]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
1f0d2383f5ee6e273751949a77882224947a7861
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213         unsigned long flags;
214
215         /*
216          * Disabling irqs at this point since the following code could be
217          * interrupted and executed through kvm_arch_hardware_disable()
218          */
219         local_irq_save(flags);
220         if (locals->registered) {
221                 locals->registered = false;
222                 user_return_notifier_unregister(urn);
223         }
224         local_irq_restore(flags);
225         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226                 values = &locals->values[slot];
227                 if (values->host != values->curr) {
228                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
229                         values->curr = values->host;
230                 }
231         }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236         u64 value;
237         unsigned int cpu = smp_processor_id();
238         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240         /* only read, and nobody should modify it at this time,
241          * so don't need lock */
242         if (slot >= shared_msrs_global.nr) {
243                 printk(KERN_ERR "kvm: invalid MSR slot!");
244                 return;
245         }
246         rdmsrl_safe(msr, &value);
247         smsr->values[slot].host = value;
248         smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254         shared_msrs_global.msrs[slot] = msr;
255         if (slot >= shared_msrs_global.nr)
256                 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262         unsigned i;
263
264         for (i = 0; i < shared_msrs_global.nr; ++i)
265                 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270         unsigned int cpu = smp_processor_id();
271         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272         int err;
273
274         if (((value ^ smsr->values[slot].curr) & mask) == 0)
275                 return 0;
276         smsr->values[slot].curr = value;
277         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278         if (err)
279                 return 1;
280
281         if (!smsr->registered) {
282                 smsr->urn.on_user_return = kvm_on_user_return;
283                 user_return_notifier_register(&smsr->urn);
284                 smsr->registered = true;
285         }
286         return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295         if (smsr->registered)
296                 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307         u64 old_state = vcpu->arch.apic_base &
308                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309         u64 new_state = msr_info->data &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314         if (!msr_info->host_initiated &&
315             ((msr_info->data & reserved_bits) != 0 ||
316              new_state == X2APIC_ENABLE ||
317              (new_state == MSR_IA32_APICBASE_ENABLE &&
318               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320               old_state == 0)))
321                 return 1;
322
323         kvm_lapic_set_base(vcpu, msr_info->data);
324         return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330         /* Fault while not rebooting.  We want the trace. */
331         BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN            0
336 #define EXCPT_CONTRIBUTORY      1
337 #define EXCPT_PF                2
338
339 static int exception_class(int vector)
340 {
341         switch (vector) {
342         case PF_VECTOR:
343                 return EXCPT_PF;
344         case DE_VECTOR:
345         case TS_VECTOR:
346         case NP_VECTOR:
347         case SS_VECTOR:
348         case GP_VECTOR:
349                 return EXCPT_CONTRIBUTORY;
350         default:
351                 break;
352         }
353         return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT             0
357 #define EXCPT_TRAP              1
358 #define EXCPT_ABORT             2
359 #define EXCPT_INTERRUPT         3
360
361 static int exception_type(int vector)
362 {
363         unsigned int mask;
364
365         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366                 return EXCPT_INTERRUPT;
367
368         mask = 1 << vector;
369
370         /* #DB is trap, as instruction watchpoints are handled elsewhere */
371         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372                 return EXCPT_TRAP;
373
374         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375                 return EXCPT_ABORT;
376
377         /* Reserved exceptions will result in fault */
378         return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382                 unsigned nr, bool has_error, u32 error_code,
383                 bool reinject)
384 {
385         u32 prev_nr;
386         int class1, class2;
387
388         kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390         if (!vcpu->arch.exception.pending) {
391         queue:
392                 if (has_error && !is_protmode(vcpu))
393                         has_error = false;
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = has_error;
396                 vcpu->arch.exception.nr = nr;
397                 vcpu->arch.exception.error_code = error_code;
398                 vcpu->arch.exception.reinject = reinject;
399                 return;
400         }
401
402         /* to check exception */
403         prev_nr = vcpu->arch.exception.nr;
404         if (prev_nr == DF_VECTOR) {
405                 /* triple fault -> shutdown */
406                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407                 return;
408         }
409         class1 = exception_class(prev_nr);
410         class2 = exception_class(nr);
411         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413                 /* generate double fault per SDM Table 5-5 */
414                 vcpu->arch.exception.pending = true;
415                 vcpu->arch.exception.has_error_code = true;
416                 vcpu->arch.exception.nr = DF_VECTOR;
417                 vcpu->arch.exception.error_code = 0;
418         } else
419                 /* replace previous exception with a new one in a hope
420                    that instruction re-execution will regenerate lost
421                    exception */
422                 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427         kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433         kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439         if (err)
440                 kvm_inject_gp(vcpu, 0);
441         else
442                 return kvm_skip_emulated_instruction(vcpu);
443
444         return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450         ++vcpu->stat.pf_guest;
451         vcpu->arch.cr2 = fault->address;
452         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460         else
461                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463         return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468         atomic_inc(&vcpu->arch.nmi_queued);
469         kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475         kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481         kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
487  * a #GP and return false.
488  */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492                 return true;
493         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494         return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501                 return true;
502
503         kvm_queue_exception(vcpu, UD_VECTOR);
504         return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509  * This function will be used to read from the physical memory of the currently
510  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511  * can read from guest physical or from the guest's guest physical memory.
512  */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514                             gfn_t ngfn, void *data, int offset, int len,
515                             u32 access)
516 {
517         struct x86_exception exception;
518         gfn_t real_gfn;
519         gpa_t ngpa;
520
521         ngpa     = gfn_to_gpa(ngfn);
522         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523         if (real_gfn == UNMAPPED_GVA)
524                 return -EFAULT;
525
526         real_gfn = gpa_to_gfn(real_gfn);
527
528         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533                                void *data, int offset, int len, u32 access)
534 {
535         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536                                        data, offset, len, access);
537 }
538
539 /*
540  * Load the pae pdptrs.  Return true is they are all valid.
541  */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546         int i;
547         int ret;
548         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551                                       offset * sizeof(u64), sizeof(pdpte),
552                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
553         if (ret < 0) {
554                 ret = 0;
555                 goto out;
556         }
557         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558                 if ((pdpte[i] & PT_PRESENT_MASK) &&
559                     (pdpte[i] &
560                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561                         ret = 0;
562                         goto out;
563                 }
564         }
565         ret = 1;
566
567         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568         __set_bit(VCPU_EXREG_PDPTR,
569                   (unsigned long *)&vcpu->arch.regs_avail);
570         __set_bit(VCPU_EXREG_PDPTR,
571                   (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574         return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581         bool changed = true;
582         int offset;
583         gfn_t gfn;
584         int r;
585
586         if (is_long_mode(vcpu) || !is_pae(vcpu))
587                 return false;
588
589         if (!test_bit(VCPU_EXREG_PDPTR,
590                       (unsigned long *)&vcpu->arch.regs_avail))
591                 return true;
592
593         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
597         if (r < 0)
598                 goto out;
599         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602         return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608         unsigned long old_cr0 = kvm_read_cr0(vcpu);
609         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611         cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614         if (cr0 & 0xffffffff00000000UL)
615                 return 1;
616 #endif
617
618         cr0 &= ~CR0_RESERVED_BITS;
619
620         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621                 return 1;
622
623         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624                 return 1;
625
626         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628                 if ((vcpu->arch.efer & EFER_LME)) {
629                         int cs_db, cs_l;
630
631                         if (!is_pae(vcpu))
632                                 return 1;
633                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634                         if (cs_l)
635                                 return 1;
636                 } else
637 #endif
638                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639                                                  kvm_read_cr3(vcpu)))
640                         return 1;
641         }
642
643         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644                 return 1;
645
646         kvm_x86_ops->set_cr0(vcpu, cr0);
647
648         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649                 kvm_clear_async_pf_completion_queue(vcpu);
650                 kvm_async_pf_hash_reset(vcpu);
651         }
652
653         if ((cr0 ^ old_cr0) & update_bits)
654                 kvm_mmu_reset_context(vcpu);
655
656         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661         return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674                         !vcpu->guest_xcr0_loaded) {
675                 /* kvm_set_xcr() also depends on this */
676                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677                 vcpu->guest_xcr0_loaded = 1;
678         }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683         if (vcpu->guest_xcr0_loaded) {
684                 if (vcpu->arch.xcr0 != host_xcr0)
685                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686                 vcpu->guest_xcr0_loaded = 0;
687         }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         u64 xcr0 = xcr;
693         u64 old_xcr0 = vcpu->arch.xcr0;
694         u64 valid_bits;
695
696         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
697         if (index != XCR_XFEATURE_ENABLED_MASK)
698                 return 1;
699         if (!(xcr0 & XFEATURE_MASK_FP))
700                 return 1;
701         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702                 return 1;
703
704         /*
705          * Do not allow the guest to set bits that we do not support
706          * saving.  However, xcr0 bit 0 is always set, even if the
707          * emulated CPU does not support XSAVE (see fx_init).
708          */
709         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710         if (xcr0 & ~valid_bits)
711                 return 1;
712
713         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715                 return 1;
716
717         if (xcr0 & XFEATURE_MASK_AVX512) {
718                 if (!(xcr0 & XFEATURE_MASK_YMM))
719                         return 1;
720                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721                         return 1;
722         }
723         vcpu->arch.xcr0 = xcr0;
724
725         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726                 kvm_update_cpuid(vcpu);
727         return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733             __kvm_set_xcr(vcpu, index, xcr)) {
734                 kvm_inject_gp(vcpu, 0);
735                 return 1;
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743         unsigned long old_cr4 = kvm_read_cr4(vcpu);
744         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747         if (cr4 & CR4_RESERVED_BITS)
748                 return 1;
749
750         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751                 return 1;
752
753         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754                 return 1;
755
756         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757                 return 1;
758
759         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760                 return 1;
761
762         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763                 return 1;
764
765         if (is_long_mode(vcpu)) {
766                 if (!(cr4 & X86_CR4_PAE))
767                         return 1;
768         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769                    && ((cr4 ^ old_cr4) & pdptr_bits)
770                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                    kvm_read_cr3(vcpu)))
772                 return 1;
773
774         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775                 if (!guest_cpuid_has_pcid(vcpu))
776                         return 1;
777
778                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780                         return 1;
781         }
782
783         if (kvm_x86_ops->set_cr4(vcpu, cr4))
784                 return 1;
785
786         if (((cr4 ^ old_cr4) & pdptr_bits) ||
787             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788                 kvm_mmu_reset_context(vcpu);
789
790         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791                 kvm_update_cpuid(vcpu);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800         cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804                 kvm_mmu_sync_roots(vcpu);
805                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806                 return 0;
807         }
808
809         if (is_long_mode(vcpu)) {
810                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811                         return 1;
812         } else if (is_pae(vcpu) && is_paging(vcpu) &&
813                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814                 return 1;
815
816         vcpu->arch.cr3 = cr3;
817         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818         kvm_mmu_new_cr3(vcpu);
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825         if (cr8 & CR8_RESERVED_BITS)
826                 return 1;
827         if (lapic_in_kernel(vcpu))
828                 kvm_lapic_set_tpr(vcpu, cr8);
829         else
830                 vcpu->arch.cr8 = cr8;
831         return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837         if (lapic_in_kernel(vcpu))
838                 return kvm_lapic_get_cr8(vcpu);
839         else
840                 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846         int i;
847
848         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849                 for (i = 0; i < KVM_NR_DB_REGS; i++)
850                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852         }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863         unsigned long dr7;
864
865         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866                 dr7 = vcpu->arch.guest_debug_dr7;
867         else
868                 dr7 = vcpu->arch.dr7;
869         kvm_x86_ops->set_dr7(vcpu, dr7);
870         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871         if (dr7 & DR7_BP_EN_MASK)
872                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877         u64 fixed = DR6_FIXED_1;
878
879         if (!guest_cpuid_has_rtm(vcpu))
880                 fixed |= DR6_RTM;
881         return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886         switch (dr) {
887         case 0 ... 3:
888                 vcpu->arch.db[dr] = val;
889                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                         vcpu->arch.eff_db[dr] = val;
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (val & 0xffffffff00000000ULL)
896                         return -1; /* #GP */
897                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898                 kvm_update_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 if (val & 0xffffffff00000000ULL)
904                         return -1; /* #GP */
905                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906                 kvm_update_dr7(vcpu);
907                 break;
908         }
909
910         return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915         if (__kvm_set_dr(vcpu, dr, val)) {
916                 kvm_inject_gp(vcpu, 0);
917                 return 1;
918         }
919         return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925         switch (dr) {
926         case 0 ... 3:
927                 *val = vcpu->arch.db[dr];
928                 break;
929         case 4:
930                 /* fall through */
931         case 6:
932                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933                         *val = vcpu->arch.dr6;
934                 else
935                         *val = kvm_x86_ops->get_dr6(vcpu);
936                 break;
937         case 5:
938                 /* fall through */
939         default: /* 7 */
940                 *val = vcpu->arch.dr7;
941                 break;
942         }
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950         u64 data;
951         int err;
952
953         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954         if (err)
955                 return err;
956         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958         return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965  *
966  * This list is modified at module load time to reflect the
967  * capabilities of the host cpu. This capabilities test skips MSRs that are
968  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969  * may depend on host virtualization features rather than host cpu features.
970  */
971
972 static u32 msrs_to_save[] = {
973         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974         MSR_STAR,
975 #ifdef CONFIG_X86_64
976         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991         HV_X64_MSR_RESET,
992         HV_X64_MSR_VP_INDEX,
993         HV_X64_MSR_VP_RUNTIME,
994         HV_X64_MSR_SCONTROL,
995         HV_X64_MSR_STIMER0_CONFIG,
996         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997         MSR_KVM_PV_EOI_EN,
998
999         MSR_IA32_TSC_ADJUST,
1000         MSR_IA32_TSCDEADLINE,
1001         MSR_IA32_MISC_ENABLE,
1002         MSR_IA32_MCG_STATUS,
1003         MSR_IA32_MCG_CTL,
1004         MSR_IA32_MCG_EXT_CTL,
1005         MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012         if (efer & efer_reserved_bits)
1013                 return false;
1014
1015         if (efer & EFER_FFXSR) {
1016                 struct kvm_cpuid_entry2 *feat;
1017
1018                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020                         return false;
1021         }
1022
1023         if (efer & EFER_SVME) {
1024                 struct kvm_cpuid_entry2 *feat;
1025
1026                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028                         return false;
1029         }
1030
1031         return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037         u64 old_efer = vcpu->arch.efer;
1038
1039         if (!kvm_valid_efer(vcpu, efer))
1040                 return 1;
1041
1042         if (is_paging(vcpu)
1043             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044                 return 1;
1045
1046         efer &= ~EFER_LMA;
1047         efer |= vcpu->arch.efer & EFER_LMA;
1048
1049         kvm_x86_ops->set_efer(vcpu, efer);
1050
1051         /* Update reserved bits */
1052         if ((efer ^ old_efer) & EFER_NX)
1053                 kvm_mmu_reset_context(vcpu);
1054
1055         return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060        efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065  * Writes msr value into into the appropriate "register".
1066  * Returns 0 on success, non-0 otherwise.
1067  * Assumes vcpu_load() was already called.
1068  */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071         switch (msr->index) {
1072         case MSR_FS_BASE:
1073         case MSR_GS_BASE:
1074         case MSR_KERNEL_GS_BASE:
1075         case MSR_CSTAR:
1076         case MSR_LSTAR:
1077                 if (is_noncanonical_address(msr->data))
1078                         return 1;
1079                 break;
1080         case MSR_IA32_SYSENTER_EIP:
1081         case MSR_IA32_SYSENTER_ESP:
1082                 /*
1083                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084                  * non-canonical address is written on Intel but not on
1085                  * AMD (which ignores the top 32-bits, because it does
1086                  * not implement 64-bit SYSENTER).
1087                  *
1088                  * 64-bit code should hence be able to write a non-canonical
1089                  * value on AMD.  Making the address canonical ensures that
1090                  * vmentry does not fail on Intel after writing a non-canonical
1091                  * value, and that something deterministic happens if the guest
1092                  * invokes 64-bit SYSENTER.
1093                  */
1094                 msr->data = get_canonical(msr->data);
1095         }
1096         return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101  * Adapt set_msr() to msr_io()'s calling convention
1102  */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105         struct msr_data msr;
1106         int r;
1107
1108         msr.index = index;
1109         msr.host_initiated = true;
1110         r = kvm_get_msr(vcpu, &msr);
1111         if (r)
1112                 return r;
1113
1114         *data = msr.data;
1115         return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120         struct msr_data msr;
1121
1122         msr.data = *data;
1123         msr.index = index;
1124         msr.host_initiated = true;
1125         return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130         seqcount_t      seq;
1131
1132         struct { /* extract of a clocksource struct */
1133                 int vclock_mode;
1134                 cycle_t cycle_last;
1135                 cycle_t mask;
1136                 u32     mult;
1137                 u32     shift;
1138         } clock;
1139
1140         u64             boot_ns;
1141         u64             nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149         u64 boot_ns;
1150
1151         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153         write_seqcount_begin(&vdata->seq);
1154
1155         /* copy pvclock gtod data */
1156         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1157         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1158         vdata->clock.mask               = tk->tkr_mono.mask;
1159         vdata->clock.mult               = tk->tkr_mono.mult;
1160         vdata->clock.shift              = tk->tkr_mono.shift;
1161
1162         vdata->boot_ns                  = boot_ns;
1163         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1164
1165         write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171         /*
1172          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173          * vcpu_enter_guest.  This function is only called from
1174          * the physical CPU that is running vcpu.
1175          */
1176         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181         int version;
1182         int r;
1183         struct pvclock_wall_clock wc;
1184         struct timespec64 boot;
1185
1186         if (!wall_clock)
1187                 return;
1188
1189         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190         if (r)
1191                 return;
1192
1193         if (version & 1)
1194                 ++version;  /* first time write, random junk */
1195
1196         ++version;
1197
1198         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199                 return;
1200
1201         /*
1202          * The guest calculates current wall clock time by adding
1203          * system time (updated by kvm_guest_time_update below) to the
1204          * wall clock specified here.  guest system time equals host
1205          * system time for us, thus we must fill in host boot time here.
1206          */
1207         getboottime64(&boot);
1208
1209         if (kvm->arch.kvmclock_offset) {
1210                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211                 boot = timespec64_sub(boot, ts);
1212         }
1213         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214         wc.nsec = boot.tv_nsec;
1215         wc.version = version;
1216
1217         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219         version++;
1220         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225         do_shl32_div32(dividend, divisor);
1226         return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230                                s8 *pshift, u32 *pmultiplier)
1231 {
1232         uint64_t scaled64;
1233         int32_t  shift = 0;
1234         uint64_t tps64;
1235         uint32_t tps32;
1236
1237         tps64 = base_hz;
1238         scaled64 = scaled_hz;
1239         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240                 tps64 >>= 1;
1241                 shift--;
1242         }
1243
1244         tps32 = (uint32_t)tps64;
1245         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247                         scaled64 >>= 1;
1248                 else
1249                         tps32 <<= 1;
1250                 shift++;
1251         }
1252
1253         *pshift = shift;
1254         *pmultiplier = div_frac(scaled64, tps32);
1255
1256         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269         u64 v = (u64)khz * (1000000 + ppm);
1270         do_div(v, 1000000);
1271         return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276         u64 ratio;
1277
1278         /* Guest TSC same frequency as host TSC? */
1279         if (!scale) {
1280                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281                 return 0;
1282         }
1283
1284         /* TSC scaling supported? */
1285         if (!kvm_has_tsc_control) {
1286                 if (user_tsc_khz > tsc_khz) {
1287                         vcpu->arch.tsc_catchup = 1;
1288                         vcpu->arch.tsc_always_catchup = 1;
1289                         return 0;
1290                 } else {
1291                         WARN(1, "user requested TSC rate below hardware speed\n");
1292                         return -1;
1293                 }
1294         }
1295
1296         /* TSC scaling required  - calculate ratio */
1297         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298                                 user_tsc_khz, tsc_khz);
1299
1300         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302                           user_tsc_khz);
1303                 return -1;
1304         }
1305
1306         vcpu->arch.tsc_scaling_ratio = ratio;
1307         return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312         u32 thresh_lo, thresh_hi;
1313         int use_scaling = 0;
1314
1315         /* tsc_khz can be zero if TSC calibration fails */
1316         if (user_tsc_khz == 0) {
1317                 /* set tsc_scaling_ratio to a safe value */
1318                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319                 return -1;
1320         }
1321
1322         /* Compute a scale to convert nanoseconds in TSC cycles */
1323         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324                            &vcpu->arch.virtual_tsc_shift,
1325                            &vcpu->arch.virtual_tsc_mult);
1326         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328         /*
1329          * Compute the variation in TSC rate which is acceptable
1330          * within the range of tolerance and decide if the
1331          * rate being applied is within that bounds of the hardware
1332          * rate.  If so, no scaling or compensation need be done.
1333          */
1334         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338                 use_scaling = 1;
1339         }
1340         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346                                       vcpu->arch.virtual_tsc_mult,
1347                                       vcpu->arch.virtual_tsc_shift);
1348         tsc += vcpu->arch.this_tsc_write;
1349         return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355         bool vcpus_matched;
1356         struct kvm_arch *ka = &vcpu->kvm->arch;
1357         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360                          atomic_read(&vcpu->kvm->online_vcpus));
1361
1362         /*
1363          * Once the masterclock is enabled, always perform request in
1364          * order to update it.
1365          *
1366          * In order to enable masterclock, the host clocksource must be TSC
1367          * and the vcpus need to have matched TSCs.  When that happens,
1368          * perform request to enable masterclock.
1369          */
1370         if (ka->use_master_clock ||
1371             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375                             atomic_read(&vcpu->kvm->online_vcpus),
1376                             ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382         u64 curr_offset = vcpu->arch.tsc_offset;
1383         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387  * Multiply tsc by a fixed point number represented by ratio.
1388  *
1389  * The most significant 64-N bits (mult) of ratio represent the
1390  * integral part of the fixed point number; the remaining N bits
1391  * (frac) represent the fractional part, ie. ratio represents a fixed
1392  * point number (mult + frac * 2^(-N)).
