]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107         int nr;
108         u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112         struct user_return_notifier urn;
113         bool registered;
114         struct kvm_shared_msr_values {
115                 u64 host;
116                 u64 curr;
117         } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124         { "pf_fixed", VCPU_STAT(pf_fixed) },
125         { "pf_guest", VCPU_STAT(pf_guest) },
126         { "tlb_flush", VCPU_STAT(tlb_flush) },
127         { "invlpg", VCPU_STAT(invlpg) },
128         { "exits", VCPU_STAT(exits) },
129         { "io_exits", VCPU_STAT(io_exits) },
130         { "mmio_exits", VCPU_STAT(mmio_exits) },
131         { "signal_exits", VCPU_STAT(signal_exits) },
132         { "irq_window", VCPU_STAT(irq_window_exits) },
133         { "nmi_window", VCPU_STAT(nmi_window_exits) },
134         { "halt_exits", VCPU_STAT(halt_exits) },
135         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136         { "hypercalls", VCPU_STAT(hypercalls) },
137         { "request_irq", VCPU_STAT(request_irq_exits) },
138         { "irq_exits", VCPU_STAT(irq_exits) },
139         { "host_state_reload", VCPU_STAT(host_state_reload) },
140         { "efer_reload", VCPU_STAT(efer_reload) },
141         { "fpu_reload", VCPU_STAT(fpu_reload) },
142         { "insn_emulation", VCPU_STAT(insn_emulation) },
143         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144         { "irq_injections", VCPU_STAT(irq_injections) },
145         { "nmi_injections", VCPU_STAT(nmi_injections) },
146         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150         { "mmu_flooded", VM_STAT(mmu_flooded) },
151         { "mmu_recycled", VM_STAT(mmu_recycled) },
152         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153         { "mmu_unsync", VM_STAT(mmu_unsync) },
154         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155         { "largepages", VM_STAT(lpages) },
156         { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167                 vcpu->arch.apf.gfns[i] = ~0;
168 }
169
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172         unsigned slot;
173         struct kvm_shared_msrs *locals
174                 = container_of(urn, struct kvm_shared_msrs, urn);
175         struct kvm_shared_msr_values *values;
176
177         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178                 values = &locals->values[slot];
179                 if (values->host != values->curr) {
180                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
181                         values->curr = values->host;
182                 }
183         }
184         locals->registered = false;
185         user_return_notifier_unregister(urn);
186 }
187
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190         struct kvm_shared_msrs *smsr;
191         u64 value;
192
193         smsr = &__get_cpu_var(shared_msrs);
194         /* only read, and nobody should modify it at this time,
195          * so don't need lock */
196         if (slot >= shared_msrs_global.nr) {
197                 printk(KERN_ERR "kvm: invalid MSR slot!");
198                 return;
199         }
200         rdmsrl_safe(msr, &value);
201         smsr->values[slot].host = value;
202         smsr->values[slot].curr = value;
203 }
204
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207         if (slot >= shared_msrs_global.nr)
208                 shared_msrs_global.nr = slot + 1;
209         shared_msrs_global.msrs[slot] = msr;
210         /* we need ensured the shared_msr_global have been updated */
211         smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214
215 static void kvm_shared_msr_cpu_online(void)
216 {
217         unsigned i;
218
219         for (i = 0; i < shared_msrs_global.nr; ++i)
220                 shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227         if (((value ^ smsr->values[slot].curr) & mask) == 0)
228                 return;
229         smsr->values[slot].curr = value;
230         wrmsrl(shared_msrs_global.msrs[slot], value);
231         if (!smsr->registered) {
232                 smsr->urn.on_user_return = kvm_on_user_return;
233                 user_return_notifier_register(&smsr->urn);
234                 smsr->registered = true;
235         }
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238
239 static void drop_user_return_notifiers(void *ignore)
240 {
241         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242
243         if (smsr->registered)
244                 kvm_on_user_return(&smsr->urn);
245 }
246
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249         return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255         /* TODO: reserve bits check */
256         kvm_lapic_set_base(vcpu, data);
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260 #define EXCPT_BENIGN            0
261 #define EXCPT_CONTRIBUTORY      1
262 #define EXCPT_PF                2
263
264 static int exception_class(int vector)
265 {
266         switch (vector) {
267         case PF_VECTOR:
268                 return EXCPT_PF;
269         case DE_VECTOR:
270         case TS_VECTOR:
271         case NP_VECTOR:
272         case SS_VECTOR:
273         case GP_VECTOR:
274                 return EXCPT_CONTRIBUTORY;
275         default:
276                 break;
277         }
278         return EXCPT_BENIGN;
279 }
280
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282                 unsigned nr, bool has_error, u32 error_code,
283                 bool reinject)
284 {
285         u32 prev_nr;
286         int class1, class2;
287
288         kvm_make_request(KVM_REQ_EVENT, vcpu);
289
290         if (!vcpu->arch.exception.pending) {
291         queue:
292                 vcpu->arch.exception.pending = true;
293                 vcpu->arch.exception.has_error_code = has_error;
294                 vcpu->arch.exception.nr = nr;
295                 vcpu->arch.exception.error_code = error_code;
296                 vcpu->arch.exception.reinject = reinject;
297                 return;
298         }
299
300         /* to check exception */
301         prev_nr = vcpu->arch.exception.nr;
302         if (prev_nr == DF_VECTOR) {
303                 /* triple fault -> shutdown */
304                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305                 return;
306         }
307         class1 = exception_class(prev_nr);
308         class2 = exception_class(nr);
309         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311                 /* generate double fault per SDM Table 5-5 */
312                 vcpu->arch.exception.pending = true;
313                 vcpu->arch.exception.has_error_code = true;
314                 vcpu->arch.exception.nr = DF_VECTOR;
315                 vcpu->arch.exception.error_code = 0;
316         } else
317                 /* replace previous exception with a new one in a hope
318                    that instruction re-execution will regenerate lost
319                    exception */
320                 goto queue;
321 }
322
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325         kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
328
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337         if (err)
338                 kvm_inject_gp(vcpu, 0);
339         else
340                 kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345 {
346         ++vcpu->stat.pf_guest;
347         vcpu->arch.cr2 = fault->address;
348         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
351
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
353 {
354         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356         else
357                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
358 }
359
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
361 {
362         atomic_inc(&vcpu->arch.nmi_queued);
363         kvm_make_request(KVM_REQ_NMI, vcpu);
364 }
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
366
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
368 {
369         kvm_multiple_exception(vcpu, nr, true, error_code, false);
370 }
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
372
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, true);
376 }
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
378
379 /*
380  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
381  * a #GP and return false.
382  */
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
384 {
385         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386                 return true;
387         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388         return false;
389 }
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
391
392 /*
393  * This function will be used to read from the physical memory of the currently
394  * running guest. The difference to kvm_read_guest_page is that this function
395  * can read from guest physical or from the guest's guest physical memory.
396  */
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398                             gfn_t ngfn, void *data, int offset, int len,
399                             u32 access)
400 {
401         gfn_t real_gfn;
402         gpa_t ngpa;
403
404         ngpa     = gfn_to_gpa(ngfn);
405         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406         if (real_gfn == UNMAPPED_GVA)
407                 return -EFAULT;
408
409         real_gfn = gpa_to_gfn(real_gfn);
410
411         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
412 }
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
414
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416                                void *data, int offset, int len, u32 access)
417 {
418         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419                                        data, offset, len, access);
420 }
421
422 /*
423  * Load the pae pdptrs.  Return true is they are all valid.
424  */
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
426 {
427         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429         int i;
430         int ret;
431         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
432
433         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434                                       offset * sizeof(u64), sizeof(pdpte),
435                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
436         if (ret < 0) {
437                 ret = 0;
438                 goto out;
439         }
440         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441                 if (is_present_gpte(pdpte[i]) &&
442                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443                         ret = 0;
444                         goto out;
445                 }
446         }
447         ret = 1;
448
449         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450         __set_bit(VCPU_EXREG_PDPTR,
451                   (unsigned long *)&vcpu->arch.regs_avail);
452         __set_bit(VCPU_EXREG_PDPTR,
453                   (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
455
456         return ret;
457 }
458 EXPORT_SYMBOL_GPL(load_pdptrs);
459
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 {
462         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463         bool changed = true;
464         int offset;
465         gfn_t gfn;
466         int r;
467
468         if (is_long_mode(vcpu) || !is_pae(vcpu))
469                 return false;
470
471         if (!test_bit(VCPU_EXREG_PDPTR,
472                       (unsigned long *)&vcpu->arch.regs_avail))
473                 return true;
474
475         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
479         if (r < 0)
480                 goto out;
481         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
483
484         return changed;
485 }
486
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
488 {
489         unsigned long old_cr0 = kvm_read_cr0(vcpu);
490         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491                                     X86_CR0_CD | X86_CR0_NW;
492
493         cr0 |= X86_CR0_ET;
494
495 #ifdef CONFIG_X86_64
496         if (cr0 & 0xffffffff00000000UL)
497                 return 1;
498 #endif
499
500         cr0 &= ~CR0_RESERVED_BITS;
501
502         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503                 return 1;
504
505         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506                 return 1;
507
508         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510                 if ((vcpu->arch.efer & EFER_LME)) {
511                         int cs_db, cs_l;
512
513                         if (!is_pae(vcpu))
514                                 return 1;
515                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516                         if (cs_l)
517                                 return 1;
518                 } else
519 #endif
520                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521                                                  kvm_read_cr3(vcpu)))
522                         return 1;
523         }
524
525         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
526                 return 1;
527
528         kvm_x86_ops->set_cr0(vcpu, cr0);
529
530         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
531                 kvm_clear_async_pf_completion_queue(vcpu);
532                 kvm_async_pf_hash_reset(vcpu);
533         }
534
535         if ((cr0 ^ old_cr0) & update_bits)
536                 kvm_mmu_reset_context(vcpu);
537         return 0;
538 }
539 EXPORT_SYMBOL_GPL(kvm_set_cr0);
540
541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
542 {
543         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
544 }
545 EXPORT_SYMBOL_GPL(kvm_lmsw);
546
547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
548 {
549         u64 xcr0;
550
551         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
552         if (index != XCR_XFEATURE_ENABLED_MASK)
553                 return 1;
554         xcr0 = xcr;
555         if (kvm_x86_ops->get_cpl(vcpu) != 0)
556                 return 1;
557         if (!(xcr0 & XSTATE_FP))
558                 return 1;
559         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
560                 return 1;
561         if (xcr0 & ~host_xcr0)
562                 return 1;
563         vcpu->arch.xcr0 = xcr0;
564         vcpu->guest_xcr0_loaded = 0;
565         return 0;
566 }
567
568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
569 {
570         if (__kvm_set_xcr(vcpu, index, xcr)) {
571                 kvm_inject_gp(vcpu, 0);
572                 return 1;
573         }
574         return 0;
575 }
576 EXPORT_SYMBOL_GPL(kvm_set_xcr);
577
578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
579 {
580         unsigned long old_cr4 = kvm_read_cr4(vcpu);
581         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
582                                    X86_CR4_PAE | X86_CR4_SMEP;
583         if (cr4 & CR4_RESERVED_BITS)
584                 return 1;
585
586         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
587                 return 1;
588
589         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
590                 return 1;
591
592         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
593                 return 1;
594
595         if (is_long_mode(vcpu)) {
596                 if (!(cr4 & X86_CR4_PAE))
597                         return 1;
598         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
599                    && ((cr4 ^ old_cr4) & pdptr_bits)
600                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601                                    kvm_read_cr3(vcpu)))
602                 return 1;
603
604         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
605                 if (!guest_cpuid_has_pcid(vcpu))
606                         return 1;
607
608                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
609                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
610                         return 1;
611         }
612
613         if (kvm_x86_ops->set_cr4(vcpu, cr4))
614                 return 1;
615
616         if (((cr4 ^ old_cr4) & pdptr_bits) ||
617             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
618                 kvm_mmu_reset_context(vcpu);
619
620         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621                 kvm_update_cpuid(vcpu);
622
623         return 0;
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr4);
626
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
628 {
629         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
630                 kvm_mmu_sync_roots(vcpu);
631                 kvm_mmu_flush_tlb(vcpu);
632                 return 0;
633         }
634
635         if (is_long_mode(vcpu)) {
636                 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
637                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
638                                 return 1;
639                 } else
640                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
641                                 return 1;
642         } else {
643                 if (is_pae(vcpu)) {
644                         if (cr3 & CR3_PAE_RESERVED_BITS)
645                                 return 1;
646                         if (is_paging(vcpu) &&
647                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
648                                 return 1;
649                 }
650                 /*
651                  * We don't check reserved bits in nonpae mode, because
652                  * this isn't enforced, and VMware depends on this.
653                  */
654         }
655
656         /*
657          * Does the new cr3 value map to physical memory? (Note, we
658          * catch an invalid cr3 even in real-mode, because it would
659          * cause trouble later on when we turn on paging anyway.)
660          *
661          * A real CPU would silently accept an invalid cr3 and would
662          * attempt to use it - with largely undefined (and often hard
663          * to debug) behavior on the guest side.
664          */
665         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
666                 return 1;
667         vcpu->arch.cr3 = cr3;
668         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
669         vcpu->arch.mmu.new_cr3(vcpu);
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr3);
673
674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676         if (cr8 & CR8_RESERVED_BITS)
677                 return 1;
678         if (irqchip_in_kernel(vcpu->kvm))
679                 kvm_lapic_set_tpr(vcpu, cr8);
680         else
681                 vcpu->arch.cr8 = cr8;
682         return 0;
683 }
684 EXPORT_SYMBOL_GPL(kvm_set_cr8);
685
686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
687 {
688         if (irqchip_in_kernel(vcpu->kvm))
689                 return kvm_lapic_get_cr8(vcpu);
690         else
691                 return vcpu->arch.cr8;
692 }
693 EXPORT_SYMBOL_GPL(kvm_get_cr8);
694
695 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
696 {
697         unsigned long dr7;
698
699         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
700                 dr7 = vcpu->arch.guest_debug_dr7;
701         else
702                 dr7 = vcpu->arch.dr7;
703         kvm_x86_ops->set_dr7(vcpu, dr7);
704         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
705 }
706
707 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
708 {
709         switch (dr) {
710         case 0 ... 3:
711                 vcpu->arch.db[dr] = val;
712                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
713                         vcpu->arch.eff_db[dr] = val;
714                 break;
715         case 4:
716                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
717                         return 1; /* #UD */
718                 /* fall through */
719         case 6:
720                 if (val & 0xffffffff00000000ULL)
721                         return -1; /* #GP */
722                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
723                 break;
724         case 5:
725                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726                         return 1; /* #UD */
727                 /* fall through */
728         default: /* 7 */
729                 if (val & 0xffffffff00000000ULL)
730                         return -1; /* #GP */
731                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
732                 kvm_update_dr7(vcpu);
733                 break;
734         }
735
736         return 0;
737 }
738
739 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
740 {
741         int res;
742
743         res = __kvm_set_dr(vcpu, dr, val);
744         if (res > 0)
745                 kvm_queue_exception(vcpu, UD_VECTOR);
746         else if (res < 0)
747                 kvm_inject_gp(vcpu, 0);
748
749         return res;
750 }
751 EXPORT_SYMBOL_GPL(kvm_set_dr);
752
753 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755         switch (dr) {
756         case 0 ... 3:
757                 *val = vcpu->arch.db[dr];
758                 break;
759         case 4:
760                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761                         return 1;
762                 /* fall through */
763         case 6:
764                 *val = vcpu->arch.dr6;
765                 break;
766         case 5:
767                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
768                         return 1;
769                 /* fall through */
770         default: /* 7 */
771                 *val = vcpu->arch.dr7;
772                 break;
773         }
774
775         return 0;
776 }
777
778 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
779 {
780         if (_kvm_get_dr(vcpu, dr, val)) {
781                 kvm_queue_exception(vcpu, UD_VECTOR);
782                 return 1;
783         }
784         return 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_get_dr);
787
788 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
789 {
790         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
791         u64 data;
792         int err;
793
794         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
795         if (err)
796                 return err;
797         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
798         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
799         return err;
800 }
801 EXPORT_SYMBOL_GPL(kvm_rdpmc);
802
803 /*
804  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
805  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
806  *
807  * This list is modified at module load time to reflect the
808  * capabilities of the host cpu. This capabilities test skips MSRs that are
809  * kvm-specific. Those are put in the beginning of the list.
810  */
811
812 #define KVM_SAVE_MSRS_BEGIN     10
813 static u32 msrs_to_save[] = {
814         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
815         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
816         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
817         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
818         MSR_KVM_PV_EOI_EN,
819         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
820         MSR_STAR,
821 #ifdef CONFIG_X86_64
822         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
823 #endif
824         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
825 };
826
827 static unsigned num_msrs_to_save;
828
829 static const u32 emulated_msrs[] = {
830         MSR_IA32_TSCDEADLINE,
831         MSR_IA32_MISC_ENABLE,
832         MSR_IA32_MCG_STATUS,
833         MSR_IA32_MCG_CTL,
834 };
835
836 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
837 {
838         u64 old_efer = vcpu->arch.efer;
839
840         if (efer & efer_reserved_bits)
841                 return 1;
842
843         if (is_paging(vcpu)
844             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
845                 return 1;
846
847         if (efer & EFER_FFXSR) {
848                 struct kvm_cpuid_entry2 *feat;
849
850                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
851                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
852                         return 1;
853         }
854
855         if (efer & EFER_SVME) {
856                 struct kvm_cpuid_entry2 *feat;
857
858                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
859                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
860                         return 1;
861         }
862
863         efer &= ~EFER_LMA;
864         efer |= vcpu->arch.efer & EFER_LMA;
865
866         kvm_x86_ops->set_efer(vcpu, efer);
867
868         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
869
870         /* Update reserved bits */
871         if ((efer ^ old_efer) & EFER_NX)
872                 kvm_mmu_reset_context(vcpu);
873
874         return 0;
875 }
876
877 void kvm_enable_efer_bits(u64 mask)
878 {
879        efer_reserved_bits &= ~mask;
880 }
881 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
882
883
884 /*
885  * Writes msr value into into the appropriate "register".
886  * Returns 0 on success, non-0 otherwise.
887  * Assumes vcpu_load() was already called.
888  */
889 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
890 {
891         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
892 }
893
894 /*
895  * Adapt set_msr() to msr_io()'s calling convention
896  */
897 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
898 {
899         return kvm_set_msr(vcpu, index, *data);
900 }
901
902 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
903 {
904         int version;
905         int r;
906         struct pvclock_wall_clock wc;
907         struct timespec boot;
908
909         if (!wall_clock)
910                 return;
911
912         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
913         if (r)
914                 return;
915
916         if (version & 1)
917                 ++version;  /* first time write, random junk */
918
919         ++version;
920
921         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
922
923         /*
924          * The guest calculates current wall clock time by adding
925          * system time (updated by kvm_guest_time_update below) to the
926          * wall clock specified here.  guest system time equals host
927          * system time for us, thus we must fill in host boot time here.
928          */
929         getboottime(&boot);
930
931         if (kvm->arch.kvmclock_offset) {
932                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
933                 boot = timespec_sub(boot, ts);
934         }
935         wc.sec = boot.tv_sec;
936         wc.nsec = boot.tv_nsec;
937         wc.version = version;
938
939         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
940
941         version++;
942         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
943 }
944
945 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
946 {
947         uint32_t quotient, remainder;
948
949         /* Don't try to replace with do_div(), this one calculates
950          * "(dividend << 32) / divisor" */
951         __asm__ ( "divl %4"
952                   : "=a" (quotient), "=d" (remainder)
953                   : "0" (0), "1" (dividend), "r" (divisor) );
954         return quotient;
955 }
956
957 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
958                                s8 *pshift, u32 *pmultiplier)
959 {
960         uint64_t scaled64;
961         int32_t  shift = 0;
962         uint64_t tps64;
963         uint32_t tps32;
964
965         tps64 = base_khz * 1000LL;
966         scaled64 = scaled_khz * 1000LL;
967         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
968                 tps64 >>= 1;
969                 shift--;
970         }
971
972         tps32 = (uint32_t)tps64;
973         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
974                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
975                         scaled64 >>= 1;
976                 else
977                         tps32 <<= 1;
978                 shift++;
979         }
980
981         *pshift = shift;
982         *pmultiplier = div_frac(scaled64, tps32);
983
984         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
985                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
986 }
987
988 static inline u64 get_kernel_ns(void)
989 {
990         struct timespec ts;
991
992         WARN_ON(preemptible());
993         ktime_get_ts(&ts);
994         monotonic_to_bootbased(&ts);
995         return timespec_to_ns(&ts);
996 }
997
998 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
999 unsigned long max_tsc_khz;
1000
1001 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1002 {
1003         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1004                                    vcpu->arch.virtual_tsc_shift);
1005 }
1006
1007 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1008 {
1009         u64 v = (u64)khz * (1000000 + ppm);
1010         do_div(v, 1000000);
1011         return v;
1012 }
1013
1014 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1015 {
1016         u32 thresh_lo, thresh_hi;
1017         int use_scaling = 0;
1018
1019         /* Compute a scale to convert nanoseconds in TSC cycles */
1020         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1021                            &vcpu->arch.virtual_tsc_shift,
1022                            &vcpu->arch.virtual_tsc_mult);
1023         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1024
1025         /*
1026          * Compute the variation in TSC rate which is acceptable
1027          * within the range of tolerance and decide if the
1028          * rate being applied is within that bounds of the hardware
1029          * rate.  If so, no scaling or compensation need be done.
1030          */
1031         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1032         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1033         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1034                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1035                 use_scaling = 1;
1036         }
1037         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1038 }
1039
1040 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1041 {
1042         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1043                                       vcpu->arch.virtual_tsc_mult,
1044                                       vcpu->arch.virtual_tsc_shift);
1045         tsc += vcpu->arch.this_tsc_write;
1046         return tsc;
1047 }
1048
1049 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1050 {
1051         struct kvm *kvm = vcpu->kvm;
1052         u64 offset, ns, elapsed;
1053         unsigned long flags;
1054         s64 usdiff;
1055
1056         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1057         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1058         ns = get_kernel_ns();
1059         elapsed = ns - kvm->arch.last_tsc_nsec;
1060
1061         /* n.b - signed multiplication and division required */
1062         usdiff = data - kvm->arch.last_tsc_write;
1063 #ifdef CONFIG_X86_64
1064         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1065 #else
1066         /* do_div() only does unsigned */
1067         asm("idivl %2; xor %%edx, %%edx"
1068             : "=A"(usdiff)
1069             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1070 #endif
1071         do_div(elapsed, 1000);
1072         usdiff -= elapsed;
1073         if (usdiff < 0)
1074                 usdiff = -usdiff;
1075
1076         /*
1077          * Special case: TSC write with a small delta (1 second) of virtual
1078          * cycle time against real time is interpreted as an attempt to
1079          * synchronize the CPU.
