
4075          * Allow direct access to the PC debug port (it is often used for I/O
4076          * delays, but the vmexits simply slow things down).
4077          */
4078         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4079         clear_bit(0x80, vmx_io_bitmap_a);
4080
4081         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4082
4083         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4084         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4085
4086         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4087
4088         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4089         if (r)
4090                 goto out3;
4091
4092         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4093         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4094         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4095         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4096         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4097         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4098
4099         if (enable_ept) {
4100                 bypass_guest_pf = 0;
4101                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4102                         VMX_EPT_WRITABLE_MASK);
4103                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4104                                 VMX_EPT_EXECUTABLE_MASK);
4105                 kvm_enable_tdp();
4106         } else
4107                 kvm_disable_tdp();
4108
4109         if (bypass_guest_pf)
4110                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4111
4112         return 0;
4113
4114 out3:
4115         free_page((unsigned long)vmx_msr_bitmap_longmode);
4116 out2:
4117         free_page((unsigned long)vmx_msr_bitmap_legacy);
4118 out1:
4119         free_page((unsigned long)vmx_io_bitmap_b);
4120 out:
4121         free_page((unsigned long)vmx_io_bitmap_a);
4122         return r;
4123 }
4124
4125 static void __exit vmx_exit(void)
4126 {
4127         free_page((unsigned long)vmx_msr_bitmap_legacy);
4128         free_page((unsigned long)vmx_msr_bitmap_longmode);
4129         free_page((unsigned long)vmx_io_bitmap_b);
4130         free_page((unsigned long)vmx_io_bitmap_a);
4131
4132         kvm_exit();
4133 }
4134
4135 module_init(vmx_init)
4136 module_exit(vmx_exit)