1393  *
1394  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395  */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403         u64 _tsc = tsc;
1404         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406         if (ratio != kvm_default_tsc_scaling_ratio)
1407                 _tsc = __scale_tsc(ratio, tsc);
1408
1409         return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415         u64 tsc;
1416
1417         tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419         return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431         vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436         struct kvm *kvm = vcpu->kvm;
1437         u64 offset, ns, elapsed;
1438         unsigned long flags;
1439         s64 usdiff;
1440         bool matched;
1441         bool already_matched;
1442         u64 data = msr->data;
1443
1444         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445         offset = kvm_compute_tsc_offset(vcpu, data);
1446         ns = ktime_get_boot_ns();
1447         elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449         if (vcpu->arch.virtual_tsc_khz) {
1450                 int faulted = 0;
1451
1452                 /* n.b - signed multiplication and division required */
1453                 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457                 /* do_div() only does unsigned */
1458                 asm("1: idivl %[divisor]\n"
1459                     "2: xor %%edx, %%edx\n"
1460                     "   movl $0, %[faulted]\n"
1461                     "3:\n"
1462                     ".section .fixup,\"ax\"\n"
1463                     "4: movl $1, %[faulted]\n"
1464                     "   jmp  3b\n"
1465                     ".previous\n"
1466
1467                 _ASM_EXTABLE(1b, 4b)
1468
1469                 : "=A"(usdiff), [faulted] "=r" (faulted)
1470                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473                 do_div(elapsed, 1000);
1474                 usdiff -= elapsed;
1475                 if (usdiff < 0)
1476                         usdiff = -usdiff;
1477
1478                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479                 if (faulted)
1480                         usdiff = USEC_PER_SEC;
1481         } else
1482                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484         /*
1485          * Special case: TSC write with a small delta (1 second) of virtual
1486          * cycle time against real time is interpreted as an attempt to
1487          * synchronize the CPU.
1488          *
1489          * For a reliable TSC, we can match TSC offsets, and for an unstable
1490          * TSC, we add elapsed time in this computation.  We could let the
1491          * compensation code attempt to catch up if we fall behind, but
1492          * it's better to try to match offsets from the beginning.
1493          */
1494         if (usdiff < USEC_PER_SEC &&
1495             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496                 if (!check_tsc_unstable()) {
1497                         offset = kvm->arch.cur_tsc_offset;
1498                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1499                 } else {
1500                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1501                         data += delta;
1502                         offset = kvm_compute_tsc_offset(vcpu, data);
1503                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504                 }
1505                 matched = true;
1506                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507         } else {
1508                 /*
1509                  * We split periods of matched TSC writes into generations.
1510                  * For each generation, we track the original measured
1511                  * nanosecond time, offset, and write, so if TSCs are in
1512                  * sync, we can match exact offset, and if not, we can match
1513                  * exact software computation in compute_guest_tsc()
1514                  *
1515                  * These values are tracked in kvm->arch.cur_xxx variables.
1516                  */
1517                 kvm->arch.cur_tsc_generation++;
1518                 kvm->arch.cur_tsc_nsec = ns;
1519                 kvm->arch.cur_tsc_write = data;
1520                 kvm->arch.cur_tsc_offset = offset;
1521                 matched = false;
1522                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523                          kvm->arch.cur_tsc_generation, data);
1524         }
1525
1526         /*
1527          * We also track th most recent recorded KHZ, write and time to
1528          * allow the matching interval to be extended at each write.
1529          */
1530         kvm->arch.last_tsc_nsec = ns;
1531         kvm->arch.last_tsc_write = data;
1532         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534         vcpu->arch.last_guest_tsc = data;
1535
1536         /* Keep track of which generation this VCPU has synchronized to */
1537         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542                 update_ia32_tsc_adjust_msr(vcpu, offset);
1543         kvm_vcpu_write_tsc_offset(vcpu, offset);
1544         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547         if (!matched) {
1548                 kvm->arch.nr_vcpus_matched_tsc = 0;
1549         } else if (!already_matched) {
1550                 kvm->arch.nr_vcpus_matched_tsc++;
1551         }
1552
1553         kvm_track_tsc_matching(vcpu);
1554         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560                                            s64 adjustment)
1561 {
1562         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568                 WARN_ON(adjustment < 0);
1569         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570         adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static cycle_t read_tsc(void)
1576 {
1577         cycle_t ret = (cycle_t)rdtsc_ordered();
1578         u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580         if (likely(ret >= last))
1581                 return ret;
1582
1583         /*
1584          * GCC likes to generate cmov here, but this branch is extremely
1585          * predictable (it's just a function of time and the likely is
1586          * very likely) and there's a data dependence, so force GCC
1587          * to generate a branch instead.  I don't barrier() because
1588          * we don't actually need a barrier, and if this function
1589          * ever gets inlined it will generate worse code.
1590          */
1591         asm volatile ("");
1592         return last;
1593 }
1594
1595 static inline u64 vgettsc(cycle_t *cycle_now)
1596 {
1597         long v;
1598         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600         *cycle_now = read_tsc();
1601
1602         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603         return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1607 {
1608         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609         unsigned long seq;
1610         int mode;
1611         u64 ns;
1612
1613         do {
1614                 seq = read_seqcount_begin(&gtod->seq);
1615                 mode = gtod->clock.vclock_mode;
1616                 ns = gtod->nsec_base;
1617                 ns += vgettsc(cycle_now);
1618                 ns >>= gtod->clock.shift;
1619                 ns += gtod->boot_ns;
1620         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621         *t = ns;
1622
1623         return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1628 {
1629         /* checked again under seqlock below */
1630         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631                 return false;
1632
1633         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638  *
1639  * Assuming a stable TSC across physical CPUS, and a stable TSC
1640  * across virtual CPUs, the following condition is possible.
1641  * Each numbered line represents an event visible to both
1642  * CPUs at the next numbered event.
1643  *
1644  * "timespecX" represents host monotonic time. "tscX" represents
1645  * RDTSC value.
1646  *
1647  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1648  *
1649  * 1.  read timespec0,tsc0
1650  * 2.                                   | timespec1 = timespec0 + N
1651  *                                      | tsc1 = tsc0 + M
1652  * 3. transition to guest               | transition to guest
1653  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1655  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656  *
1657  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658  *
1659  *      - ret0 < ret1
1660  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661  *              ...
1662  *      - 0 < N - M => M < N
1663  *
1664  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665  * always the case (the difference between two distinct xtime instances
1666  * might be smaller then the difference between corresponding TSC reads,
1667  * when updating guest vcpus pvclock areas).
1668  *
1669  * To avoid that problem, do not allow visibility of distinct
1670  * system_timestamp/tsc_timestamp values simultaneously: use a master
1671  * copy of host monotonic time values. Update that master copy
1672  * in lockstep.
1673  *
1674  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675  *
1676  */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681         struct kvm_arch *ka = &kvm->arch;
1682         int vclock_mode;
1683         bool host_tsc_clocksource, vcpus_matched;
1684
1685         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686                         atomic_read(&kvm->online_vcpus));
1687
1688         /*
1689          * If the host uses TSC clock, then passthrough TSC as stable
1690          * to the guest.
1691          */
1692         host_tsc_clocksource = kvm_get_time_and_clockread(
1693                                         &ka->master_kernel_ns,
1694                                         &ka->master_cycle_now);
1695
1696         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697                                 && !backwards_tsc_observed
1698                                 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700         if (ka->use_master_clock)
1701                 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705                                         vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717         int i;
1718         struct kvm_vcpu *vcpu;
1719         struct kvm_arch *ka = &kvm->arch;
1720
1721         spin_lock(&ka->pvclock_gtod_sync_lock);
1722         kvm_make_mclock_inprogress_request(kvm);
1723         /* no guest entries from this point */
1724         pvclock_update_vm_gtod_copy(kvm);
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm)
1727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729         /* guest entries allowed */
1730         kvm_for_each_vcpu(i, vcpu, kvm)
1731                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733         spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739         struct kvm_arch *ka = &kvm->arch;
1740         struct pvclock_vcpu_time_info hv_clock;
1741
1742         spin_lock(&ka->pvclock_gtod_sync_lock);
1743         if (!ka->use_master_clock) {
1744                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746         }
1747
1748         hv_clock.tsc_timestamp = ka->master_cycle_now;
1749         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750         spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753                            &hv_clock.tsc_shift,
1754                            &hv_clock.tsc_to_system_mul);
1755         return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760         unsigned long flags;
1761         s64 ns;
1762
1763         local_irq_save(flags);
1764         ns = __get_kvmclock_ns(kvm);
1765         local_irq_restore(flags);
1766
1767         return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772         struct kvm_vcpu_arch *vcpu = &v->arch;
1773         struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776                 &guest_hv_clock, sizeof(guest_hv_clock))))
1777                 return;
1778
1779         /* This VCPU is paused, but it's legal for a guest to read another
1780          * VCPU's kvmclock, so we really have to follow the specification where
1781          * it says that version is odd if data is being modified, and even after
1782          * it is consistent.
1783          *
1784          * Version field updates must be kept separate.  This is because
1785          * kvm_write_guest_cached might use a "rep movs" instruction, and
1786          * writes within a string instruction are weakly ordered.  So there
1787          * are three writes overall.
1788          *
1789          * As a small optimization, only write the version field in the first
1790          * and third write.  The vcpu->pv_time cache is still valid, because the
1791          * version field is the first in the struct.
1792          */
1793         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797                                 &vcpu->hv_clock,
1798                                 sizeof(vcpu->hv_clock.version));
1799
1800         smp_wmb();
1801
1802         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805         if (vcpu->pvclock_set_guest_stopped_request) {
1806                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807                 vcpu->pvclock_set_guest_stopped_request = false;
1808         }
1809
1810         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813                                 &vcpu->hv_clock,
1814                                 sizeof(vcpu->hv_clock));
1815
1816         smp_wmb();
1817
1818         vcpu->hv_clock.version++;
1819         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820                                 &vcpu->hv_clock,
1821                                 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826         unsigned long flags, tgt_tsc_khz;
1827         struct kvm_vcpu_arch *vcpu = &v->arch;
1828         struct kvm_arch *ka = &v->kvm->arch;
1829         s64 kernel_ns;
1830         u64 tsc_timestamp, host_tsc;
1831         u8 pvclock_flags;
1832         bool use_master_clock;
1833
1834         kernel_ns = 0;
1835         host_tsc = 0;
1836
1837         /*
1838          * If the host uses TSC clock, then passthrough TSC as stable
1839          * to the guest.
1840          */
1841         spin_lock(&ka->pvclock_gtod_sync_lock);
1842         use_master_clock = ka->use_master_clock;
1843         if (use_master_clock) {
1844                 host_tsc = ka->master_cycle_now;
1845                 kernel_ns = ka->master_kernel_ns;
1846         }
1847         spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849         /* Keep irq disabled to prevent changes to the clock */
1850         local_irq_save(flags);
1851         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852         if (unlikely(tgt_tsc_khz == 0)) {
1853                 local_irq_restore(flags);
1854                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855                 return 1;
1856         }
1857         if (!use_master_clock) {
1858                 host_tsc = rdtsc();
1859                 kernel_ns = ktime_get_boot_ns();
1860         }
1861
1862         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864         /*
1865          * We may have to catch up the TSC to match elapsed wall clock
1866          * time for two reasons, even if kvmclock is used.
1867          *   1) CPU could have been running below the maximum TSC rate
1868          *   2) Broken TSC compensation resets the base at each VCPU
1869          *      entry to avoid unknown leaps of TSC even when running
1870          *      again on the same CPU.  This may cause apparent elapsed
1871          *      time to disappear, and the guest to stand still or run
1872          *      very slowly.
1873          */
1874         if (vcpu->tsc_catchup) {
1875                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876                 if (tsc > tsc_timestamp) {
1877                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878                         tsc_timestamp = tsc;
1879                 }
1880         }
1881
1882         local_irq_restore(flags);
1883
1884         /* With all the info we got, fill in the values */
1885
1886         if (kvm_has_tsc_control)
1887                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891                                    &vcpu->hv_clock.tsc_shift,
1892                                    &vcpu->hv_clock.tsc_to_system_mul);
1893                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894         }
1895
1896         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898         vcpu->last_guest_tsc = tsc_timestamp;
1899
1900         /* If the host uses TSC clocksource, then it is stable */
1901         pvclock_flags = 0;
1902         if (use_master_clock)
1903                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905         vcpu->hv_clock.flags = pvclock_flags;
1906
1907         if (vcpu->pv_time_enabled)
1908                 kvm_setup_pvclock_page(v);
1909         if (v == kvm_get_vcpu(v->kvm, 0))
1910                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911         return 0;
1912 }
1913
1914 /*
1915  * kvmclock updates which are isolated to a given vcpu, such as
1916  * vcpu->cpu migration, should not allow system_timestamp from
1917  * the rest of the vcpus to remain static. Otherwise ntp frequency
1918  * correction applies to one vcpu's system_timestamp but not
1919  * the others.
1920  *
1921  * So in those cases, request a kvmclock update for all vcpus.
1922  * We need to rate-limit these requests though, as they can
1923  * considerably slow guests that have a large number of vcpus.
1924  * The time for a remote vcpu to update its kvmclock is bound
1925  * by the delay we use to rate-limit the updates.
1926  */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932         int i;
1933         struct delayed_work *dwork = to_delayed_work(work);
1934         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935                                            kvmclock_update_work);
1936         struct kvm *kvm = container_of(ka, struct kvm, arch);
1937         struct kvm_vcpu *vcpu;
1938
1939         kvm_for_each_vcpu(i, vcpu, kvm) {
1940                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941                 kvm_vcpu_kick(vcpu);
1942         }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947         struct kvm *kvm = v->kvm;
1948
1949         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951                                         KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958         struct delayed_work *dwork = to_delayed_work(work);
1959         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960                                            kvmclock_sync_work);
1961         struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963         if (!kvmclock_periodic_sync)
1964                 return;
1965
1966         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968                                         KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973         u64 mcg_cap = vcpu->arch.mcg_cap;
1974         unsigned bank_num = mcg_cap & 0xff;
1975
1976         switch (msr) {
1977         case MSR_IA32_MCG_STATUS:
1978                 vcpu->arch.mcg_status = data;
1979                 break;
1980         case MSR_IA32_MCG_CTL:
1981                 if (!(mcg_cap & MCG_CTL_P))
1982                         return 1;
1983                 if (data != 0 && data != ~(u64)0)
1984                         return -1;
1985                 vcpu->arch.mcg_ctl = data;
1986                 break;
1987         default:
1988                 if (msr >= MSR_IA32_MC0_CTL &&
1989                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1990                         u32 offset = msr - MSR_IA32_MC0_CTL;
1991                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1992                          * some Linux kernels though clear bit 10 in bank 4 to
1993                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994                          * this to avoid an uncatched #GP in the guest
1995                          */
1996                         if ((offset & 0x3) == 0 &&
1997                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1998                                 return -1;
1999                         vcpu->arch.mce_banks[offset] = data;
2000                         break;
2001                 }
2002                 return 1;
2003         }
2004         return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009         struct kvm *kvm = vcpu->kvm;
2010         int lm = is_long_mode(vcpu);
2011         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014                 : kvm->arch.xen_hvm_config.blob_size_32;
2015         u32 page_num = data & ~PAGE_MASK;
2016         u64 page_addr = data & PAGE_MASK;
2017         u8 *page;
2018         int r;
2019
2020         r = -E2BIG;
2021         if (page_num >= blob_size)
2022                 goto out;
2023         r = -ENOMEM;
2024         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025         if (IS_ERR(page)) {
2026                 r = PTR_ERR(page);
2027                 goto out;
2028         }
2029         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030                 goto out_free;
2031         r = 0;
2032 out_free:
2033         kfree(page);
2034 out:
2035         return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040         gpa_t gpa = data & ~0x3f;
2041
2042         /* Bits 2:5 are reserved, Should be zero */
2043         if (data & 0x3c)
2044                 return 1;
2045
2046         vcpu->arch.apf.msr_val = data;
2047
2048         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049                 kvm_clear_async_pf_completion_queue(vcpu);
2050                 kvm_async_pf_hash_reset(vcpu);
2051                 return 0;
2052         }
2053
2054         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055                                         sizeof(u32)))
2056                 return 1;
2057
2058         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059         kvm_async_pf_wakeup_all(vcpu);
2060         return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065         vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071                 return;
2072
2073         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075                 return;
2076
2077         vcpu->arch.st.steal.preempted = 0;
2078
2079         if (vcpu->arch.st.steal.version & 1)
2080                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2081
2082         vcpu->arch.st.steal.version += 1;
2083
2084         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087         smp_wmb();
2088
2089         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090                 vcpu->arch.st.last_steal;
2091         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096         smp_wmb();
2097
2098         vcpu->arch.st.steal.version += 1;
2099
2100         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106         bool pr = false;
2107         u32 msr = msr_info->index;
2108         u64 data = msr_info->data;
2109
2110         switch (msr) {
2111         case MSR_AMD64_NB_CFG:
2112         case MSR_IA32_UCODE_REV:
2113         case MSR_IA32_UCODE_WRITE:
2114         case MSR_VM_HSAVE_PA:
2115         case MSR_AMD64_PATCH_LOADER:
2116         case MSR_AMD64_BU_CFG2:
2117                 break;
2118
2119         case MSR_EFER:
2120                 return set_efer(vcpu, data);
2121         case MSR_K7_HWCR:
2122                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2123                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2124                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2125                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2126                 if (data != 0) {
2127                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128                                     data);
2129                         return 1;
2130                 }
2131                 break;
2132         case MSR_FAM10H_MMIO_CONF_BASE:
2133                 if (data != 0) {
2134                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135                                     "0x%llx\n", data);
2136                         return 1;
2137                 }
2138                 break;
2139         case MSR_IA32_DEBUGCTLMSR:
2140                 if (!data) {
2141                         /* We support the non-activated case already */
2142                         break;
2143                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144                         /* Values other than LBR and BTF are vendor-specific,
2145                            thus reserved and should throw a #GP */
2146                         return 1;
2147                 }
2148                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149                             __func__, data);
2150                 break;
2151         case 0x200 ... 0x2ff:
2152                 return kvm_mtrr_set_msr(vcpu, msr, data);
2153         case MSR_IA32_APICBASE:
2154                 return kvm_set_apic_base(vcpu, msr_info);
2155         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156                 return kvm_x2apic_msr_write(vcpu, msr, data);
2157         case MSR_IA32_TSCDEADLINE:
2158                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159                 break;
2160         case MSR_IA32_TSC_ADJUST:
2161                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162                         if (!msr_info->host_initiated) {
2163                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164                                 adjust_tsc_offset_guest(vcpu, adj);
2165                         }
2166                         vcpu->arch.ia32_tsc_adjust_msr = data;
2167                 }
2168                 break;
2169         case MSR_IA32_MISC_ENABLE:
2170                 vcpu->arch.ia32_misc_enable_msr = data;
2171                 break;
2172         case MSR_IA32_SMBASE:
2173                 if (!msr_info->host_initiated)
2174                         return 1;
2175                 vcpu->arch.smbase = data;
2176                 break;
2177         case MSR_KVM_WALL_CLOCK_NEW:
2178         case MSR_KVM_WALL_CLOCK:
2179                 vcpu->kvm->arch.wall_clock = data;
2180                 kvm_write_wall_clock(vcpu->kvm, data);
2181                 break;
2182         case MSR_KVM_SYSTEM_TIME_NEW:
2183         case MSR_KVM_SYSTEM_TIME: {
2184                 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186                 kvmclock_reset(vcpu);
2187
2188                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193                                         &vcpu->requests);
2194
2195                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2196                 }
2197
2198                 vcpu->arch.time = data;
2199                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201                 /* we verify if the enable bit is set... */
2202                 if (!(data & 1))
2203                         break;
2204
2205                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206                      &vcpu->arch.pv_time, data & ~1ULL,
2207                      sizeof(struct pvclock_vcpu_time_info)))
2208                         vcpu->arch.pv_time_enabled = false;
2209                 else
2210                         vcpu->arch.pv_time_enabled = true;
2211
2212                 break;
2213         }
2214         case MSR_KVM_ASYNC_PF_EN:
2215                 if (kvm_pv_enable_async_pf(vcpu, data))
2216                         return 1;
2217                 break;
2218         case MSR_KVM_STEAL_TIME:
2219
2220                 if (unlikely(!sched_info_on()))
2221                         return 1;
2222
2223                 if (data & KVM_STEAL_RESERVED_MASK)
2224                         return 1;
2225
2226                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227                                                 data & KVM_STEAL_VALID_BITS,
2228                                                 sizeof(struct kvm_steal_time)))
2229                         return 1;
2230
2231                 vcpu->arch.st.msr_val = data;
2232
2233                 if (!(data & KVM_MSR_ENABLED))
2234                         break;
2235
2236                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238                 break;
2239         case MSR_KVM_PV_EOI_EN:
2240                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241                         return 1;
2242                 break;
2243
2244         case MSR_IA32_MCG_CTL:
2245         case MSR_IA32_MCG_STATUS:
2246         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247                 return set_msr_mce(vcpu, msr, data);
2248
2249         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251                 pr = true; /* fall through */
2252         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255                         return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257                 if (pr || data != 0)
2258                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259                                     "0x%x data 0x%llx\n", msr, data);
2260                 break;
2261         case MSR_K7_CLK_CTL:
2262                 /*
2263                  * Ignore all writes to this no longer documented MSR.
2264                  * Writes are only relevant for old K7 processors,
2265                  * all pre-dating SVM, but a recommended workaround from
2266                  * AMD for these chips. It is possible to specify the
2267                  * affected processor models on the command line, hence
2268                  * the need to ignore the workaround.
2269                  */
2270                 break;
2271         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273         case HV_X64_MSR_CRASH_CTL:
2274         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275                 return kvm_hv_set_msr_common(vcpu, msr, data,
2276                                              msr_info->host_initiated);
2277         case MSR_IA32_BBL_CR_CTL3:
2278                 /* Drop writes to this legacy MSR -- see rdmsr
2279                  * counterpart for further detail.
2280                  */
2281                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282                 break;
2283         case MSR_AMD64_OSVW_ID_LENGTH:
2284                 if (!guest_cpuid_has_osvw(vcpu))
2285                         return 1;
2286                 vcpu->arch.osvw.length = data;
2287                 break;
2288         case MSR_AMD64_OSVW_STATUS:
2289                 if (!guest_cpuid_has_osvw(vcpu))
2290                         return 1;
2291                 vcpu->arch.osvw.status = data;
2292                 break;
2293         default:
2294                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295                         return xen_hvm_config(vcpu, data);
2296                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297                         return kvm_pmu_set_msr(vcpu, msr_info);
2298                 if (!ignore_msrs) {
2299                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300                                     msr, data);
2301                         return 1;
2302                 } else {
2303                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304                                     msr, data);
2305                         break;
2306                 }
2307         }
2308         return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314  * Reads an msr value (of 'msr_index') into 'pdata'.
2315  * Returns 0 on success, non-0 otherwise.
2316  * Assumes vcpu_load() was already called.