1080          *
1081          * For a reliable TSC, we can match TSC offsets, and for an unstable
1082          * TSC, we add elapsed time in this computation.  We could let the
1083          * compensation code attempt to catch up if we fall behind, but
1084          * it's better to try to match offsets from the beginning.
1085          */
1086         if (usdiff < USEC_PER_SEC &&
1087             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1088                 if (!check_tsc_unstable()) {
1089                         offset = kvm->arch.cur_tsc_offset;
1090                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1091                 } else {
1092                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1093                         data += delta;
1094                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1095                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1096                 }
1097         } else {
1098                 /*
1099                  * We split periods of matched TSC writes into generations.
1100                  * For each generation, we track the original measured
1101                  * nanosecond time, offset, and write, so if TSCs are in
1102                  * sync, we can match exact offset, and if not, we can match
1103                  * exact software computation in compute_guest_tsc()
1104                  *
1105                  * These values are tracked in kvm->arch.cur_xxx variables.
1106                  */
1107                 kvm->arch.cur_tsc_generation++;
1108                 kvm->arch.cur_tsc_nsec = ns;
1109                 kvm->arch.cur_tsc_write = data;
1110                 kvm->arch.cur_tsc_offset = offset;
1111                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1112                          kvm->arch.cur_tsc_generation, data);
1113         }
1114
1115         /*
1116          * We also track th most recent recorded KHZ, write and time to
1117          * allow the matching interval to be extended at each write.
1118          */
1119         kvm->arch.last_tsc_nsec = ns;
1120         kvm->arch.last_tsc_write = data;
1121         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1122
1123         /* Reset of TSC must disable overshoot protection below */
1124         vcpu->arch.hv_clock.tsc_timestamp = 0;
1125         vcpu->arch.last_guest_tsc = data;
1126
1127         /* Keep track of which generation this VCPU has synchronized to */
1128         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1129         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1130         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1131
1132         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1133         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1134 }
1135
1136 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1137
1138 static int kvm_guest_time_update(struct kvm_vcpu *v)
1139 {
1140         unsigned long flags;
1141         struct kvm_vcpu_arch *vcpu = &v->arch;
1142         void *shared_kaddr;
1143         unsigned long this_tsc_khz;
1144         s64 kernel_ns, max_kernel_ns;
1145         u64 tsc_timestamp;
1146         u8 pvclock_flags;
1147
1148         /* Keep irq disabled to prevent changes to the clock */
1149         local_irq_save(flags);
1150         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1151         kernel_ns = get_kernel_ns();
1152         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1153         if (unlikely(this_tsc_khz == 0)) {
1154                 local_irq_restore(flags);
1155                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1156                 return 1;
1157         }
1158
1159         /*
1160          * We may have to catch up the TSC to match elapsed wall clock
1161          * time for two reasons, even if kvmclock is used.
1162          *   1) CPU could have been running below the maximum TSC rate
1163          *   2) Broken TSC compensation resets the base at each VCPU
1164          *      entry to avoid unknown leaps of TSC even when running
1165          *      again on the same CPU.  This may cause apparent elapsed
1166          *      time to disappear, and the guest to stand still or run
1167          *      very slowly.
1168          */
1169         if (vcpu->tsc_catchup) {
1170                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1171                 if (tsc > tsc_timestamp) {
1172                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1173                         tsc_timestamp = tsc;
1174                 }
1175         }
1176
1177         local_irq_restore(flags);
1178
1179         if (!vcpu->time_page)
1180                 return 0;
1181
1182         /*
1183          * Time as measured by the TSC may go backwards when resetting the base
1184          * tsc_timestamp.  The reason for this is that the TSC resolution is
1185          * higher than the resolution of the other clock scales.  Thus, many
1186          * possible measurments of the TSC correspond to one measurement of any
1187          * other clock, and so a spread of values is possible.  This is not a
1188          * problem for the computation of the nanosecond clock; with TSC rates
1189          * around 1GHZ, there can only be a few cycles which correspond to one
1190          * nanosecond value, and any path through this code will inevitably
1191          * take longer than that.  However, with the kernel_ns value itself,
1192          * the precision may be much lower, down to HZ granularity.  If the
1193          * first sampling of TSC against kernel_ns ends in the low part of the
1194          * range, and the second in the high end of the range, we can get:
1195          *
1196          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1197          *
1198          * As the sampling errors potentially range in the thousands of cycles,
1199          * it is possible such a time value has already been observed by the
1200          * guest.  To protect against this, we must compute the system time as
1201          * observed by the guest and ensure the new system time is greater.
1202          */
1203         max_kernel_ns = 0;
1204         if (vcpu->hv_clock.tsc_timestamp) {
1205                 max_kernel_ns = vcpu->last_guest_tsc -
1206                                 vcpu->hv_clock.tsc_timestamp;
1207                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1208                                     vcpu->hv_clock.tsc_to_system_mul,
1209                                     vcpu->hv_clock.tsc_shift);
1210                 max_kernel_ns += vcpu->last_kernel_ns;
1211         }
1212
1213         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1214                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1215                                    &vcpu->hv_clock.tsc_shift,
1216                                    &vcpu->hv_clock.tsc_to_system_mul);
1217                 vcpu->hw_tsc_khz = this_tsc_khz;
1218         }
1219
1220         if (max_kernel_ns > kernel_ns)
1221                 kernel_ns = max_kernel_ns;
1222
1223         /* With all the info we got, fill in the values */
1224         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1225         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1226         vcpu->last_kernel_ns = kernel_ns;
1227         vcpu->last_guest_tsc = tsc_timestamp;
1228
1229         pvclock_flags = 0;
1230         if (vcpu->pvclock_set_guest_stopped_request) {
1231                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1232                 vcpu->pvclock_set_guest_stopped_request = false;
1233         }
1234
1235         vcpu->hv_clock.flags = pvclock_flags;
1236
1237         /*
1238          * The interface expects us to write an even number signaling that the
1239          * update is finished. Since the guest won't see the intermediate
1240          * state, we just increase by 2 at the end.
1241          */
1242         vcpu->hv_clock.version += 2;
1243
1244         shared_kaddr = kmap_atomic(vcpu->time_page);
1245
1246         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1247                sizeof(vcpu->hv_clock));
1248
1249         kunmap_atomic(shared_kaddr);
1250
1251         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1252         return 0;
1253 }
1254
1255 static bool msr_mtrr_valid(unsigned msr)
1256 {
1257         switch (msr) {
1258         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1259         case MSR_MTRRfix64K_00000:
1260         case MSR_MTRRfix16K_80000:
1261         case MSR_MTRRfix16K_A0000:
1262         case MSR_MTRRfix4K_C0000:
1263         case MSR_MTRRfix4K_C8000:
1264         case MSR_MTRRfix4K_D0000:
1265         case MSR_MTRRfix4K_D8000:
1266         case MSR_MTRRfix4K_E0000:
1267         case MSR_MTRRfix4K_E8000:
1268         case MSR_MTRRfix4K_F0000:
1269         case MSR_MTRRfix4K_F8000:
1270         case MSR_MTRRdefType:
1271         case MSR_IA32_CR_PAT:
1272                 return true;
1273         case 0x2f8:
1274                 return true;
1275         }
1276         return false;
1277 }
1278
1279 static bool valid_pat_type(unsigned t)
1280 {
1281         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1282 }
1283
1284 static bool valid_mtrr_type(unsigned t)
1285 {
1286         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1287 }
1288
1289 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1290 {
1291         int i;
1292
1293         if (!msr_mtrr_valid(msr))
1294                 return false;
1295
1296         if (msr == MSR_IA32_CR_PAT) {
1297                 for (i = 0; i < 8; i++)
1298                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1299                                 return false;
1300                 return true;
1301         } else if (msr == MSR_MTRRdefType) {
1302                 if (data & ~0xcff)
1303                         return false;
1304                 return valid_mtrr_type(data & 0xff);
1305         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1306                 for (i = 0; i < 8 ; i++)
1307                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1308                                 return false;
1309                 return true;
1310         }
1311
1312         /* variable MTRRs */
1313         return valid_mtrr_type(data & 0xff);
1314 }
1315
1316 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1317 {
1318         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1319
1320         if (!mtrr_valid(vcpu, msr, data))
1321                 return 1;
1322
1323         if (msr == MSR_MTRRdefType) {
1324                 vcpu->arch.mtrr_state.def_type = data;
1325                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1326         } else if (msr == MSR_MTRRfix64K_00000)
1327                 p[0] = data;
1328         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1329                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1330         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1331                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1332         else if (msr == MSR_IA32_CR_PAT)
1333                 vcpu->arch.pat = data;
1334         else {  /* Variable MTRRs */
1335                 int idx, is_mtrr_mask;
1336                 u64 *pt;
1337
1338                 idx = (msr - 0x200) / 2;
1339                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1340                 if (!is_mtrr_mask)
1341                         pt =
1342                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1343                 else
1344                         pt =
1345                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1346                 *pt = data;
1347         }
1348
1349         kvm_mmu_reset_context(vcpu);
1350         return 0;
1351 }
1352
1353 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1354 {
1355         u64 mcg_cap = vcpu->arch.mcg_cap;
1356         unsigned bank_num = mcg_cap & 0xff;
1357
1358         switch (msr) {
1359         case MSR_IA32_MCG_STATUS:
1360                 vcpu->arch.mcg_status = data;
1361                 break;
1362         case MSR_IA32_MCG_CTL:
1363                 if (!(mcg_cap & MCG_CTL_P))
1364                         return 1;
1365                 if (data != 0 && data != ~(u64)0)
1366                         return -1;
1367                 vcpu->arch.mcg_ctl = data;
1368                 break;
1369         default:
1370                 if (msr >= MSR_IA32_MC0_CTL &&
1371                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1372                         u32 offset = msr - MSR_IA32_MC0_CTL;
1373                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1374                          * some Linux kernels though clear bit 10 in bank 4 to
1375                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1376                          * this to avoid an uncatched #GP in the guest
1377                          */
1378                         if ((offset & 0x3) == 0 &&
1379                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1380                                 return -1;
1381                         vcpu->arch.mce_banks[offset] = data;
1382                         break;
1383                 }
1384                 return 1;
1385         }
1386         return 0;
1387 }
1388
1389 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391         struct kvm *kvm = vcpu->kvm;
1392         int lm = is_long_mode(vcpu);
1393         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1394                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1395         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1396                 : kvm->arch.xen_hvm_config.blob_size_32;
1397         u32 page_num = data & ~PAGE_MASK;
1398         u64 page_addr = data & PAGE_MASK;
1399         u8 *page;
1400         int r;
1401
1402         r = -E2BIG;
1403         if (page_num >= blob_size)
1404                 goto out;
1405         r = -ENOMEM;
1406         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1407         if (IS_ERR(page)) {
1408                 r = PTR_ERR(page);
1409                 goto out;
1410         }
1411         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1412                 goto out_free;
1413         r = 0;
1414 out_free:
1415         kfree(page);
1416 out:
1417         return r;
1418 }
1419
1420 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1421 {
1422         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1423 }
1424
1425 static bool kvm_hv_msr_partition_wide(u32 msr)
1426 {
1427         bool r = false;
1428         switch (msr) {
1429         case HV_X64_MSR_GUEST_OS_ID:
1430         case HV_X64_MSR_HYPERCALL:
1431                 r = true;
1432                 break;
1433         }
1434
1435         return r;
1436 }
1437
1438 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1439 {
1440         struct kvm *kvm = vcpu->kvm;
1441
1442         switch (msr) {
1443         case HV_X64_MSR_GUEST_OS_ID:
1444                 kvm->arch.hv_guest_os_id = data;
1445                 /* setting guest os id to zero disables hypercall page */
1446                 if (!kvm->arch.hv_guest_os_id)
1447                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1448                 break;
1449         case HV_X64_MSR_HYPERCALL: {
1450                 u64 gfn;
1451                 unsigned long addr;
1452                 u8 instructions[4];
1453
1454                 /* if guest os id is not set hypercall should remain disabled */
1455                 if (!kvm->arch.hv_guest_os_id)
1456                         break;
1457                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1458                         kvm->arch.hv_hypercall = data;
1459                         break;
1460                 }
1461                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1462                 addr = gfn_to_hva(kvm, gfn);
1463                 if (kvm_is_error_hva(addr))
1464                         return 1;
1465                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1466                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1467                 if (__copy_to_user((void __user *)addr, instructions, 4))
1468                         return 1;
1469                 kvm->arch.hv_hypercall = data;
1470                 break;
1471         }
1472         default:
1473                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1474                             "data 0x%llx\n", msr, data);
1475                 return 1;
1476         }
1477         return 0;
1478 }
1479
1480 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1481 {
1482         switch (msr) {
1483         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1484                 unsigned long addr;
1485
1486                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1487                         vcpu->arch.hv_vapic = data;
1488                         break;
1489                 }
1490                 addr = gfn_to_hva(vcpu->kvm, data >>
1491                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1492                 if (kvm_is_error_hva(addr))
1493                         return 1;
1494                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1495                         return 1;
1496                 vcpu->arch.hv_vapic = data;
1497                 break;
1498         }
1499         case HV_X64_MSR_EOI:
1500                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1501         case HV_X64_MSR_ICR:
1502                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1503         case HV_X64_MSR_TPR:
1504                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1505         default:
1506                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1507                             "data 0x%llx\n", msr, data);
1508                 return 1;
1509         }
1510
1511         return 0;
1512 }
1513
1514 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1515 {
1516         gpa_t gpa = data & ~0x3f;
1517
1518         /* Bits 2:5 are reserved, Should be zero */
1519         if (data & 0x3c)
1520                 return 1;
1521
1522         vcpu->arch.apf.msr_val = data;
1523
1524         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1525                 kvm_clear_async_pf_completion_queue(vcpu);
1526                 kvm_async_pf_hash_reset(vcpu);
1527                 return 0;
1528         }
1529
1530         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1531                 return 1;
1532
1533         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1534         kvm_async_pf_wakeup_all(vcpu);
1535         return 0;
1536 }
1537
1538 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1539 {
1540         if (vcpu->arch.time_page) {
1541                 kvm_release_page_dirty(vcpu->arch.time_page);
1542                 vcpu->arch.time_page = NULL;
1543         }
1544 }
1545
1546 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1547 {
1548         u64 delta;
1549
1550         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1551                 return;
1552
1553         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1554         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1555         vcpu->arch.st.accum_steal = delta;
1556 }
1557
1558 static void record_steal_time(struct kvm_vcpu *vcpu)
1559 {
1560         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1561                 return;
1562
1563         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1564                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1565                 return;
1566
1567         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1568         vcpu->arch.st.steal.version += 2;
1569         vcpu->arch.st.accum_steal = 0;
1570
1571         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1572                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1573 }
1574
1575 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1576 {
1577         bool pr = false;
1578
1579         switch (msr) {
1580         case MSR_EFER:
1581                 return set_efer(vcpu, data);
1582         case MSR_K7_HWCR:
1583                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1584                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1585                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1586                 if (data != 0) {
1587                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1588                                     data);
1589                         return 1;
1590                 }
1591                 break;
1592         case MSR_FAM10H_MMIO_CONF_BASE:
1593                 if (data != 0) {
1594                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1595                                     "0x%llx\n", data);
1596                         return 1;
1597                 }
1598                 break;
1599         case MSR_AMD64_NB_CFG:
1600                 break;
1601         case MSR_IA32_DEBUGCTLMSR:
1602                 if (!data) {
1603                         /* We support the non-activated case already */
1604                         break;
1605                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1606                         /* Values other than LBR and BTF are vendor-specific,
1607                            thus reserved and should throw a #GP */
1608                         return 1;
1609                 }
1610                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1611                             __func__, data);
1612                 break;
1613         case MSR_IA32_UCODE_REV:
1614         case MSR_IA32_UCODE_WRITE:
1615         case MSR_VM_HSAVE_PA:
1616         case MSR_AMD64_PATCH_LOADER:
1617                 break;
1618         case 0x200 ... 0x2ff:
1619                 return set_msr_mtrr(vcpu, msr, data);
1620         case MSR_IA32_APICBASE:
1621                 kvm_set_apic_base(vcpu, data);
1622                 break;
1623         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1624                 return kvm_x2apic_msr_write(vcpu, msr, data);
1625         case MSR_IA32_TSCDEADLINE:
1626                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1627                 break;
1628         case MSR_IA32_MISC_ENABLE:
1629                 vcpu->arch.ia32_misc_enable_msr = data;
1630                 break;
1631         case MSR_KVM_WALL_CLOCK_NEW:
1632         case MSR_KVM_WALL_CLOCK:
1633                 vcpu->kvm->arch.wall_clock = data;
1634                 kvm_write_wall_clock(vcpu->kvm, data);
1635                 break;
1636         case MSR_KVM_SYSTEM_TIME_NEW:
1637         case MSR_KVM_SYSTEM_TIME: {
1638                 kvmclock_reset(vcpu);
1639
1640                 vcpu->arch.time = data;
1641                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1642
1643                 /* we verify if the enable bit is set... */
1644                 if (!(data & 1))
1645                         break;
1646
1647                 /* ...but clean it before doing the actual write */
1648                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1649
1650                 vcpu->arch.time_page =
1651                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1652
1653                 if (is_error_page(vcpu->arch.time_page))
1654                         vcpu->arch.time_page = NULL;
1655
1656                 break;
1657         }
1658         case MSR_KVM_ASYNC_PF_EN:
1659                 if (kvm_pv_enable_async_pf(vcpu, data))
1660                         return 1;
1661                 break;
1662         case MSR_KVM_STEAL_TIME:
1663
1664                 if (unlikely(!sched_info_on()))
1665                         return 1;
1666
1667                 if (data & KVM_STEAL_RESERVED_MASK)
1668                         return 1;
1669
1670                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1671                                                         data & KVM_STEAL_VALID_BITS))
1672                         return 1;
1673
1674                 vcpu->arch.st.msr_val = data;
1675
1676                 if (!(data & KVM_MSR_ENABLED))
1677                         break;
1678
1679                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1680
1681                 preempt_disable();
1682                 accumulate_steal_time(vcpu);
1683                 preempt_enable();
1684
1685                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1686
1687                 break;
1688         case MSR_KVM_PV_EOI_EN:
1689                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1690                         return 1;
1691                 break;
1692
1693         case MSR_IA32_MCG_CTL:
1694         case MSR_IA32_MCG_STATUS:
1695         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1696                 return set_msr_mce(vcpu, msr, data);
1697
1698         /* Performance counters are not protected by a CPUID bit,
1699          * so we should check all of them in the generic path for the sake of
1700          * cross vendor migration.
1701          * Writing a zero into the event select MSRs disables them,
1702          * which we perfectly emulate ;-). Any other value should be at least
1703          * reported, some guests depend on them.
1704          */
1705         case MSR_K7_EVNTSEL0:
1706         case MSR_K7_EVNTSEL1:
1707         case MSR_K7_EVNTSEL2:
1708         case MSR_K7_EVNTSEL3:
1709                 if (data != 0)
1710                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711                                     "0x%x data 0x%llx\n", msr, data);
1712                 break;
1713         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1714          * so we ignore writes to make it happy.
1715          */
1716         case MSR_K7_PERFCTR0:
1717         case MSR_K7_PERFCTR1:
1718         case MSR_K7_PERFCTR2:
1719         case MSR_K7_PERFCTR3:
1720                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1721                             "0x%x data 0x%llx\n", msr, data);
1722                 break;
1723         case MSR_P6_PERFCTR0:
1724         case MSR_P6_PERFCTR1:
1725                 pr = true;
1726         case MSR_P6_EVNTSEL0:
1727         case MSR_P6_EVNTSEL1:
1728                 if (kvm_pmu_msr(vcpu, msr))
1729                         return kvm_pmu_set_msr(vcpu, msr, data);
1730
1731                 if (pr || data != 0)
1732                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1733                                     "0x%x data 0x%llx\n", msr, data);
1734                 break;
1735         case MSR_K7_CLK_CTL:
1736                 /*
1737                  * Ignore all writes to this no longer documented MSR.
1738                  * Writes are only relevant for old K7 processors,
1739                  * all pre-dating SVM, but a recommended workaround from
1740                  * AMD for these chips. It is possible to specify the
1741                  * affected processor models on the command line, hence
1742                  * the need to ignore the workaround.
1743                  */
1744                 break;
1745         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1746                 if (kvm_hv_msr_partition_wide(msr)) {
1747                         int r;
1748                         mutex_lock(&vcpu->kvm->lock);
1749                         r = set_msr_hyperv_pw(vcpu, msr, data);
1750                         mutex_unlock(&vcpu->kvm->lock);
1751                         return r;
1752                 } else
1753                         return set_msr_hyperv(vcpu, msr, data);
1754                 break;
1755         case MSR_IA32_BBL_CR_CTL3:
1756                 /* Drop writes to this legacy MSR -- see rdmsr
1757                  * counterpart for further detail.
1758                  */
1759                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1760                 break;
1761         case MSR_AMD64_OSVW_ID_LENGTH:
1762                 if (!guest_cpuid_has_osvw(vcpu))
1763                         return 1;
1764                 vcpu->arch.osvw.length = data;
1765                 break;
1766         case MSR_AMD64_OSVW_STATUS:
1767                 if (!guest_cpuid_has_osvw(vcpu))
1768                         return 1;
1769                 vcpu->arch.osvw.status = data;
1770                 break;
1771         default:
1772                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1773                         return xen_hvm_config(vcpu, data);
1774                 if (kvm_pmu_msr(vcpu, msr))
1775                         return kvm_pmu_set_msr(vcpu, msr, data);
1776                 if (!ignore_msrs) {
1777                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1778                                     msr, data);
1779                         return 1;
1780                 } else {
1781                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1782                                     msr, data);
1783                         break;
1784                 }
1785         }
1786         return 0;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1789
1790
1791 /*
1792  * Reads an msr value (of 'msr_index') into 'pdata'.
1793  * Returns 0 on success, non-0 otherwise.
1794  * Assumes vcpu_load() was already called.
1795  */
1796 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1797 {
1798         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1799 }
1800
1801 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1802 {
1803         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1804
1805         if (!msr_mtrr_valid(msr))
1806                 return 1;
1807
1808         if (msr == MSR_MTRRdefType)
1809                 *pdata = vcpu->arch.mtrr_state.def_type +
1810                          (vcpu->arch.mtrr_state.enabled << 10);
1811         else if (msr == MSR_MTRRfix64K_00000)
1812                 *pdata = p[0];
1813         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1814                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1815         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1816                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1817         else if (msr == MSR_IA32_CR_PAT)
1818                 *pdata = vcpu->arch.pat;
1819         else {  /* Variable MTRRs */
1820                 int idx, is_mtrr_mask;
1821                 u64 *pt;
1822
1823                 idx = (msr - 0x200) / 2;
1824                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1825                 if (!is_mtrr_mask)
1826                         pt =
1827                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1828                 else
1829                         pt =
1830                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1831                 *pdata = *pt;
1832         }
1833
1834         return 0;
1835 }
1836
1837 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1838 {
1839         u64 data;
1840         u64 mcg_cap = vcpu->arch.mcg_cap;
1841         unsigned bank_num = mcg_cap & 0xff;
1842
1843         switch (msr) {
1844         case MSR_IA32_P5_MC_ADDR:
1845         case MSR_IA32_P5_MC_TYPE:
1846                 data = 0;
1847                 break;
1848         case MSR_IA32_MCG_CAP:
1849                 data = vcpu->arch.mcg_cap;
1850                 break;
1851         case MSR_IA32_MCG_CTL:
1852                 if (!(mcg_cap & MCG_CTL_P))
1853                         return 1;
1854                 data = vcpu->arch.mcg_ctl;
1855                 break;
1856         case MSR_IA32_MCG_STATUS:
1857                 data = vcpu->arch.mcg_status;
1858                 break;
1859         default:
1860                 if (msr >= MSR_IA32_MC0_CTL &&
1861                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1862                         u32 offset = msr - MSR_IA32_MC0_CTL;
1863                         data = vcpu->arch.mce_banks[offset];
1864                         break;
1865                 }
1866                 return 1;
1867         }
1868         *pdata = data;
1869         return 0;
1870 }
1871
1872 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1873 {
1874         u64 data = 0;
1875         struct kvm *kvm = vcpu->kvm;
1876
1877         switch (msr) {
1878         case HV_X64_MSR_GUEST_OS_ID:
1879                 data = kvm->arch.hv_guest_os_id;
1880                 break;
1881         case HV_X64_MSR_HYPERCALL:
1882                 data = kvm->arch.hv_hypercall;
1883                 break;
1884         default:
1885                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1886                 return 1;
1887         }
1888
1889         *pdata = data;
1890         return 0;
1891 }
1892
1893 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1894 {
1895         u64 data = 0;
1896
1897         switch (msr) {
1898         case HV_X64_MSR_VP_INDEX: {
1899                 int r;
1900                 struct kvm_vcpu *v;
1901                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1902                         if (v == vcpu)
1903                                 data = r;
1904                 break;
1905         }
1906         case HV_X64_MSR_EOI:
1907                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1908         case HV_X64_MSR_ICR:
1909                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1910         case HV_X64_MSR_TPR:
1911                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1912         case HV_X64_MSR_APIC_ASSIST_PAGE:
1913                 data = vcpu->arch.hv_vapic;
1914                 break;
1915         default:
1916                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1917                 return 1;
1918         }
1919         *pdata = data;
1920         return 0;
1921 }
1922
1923 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1924 {
1925         u64 data;
1926
1927         switch (msr) {
1928         case MSR_IA32_PLATFORM_ID:
1929         case MSR_IA32_EBL_CR_POWERON:
1930         case MSR_IA32_DEBUGCTLMSR:
1931         case MSR_IA32_LASTBRANCHFROMIP:
1932         case MSR_IA32_LASTBRANCHTOIP:
1933         case MSR_IA32_LASTINTFROMIP:
1934         case MSR_IA32_LASTINTTOIP:
1935         case MSR_K8_SYSCFG:
1936         case MSR_K7_HWCR:
1937         case MSR_VM_HSAVE_PA:
1938         case MSR_K7_EVNTSEL0:
1939         case MSR_K7_PERFCTR0:
1940         case MSR_K8_INT_PENDING_MSG:
1941         case MSR_AMD64_NB_CFG:
1942         case MSR_FAM10H_MMIO_CONF_BASE:
1943                 data = 0;
1944                 break;
1945         case MSR_P6_PERFCTR0:
1946         case MSR_P6_PERFCTR1:
1947         case MSR_P6_EVNTSEL0:
1948         case MSR_P6_EVNTSEL1:
1949                 if (kvm_pmu_msr(vcpu, msr))
1950                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1951                 data = 0;
1952                 break;
1953         case MSR_IA32_UCODE_REV:
1954                 data = 0x100000000ULL;
1955                 break;
1956         case MSR_MTRRcap:
1957                 data = 0x500 | KVM_NR_VAR_MTRR;
1958                 break;
1959         case 0x200 ... 0x2ff:
1960                 return get_msr_mtrr(vcpu, msr, pdata);
1961         case 0xcd: /* fsb frequency */
1962                 data = 3;
1963                 break;
1964                 /*
1965                  * MSR_EBC_FREQUENCY_ID
1966                  * Conservative value valid for even the basic CPU models.
1967                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1968                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1969                  * and 266MHz for model 3, or 4. Set Core Clock
1970                  * Frequency to System Bus Frequency Ratio to 1 (bits
1971                  * 31:24) even though these are only valid for CPU
1972                  * models > 2, however guests may end up dividing or
1973                  * multiplying by zero otherwise.
1974                  */
1975         case MSR_EBC_FREQUENCY_ID:
1976                 data = 1 << 24;
1977                 break;
1978         case MSR_IA32_APICBASE:
1979                 data = kvm_get_apic_base(vcpu);
1980                 break;
1981         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1982                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1983                 break;
1984         case MSR_IA32_TSCDEADLINE:
1985                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1986                 break;
1987         case MSR_IA32_MISC_ENABLE:
1988                 data = vcpu->arch.ia32_misc_enable_msr;
1989                 break;
1990         case MSR_IA32_PERF_STATUS:
1991                 /* TSC increment by tick */
1992                 data = 1000ULL;
1993                 /* CPU multiplier */
1994                 data |= (((uint64_t)4ULL) << 40);
1995                 break;
1996         case MSR_EFER:
1997                 data = vcpu->arch.efer;
1998                 break;
1999         case MSR_KVM_WALL_CLOCK:
2000         case MSR_KVM_WALL_CLOCK_NEW:
2001                 data = vcpu->kvm->arch.wall_clock;
2002                 break;
2003         case MSR_KVM_SYSTEM_TIME:
2004         case MSR_KVM_SYSTEM_TIME_NEW:
2005                 data = vcpu->arch.time;
2006                 break;
2007         case MSR_KVM_ASYNC_PF_EN:
2008                 data = vcpu->arch.apf.msr_val;
2009                 break;
2010         case MSR_KVM_STEAL_TIME:
2011                 data = vcpu->arch.st.msr_val;
2012                 break;
2013         case MSR_KVM_PV_EOI_EN:
2014                 data = vcpu->arch.pv_eoi.msr_val;
2015                 break;
2016         case MSR_IA32_P5_MC_ADDR:
2017         case MSR_IA32_P5_MC_TYPE:
2018         case MSR_IA32_MCG_CAP:
2019         case MSR_IA32_MCG_CTL:
2020         case MSR_IA32_MCG_STATUS:
2021         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2022                 return get_msr_mce(vcpu, msr, pdata);
2023         case MSR_K7_CLK_CTL:
2024                 /*
2025                  * Provide expected ramp-up count for K7. All other
2026                  * are set to zero, indicating minimum divisors for
2027                  * every field.
2028                  *
2029                  * This prevents guest kernels on AMD host with CPU
2030                  * type 6, model 8 and higher from exploding due to
2031                  * the rdmsr failing.
2032                  */
2033                 data = 0x20000000;
2034                 break;
2035         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2036                 if (kvm_hv_msr_partition_wide(msr)) {
2037                         int r;
2038                         mutex_lock(&vcpu->kvm->lock);
2039                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2040                         mutex_unlock(&vcpu->kvm->lock);
2041                         return r;
2042                 } else
2043                         return get_msr_hyperv(vcpu, msr, pdata);
2044                 break;
2045         case MSR_IA32_BBL_CR_CTL3:
2046                 /* This legacy MSR exists but isn't fully documented in current
2047                  * silicon.  It is however accessed by winxp in very narrow
2048                  * scenarios where it sets bit #19, itself documented as
2049                  * a "reserved" bit.  Best effort attempt to source coherent
2050                  * read data here should the balance of the register be
2051                  * interpreted by the guest:
2052                  *
2053                  * L2 cache control register 3: 64GB range, 256KB size,
2054                  * enabled, latency 0x1, configured
2055                  */
2056                 data = 0xbe702111;
2057                 break;
2058         case MSR_AMD64_OSVW_ID_LENGTH:
2059                 if (!guest_cpuid_has_osvw(vcpu))
2060                         return 1;
2061                 data = vcpu->arch.osvw.length;
2062                 break;
2063         case MSR_AMD64_OSVW_STATUS:
2064                 if (!guest_cpuid_has_osvw(vcpu))
2065                         return 1;
2066                 data = vcpu->arch.osvw.status;
2067                 break;
2068         default:
2069                 if (kvm_pmu_msr(vcpu, msr))
2070                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2071                 if (!ignore_msrs) {
2072                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2073                         return 1;
2074                 } else {
2075                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2076                         data = 0;
2077                 }
2078                 break;
2079         }
2080         *pdata = data;
2081         return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2084
2085 /*
2086  * Read or write a bunch of msrs. All parameters are kernel addresses.
2087  *
2088  * @return number of msrs set successfully.
2089  */
2090 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2091                     struct kvm_msr_entry *entries,
2092                     int (*do_msr)(struct kvm_vcpu *vcpu,
2093                                   unsigned index, u64 *data))
2094 {
2095         int i, idx;
2096
2097         idx = srcu_read_lock(&vcpu->kvm->srcu);
2098         for (i = 0; i < msrs->nmsrs; ++i)
2099                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2100                         break;
2101         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2102
2103         return i;
2104 }
2105
2106 /*
2107  * Read or write a bunch of msrs. Parameters are user addresses.
2108  *
2109  * @return number of msrs set successfully.
2110  */
2111 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2112                   int (*do_msr)(struct kvm_vcpu *vcpu,
2113                                 unsigned index, u64 *data),
2114                   int writeback)
2115 {
2116         struct kvm_msrs msrs;
2117         struct kvm_msr_entry *entries;
2118         int r, n;
2119         unsigned size;
2120
2121         r = -EFAULT;
2122         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2123                 goto out;
2124
2125         r = -E2BIG;
2126         if (msrs.nmsrs >= MAX_IO_MSRS)
2127                 goto out;
2128
2129         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2130         entries = memdup_user(user_msrs->entries, size);
2131         if (IS_ERR(entries)) {
2132                 r = PTR_ERR(entries);
2133                 goto out;
2134         }
2135
2136         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2137         if (r < 0)
2138                 goto out_free;
2139
2140         r = -EFAULT;
2141         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2142                 goto out_free;
2143
2144         r = n;
2145
2146 out_free:
2147         kfree(entries);
2148 out:
2149         return r;
2150 }
2151
2152 int kvm_dev_ioctl_check_extension(long ext)
2153 {
2154         int r;
2155
2156         switch (ext) {
2157         case KVM_CAP_IRQCHIP:
2158         case KVM_CAP_HLT:
2159         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2160         case KVM_CAP_SET_TSS_ADDR:
2161         case KVM_CAP_EXT_CPUID:
2162         case KVM_CAP_CLOCKSOURCE:
2163         case KVM_CAP_PIT:
2164         case KVM_CAP_NOP_IO_DELAY:
2165         case KVM_CAP_MP_STATE:
2166         case KVM_CAP_SYNC_MMU:
2167         case KVM_CAP_USER_NMI:
2168         case KVM_CAP_REINJECT_CONTROL:
2169         case KVM_CAP_IRQ_INJECT_STATUS:
2170         case KVM_CAP_ASSIGN_DEV_IRQ:
2171         case KVM_CAP_IRQFD:
2172         case KVM_CAP_IOEVENTFD:
2173         case KVM_CAP_PIT2:
2174         case KVM_CAP_PIT_STATE2:
2175         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2176         case KVM_CAP_XEN_HVM:
2177         case KVM_CAP_ADJUST_CLOCK:
2178         case KVM_CAP_VCPU_EVENTS:
2179         case KVM_CAP_HYPERV:
2180         case KVM_CAP_HYPERV_VAPIC:
2181         case KVM_CAP_HYPERV_SPIN:
2182         case KVM_CAP_PCI_SEGMENT:
2183         case KVM_CAP_DEBUGREGS:
2184         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2185         case KVM_CAP_XSAVE:
2186         case KVM_CAP_ASYNC_PF:
2187         case KVM_CAP_GET_TSC_KHZ:
2188         case KVM_CAP_PCI_2_3:
2189         case KVM_CAP_KVMCLOCK_CTRL:
2190         case KVM_CAP_READONLY_MEM:
2191         case KVM_CAP_IRQFD_RESAMPLE:
2192                 r = 1;
2193                 break;
2194         case KVM_CAP_COALESCED_MMIO:
2195                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2196                 break;
2197         case KVM_CAP_VAPIC:
2198                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2199                 break;
2200         case KVM_CAP_NR_VCPUS:
2201                 r = KVM_SOFT_MAX_VCPUS;
2202                 break;
2203         case KVM_CAP_MAX_VCPUS:
2204                 r = KVM_MAX_VCPUS;
2205                 break;
2206         case KVM_CAP_NR_MEMSLOTS:
2207                 r = KVM_MEMORY_SLOTS;
2208                 break;
2209         case KVM_CAP_PV_MMU:    /* obsolete */
2210                 r = 0;
2211                 break;
2212         case KVM_CAP_IOMMU:
2213                 r = iommu_present(&pci_bus_type);
2214                 break;
2215         case KVM_CAP_MCE:
2216                 r = KVM_MAX_MCE_BANKS;
2217                 break;
2218         case KVM_CAP_XCRS:
2219                 r = cpu_has_xsave;
2220                 break;
2221         case KVM_CAP_TSC_CONTROL:
2222                 r = kvm_has_tsc_control;
2223                 break;
2224         case KVM_CAP_TSC_DEADLINE_TIMER:
2225                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2226                 break;
2227         default:
2228                 r = 0;
2229                 break;
2230         }
2231         return r;
2232
2233 }
2234
2235 long kvm_arch_dev_ioctl(struct file *filp,
2236                         unsigned int ioctl, unsigned long arg)
2237 {
2238         void __user *argp = (void __user *)arg;
2239         long r;
2240
2241         switch (ioctl) {
2242         case KVM_GET_MSR_INDEX_LIST: {
2243                 struct kvm_msr_list __user *user_msr_list = argp;
2244                 struct kvm_msr_list msr_list;
2245                 unsigned n;
2246
2247                 r = -EFAULT;
2248                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2249                         goto out;
2250                 n = msr_list.nmsrs;
2251                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2252                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2253                         goto out;
2254                 r = -E2BIG;
2255                 if (n < msr_list.nmsrs)
2256                         goto out;
2257                 r = -EFAULT;
2258                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2259                                  num_msrs_to_save * sizeof(u32)))
2260                         goto out;
2261                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2262                                  &emulated_msrs,
2263                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2264                         goto out;
2265                 r = 0;
2266                 break;
2267         }
2268         case KVM_GET_SUPPORTED_CPUID: {
2269                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2270                 struct kvm_cpuid2 cpuid;
2271
2272                 r = -EFAULT;
2273                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2274                         goto out;
2275                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2276                                                       cpuid_arg->entries);
2277                 if (r)
2278                         goto out;
2279
2280                 r = -EFAULT;
2281                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2282                         goto out;
2283                 r = 0;
2284                 break;
2285         }
2286         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2287                 u64 mce_cap;
2288
2289                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2290                 r = -EFAULT;
2291                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2292                         goto out;
2293                 r = 0;
2294                 break;
2295         }
2296         default:
2297                 r = -EINVAL;
2298         }
2299 out:
2300         return r;
2301 }
2302
2303 static void wbinvd_ipi(void *garbage)
2304 {
2305         wbinvd();
2306 }
2307
2308 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2309 {
2310         return vcpu->kvm->arch.iommu_domain &&
2311                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2312 }
2313
2314 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2315 {
2316         /* Address WBINVD may be executed by guest */
2317         if (need_emulate_wbinvd(vcpu)) {
2318                 if (kvm_x86_ops->has_wbinvd_exit())
2319                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2320                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2321                         smp_call_function_single(vcpu->cpu,
2322                                         wbinvd_ipi, NULL, 1);
2323         }
2324
2325         kvm_x86_ops->vcpu_load(vcpu, cpu);
2326
2327         /* Apply any externally detected TSC adjustments (due to suspend) */
2328         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2329                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2330                 vcpu->arch.tsc_offset_adjustment = 0;
2331                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2332         }
2333
2334         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2335                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2336                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2337                 if (tsc_delta < 0)
2338                         mark_tsc_unstable("KVM discovered backwards TSC");
2339                 if (check_tsc_unstable()) {
2340                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2341                                                 vcpu->arch.last_guest_tsc);
2342                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2343                         vcpu->arch.tsc_catchup = 1;
2344                 }
2345                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2346                 if (vcpu->cpu != cpu)
2347                         kvm_migrate_timers(vcpu);
2348                 vcpu->cpu = cpu;
2349         }
2350
2351         accumulate_steal_time(vcpu);
2352         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2353 }
2354
2355 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2356 {
2357         kvm_x86_ops->vcpu_put(vcpu);
2358         kvm_put_guest_fpu(vcpu);
2359         vcpu->arch.last_host_tsc = native_read_tsc();
2360 }
2361
2362 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2363                                     struct kvm_lapic_state *s)
2364 {
2365         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2366
2367         return 0;
2368 }
2369
2370 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2371                                     struct kvm_lapic_state *s)
2372 {
2373         kvm_apic_post_state_restore(vcpu, s);
2374         update_cr8_intercept(vcpu);
2375
2376         return 0;
2377 }
2378
2379 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2380                                     struct kvm_interrupt *irq)
2381 {
2382         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2383                 return -EINVAL;
2384         if (irqchip_in_kernel(vcpu->kvm))
2385                 return -ENXIO;
2386
2387         kvm_queue_interrupt(vcpu, irq->irq, false);
2388         kvm_make_request(KVM_REQ_EVENT, vcpu);
2389
2390         return 0;
2391 }
2392
2393 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2394 {
2395         kvm_inject_nmi(vcpu);
2396
2397         return 0;
2398 }
2399
2400 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2401                                            struct kvm_tpr_access_ctl *tac)
2402 {
2403         if (tac->flags)
2404                 return -EINVAL;
2405         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2406         return 0;
2407 }
2408
2409 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2410                                         u64 mcg_cap)
2411 {
2412         int r;
2413         unsigned bank_num = mcg_cap & 0xff, bank;
2414
2415         r = -EINVAL;
2416         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2417                 goto out;
2418         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2419                 goto out;
2420         r = 0;
2421         vcpu->arch.mcg_cap = mcg_cap;
2422         /* Init IA32_MCG_CTL to all 1s */
2423         if (mcg_cap & MCG_CTL_P)
2424                 vcpu->arch.mcg_ctl = ~(u64)0;
2425         /* Init IA32_MCi_CTL to all 1s */
2426         for (bank = 0; bank < bank_num; bank++)
2427                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2428 out:
2429         return r;
2430 }
2431
2432 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2433                                       struct kvm_x86_mce *mce)
2434 {
2435         u64 mcg_cap = vcpu->arch.mcg_cap;
2436         unsigned bank_num = mcg_cap & 0xff;
2437         u64 *banks = vcpu->arch.mce_banks;
2438
2439         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2440                 return -EINVAL;
2441         /*
2442          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2443          * reporting is disabled
2444          */
2445         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2446             vcpu->arch.mcg_ctl != ~(u64)0)
2447                 return 0;
2448         banks += 4 * mce->bank;
2449         /*
2450          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2451          * reporting is disabled for the bank
2452          */
2453         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2454                 return 0;
2455         if (mce->status & MCI_STATUS_UC) {
2456                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2457                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2458                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2459                         return 0;
2460                 }
2461                 if (banks[1] & MCI_STATUS_VAL)
2462                         mce->status |= MCI_STATUS_OVER;
2463                 banks[2] = mce->addr;
2464                 banks[3] = mce->misc;
2465                 vcpu->arch.mcg_status = mce->mcg_status;
2466                 banks[1] = mce->status;
2467                 kvm_queue_exception(vcpu, MC_VECTOR);
2468         } else if (!(banks[1] & MCI_STATUS_VAL)
2469                    || !(banks[1] & MCI_STATUS_UC)) {
2470                 if (banks[1] & MCI_STATUS_VAL)
2471                         mce->status |= MCI_STATUS_OVER;
2472                 banks[2] = mce->addr;
2473                 banks[3] = mce->misc;
2474                 banks[1] = mce->status;
2475         } else
2476                 banks[1] |= MCI_STATUS_OVER;
2477         return 0;
2478 }
2479
2480 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2481                                                struct kvm_vcpu_events *events)
2482 {
2483         process_nmi(vcpu);
2484         events->exception.injected =
2485                 vcpu->arch.exception.pending &&
2486                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2487         events->exception.nr = vcpu->arch.exception.nr;
2488         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2489         events->exception.pad = 0;
2490         events->exception.error_code = vcpu->arch.exception.error_code;
2491
2492         events->interrupt.injected =
2493                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2494         events->interrupt.nr = vcpu->arch.interrupt.nr;
2495         events->interrupt.soft = 0;
2496         events->interrupt.shadow =
2497                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2498                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2499
2500         events->nmi.injected = vcpu->arch.nmi_injected;
2501         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2502         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2503         events->nmi.pad = 0;
2504
2505         events->sipi_vector = vcpu->arch.sipi_vector;
2506
2507         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2508                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2509                          | KVM_VCPUEVENT_VALID_SHADOW);
2510         memset(&events->reserved, 0, sizeof(events->reserved));
2511 }
2512
2513 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2514                                               struct kvm_vcpu_events *events)
2515 {
2516         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2517                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2518                               | KVM_VCPUEVENT_VALID_SHADOW))
2519                 return -EINVAL;
2520
2521         process_nmi(vcpu);
2522         vcpu->arch.exception.pending = events->exception.injected;
2523         vcpu->arch.exception.nr = events->exception.nr;
2524         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2525         vcpu->arch.exception.error_code = events->exception.error_code;
2526
2527         vcpu->arch.interrupt.pending = events->interrupt.injected;
2528         vcpu->arch.interrupt.nr = events->interrupt.nr;
2529         vcpu->arch.interrupt.soft = events->interrupt.soft;
2530         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2531                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2532                                                   events->interrupt.shadow);
2533
2534         vcpu->arch.nmi_injected = events->nmi.injected;
2535         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2536                 vcpu->arch.nmi_pending = events->nmi.pending;
2537         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2538
2539         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2540                 vcpu->arch.sipi_vector = events->sipi_vector;
2541
2542         kvm_make_request(KVM_REQ_EVENT, vcpu);
2543
2544         return 0;
2545 }
2546
2547 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2548                                              struct kvm_debugregs *dbgregs)
2549 {
2550         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2551         dbgregs->dr6 = vcpu->arch.dr6;
2552         dbgregs->dr7 = vcpu->arch.dr7;
2553         dbgregs->flags = 0;
2554         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2555 }
2556
2557 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2558                                             struct kvm_debugregs *dbgregs)
2559 {
2560         if (dbgregs->flags)
2561                 return -EINVAL;
2562
2563         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2564         vcpu->arch.dr6 = dbgregs->dr6;
2565         vcpu->arch.dr7 = dbgregs->dr7;
2566
2567         return 0;
2568 }
2569
2570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2571                                          struct kvm_xsave *guest_xsave)
2572 {
2573         if (cpu_has_xsave)
2574                 memcpy(guest_xsave->region,
2575                         &vcpu->arch.guest_fpu.state->xsave,
2576                         xstate_size);
2577         else {
2578                 memcpy(guest_xsave->region,
2579                         &vcpu->arch.guest_fpu.state->fxsave,
2580                         sizeof(struct i387_fxsave_struct));
2581                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2582                         XSTATE_FPSSE;
2583         }
2584 }
2585
2586 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2587                                         struct kvm_xsave *guest_xsave)
2588 {
2589         u64 xstate_bv =
2590                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2591
2592         if (cpu_has_xsave)
2593                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2594                         guest_xsave->region, xstate_size);
2595         else {
2596                 if (xstate_bv & ~XSTATE_FPSSE)
2597                         return -EINVAL;
2598                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2599                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2600         }
2601         return 0;
2602 }
2603
2604 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2605                                         struct kvm_xcrs *guest_xcrs)
2606 {
2607         if (!cpu_has_xsave) {
2608                 guest_xcrs->nr_xcrs = 0;
2609                 return;
2610         }
2611
2612         guest_xcrs->nr_xcrs = 1;
2613         guest_xcrs->flags = 0;
2614         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2615         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2616 }
2617
2618 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2619                                        struct kvm_xcrs *guest_xcrs)
2620 {
2621         int i, r = 0;
2622
2623         if (!cpu_has_xsave)
2624                 return -EINVAL;
2625
2626         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2627                 return -EINVAL;
2628
2629         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2630                 /* Only support XCR0 currently */
2631                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2632                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2633                                 guest_xcrs->xcrs[0].value);
2634                         break;
2635                 }
2636         if (r)
2637                 r = -EINVAL;
2638         return r;
2639 }
2640
2641 /*
2642  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2643  * stopped by the hypervisor.  This function will be called from the host only.