2317  */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320         return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327         u64 mcg_cap = vcpu->arch.mcg_cap;
2328         unsigned bank_num = mcg_cap & 0xff;
2329
2330         switch (msr) {
2331         case MSR_IA32_P5_MC_ADDR:
2332         case MSR_IA32_P5_MC_TYPE:
2333                 data = 0;
2334                 break;
2335         case MSR_IA32_MCG_CAP:
2336                 data = vcpu->arch.mcg_cap;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P))
2340                         return 1;
2341                 data = vcpu->arch.mcg_ctl;
2342                 break;
2343         case MSR_IA32_MCG_STATUS:
2344                 data = vcpu->arch.mcg_status;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         data = vcpu->arch.mce_banks[offset];
2351                         break;
2352                 }
2353                 return 1;
2354         }
2355         *pdata = data;
2356         return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361         switch (msr_info->index) {
2362         case MSR_IA32_PLATFORM_ID:
2363         case MSR_IA32_EBL_CR_POWERON:
2364         case MSR_IA32_DEBUGCTLMSR:
2365         case MSR_IA32_LASTBRANCHFROMIP:
2366         case MSR_IA32_LASTBRANCHTOIP:
2367         case MSR_IA32_LASTINTFROMIP:
2368         case MSR_IA32_LASTINTTOIP:
2369         case MSR_K8_SYSCFG:
2370         case MSR_K8_TSEG_ADDR:
2371         case MSR_K8_TSEG_MASK:
2372         case MSR_K7_HWCR:
2373         case MSR_VM_HSAVE_PA:
2374         case MSR_K8_INT_PENDING_MSG:
2375         case MSR_AMD64_NB_CFG:
2376         case MSR_FAM10H_MMIO_CONF_BASE:
2377         case MSR_AMD64_BU_CFG2:
2378         case MSR_IA32_PERF_CTL:
2379                 msr_info->data = 0;
2380                 break;
2381         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387                 msr_info->data = 0;
2388                 break;
2389         case MSR_IA32_UCODE_REV:
2390                 msr_info->data = 0x100000000ULL;
2391                 break;
2392         case MSR_MTRRcap:
2393         case 0x200 ... 0x2ff:
2394                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395         case 0xcd: /* fsb frequency */
2396                 msr_info->data = 3;
2397                 break;
2398                 /*
2399                  * MSR_EBC_FREQUENCY_ID
2400                  * Conservative value valid for even the basic CPU models.
2401                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403                  * and 266MHz for model 3, or 4. Set Core Clock
2404                  * Frequency to System Bus Frequency Ratio to 1 (bits
2405                  * 31:24) even though these are only valid for CPU
2406                  * models > 2, however guests may end up dividing or
2407                  * multiplying by zero otherwise.
2408                  */
2409         case MSR_EBC_FREQUENCY_ID:
2410                 msr_info->data = 1 << 24;
2411                 break;
2412         case MSR_IA32_APICBASE:
2413                 msr_info->data = kvm_get_apic_base(vcpu);
2414                 break;
2415         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_TSCDEADLINE:
2419                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420                 break;
2421         case MSR_IA32_TSC_ADJUST:
2422                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423                 break;
2424         case MSR_IA32_MISC_ENABLE:
2425                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426                 break;
2427         case MSR_IA32_SMBASE:
2428                 if (!msr_info->host_initiated)
2429                         return 1;
2430                 msr_info->data = vcpu->arch.smbase;
2431                 break;
2432         case MSR_IA32_PERF_STATUS:
2433                 /* TSC increment by tick */
2434                 msr_info->data = 1000ULL;
2435                 /* CPU multiplier */
2436                 msr_info->data |= (((uint64_t)4ULL) << 40);
2437                 break;
2438         case MSR_EFER:
2439                 msr_info->data = vcpu->arch.efer;
2440                 break;
2441         case MSR_KVM_WALL_CLOCK:
2442         case MSR_KVM_WALL_CLOCK_NEW:
2443                 msr_info->data = vcpu->kvm->arch.wall_clock;
2444                 break;
2445         case MSR_KVM_SYSTEM_TIME:
2446         case MSR_KVM_SYSTEM_TIME_NEW:
2447                 msr_info->data = vcpu->arch.time;
2448                 break;
2449         case MSR_KVM_ASYNC_PF_EN:
2450                 msr_info->data = vcpu->arch.apf.msr_val;
2451                 break;
2452         case MSR_KVM_STEAL_TIME:
2453                 msr_info->data = vcpu->arch.st.msr_val;
2454                 break;
2455         case MSR_KVM_PV_EOI_EN:
2456                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457                 break;
2458         case MSR_IA32_P5_MC_ADDR:
2459         case MSR_IA32_P5_MC_TYPE:
2460         case MSR_IA32_MCG_CAP:
2461         case MSR_IA32_MCG_CTL:
2462         case MSR_IA32_MCG_STATUS:
2463         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465         case MSR_K7_CLK_CTL:
2466                 /*
2467                  * Provide expected ramp-up count for K7. All other
2468                  * are set to zero, indicating minimum divisors for
2469                  * every field.
2470                  *
2471                  * This prevents guest kernels on AMD host with CPU
2472                  * type 6, model 8 and higher from exploding due to
2473                  * the rdmsr failing.
2474                  */
2475                 msr_info->data = 0x20000000;
2476                 break;
2477         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479         case HV_X64_MSR_CRASH_CTL:
2480         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481                 return kvm_hv_get_msr_common(vcpu,
2482                                              msr_info->index, &msr_info->data);
2483                 break;
2484         case MSR_IA32_BBL_CR_CTL3:
2485                 /* This legacy MSR exists but isn't fully documented in current
2486                  * silicon.  It is however accessed by winxp in very narrow
2487                  * scenarios where it sets bit #19, itself documented as
2488                  * a "reserved" bit.  Best effort attempt to source coherent
2489                  * read data here should the balance of the register be
2490                  * interpreted by the guest:
2491                  *
2492                  * L2 cache control register 3: 64GB range, 256KB size,
2493                  * enabled, latency 0x1, configured
2494                  */
2495                 msr_info->data = 0xbe702111;
2496                 break;
2497         case MSR_AMD64_OSVW_ID_LENGTH:
2498                 if (!guest_cpuid_has_osvw(vcpu))
2499                         return 1;
2500                 msr_info->data = vcpu->arch.osvw.length;
2501                 break;
2502         case MSR_AMD64_OSVW_STATUS:
2503                 if (!guest_cpuid_has_osvw(vcpu))
2504                         return 1;
2505                 msr_info->data = vcpu->arch.osvw.status;
2506                 break;
2507         default:
2508                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510                 if (!ignore_msrs) {
2511                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512                                                msr_info->index);
2513                         return 1;
2514                 } else {
2515                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516                         msr_info->data = 0;
2517                 }
2518                 break;
2519         }
2520         return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525  * Read or write a bunch of msrs. All parameters are kernel addresses.
2526  *
2527  * @return number of msrs set successfully.
2528  */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530                     struct kvm_msr_entry *entries,
2531                     int (*do_msr)(struct kvm_vcpu *vcpu,
2532                                   unsigned index, u64 *data))
2533 {
2534         int i, idx;
2535
2536         idx = srcu_read_lock(&vcpu->kvm->srcu);
2537         for (i = 0; i < msrs->nmsrs; ++i)
2538                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539                         break;
2540         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542         return i;
2543 }
2544
2545 /*
2546  * Read or write a bunch of msrs. Parameters are user addresses.
2547  *
2548  * @return number of msrs set successfully.
2549  */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551                   int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                 unsigned index, u64 *data),
2553                   int writeback)
2554 {
2555         struct kvm_msrs msrs;
2556         struct kvm_msr_entry *entries;
2557         int r, n;
2558         unsigned size;
2559
2560         r = -EFAULT;
2561         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562                 goto out;
2563
2564         r = -E2BIG;
2565         if (msrs.nmsrs >= MAX_IO_MSRS)
2566                 goto out;
2567
2568         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569         entries = memdup_user(user_msrs->entries, size);
2570         if (IS_ERR(entries)) {
2571                 r = PTR_ERR(entries);
2572                 goto out;
2573         }
2574
2575         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576         if (r < 0)
2577                 goto out_free;
2578
2579         r = -EFAULT;
2580         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581                 goto out_free;
2582
2583         r = n;
2584
2585 out_free:
2586         kfree(entries);
2587 out:
2588         return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593         int r;
2594
2595         switch (ext) {
2596         case KVM_CAP_IRQCHIP:
2597         case KVM_CAP_HLT:
2598         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599         case KVM_CAP_SET_TSS_ADDR:
2600         case KVM_CAP_EXT_CPUID:
2601         case KVM_CAP_EXT_EMUL_CPUID:
2602         case KVM_CAP_CLOCKSOURCE:
2603         case KVM_CAP_PIT:
2604         case KVM_CAP_NOP_IO_DELAY:
2605         case KVM_CAP_MP_STATE:
2606         case KVM_CAP_SYNC_MMU:
2607         case KVM_CAP_USER_NMI:
2608         case KVM_CAP_REINJECT_CONTROL:
2609         case KVM_CAP_IRQ_INJECT_STATUS:
2610         case KVM_CAP_IOEVENTFD:
2611         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612         case KVM_CAP_PIT2:
2613         case KVM_CAP_PIT_STATE2:
2614         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615         case KVM_CAP_XEN_HVM:
2616         case KVM_CAP_VCPU_EVENTS:
2617         case KVM_CAP_HYPERV:
2618         case KVM_CAP_HYPERV_VAPIC:
2619         case KVM_CAP_HYPERV_SPIN:
2620         case KVM_CAP_HYPERV_SYNIC:
2621         case KVM_CAP_PCI_SEGMENT:
2622         case KVM_CAP_DEBUGREGS:
2623         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624         case KVM_CAP_XSAVE:
2625         case KVM_CAP_ASYNC_PF:
2626         case KVM_CAP_GET_TSC_KHZ:
2627         case KVM_CAP_KVMCLOCK_CTRL:
2628         case KVM_CAP_READONLY_MEM:
2629         case KVM_CAP_HYPERV_TIME:
2630         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631         case KVM_CAP_TSC_DEADLINE_TIMER:
2632         case KVM_CAP_ENABLE_CAP_VM:
2633         case KVM_CAP_DISABLE_QUIRKS:
2634         case KVM_CAP_SET_BOOT_CPU_ID:
2635         case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637         case KVM_CAP_ASSIGN_DEV_IRQ:
2638         case KVM_CAP_PCI_2_3:
2639 #endif
2640                 r = 1;
2641                 break;
2642         case KVM_CAP_ADJUST_CLOCK:
2643                 r = KVM_CLOCK_TSC_STABLE;
2644                 break;
2645         case KVM_CAP_X86_SMM:
2646                 /* SMBASE is usually relocated above 1M on modern chipsets,
2647                  * and SMM handlers might indeed rely on 4G segment limits,
2648                  * so do not report SMM to be available if real mode is
2649                  * emulated via vm86 mode.  Still, do not go to great lengths
2650                  * to avoid userspace's usage of the feature, because it is a
2651                  * fringe case that is not enabled except via specific settings
2652                  * of the module parameters.
2653                  */
2654                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655                 break;
2656         case KVM_CAP_COALESCED_MMIO:
2657                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658                 break;
2659         case KVM_CAP_VAPIC:
2660                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661                 break;
2662         case KVM_CAP_NR_VCPUS:
2663                 r = KVM_SOFT_MAX_VCPUS;
2664                 break;
2665         case KVM_CAP_MAX_VCPUS:
2666                 r = KVM_MAX_VCPUS;
2667                 break;
2668         case KVM_CAP_NR_MEMSLOTS:
2669                 r = KVM_USER_MEM_SLOTS;
2670                 break;
2671         case KVM_CAP_PV_MMU:    /* obsolete */
2672                 r = 0;
2673                 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675         case KVM_CAP_IOMMU:
2676                 r = iommu_present(&pci_bus_type);
2677                 break;
2678 #endif
2679         case KVM_CAP_MCE:
2680                 r = KVM_MAX_MCE_BANKS;
2681                 break;
2682         case KVM_CAP_XCRS:
2683                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684                 break;
2685         case KVM_CAP_TSC_CONTROL:
2686                 r = kvm_has_tsc_control;
2687                 break;
2688         case KVM_CAP_X2APIC_API:
2689                 r = KVM_X2APIC_API_VALID_FLAGS;
2690                 break;
2691         default:
2692                 r = 0;
2693                 break;
2694         }
2695         return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700                         unsigned int ioctl, unsigned long arg)
2701 {
2702         void __user *argp = (void __user *)arg;
2703         long r;
2704
2705         switch (ioctl) {
2706         case KVM_GET_MSR_INDEX_LIST: {
2707                 struct kvm_msr_list __user *user_msr_list = argp;
2708                 struct kvm_msr_list msr_list;
2709                 unsigned n;
2710
2711                 r = -EFAULT;
2712                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713                         goto out;
2714                 n = msr_list.nmsrs;
2715                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717                         goto out;
2718                 r = -E2BIG;
2719                 if (n < msr_list.nmsrs)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723                                  num_msrs_to_save * sizeof(u32)))
2724                         goto out;
2725                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726                                  &emulated_msrs,
2727                                  num_emulated_msrs * sizeof(u32)))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_GET_SUPPORTED_CPUID:
2733         case KVM_GET_EMULATED_CPUID: {
2734                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735                 struct kvm_cpuid2 cpuid;
2736
2737                 r = -EFAULT;
2738                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739                         goto out;
2740
2741                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742                                             ioctl);
2743                 if (r)
2744                         goto out;
2745
2746                 r = -EFAULT;
2747                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748                         goto out;
2749                 r = 0;
2750                 break;
2751         }
2752         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753                 r = -EFAULT;
2754                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755                                  sizeof(kvm_mce_cap_supported)))
2756                         goto out;
2757                 r = 0;
2758                 break;
2759         }
2760         default:
2761                 r = -EINVAL;
2762         }
2763 out:
2764         return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769         wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784         /* Address WBINVD may be executed by guest */
2785         if (need_emulate_wbinvd(vcpu)) {
2786                 if (kvm_x86_ops->has_wbinvd_exit())
2787                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789                         smp_call_function_single(vcpu->cpu,
2790                                         wbinvd_ipi, NULL, 1);
2791         }
2792
2793         kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795         /* Apply any externally detected TSC adjustments (due to suspend) */
2796         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798                 vcpu->arch.tsc_offset_adjustment = 0;
2799                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800         }
2801
2802         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804                                 rdtsc() - vcpu->arch.last_host_tsc;
2805                 if (tsc_delta < 0)
2806                         mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808                 if (check_tsc_unstable()) {
2809                         u64 offset = kvm_compute_tsc_offset(vcpu,
2810                                                 vcpu->arch.last_guest_tsc);
2811                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2812                         vcpu->arch.tsc_catchup = 1;
2813                 }
2814                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815                                 kvm_x86_ops->set_hv_timer(vcpu,
2816                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2817                         kvm_lapic_switch_to_sw_timer(vcpu);
2818                 /*
2819                  * On a host with synchronized TSC, there is no need to update
2820                  * kvmclock on vcpu->cpu migration
2821                  */
2822                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824                 if (vcpu->cpu != cpu)
2825                         kvm_migrate_timers(vcpu);
2826                 vcpu->cpu = cpu;
2827         }
2828
2829         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835                 return;
2836
2837         vcpu->arch.st.steal.preempted = 1;
2838
2839         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840                         &vcpu->arch.st.steal.preempted,
2841                         offsetof(struct kvm_steal_time, preempted),
2842                         sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847         kvm_steal_time_set_preempted(vcpu);
2848         kvm_x86_ops->vcpu_put(vcpu);
2849         kvm_put_guest_fpu(vcpu);
2850         vcpu->arch.last_host_tsc = rdtsc();
2851 }
2852
2853 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2854                                     struct kvm_lapic_state *s)
2855 {
2856         if (vcpu->arch.apicv_active)
2857                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2858
2859         return kvm_apic_get_state(vcpu, s);
2860 }
2861
2862 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2863                                     struct kvm_lapic_state *s)
2864 {
2865         int r;
2866
2867         r = kvm_apic_set_state(vcpu, s);
2868         if (r)
2869                 return r;
2870         update_cr8_intercept(vcpu);
2871
2872         return 0;
2873 }
2874
2875 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2876 {
2877         return (!lapic_in_kernel(vcpu) ||
2878                 kvm_apic_accept_pic_intr(vcpu));
2879 }
2880
2881 /*
2882  * if userspace requested an interrupt window, check that the
2883  * interrupt window is open.
2884  *
2885  * No need to exit to userspace if we already have an interrupt queued.
2886  */
2887 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2888 {
2889         return kvm_arch_interrupt_allowed(vcpu) &&
2890                 !kvm_cpu_has_interrupt(vcpu) &&
2891                 !kvm_event_needs_reinjection(vcpu) &&
2892                 kvm_cpu_accept_dm_intr(vcpu);
2893 }
2894
2895 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2896                                     struct kvm_interrupt *irq)
2897 {
2898         if (irq->irq >= KVM_NR_INTERRUPTS)
2899                 return -EINVAL;
2900
2901         if (!irqchip_in_kernel(vcpu->kvm)) {
2902                 kvm_queue_interrupt(vcpu, irq->irq, false);
2903                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2904                 return 0;
2905         }
2906
2907         /*
2908          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2909          * fail for in-kernel 8259.
2910          */
2911         if (pic_in_kernel(vcpu->kvm))
2912                 return -ENXIO;
2913
2914         if (vcpu->arch.pending_external_vector != -1)
2915                 return -EEXIST;
2916
2917         vcpu->arch.pending_external_vector = irq->irq;
2918         kvm_make_request(KVM_REQ_EVENT, vcpu);
2919         return 0;
2920 }
2921
2922 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2923 {
2924         kvm_inject_nmi(vcpu);
2925
2926         return 0;
2927 }
2928
2929 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2930 {
2931         kvm_make_request(KVM_REQ_SMI, vcpu);
2932
2933         return 0;
2934 }
2935
2936 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2937                                            struct kvm_tpr_access_ctl *tac)
2938 {
2939         if (tac->flags)
2940                 return -EINVAL;
2941         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2942         return 0;
2943 }
2944
2945 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2946                                         u64 mcg_cap)
2947 {
2948         int r;
2949         unsigned bank_num = mcg_cap & 0xff, bank;
2950
2951         r = -EINVAL;
2952         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2953                 goto out;
2954         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2955                 goto out;
2956         r = 0;
2957         vcpu->arch.mcg_cap = mcg_cap;
2958         /* Init IA32_MCG_CTL to all 1s */
2959         if (mcg_cap & MCG_CTL_P)
2960                 vcpu->arch.mcg_ctl = ~(u64)0;
2961         /* Init IA32_MCi_CTL to all 1s */
2962         for (bank = 0; bank < bank_num; bank++)
2963                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2964
2965         if (kvm_x86_ops->setup_mce)
2966                 kvm_x86_ops->setup_mce(vcpu);
2967 out:
2968         return r;
2969 }
2970
2971 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2972                                       struct kvm_x86_mce *mce)
2973 {
2974         u64 mcg_cap = vcpu->arch.mcg_cap;
2975         unsigned bank_num = mcg_cap & 0xff;
2976         u64 *banks = vcpu->arch.mce_banks;
2977
2978         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2979                 return -EINVAL;
2980         /*
2981          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2982          * reporting is disabled
2983          */
2984         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2985             vcpu->arch.mcg_ctl != ~(u64)0)
2986                 return 0;
2987         banks += 4 * mce->bank;
2988         /*
2989          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2990          * reporting is disabled for the bank
2991          */
2992         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2993                 return 0;
2994         if (mce->status & MCI_STATUS_UC) {
2995                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2996                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2997                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2998                         return 0;
2999                 }
3000                 if (banks[1] & MCI_STATUS_VAL)
3001                         mce->status |= MCI_STATUS_OVER;
3002                 banks[2] = mce->addr;
3003                 banks[3] = mce->misc;
3004                 vcpu->arch.mcg_status = mce->mcg_status;
3005                 banks[1] = mce->status;
3006                 kvm_queue_exception(vcpu, MC_VECTOR);
3007         } else if (!(banks[1] & MCI_STATUS_VAL)
3008                    || !(banks[1] & MCI_STATUS_UC)) {
3009                 if (banks[1] & MCI_STATUS_VAL)
3010                         mce->status |= MCI_STATUS_OVER;
3011                 banks[2] = mce->addr;
3012                 banks[3] = mce->misc;
3013                 banks[1] = mce->status;
3014         } else
3015                 banks[1] |= MCI_STATUS_OVER;
3016         return 0;
3017 }
3018
3019 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3020                                                struct kvm_vcpu_events *events)
3021 {
3022         process_nmi(vcpu);
3023         events->exception.injected =
3024                 vcpu->arch.exception.pending &&
3025                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3026         events->exception.nr = vcpu->arch.exception.nr;
3027         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3028         events->exception.pad = 0;
3029         events->exception.error_code = vcpu->arch.exception.error_code;
3030
3031         events->interrupt.injected =
3032                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3033         events->interrupt.nr = vcpu->arch.interrupt.nr;
3034         events->interrupt.soft = 0;
3035         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3036
3037         events->nmi.injected = vcpu->arch.nmi_injected;
3038         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3039         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3040         events->nmi.pad = 0;
3041
3042         events->sipi_vector = 0; /* never valid when reporting to user space */
3043
3044         events->smi.smm = is_smm(vcpu);
3045         events->smi.pending = vcpu->arch.smi_pending;
3046         events->smi.smm_inside_nmi =
3047                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3048         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3049
3050         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3051                          | KVM_VCPUEVENT_VALID_SHADOW
3052                          | KVM_VCPUEVENT_VALID_SMM);
3053         memset(&events->reserved, 0, sizeof(events->reserved));
3054 }
3055
3056 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3057                                               struct kvm_vcpu_events *events)
3058 {
3059         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3060                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3061                               | KVM_VCPUEVENT_VALID_SHADOW
3062                               | KVM_VCPUEVENT_VALID_SMM))
3063                 return -EINVAL;
3064
3065         if (events->exception.injected &&
3066             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3067                 return -EINVAL;
3068
3069         process_nmi(vcpu);
3070         vcpu->arch.exception.pending = events->exception.injected;
3071         vcpu->arch.exception.nr = events->exception.nr;
3072         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3073         vcpu->arch.exception.error_code = events->exception.error_code;
3074
3075         vcpu->arch.interrupt.pending = events->interrupt.injected;
3076         vcpu->arch.interrupt.nr = events->interrupt.nr;
3077         vcpu->arch.interrupt.soft = events->interrupt.soft;
3078         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3079                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3080                                                   events->interrupt.shadow);
3081
3082         vcpu->arch.nmi_injected = events->nmi.injected;
3083         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3084                 vcpu->arch.nmi_pending = events->nmi.pending;
3085         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3086
3087         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3088             lapic_in_kernel(vcpu))
3089                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3090
3091         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3092                 if (events->smi.smm)
3093                         vcpu->arch.hflags |= HF_SMM_MASK;
3094                 else
3095                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3096                 vcpu->arch.smi_pending = events->smi.pending;
3097                 if (events->smi.smm_inside_nmi)
3098                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3099                 else
3100                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3101                 if (lapic_in_kernel(vcpu)) {
3102                         if (events->smi.latched_init)
3103                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3104                         else
3105                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3106                 }
3107         }
3108
3109         kvm_make_request(KVM_REQ_EVENT, vcpu);
3110
3111         return 0;
3112 }
3113
3114 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3115                                              struct kvm_debugregs *dbgregs)
3116 {
3117         unsigned long val;
3118
3119         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3120         kvm_get_dr(vcpu, 6, &val);
3121         dbgregs->dr6 = val;
3122         dbgregs->dr7 = vcpu->arch.dr7;
3123         dbgregs->flags = 0;
3124         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3125 }
3126
3127 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3128                                             struct kvm_debugregs *dbgregs)
3129 {
3130         if (dbgregs->flags)
3131                 return -EINVAL;
3132
3133         if (dbgregs->dr6 & ~0xffffffffull)
3134                 return -EINVAL;
3135         if (dbgregs->dr7 & ~0xffffffffull)
3136                 return -EINVAL;
3137
3138         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3139         kvm_update_dr0123(vcpu);
3140         vcpu->arch.dr6 = dbgregs->dr6;
3141         kvm_update_dr6(vcpu);
3142         vcpu->arch.dr7 = dbgregs->dr7;
3143         kvm_update_dr7(vcpu);
3144
3145         return 0;
3146 }
3147
3148 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3149
3150 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3151 {
3152         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3153         u64 xstate_bv = xsave->header.xfeatures;
3154         u64 valid;
3155
3156         /*
3157          * Copy legacy XSAVE area, to avoid complications with CPUID
3158          * leaves 0 and 1 in the loop below.