2644  * EINVAL is returned when the host attempts to set the flag for a guest that
2645  * does not support pv clocks.
2646  */
2647 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2648 {
2649         if (!vcpu->arch.time_page)
2650                 return -EINVAL;
2651         vcpu->arch.pvclock_set_guest_stopped_request = true;
2652         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2653         return 0;
2654 }
2655
2656 long kvm_arch_vcpu_ioctl(struct file *filp,
2657                          unsigned int ioctl, unsigned long arg)
2658 {
2659         struct kvm_vcpu *vcpu = filp->private_data;
2660         void __user *argp = (void __user *)arg;
2661         int r;
2662         union {
2663                 struct kvm_lapic_state *lapic;
2664                 struct kvm_xsave *xsave;
2665                 struct kvm_xcrs *xcrs;
2666                 void *buffer;
2667         } u;
2668
2669         u.buffer = NULL;
2670         switch (ioctl) {
2671         case KVM_GET_LAPIC: {
2672                 r = -EINVAL;
2673                 if (!vcpu->arch.apic)
2674                         goto out;
2675                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2676
2677                 r = -ENOMEM;
2678                 if (!u.lapic)
2679                         goto out;
2680                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2681                 if (r)
2682                         goto out;
2683                 r = -EFAULT;
2684                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2685                         goto out;
2686                 r = 0;
2687                 break;
2688         }
2689         case KVM_SET_LAPIC: {
2690                 r = -EINVAL;
2691                 if (!vcpu->arch.apic)
2692                         goto out;
2693                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2694                 if (IS_ERR(u.lapic)) {
2695                         r = PTR_ERR(u.lapic);
2696                         goto out;
2697                 }
2698
2699                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2700                 if (r)
2701                         goto out;
2702                 r = 0;
2703                 break;
2704         }
2705         case KVM_INTERRUPT: {
2706                 struct kvm_interrupt irq;
2707
2708                 r = -EFAULT;
2709                 if (copy_from_user(&irq, argp, sizeof irq))
2710                         goto out;
2711                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2712                 if (r)
2713                         goto out;
2714                 r = 0;
2715                 break;
2716         }
2717         case KVM_NMI: {
2718                 r = kvm_vcpu_ioctl_nmi(vcpu);
2719                 if (r)
2720                         goto out;
2721                 r = 0;
2722                 break;
2723         }
2724         case KVM_SET_CPUID: {
2725                 struct kvm_cpuid __user *cpuid_arg = argp;
2726                 struct kvm_cpuid cpuid;
2727
2728                 r = -EFAULT;
2729                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2730                         goto out;
2731                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2732                 if (r)
2733                         goto out;
2734                 break;
2735         }
2736         case KVM_SET_CPUID2: {
2737                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2738                 struct kvm_cpuid2 cpuid;
2739
2740                 r = -EFAULT;
2741                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2742                         goto out;
2743                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2744                                               cpuid_arg->entries);
2745                 if (r)
2746                         goto out;
2747                 break;
2748         }
2749         case KVM_GET_CPUID2: {
2750                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2751                 struct kvm_cpuid2 cpuid;
2752
2753                 r = -EFAULT;
2754                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755                         goto out;
2756                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2757                                               cpuid_arg->entries);
2758                 if (r)
2759                         goto out;
2760                 r = -EFAULT;
2761                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762                         goto out;
2763                 r = 0;
2764                 break;
2765         }
2766         case KVM_GET_MSRS:
2767                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2768                 break;
2769         case KVM_SET_MSRS:
2770                 r = msr_io(vcpu, argp, do_set_msr, 0);
2771                 break;
2772         case KVM_TPR_ACCESS_REPORTING: {
2773                 struct kvm_tpr_access_ctl tac;
2774
2775                 r = -EFAULT;
2776                 if (copy_from_user(&tac, argp, sizeof tac))
2777                         goto out;
2778                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2779                 if (r)
2780                         goto out;
2781                 r = -EFAULT;
2782                 if (copy_to_user(argp, &tac, sizeof tac))
2783                         goto out;
2784                 r = 0;
2785                 break;
2786         };
2787         case KVM_SET_VAPIC_ADDR: {
2788                 struct kvm_vapic_addr va;
2789
2790                 r = -EINVAL;
2791                 if (!irqchip_in_kernel(vcpu->kvm))
2792                         goto out;
2793                 r = -EFAULT;
2794                 if (copy_from_user(&va, argp, sizeof va))
2795                         goto out;
2796                 r = 0;
2797                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2798                 break;
2799         }
2800         case KVM_X86_SETUP_MCE: {
2801                 u64 mcg_cap;
2802
2803                 r = -EFAULT;
2804                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2805                         goto out;
2806                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2807                 break;
2808         }
2809         case KVM_X86_SET_MCE: {
2810                 struct kvm_x86_mce mce;
2811
2812                 r = -EFAULT;
2813                 if (copy_from_user(&mce, argp, sizeof mce))
2814                         goto out;
2815                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2816                 break;
2817         }
2818         case KVM_GET_VCPU_EVENTS: {
2819                 struct kvm_vcpu_events events;
2820
2821                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2822
2823                 r = -EFAULT;
2824                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2825                         break;
2826                 r = 0;
2827                 break;
2828         }
2829         case KVM_SET_VCPU_EVENTS: {
2830                 struct kvm_vcpu_events events;
2831
2832                 r = -EFAULT;
2833                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2834                         break;
2835
2836                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2837                 break;
2838         }
2839         case KVM_GET_DEBUGREGS: {
2840                 struct kvm_debugregs dbgregs;
2841
2842                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2843
2844                 r = -EFAULT;
2845                 if (copy_to_user(argp, &dbgregs,
2846                                  sizeof(struct kvm_debugregs)))
2847                         break;
2848                 r = 0;
2849                 break;
2850         }
2851         case KVM_SET_DEBUGREGS: {
2852                 struct kvm_debugregs dbgregs;
2853
2854                 r = -EFAULT;
2855                 if (copy_from_user(&dbgregs, argp,
2856                                    sizeof(struct kvm_debugregs)))
2857                         break;
2858
2859                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2860                 break;
2861         }
2862         case KVM_GET_XSAVE: {
2863                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2864                 r = -ENOMEM;
2865                 if (!u.xsave)
2866                         break;
2867
2868                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2869
2870                 r = -EFAULT;
2871                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2872                         break;
2873                 r = 0;
2874                 break;
2875         }
2876         case KVM_SET_XSAVE: {
2877                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2878                 if (IS_ERR(u.xsave)) {
2879                         r = PTR_ERR(u.xsave);
2880                         goto out;
2881                 }
2882
2883                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2884                 break;
2885         }
2886         case KVM_GET_XCRS: {
2887                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2888                 r = -ENOMEM;
2889                 if (!u.xcrs)
2890                         break;
2891
2892                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2893
2894                 r = -EFAULT;
2895                 if (copy_to_user(argp, u.xcrs,
2896                                  sizeof(struct kvm_xcrs)))
2897                         break;
2898                 r = 0;
2899                 break;
2900         }
2901         case KVM_SET_XCRS: {
2902                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2903                 if (IS_ERR(u.xcrs)) {
2904                         r = PTR_ERR(u.xcrs);
2905                         goto out;
2906                 }
2907
2908                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2909                 break;
2910         }
2911         case KVM_SET_TSC_KHZ: {
2912                 u32 user_tsc_khz;
2913
2914                 r = -EINVAL;
2915                 user_tsc_khz = (u32)arg;
2916
2917                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2918                         goto out;
2919
2920                 if (user_tsc_khz == 0)
2921                         user_tsc_khz = tsc_khz;
2922
2923                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2924
2925                 r = 0;
2926                 goto out;
2927         }
2928         case KVM_GET_TSC_KHZ: {
2929                 r = vcpu->arch.virtual_tsc_khz;
2930                 goto out;
2931         }
2932         case KVM_KVMCLOCK_CTRL: {
2933                 r = kvm_set_guest_paused(vcpu);
2934                 goto out;
2935         }
2936         default:
2937                 r = -EINVAL;
2938         }
2939 out:
2940         kfree(u.buffer);
2941         return r;
2942 }
2943
2944 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2945 {
2946         return VM_FAULT_SIGBUS;
2947 }
2948
2949 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2950 {
2951         int ret;
2952
2953         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2954                 return -1;
2955         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2956         return ret;
2957 }
2958
2959 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2960                                               u64 ident_addr)
2961 {
2962         kvm->arch.ept_identity_map_addr = ident_addr;
2963         return 0;
2964 }
2965
2966 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2967                                           u32 kvm_nr_mmu_pages)
2968 {
2969         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2970                 return -EINVAL;
2971
2972         mutex_lock(&kvm->slots_lock);
2973         spin_lock(&kvm->mmu_lock);
2974
2975         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2976         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2977
2978         spin_unlock(&kvm->mmu_lock);
2979         mutex_unlock(&kvm->slots_lock);
2980         return 0;
2981 }
2982
2983 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2984 {
2985         return kvm->arch.n_max_mmu_pages;
2986 }
2987
2988 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2989 {
2990         int r;
2991
2992         r = 0;
2993         switch (chip->chip_id) {
2994         case KVM_IRQCHIP_PIC_MASTER:
2995                 memcpy(&chip->chip.pic,
2996                         &pic_irqchip(kvm)->pics[0],
2997                         sizeof(struct kvm_pic_state));
2998                 break;
2999         case KVM_IRQCHIP_PIC_SLAVE:
3000                 memcpy(&chip->chip.pic,
3001                         &pic_irqchip(kvm)->pics[1],
3002                         sizeof(struct kvm_pic_state));
3003                 break;
3004         case KVM_IRQCHIP_IOAPIC:
3005                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3006                 break;
3007         default:
3008                 r = -EINVAL;
3009                 break;
3010         }
3011         return r;
3012 }
3013
3014 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3015 {
3016         int r;
3017
3018         r = 0;
3019         switch (chip->chip_id) {
3020         case KVM_IRQCHIP_PIC_MASTER:
3021                 spin_lock(&pic_irqchip(kvm)->lock);
3022                 memcpy(&pic_irqchip(kvm)->pics[0],
3023                         &chip->chip.pic,
3024                         sizeof(struct kvm_pic_state));
3025                 spin_unlock(&pic_irqchip(kvm)->lock);
3026                 break;
3027         case KVM_IRQCHIP_PIC_SLAVE:
3028                 spin_lock(&pic_irqchip(kvm)->lock);
3029                 memcpy(&pic_irqchip(kvm)->pics[1],
3030                         &chip->chip.pic,
3031                         sizeof(struct kvm_pic_state));
3032                 spin_unlock(&pic_irqchip(kvm)->lock);
3033                 break;
3034         case KVM_IRQCHIP_IOAPIC:
3035                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3036                 break;
3037         default:
3038                 r = -EINVAL;
3039                 break;
3040         }
3041         kvm_pic_update_irq(pic_irqchip(kvm));
3042         return r;
3043 }
3044
3045 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3046 {
3047         int r = 0;
3048
3049         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3050         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3051         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3052         return r;
3053 }
3054
3055 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3056 {
3057         int r = 0;
3058
3059         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3060         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3061         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3062         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3063         return r;
3064 }
3065
3066 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3067 {
3068         int r = 0;
3069
3070         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3071         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3072                 sizeof(ps->channels));
3073         ps->flags = kvm->arch.vpit->pit_state.flags;
3074         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3075         memset(&ps->reserved, 0, sizeof(ps->reserved));
3076         return r;
3077 }
3078
3079 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3080 {
3081         int r = 0, start = 0;
3082         u32 prev_legacy, cur_legacy;
3083         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3084         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3085         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3086         if (!prev_legacy && cur_legacy)
3087                 start = 1;
3088         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3089                sizeof(kvm->arch.vpit->pit_state.channels));
3090         kvm->arch.vpit->pit_state.flags = ps->flags;
3091         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3092         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3093         return r;
3094 }
3095
3096 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3097                                  struct kvm_reinject_control *control)
3098 {
3099         if (!kvm->arch.vpit)
3100                 return -ENXIO;
3101         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3102         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3103         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3104         return 0;
3105 }
3106
3107 /**
3108  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3109  * @kvm: kvm instance
3110  * @log: slot id and address to which we copy the log
3111  *
3112  * We need to keep it in mind that VCPU threads can write to the bitmap
3113  * concurrently.  So, to avoid losing data, we keep the following order for
3114  * each bit:
3115  *
3116  *   1. Take a snapshot of the bit and clear it if needed.
3117  *   2. Write protect the corresponding page.
3118  *   3. Flush TLB's if needed.
3119  *   4. Copy the snapshot to the userspace.
3120  *
3121  * Between 2 and 3, the guest may write to the page using the remaining TLB
3122  * entry.  This is not a problem because the page will be reported dirty at
3123  * step 4 using the snapshot taken before and step 3 ensures that successive
3124  * writes will be logged for the next call.
3125  */
3126 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3127 {
3128         int r;
3129         struct kvm_memory_slot *memslot;
3130         unsigned long n, i;
3131         unsigned long *dirty_bitmap;
3132         unsigned long *dirty_bitmap_buffer;
3133         bool is_dirty = false;
3134
3135         mutex_lock(&kvm->slots_lock);
3136
3137         r = -EINVAL;
3138         if (log->slot >= KVM_MEMORY_SLOTS)
3139                 goto out;
3140
3141         memslot = id_to_memslot(kvm->memslots, log->slot);
3142
3143         dirty_bitmap = memslot->dirty_bitmap;
3144         r = -ENOENT;
3145         if (!dirty_bitmap)
3146                 goto out;
3147
3148         n = kvm_dirty_bitmap_bytes(memslot);
3149
3150         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3151         memset(dirty_bitmap_buffer, 0, n);
3152
3153         spin_lock(&kvm->mmu_lock);
3154
3155         for (i = 0; i < n / sizeof(long); i++) {
3156                 unsigned long mask;
3157                 gfn_t offset;
3158
3159                 if (!dirty_bitmap[i])
3160                         continue;
3161
3162                 is_dirty = true;
3163
3164                 mask = xchg(&dirty_bitmap[i], 0);
3165                 dirty_bitmap_buffer[i] = mask;
3166
3167                 offset = i * BITS_PER_LONG;
3168                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3169         }
3170         if (is_dirty)
3171                 kvm_flush_remote_tlbs(kvm);
3172
3173         spin_unlock(&kvm->mmu_lock);
3174
3175         r = -EFAULT;
3176         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3177                 goto out;
3178
3179         r = 0;
3180 out:
3181         mutex_unlock(&kvm->slots_lock);
3182         return r;
3183 }
3184
3185 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3186 {
3187         if (!irqchip_in_kernel(kvm))
3188                 return -ENXIO;
3189
3190         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3191                                         irq_event->irq, irq_event->level);
3192         return 0;
3193 }
3194
3195 long kvm_arch_vm_ioctl(struct file *filp,
3196                        unsigned int ioctl, unsigned long arg)
3197 {
3198         struct kvm *kvm = filp->private_data;
3199         void __user *argp = (void __user *)arg;
3200         int r = -ENOTTY;
3201         /*
3202          * This union makes it completely explicit to gcc-3.x
3203          * that these two variables' stack usage should be
3204          * combined, not added together.