3159          */
3160         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3161
3162         /* Set XSTATE_BV */
3163         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3164
3165         /*
3166          * Copy each region from the possibly compacted offset to the
3167          * non-compacted offset.
3168          */
3169         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3170         while (valid) {
3171                 u64 feature = valid & -valid;
3172                 int index = fls64(feature) - 1;
3173                 void *src = get_xsave_addr(xsave, feature);
3174
3175                 if (src) {
3176                         u32 size, offset, ecx, edx;
3177                         cpuid_count(XSTATE_CPUID, index,
3178                                     &size, &offset, &ecx, &edx);
3179                         memcpy(dest + offset, src, size);
3180                 }
3181
3182                 valid -= feature;
3183         }
3184 }
3185
3186 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3187 {
3188         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3189         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3190         u64 valid;
3191
3192         /*
3193          * Copy legacy XSAVE area, to avoid complications with CPUID
3194          * leaves 0 and 1 in the loop below.
3195          */
3196         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3197
3198         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3199         xsave->header.xfeatures = xstate_bv;
3200         if (boot_cpu_has(X86_FEATURE_XSAVES))
3201                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3202
3203         /*
3204          * Copy each region from the non-compacted offset to the
3205          * possibly compacted offset.
3206          */
3207         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3208         while (valid) {
3209                 u64 feature = valid & -valid;
3210                 int index = fls64(feature) - 1;
3211                 void *dest = get_xsave_addr(xsave, feature);
3212
3213                 if (dest) {
3214                         u32 size, offset, ecx, edx;
3215                         cpuid_count(XSTATE_CPUID, index,
3216                                     &size, &offset, &ecx, &edx);
3217                         memcpy(dest, src + offset, size);
3218                 }
3219
3220                 valid -= feature;
3221         }
3222 }
3223
3224 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3225                                          struct kvm_xsave *guest_xsave)
3226 {
3227         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3228                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3229                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3230         } else {
3231                 memcpy(guest_xsave->region,
3232                         &vcpu->arch.guest_fpu.state.fxsave,
3233                         sizeof(struct fxregs_state));
3234                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3235                         XFEATURE_MASK_FPSSE;
3236         }
3237 }
3238
3239 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3240                                         struct kvm_xsave *guest_xsave)
3241 {
3242         u64 xstate_bv =
3243                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3244
3245         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3246                 /*
3247                  * Here we allow setting states that are not present in
3248                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3249                  * with old userspace.
3250                  */
3251                 if (xstate_bv & ~kvm_supported_xcr0())
3252                         return -EINVAL;
3253                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3254         } else {
3255                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3256                         return -EINVAL;
3257                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3258                         guest_xsave->region, sizeof(struct fxregs_state));
3259         }
3260         return 0;
3261 }
3262
3263 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3264                                         struct kvm_xcrs *guest_xcrs)
3265 {
3266         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3267                 guest_xcrs->nr_xcrs = 0;
3268                 return;
3269         }
3270
3271         guest_xcrs->nr_xcrs = 1;
3272         guest_xcrs->flags = 0;
3273         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3274         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3275 }
3276
3277 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3278                                        struct kvm_xcrs *guest_xcrs)
3279 {
3280         int i, r = 0;
3281
3282         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3283                 return -EINVAL;
3284
3285         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3286                 return -EINVAL;
3287
3288         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3289                 /* Only support XCR0 currently */
3290                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3291                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3292                                 guest_xcrs->xcrs[i].value);
3293                         break;
3294                 }
3295         if (r)
3296                 r = -EINVAL;
3297         return r;
3298 }
3299
3300 /*
3301  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3302  * stopped by the hypervisor.  This function will be called from the host only.
3303  * EINVAL is returned when the host attempts to set the flag for a guest that
3304  * does not support pv clocks.
3305  */
3306 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3307 {
3308         if (!vcpu->arch.pv_time_enabled)
3309                 return -EINVAL;
3310         vcpu->arch.pvclock_set_guest_stopped_request = true;
3311         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3312         return 0;
3313 }
3314
3315 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3316                                      struct kvm_enable_cap *cap)
3317 {
3318         if (cap->flags)
3319                 return -EINVAL;
3320
3321         switch (cap->cap) {
3322         case KVM_CAP_HYPERV_SYNIC:
3323                 return kvm_hv_activate_synic(vcpu);
3324         default:
3325                 return -EINVAL;
3326         }
3327 }
3328
3329 long kvm_arch_vcpu_ioctl(struct file *filp,
3330                          unsigned int ioctl, unsigned long arg)
3331 {
3332         struct kvm_vcpu *vcpu = filp->private_data;
3333         void __user *argp = (void __user *)arg;
3334         int r;
3335         union {
3336                 struct kvm_lapic_state *lapic;
3337                 struct kvm_xsave *xsave;
3338                 struct kvm_xcrs *xcrs;
3339                 void *buffer;
3340         } u;
3341
3342         u.buffer = NULL;
3343         switch (ioctl) {
3344         case KVM_GET_LAPIC: {
3345                 r = -EINVAL;
3346                 if (!lapic_in_kernel(vcpu))
3347                         goto out;
3348                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3349
3350                 r = -ENOMEM;
3351                 if (!u.lapic)
3352                         goto out;
3353                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3354                 if (r)
3355                         goto out;
3356                 r = -EFAULT;
3357                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3358                         goto out;
3359                 r = 0;
3360                 break;
3361         }
3362         case KVM_SET_LAPIC: {
3363                 r = -EINVAL;
3364                 if (!lapic_in_kernel(vcpu))
3365                         goto out;
3366                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3367                 if (IS_ERR(u.lapic))
3368                         return PTR_ERR(u.lapic);
3369
3370                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3371                 break;
3372         }
3373         case KVM_INTERRUPT: {
3374                 struct kvm_interrupt irq;
3375
3376                 r = -EFAULT;
3377                 if (copy_from_user(&irq, argp, sizeof irq))
3378                         goto out;
3379                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3380                 break;
3381         }
3382         case KVM_NMI: {
3383                 r = kvm_vcpu_ioctl_nmi(vcpu);
3384                 break;
3385         }
3386         case KVM_SMI: {
3387                 r = kvm_vcpu_ioctl_smi(vcpu);
3388                 break;
3389         }
3390         case KVM_SET_CPUID: {
3391                 struct kvm_cpuid __user *cpuid_arg = argp;
3392                 struct kvm_cpuid cpuid;
3393
3394                 r = -EFAULT;
3395                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3396                         goto out;
3397                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3398                 break;
3399         }
3400         case KVM_SET_CPUID2: {
3401                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3402                 struct kvm_cpuid2 cpuid;
3403
3404                 r = -EFAULT;
3405                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3406                         goto out;
3407                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3408                                               cpuid_arg->entries);
3409                 break;
3410         }
3411         case KVM_GET_CPUID2: {
3412                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3413                 struct kvm_cpuid2 cpuid;
3414
3415                 r = -EFAULT;
3416                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3417                         goto out;
3418                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3419                                               cpuid_arg->entries);
3420                 if (r)
3421                         goto out;
3422                 r = -EFAULT;
3423                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3424                         goto out;
3425                 r = 0;
3426                 break;
3427         }
3428         case KVM_GET_MSRS:
3429                 r = msr_io(vcpu, argp, do_get_msr, 1);
3430                 break;
3431         case KVM_SET_MSRS:
3432                 r = msr_io(vcpu, argp, do_set_msr, 0);
3433                 break;
3434         case KVM_TPR_ACCESS_REPORTING: {
3435                 struct kvm_tpr_access_ctl tac;
3436
3437                 r = -EFAULT;
3438                 if (copy_from_user(&tac, argp, sizeof tac))
3439                         goto out;
3440                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3441                 if (r)
3442                         goto out;
3443                 r = -EFAULT;
3444                 if (copy_to_user(argp, &tac, sizeof tac))
3445                         goto out;
3446                 r = 0;
3447                 break;
3448         };
3449         case KVM_SET_VAPIC_ADDR: {
3450                 struct kvm_vapic_addr va;
3451                 int idx;
3452
3453                 r = -EINVAL;
3454                 if (!lapic_in_kernel(vcpu))
3455                         goto out;
3456                 r = -EFAULT;
3457                 if (copy_from_user(&va, argp, sizeof va))
3458                         goto out;
3459                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3460                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3461                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3462                 break;
3463         }
3464         case KVM_X86_SETUP_MCE: {
3465                 u64 mcg_cap;
3466
3467                 r = -EFAULT;
3468                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3469                         goto out;
3470                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3471                 break;
3472         }
3473         case KVM_X86_SET_MCE: {
3474                 struct kvm_x86_mce mce;
3475
3476                 r = -EFAULT;
3477                 if (copy_from_user(&mce, argp, sizeof mce))
3478                         goto out;
3479                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3480                 break;
3481         }
3482         case KVM_GET_VCPU_EVENTS: {
3483                 struct kvm_vcpu_events events;
3484
3485                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3486
3487                 r = -EFAULT;
3488                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3489                         break;
3490                 r = 0;
3491                 break;
3492         }
3493         case KVM_SET_VCPU_EVENTS: {
3494                 struct kvm_vcpu_events events;
3495
3496                 r = -EFAULT;
3497                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3498                         break;
3499
3500                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3501                 break;
3502         }
3503         case KVM_GET_DEBUGREGS: {
3504                 struct kvm_debugregs dbgregs;
3505
3506                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3507
3508                 r = -EFAULT;
3509                 if (copy_to_user(argp, &dbgregs,
3510                                  sizeof(struct kvm_debugregs)))
3511                         break;
3512                 r = 0;
3513                 break;
3514         }
3515         case KVM_SET_DEBUGREGS: {
3516                 struct kvm_debugregs dbgregs;
3517
3518                 r = -EFAULT;
3519                 if (copy_from_user(&dbgregs, argp,
3520                                    sizeof(struct kvm_debugregs)))
3521                         break;
3522
3523                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3524                 break;
3525         }
3526         case KVM_GET_XSAVE: {
3527                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3528                 r = -ENOMEM;
3529                 if (!u.xsave)
3530                         break;
3531
3532                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3533
3534                 r = -EFAULT;
3535                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3536                         break;
3537                 r = 0;
3538                 break;
3539         }
3540         case KVM_SET_XSAVE: {
3541                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3542                 if (IS_ERR(u.xsave))
3543                         return PTR_ERR(u.xsave);
3544
3545                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3546                 break;
3547         }
3548         case KVM_GET_XCRS: {
3549                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3550                 r = -ENOMEM;
3551                 if (!u.xcrs)
3552                         break;
3553
3554                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3555
3556                 r = -EFAULT;
3557                 if (copy_to_user(argp, u.xcrs,
3558                                  sizeof(struct kvm_xcrs)))
3559                         break;
3560                 r = 0;
3561                 break;
3562         }
3563         case KVM_SET_XCRS: {
3564                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3565                 if (IS_ERR(u.xcrs))
3566                         return PTR_ERR(u.xcrs);
3567
3568                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3569                 break;
3570         }
3571         case KVM_SET_TSC_KHZ: {
3572                 u32 user_tsc_khz;
3573
3574                 r = -EINVAL;
3575                 user_tsc_khz = (u32)arg;
3576
3577                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3578                         goto out;
3579
3580                 if (user_tsc_khz == 0)
3581                         user_tsc_khz = tsc_khz;
3582
3583                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3584                         r = 0;
3585
3586                 goto out;
3587         }
3588         case KVM_GET_TSC_KHZ: {
3589                 r = vcpu->arch.virtual_tsc_khz;
3590                 goto out;
3591         }
3592         case KVM_KVMCLOCK_CTRL: {
3593                 r = kvm_set_guest_paused(vcpu);
3594                 goto out;
3595         }
3596         case KVM_ENABLE_CAP: {
3597                 struct kvm_enable_cap cap;
3598
3599                 r = -EFAULT;
3600                 if (copy_from_user(&cap, argp, sizeof(cap)))
3601                         goto out;
3602                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3603                 break;
3604         }
3605         default:
3606                 r = -EINVAL;
3607         }
3608 out:
3609         kfree(u.buffer);
3610         return r;
3611 }
3612
3613 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3614 {
3615         return VM_FAULT_SIGBUS;
3616 }
3617
3618 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3619 {
3620         int ret;
3621
3622         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3623                 return -EINVAL;
3624         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3625         return ret;
3626 }
3627
3628 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3629                                               u64 ident_addr)
3630 {
3631         kvm->arch.ept_identity_map_addr = ident_addr;
3632         return 0;
3633 }
3634
3635 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3636                                           u32 kvm_nr_mmu_pages)
3637 {
3638         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3639                 return -EINVAL;
3640
3641         mutex_lock(&kvm->slots_lock);
3642
3643         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3644         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3645
3646         mutex_unlock(&kvm->slots_lock);
3647         return 0;
3648 }
3649
3650 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3651 {
3652         return kvm->arch.n_max_mmu_pages;
3653 }
3654
3655 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3656 {
3657         int r;
3658
3659         r = 0;
3660         switch (chip->chip_id) {
3661         case KVM_IRQCHIP_PIC_MASTER:
3662                 memcpy(&chip->chip.pic,
3663                         &pic_irqchip(kvm)->pics[0],
3664                         sizeof(struct kvm_pic_state));
3665                 break;
3666         case KVM_IRQCHIP_PIC_SLAVE:
3667                 memcpy(&chip->chip.pic,
3668                         &pic_irqchip(kvm)->pics[1],
3669                         sizeof(struct kvm_pic_state));
3670                 break;
3671         case KVM_IRQCHIP_IOAPIC:
3672                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3673                 break;
3674         default:
3675                 r = -EINVAL;
3676                 break;
3677         }
3678         return r;
3679 }
3680
3681 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3682 {
3683         int r;
3684
3685         r = 0;
3686         switch (chip->chip_id) {
3687         case KVM_IRQCHIP_PIC_MASTER:
3688                 spin_lock(&pic_irqchip(kvm)->lock);
3689                 memcpy(&pic_irqchip(kvm)->pics[0],
3690                         &chip->chip.pic,
3691                         sizeof(struct kvm_pic_state));
3692                 spin_unlock(&pic_irqchip(kvm)->lock);
3693                 break;
3694         case KVM_IRQCHIP_PIC_SLAVE:
3695                 spin_lock(&pic_irqchip(kvm)->lock);
3696                 memcpy(&pic_irqchip(kvm)->pics[1],
3697                         &chip->chip.pic,
3698                         sizeof(struct kvm_pic_state));
3699                 spin_unlock(&pic_irqchip(kvm)->lock);
3700                 break;
3701         case KVM_IRQCHIP_IOAPIC:
3702                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3703                 break;
3704         default:
3705                 r = -EINVAL;
3706                 break;
3707         }
3708         kvm_pic_update_irq(pic_irqchip(kvm));
3709         return r;
3710 }
3711
3712 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3713 {
3714         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3715
3716         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3717
3718         mutex_lock(&kps->lock);
3719         memcpy(ps, &kps->channels, sizeof(*ps));
3720         mutex_unlock(&kps->lock);
3721         return 0;
3722 }
3723
3724 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3725 {
3726         int i;
3727         struct kvm_pit *pit = kvm->arch.vpit;
3728
3729         mutex_lock(&pit->pit_state.lock);
3730         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3731         for (i = 0; i < 3; i++)
3732                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3733         mutex_unlock(&pit->pit_state.lock);
3734         return 0;
3735 }
3736
3737 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3738 {
3739         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3740         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3741                 sizeof(ps->channels));
3742         ps->flags = kvm->arch.vpit->pit_state.flags;
3743         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3744         memset(&ps->reserved, 0, sizeof(ps->reserved));
3745         return 0;
3746 }
3747
3748 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3749 {
3750         int start = 0;
3751         int i;
3752         u32 prev_legacy, cur_legacy;
3753         struct kvm_pit *pit = kvm->arch.vpit;
3754
3755         mutex_lock(&pit->pit_state.lock);
3756         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3757         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3758         if (!prev_legacy && cur_legacy)
3759                 start = 1;
3760         memcpy(&pit->pit_state.channels, &ps->channels,
3761                sizeof(pit->pit_state.channels));
3762         pit->pit_state.flags = ps->flags;
3763         for (i = 0; i < 3; i++)
3764                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3765                                    start && i == 0);
3766         mutex_unlock(&pit->pit_state.lock);
3767         return 0;
3768 }
3769
3770 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3771                                  struct kvm_reinject_control *control)
3772 {
3773         struct kvm_pit *pit = kvm->arch.vpit;
3774
3775         if (!pit)
3776                 return -ENXIO;
3777
3778         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3779          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3780          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3781          */
3782         mutex_lock(&pit->pit_state.lock);
3783         kvm_pit_set_reinject(pit, control->pit_reinject);
3784         mutex_unlock(&pit->pit_state.lock);
3785
3786         return 0;
3787 }
3788
3789 /**
3790  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3791  * @kvm: kvm instance
3792  * @log: slot id and address to which we copy the log
3793  *
3794  * Steps 1-4 below provide general overview of dirty page logging. See
3795  * kvm_get_dirty_log_protect() function description for additional details.
3796  *
3797  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3798  * always flush the TLB (step 4) even if previous step failed  and the dirty
3799  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3800  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3801  * writes will be marked dirty for next log read.
3802  *
3803  *   1. Take a snapshot of the bit and clear it if needed.
3804  *   2. Write protect the corresponding page.
3805  *   3. Copy the snapshot to the userspace.
3806  *   4. Flush TLB's if needed.
3807  */
3808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3809 {
3810         bool is_dirty = false;
3811         int r;
3812
3813         mutex_lock(&kvm->slots_lock);
3814
3815         /*
3816          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3817          */
3818         if (kvm_x86_ops->flush_log_dirty)
3819                 kvm_x86_ops->flush_log_dirty(kvm);
3820
3821         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3822
3823         /*
3824          * All the TLBs can be flushed out of mmu lock, see the comments in
3825          * kvm_mmu_slot_remove_write_access().
3826          */
3827         lockdep_assert_held(&kvm->slots_lock);
3828         if (is_dirty)
3829                 kvm_flush_remote_tlbs(kvm);
3830
3831         mutex_unlock(&kvm->slots_lock);
3832         return r;
3833 }
3834
3835 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3836                         bool line_status)
3837 {
3838         if (!irqchip_in_kernel(kvm))
3839                 return -ENXIO;
3840
3841         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3842                                         irq_event->irq, irq_event->level,
3843                                         line_status);
3844         return 0;
3845 }
3846
3847 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3848                                    struct kvm_enable_cap *cap)
3849 {
3850         int r;
3851
3852         if (cap->flags)
3853                 return -EINVAL;
3854
3855         switch (cap->cap) {
3856         case KVM_CAP_DISABLE_QUIRKS:
3857                 kvm->arch.disabled_quirks = cap->args[0];
3858                 r = 0;
3859                 break;
3860         case KVM_CAP_SPLIT_IRQCHIP: {
3861                 mutex_lock(&kvm->lock);
3862                 r = -EINVAL;
3863                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3864                         goto split_irqchip_unlock;
3865                 r = -EEXIST;
3866                 if (irqchip_in_kernel(kvm))
3867                         goto split_irqchip_unlock;
3868                 if (kvm->created_vcpus)
3869                         goto split_irqchip_unlock;
3870                 r = kvm_setup_empty_irq_routing(kvm);
3871                 if (r)
3872                         goto split_irqchip_unlock;
3873                 /* Pairs with irqchip_in_kernel. */
3874                 smp_wmb();
3875                 kvm->arch.irqchip_split = true;
3876                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3877                 r = 0;
3878 split_irqchip_unlock:
3879                 mutex_unlock(&kvm->lock);
3880                 break;
3881         }
3882         case KVM_CAP_X2APIC_API:
3883                 r = -EINVAL;
3884                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3885                         break;
3886
3887                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3888                         kvm->arch.x2apic_format = true;
3889                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3890                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3891
3892                 r = 0;
3893                 break;
3894         default:
3895                 r = -EINVAL;
3896                 break;
3897         }
3898         return r;
3899 }
3900
3901 long kvm_arch_vm_ioctl(struct file *filp,
3902                        unsigned int ioctl, unsigned long arg)
3903 {
3904         struct kvm *kvm = filp->private_data;
3905         void __user *argp = (void __user *)arg;
3906         int r = -ENOTTY;
3907         /*
3908          * This union makes it completely explicit to gcc-3.x
3909          * that these two variables' stack usage should be
3910          * combined, not added together.