3205          */
3206         union {
3207                 struct kvm_pit_state ps;
3208                 struct kvm_pit_state2 ps2;
3209                 struct kvm_pit_config pit_config;
3210         } u;
3211
3212         switch (ioctl) {
3213         case KVM_SET_TSS_ADDR:
3214                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3215                 if (r < 0)
3216                         goto out;
3217                 break;
3218         case KVM_SET_IDENTITY_MAP_ADDR: {
3219                 u64 ident_addr;
3220
3221                 r = -EFAULT;
3222                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3223                         goto out;
3224                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3225                 if (r < 0)
3226                         goto out;
3227                 break;
3228         }
3229         case KVM_SET_NR_MMU_PAGES:
3230                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3231                 if (r)
3232                         goto out;
3233                 break;
3234         case KVM_GET_NR_MMU_PAGES:
3235                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3236                 break;
3237         case KVM_CREATE_IRQCHIP: {
3238                 struct kvm_pic *vpic;
3239
3240                 mutex_lock(&kvm->lock);
3241                 r = -EEXIST;
3242                 if (kvm->arch.vpic)
3243                         goto create_irqchip_unlock;
3244                 r = -EINVAL;
3245                 if (atomic_read(&kvm->online_vcpus))
3246                         goto create_irqchip_unlock;
3247                 r = -ENOMEM;
3248                 vpic = kvm_create_pic(kvm);
3249                 if (vpic) {
3250                         r = kvm_ioapic_init(kvm);
3251                         if (r) {
3252                                 mutex_lock(&kvm->slots_lock);
3253                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3254                                                           &vpic->dev_master);
3255                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3256                                                           &vpic->dev_slave);
3257                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3258                                                           &vpic->dev_eclr);
3259                                 mutex_unlock(&kvm->slots_lock);
3260                                 kfree(vpic);
3261                                 goto create_irqchip_unlock;
3262                         }
3263                 } else
3264                         goto create_irqchip_unlock;
3265                 smp_wmb();
3266                 kvm->arch.vpic = vpic;
3267                 smp_wmb();
3268                 r = kvm_setup_default_irq_routing(kvm);
3269                 if (r) {
3270                         mutex_lock(&kvm->slots_lock);
3271                         mutex_lock(&kvm->irq_lock);
3272                         kvm_ioapic_destroy(kvm);
3273                         kvm_destroy_pic(kvm);
3274                         mutex_unlock(&kvm->irq_lock);
3275                         mutex_unlock(&kvm->slots_lock);
3276                 }
3277         create_irqchip_unlock:
3278                 mutex_unlock(&kvm->lock);
3279                 break;
3280         }
3281         case KVM_CREATE_PIT:
3282                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3283                 goto create_pit;
3284         case KVM_CREATE_PIT2:
3285                 r = -EFAULT;
3286                 if (copy_from_user(&u.pit_config, argp,
3287                                    sizeof(struct kvm_pit_config)))
3288                         goto out;
3289         create_pit:
3290                 mutex_lock(&kvm->slots_lock);
3291                 r = -EEXIST;
3292                 if (kvm->arch.vpit)
3293                         goto create_pit_unlock;
3294                 r = -ENOMEM;
3295                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3296                 if (kvm->arch.vpit)
3297                         r = 0;
3298         create_pit_unlock:
3299                 mutex_unlock(&kvm->slots_lock);
3300                 break;
3301         case KVM_GET_IRQCHIP: {
3302                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3303                 struct kvm_irqchip *chip;
3304
3305                 chip = memdup_user(argp, sizeof(*chip));
3306                 if (IS_ERR(chip)) {
3307                         r = PTR_ERR(chip);
3308                         goto out;
3309                 }
3310
3311                 r = -ENXIO;
3312                 if (!irqchip_in_kernel(kvm))
3313                         goto get_irqchip_out;
3314                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3315                 if (r)
3316                         goto get_irqchip_out;
3317                 r = -EFAULT;
3318                 if (copy_to_user(argp, chip, sizeof *chip))
3319                         goto get_irqchip_out;
3320                 r = 0;
3321         get_irqchip_out:
3322                 kfree(chip);
3323                 if (r)
3324                         goto out;
3325                 break;
3326         }
3327         case KVM_SET_IRQCHIP: {
3328                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3329                 struct kvm_irqchip *chip;
3330
3331                 chip = memdup_user(argp, sizeof(*chip));
3332                 if (IS_ERR(chip)) {
3333                         r = PTR_ERR(chip);
3334                         goto out;
3335                 }
3336
3337                 r = -ENXIO;
3338                 if (!irqchip_in_kernel(kvm))
3339                         goto set_irqchip_out;
3340                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3341                 if (r)
3342                         goto set_irqchip_out;
3343                 r = 0;
3344         set_irqchip_out:
3345                 kfree(chip);
3346                 if (r)
3347                         goto out;
3348                 break;
3349         }
3350         case KVM_GET_PIT: {
3351                 r = -EFAULT;
3352                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3353                         goto out;
3354                 r = -ENXIO;
3355                 if (!kvm->arch.vpit)
3356                         goto out;
3357                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3358                 if (r)
3359                         goto out;
3360                 r = -EFAULT;
3361                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3362                         goto out;
3363                 r = 0;
3364                 break;
3365         }
3366         case KVM_SET_PIT: {
3367                 r = -EFAULT;
3368                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3369                         goto out;
3370                 r = -ENXIO;
3371                 if (!kvm->arch.vpit)
3372                         goto out;
3373                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3374                 if (r)
3375                         goto out;
3376                 r = 0;
3377                 break;
3378         }
3379         case KVM_GET_PIT2: {
3380                 r = -ENXIO;
3381                 if (!kvm->arch.vpit)
3382                         goto out;
3383                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3384                 if (r)
3385                         goto out;
3386                 r = -EFAULT;
3387                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3388                         goto out;
3389                 r = 0;
3390                 break;
3391         }
3392         case KVM_SET_PIT2: {
3393                 r = -EFAULT;
3394                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3395                         goto out;
3396                 r = -ENXIO;
3397                 if (!kvm->arch.vpit)
3398                         goto out;
3399                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3400                 if (r)
3401                         goto out;
3402                 r = 0;
3403                 break;
3404         }
3405         case KVM_REINJECT_CONTROL: {
3406                 struct kvm_reinject_control control;
3407                 r =  -EFAULT;
3408                 if (copy_from_user(&control, argp, sizeof(control)))
3409                         goto out;
3410                 r = kvm_vm_ioctl_reinject(kvm, &control);
3411                 if (r)
3412                         goto out;
3413                 r = 0;
3414                 break;
3415         }
3416         case KVM_XEN_HVM_CONFIG: {
3417                 r = -EFAULT;
3418                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3419                                    sizeof(struct kvm_xen_hvm_config)))
3420                         goto out;
3421                 r = -EINVAL;
3422                 if (kvm->arch.xen_hvm_config.flags)
3423                         goto out;
3424                 r = 0;
3425                 break;
3426         }
3427         case KVM_SET_CLOCK: {
3428                 struct kvm_clock_data user_ns;
3429                 u64 now_ns;
3430                 s64 delta;
3431
3432                 r = -EFAULT;
3433                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3434                         goto out;
3435
3436                 r = -EINVAL;
3437                 if (user_ns.flags)
3438                         goto out;
3439
3440                 r = 0;
3441                 local_irq_disable();
3442                 now_ns = get_kernel_ns();
3443                 delta = user_ns.clock - now_ns;
3444                 local_irq_enable();
3445                 kvm->arch.kvmclock_offset = delta;
3446                 break;
3447         }
3448         case KVM_GET_CLOCK: {
3449                 struct kvm_clock_data user_ns;
3450                 u64 now_ns;
3451
3452                 local_irq_disable();
3453                 now_ns = get_kernel_ns();
3454                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3455                 local_irq_enable();
3456                 user_ns.flags = 0;
3457                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3458
3459                 r = -EFAULT;
3460                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3461                         goto out;
3462                 r = 0;
3463                 break;
3464         }
3465
3466         default:
3467                 ;
3468         }
3469 out:
3470         return r;
3471 }
3472
3473 static void kvm_init_msr_list(void)
3474 {
3475         u32 dummy[2];
3476         unsigned i, j;
3477
3478         /* skip the first msrs in the list. KVM-specific */
3479         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3480                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3481                         continue;
3482                 if (j < i)
3483                         msrs_to_save[j] = msrs_to_save[i];
3484                 j++;
3485         }
3486         num_msrs_to_save = j;
3487 }
3488
3489 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3490                            const void *v)
3491 {
3492         int handled = 0;
3493         int n;
3494
3495         do {
3496                 n = min(len, 8);
3497                 if (!(vcpu->arch.apic &&
3498                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3499                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3500                         break;
3501                 handled += n;
3502                 addr += n;
3503                 len -= n;
3504                 v += n;
3505         } while (len);
3506
3507         return handled;
3508 }
3509
3510 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3511 {
3512         int handled = 0;
3513         int n;
3514
3515         do {
3516                 n = min(len, 8);
3517                 if (!(vcpu->arch.apic &&
3518                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3519                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3520                         break;
3521                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3522                 handled += n;
3523                 addr += n;
3524                 len -= n;
3525                 v += n;
3526         } while (len);
3527
3528         return handled;
3529 }
3530
3531 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3532                         struct kvm_segment *var, int seg)
3533 {
3534         kvm_x86_ops->set_segment(vcpu, var, seg);
3535 }
3536
3537 void kvm_get_segment(struct kvm_vcpu *vcpu,
3538                      struct kvm_segment *var, int seg)
3539 {
3540         kvm_x86_ops->get_segment(vcpu, var, seg);
3541 }
3542
3543 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3544 {
3545         gpa_t t_gpa;
3546         struct x86_exception exception;
3547
3548         BUG_ON(!mmu_is_nested(vcpu));
3549
3550         /* NPT walks are always user-walks */
3551         access |= PFERR_USER_MASK;
3552         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3553
3554         return t_gpa;
3555 }
3556
3557 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3558                               struct x86_exception *exception)
3559 {
3560         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3561         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3562 }
3563
3564  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3565                                 struct x86_exception *exception)
3566 {
3567         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3568         access |= PFERR_FETCH_MASK;
3569         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3570 }
3571
3572 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3573                                struct x86_exception *exception)
3574 {
3575         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3576         access |= PFERR_WRITE_MASK;
3577         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3578 }
3579
3580 /* uses this to access any guest's mapped memory without checking CPL */
3581 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3582                                 struct x86_exception *exception)
3583 {
3584         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3585 }
3586
3587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3588                                       struct kvm_vcpu *vcpu, u32 access,
3589                                       struct x86_exception *exception)
3590 {
3591         void *data = val;
3592         int r = X86EMUL_CONTINUE;
3593
3594         while (bytes) {
3595                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3596                                                             exception);
3597                 unsigned offset = addr & (PAGE_SIZE-1);
3598                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3599                 int ret;
3600
3601                 if (gpa == UNMAPPED_GVA)
3602                         return X86EMUL_PROPAGATE_FAULT;
3603                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3604                 if (ret < 0) {
3605                         r = X86EMUL_IO_NEEDED;
3606                         goto out;
3607                 }
3608
3609                 bytes -= toread;
3610                 data += toread;
3611                 addr += toread;
3612         }
3613 out:
3614         return r;
3615 }
3616
3617 /* used for instruction fetching */
3618 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3619                                 gva_t addr, void *val, unsigned int bytes,
3620                                 struct x86_exception *exception)
3621 {
3622         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3623         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3624
3625         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3626                                           access | PFERR_FETCH_MASK,
3627                                           exception);
3628 }
3629
3630 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3631                                gva_t addr, void *val, unsigned int bytes,
3632                                struct x86_exception *exception)
3633 {
3634         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3635         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3636
3637         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3638                                           exception);
3639 }
3640 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3641
3642 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3643                                       gva_t addr, void *val, unsigned int bytes,
3644                                       struct x86_exception *exception)
3645 {
3646         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3647         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3648 }
3649
3650 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3651                                        gva_t addr, void *val,
3652                                        unsigned int bytes,
3653                                        struct x86_exception *exception)
3654 {
3655         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3656         void *data = val;
3657         int r = X86EMUL_CONTINUE;
3658
3659         while (bytes) {
3660                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3661                                                              PFERR_WRITE_MASK,
3662                                                              exception);
3663                 unsigned offset = addr & (PAGE_SIZE-1);
3664                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3665                 int ret;
3666
3667                 if (gpa == UNMAPPED_GVA)
3668                         return X86EMUL_PROPAGATE_FAULT;
3669                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3670                 if (ret < 0) {
3671                         r = X86EMUL_IO_NEEDED;
3672                         goto out;
3673                 }
3674
3675                 bytes -= towrite;
3676                 data += towrite;
3677                 addr += towrite;
3678         }
3679 out:
3680         return r;
3681 }
3682 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3683
3684 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3685                                 gpa_t *gpa, struct x86_exception *exception,
3686                                 bool write)
3687 {
3688         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3689                 | (write ? PFERR_WRITE_MASK : 0);
3690
3691         if (vcpu_match_mmio_gva(vcpu, gva)
3692             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3693                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3694                                         (gva & (PAGE_SIZE - 1));
3695                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3696                 return 1;
3697         }
3698
3699         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3700
3701         if (*gpa == UNMAPPED_GVA)
3702                 return -1;
3703
3704         /* For APIC access vmexit */
3705         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3706                 return 1;
3707
3708         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3709                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3710                 return 1;
3711         }
3712
3713         return 0;
3714 }
3715
3716 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3717                         const void *val, int bytes)
3718 {
3719         int ret;
3720
3721         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3722         if (ret < 0)
3723                 return 0;
3724         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3725         return 1;
3726 }
3727
3728 struct read_write_emulator_ops {
3729         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3730                                   int bytes);
3731         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3732                                   void *val, int bytes);
3733         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734                                int bytes, void *val);
3735         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736                                     void *val, int bytes);
3737         bool write;
3738 };
3739
3740 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3741 {
3742         if (vcpu->mmio_read_completed) {
3743                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3744                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3745                 vcpu->mmio_read_completed = 0;
3746                 return 1;
3747         }
3748
3749         return 0;
3750 }
3751
3752 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3753                         void *val, int bytes)
3754 {
3755         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3756 }
3757
3758 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3759                          void *val, int bytes)
3760 {
3761         return emulator_write_phys(vcpu, gpa, val, bytes);
3762 }
3763
3764 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3765 {
3766         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3767         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3768 }
3769
3770 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3771                           void *val, int bytes)
3772 {
3773         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3774         return X86EMUL_IO_NEEDED;
3775 }
3776
3777 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778                            void *val, int bytes)
3779 {
3780         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3781
3782         memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3783         return X86EMUL_CONTINUE;
3784 }
3785
3786 static const struct read_write_emulator_ops read_emultor = {
3787         .read_write_prepare = read_prepare,
3788         .read_write_emulate = read_emulate,
3789         .read_write_mmio = vcpu_mmio_read,
3790         .read_write_exit_mmio = read_exit_mmio,
3791 };
3792
3793 static const struct read_write_emulator_ops write_emultor = {
3794         .read_write_emulate = write_emulate,
3795         .read_write_mmio = write_mmio,
3796         .read_write_exit_mmio = write_exit_mmio,
3797         .write = true,
3798 };
3799
3800 static int emulator_read_write_onepage(unsigned long addr, void *val,
3801                                        unsigned int bytes,
3802                                        struct x86_exception *exception,
3803                                        struct kvm_vcpu *vcpu,
3804                                        const struct read_write_emulator_ops *ops)
3805 {
3806         gpa_t gpa;
3807         int handled, ret;
3808         bool write = ops->write;
3809         struct kvm_mmio_fragment *frag;
3810
3811         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3812
3813         if (ret < 0)
3814                 return X86EMUL_PROPAGATE_FAULT;
3815
3816         /* For APIC access vmexit */
3817         if (ret)
3818                 goto mmio;
3819
3820         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3821                 return X86EMUL_CONTINUE;
3822
3823 mmio:
3824         /*
3825          * Is this MMIO handled locally?
3826          */
3827         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3828         if (handled == bytes)
3829                 return X86EMUL_CONTINUE;
3830
3831         gpa += handled;
3832         bytes -= handled;
3833         val += handled;
3834
3835         while (bytes) {
3836                 unsigned now = min(bytes, 8U);
3837
3838                 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3839                 frag->gpa = gpa;
3840                 frag->data = val;
3841                 frag->len = now;
3842
3843                 gpa += now;
3844                 val += now;
3845                 bytes -= now;
3846         }
3847         return X86EMUL_CONTINUE;
3848 }
3849
3850 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3851                         void *val, unsigned int bytes,
3852                         struct x86_exception *exception,
3853                         const struct read_write_emulator_ops *ops)
3854 {
3855         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3856         gpa_t gpa;
3857         int rc;
3858
3859         if (ops->read_write_prepare &&
3860                   ops->read_write_prepare(vcpu, val, bytes))
3861                 return X86EMUL_CONTINUE;
3862
3863         vcpu->mmio_nr_fragments = 0;
3864
3865         /* Crossing a page boundary? */
3866         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3867                 int now;
3868
3869                 now = -addr & ~PAGE_MASK;
3870                 rc = emulator_read_write_onepage(addr, val, now, exception,
3871                                                  vcpu, ops);
3872
3873                 if (rc != X86EMUL_CONTINUE)
3874                         return rc;
3875                 addr += now;
3876                 val += now;
3877                 bytes -= now;
3878         }
3879
3880         rc = emulator_read_write_onepage(addr, val, bytes, exception,
3881                                          vcpu, ops);
3882         if (rc != X86EMUL_CONTINUE)
3883                 return rc;
3884
3885         if (!vcpu->mmio_nr_fragments)
3886                 return rc;
3887
3888         gpa = vcpu->mmio_fragments[0].gpa;
3889
3890         vcpu->mmio_needed = 1;
3891         vcpu->mmio_cur_fragment = 0;
3892
3893         vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3894         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3895         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3896         vcpu->run->mmio.phys_addr = gpa;
3897
3898         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3899 }
3900
3901 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3902                                   unsigned long addr,
3903                                   void *val,
3904                                   unsigned int bytes,
3905                                   struct x86_exception *exception)
3906 {
3907         return emulator_read_write(ctxt, addr, val, bytes,
3908                                    exception, &read_emultor);
3909 }
3910
3911 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3912                             unsigned long addr,
3913                             const void *val,
3914                             unsigned int bytes,
3915                             struct x86_exception *exception)
3916 {
3917         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3918                                    exception, &write_emultor);
3919 }
3920
3921 #define CMPXCHG_TYPE(t, ptr, old, new) \
3922         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3923
3924 #ifdef CONFIG_X86_64
3925 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3926 #else
3927 #  define CMPXCHG64(ptr, old, new) \
3928         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3929 #endif
3930
3931 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3932                                      unsigned long addr,
3933                                      const void *old,
3934                                      const void *new,
3935                                      unsigned int bytes,
3936                                      struct x86_exception *exception)
3937 {
3938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939         gpa_t gpa;
3940         struct page *page;
3941         char *kaddr;
3942         bool exchanged;
3943
3944         /* guests cmpxchg8b have to be emulated atomically */
3945         if (bytes > 8 || (bytes & (bytes - 1)))
3946                 goto emul_write;
3947
3948         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3949
3950         if (gpa == UNMAPPED_GVA ||
3951             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3952                 goto emul_write;
3953
3954         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3955                 goto emul_write;
3956
3957         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3958         if (is_error_page(page))
3959                 goto emul_write;
3960
3961         kaddr = kmap_atomic(page);
3962         kaddr += offset_in_page(gpa);
3963         switch (bytes) {
3964         case 1:
3965                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3966                 break;
3967         case 2:
3968                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3969                 break;
3970         case 4:
3971                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3972                 break;
3973         case 8:
3974                 exchanged = CMPXCHG64(kaddr, old, new);
3975                 break;
3976         default:
3977                 BUG();
3978         }
3979         kunmap_atomic(kaddr);
3980         kvm_release_page_dirty(page);
3981
3982         if (!exchanged)
3983                 return X86EMUL_CMPXCHG_FAILED;
3984
3985         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3986
3987         return X86EMUL_CONTINUE;
3988
3989 emul_write:
3990         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3991
3992         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3993 }
3994
3995 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3996 {
3997         /* TODO: String I/O for in kernel device */
3998         int r;
3999
4000         if (vcpu->arch.pio.in)
4001                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4002                                     vcpu->arch.pio.size, pd);
4003         else
4004                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4005                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4006                                      pd);
4007         return r;
4008 }
4009
4010 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4011                                unsigned short port, void *val,
4012                                unsigned int count, bool in)
4013 {
4014         trace_kvm_pio(!in, port, size, count);
4015
4016         vcpu->arch.pio.port = port;
4017         vcpu->arch.pio.in = in;
4018         vcpu->arch.pio.count  = count;
4019         vcpu->arch.pio.size = size;
4020
4021         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4022                 vcpu->arch.pio.count = 0;
4023                 return 1;
4024         }
4025
4026         vcpu->run->exit_reason = KVM_EXIT_IO;
4027         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4028         vcpu->run->io.size = size;
4029         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4030         vcpu->run->io.count = count;
4031         vcpu->run->io.port = port;
4032
4033         return 0;
4034 }
4035
4036 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4037                                     int size, unsigned short port, void *val,
4038                                     unsigned int count)
4039 {
4040         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4041         int ret;
4042
4043         if (vcpu->arch.pio.count)
4044                 goto data_avail;
4045
4046         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4047         if (ret) {
4048 data_avail:
4049                 memcpy(val, vcpu->arch.pio_data, size * count);
4050                 vcpu->arch.pio.count = 0;
4051                 return 1;
4052         }
4053
4054         return 0;
4055 }
4056
4057 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4058                                      int size, unsigned short port,
4059                                      const void *val, unsigned int count)
4060 {
4061         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4062
4063         memcpy(vcpu->arch.pio_data, val, size * count);
4064         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4065 }
4066
4067 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4068 {
4069         return kvm_x86_ops->get_segment_base(vcpu, seg);
4070 }
4071
4072 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4073 {
4074         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4075 }
4076
4077 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4078 {
4079         if (!need_emulate_wbinvd(vcpu))
4080                 return X86EMUL_CONTINUE;
4081
4082         if (kvm_x86_ops->has_wbinvd_exit()) {
4083                 int cpu = get_cpu();
4084
4085                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4086                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4087                                 wbinvd_ipi, NULL, 1);
4088                 put_cpu();
4089                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4090         } else
4091                 wbinvd();
4092         return X86EMUL_CONTINUE;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4095
4096 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4097 {
4098         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4099 }
4100
4101 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4102 {
4103         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4104 }
4105
4106 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4107 {
4108
4109         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4110 }
4111
4112 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4113 {
4114         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4115 }
4116
4117 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4118 {
4119         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4120         unsigned long value;
4121
4122         switch (cr) {
4123         case 0:
4124                 value = kvm_read_cr0(vcpu);
4125                 break;
4126         case 2:
4127                 value = vcpu->arch.cr2;
4128                 break;
4129         case 3:
4130                 value = kvm_read_cr3(vcpu);
4131                 break;
4132         case 4:
4133                 value = kvm_read_cr4(vcpu);
4134                 break;
4135         case 8:
4136                 value = kvm_get_cr8(vcpu);
4137                 break;
4138         default:
4139                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4140                 return 0;
4141         }
4142
4143         return value;
4144 }
4145
4146 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4147 {
4148         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4149         int res = 0;
4150
4151         switch (cr) {
4152         case 0:
4153                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4154                 break;
4155         case 2:
4156                 vcpu->arch.cr2 = val;
4157                 break;
4158         case 3:
4159                 res = kvm_set_cr3(vcpu, val);
4160                 break;
4161         case 4:
4162                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4163                 break;
4164         case 8:
4165                 res = kvm_set_cr8(vcpu, val);
4166                 break;
4167         default:
4168                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4169                 res = -1;
4170         }
4171
4172         return res;
4173 }
4174
4175 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4176 {
4177         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4178 }
4179
4180 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4181 {
4182         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4183 }
4184
4185 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4186 {
4187         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4188 }
4189
4190 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4191 {
4192         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4193 }
4194
4195 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4196 {
4197         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4198 }
4199
4200 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4201 {
4202         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4203 }
4204
4205 static unsigned long emulator_get_cached_segment_base(
4206         struct x86_emulate_ctxt *ctxt, int seg)
4207 {
4208         return get_segment_base(emul_to_vcpu(ctxt), seg);
4209 }
4210
4211 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4212                                  struct desc_struct *desc, u32 *base3,
4213                                  int seg)
4214 {
4215         struct kvm_segment var;
4216
4217         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4218         *selector = var.selector;
4219
4220         if (var.unusable)
4221                 return false;
4222
4223         if (var.g)
4224                 var.limit >>= 12;
4225         set_desc_limit(desc, var.limit);
4226         set_desc_base(desc, (unsigned long)var.base);
4227 #ifdef CONFIG_X86_64
4228         if (base3)
4229                 *base3 = var.base >> 32;
4230 #endif
4231         desc->type = var.type;
4232         desc->s = var.s;
4233         desc->dpl = var.dpl;
4234         desc->p = var.present;
4235         desc->avl = var.avl;
4236         desc->l = var.l;
4237         desc->d = var.db;
4238         desc->g = var.g;
4239
4240         return true;
4241 }
4242
4243 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4244                                  struct desc_struct *desc, u32 base3,
4245                                  int seg)
4246 {
4247         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4248         struct kvm_segment var;
4249
4250         var.selector = selector;
4251         var.base = get_desc_base(desc);
4252 #ifdef CONFIG_X86_64
4253         var.base |= ((u64)base3) << 32;
4254 #endif
4255         var.limit = get_desc_limit(desc);
4256         if (desc->g)
4257                 var.limit = (var.limit << 12) | 0xfff;
4258         var.type = desc->type;
4259         var.present = desc->p;
4260         var.dpl = desc->dpl;
4261         var.db = desc->d;
4262         var.s = desc->s;
4263         var.l = desc->l;
4264         var.g = desc->g;
4265         var.avl = desc->avl;
4266         var.present = desc->p;
4267         var.unusable = !var.present;
4268         var.padding = 0;
4269
4270         kvm_set_segment(vcpu, &var, seg);
4271         return;
4272 }
4273
4274 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4275                             u32 msr_index, u64 *pdata)
4276 {
4277         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4278 }
4279
4280 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4281                             u32 msr_index, u64 data)
4282 {
4283         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4284 }
4285
4286 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4287                              u32 pmc, u64 *pdata)
4288 {
4289         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4290 }
4291
4292 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4293 {
4294         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4295 }
4296
4297 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4298 {
4299         preempt_disable();
4300         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4301         /*
4302          * CR0.TS may reference the host fpu state, not the guest fpu state,
4303          * so it may be clear at this point.
4304          */
4305         clts();
4306 }
4307
4308 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4309 {
4310         preempt_enable();
4311 }
4312
4313 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4314                               struct x86_instruction_info *info,
4315                               enum x86_intercept_stage stage)
4316 {
4317         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4318 }
4319
4320 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4321                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4322 {
4323         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4324 }
4325
4326 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4327 {
4328         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4329 }
4330
4331 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4332 {
4333         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4334 }
4335
4336 static const struct x86_emulate_ops emulate_ops = {
4337         .read_gpr            = emulator_read_gpr,
4338         .write_gpr           = emulator_write_gpr,
4339         .read_std            = kvm_read_guest_virt_system,
4340         .write_std           = kvm_write_guest_virt_system,
4341         .fetch               = kvm_fetch_guest_virt,
4342         .read_emulated       = emulator_read_emulated,
4343         .write_emulated      = emulator_write_emulated,
4344         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4345         .invlpg              = emulator_invlpg,
4346         .pio_in_emulated     = emulator_pio_in_emulated,
4347         .pio_out_emulated    = emulator_pio_out_emulated,
4348         .get_segment         = emulator_get_segment,
4349         .set_segment         = emulator_set_segment,
4350         .get_cached_segment_base = emulator_get_cached_segment_base,
4351         .get_gdt             = emulator_get_gdt,
4352         .get_idt             = emulator_get_idt,
4353         .set_gdt             = emulator_set_gdt,
4354         .set_idt             = emulator_set_idt,
4355         .get_cr              = emulator_get_cr,
4356         .set_cr              = emulator_set_cr,
4357         .set_rflags          = emulator_set_rflags,
4358         .cpl                 = emulator_get_cpl,
4359         .get_dr              = emulator_get_dr,
4360         .set_dr              = emulator_set_dr,
4361         .set_msr             = emulator_set_msr,
4362         .get_msr             = emulator_get_msr,
4363         .read_pmc            = emulator_read_pmc,
4364         .halt                = emulator_halt,
4365         .wbinvd              = emulator_wbinvd,
4366         .fix_hypercall       = emulator_fix_hypercall,
4367         .get_fpu             = emulator_get_fpu,
4368         .put_fpu             = emulator_put_fpu,
4369         .intercept           = emulator_intercept,
4370         .get_cpuid           = emulator_get_cpuid,
4371 };
4372
4373 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4374 {
4375         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4376         /*
4377          * an sti; sti; sequence only disable interrupts for the first
4378          * instruction. So, if the last instruction, be it emulated or
4379          * not, left the system with the INT_STI flag enabled, it
4380          * means that the last instruction is an sti. We should not
4381          * leave the flag on in this case. The same goes for mov ss
4382          */
4383         if (!(int_shadow & mask))
4384                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4385 }
4386
4387 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4388 {
4389         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4390         if (ctxt->exception.vector == PF_VECTOR)
4391                 kvm_propagate_fault(vcpu, &ctxt->exception);
4392         else if (ctxt->exception.error_code_valid)
4393                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4394                                       ctxt->exception.error_code);
4395         else
4396                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4397 }
4398
4399 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4400 {
4401         memset(&ctxt->twobyte, 0,
4402                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4403
4404         ctxt->fetch.start = 0;
4405         ctxt->fetch.end = 0;
4406         ctxt->io_read.pos = 0;
4407         ctxt->io_read.end = 0;
4408         ctxt->mem_read.pos = 0;
4409         ctxt->mem_read.end = 0;
4410 }
4411
4412 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4413 {
4414         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4415         int cs_db, cs_l;
4416
4417         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4418
4419         ctxt->eflags = kvm_get_rflags(vcpu);
4420         ctxt->eip = kvm_rip_read(vcpu);
4421         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4422                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4423                      cs_l                               ? X86EMUL_MODE_PROT64 :
4424                      cs_db                              ? X86EMUL_MODE_PROT32 :
4425                                                           X86EMUL_MODE_PROT16;
4426         ctxt->guest_mode = is_guest_mode(vcpu);
4427
4428         init_decode_cache(ctxt);
4429         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4430 }
4431
4432 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4433 {
4434         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4435         int ret;
4436
4437         init_emulate_ctxt(vcpu);
4438
4439         ctxt->op_bytes = 2;
4440         ctxt->ad_bytes = 2;
4441         ctxt->_eip = ctxt->eip + inc_eip;
4442         ret = emulate_int_real(ctxt, irq);
4443
4444         if (ret != X86EMUL_CONTINUE)
4445                 return EMULATE_FAIL;
4446
4447         ctxt->eip = ctxt->_eip;
4448         kvm_rip_write(vcpu, ctxt->eip);
4449         kvm_set_rflags(vcpu, ctxt->eflags);
4450
4451         if (irq == NMI_VECTOR)
4452                 vcpu->arch.nmi_pending = 0;
4453         else
4454                 vcpu->arch.interrupt.pending = false;
4455
4456         return EMULATE_DONE;
4457 }
4458 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4459
4460 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4461 {
4462         int r = EMULATE_DONE;
4463
4464         ++vcpu->stat.insn_emulation_fail;
4465         trace_kvm_emulate_insn_failed(vcpu);
4466         if (!is_guest_mode(vcpu)) {
4467                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4468                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4469                 vcpu->run->internal.ndata = 0;
4470                 r = EMULATE_FAIL;
4471         }
4472         kvm_queue_exception(vcpu, UD_VECTOR);
4473
4474         return r;
4475 }
4476
4477 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4478 {
4479         gpa_t gpa;
4480         pfn_t pfn;
4481
4482         if (tdp_enabled)
4483                 return false;
4484
4485         /*
4486          * if emulation was due to access to shadowed page table
4487          * and it failed try to unshadow page and re-enter the
4488          * guest to let CPU execute the instruction.
4489          */
4490         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4491                 return true;
4492
4493         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4494
4495         if (gpa == UNMAPPED_GVA)
4496                 return true; /* let cpu generate fault */
4497
4498         /*
4499          * Do not retry the unhandleable instruction if it faults on the
4500          * readonly host memory, otherwise it will goto a infinite loop:
4501          * retry instruction -> write #PF -> emulation fail -> retry
4502          * instruction -> ...
4503          */
4504         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4505         if (!is_error_pfn(pfn)) {
4506                 kvm_release_pfn_clean(pfn);
4507                 return true;
4508         }
4509
4510         return false;
4511 }
4512
4513 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4514                               unsigned long cr2,  int emulation_type)
4515 {
4516         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4517         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4518
4519         last_retry_eip = vcpu->arch.last_retry_eip;
4520         last_retry_addr = vcpu->arch.last_retry_addr;
4521
4522         /*
4523          * If the emulation is caused by #PF and it is non-page_table
4524          * writing instruction, it means the VM-EXIT is caused by shadow
4525          * page protected, we can zap the shadow page and retry this
4526          * instruction directly.
4527          *
4528          * Note: if the guest uses a non-page-table modifying instruction
4529          * on the PDE that points to the instruction, then we will unmap
4530          * the instruction and go to an infinite loop. So, we cache the
4531          * last retried eip and the last fault address, if we meet the eip
4532          * and the address again, we can break out of the potential infinite
4533          * loop.
4534          */
4535         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4536
4537         if (!(emulation_type & EMULTYPE_RETRY))
4538                 return false;
4539
4540         if (x86_page_table_writing_insn(ctxt))
4541                 return false;
4542
4543         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4544                 return false;
4545
4546         vcpu->arch.last_retry_eip = ctxt->eip;
4547         vcpu->arch.last_retry_addr = cr2;
4548
4549         if (!vcpu->arch.mmu.direct_map)
4550                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4551
4552         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4553
4554         return true;
4555 }
4556
4557 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4558 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4559
4560 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4561                             unsigned long cr2,
4562                             int emulation_type,
4563                             void *insn,
4564                             int insn_len)
4565 {
4566         int r;
4567         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4568         bool writeback = true;
4569
4570         kvm_clear_exception_queue(vcpu);
4571
4572         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4573                 init_emulate_ctxt(vcpu);
4574                 ctxt->interruptibility = 0;
4575                 ctxt->have_exception = false;
4576                 ctxt->perm_ok = false;
4577
4578                 ctxt->only_vendor_specific_insn
4579                         = emulation_type & EMULTYPE_TRAP_UD;
4580
4581                 r = x86_decode_insn(ctxt, insn, insn_len);
4582
4583                 trace_kvm_emulate_insn_start(vcpu);
4584                 ++vcpu->stat.insn_emulation;
4585                 if (r != EMULATION_OK)  {
4586                         if (emulation_type & EMULTYPE_TRAP_UD)
4587                                 return EMULATE_FAIL;
4588                         if (reexecute_instruction(vcpu, cr2))
4589                                 return EMULATE_DONE;
4590                         if (emulation_type & EMULTYPE_SKIP)
4591                                 return EMULATE_FAIL;
4592                         return handle_emulation_failure(vcpu);
4593                 }
4594         }
4595
4596         if (emulation_type & EMULTYPE_SKIP) {
4597                 kvm_rip_write(vcpu, ctxt->_eip);
4598                 return EMULATE_DONE;
4599         }
4600
4601         if (retry_instruction(ctxt, cr2, emulation_type))
4602                 return EMULATE_DONE;
4603
4604         /* this is needed for vmware backdoor interface to work since it
4605            changes registers values  during IO operation */
4606         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4607                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4608                 emulator_invalidate_register_cache(ctxt);
4609         }
4610
4611 restart:
4612         r = x86_emulate_insn(ctxt);
4613
4614         if (r == EMULATION_INTERCEPTED)
4615                 return EMULATE_DONE;
4616
4617         if (r == EMULATION_FAILED) {
4618                 if (reexecute_instruction(vcpu, cr2))
4619                         return EMULATE_DONE;
4620
4621                 return handle_emulation_failure(vcpu);
4622         }
4623
4624         if (ctxt->have_exception) {
4625                 inject_emulated_exception(vcpu);
4626                 r = EMULATE_DONE;
4627         } else if (vcpu->arch.pio.count) {
4628                 if (!vcpu->arch.pio.in)
4629                         vcpu->arch.pio.count = 0;
4630                 else {
4631                         writeback = false;
4632                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4633                 }
4634                 r = EMULATE_DO_MMIO;
4635         } else if (vcpu->mmio_needed) {
4636                 if (!vcpu->mmio_is_write)
4637                         writeback = false;
4638                 r = EMULATE_DO_MMIO;
4639                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4640         } else if (r == EMULATION_RESTART)
4641                 goto restart;
4642         else
4643                 r = EMULATE_DONE;
4644
4645         if (writeback) {
4646                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4647                 kvm_set_rflags(vcpu, ctxt->eflags);
4648                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4649                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4650                 kvm_rip_write(vcpu, ctxt->eip);
4651         } else
4652                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4653
4654         return r;
4655 }
4656 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4657
4658 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4659 {
4660         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4661         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4662                                             size, port, &val, 1);
4663         /* do not return to emulator after return from userspace */
4664         vcpu->arch.pio.count = 0;
4665         return ret;
4666 }
4667 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4668
4669 static void tsc_bad(void *info)
4670 {
4671         __this_cpu_write(cpu_tsc_khz, 0);
4672 }
4673
4674 static void tsc_khz_changed(void *data)
4675 {
4676         struct cpufreq_freqs *freq = data;
4677         unsigned long khz = 0;
4678
4679         if (data)
4680                 khz = freq->new;
4681         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4682                 khz = cpufreq_quick_get(raw_smp_processor_id());
4683         if (!khz)
4684                 khz = tsc_khz;
4685         __this_cpu_write(cpu_tsc_khz, khz);
4686 }
4687
4688 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4689                                      void *data)
4690 {
4691         struct cpufreq_freqs *freq = data;
4692         struct kvm *kvm;
4693         struct kvm_vcpu *vcpu;
4694         int i, send_ipi = 0;
4695
4696         /*
4697          * We allow guests to temporarily run on slowing clocks,
4698          * provided we notify them after, or to run on accelerating
4699          * clocks, provided we notify them before.  Thus time never
4700          * goes backwards.
4701          *
4702          * However, we have a problem.  We can't atomically update
4703          * the frequency of a given CPU from this function; it is
4704          * merely a notifier, which can be called from any CPU.
4705          * Changing the TSC frequency at arbitrary points in time
4706          * requires a recomputation of local variables related to
4707          * the TSC for each VCPU.  We must flag these local variables
4708          * to be updated and be sure the update takes place with the
4709          * new frequency before any guests proceed.
4710          *
4711          * Unfortunately, the combination of hotplug CPU and frequency
4712          * change creates an intractable locking scenario; the order
4713          * of when these callouts happen is undefined with respect to
4714          * CPU hotplug, and they can race with each other.  As such,
4715          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4716          * undefined; you can actually have a CPU frequency change take
4717          * place in between the computation of X and the setting of the
4718          * variable.  To protect against this problem, all updates of
4719          * the per_cpu tsc_khz variable are done in an interrupt
4720          * protected IPI, and all callers wishing to update the value
4721          * must wait for a synchronous IPI to complete (which is trivial
4722          * if the caller is on the CPU already).  This establishes the
4723          * necessary total order on variable updates.
4724          *
4725          * Note that because a guest time update may take place
4726          * anytime after the setting of the VCPU's request bit, the
4727          * correct TSC value must be set before the request.  However,
4728          * to ensure the update actually makes it to any guest which
4729          * starts running in hardware virtualization between the set
4730          * and the acquisition of the spinlock, we must also ping the
4731          * CPU after setting the request bit.
4732          *
4733          */
4734
4735         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4736                 return 0;
4737         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4738                 return 0;
4739
4740         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4741
4742         raw_spin_lock(&kvm_lock);
4743         list_for_each_entry(kvm, &vm_list, vm_list) {
4744                 kvm_for_each_vcpu(i, vcpu, kvm) {
4745                         if (vcpu->cpu != freq->cpu)
4746                                 continue;
4747                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4748                         if (vcpu->cpu != smp_processor_id())
4749                                 send_ipi = 1;
4750                 }
4751         }
4752         raw_spin_unlock(&kvm_lock);
4753
4754         if (freq->old < freq->new && send_ipi) {
4755                 /*
4756                  * We upscale the frequency.  Must make the guest
4757                  * doesn't see old kvmclock values while running with
4758                  * the new frequency, otherwise we risk the guest sees
4759                  * time go backwards.
4760                  *
4761                  * In case we update the frequency for another cpu
4762                  * (which might be in guest context) send an interrupt
4763                  * to kick the cpu out of guest context.  Next time
4764                  * guest context is entered kvmclock will be updated,
4765                  * so the guest will not see stale values.
4766                  */
4767                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4768         }
4769         return 0;
4770 }
4771
4772 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4773         .notifier_call  = kvmclock_cpufreq_notifier
4774 };
4775
4776 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4777                                         unsigned long action, void *hcpu)
4778 {
4779         unsigned int cpu = (unsigned long)hcpu;
4780
4781         switch (action) {
4782                 case CPU_ONLINE:
4783                 case CPU_DOWN_FAILED:
4784                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4785                         break;
4786                 case CPU_DOWN_PREPARE:
4787                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4788                         break;
4789         }
4790         return NOTIFY_OK;
4791 }
4792
4793 static struct notifier_block kvmclock_cpu_notifier_block = {
4794         .notifier_call  = kvmclock_cpu_notifier,
4795         .priority = -INT_MAX
4796 };
4797
4798 static void kvm_timer_init(void)
4799 {
4800         int cpu;
4801
4802         max_tsc_khz = tsc_khz;
4803         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4804         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4805 #ifdef CONFIG_CPU_FREQ
4806                 struct cpufreq_policy policy;
4807                 memset(&policy, 0, sizeof(policy));
4808                 cpu = get_cpu();
4809                 cpufreq_get_policy(&policy, cpu);
4810                 if (policy.cpuinfo.max_freq)
4811                         max_tsc_khz = policy.cpuinfo.max_freq;
4812                 put_cpu();
4813 #endif
4814                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4815                                           CPUFREQ_TRANSITION_NOTIFIER);
4816         }
4817         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4818         for_each_online_cpu(cpu)
4819                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4820 }
4821
4822 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4823
4824 int kvm_is_in_guest(void)
4825 {
4826         return __this_cpu_read(current_vcpu) != NULL;
4827 }
4828
4829 static int kvm_is_user_mode(void)
4830 {
4831         int user_mode = 3;
4832
4833         if (__this_cpu_read(current_vcpu))
4834                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4835
4836         return user_mode != 0;
4837 }
4838
4839 static unsigned long kvm_get_guest_ip(void)
4840 {
4841         unsigned long ip = 0;
4842
4843         if (__this_cpu_read(current_vcpu))
4844                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4845
4846         return ip;
4847 }
4848
4849 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4850         .is_in_guest            = kvm_is_in_guest,
4851         .is_user_mode           = kvm_is_user_mode,
4852         .get_guest_ip           = kvm_get_guest_ip,
4853 };
4854
4855 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4856 {
4857         __this_cpu_write(current_vcpu, vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4860
4861 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4862 {
4863         __this_cpu_write(current_vcpu, NULL);
4864 }
4865 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4866
4867 static void kvm_set_mmio_spte_mask(void)
4868 {
4869         u64 mask;
4870         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4871
4872         /*
4873          * Set the reserved bits and the present bit of an paging-structure
4874          * entry to generate page fault with PFER.RSV = 1.
4875          */
4876         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4877         mask |= 1ull;
4878
4879 #ifdef CONFIG_X86_64
4880         /*
4881          * If reserved bit is not supported, clear the present bit to disable
4882          * mmio page fault.
4883          */
4884         if (maxphyaddr == 52)
4885                 mask &= ~1ull;
4886 #endif
4887
4888         kvm_mmu_set_mmio_spte_mask(mask);
4889 }
4890
4891 int kvm_arch_init(void *opaque)
4892 {
4893         int r;
4894         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4895
4896         if (kvm_x86_ops) {
4897                 printk(KERN_ERR "kvm: already loaded the other module\n");
4898                 r = -EEXIST;
4899                 goto out;
4900         }
4901
4902         if (!ops->cpu_has_kvm_support()) {
4903                 printk(KERN_ERR "kvm: no hardware support\n");
4904                 r = -EOPNOTSUPP;
4905                 goto out;
4906         }
4907         if (ops->disabled_by_bios()) {
4908                 printk(KERN_ERR "kvm: disabled by bios\n");
4909                 r = -EOPNOTSUPP;
4910                 goto out;
4911         }
4912
4913         r = kvm_mmu_module_init();
4914         if (r)
4915                 goto out;
4916
4917         kvm_set_mmio_spte_mask();
4918         kvm_init_msr_list();
4919
4920         kvm_x86_ops = ops;
4921         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4922                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4923
4924         kvm_timer_init();
4925
4926         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4927
4928         if (cpu_has_xsave)
4929                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4930
4931         kvm_lapic_init();
4932         return 0;
4933
4934 out:
4935         return r;
4936 }
4937
4938 void kvm_arch_exit(void)
4939 {
4940         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4941
4942         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4943                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4944                                             CPUFREQ_TRANSITION_NOTIFIER);
4945         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4946         kvm_x86_ops = NULL;
4947         kvm_mmu_module_exit();
4948 }
4949
4950 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4951 {
4952         ++vcpu->stat.halt_exits;
4953         if (irqchip_in_kernel(vcpu->kvm)) {
4954                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4955                 return 1;
4956         } else {
4957                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4958                 return 0;
4959         }
4960 }
4961 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4962
4963 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4964 {
4965         u64 param, ingpa, outgpa, ret;
4966         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4967         bool fast, longmode;
4968         int cs_db, cs_l;
4969
4970         /*
4971          * hypercall generates UD from non zero cpl and real mode
4972          * per HYPER-V spec
4973          */
4974         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4975                 kvm_queue_exception(vcpu, UD_VECTOR);
4976                 return 0;
4977         }
4978
4979         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4980         longmode = is_long_mode(vcpu) && cs_l == 1;
4981
4982         if (!longmode) {
4983                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4984                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4985                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4986                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4987                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4988                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4989         }
4990 #ifdef CONFIG_X86_64
4991         else {
4992                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4993                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4994                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4995         }
4996 #endif
4997
4998         code = param & 0xffff;
4999         fast = (param >> 16) & 0x1;
5000         rep_cnt = (param >> 32) & 0xfff;
5001         rep_idx = (param >> 48) & 0xfff;
5002
5003         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5004
5005         switch (code) {
5006         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5007                 kvm_vcpu_on_spin(vcpu);
5008                 break;
5009         default:
5010                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5011                 break;
5012         }
5013
5014         ret = res | (((u64)rep_done & 0xfff) << 32);
5015         if (longmode) {
5016                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5017         } else {
5018                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5019                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5020         }
5021
5022         return 1;
5023 }
5024
5025 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5026 {
5027         unsigned long nr, a0, a1, a2, a3, ret;
5028         int r = 1;
5029
5030         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5031                 return kvm_hv_hypercall(vcpu);
5032
5033         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5034         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5035         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5036         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5037         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5038
5039         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5040
5041         if (!is_long_mode(vcpu)) {
5042                 nr &= 0xFFFFFFFF;
5043                 a0 &= 0xFFFFFFFF;
5044                 a1 &= 0xFFFFFFFF;
5045                 a2 &= 0xFFFFFFFF;
5046                 a3 &= 0xFFFFFFFF;
5047         }
5048
5049         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5050                 ret = -KVM_EPERM;
5051                 goto out;
5052         }
5053
5054         switch (nr) {
5055         case KVM_HC_VAPIC_POLL_IRQ:
5056                 ret = 0;
5057                 break;
5058         default:
5059                 ret = -KVM_ENOSYS;
5060                 break;
5061         }
5062 out:
5063         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5064         ++vcpu->stat.hypercalls;
5065         return r;
5066 }
5067 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5068
5069 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5070 {
5071         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5072         char instruction[3];
5073         unsigned long rip = kvm_rip_read(vcpu);
5074
5075         /*
5076          * Blow out the MMU to ensure that no other VCPU has an active mapping
5077          * to ensure that the updated hypercall appears atomically across all
5078          * VCPUs.
5079          */
5080         kvm_mmu_zap_all(vcpu->kvm);
5081
5082         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5083
5084         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5085 }
5086
5087 /*
5088  * Check if userspace requested an interrupt window, and that the
5089  * interrupt window is open.
5090  *
5091  * No need to exit to userspace if we already have an interrupt queued.