3911          */
3912         union {
3913                 struct kvm_pit_state ps;
3914                 struct kvm_pit_state2 ps2;
3915                 struct kvm_pit_config pit_config;
3916         } u;
3917
3918         switch (ioctl) {
3919         case KVM_SET_TSS_ADDR:
3920                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3921                 break;
3922         case KVM_SET_IDENTITY_MAP_ADDR: {
3923                 u64 ident_addr;
3924
3925                 r = -EFAULT;
3926                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3927                         goto out;
3928                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3929                 break;
3930         }
3931         case KVM_SET_NR_MMU_PAGES:
3932                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3933                 break;
3934         case KVM_GET_NR_MMU_PAGES:
3935                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3936                 break;
3937         case KVM_CREATE_IRQCHIP: {
3938                 struct kvm_pic *vpic;
3939
3940                 mutex_lock(&kvm->lock);
3941                 r = -EEXIST;
3942                 if (kvm->arch.vpic)
3943                         goto create_irqchip_unlock;
3944                 r = -EINVAL;
3945                 if (kvm->created_vcpus)
3946                         goto create_irqchip_unlock;
3947                 r = -ENOMEM;
3948                 vpic = kvm_create_pic(kvm);
3949                 if (vpic) {
3950                         r = kvm_ioapic_init(kvm);
3951                         if (r) {
3952                                 mutex_lock(&kvm->slots_lock);
3953                                 kvm_destroy_pic(vpic);
3954                                 mutex_unlock(&kvm->slots_lock);
3955                                 goto create_irqchip_unlock;
3956                         }
3957                 } else
3958                         goto create_irqchip_unlock;
3959                 r = kvm_setup_default_irq_routing(kvm);
3960                 if (r) {
3961                         mutex_lock(&kvm->slots_lock);
3962                         mutex_lock(&kvm->irq_lock);
3963                         kvm_ioapic_destroy(kvm);
3964                         kvm_destroy_pic(vpic);
3965                         mutex_unlock(&kvm->irq_lock);
3966                         mutex_unlock(&kvm->slots_lock);
3967                         goto create_irqchip_unlock;
3968                 }
3969                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3970                 smp_wmb();
3971                 kvm->arch.vpic = vpic;
3972         create_irqchip_unlock:
3973                 mutex_unlock(&kvm->lock);
3974                 break;
3975         }
3976         case KVM_CREATE_PIT:
3977                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3978                 goto create_pit;
3979         case KVM_CREATE_PIT2:
3980                 r = -EFAULT;
3981                 if (copy_from_user(&u.pit_config, argp,
3982                                    sizeof(struct kvm_pit_config)))
3983                         goto out;
3984         create_pit:
3985                 mutex_lock(&kvm->lock);
3986                 r = -EEXIST;
3987                 if (kvm->arch.vpit)
3988                         goto create_pit_unlock;
3989                 r = -ENOMEM;
3990                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3991                 if (kvm->arch.vpit)
3992                         r = 0;
3993         create_pit_unlock:
3994                 mutex_unlock(&kvm->lock);
3995                 break;
3996         case KVM_GET_IRQCHIP: {
3997                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3998                 struct kvm_irqchip *chip;
3999
4000                 chip = memdup_user(argp, sizeof(*chip));
4001                 if (IS_ERR(chip)) {
4002                         r = PTR_ERR(chip);
4003                         goto out;
4004                 }
4005
4006                 r = -ENXIO;
4007                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4008                         goto get_irqchip_out;
4009                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4010                 if (r)
4011                         goto get_irqchip_out;
4012                 r = -EFAULT;
4013                 if (copy_to_user(argp, chip, sizeof *chip))
4014                         goto get_irqchip_out;
4015                 r = 0;
4016         get_irqchip_out:
4017                 kfree(chip);
4018                 break;
4019         }
4020         case KVM_SET_IRQCHIP: {
4021                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4022                 struct kvm_irqchip *chip;
4023
4024                 chip = memdup_user(argp, sizeof(*chip));
4025                 if (IS_ERR(chip)) {
4026                         r = PTR_ERR(chip);
4027                         goto out;
4028                 }
4029
4030                 r = -ENXIO;
4031                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4032                         goto set_irqchip_out;
4033                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4034                 if (r)
4035                         goto set_irqchip_out;
4036                 r = 0;
4037         set_irqchip_out:
4038                 kfree(chip);
4039                 break;
4040         }
4041         case KVM_GET_PIT: {
4042                 r = -EFAULT;
4043                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4044                         goto out;
4045                 r = -ENXIO;
4046                 if (!kvm->arch.vpit)
4047                         goto out;
4048                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4049                 if (r)
4050                         goto out;
4051                 r = -EFAULT;
4052                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4053                         goto out;
4054                 r = 0;
4055                 break;
4056         }
4057         case KVM_SET_PIT: {
4058                 r = -EFAULT;
4059                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4060                         goto out;
4061                 r = -ENXIO;
4062                 if (!kvm->arch.vpit)
4063                         goto out;
4064                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4065                 break;
4066         }
4067         case KVM_GET_PIT2: {
4068                 r = -ENXIO;
4069                 if (!kvm->arch.vpit)
4070                         goto out;
4071                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4072                 if (r)
4073                         goto out;
4074                 r = -EFAULT;
4075                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4076                         goto out;
4077                 r = 0;
4078                 break;
4079         }
4080         case KVM_SET_PIT2: {
4081                 r = -EFAULT;
4082                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4083                         goto out;
4084                 r = -ENXIO;
4085                 if (!kvm->arch.vpit)
4086                         goto out;
4087                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4088                 break;
4089         }
4090         case KVM_REINJECT_CONTROL: {
4091                 struct kvm_reinject_control control;
4092                 r =  -EFAULT;
4093                 if (copy_from_user(&control, argp, sizeof(control)))
4094                         goto out;
4095                 r = kvm_vm_ioctl_reinject(kvm, &control);
4096                 break;
4097         }
4098         case KVM_SET_BOOT_CPU_ID:
4099                 r = 0;
4100                 mutex_lock(&kvm->lock);
4101                 if (kvm->created_vcpus)
4102                         r = -EBUSY;
4103                 else
4104                         kvm->arch.bsp_vcpu_id = arg;
4105                 mutex_unlock(&kvm->lock);
4106                 break;
4107         case KVM_XEN_HVM_CONFIG: {
4108                 r = -EFAULT;
4109                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4110                                    sizeof(struct kvm_xen_hvm_config)))
4111                         goto out;
4112                 r = -EINVAL;
4113                 if (kvm->arch.xen_hvm_config.flags)
4114                         goto out;
4115                 r = 0;
4116                 break;
4117         }
4118         case KVM_SET_CLOCK: {
4119                 struct kvm_clock_data user_ns;
4120                 u64 now_ns;
4121
4122                 r = -EFAULT;
4123                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4124                         goto out;
4125
4126                 r = -EINVAL;
4127                 if (user_ns.flags)
4128                         goto out;
4129
4130                 r = 0;
4131                 local_irq_disable();
4132                 now_ns = __get_kvmclock_ns(kvm);
4133                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4134                 local_irq_enable();
4135                 kvm_gen_update_masterclock(kvm);
4136                 break;
4137         }
4138         case KVM_GET_CLOCK: {
4139                 struct kvm_clock_data user_ns;
4140                 u64 now_ns;
4141
4142                 local_irq_disable();
4143                 now_ns = __get_kvmclock_ns(kvm);
4144                 user_ns.clock = now_ns;
4145                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4146                 local_irq_enable();
4147                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4148
4149                 r = -EFAULT;
4150                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4151                         goto out;
4152                 r = 0;
4153                 break;
4154         }
4155         case KVM_ENABLE_CAP: {
4156                 struct kvm_enable_cap cap;
4157
4158                 r = -EFAULT;
4159                 if (copy_from_user(&cap, argp, sizeof(cap)))
4160                         goto out;
4161                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4162                 break;
4163         }
4164         default:
4165                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4166         }
4167 out:
4168         return r;
4169 }
4170
4171 static void kvm_init_msr_list(void)
4172 {
4173         u32 dummy[2];
4174         unsigned i, j;
4175
4176         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4177                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4178                         continue;
4179
4180                 /*
4181                  * Even MSRs that are valid in the host may not be exposed
4182                  * to the guests in some cases.
4183                  */
4184                 switch (msrs_to_save[i]) {
4185                 case MSR_IA32_BNDCFGS:
4186                         if (!kvm_x86_ops->mpx_supported())
4187                                 continue;
4188                         break;
4189                 case MSR_TSC_AUX:
4190                         if (!kvm_x86_ops->rdtscp_supported())
4191                                 continue;
4192                         break;
4193                 default:
4194                         break;
4195                 }
4196
4197                 if (j < i)
4198                         msrs_to_save[j] = msrs_to_save[i];
4199                 j++;
4200         }
4201         num_msrs_to_save = j;
4202
4203         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4204                 switch (emulated_msrs[i]) {
4205                 case MSR_IA32_SMBASE:
4206                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4207                                 continue;
4208                         break;
4209                 default:
4210                         break;
4211                 }
4212
4213                 if (j < i)
4214                         emulated_msrs[j] = emulated_msrs[i];
4215                 j++;
4216         }
4217         num_emulated_msrs = j;
4218 }
4219
4220 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4221                            const void *v)
4222 {
4223         int handled = 0;
4224         int n;
4225
4226         do {
4227                 n = min(len, 8);
4228                 if (!(lapic_in_kernel(vcpu) &&
4229                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4230                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4231                         break;
4232                 handled += n;
4233                 addr += n;
4234                 len -= n;
4235                 v += n;
4236         } while (len);
4237
4238         return handled;
4239 }
4240
4241 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4242 {
4243         int handled = 0;
4244         int n;
4245
4246         do {
4247                 n = min(len, 8);
4248                 if (!(lapic_in_kernel(vcpu) &&
4249                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4250                                          addr, n, v))
4251                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4252                         break;
4253                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4254                 handled += n;
4255                 addr += n;
4256                 len -= n;
4257                 v += n;
4258         } while (len);
4259
4260         return handled;
4261 }
4262
4263 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4264                         struct kvm_segment *var, int seg)
4265 {
4266         kvm_x86_ops->set_segment(vcpu, var, seg);
4267 }
4268
4269 void kvm_get_segment(struct kvm_vcpu *vcpu,
4270                      struct kvm_segment *var, int seg)
4271 {
4272         kvm_x86_ops->get_segment(vcpu, var, seg);
4273 }
4274
4275 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4276                            struct x86_exception *exception)
4277 {
4278         gpa_t t_gpa;
4279
4280         BUG_ON(!mmu_is_nested(vcpu));
4281
4282         /* NPT walks are always user-walks */
4283         access |= PFERR_USER_MASK;
4284         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4285
4286         return t_gpa;
4287 }
4288
4289 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4290                               struct x86_exception *exception)
4291 {
4292         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4293         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4294 }
4295
4296  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4297                                 struct x86_exception *exception)
4298 {
4299         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4300         access |= PFERR_FETCH_MASK;
4301         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4302 }
4303
4304 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4305                                struct x86_exception *exception)
4306 {
4307         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4308         access |= PFERR_WRITE_MASK;
4309         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4310 }
4311
4312 /* uses this to access any guest's mapped memory without checking CPL */
4313 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4314                                 struct x86_exception *exception)
4315 {
4316         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4317 }
4318
4319 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4320                                       struct kvm_vcpu *vcpu, u32 access,
4321                                       struct x86_exception *exception)
4322 {
4323         void *data = val;
4324         int r = X86EMUL_CONTINUE;
4325
4326         while (bytes) {
4327                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4328                                                             exception);
4329                 unsigned offset = addr & (PAGE_SIZE-1);
4330                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4331                 int ret;
4332
4333                 if (gpa == UNMAPPED_GVA)
4334                         return X86EMUL_PROPAGATE_FAULT;
4335                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4336                                                offset, toread);
4337                 if (ret < 0) {
4338                         r = X86EMUL_IO_NEEDED;
4339                         goto out;
4340                 }
4341
4342                 bytes -= toread;
4343                 data += toread;
4344                 addr += toread;
4345         }
4346 out:
4347         return r;
4348 }
4349
4350 /* used for instruction fetching */
4351 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4352                                 gva_t addr, void *val, unsigned int bytes,
4353                                 struct x86_exception *exception)
4354 {
4355         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4357         unsigned offset;
4358         int ret;
4359
4360         /* Inline kvm_read_guest_virt_helper for speed.  */
4361         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4362                                                     exception);
4363         if (unlikely(gpa == UNMAPPED_GVA))
4364                 return X86EMUL_PROPAGATE_FAULT;
4365
4366         offset = addr & (PAGE_SIZE-1);
4367         if (WARN_ON(offset + bytes > PAGE_SIZE))
4368                 bytes = (unsigned)PAGE_SIZE - offset;
4369         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4370                                        offset, bytes);
4371         if (unlikely(ret < 0))
4372                 return X86EMUL_IO_NEEDED;
4373
4374         return X86EMUL_CONTINUE;
4375 }
4376
4377 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4378                                gva_t addr, void *val, unsigned int bytes,
4379                                struct x86_exception *exception)
4380 {
4381         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4382         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4383
4384         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4385                                           exception);
4386 }
4387 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4388
4389 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4390                                       gva_t addr, void *val, unsigned int bytes,
4391                                       struct x86_exception *exception)
4392 {
4393         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4395 }
4396
4397 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4398                 unsigned long addr, void *val, unsigned int bytes)
4399 {
4400         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4401         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4402
4403         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4404 }
4405
4406 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4407                                        gva_t addr, void *val,
4408                                        unsigned int bytes,
4409                                        struct x86_exception *exception)
4410 {
4411         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412         void *data = val;
4413         int r = X86EMUL_CONTINUE;
4414
4415         while (bytes) {
4416                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4417                                                              PFERR_WRITE_MASK,
4418                                                              exception);
4419                 unsigned offset = addr & (PAGE_SIZE-1);
4420                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4421                 int ret;
4422
4423                 if (gpa == UNMAPPED_GVA)
4424                         return X86EMUL_PROPAGATE_FAULT;
4425                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4426                 if (ret < 0) {
4427                         r = X86EMUL_IO_NEEDED;
4428                         goto out;
4429                 }
4430
4431                 bytes -= towrite;
4432                 data += towrite;
4433                 addr += towrite;
4434         }
4435 out:
4436         return r;
4437 }
4438 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4439
4440 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4441                                 gpa_t *gpa, struct x86_exception *exception,
4442                                 bool write)
4443 {
4444         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4445                 | (write ? PFERR_WRITE_MASK : 0);
4446
4447         /*
4448          * currently PKRU is only applied to ept enabled guest so
4449          * there is no pkey in EPT page table for L1 guest or EPT
4450          * shadow page table for L2 guest.
4451          */
4452         if (vcpu_match_mmio_gva(vcpu, gva)
4453             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4454                                  vcpu->arch.access, 0, access)) {
4455                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4456                                         (gva & (PAGE_SIZE - 1));
4457                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4458                 return 1;
4459         }
4460
4461         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4462
4463         if (*gpa == UNMAPPED_GVA)
4464                 return -1;
4465
4466         /* For APIC access vmexit */
4467         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4468                 return 1;
4469
4470         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4471                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4472                 return 1;
4473         }
4474
4475         return 0;
4476 }
4477
4478 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4479                         const void *val, int bytes)
4480 {
4481         int ret;
4482
4483         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4484         if (ret < 0)
4485                 return 0;
4486         kvm_page_track_write(vcpu, gpa, val, bytes);
4487         return 1;
4488 }
4489
4490 struct read_write_emulator_ops {
4491         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4492                                   int bytes);
4493         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4494                                   void *val, int bytes);
4495         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4496                                int bytes, void *val);
4497         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4498                                     void *val, int bytes);
4499         bool write;
4500 };
4501
4502 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4503 {
4504         if (vcpu->mmio_read_completed) {
4505                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4506                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4507                 vcpu->mmio_read_completed = 0;
4508                 return 1;
4509         }
4510
4511         return 0;
4512 }
4513
4514 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4515                         void *val, int bytes)
4516 {
4517         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4518 }
4519
4520 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4521                          void *val, int bytes)
4522 {
4523         return emulator_write_phys(vcpu, gpa, val, bytes);
4524 }
4525
4526 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4527 {
4528         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4529         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4530 }
4531
4532 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4533                           void *val, int bytes)
4534 {
4535         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4536         return X86EMUL_IO_NEEDED;
4537 }
4538
4539 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4540                            void *val, int bytes)
4541 {
4542         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4543
4544         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4545         return X86EMUL_CONTINUE;
4546 }
4547
4548 static const struct read_write_emulator_ops read_emultor = {
4549         .read_write_prepare = read_prepare,
4550         .read_write_emulate = read_emulate,
4551         .read_write_mmio = vcpu_mmio_read,
4552         .read_write_exit_mmio = read_exit_mmio,
4553 };
4554
4555 static const struct read_write_emulator_ops write_emultor = {
4556         .read_write_emulate = write_emulate,
4557         .read_write_mmio = write_mmio,
4558         .read_write_exit_mmio = write_exit_mmio,
4559         .write = true,
4560 };
4561
4562 static int emulator_read_write_onepage(unsigned long addr, void *val,
4563                                        unsigned int bytes,
4564                                        struct x86_exception *exception,
4565                                        struct kvm_vcpu *vcpu,
4566                                        const struct read_write_emulator_ops *ops)
4567 {
4568         gpa_t gpa;
4569         int handled, ret;
4570         bool write = ops->write;
4571         struct kvm_mmio_fragment *frag;
4572
4573         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4574
4575         if (ret < 0)
4576                 return X86EMUL_PROPAGATE_FAULT;
4577
4578         /* For APIC access vmexit */
4579         if (ret)
4580                 goto mmio;
4581
4582         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4583                 return X86EMUL_CONTINUE;
4584
4585 mmio:
4586         /*
4587          * Is this MMIO handled locally?