5092  */
5093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5094 {
5095         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5096                 vcpu->run->request_interrupt_window &&
5097                 kvm_arch_interrupt_allowed(vcpu));
5098 }
5099
5100 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5101 {
5102         struct kvm_run *kvm_run = vcpu->run;
5103
5104         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5105         kvm_run->cr8 = kvm_get_cr8(vcpu);
5106         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5107         if (irqchip_in_kernel(vcpu->kvm))
5108                 kvm_run->ready_for_interrupt_injection = 1;
5109         else
5110                 kvm_run->ready_for_interrupt_injection =
5111                         kvm_arch_interrupt_allowed(vcpu) &&
5112                         !kvm_cpu_has_interrupt(vcpu) &&
5113                         !kvm_event_needs_reinjection(vcpu);
5114 }
5115
5116 static int vapic_enter(struct kvm_vcpu *vcpu)
5117 {
5118         struct kvm_lapic *apic = vcpu->arch.apic;
5119         struct page *page;
5120
5121         if (!apic || !apic->vapic_addr)
5122                 return 0;
5123
5124         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5125         if (is_error_page(page))
5126                 return -EFAULT;
5127
5128         vcpu->arch.apic->vapic_page = page;
5129         return 0;
5130 }
5131
5132 static void vapic_exit(struct kvm_vcpu *vcpu)
5133 {
5134         struct kvm_lapic *apic = vcpu->arch.apic;
5135         int idx;
5136
5137         if (!apic || !apic->vapic_addr)
5138                 return;
5139
5140         idx = srcu_read_lock(&vcpu->kvm->srcu);
5141         kvm_release_page_dirty(apic->vapic_page);
5142         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5143         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5144 }
5145
5146 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5147 {
5148         int max_irr, tpr;
5149
5150         if (!kvm_x86_ops->update_cr8_intercept)
5151                 return;
5152
5153         if (!vcpu->arch.apic)
5154                 return;
5155
5156         if (!vcpu->arch.apic->vapic_addr)
5157                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5158         else
5159                 max_irr = -1;
5160
5161         if (max_irr != -1)
5162                 max_irr >>= 4;
5163
5164         tpr = kvm_lapic_get_cr8(vcpu);
5165
5166         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5167 }
5168
5169 static void inject_pending_event(struct kvm_vcpu *vcpu)
5170 {
5171         /* try to reinject previous events if any */
5172         if (vcpu->arch.exception.pending) {
5173                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5174                                         vcpu->arch.exception.has_error_code,
5175                                         vcpu->arch.exception.error_code);
5176                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5177                                           vcpu->arch.exception.has_error_code,
5178                                           vcpu->arch.exception.error_code,
5179                                           vcpu->arch.exception.reinject);
5180                 return;
5181         }
5182
5183         if (vcpu->arch.nmi_injected) {
5184                 kvm_x86_ops->set_nmi(vcpu);
5185                 return;
5186         }
5187
5188         if (vcpu->arch.interrupt.pending) {
5189                 kvm_x86_ops->set_irq(vcpu);
5190                 return;
5191         }
5192
5193         /* try to inject new event if pending */
5194         if (vcpu->arch.nmi_pending) {
5195                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5196                         --vcpu->arch.nmi_pending;
5197                         vcpu->arch.nmi_injected = true;
5198                         kvm_x86_ops->set_nmi(vcpu);
5199                 }
5200         } else if (kvm_cpu_has_interrupt(vcpu)) {
5201                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5202                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5203                                             false);
5204                         kvm_x86_ops->set_irq(vcpu);
5205                 }
5206         }
5207 }
5208
5209 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5210 {
5211         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5212                         !vcpu->guest_xcr0_loaded) {
5213                 /* kvm_set_xcr() also depends on this */
5214                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5215                 vcpu->guest_xcr0_loaded = 1;
5216         }
5217 }
5218
5219 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5220 {
5221         if (vcpu->guest_xcr0_loaded) {
5222                 if (vcpu->arch.xcr0 != host_xcr0)
5223                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5224                 vcpu->guest_xcr0_loaded = 0;
5225         }
5226 }
5227
5228 static void process_nmi(struct kvm_vcpu *vcpu)
5229 {
5230         unsigned limit = 2;
5231
5232         /*
5233          * x86 is limited to one NMI running, and one NMI pending after it.
5234          * If an NMI is already in progress, limit further NMIs to just one.
5235          * Otherwise, allow two (and we'll inject the first one immediately).
5236          */
5237         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5238                 limit = 1;
5239
5240         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5241         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5242         kvm_make_request(KVM_REQ_EVENT, vcpu);
5243 }
5244
5245 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5246 {
5247         int r;
5248         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5249                 vcpu->run->request_interrupt_window;
5250         bool req_immediate_exit = 0;
5251
5252         if (vcpu->requests) {
5253                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5254                         kvm_mmu_unload(vcpu);
5255                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5256                         __kvm_migrate_timers(vcpu);
5257                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5258                         r = kvm_guest_time_update(vcpu);
5259                         if (unlikely(r))
5260                                 goto out;
5261                 }
5262                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5263                         kvm_mmu_sync_roots(vcpu);
5264                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5265                         kvm_x86_ops->tlb_flush(vcpu);
5266                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5267                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5268                         r = 0;
5269                         goto out;
5270                 }
5271                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5272                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5273                         r = 0;
5274                         goto out;
5275                 }
5276                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5277                         vcpu->fpu_active = 0;
5278                         kvm_x86_ops->fpu_deactivate(vcpu);
5279                 }
5280                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5281                         /* Page is swapped out. Do synthetic halt */
5282                         vcpu->arch.apf.halted = true;
5283                         r = 1;
5284                         goto out;
5285                 }
5286                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5287                         record_steal_time(vcpu);
5288                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5289                         process_nmi(vcpu);
5290                 req_immediate_exit =
5291                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5292                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5293                         kvm_handle_pmu_event(vcpu);
5294                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5295                         kvm_deliver_pmi(vcpu);
5296         }
5297
5298         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5299                 inject_pending_event(vcpu);
5300
5301                 /* enable NMI/IRQ window open exits if needed */
5302                 if (vcpu->arch.nmi_pending)
5303                         kvm_x86_ops->enable_nmi_window(vcpu);
5304                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5305                         kvm_x86_ops->enable_irq_window(vcpu);
5306
5307                 if (kvm_lapic_enabled(vcpu)) {
5308                         update_cr8_intercept(vcpu);
5309                         kvm_lapic_sync_to_vapic(vcpu);
5310                 }
5311         }
5312
5313         r = kvm_mmu_reload(vcpu);
5314         if (unlikely(r)) {
5315                 goto cancel_injection;
5316         }
5317
5318         preempt_disable();
5319
5320         kvm_x86_ops->prepare_guest_switch(vcpu);
5321         if (vcpu->fpu_active)
5322                 kvm_load_guest_fpu(vcpu);
5323         kvm_load_guest_xcr0(vcpu);
5324
5325         vcpu->mode = IN_GUEST_MODE;
5326
5327         /* We should set ->mode before check ->requests,
5328          * see the comment in make_all_cpus_request.
5329          */
5330         smp_mb();
5331
5332         local_irq_disable();
5333
5334         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5335             || need_resched() || signal_pending(current)) {
5336                 vcpu->mode = OUTSIDE_GUEST_MODE;
5337                 smp_wmb();
5338                 local_irq_enable();
5339                 preempt_enable();
5340                 r = 1;
5341                 goto cancel_injection;
5342         }
5343
5344         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5345
5346         if (req_immediate_exit)
5347                 smp_send_reschedule(vcpu->cpu);
5348
5349         kvm_guest_enter();
5350
5351         if (unlikely(vcpu->arch.switch_db_regs)) {
5352                 set_debugreg(0, 7);
5353                 set_debugreg(vcpu->arch.eff_db[0], 0);
5354                 set_debugreg(vcpu->arch.eff_db[1], 1);
5355                 set_debugreg(vcpu->arch.eff_db[2], 2);
5356                 set_debugreg(vcpu->arch.eff_db[3], 3);
5357         }
5358
5359         trace_kvm_entry(vcpu->vcpu_id);
5360         kvm_x86_ops->run(vcpu);
5361
5362         /*
5363          * If the guest has used debug registers, at least dr7
5364          * will be disabled while returning to the host.
5365          * If we don't have active breakpoints in the host, we don't
5366          * care about the messed up debug address registers. But if
5367          * we have some of them active, restore the old state.
5368          */
5369         if (hw_breakpoint_active())
5370                 hw_breakpoint_restore();
5371
5372         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5373
5374         vcpu->mode = OUTSIDE_GUEST_MODE;
5375         smp_wmb();
5376         local_irq_enable();
5377
5378         ++vcpu->stat.exits;
5379
5380         /*
5381          * We must have an instruction between local_irq_enable() and
5382          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5383          * the interrupt shadow.  The stat.exits increment will do nicely.
5384          * But we need to prevent reordering, hence this barrier():
5385          */
5386         barrier();
5387
5388         kvm_guest_exit();
5389
5390         preempt_enable();
5391
5392         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5393
5394         /*
5395          * Profile KVM exit RIPs:
5396          */
5397         if (unlikely(prof_on == KVM_PROFILING)) {
5398                 unsigned long rip = kvm_rip_read(vcpu);
5399                 profile_hit(KVM_PROFILING, (void *)rip);
5400         }
5401
5402         if (unlikely(vcpu->arch.tsc_always_catchup))
5403                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5404
5405         if (vcpu->arch.apic_attention)
5406                 kvm_lapic_sync_from_vapic(vcpu);
5407
5408         r = kvm_x86_ops->handle_exit(vcpu);
5409         return r;
5410
5411 cancel_injection:
5412         kvm_x86_ops->cancel_injection(vcpu);
5413         if (unlikely(vcpu->arch.apic_attention))
5414                 kvm_lapic_sync_from_vapic(vcpu);
5415 out:
5416         return r;
5417 }
5418
5419
5420 static int __vcpu_run(struct kvm_vcpu *vcpu)
5421 {
5422         int r;
5423         struct kvm *kvm = vcpu->kvm;
5424
5425         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5426                 pr_debug("vcpu %d received sipi with vector # %x\n",
5427                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5428                 kvm_lapic_reset(vcpu);
5429                 r = kvm_arch_vcpu_reset(vcpu);
5430                 if (r)
5431                         return r;
5432                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5433         }
5434
5435         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5436         r = vapic_enter(vcpu);
5437         if (r) {
5438                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5439                 return r;
5440         }
5441
5442         r = 1;
5443         while (r > 0) {
5444                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5445                     !vcpu->arch.apf.halted)
5446                         r = vcpu_enter_guest(vcpu);
5447                 else {
5448                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5449                         kvm_vcpu_block(vcpu);
5450                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5451                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5452                         {
5453                                 switch(vcpu->arch.mp_state) {
5454                                 case KVM_MP_STATE_HALTED:
5455                                         vcpu->arch.mp_state =
5456                                                 KVM_MP_STATE_RUNNABLE;
5457                                 case KVM_MP_STATE_RUNNABLE:
5458                                         vcpu->arch.apf.halted = false;
5459                                         break;
5460                                 case KVM_MP_STATE_SIPI_RECEIVED:
5461                                 default:
5462                                         r = -EINTR;
5463                                         break;
5464                                 }
5465                         }
5466                 }
5467
5468                 if (r <= 0)
5469                         break;
5470
5471                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5472                 if (kvm_cpu_has_pending_timer(vcpu))
5473                         kvm_inject_pending_timer_irqs(vcpu);
5474
5475                 if (dm_request_for_irq_injection(vcpu)) {
5476                         r = -EINTR;
5477                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5478                         ++vcpu->stat.request_irq_exits;
5479                 }
5480
5481                 kvm_check_async_pf_completion(vcpu);
5482
5483                 if (signal_pending(current)) {
5484                         r = -EINTR;
5485                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5486                         ++vcpu->stat.signal_exits;
5487                 }
5488                 if (need_resched()) {
5489                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5490                         kvm_resched(vcpu);
5491                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5492                 }
5493         }
5494
5495         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5496
5497         vapic_exit(vcpu);
5498
5499         return r;
5500 }
5501
5502 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5503 {
5504         int r;
5505         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5506         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5507         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5508         if (r != EMULATE_DONE)
5509                 return 0;
5510         return 1;
5511 }
5512
5513 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5514 {
5515         BUG_ON(!vcpu->arch.pio.count);
5516
5517         return complete_emulated_io(vcpu);
5518 }
5519
5520 /*
5521  * Implements the following, as a state machine:
5522  *
5523  * read:
5524  *   for each fragment
5525  *     write gpa, len
5526  *     exit
5527  *     copy data
5528  *   execute insn
5529  *
5530  * write:
5531  *   for each fragment
5532  *      write gpa, len
5533  *      copy data
5534  *      exit
5535  */
5536 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5537 {
5538         struct kvm_run *run = vcpu->run;
5539         struct kvm_mmio_fragment *frag;
5540
5541         BUG_ON(!vcpu->mmio_needed);
5542
5543         /* Complete previous fragment */
5544         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5545         if (!vcpu->mmio_is_write)
5546                 memcpy(frag->data, run->mmio.data, frag->len);
5547         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5548                 vcpu->mmio_needed = 0;
5549                 if (vcpu->mmio_is_write)
5550                         return 1;
5551                 vcpu->mmio_read_completed = 1;
5552                 return complete_emulated_io(vcpu);
5553         }
5554         /* Initiate next fragment */
5555         ++frag;
5556         run->exit_reason = KVM_EXIT_MMIO;
5557         run->mmio.phys_addr = frag->gpa;
5558         if (vcpu->mmio_is_write)
5559                 memcpy(run->mmio.data, frag->data, frag->len);
5560         run->mmio.len = frag->len;
5561         run->mmio.is_write = vcpu->mmio_is_write;
5562         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5563         return 0;
5564 }
5565
5566
5567 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5568 {
5569         int r;
5570         sigset_t sigsaved;
5571
5572         if (!tsk_used_math(current) && init_fpu(current))
5573                 return -ENOMEM;
5574
5575         if (vcpu->sigset_active)
5576                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5577
5578         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5579                 kvm_vcpu_block(vcpu);
5580                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5581                 r = -EAGAIN;
5582                 goto out;
5583         }
5584
5585         /* re-sync apic's tpr */
5586         if (!irqchip_in_kernel(vcpu->kvm)) {
5587                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5588                         r = -EINVAL;
5589                         goto out;
5590                 }
5591         }
5592
5593         if (unlikely(vcpu->arch.complete_userspace_io)) {
5594                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5595                 vcpu->arch.complete_userspace_io = NULL;
5596                 r = cui(vcpu);
5597                 if (r <= 0)
5598                         goto out;
5599         } else
5600                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5601
5602         r = __vcpu_run(vcpu);
5603
5604 out:
5605         post_kvm_run_save(vcpu);
5606         if (vcpu->sigset_active)
5607                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5608
5609         return r;
5610 }
5611
5612 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5613 {
5614         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5615                 /*
5616                  * We are here if userspace calls get_regs() in the middle of
5617                  * instruction emulation. Registers state needs to be copied
5618                  * back from emulation context to vcpu. Userspace shouldn't do
5619                  * that usually, but some bad designed PV devices (vmware
5620                  * backdoor interface) need this to work
5621                  */
5622                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5623                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5624         }
5625         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5626         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5627         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5628         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5629         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5630         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5631         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5632         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5633 #ifdef CONFIG_X86_64
5634         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5635         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5636         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5637         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5638         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5639         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5640         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5641         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5642 #endif
5643
5644         regs->rip = kvm_rip_read(vcpu);
5645         regs->rflags = kvm_get_rflags(vcpu);
5646
5647         return 0;
5648 }
5649
5650 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5651 {
5652         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5653         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5654
5655         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5656         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5657         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5658         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5659         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5660         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5661         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5662         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5663 #ifdef CONFIG_X86_64
5664         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5665         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5666         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5667         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5668         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5669         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5670         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5671         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5672 #endif
5673
5674         kvm_rip_write(vcpu, regs->rip);
5675         kvm_set_rflags(vcpu, regs->rflags);
5676
5677         vcpu->arch.exception.pending = false;
5678
5679         kvm_make_request(KVM_REQ_EVENT, vcpu);
5680
5681         return 0;
5682 }
5683
5684 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5685 {
5686         struct kvm_segment cs;
5687
5688         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5689         *db = cs.db;
5690         *l = cs.l;
5691 }
5692 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5693
5694 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5695                                   struct kvm_sregs *sregs)
5696 {
5697         struct desc_ptr dt;
5698
5699         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5700         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5701         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5702         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5703         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5704         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5705
5706         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5707         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5708
5709         kvm_x86_ops->get_idt(vcpu, &dt);
5710         sregs->idt.limit = dt.size;
5711         sregs->idt.base = dt.address;
5712         kvm_x86_ops->get_gdt(vcpu, &dt);
5713         sregs->gdt.limit = dt.size;
5714         sregs->gdt.base = dt.address;
5715
5716         sregs->cr0 = kvm_read_cr0(vcpu);
5717         sregs->cr2 = vcpu->arch.cr2;
5718         sregs->cr3 = kvm_read_cr3(vcpu);
5719         sregs->cr4 = kvm_read_cr4(vcpu);
5720         sregs->cr8 = kvm_get_cr8(vcpu);
5721         sregs->efer = vcpu->arch.efer;
5722         sregs->apic_base = kvm_get_apic_base(vcpu);
5723
5724         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5725
5726         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5727                 set_bit(vcpu->arch.interrupt.nr,
5728                         (unsigned long *)sregs->interrupt_bitmap);
5729
5730         return 0;
5731 }
5732
5733 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5734                                     struct kvm_mp_state *mp_state)
5735 {
5736         mp_state->mp_state = vcpu->arch.mp_state;
5737         return 0;
5738 }
5739
5740 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5741                                     struct kvm_mp_state *mp_state)
5742 {
5743         vcpu->arch.mp_state = mp_state->mp_state;
5744         kvm_make_request(KVM_REQ_EVENT, vcpu);
5745         return 0;
5746 }
5747
5748 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5749                     int reason, bool has_error_code, u32 error_code)
5750 {
5751         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5752         int ret;
5753
5754         init_emulate_ctxt(vcpu);
5755
5756         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5757                                    has_error_code, error_code);
5758
5759         if (ret)
5760                 return EMULATE_FAIL;
5761
5762         kvm_rip_write(vcpu, ctxt->eip);
5763         kvm_set_rflags(vcpu, ctxt->eflags);
5764         kvm_make_request(KVM_REQ_EVENT, vcpu);
5765         return EMULATE_DONE;
5766 }
5767 EXPORT_SYMBOL_GPL(kvm_task_switch);
5768
5769 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5770                                   struct kvm_sregs *sregs)
5771 {
5772         int mmu_reset_needed = 0;
5773         int pending_vec, max_bits, idx;
5774         struct desc_ptr dt;
5775
5776         dt.size = sregs->idt.limit;
5777         dt.address = sregs->idt.base;
5778         kvm_x86_ops->set_idt(vcpu, &dt);
5779         dt.size = sregs->gdt.limit;
5780         dt.address = sregs->gdt.base;
5781         kvm_x86_ops->set_gdt(vcpu, &dt);
5782
5783         vcpu->arch.cr2 = sregs->cr2;
5784         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5785         vcpu->arch.cr3 = sregs->cr3;
5786         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5787
5788         kvm_set_cr8(vcpu, sregs->cr8);
5789
5790         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5791         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5792         kvm_set_apic_base(vcpu, sregs->apic_base);
5793
5794         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5795         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5796         vcpu->arch.cr0 = sregs->cr0;
5797
5798         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5799         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5800         if (sregs->cr4 & X86_CR4_OSXSAVE)
5801                 kvm_update_cpuid(vcpu);
5802
5803         idx = srcu_read_lock(&vcpu->kvm->srcu);
5804         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5805                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5806                 mmu_reset_needed = 1;
5807         }
5808         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5809
5810         if (mmu_reset_needed)
5811                 kvm_mmu_reset_context(vcpu);
5812
5813         max_bits = KVM_NR_INTERRUPTS;
5814         pending_vec = find_first_bit(
5815                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5816         if (pending_vec < max_bits) {
5817                 kvm_queue_interrupt(vcpu, pending_vec, false);
5818                 pr_debug("Set back pending irq %d\n", pending_vec);
5819         }
5820
5821         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5822         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5823         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5824         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5825         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5826         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5827
5828         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5829         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5830
5831         update_cr8_intercept(vcpu);
5832
5833         /* Older userspace won't unhalt the vcpu on reset. */
5834         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5835             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5836             !is_protmode(vcpu))
5837                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5838
5839         kvm_make_request(KVM_REQ_EVENT, vcpu);
5840
5841         return 0;
5842 }
5843
5844 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5845                                         struct kvm_guest_debug *dbg)
5846 {
5847         unsigned long rflags;
5848         int i, r;
5849
5850         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5851                 r = -EBUSY;
5852                 if (vcpu->arch.exception.pending)
5853                         goto out;
5854                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5855                         kvm_queue_exception(vcpu, DB_VECTOR);
5856                 else
5857                         kvm_queue_exception(vcpu, BP_VECTOR);
5858         }
5859
5860         /*
5861          * Read rflags as long as potentially injected trace flags are still
5862          * filtered out.
5863          */
5864         rflags = kvm_get_rflags(vcpu);
5865
5866         vcpu->guest_debug = dbg->control;
5867         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5868                 vcpu->guest_debug = 0;
5869
5870         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5871                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5872                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5873                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
5874         } else {
5875                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5876                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5877         }
5878         kvm_update_dr7(vcpu);
5879
5880         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5881                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5882                         get_segment_base(vcpu, VCPU_SREG_CS);
5883
5884         /*
5885          * Trigger an rflags update that will inject or remove the trace
5886          * flags.
5887          */
5888         kvm_set_rflags(vcpu, rflags);
5889
5890         kvm_x86_ops->update_db_bp_intercept(vcpu);
5891
5892         r = 0;
5893
5894 out:
5895
5896         return r;
5897 }
5898
5899 /*
5900  * Translate a guest virtual address to a guest physical address.
5901  */
5902 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5903                                     struct kvm_translation *tr)
5904 {
5905         unsigned long vaddr = tr->linear_address;
5906         gpa_t gpa;
5907         int idx;
5908
5909         idx = srcu_read_lock(&vcpu->kvm->srcu);
5910         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5911         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5912         tr->physical_address = gpa;
5913         tr->valid = gpa != UNMAPPED_GVA;
5914         tr->writeable = 1;
5915         tr->usermode = 0;
5916
5917         return 0;
5918 }
5919
5920 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5921 {
5922         struct i387_fxsave_struct *fxsave =
5923                         &vcpu->arch.guest_fpu.state->fxsave;
5924
5925         memcpy(fpu->fpr, fxsave->st_space, 128);
5926         fpu->fcw = fxsave->cwd;
5927         fpu->fsw = fxsave->swd;
5928         fpu->ftwx = fxsave->twd;
5929         fpu->last_opcode = fxsave->fop;
5930         fpu->last_ip = fxsave->rip;
5931         fpu->last_dp = fxsave->rdp;
5932         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5933
5934         return 0;
5935 }
5936
5937 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5938 {
5939         struct i387_fxsave_struct *fxsave =
5940                         &vcpu->arch.guest_fpu.state->fxsave;
5941
5942         memcpy(fxsave->st_space, fpu->fpr, 128);
5943         fxsave->cwd = fpu->fcw;
5944         fxsave->swd = fpu->fsw;
5945         fxsave->twd = fpu->ftwx;
5946         fxsave->fop = fpu->last_opcode;
5947         fxsave->rip = fpu->last_ip;
5948         fxsave->rdp = fpu->last_dp;
5949         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5950
5951         return 0;
5952 }
5953
5954 int fx_init(struct kvm_vcpu *vcpu)
5955 {
5956         int err;
5957
5958         err = fpu_alloc(&vcpu->arch.guest_fpu);
5959         if (err)
5960                 return err;
5961
5962         fpu_finit(&vcpu->arch.guest_fpu);
5963
5964         /*
5965          * Ensure guest xcr0 is valid for loading
5966          */
5967         vcpu->arch.xcr0 = XSTATE_FP;
5968
5969         vcpu->arch.cr0 |= X86_CR0_ET;
5970
5971         return 0;
5972 }
5973 EXPORT_SYMBOL_GPL(fx_init);
5974
5975 static void fx_free(struct kvm_vcpu *vcpu)
5976 {
5977         fpu_free(&vcpu->arch.guest_fpu);
5978 }
5979
5980 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5981 {
5982         if (vcpu->guest_fpu_loaded)
5983                 return;
5984
5985         /*
5986          * Restore all possible states in the guest,
5987          * and assume host would use all available bits.
5988          * Guest xcr0 would be loaded later.
5989          */
5990         kvm_put_guest_xcr0(vcpu);
5991         vcpu->guest_fpu_loaded = 1;
5992         __kernel_fpu_begin();
5993         fpu_restore_checking(&vcpu->arch.guest_fpu);
5994         trace_kvm_fpu(1);
5995 }
5996
5997 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5998 {
5999         kvm_put_guest_xcr0(vcpu);
6000
6001         if (!vcpu->guest_fpu_loaded)
6002                 return;
6003
6004         vcpu->guest_fpu_loaded = 0;
6005         fpu_save_init(&vcpu->arch.guest_fpu);
6006         __kernel_fpu_end();
6007         ++vcpu->stat.fpu_reload;
6008         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6009         trace_kvm_fpu(0);
6010 }
6011
6012 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6013 {
6014         kvmclock_reset(vcpu);
6015
6016         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6017         fx_free(vcpu);
6018         kvm_x86_ops->vcpu_free(vcpu);
6019 }
6020
6021 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6022                                                 unsigned int id)
6023 {
6024         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6025                 printk_once(KERN_WARNING
6026                 "kvm: SMP vm created on host with unstable TSC; "
6027                 "guest TSC will not be reliable\n");
6028         return kvm_x86_ops->vcpu_create(kvm, id);
6029 }
6030
6031 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6032 {
6033         int r;
6034
6035         vcpu->arch.mtrr_state.have_fixed = 1;
6036         r = vcpu_load(vcpu);
6037         if (r)
6038                 return r;
6039         r = kvm_arch_vcpu_reset(vcpu);
6040         if (r == 0)
6041                 r = kvm_mmu_setup(vcpu);
6042         vcpu_put(vcpu);
6043
6044         return r;
6045 }
6046
6047 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6048 {
6049         int r;
6050         vcpu->arch.apf.msr_val = 0;
6051
6052         r = vcpu_load(vcpu);
6053         BUG_ON(r);
6054         kvm_mmu_unload(vcpu);
6055         vcpu_put(vcpu);
6056
6057         fx_free(vcpu);
6058         kvm_x86_ops->vcpu_free(vcpu);
6059 }
6060
6061 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6062 {
6063         atomic_set(&vcpu->arch.nmi_queued, 0);
6064         vcpu->arch.nmi_pending = 0;
6065         vcpu->arch.nmi_injected = false;
6066
6067         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6068         vcpu->arch.dr6 = DR6_FIXED_1;
6069         vcpu->arch.dr7 = DR7_FIXED_1;
6070         kvm_update_dr7(vcpu);
6071
6072         kvm_make_request(KVM_REQ_EVENT, vcpu);
6073         vcpu->arch.apf.msr_val = 0;
6074         vcpu->arch.st.msr_val = 0;
6075
6076         kvmclock_reset(vcpu);
6077
6078         kvm_clear_async_pf_completion_queue(vcpu);
6079         kvm_async_pf_hash_reset(vcpu);
6080         vcpu->arch.apf.halted = false;
6081
6082         kvm_pmu_reset(vcpu);
6083
6084         return kvm_x86_ops->vcpu_reset(vcpu);
6085 }
6086
6087 int kvm_arch_hardware_enable(void *garbage)
6088 {
6089         struct kvm *kvm;
6090         struct kvm_vcpu *vcpu;
6091         int i;
6092         int ret;
6093         u64 local_tsc;
6094         u64 max_tsc = 0;
6095         bool stable, backwards_tsc = false;
6096
6097         kvm_shared_msr_cpu_online();
6098         ret = kvm_x86_ops->hardware_enable(garbage);
6099         if (ret != 0)
6100                 return ret;
6101
6102         local_tsc = native_read_tsc();
6103         stable = !check_tsc_unstable();
6104         list_for_each_entry(kvm, &vm_list, vm_list) {
6105                 kvm_for_each_vcpu(i, vcpu, kvm) {
6106                         if (!stable && vcpu->cpu == smp_processor_id())
6107                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6108                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6109                                 backwards_tsc = true;
6110                                 if (vcpu->arch.last_host_tsc > max_tsc)
6111                                         max_tsc = vcpu->arch.last_host_tsc;
6112                         }
6113                 }
6114         }
6115
6116         /*
6117          * Sometimes, even reliable TSCs go backwards.  This happens on
6118          * platforms that reset TSC during suspend or hibernate actions, but
6119          * maintain synchronization.  We must compensate.  Fortunately, we can
6120          * detect that condition here, which happens early in CPU bringup,
6121          * before any KVM threads can be running.  Unfortunately, we can't
6122          * bring the TSCs fully up to date with real time, as we aren't yet far
6123          * enough into CPU bringup that we know how much real time has actually
6124          * elapsed; our helper function, get_kernel_ns() will be using boot
6125          * variables that haven't been updated yet.
6126          *
6127          * So we simply find the maximum observed TSC above, then record the
6128          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6129          * the adjustment will be applied.  Note that we accumulate
6130          * adjustments, in case multiple suspend cycles happen before some VCPU
6131          * gets a chance to run again.  In the event that no KVM threads get a
6132          * chance to run, we will miss the entire elapsed period, as we'll have
6133          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6134          * loose cycle time.  This isn't too big a deal, since the loss will be
6135          * uniform across all VCPUs (not to mention the scenario is extremely
6136          * unlikely). It is possible that a second hibernate recovery happens
6137          * much faster than a first, causing the observed TSC here to be
6138          * smaller; this would require additional padding adjustment, which is
6139          * why we set last_host_tsc to the local tsc observed here.
6140          *
6141          * N.B. - this code below runs only on platforms with reliable TSC,
6142          * as that is the only way backwards_tsc is set above.  Also note
6143          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6144          * have the same delta_cyc adjustment applied if backwards_tsc
6145          * is detected.  Note further, this adjustment is only done once,
6146          * as we reset last_host_tsc on all VCPUs to stop this from being
6147          * called multiple times (one for each physical CPU bringup).
6148          *
6149          * Platforms with unreliable TSCs don't have to deal with this, they
6150          * will be compensated by the logic in vcpu_load, which sets the TSC to
6151          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6152          * guarantee that they stay in perfect synchronization.
6153          */
6154         if (backwards_tsc) {
6155                 u64 delta_cyc = max_tsc - local_tsc;
6156                 list_for_each_entry(kvm, &vm_list, vm_list) {
6157                         kvm_for_each_vcpu(i, vcpu, kvm) {
6158                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6159                                 vcpu->arch.last_host_tsc = local_tsc;
6160                         }
6161
6162                         /*
6163                          * We have to disable TSC offset matching.. if you were
6164                          * booting a VM while issuing an S4 host suspend....
6165                          * you may have some problem.  Solving this issue is
6166                          * left as an exercise to the reader.
6167                          */
6168                         kvm->arch.last_tsc_nsec = 0;
6169                         kvm->arch.last_tsc_write = 0;
6170                 }
6171
6172         }
6173         return 0;
6174 }
6175
6176 void kvm_arch_hardware_disable(void *garbage)
6177 {
6178         kvm_x86_ops->hardware_disable(garbage);
6179         drop_user_return_notifiers(garbage);
6180 }
6181
6182 int kvm_arch_hardware_setup(void)
6183 {
6184         return kvm_x86_ops->hardware_setup();
6185 }
6186
6187 void kvm_arch_hardware_unsetup(void)
6188 {
6189         kvm_x86_ops->hardware_unsetup();
6190 }
6191
6192 void kvm_arch_check_processor_compat(void *rtn)
6193 {
6194         kvm_x86_ops->check_processor_compatibility(rtn);
6195 }
6196
6197 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6198 {
6199         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6200 }
6201
6202 struct static_key kvm_no_apic_vcpu __read_mostly;
6203
6204 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6205 {
6206         struct page *page;
6207         struct kvm *kvm;
6208         int r;
6209
6210         BUG_ON(vcpu->kvm == NULL);
6211         kvm = vcpu->kvm;
6212
6213         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6214         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6215                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6216         else
6217                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6218
6219         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6220         if (!page) {
6221                 r = -ENOMEM;
6222                 goto fail;
6223         }
6224         vcpu->arch.pio_data = page_address(page);
6225
6226         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6227
6228         r = kvm_mmu_create(vcpu);
6229         if (r < 0)
6230                 goto fail_free_pio_data;
6231
6232         if (irqchip_in_kernel(kvm)) {
6233                 r = kvm_create_lapic(vcpu);
6234                 if (r < 0)
6235                         goto fail_mmu_destroy;
6236         } else
6237                 static_key_slow_inc(&kvm_no_apic_vcpu);
6238
6239         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6240                                        GFP_KERNEL);
6241         if (!vcpu->arch.mce_banks) {
6242                 r = -ENOMEM;
6243                 goto fail_free_lapic;
6244         }
6245         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6246
6247         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6248                 goto fail_free_mce_banks;
6249
6250         kvm_async_pf_hash_reset(vcpu);
6251         kvm_pmu_init(vcpu);
6252
6253         return 0;
6254 fail_free_mce_banks:
6255         kfree(vcpu->arch.mce_banks);
6256 fail_free_lapic:
6257         kvm_free_lapic(vcpu);
6258 fail_mmu_destroy:
6259         kvm_mmu_destroy(vcpu);
6260 fail_free_pio_data:
6261         free_page((unsigned long)vcpu->arch.pio_data);
6262 fail:
6263         return r;
6264 }
6265
6266 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6267 {
6268         int idx;
6269
6270         kvm_pmu_destroy(vcpu);
6271         kfree(vcpu->arch.mce_banks);
6272         kvm_free_lapic(vcpu);
6273         idx = srcu_read_lock(&vcpu->kvm->srcu);
6274         kvm_mmu_destroy(vcpu);
6275         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6276         free_page((unsigned long)vcpu->arch.pio_data);
6277         if (!irqchip_in_kernel(vcpu->kvm))
6278                 static_key_slow_dec(&kvm_no_apic_vcpu);
6279 }
6280
6281 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6282 {
6283         if (type)
6284                 return -EINVAL;
6285
6286         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6287         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6288
6289         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6290         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6291         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6292         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6293                 &kvm->arch.irq_sources_bitmap);
6294
6295         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6296         mutex_init(&kvm->arch.apic_map_lock);
6297
6298         return 0;
6299 }
6300
6301 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6302 {
6303         int r;
6304         r = vcpu_load(vcpu);
6305         BUG_ON(r);
6306         kvm_mmu_unload(vcpu);
6307         vcpu_put(vcpu);
6308 }
6309
6310 static void kvm_free_vcpus(struct kvm *kvm)
6311 {
6312         unsigned int i;
6313         struct kvm_vcpu *vcpu;
6314
6315         /*
6316          * Unpin any mmu pages first.
6317          */
6318         kvm_for_each_vcpu(i, vcpu, kvm) {
6319                 kvm_clear_async_pf_completion_queue(vcpu);
6320                 kvm_unload_vcpu_mmu(vcpu);
6321         }
6322         kvm_for_each_vcpu(i, vcpu, kvm)
6323                 kvm_arch_vcpu_free(vcpu);
6324
6325         mutex_lock(&kvm->lock);
6326         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6327                 kvm->vcpus[i] = NULL;
6328
6329         atomic_set(&kvm->online_vcpus, 0);
6330         mutex_unlock(&kvm->lock);
6331 }
6332
6333 void kvm_arch_sync_events(struct kvm *kvm)
6334 {
6335         kvm_free_all_assigned_devices(kvm);
6336         kvm_free_pit(kvm);
6337 }
6338
6339 void kvm_arch_destroy_vm(struct kvm *kvm)
6340 {
6341         kvm_iommu_unmap_guest(kvm);
6342         kfree(kvm->arch.vpic);
6343         kfree(kvm->arch.vioapic);
6344         kvm_free_vcpus(kvm);
6345         if (kvm->arch.apic_access_page)
6346                 put_page(kvm->arch.apic_access_page);
6347         if (kvm->arch.ept_identity_pagetable)
6348                 put_page(kvm->arch.ept_identity_pagetable);
6349         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6350 }
6351
6352 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6353                            struct kvm_memory_slot *dont)
6354 {
6355         int i;
6356
6357         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6358                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6359                         kvm_kvfree(free->arch.rmap[i]);
6360                         free->arch.rmap[i] = NULL;
6361                 }
6362                 if (i == 0)
6363                         continue;
6364
6365                 if (!dont || free->arch.lpage_info[i - 1] !=
6366                              dont->arch.lpage_info[i - 1]) {
6367                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6368                         free->arch.lpage_info[i - 1] = NULL;
6369                 }
6370         }
6371 }
6372
6373 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6374 {
6375         int i;
6376
6377         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6378                 unsigned long ugfn;
6379                 int lpages;
6380                 int level = i + 1;
6381
6382                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6383                                       slot->base_gfn, level) + 1;
6384
6385                 slot->arch.rmap[i] =
6386                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6387                 if (!slot->arch.rmap[i])
6388                         goto out_free;
6389                 if (i == 0)
6390                         continue;
6391
6392                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6393                                         sizeof(*slot->arch.lpage_info[i - 1]));
6394                 if (!slot->arch.lpage_info[i - 1])
6395                         goto out_free;
6396
6397                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6398                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6399                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6400                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6401                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6402                 /*
6403                  * If the gfn and userspace address are not aligned wrt each
6404                  * other, or if explicitly asked to, disable large page
6405                  * support for this slot
6406                  */
6407                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6408                     !kvm_largepages_enabled()) {
6409                         unsigned long j;
6410
6411                         for (j = 0; j < lpages; ++j)
6412                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6413                 }
6414         }
6415
6416         return 0;
6417
6418 out_free:
6419         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6420                 kvm_kvfree(slot->arch.rmap[i]);
6421                 slot->arch.rmap[i] = NULL;
6422                 if (i == 0)
6423                         continue;
6424
6425                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6426                 slot->arch.lpage_info[i - 1] = NULL;
6427         }
6428         return -ENOMEM;
6429 }
6430
6431 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6432                                 struct kvm_memory_slot *memslot,
6433                                 struct kvm_memory_slot old,
6434                                 struct kvm_userspace_memory_region *mem,
6435                                 int user_alloc)
6436 {
6437         int npages = memslot->npages;
6438         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6439
6440         /* Prevent internal slot pages from being moved by fork()/COW. */
6441         if (memslot->id >= KVM_MEMORY_SLOTS)
6442                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6443
6444         /*To keep backward compatibility with older userspace,
6445          *x86 needs to handle !user_alloc case.
6446          */
6447         if (!user_alloc) {
6448                 if (npages && !old.npages) {
6449                         unsigned long userspace_addr;
6450
6451                         userspace_addr = vm_mmap(NULL, 0,
6452                                                  npages * PAGE_SIZE,
6453                                                  PROT_READ | PROT_WRITE,
6454                                                  map_flags,
6455                                                  0);
6456
6457                         if (IS_ERR((void *)userspace_addr))
6458                                 return PTR_ERR((void *)userspace_addr);
6459
6460                         memslot->userspace_addr = userspace_addr;
6461                 }
6462         }
6463
6464
6465         return 0;
6466 }
6467
6468 void kvm_arch_commit_memory_region(struct kvm *kvm,
6469                                 struct kvm_userspace_memory_region *mem,
6470                                 struct kvm_memory_slot old,
6471                                 int user_alloc)
6472 {
6473
6474         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6475
6476         if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6477                 int ret;
6478
6479                 ret = vm_munmap(old.userspace_addr,
6480                                 old.npages * PAGE_SIZE);
6481                 if (ret < 0)
6482                         printk(KERN_WARNING
6483                                "kvm_vm_ioctl_set_memory_region: "
6484                                "failed to munmap memory\n");
6485         }
6486
6487         if (!kvm->arch.n_requested_mmu_pages)
6488                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6489
6490         spin_lock(&kvm->mmu_lock);
6491         if (nr_mmu_pages)
6492                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6493         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6494         spin_unlock(&kvm->mmu_lock);
6495         /*
6496          * If memory slot is created, or moved, we need to clear all
6497          * mmio sptes.
6498          */
6499         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6500                 kvm_mmu_zap_all(kvm);
6501                 kvm_reload_remote_mmus(kvm);
6502         }
6503 }
6504
6505 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6506 {
6507         kvm_mmu_zap_all(kvm);
6508         kvm_reload_remote_mmus(kvm);
6509 }
6510
6511 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6512                                    struct kvm_memory_slot *slot)
6513 {
6514         kvm_arch_flush_shadow_all(kvm);
6515 }
6516
6517 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6518 {
6519         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6520                 !vcpu->arch.apf.halted)
6521                 || !list_empty_careful(&vcpu->async_pf.done)
6522                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6523                 || atomic_read(&vcpu->arch.nmi_queued) ||
6524                 (kvm_arch_interrupt_allowed(vcpu) &&
6525                  kvm_cpu_has_interrupt(vcpu));
6526 }
6527
6528 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6529 {
6530         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6531 }
6532
6533 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6534 {
6535         return kvm_x86_ops->interrupt_allowed(vcpu);
6536 }
6537
6538 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6539 {
6540         unsigned long current_rip = kvm_rip_read(vcpu) +
6541                 get_segment_base(vcpu, VCPU_SREG_CS);
6542
6543         return current_rip == linear_rip;
6544 }
6545 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6546
6547 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6548 {
6549         unsigned long rflags;
6550
6551         rflags = kvm_x86_ops->get_rflags(vcpu);
6552         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6553                 rflags &= ~X86_EFLAGS_TF;
6554         return rflags;
6555 }
6556 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6557
6558 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6559 {
6560         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6561             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6562                 rflags |= X86_EFLAGS_TF;
6563         kvm_x86_ops->set_rflags(vcpu, rflags);
6564         kvm_make_request(KVM_REQ_EVENT, vcpu);
6565 }
6566 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6567
6568 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6569 {
6570         int r;
6571
6572         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6573               is_error_page(work->page))
6574                 return;
6575
6576         r = kvm_mmu_reload(vcpu);
6577         if (unlikely(r))
6578                 return;
6579
6580         if (!vcpu->arch.mmu.direct_map &&
6581               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6582                 return;
6583
6584         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6585 }
6586
6587 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6588 {
6589         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6590 }
6591
6592 static inline u32 kvm_async_pf_next_probe(u32 key)
6593 {
6594         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6595 }
6596
6597 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6598 {
6599         u32 key = kvm_async_pf_hash_fn(gfn);
6600
6601         while (vcpu->arch.apf.gfns[key] != ~0)
6602                 key = kvm_async_pf_next_probe(key);
6603
6604         vcpu->arch.apf.gfns[key] = gfn;
6605 }
6606
6607 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6608 {
6609         int i;
6610         u32 key = kvm_async_pf_hash_fn(gfn);
6611
6612         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6613                      (vcpu->arch.apf.gfns[key] != gfn &&
6614                       vcpu->arch.apf.gfns[key] != ~0); i++)
6615                 key = kvm_async_pf_next_probe(key);
6616
6617         return key;
6618 }
6619
6620 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6621 {
6622         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6623 }
6624
6625 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6626 {
6627         u32 i, j, k;
6628
6629         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6630         while (true) {
6631                 vcpu->arch.apf.gfns[i] = ~0;
6632                 do {
6633                         j = kvm_async_pf_next_probe(j);
6634                         if (vcpu->arch.apf.gfns[j] == ~0)
6635                                 return;
6636                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6637                         /*
6638                          * k lies cyclically in ]i,j]
6639                          * |    i.k.j |
6640                          * |....j i.k.| or  |.k..j i...|
6641                          */
6642                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6643                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6644                 i = j;
6645         }
6646 }
6647
6648 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6649 {
6650
6651         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6652                                       sizeof(val));
6653 }
6654
6655 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6656                                      struct kvm_async_pf *work)
6657 {
6658         struct x86_exception fault;
6659
6660         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6661         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6662
6663         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6664             (vcpu->arch.apf.send_user_only &&
6665              kvm_x86_ops->get_cpl(vcpu) == 0))
6666                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6667         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6668                 fault.vector = PF_VECTOR;
6669                 fault.error_code_valid = true;
6670                 fault.error_code = 0;
6671                 fault.nested_page_fault = false;
6672                 fault.address = work->arch.token;
6673                 kvm_inject_page_fault(vcpu, &fault);
6674         }
6675 }
6676
6677 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6678                                  struct kvm_async_pf *work)
6679 {
6680         struct x86_exception fault;
6681
6682         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6683         if (is_error_page(work->page))
6684                 work->arch.token = ~0; /* broadcast wakeup */
6685         else
6686                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6687
6688         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6689             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6690                 fault.vector = PF_VECTOR;
6691                 fault.error_code_valid = true;
6692                 fault.error_code = 0;
6693                 fault.nested_page_fault = false;
6694                 fault.address = work->arch.token;
6695                 kvm_inject_page_fault(vcpu, &fault);
6696         }
6697         vcpu->arch.apf.halted = false;
6698         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6699 }
6700
6701 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6702 {
6703         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6704                 return true;
6705         else
6706                 return !kvm_event_needs_reinjection(vcpu) &&
6707                         kvm_x86_ops->interrupt_allowed(vcpu);
6708 }
6709
6710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);