4588          */
4589         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4590         if (handled == bytes)
4591                 return X86EMUL_CONTINUE;
4592
4593         gpa += handled;
4594         bytes -= handled;
4595         val += handled;
4596
4597         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4598         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4599         frag->gpa = gpa;
4600         frag->data = val;
4601         frag->len = bytes;
4602         return X86EMUL_CONTINUE;
4603 }
4604
4605 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4606                         unsigned long addr,
4607                         void *val, unsigned int bytes,
4608                         struct x86_exception *exception,
4609                         const struct read_write_emulator_ops *ops)
4610 {
4611         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4612         gpa_t gpa;
4613         int rc;
4614
4615         if (ops->read_write_prepare &&
4616                   ops->read_write_prepare(vcpu, val, bytes))
4617                 return X86EMUL_CONTINUE;
4618
4619         vcpu->mmio_nr_fragments = 0;
4620
4621         /* Crossing a page boundary? */
4622         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4623                 int now;
4624
4625                 now = -addr & ~PAGE_MASK;
4626                 rc = emulator_read_write_onepage(addr, val, now, exception,
4627                                                  vcpu, ops);
4628
4629                 if (rc != X86EMUL_CONTINUE)
4630                         return rc;
4631                 addr += now;
4632                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4633                         addr = (u32)addr;
4634                 val += now;
4635                 bytes -= now;
4636         }
4637
4638         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4639                                          vcpu, ops);
4640         if (rc != X86EMUL_CONTINUE)
4641                 return rc;
4642
4643         if (!vcpu->mmio_nr_fragments)
4644                 return rc;
4645
4646         gpa = vcpu->mmio_fragments[0].gpa;
4647
4648         vcpu->mmio_needed = 1;
4649         vcpu->mmio_cur_fragment = 0;
4650
4651         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4652         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4653         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4654         vcpu->run->mmio.phys_addr = gpa;
4655
4656         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4657 }
4658
4659 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4660                                   unsigned long addr,
4661                                   void *val,
4662                                   unsigned int bytes,
4663                                   struct x86_exception *exception)
4664 {
4665         return emulator_read_write(ctxt, addr, val, bytes,
4666                                    exception, &read_emultor);
4667 }
4668
4669 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4670                             unsigned long addr,
4671                             const void *val,
4672                             unsigned int bytes,
4673                             struct x86_exception *exception)
4674 {
4675         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4676                                    exception, &write_emultor);
4677 }
4678
4679 #define CMPXCHG_TYPE(t, ptr, old, new) \
4680         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4681
4682 #ifdef CONFIG_X86_64
4683 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4684 #else
4685 #  define CMPXCHG64(ptr, old, new) \
4686         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4687 #endif
4688
4689 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4690                                      unsigned long addr,
4691                                      const void *old,
4692                                      const void *new,
4693                                      unsigned int bytes,
4694                                      struct x86_exception *exception)
4695 {
4696         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4697         gpa_t gpa;
4698         struct page *page;
4699         char *kaddr;
4700         bool exchanged;
4701
4702         /* guests cmpxchg8b have to be emulated atomically */
4703         if (bytes > 8 || (bytes & (bytes - 1)))
4704                 goto emul_write;
4705
4706         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4707
4708         if (gpa == UNMAPPED_GVA ||
4709             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4710                 goto emul_write;
4711
4712         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4713                 goto emul_write;
4714
4715         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4716         if (is_error_page(page))
4717                 goto emul_write;
4718
4719         kaddr = kmap_atomic(page);
4720         kaddr += offset_in_page(gpa);
4721         switch (bytes) {
4722         case 1:
4723                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4724                 break;
4725         case 2:
4726                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4727                 break;
4728         case 4:
4729                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4730                 break;
4731         case 8:
4732                 exchanged = CMPXCHG64(kaddr, old, new);
4733                 break;
4734         default:
4735                 BUG();
4736         }
4737         kunmap_atomic(kaddr);
4738         kvm_release_page_dirty(page);
4739
4740         if (!exchanged)
4741                 return X86EMUL_CMPXCHG_FAILED;
4742
4743         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4744         kvm_page_track_write(vcpu, gpa, new, bytes);
4745
4746         return X86EMUL_CONTINUE;
4747
4748 emul_write:
4749         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4750
4751         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4752 }
4753
4754 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4755 {
4756         /* TODO: String I/O for in kernel device */
4757         int r;
4758
4759         if (vcpu->arch.pio.in)
4760                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4761                                     vcpu->arch.pio.size, pd);
4762         else
4763                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4764                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4765                                      pd);
4766         return r;
4767 }
4768
4769 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4770                                unsigned short port, void *val,
4771                                unsigned int count, bool in)
4772 {
4773         vcpu->arch.pio.port = port;
4774         vcpu->arch.pio.in = in;
4775         vcpu->arch.pio.count  = count;
4776         vcpu->arch.pio.size = size;
4777
4778         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4779                 vcpu->arch.pio.count = 0;
4780                 return 1;
4781         }
4782
4783         vcpu->run->exit_reason = KVM_EXIT_IO;
4784         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4785         vcpu->run->io.size = size;
4786         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4787         vcpu->run->io.count = count;
4788         vcpu->run->io.port = port;
4789
4790         return 0;
4791 }
4792
4793 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4794                                     int size, unsigned short port, void *val,
4795                                     unsigned int count)
4796 {
4797         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798         int ret;
4799
4800         if (vcpu->arch.pio.count)
4801                 goto data_avail;
4802
4803         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4804         if (ret) {
4805 data_avail:
4806                 memcpy(val, vcpu->arch.pio_data, size * count);
4807                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4808                 vcpu->arch.pio.count = 0;
4809                 return 1;
4810         }
4811
4812         return 0;
4813 }
4814
4815 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4816                                      int size, unsigned short port,
4817                                      const void *val, unsigned int count)
4818 {
4819         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820
4821         memcpy(vcpu->arch.pio_data, val, size * count);
4822         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4823         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4824 }
4825
4826 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4827 {
4828         return kvm_x86_ops->get_segment_base(vcpu, seg);
4829 }
4830
4831 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4832 {
4833         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4834 }
4835
4836 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4837 {
4838         if (!need_emulate_wbinvd(vcpu))
4839                 return X86EMUL_CONTINUE;
4840
4841         if (kvm_x86_ops->has_wbinvd_exit()) {
4842                 int cpu = get_cpu();
4843
4844                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4845                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4846                                 wbinvd_ipi, NULL, 1);
4847                 put_cpu();
4848                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4849         } else
4850                 wbinvd();
4851         return X86EMUL_CONTINUE;
4852 }
4853
4854 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4855 {
4856         kvm_emulate_wbinvd_noskip(vcpu);
4857         return kvm_skip_emulated_instruction(vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4860
4861
4862
4863 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4864 {
4865         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4866 }
4867
4868 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4869                            unsigned long *dest)
4870 {
4871         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4872 }
4873
4874 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4875                            unsigned long value)
4876 {
4877
4878         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4879 }
4880
4881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4882 {
4883         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4884 }
4885
4886 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4887 {
4888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889         unsigned long value;
4890
4891         switch (cr) {
4892         case 0:
4893                 value = kvm_read_cr0(vcpu);
4894                 break;
4895         case 2:
4896                 value = vcpu->arch.cr2;
4897                 break;
4898         case 3:
4899                 value = kvm_read_cr3(vcpu);
4900                 break;
4901         case 4:
4902                 value = kvm_read_cr4(vcpu);
4903                 break;
4904         case 8:
4905                 value = kvm_get_cr8(vcpu);
4906                 break;
4907         default:
4908                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4909                 return 0;
4910         }
4911
4912         return value;
4913 }
4914
4915 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4916 {
4917         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918         int res = 0;
4919
4920         switch (cr) {
4921         case 0:
4922                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4923                 break;
4924         case 2:
4925                 vcpu->arch.cr2 = val;
4926                 break;
4927         case 3:
4928                 res = kvm_set_cr3(vcpu, val);
4929                 break;
4930         case 4:
4931                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4932                 break;
4933         case 8:
4934                 res = kvm_set_cr8(vcpu, val);
4935                 break;
4936         default:
4937                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4938                 res = -1;
4939         }
4940
4941         return res;
4942 }
4943
4944 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4945 {
4946         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4947 }
4948
4949 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4950 {
4951         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4952 }
4953
4954 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4955 {
4956         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4957 }
4958
4959 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4960 {
4961         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4962 }
4963
4964 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4965 {
4966         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4967 }
4968
4969 static unsigned long emulator_get_cached_segment_base(
4970         struct x86_emulate_ctxt *ctxt, int seg)
4971 {
4972         return get_segment_base(emul_to_vcpu(ctxt), seg);
4973 }
4974
4975 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4976                                  struct desc_struct *desc, u32 *base3,
4977                                  int seg)
4978 {
4979         struct kvm_segment var;
4980
4981         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4982         *selector = var.selector;
4983
4984         if (var.unusable) {
4985                 memset(desc, 0, sizeof(*desc));
4986                 return false;
4987         }
4988
4989         if (var.g)
4990                 var.limit >>= 12;
4991         set_desc_limit(desc, var.limit);
4992         set_desc_base(desc, (unsigned long)var.base);
4993 #ifdef CONFIG_X86_64
4994         if (base3)
4995                 *base3 = var.base >> 32;
4996 #endif
4997         desc->type = var.type;
4998         desc->s = var.s;
4999         desc->dpl = var.dpl;
5000         desc->p = var.present;
5001         desc->avl = var.avl;
5002         desc->l = var.l;
5003         desc->d = var.db;
5004         desc->g = var.g;
5005
5006         return true;
5007 }
5008
5009 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5010                                  struct desc_struct *desc, u32 base3,
5011                                  int seg)
5012 {
5013         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5014         struct kvm_segment var;
5015
5016         var.selector = selector;
5017         var.base = get_desc_base(desc);
5018 #ifdef CONFIG_X86_64
5019         var.base |= ((u64)base3) << 32;
5020 #endif
5021         var.limit = get_desc_limit(desc);
5022         if (desc->g)
5023                 var.limit = (var.limit << 12) | 0xfff;
5024         var.type = desc->type;
5025         var.dpl = desc->dpl;
5026         var.db = desc->d;
5027         var.s = desc->s;
5028         var.l = desc->l;
5029         var.g = desc->g;
5030         var.avl = desc->avl;
5031         var.present = desc->p;
5032         var.unusable = !var.present;
5033         var.padding = 0;
5034
5035         kvm_set_segment(vcpu, &var, seg);
5036         return;
5037 }
5038
5039 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5040                             u32 msr_index, u64 *pdata)
5041 {
5042         struct msr_data msr;
5043         int r;
5044
5045         msr.index = msr_index;
5046         msr.host_initiated = false;
5047         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5048         if (r)
5049                 return r;
5050
5051         *pdata = msr.data;
5052         return 0;
5053 }
5054
5055 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5056                             u32 msr_index, u64 data)
5057 {
5058         struct msr_data msr;
5059
5060         msr.data = data;
5061         msr.index = msr_index;
5062         msr.host_initiated = false;
5063         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5064 }
5065
5066 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5067 {
5068         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069
5070         return vcpu->arch.smbase;
5071 }
5072
5073 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5074 {
5075         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5076
5077         vcpu->arch.smbase = smbase;
5078 }
5079
5080 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5081                               u32 pmc)
5082 {
5083         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5084 }
5085
5086 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5087                              u32 pmc, u64 *pdata)
5088 {
5089         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5090 }
5091
5092 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5093 {
5094         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5095 }
5096
5097 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5098 {
5099         preempt_disable();
5100         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5101 }
5102
5103 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5104 {
5105         preempt_enable();
5106 }
5107
5108 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5109                               struct x86_instruction_info *info,
5110                               enum x86_intercept_stage stage)
5111 {
5112         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5113 }
5114
5115 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5116                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5117 {
5118         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5119 }
5120
5121 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5122 {
5123         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5124 }
5125
5126 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5127 {
5128         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5129 }
5130
5131 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5132 {
5133         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5134 }
5135
5136 static const struct x86_emulate_ops emulate_ops = {
5137         .read_gpr            = emulator_read_gpr,
5138         .write_gpr           = emulator_write_gpr,
5139         .read_std            = kvm_read_guest_virt_system,
5140         .write_std           = kvm_write_guest_virt_system,
5141         .read_phys           = kvm_read_guest_phys_system,
5142         .fetch               = kvm_fetch_guest_virt,
5143         .read_emulated       = emulator_read_emulated,
5144         .write_emulated      = emulator_write_emulated,
5145         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5146         .invlpg              = emulator_invlpg,
5147         .pio_in_emulated     = emulator_pio_in_emulated,
5148         .pio_out_emulated    = emulator_pio_out_emulated,
5149         .get_segment         = emulator_get_segment,
5150         .set_segment         = emulator_set_segment,
5151         .get_cached_segment_base = emulator_get_cached_segment_base,
5152         .get_gdt             = emulator_get_gdt,
5153         .get_idt             = emulator_get_idt,
5154         .set_gdt             = emulator_set_gdt,
5155         .set_idt             = emulator_set_idt,
5156         .get_cr              = emulator_get_cr,
5157         .set_cr              = emulator_set_cr,
5158         .cpl                 = emulator_get_cpl,
5159         .get_dr              = emulator_get_dr,
5160         .set_dr              = emulator_set_dr,
5161         .get_smbase          = emulator_get_smbase,
5162         .set_smbase          = emulator_set_smbase,
5163         .set_msr             = emulator_set_msr,
5164         .get_msr             = emulator_get_msr,
5165         .check_pmc           = emulator_check_pmc,
5166         .read_pmc            = emulator_read_pmc,
5167         .halt                = emulator_halt,
5168         .wbinvd              = emulator_wbinvd,
5169         .fix_hypercall       = emulator_fix_hypercall,
5170         .get_fpu             = emulator_get_fpu,
5171         .put_fpu             = emulator_put_fpu,
5172         .intercept           = emulator_intercept,
5173         .get_cpuid           = emulator_get_cpuid,
5174         .set_nmi_mask        = emulator_set_nmi_mask,
5175 };
5176
5177 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5178 {
5179         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5180         /*
5181          * an sti; sti; sequence only disable interrupts for the first
5182          * instruction. So, if the last instruction, be it emulated or
5183          * not, left the system with the INT_STI flag enabled, it
5184          * means that the last instruction is an sti. We should not
5185          * leave the flag on in this case. The same goes for mov ss
5186          */
5187         if (int_shadow & mask)
5188                 mask = 0;
5189         if (unlikely(int_shadow || mask)) {
5190                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5191                 if (!mask)
5192                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5193         }
5194 }
5195
5196 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5197 {
5198         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5199         if (ctxt->exception.vector == PF_VECTOR)
5200                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5201
5202         if (ctxt->exception.error_code_valid)
5203                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5204                                       ctxt->exception.error_code);
5205         else
5206                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5207         return false;
5208 }
5209
5210 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5211 {
5212         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5213         int cs_db, cs_l;
5214
5215         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5216
5217         ctxt->eflags = kvm_get_rflags(vcpu);
5218         ctxt->eip = kvm_rip_read(vcpu);
5219         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5220                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5221                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5222                      cs_db                              ? X86EMUL_MODE_PROT32 :
5223                                                           X86EMUL_MODE_PROT16;
5224         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5225         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5226         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5227         ctxt->emul_flags = vcpu->arch.hflags;
5228
5229         init_decode_cache(ctxt);
5230         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5231 }
5232
5233 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5234 {
5235         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5236         int ret;
5237
5238         init_emulate_ctxt(vcpu);
5239
5240         ctxt->op_bytes = 2;
5241         ctxt->ad_bytes = 2;
5242         ctxt->_eip = ctxt->eip + inc_eip;
5243         ret = emulate_int_real(ctxt, irq);
5244
5245         if (ret != X86EMUL_CONTINUE)
5246                 return EMULATE_FAIL;
5247
5248         ctxt->eip = ctxt->_eip;
5249         kvm_rip_write(vcpu, ctxt->eip);
5250         kvm_set_rflags(vcpu, ctxt->eflags);
5251
5252         if (irq == NMI_VECTOR)
5253                 vcpu->arch.nmi_pending = 0;
5254         else
5255                 vcpu->arch.interrupt.pending = false;
5256
5257         return EMULATE_DONE;
5258 }
5259 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5260
5261 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5262 {
5263         int r = EMULATE_DONE;
5264
5265         ++vcpu->stat.insn_emulation_fail;
5266         trace_kvm_emulate_insn_failed(vcpu);
5267         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5268                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5269                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5270                 vcpu->run->internal.ndata = 0;
5271                 r = EMULATE_FAIL;
5272         }
5273         kvm_queue_exception(vcpu, UD_VECTOR);
5274
5275         return r;
5276 }
5277
5278 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5279                                   bool write_fault_to_shadow_pgtable,
5280                                   int emulation_type)
5281 {
5282         gpa_t gpa = cr2;
5283         kvm_pfn_t pfn;
5284
5285         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5286                 return false;
5287
5288         if (!vcpu->arch.mmu.direct_map) {
5289                 /*
5290                  * Write permission should be allowed since only
5291                  * write access need to be emulated.
5292                  */
5293                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5294
5295                 /*
5296                  * If the mapping is invalid in guest, let cpu retry
5297                  * it to generate fault.
5298                  */
5299                 if (gpa == UNMAPPED_GVA)
5300                         return true;
5301         }
5302
5303         /*
5304          * Do not retry the unhandleable instruction if it faults on the
5305          * readonly host memory, otherwise it will goto a infinite loop:
5306          * retry instruction -> write #PF -> emulation fail -> retry
5307          * instruction -> ...
5308          */
5309         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5310
5311         /*
5312          * If the instruction failed on the error pfn, it can not be fixed,
5313          * report the error to userspace.
5314          */
5315         if (is_error_noslot_pfn(pfn))
5316                 return false;
5317
5318         kvm_release_pfn_clean(pfn);
5319
5320         /* The instructions are well-emulated on direct mmu. */
5321         if (vcpu->arch.mmu.direct_map) {
5322                 unsigned int indirect_shadow_pages;
5323
5324                 spin_lock(&vcpu->kvm->mmu_lock);
5325                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5326                 spin_unlock(&vcpu->kvm->mmu_lock);
5327
5328                 if (indirect_shadow_pages)
5329                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5330
5331                 return true;
5332         }
5333
5334         /*
5335          * if emulation was due to access to shadowed page table
5336          * and it failed try to unshadow page and re-enter the
5337          * guest to let CPU execute the instruction.
5338          */
5339         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5340
5341         /*
5342          * If the access faults on its page table, it can not
5343          * be fixed by unprotecting shadow page and it should
5344          * be reported to userspace.
5345          */
5346         return !write_fault_to_shadow_pgtable;
5347 }
5348
5349 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5350                               unsigned long cr2,  int emulation_type)
5351 {
5352         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5353         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5354
5355         last_retry_eip = vcpu->arch.last_retry_eip;
5356         last_retry_addr = vcpu->arch.last_retry_addr;
5357
5358         /*
5359          * If the emulation is caused by #PF and it is non-page_table
5360          * writing instruction, it means the VM-EXIT is caused by shadow
5361          * page protected, we can zap the shadow page and retry this
5362          * instruction directly.
5363          *
5364          * Note: if the guest uses a non-page-table modifying instruction
5365          * on the PDE that points to the instruction, then we will unmap
5366          * the instruction and go to an infinite loop. So, we cache the
5367          * last retried eip and the last fault address, if we meet the eip
5368          * and the address again, we can break out of the potential infinite
5369          * loop.
5370          */
5371         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5372
5373         if (!(emulation_type & EMULTYPE_RETRY))
5374                 return false;
5375
5376         if (x86_page_table_writing_insn(ctxt))
5377                 return false;
5378
5379         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5380                 return false;
5381
5382         vcpu->arch.last_retry_eip = ctxt->eip;
5383         vcpu->arch.last_retry_addr = cr2;
5384
5385         if (!vcpu->arch.mmu.direct_map)
5386                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5387
5388         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5389
5390         return true;
5391 }
5392
5393 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5394 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5395
5396 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5397 {
5398         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5399                 /* This is a good place to trace that we are exiting SMM.  */
5400                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5401
5402                 /* Process a latched INIT or SMI, if any.  */
5403                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5404         }
5405
5406         kvm_mmu_reset_context(vcpu);
5407 }
5408
5409 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5410 {
5411         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5412
5413         vcpu->arch.hflags = emul_flags;
5414
5415         if (changed & HF_SMM_MASK)
5416                 kvm_smm_changed(vcpu);
5417 }
5418
5419 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5420                                 unsigned long *db)
5421 {
5422         u32 dr6 = 0;
5423         int i;
5424         u32 enable, rwlen;
5425
5426         enable = dr7;
5427         rwlen = dr7 >> 16;
5428         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5429                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5430                         dr6 |= (1 << i);
5431         return dr6;
5432 }
5433
5434 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5435 {
5436         struct kvm_run *kvm_run = vcpu->run;
5437
5438         /*
5439          * rflags is the old, "raw" value of the flags.  The new value has
5440          * not been saved yet.
5441          *
5442          * This is correct even for TF set by the guest, because "the
5443          * processor will not generate this exception after the instruction
5444          * that sets the TF flag".
5445          */
5446         if (unlikely(rflags & X86_EFLAGS_TF)) {
5447                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5448                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5449                                                   DR6_RTM;
5450                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5451                         kvm_run->debug.arch.exception = DB_VECTOR;
5452                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5453                         *r = EMULATE_USER_EXIT;
5454                 } else {
5455                         /*
5456                          * "Certain debug exceptions may clear bit 0-3.  The
5457                          * remaining contents of the DR6 register are never
5458                          * cleared by the processor".
5459                          */
5460                         vcpu->arch.dr6 &= ~15;
5461                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5462                         kvm_queue_exception(vcpu, DB_VECTOR);
5463                 }
5464         }
5465 }
5466
5467 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5468 {
5469         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5470         int r = EMULATE_DONE;
5471
5472         kvm_x86_ops->skip_emulated_instruction(vcpu);
5473         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5474         return r == EMULATE_DONE;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5477
5478 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5479 {
5480         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5481             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5482                 struct kvm_run *kvm_run = vcpu->run;
5483                 unsigned long eip = kvm_get_linear_rip(vcpu);
5484                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5485                                            vcpu->arch.guest_debug_dr7,
5486                                            vcpu->arch.eff_db);
5487
5488                 if (dr6 != 0) {
5489                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5490                         kvm_run->debug.arch.pc = eip;
5491                         kvm_run->debug.arch.exception = DB_VECTOR;
5492                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5493                         *r = EMULATE_USER_EXIT;
5494                         return true;
5495                 }
5496         }
5497
5498         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5499             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5500                 unsigned long eip = kvm_get_linear_rip(vcpu);
5501                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5502                                            vcpu->arch.dr7,
5503                                            vcpu->arch.db);
5504
5505                 if (dr6 != 0) {
5506                         vcpu->arch.dr6 &= ~15;
5507                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5508                         kvm_queue_exception(vcpu, DB_VECTOR);
5509                         *r = EMULATE_DONE;
5510                         return true;
5511                 }
5512         }
5513
5514         return false;
5515 }
5516
5517 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5518                             unsigned long cr2,
5519                             int emulation_type,
5520                             void *insn,
5521                             int insn_len)
5522 {
5523         int r;
5524         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5525         bool writeback = true;
5526         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5527
5528         /*
5529          * Clear write_fault_to_shadow_pgtable here to ensure it is
5530          * never reused.
5531          */
5532         vcpu->arch.write_fault_to_shadow_pgtable = false;
5533         kvm_clear_exception_queue(vcpu);
5534
5535         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5536                 init_emulate_ctxt(vcpu);
5537
5538                 /*
5539                  * We will reenter on the same instruction since
5540                  * we do not set complete_userspace_io.  This does not
5541                  * handle watchpoints yet, those would be handled in
5542                  * the emulate_ops.
5543                  */
5544                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5545                         return r;
5546
5547                 ctxt->interruptibility = 0;
5548                 ctxt->have_exception = false;
5549                 ctxt->exception.vector = -1;
5550                 ctxt->perm_ok = false;
5551
5552                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5553
5554                 r = x86_decode_insn(ctxt, insn, insn_len);
5555
5556                 trace_kvm_emulate_insn_start(vcpu);
5557                 ++vcpu->stat.insn_emulation;
5558                 if (r != EMULATION_OK)  {
5559                         if (emulation_type & EMULTYPE_TRAP_UD)
5560                                 return EMULATE_FAIL;
5561                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5562                                                 emulation_type))
5563                                 return EMULATE_DONE;
5564                         if (emulation_type & EMULTYPE_SKIP)
5565                                 return EMULATE_FAIL;
5566                         return handle_emulation_failure(vcpu);
5567                 }
5568         }
5569
5570         if (emulation_type & EMULTYPE_SKIP) {
5571                 kvm_rip_write(vcpu, ctxt->_eip);
5572                 if (ctxt->eflags & X86_EFLAGS_RF)
5573                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5574                 return EMULATE_DONE;
5575         }
5576
5577         if (retry_instruction(ctxt, cr2, emulation_type))
5578                 return EMULATE_DONE;
5579
5580         /* this is needed for vmware backdoor interface to work since it
5581            changes registers values  during IO operation */
5582         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5583                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5584                 emulator_invalidate_register_cache(ctxt);
5585         }
5586
5587 restart:
5588         r = x86_emulate_insn(ctxt);
5589
5590         if (r == EMULATION_INTERCEPTED)
5591                 return EMULATE_DONE;
5592
5593         if (r == EMULATION_FAILED) {
5594                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5595                                         emulation_type))
5596                         return EMULATE_DONE;
5597
5598                 return handle_emulation_failure(vcpu);
5599         }
5600
5601         if (ctxt->have_exception) {
5602                 r = EMULATE_DONE;
5603                 if (inject_emulated_exception(vcpu))
5604                         return r;
5605         } else if (vcpu->arch.pio.count) {
5606                 if (!vcpu->arch.pio.in) {
5607                         /* FIXME: return into emulator if single-stepping.  */
5608                         vcpu->arch.pio.count = 0;
5609                 } else {
5610                         writeback = false;
5611                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5612                 }
5613                 r = EMULATE_USER_EXIT;
5614         } else if (vcpu->mmio_needed) {
5615                 if (!vcpu->mmio_is_write)
5616                         writeback = false;
5617                 r = EMULATE_USER_EXIT;
5618                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5619         } else if (r == EMULATION_RESTART)
5620                 goto restart;
5621         else
5622                 r = EMULATE_DONE;
5623
5624         if (writeback) {
5625                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5626                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5627                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5628                 if (vcpu->arch.hflags != ctxt->emul_flags)
5629                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5630                 kvm_rip_write(vcpu, ctxt->eip);
5631                 if (r == EMULATE_DONE)
5632                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5633                 if (!ctxt->have_exception ||
5634                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5635                         __kvm_set_rflags(vcpu, ctxt->eflags);
5636
5637                 /*
5638                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5639                  * do nothing, and it will be requested again as soon as
5640                  * the shadow expires.  But we still need to check here,
5641                  * because POPF has no interrupt shadow.
5642                  */
5643                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5644                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5645         } else
5646                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5647
5648         return r;
5649 }
5650 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5651
5652 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5653 {
5654         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5655         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5656                                             size, port, &val, 1);
5657         /* do not return to emulator after return from userspace */
5658         vcpu->arch.pio.count = 0;
5659         return ret;
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5662
5663 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5664 {
5665         unsigned long val;
5666
5667         /* We should only ever be called with arch.pio.count equal to 1 */
5668         BUG_ON(vcpu->arch.pio.count != 1);
5669
5670         /* For size less than 4 we merge, else we zero extend */
5671         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5672                                         : 0;
5673
5674         /*
5675          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5676          * the copy and tracing
5677          */
5678         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5679                                  vcpu->arch.pio.port, &val, 1);
5680         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5681
5682         return 1;
5683 }
5684
5685 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5686 {
5687         unsigned long val;
5688         int ret;
5689
5690         /* For size less than 4 we merge, else we zero extend */
5691         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5692
5693         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5694                                        &val, 1);
5695         if (ret) {
5696                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5697                 return ret;
5698         }
5699
5700         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5701
5702         return 0;
5703 }
5704 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5705
5706 static int kvmclock_cpu_down_prep(unsigned int cpu)
5707 {
5708         __this_cpu_write(cpu_tsc_khz, 0);
5709         return 0;
5710 }
5711
5712 static void tsc_khz_changed(void *data)
5713 {
5714         struct cpufreq_freqs *freq = data;
5715         unsigned long khz = 0;
5716
5717         if (data)
5718                 khz = freq->new;
5719         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5720                 khz = cpufreq_quick_get(raw_smp_processor_id());
5721         if (!khz)
5722                 khz = tsc_khz;
5723         __this_cpu_write(cpu_tsc_khz, khz);
5724 }
5725
5726 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5727                                      void *data)
5728 {
5729         struct cpufreq_freqs *freq = data;
5730         struct kvm *kvm;
5731         struct kvm_vcpu *vcpu;
5732         int i, send_ipi = 0;
5733
5734         /*
5735          * We allow guests to temporarily run on slowing clocks,
5736          * provided we notify them after, or to run on accelerating
5737          * clocks, provided we notify them before.  Thus time never
5738          * goes backwards.
5739          *
5740          * However, we have a problem.  We can't atomically update
5741          * the frequency of a given CPU from this function; it is
5742          * merely a notifier, which can be called from any CPU.
5743          * Changing the TSC frequency at arbitrary points in time
5744          * requires a recomputation of local variables related to
5745          * the TSC for each VCPU.  We must flag these local variables
5746          * to be updated and be sure the update takes place with the
5747          * new frequency before any guests proceed.
5748          *
5749          * Unfortunately, the combination of hotplug CPU and frequency
5750          * change creates an intractable locking scenario; the order
5751          * of when these callouts happen is undefined with respect to
5752          * CPU hotplug, and they can race with each other.  As such,
5753          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5754          * undefined; you can actually have a CPU frequency change take
5755          * place in between the computation of X and the setting of the
5756          * variable.  To protect against this problem, all updates of
5757          * the per_cpu tsc_khz variable are done in an interrupt
5758          * protected IPI, and all callers wishing to update the value
5759          * must wait for a synchronous IPI to complete (which is trivial
5760          * if the caller is on the CPU already).  This establishes the
5761          * necessary total order on variable updates.
5762          *
5763          * Note that because a guest time update may take place
5764          * anytime after the setting of the VCPU's request bit, the
5765          * correct TSC value must be set before the request.  However,
5766          * to ensure the update actually makes it to any guest which
5767          * starts running in hardware virtualization between the set
5768          * and the acquisition of the spinlock, we must also ping the
5769          * CPU after setting the request bit.
5770          *
5771          */
5772
5773         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5774                 return 0;
5775         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5776                 return 0;
5777
5778         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5779
5780         spin_lock(&kvm_lock);
5781         list_for_each_entry(kvm, &vm_list, vm_list) {
5782                 kvm_for_each_vcpu(i, vcpu, kvm) {
5783                         if (vcpu->cpu != freq->cpu)
5784                                 continue;
5785                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5786                         if (vcpu->cpu != smp_processor_id())
5787                                 send_ipi = 1;
5788                 }
5789         }
5790         spin_unlock(&kvm_lock);
5791
5792         if (freq->old < freq->new && send_ipi) {
5793                 /*
5794                  * We upscale the frequency.  Must make the guest
5795                  * doesn't see old kvmclock values while running with
5796                  * the new frequency, otherwise we risk the guest sees
5797                  * time go backwards.
5798                  *
5799                  * In case we update the frequency for another cpu
5800                  * (which might be in guest context) send an interrupt
5801                  * to kick the cpu out of guest context.  Next time
5802                  * guest context is entered kvmclock will be updated,
5803                  * so the guest will not see stale values.
5804                  */
5805                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5806         }
5807         return 0;
5808 }
5809
5810 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5811         .notifier_call  = kvmclock_cpufreq_notifier
5812 };
5813
5814 static int kvmclock_cpu_online(unsigned int cpu)
5815 {
5816         tsc_khz_changed(NULL);
5817         return 0;
5818 }
5819
5820 static void kvm_timer_init(void)
5821 {
5822         max_tsc_khz = tsc_khz;
5823
5824         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5825 #ifdef CONFIG_CPU_FREQ
5826                 struct cpufreq_policy policy;
5827                 int cpu;
5828
5829                 memset(&policy, 0, sizeof(policy));
5830                 cpu = get_cpu();
5831                 cpufreq_get_policy(&policy, cpu);
5832                 if (policy.cpuinfo.max_freq)
5833                         max_tsc_khz = policy.cpuinfo.max_freq;
5834                 put_cpu();
5835 #endif
5836                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5837                                           CPUFREQ_TRANSITION_NOTIFIER);
5838         }
5839         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5840
5841         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5842                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5843 }
5844
5845 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5846
5847 int kvm_is_in_guest(void)
5848 {
5849         return __this_cpu_read(current_vcpu) != NULL;
5850 }
5851
5852 static int kvm_is_user_mode(void)
5853 {
5854         int user_mode = 3;
5855
5856         if (__this_cpu_read(current_vcpu))
5857                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5858
5859         return user_mode != 0;
5860 }
5861
5862 static unsigned long kvm_get_guest_ip(void)
5863 {
5864         unsigned long ip = 0;
5865
5866         if (__this_cpu_read(current_vcpu))
5867                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5868
5869         return ip;
5870 }
5871
5872 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5873         .is_in_guest            = kvm_is_in_guest,
5874         .is_user_mode           = kvm_is_user_mode,
5875         .get_guest_ip           = kvm_get_guest_ip,
5876 };
5877
5878 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5879 {
5880         __this_cpu_write(current_vcpu, vcpu);
5881 }
5882 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5883
5884 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5885 {
5886         __this_cpu_write(current_vcpu, NULL);
5887 }
5888 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5889
5890 static void kvm_set_mmio_spte_mask(void)
5891 {
5892         u64 mask;
5893         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5894
5895         /*
5896          * Set the reserved bits and the present bit of an paging-structure
5897          * entry to generate page fault with PFER.RSV = 1.
5898          */
5899          /* Mask the reserved physical address bits. */
5900         mask = rsvd_bits(maxphyaddr, 51);
5901
5902         /* Bit 62 is always reserved for 32bit host. */
5903         mask |= 0x3ull << 62;
5904
5905         /* Set the present bit. */
5906         mask |= 1ull;
5907
5908 #ifdef CONFIG_X86_64
5909         /*
5910          * If reserved bit is not supported, clear the present bit to disable
5911          * mmio page fault.
5912          */
5913         if (maxphyaddr == 52)
5914                 mask &= ~1ull;
5915 #endif
5916
5917         kvm_mmu_set_mmio_spte_mask(mask);
5918 }
5919
5920 #ifdef CONFIG_X86_64
5921 static void pvclock_gtod_update_fn(struct work_struct *work)
5922 {
5923         struct kvm *kvm;
5924
5925         struct kvm_vcpu *vcpu;
5926         int i;
5927
5928         spin_lock(&kvm_lock);
5929         list_for_each_entry(kvm, &vm_list, vm_list)
5930                 kvm_for_each_vcpu(i, vcpu, kvm)
5931                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5932         atomic_set(&kvm_guest_has_master_clock, 0);
5933         spin_unlock(&kvm_lock);
5934 }
5935
5936 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5937
5938 /*
5939  * Notification about pvclock gtod data update.
5940  */
5941 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5942                                void *priv)
5943 {
5944         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5945         struct timekeeper *tk = priv;
5946
5947         update_pvclock_gtod(tk);
5948
5949         /* disable master clock if host does not trust, or does not
5950          * use, TSC clocksource
5951          */
5952         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5953             atomic_read(&kvm_guest_has_master_clock) != 0)
5954                 queue_work(system_long_wq, &pvclock_gtod_work);
5955
5956         return 0;
5957 }
5958
5959 static struct notifier_block pvclock_gtod_notifier = {
5960         .notifier_call = pvclock_gtod_notify,
5961 };
5962 #endif
5963
5964 int kvm_arch_init(void *opaque)
5965 {
5966         int r;
5967         struct kvm_x86_ops *ops = opaque;
5968
5969         if (kvm_x86_ops) {
5970                 printk(KERN_ERR "kvm: already loaded the other module\n");
5971                 r = -EEXIST;
5972                 goto out;
5973         }
5974
5975         if (!ops->cpu_has_kvm_support()) {
5976                 printk(KERN_ERR "kvm: no hardware support\n");
5977                 r = -EOPNOTSUPP;
5978                 goto out;
5979         }
5980         if (ops->disabled_by_bios()) {
5981                 printk(KERN_ERR "kvm: disabled by bios\n");
5982                 r = -EOPNOTSUPP;
5983                 goto out;
5984         }
5985
5986         r = -ENOMEM;
5987         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5988         if (!shared_msrs) {
5989                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5990                 goto out;
5991         }
5992
5993         r = kvm_mmu_module_init();
5994         if (r)
5995                 goto out_free_percpu;
5996
5997         kvm_set_mmio_spte_mask();
5998
5999         kvm_x86_ops = ops;
6000
6001         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6002                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6003                         PT_PRESENT_MASK);
6004         kvm_timer_init();
6005
6006         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6007
6008         if (boot_cpu_has(X86_FEATURE_XSAVE))
6009                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6010
6011         kvm_lapic_init();
6012 #ifdef CONFIG_X86_64
6013         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6014 #endif
6015
6016         return 0;
6017
6018 out_free_percpu:
6019         free_percpu(shared_msrs);
6020 out:
6021         return r;
6022 }
6023
6024 void kvm_arch_exit(void)
6025 {
6026         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6027
6028         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6029                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6030                                             CPUFREQ_TRANSITION_NOTIFIER);
6031         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6032 #ifdef CONFIG_X86_64
6033         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6034 #endif
6035         kvm_x86_ops = NULL;
6036         kvm_mmu_module_exit();
6037         free_percpu(shared_msrs);
6038 }
6039
6040 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6041 {
6042         ++vcpu->stat.halt_exits;
6043         if (lapic_in_kernel(vcpu)) {
6044                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6045                 return 1;
6046         } else {
6047                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6048                 return 0;
6049         }
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6052
6053 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6054 {
6055         int ret = kvm_skip_emulated_instruction(vcpu);
6056         /*
6057          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6058          * KVM_EXIT_DEBUG here.
6059          */
6060         return kvm_vcpu_halt(vcpu) && ret;
6061 }
6062 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6063
6064 /*
6065  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6066  *
6067  * @apicid - apicid of vcpu to be kicked.
6068  */
6069 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6070 {
6071         struct kvm_lapic_irq lapic_irq;
6072
6073         lapic_irq.shorthand = 0;
6074         lapic_irq.dest_mode = 0;
6075         lapic_irq.dest_id = apicid;
6076         lapic_irq.msi_redir_hint = false;
6077
6078         lapic_irq.delivery_mode = APIC_DM_REMRD;
6079         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6080 }
6081
6082 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6083 {
6084         vcpu->arch.apicv_active = false;
6085         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6086 }
6087
6088 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6089 {
6090         unsigned long nr, a0, a1, a2, a3, ret;
6091         int op_64_bit, r;
6092
6093         r = kvm_skip_emulated_instruction(vcpu);
6094
6095         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6096                 return kvm_hv_hypercall(vcpu);
6097
6098         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103
6104         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6105
6106         op_64_bit = is_64_bit_mode(vcpu);
6107         if (!op_64_bit) {
6108                 nr &= 0xFFFFFFFF;
6109                 a0 &= 0xFFFFFFFF;
6110                 a1 &= 0xFFFFFFFF;
6111                 a2 &= 0xFFFFFFFF;
6112                 a3 &= 0xFFFFFFFF;
6113         }
6114
6115         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6116                 ret = -KVM_EPERM;
6117                 goto out;
6118         }
6119
6120         switch (nr) {
6121         case KVM_HC_VAPIC_POLL_IRQ:
6122                 ret = 0;
6123                 break;
6124         case KVM_HC_KICK_CPU:
6125                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6126                 ret = 0;
6127                 break;
6128         default:
6129                 ret = -KVM_ENOSYS;
6130                 break;
6131         }
6132 out:
6133         if (!op_64_bit)
6134                 ret = (u32)ret;
6135         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6136         ++vcpu->stat.hypercalls;
6137         return r;
6138 }
6139 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6140
6141 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6142 {
6143         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6144         char instruction[3];
6145         unsigned long rip = kvm_rip_read(vcpu);
6146
6147         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6148
6149         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6150 }
6151
6152 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6153 {
6154         return vcpu->run->request_interrupt_window &&
6155                 likely(!pic_in_kernel(vcpu->kvm));
6156 }
6157
6158 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6159 {
6160         struct kvm_run *kvm_run = vcpu->run;
6161
6162         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6163         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6164         kvm_run->cr8 = kvm_get_cr8(vcpu);
6165         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6166         kvm_run->ready_for_interrupt_injection =
6167                 pic_in_kernel(vcpu->kvm) ||
6168                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6169 }
6170
6171 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6172 {
6173         int max_irr, tpr;
6174
6175         if (!kvm_x86_ops->update_cr8_intercept)
6176                 return;
6177
6178         if (!lapic_in_kernel(vcpu))
6179                 return;
6180
6181         if (vcpu->arch.apicv_active)
6182                 return;
6183
6184         if (!vcpu->arch.apic->vapic_addr)
6185                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6186         else
6187                 max_irr = -1;
6188
6189         if (max_irr != -1)
6190                 max_irr >>= 4;
6191
6192         tpr = kvm_lapic_get_cr8(vcpu);
6193
6194         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6195 }
6196
6197 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6198 {
6199         int r;
6200
6201         /* try to reinject previous events if any */
6202         if (vcpu->arch.exception.pending) {
6203                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6204                                         vcpu->arch.exception.has_error_code,
6205                                         vcpu->arch.exception.error_code);
6206
6207                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6208                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6209                                              X86_EFLAGS_RF);
6210
6211                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6212                     (vcpu->arch.dr7 & DR7_GD)) {
6213                         vcpu->arch.dr7 &= ~DR7_GD;
6214                         kvm_update_dr7(vcpu);
6215                 }
6216
6217                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6218                                           vcpu->arch.exception.has_error_code,
6219                                           vcpu->arch.exception.error_code,
6220                                           vcpu->arch.exception.reinject);
6221                 return 0;
6222         }
6223
6224         if (vcpu->arch.nmi_injected) {
6225                 kvm_x86_ops->set_nmi(vcpu);
6226                 return 0;
6227         }
6228
6229         if (vcpu->arch.interrupt.pending) {
6230                 kvm_x86_ops->set_irq(vcpu);
6231                 return 0;
6232         }
6233
6234         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6235                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6236                 if (r != 0)
6237                         return r;
6238         }
6239
6240         /* try to inject new event if pending */
6241         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6242                 vcpu->arch.smi_pending = false;
6243                 enter_smm(vcpu);
6244         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6245                 --vcpu->arch.nmi_pending;
6246                 vcpu->arch.nmi_injected = true;
6247                 kvm_x86_ops->set_nmi(vcpu);
6248         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6249                 /*
6250                  * Because interrupts can be injected asynchronously, we are
6251                  * calling check_nested_events again here to avoid a race condition.
6252                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6253                  * proposal and current concerns.  Perhaps we should be setting
6254                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6255                  */
6256                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6257                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6258                         if (r != 0)
6259                                 return r;
6260                 }
6261                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6262                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6263                                             false);
6264                         kvm_x86_ops->set_irq(vcpu);
6265                 }
6266         }
6267
6268         return 0;
6269 }
6270
6271 static void process_nmi(struct kvm_vcpu *vcpu)
6272 {
6273         unsigned limit = 2;
6274
6275         /*
6276          * x86 is limited to one NMI running, and one NMI pending after it.
6277          * If an NMI is already in progress, limit further NMIs to just one.
6278          * Otherwise, allow two (and we'll inject the first one immediately).
6279          */
6280         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6281                 limit = 1;
6282
6283         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6284         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6285         kvm_make_request(KVM_REQ_EVENT, vcpu);
6286 }
6287
6288 #define put_smstate(type, buf, offset, val)                       \
6289         *(type *)((buf) + (offset) - 0x7e00) = val
6290
6291 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6292 {
6293         u32 flags = 0;
6294         flags |= seg->g       << 23;
6295         flags |= seg->db      << 22;
6296         flags |= seg->l       << 21;
6297         flags |= seg->avl     << 20;
6298         flags |= seg->present << 15;
6299         flags |= seg->dpl     << 13;
6300         flags |= seg->s       << 12;
6301         flags |= seg->type    << 8;
6302         return flags;
6303 }
6304
6305 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6306 {
6307         struct kvm_segment seg;
6308         int offset;
6309
6310         kvm_get_segment(vcpu, &seg, n);
6311         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6312
6313         if (n < 3)
6314                 offset = 0x7f84 + n * 12;
6315         else
6316                 offset = 0x7f2c + (n - 3) * 12;
6317
6318         put_smstate(u32, buf, offset + 8, seg.base);
6319         put_smstate(u32, buf, offset + 4, seg.limit);
6320         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6321 }
6322
6323 #ifdef CONFIG_X86_64
6324 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6325 {
6326         struct kvm_segment seg;
6327         int offset;
6328         u16 flags;
6329
6330         kvm_get_segment(vcpu, &seg, n);
6331         offset = 0x7e00 + n * 16;
6332
6333         flags = enter_smm_get_segment_flags(&seg) >> 8;
6334         put_smstate(u16, buf, offset, seg.selector);
6335         put_smstate(u16, buf, offset + 2, flags);
6336         put_smstate(u32, buf, offset + 4, seg.limit);
6337         put_smstate(u64, buf, offset + 8, seg.base);
6338 }
6339 #endif
6340
6341 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6342 {
6343         struct desc_ptr dt;
6344         struct kvm_segment seg;
6345         unsigned long val;
6346         int i;
6347
6348         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6349         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6350         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6351         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6352
6353         for (i = 0; i < 8; i++)
6354                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6355
6356         kvm_get_dr(vcpu, 6, &val);
6357         put_smstate(u32, buf, 0x7fcc, (u32)val);
6358         kvm_get_dr(vcpu, 7, &val);
6359         put_smstate(u32, buf, 0x7fc8, (u32)val);
6360
6361         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6362         put_smstate(u32, buf, 0x7fc4, seg.selector);
6363         put_smstate(u32, buf, 0x7f64, seg.base);
6364         put_smstate(u32, buf, 0x7f60, seg.limit);
6365         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6366
6367         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6368         put_smstate(u32, buf, 0x7fc0, seg.selector);
6369         put_smstate(u32, buf, 0x7f80, seg.base);
6370         put_smstate(u32, buf, 0x7f7c, seg.limit);
6371         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6372
6373         kvm_x86_ops->get_gdt(vcpu, &dt);
6374         put_smstate(u32, buf, 0x7f74, dt.address);
6375         put_smstate(u32, buf, 0x7f70, dt.size);
6376
6377         kvm_x86_ops->get_idt(vcpu, &dt);
6378         put_smstate(u32, buf, 0x7f58, dt.address);
6379         put_smstate(u32, buf, 0x7f54, dt.size);
6380
6381         for (i = 0; i < 6; i++)
6382                 enter_smm_save_seg_32(vcpu, buf, i);
6383
6384         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6385
6386         /* revision id */
6387         put_smstate(u32, buf, 0x7efc, 0x00020000);
6388         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6389 }
6390
6391 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6392 {
6393 #ifdef CONFIG_X86_64
6394         struct desc_ptr dt;
6395         struct kvm_segment seg;
6396         unsigned long val;
6397         int i;
6398
6399         for (i = 0; i < 16; i++)
6400                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6401
6402         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6403         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6404
6405         kvm_get_dr(vcpu, 6, &val);
6406         put_smstate(u64, buf, 0x7f68, val);
6407         kvm_get_dr(vcpu, 7, &val);
6408         put_smstate(u64, buf, 0x7f60, val);
6409
6410         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6411         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6412         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6413
6414         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6415
6416         /* revision id */
6417         put_smstate(u32, buf, 0x7efc, 0x00020064);
6418
6419         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6420
6421         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6422         put_smstate(u16, buf, 0x7e90, seg.selector);
6423         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6424         put_smstate(u32, buf, 0x7e94, seg.limit);
6425         put_smstate(u64, buf, 0x7e98, seg.base);
6426
6427         kvm_x86_ops->get_idt(vcpu, &dt);
6428         put_smstate(u32, buf, 0x7e84, dt.size);
6429         put_smstate(u64, buf, 0x7e88, dt.address);
6430
6431         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6432         put_smstate(u16, buf, 0x7e70, seg.selector);
6433         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6434         put_smstate(u32, buf, 0x7e74, seg.limit);
6435         put_smstate(u64, buf, 0x7e78, seg.base);
6436
6437         kvm_x86_ops->get_gdt(vcpu, &dt);
6438         put_smstate(u32, buf, 0x7e64, dt.size);
6439         put_smstate(u64, buf, 0x7e68, dt.address);
6440
6441         for (i = 0; i < 6; i++)
6442                 enter_smm_save_seg_64(vcpu, buf, i);
6443 #else
6444         WARN_ON_ONCE(1);
6445 #endif
6446 }
6447
6448 static void enter_smm(struct kvm_vcpu *vcpu)
6449 {
6450         struct kvm_segment cs, ds;
6451         struct desc_ptr dt;
6452         char buf[512];
6453         u32 cr0;
6454
6455         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6456         vcpu->arch.hflags |= HF_SMM_MASK;
6457         memset(buf, 0, 512);
6458         if (guest_cpuid_has_longmode(vcpu))
6459                 enter_smm_save_state_64(vcpu, buf);
6460         else
6461                 enter_smm_save_state_32(vcpu, buf);
6462
6463         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6464
6465         if (kvm_x86_ops->get_nmi_mask(vcpu))
6466                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6467         else
6468                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6469
6470         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6471         kvm_rip_write(vcpu, 0x8000);
6472
6473         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6474         kvm_x86_ops->set_cr0(vcpu, cr0);
6475         vcpu->arch.cr0 = cr0;
6476
6477         kvm_x86_ops->set_cr4(vcpu, 0);
6478
6479         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6480         dt.address = dt.size = 0;
6481         kvm_x86_ops->set_idt(vcpu, &dt);
6482
6483         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6484
6485         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6486         cs.base = vcpu->arch.smbase;
6487
6488         ds.selector = 0;
6489         ds.base = 0;
6490
6491         cs.limit    = ds.limit = 0xffffffff;
6492         cs.type     = ds.type = 0x3;
6493         cs.dpl      = ds.dpl = 0;
6494         cs.db       = ds.db = 0;
6495         cs.s        = ds.s = 1;
6496         cs.l        = ds.l = 0;
6497         cs.g        = ds.g = 1;
6498         cs.avl      = ds.avl = 0;
6499         cs.present  = ds.present = 1;
6500         cs.unusable = ds.unusable = 0;
6501         cs.padding  = ds.padding = 0;
6502
6503         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6504         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6505         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6506         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6507         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6508         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6509
6510         if (guest_cpuid_has_longmode(vcpu))
6511                 kvm_x86_ops->set_efer(vcpu, 0);
6512
6513         kvm_update_cpuid(vcpu);
6514         kvm_mmu_reset_context(vcpu);
6515 }
6516
6517 static void process_smi(struct kvm_vcpu *vcpu)
6518 {
6519         vcpu->arch.smi_pending = true;
6520         kvm_make_request(KVM_REQ_EVENT, vcpu);
6521 }
6522
6523 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6524 {
6525         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6526 }
6527
6528 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6529 {
6530         u64 eoi_exit_bitmap[4];
6531
6532         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6533                 return;
6534
6535         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6536
6537         if (irqchip_split(vcpu->kvm))
6538                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6539         else {
6540                 if (vcpu->arch.apicv_active)
6541                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6542                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6543         }
6544         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6545                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6546         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6547 }
6548
6549 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6550 {
6551         ++vcpu->stat.tlb_flush;
6552         kvm_x86_ops->tlb_flush(vcpu);
6553 }
6554
6555 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6556 {
6557         struct page *page = NULL;
6558
6559         if (!lapic_in_kernel(vcpu))
6560                 return;
6561
6562         if (!kvm_x86_ops->set_apic_access_page_addr)
6563                 return;
6564
6565         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6566         if (is_error_page(page))
6567                 return;
6568         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6569
6570         /*
6571          * Do not pin apic access page in memory, the MMU notifier
6572          * will call us again if it is migrated or swapped out.
6573          */
6574         put_page(page);
6575 }
6576 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6577
6578 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6579                                            unsigned long address)
6580 {
6581         /*
6582          * The physical address of apic access page is stored in the VMCS.
6583          * Update it when it becomes invalid.
6584          */
6585         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6586                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6587 }
6588
6589 /*
6590  * Returns 1 to let vcpu_run() continue the guest execution loop without
6591  * exiting to the userspace.  Otherwise, the value will be returned to the
6592  * userspace.
6593  */
6594 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6595 {
6596         int r;
6597         bool req_int_win =
6598                 dm_request_for_irq_injection(vcpu) &&
6599                 kvm_cpu_accept_dm_intr(vcpu);
6600
6601         bool req_immediate_exit = false;
6602
6603         if (vcpu->requests) {
6604                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6605                         kvm_mmu_unload(vcpu);
6606                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6607                         __kvm_migrate_timers(vcpu);
6608                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6609                         kvm_gen_update_masterclock(vcpu->kvm);
6610                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6611                         kvm_gen_kvmclock_update(vcpu);
6612                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6613                         r = kvm_guest_time_update(vcpu);
6614                         if (unlikely(r))
6615                                 goto out;
6616                 }
6617                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6618                         kvm_mmu_sync_roots(vcpu);
6619                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6620                         kvm_vcpu_flush_tlb(vcpu);
6621                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6622                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6623                         r = 0;
6624                         goto out;
6625                 }
6626                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6627                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6628                         r = 0;
6629                         goto out;
6630                 }
6631                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6632                         vcpu->fpu_active = 0;
6633                         kvm_x86_ops->fpu_deactivate(vcpu);
6634                 }
6635                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6636                         /* Page is swapped out. Do synthetic halt */
6637                         vcpu->arch.apf.halted = true;
6638                         r = 1;
6639                         goto out;
6640                 }
6641                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6642                         record_steal_time(vcpu);
6643                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6644                         process_smi(vcpu);
6645                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6646                         process_nmi(vcpu);
6647                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6648                         kvm_pmu_handle_event(vcpu);
6649                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6650                         kvm_pmu_deliver_pmi(vcpu);
6651                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6652                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6653                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6654                                      vcpu->arch.ioapic_handled_vectors)) {
6655                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6656                                 vcpu->run->eoi.vector =
6657                                                 vcpu->arch.pending_ioapic_eoi;
6658                                 r = 0;
6659                                 goto out;
6660                         }
6661                 }
6662                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6663                         vcpu_scan_ioapic(vcpu);
6664                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6665                         kvm_vcpu_reload_apic_access_page(vcpu);
6666                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6667                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6668                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6669                         r = 0;
6670                         goto out;
6671                 }
6672                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6673                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6674                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6675                         r = 0;
6676                         goto out;
6677                 }
6678                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6679                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6680                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6681                         r = 0;
6682                         goto out;
6683                 }
6684
6685                 /*
6686                  * KVM_REQ_HV_STIMER has to be processed after
6687                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6688                  * depend on the guest clock being up-to-date
6689                  */
6690                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6691                         kvm_hv_process_stimers(vcpu);
6692         }
6693
6694         /*
6695          * KVM_REQ_EVENT is not set when posted interrupts are set by
6696          * VT-d hardware, so we have to update RVI unconditionally.
6697          */
6698         if (kvm_lapic_enabled(vcpu)) {
6699                 /*
6700                  * Update architecture specific hints for APIC
6701                  * virtual interrupt delivery.
6702                  */
6703                 if (vcpu->arch.apicv_active)
6704                         kvm_x86_ops->hwapic_irr_update(vcpu,
6705                                 kvm_lapic_find_highest_irr(vcpu));
6706         }
6707
6708         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6709                 kvm_apic_accept_events(vcpu);
6710                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6711                         r = 1;
6712                         goto out;
6713                 }
6714
6715                 if (inject_pending_event(vcpu, req_int_win) != 0)
6716                         req_immediate_exit = true;
6717                 else {
6718                         /* Enable NMI/IRQ window open exits if needed.
6719                          *
6720                          * SMIs have two cases: 1) they can be nested, and
6721                          * then there is nothing to do here because RSM will
6722                          * cause a vmexit anyway; 2) or the SMI can be pending
6723                          * because inject_pending_event has completed the
6724                          * injection of an IRQ or NMI from the previous vmexit,
6725                          * and then we request an immediate exit to inject the SMI.
6726                          */
6727                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6728                                 req_immediate_exit = true;
6729                         if (vcpu->arch.nmi_pending)
6730                                 kvm_x86_ops->enable_nmi_window(vcpu);
6731                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6732                                 kvm_x86_ops->enable_irq_window(vcpu);
6733                 }
6734
6735                 if (kvm_lapic_enabled(vcpu)) {
6736                         update_cr8_intercept(vcpu);
6737                         kvm_lapic_sync_to_vapic(vcpu);
6738                 }
6739         }
6740
6741         r = kvm_mmu_reload(vcpu);
6742         if (unlikely(r)) {
6743                 goto cancel_injection;
6744         }
6745
6746         preempt_disable();
6747
6748         kvm_x86_ops->prepare_guest_switch(vcpu);
6749         if (vcpu->fpu_active)
6750                 kvm_load_guest_fpu(vcpu);
6751         vcpu->mode = IN_GUEST_MODE;
6752
6753         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6754
6755         /*
6756          * We should set ->mode before check ->requests,
6757          * Please see the comment in kvm_make_all_cpus_request.
6758          * This also orders the write to mode from any reads
6759          * to the page tables done while the VCPU is running.
6760          * Please see the comment in kvm_flush_remote_tlbs.
6761          */
6762         smp_mb__after_srcu_read_unlock();
6763
6764         local_irq_disable();
6765
6766         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6767             || need_resched() || signal_pending(current)) {
6768                 vcpu->mode = OUTSIDE_GUEST_MODE;
6769                 smp_wmb();
6770                 local_irq_enable();
6771                 preempt_enable();
6772                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6773                 r = 1;
6774                 goto cancel_injection;
6775         }
6776
6777         kvm_load_guest_xcr0(vcpu);
6778
6779         if (req_immediate_exit) {
6780                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6781                 smp_send_reschedule(vcpu->cpu);
6782         }
6783
6784         trace_kvm_entry(vcpu->vcpu_id);
6785         wait_lapic_expire(vcpu);
6786         guest_enter_irqoff();
6787
6788         if (unlikely(vcpu->arch.switch_db_regs)) {
6789                 set_debugreg(0, 7);
6790                 set_debugreg(vcpu->arch.eff_db[0], 0);
6791                 set_debugreg(vcpu->arch.eff_db[1], 1);
6792                 set_debugreg(vcpu->arch.eff_db[2], 2);
6793                 set_debugreg(vcpu->arch.eff_db[3], 3);
6794                 set_debugreg(vcpu->arch.dr6, 6);
6795                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6796         }
6797
6798         kvm_x86_ops->run(vcpu);
6799
6800         /*
6801          * Do this here before restoring debug registers on the host.  And
6802          * since we do this before handling the vmexit, a DR access vmexit
6803          * can (a) read the correct value of the debug registers, (b) set
6804          * KVM_DEBUGREG_WONT_EXIT again.
6805          */
6806         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6807                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6808                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6809                 kvm_update_dr0123(vcpu);
6810                 kvm_update_dr6(vcpu);
6811                 kvm_update_dr7(vcpu);
6812                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813         }
6814
6815         /*
6816          * If the guest has used debug registers, at least dr7
6817          * will be disabled while returning to the host.
6818          * If we don't have active breakpoints in the host, we don't
6819          * care about the messed up debug address registers. But if
6820          * we have some of them active, restore the old state.
6821          */
6822         if (hw_breakpoint_active())
6823                 hw_breakpoint_restore();
6824
6825         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6826
6827         vcpu->mode = OUTSIDE_GUEST_MODE;
6828         smp_wmb();
6829
6830         kvm_put_guest_xcr0(vcpu);
6831
6832         kvm_x86_ops->handle_external_intr(vcpu);
6833
6834         ++vcpu->stat.exits;
6835
6836         guest_exit_irqoff();
6837
6838         local_irq_enable();
6839         preempt_enable();
6840
6841         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6842
6843         /*
6844          * Profile KVM exit RIPs:
6845          */
6846         if (unlikely(prof_on == KVM_PROFILING)) {
6847                 unsigned long rip = kvm_rip_read(vcpu);
6848                 profile_hit(KVM_PROFILING, (void *)rip);
6849         }
6850
6851         if (unlikely(vcpu->arch.tsc_always_catchup))
6852                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6853
6854         if (vcpu->arch.apic_attention)
6855                 kvm_lapic_sync_from_vapic(vcpu);
6856
6857         r = kvm_x86_ops->handle_exit(vcpu);
6858         return r;
6859
6860 cancel_injection:
6861         kvm_x86_ops->cancel_injection(vcpu);
6862         if (unlikely(vcpu->arch.apic_attention))
6863                 kvm_lapic_sync_from_vapic(vcpu);
6864 out:
6865         return r;
6866 }
6867
6868 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6869 {
6870         if (!kvm_arch_vcpu_runnable(vcpu) &&
6871             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6872                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6873                 kvm_vcpu_block(vcpu);
6874                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6875
6876                 if (kvm_x86_ops->post_block)
6877                         kvm_x86_ops->post_block(vcpu);
6878
6879                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6880                         return 1;
6881         }
6882
6883         kvm_apic_accept_events(vcpu);
6884         switch(vcpu->arch.mp_state) {
6885         case KVM_MP_STATE_HALTED:
6886                 vcpu->arch.pv.pv_unhalted = false;
6887                 vcpu->arch.mp_state =
6888                         KVM_MP_STATE_RUNNABLE;
6889         case KVM_MP_STATE_RUNNABLE:
6890                 vcpu->arch.apf.halted = false;
6891                 break;
6892         case KVM_MP_STATE_INIT_RECEIVED:
6893                 break;
6894         default:
6895                 return -EINTR;
6896                 break;
6897         }
6898         return 1;
6899 }
6900
6901 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6902 {
6903         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6904                 !vcpu->arch.apf.halted);
6905 }
6906
6907 static int vcpu_run(struct kvm_vcpu *vcpu)
6908 {
6909         int r;
6910         struct kvm *kvm = vcpu->kvm;
6911
6912         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6913
6914         for (;;) {
6915                 if (kvm_vcpu_running(vcpu)) {
6916                         r = vcpu_enter_guest(vcpu);
6917                 } else {
6918                         r = vcpu_block(kvm, vcpu);
6919                 }
6920
6921                 if (r <= 0)
6922                         break;
6923
6924                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6925                 if (kvm_cpu_has_pending_timer(vcpu))
6926                         kvm_inject_pending_timer_irqs(vcpu);
6927
6928                 if (dm_request_for_irq_injection(vcpu) &&
6929                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6930                         r = 0;
6931                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6932                         ++vcpu->stat.request_irq_exits;
6933                         break;
6934                 }
6935
6936                 kvm_check_async_pf_completion(vcpu);
6937
6938                 if (signal_pending(current)) {
6939                         r = -EINTR;
6940                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6941                         ++vcpu->stat.signal_exits;
6942                         break;
6943                 }
6944                 if (need_resched()) {
6945                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6946                         cond_resched();
6947                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6948                 }
6949         }
6950
6951         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6952
6953         return r;
6954 }
6955
6956 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6957 {
6958         int r;
6959         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6960         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6961         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6962         if (r != EMULATE_DONE)
6963                 return 0;
6964         return 1;
6965 }
6966
6967 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6968 {
6969         BUG_ON(!vcpu->arch.pio.count);
6970
6971         return complete_emulated_io(vcpu);
6972 }
6973
6974 /*
6975  * Implements the following, as a state machine:
6976  *
6977  * read:
6978  *   for each fragment
6979  *     for each mmio piece in the fragment
6980  *       write gpa, len
6981  *       exit
6982  *       copy data
6983  *   execute insn
6984  *
6985  * write:
6986  *   for each fragment
6987  *     for each mmio piece in the fragment
6988  *       write gpa, len
6989  *       copy data
6990  *       exit
6991  */
6992 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6993 {
6994         struct kvm_run *run = vcpu->run;
6995         struct kvm_mmio_fragment *frag;
6996         unsigned len;
6997
6998         BUG_ON(!vcpu->mmio_needed);
6999
7000         /* Complete previous fragment */
7001         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7002         len = min(8u, frag->len);
7003         if (!vcpu->mmio_is_write)
7004                 memcpy(frag->data, run->mmio.data, len);
7005
7006         if (frag->len <= 8) {
7007                 /* Switch to the next fragment. */
7008                 frag++;
7009                 vcpu->mmio_cur_fragment++;
7010         } else {
7011                 /* Go forward to the next mmio piece. */
7012                 frag->data += len;
7013                 frag->gpa += len;
7014                 frag->len -= len;
7015         }
7016
7017         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7018                 vcpu->mmio_needed = 0;
7019
7020                 /* FIXME: return into emulator if single-stepping.  */
7021                 if (vcpu->mmio_is_write)
7022                         return 1;
7023                 vcpu->mmio_read_completed = 1;
7024                 return complete_emulated_io(vcpu);
7025         }
7026
7027         run->exit_reason = KVM_EXIT_MMIO;
7028         run->mmio.phys_addr = frag->gpa;
7029         if (vcpu->mmio_is_write)
7030                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7031         run->mmio.len = min(8u, frag->len);
7032         run->mmio.is_write = vcpu->mmio_is_write;
7033         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7034         return 0;
7035 }
7036
7037
7038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7039 {
7040         struct fpu *fpu = &current->thread.fpu;
7041         int r;
7042         sigset_t sigsaved;
7043
7044         fpu__activate_curr(fpu);
7045
7046         if (vcpu->sigset_active)
7047                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7048
7049         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7050                 kvm_vcpu_block(vcpu);
7051                 kvm_apic_accept_events(vcpu);
7052                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7053                 r = -EAGAIN;
7054                 goto out;
7055         }
7056
7057         /* re-sync apic's tpr */
7058         if (!lapic_in_kernel(vcpu)) {
7059                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7060                         r = -EINVAL;
7061                         goto out;
7062                 }
7063         }
7064
7065         if (unlikely(vcpu->arch.complete_userspace_io)) {
7066                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7067                 vcpu->arch.complete_userspace_io = NULL;
7068                 r = cui(vcpu);
7069                 if (r <= 0)
7070                         goto out;
7071         } else
7072                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7073
7074         r = vcpu_run(vcpu);
7075
7076 out:
7077         post_kvm_run_save(vcpu);
7078         if (vcpu->sigset_active)
7079                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7080
7081         return r;
7082 }
7083
7084 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7085 {
7086         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7087                 /*
7088                  * We are here if userspace calls get_regs() in the middle of
7089                  * instruction emulation. Registers state needs to be copied
7090                  * back from emulation context to vcpu. Userspace shouldn't do
7091                  * that usually, but some bad designed PV devices (vmware
7092                  * backdoor interface) need this to work
7093                  */
7094                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7095                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7096         }
7097         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7098         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7099         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7100         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7101         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7102         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7103         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7104         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7105 #ifdef CONFIG_X86_64
7106         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7107         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7108         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7109         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7110         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7111         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7112         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7113         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7114 #endif
7115
7116         regs->rip = kvm_rip_read(vcpu);
7117         regs->rflags = kvm_get_rflags(vcpu);
7118
7119         return 0;
7120 }
7121
7122 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7123 {
7124         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7125         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7126
7127         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7128         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7129         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7130         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7131         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7132         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7133         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7134         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7135 #ifdef CONFIG_X86_64
7136         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7137         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7138         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7139         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7140         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7141         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7142         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7143         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7144 #endif
7145
7146         kvm_rip_write(vcpu, regs->rip);
7147         kvm_set_rflags(vcpu, regs->rflags);
7148
7149         vcpu->arch.exception.pending = false;
7150
7151         kvm_make_request(KVM_REQ_EVENT, vcpu);
7152
7153         return 0;
7154 }
7155
7156 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7157 {
7158         struct kvm_segment cs;
7159
7160         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7161         *db = cs.db;
7162         *l = cs.l;
7163 }
7164 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7165
7166 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7167                                   struct kvm_sregs *sregs)
7168 {
7169         struct desc_ptr dt;
7170
7171         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7172         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7173         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7174         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7175         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7176         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7177
7178         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7179         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7180
7181         kvm_x86_ops->get_idt(vcpu, &dt);
7182         sregs->idt.limit = dt.size;
7183         sregs->idt.base = dt.address;
7184         kvm_x86_ops->get_gdt(vcpu, &dt);
7185         sregs->gdt.limit = dt.size;
7186         sregs->gdt.base = dt.address;
7187
7188         sregs->cr0 = kvm_read_cr0(vcpu);
7189         sregs->cr2 = vcpu->arch.cr2;
7190         sregs->cr3 = kvm_read_cr3(vcpu);
7191         sregs->cr4 = kvm_read_cr4(vcpu);
7192         sregs->cr8 = kvm_get_cr8(vcpu);
7193         sregs->efer = vcpu->arch.efer;
7194         sregs->apic_base = kvm_get_apic_base(vcpu);
7195
7196         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7197
7198         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7199                 set_bit(vcpu->arch.interrupt.nr,
7200                         (unsigned long *)sregs->interrupt_bitmap);
7201
7202         return 0;
7203 }
7204
7205 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7206                                     struct kvm_mp_state *mp_state)
7207 {
7208         kvm_apic_accept_events(vcpu);
7209         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7210                                         vcpu->arch.pv.pv_unhalted)
7211                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7212         else
7213                 mp_state->mp_state = vcpu->arch.mp_state;
7214
7215         return 0;
7216 }
7217
7218 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7219                                     struct kvm_mp_state *mp_state)
7220 {
7221         if (!lapic_in_kernel(vcpu) &&
7222             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7223                 return -EINVAL;
7224
7225         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7226                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7227                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7228         } else
7229                 vcpu->arch.mp_state = mp_state->mp_state;
7230         kvm_make_request(KVM_REQ_EVENT, vcpu);
7231         return 0;
7232 }
7233
7234 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7235                     int reason, bool has_error_code, u32 error_code)
7236 {
7237         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7238         int ret;
7239
7240         init_emulate_ctxt(vcpu);
7241
7242         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7243                                    has_error_code, error_code);
7244
7245         if (ret)
7246                 return EMULATE_FAIL;
7247
7248         kvm_rip_write(vcpu, ctxt->eip);
7249         kvm_set_rflags(vcpu, ctxt->eflags);
7250         kvm_make_request(KVM_REQ_EVENT, vcpu);
7251         return EMULATE_DONE;
7252 }
7253 EXPORT_SYMBOL_GPL(kvm_task_switch);
7254
7255 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7256                                   struct kvm_sregs *sregs)
7257 {
7258         struct msr_data apic_base_msr;
7259         int mmu_reset_needed = 0;
7260         int pending_vec, max_bits, idx;
7261         struct desc_ptr dt;
7262
7263         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7264                 return -EINVAL;
7265
7266         dt.size = sregs->idt.limit;
7267         dt.address = sregs->idt.base;
7268         kvm_x86_ops->set_idt(vcpu, &dt);
7269         dt.size = sregs->gdt.limit;
7270         dt.address = sregs->gdt.base;
7271         kvm_x86_ops->set_gdt(vcpu, &dt);
7272
7273         vcpu->arch.cr2 = sregs->cr2;
7274         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7275         vcpu->arch.cr3 = sregs->cr3;
7276         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7277
7278         kvm_set_cr8(vcpu, sregs->cr8);
7279
7280         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7281         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7282         apic_base_msr.data = sregs->apic_base;
7283         apic_base_msr.host_initiated = true;
7284         kvm_set_apic_base(vcpu, &apic_base_msr);
7285
7286         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7287         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7288         vcpu->arch.cr0 = sregs->cr0;
7289
7290         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7291         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7292         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7293                 kvm_update_cpuid(vcpu);
7294
7295         idx = srcu_read_lock(&vcpu->kvm->srcu);
7296         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7297                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7298                 mmu_reset_needed = 1;
7299         }
7300         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7301
7302         if (mmu_reset_needed)
7303                 kvm_mmu_reset_context(vcpu);
7304
7305         max_bits = KVM_NR_INTERRUPTS;
7306         pending_vec = find_first_bit(
7307                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7308         if (pending_vec < max_bits) {
7309                 kvm_queue_interrupt(vcpu, pending_vec, false);
7310                 pr_debug("Set back pending irq %d\n", pending_vec);
7311         }
7312
7313         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7314         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7315         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7316         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7317         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7318         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7319
7320         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7321         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7322
7323         update_cr8_intercept(vcpu);
7324
7325         /* Older userspace won't unhalt the vcpu on reset. */
7326         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7327             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7328             !is_protmode(vcpu))
7329                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7330
7331         kvm_make_request(KVM_REQ_EVENT, vcpu);
7332
7333         return 0;
7334 }
7335
7336 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7337                                         struct kvm_guest_debug *dbg)
7338 {
7339         unsigned long rflags;
7340         int i, r;
7341
7342         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7343                 r = -EBUSY;
7344                 if (vcpu->arch.exception.pending)
7345                         goto out;
7346                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7347                         kvm_queue_exception(vcpu, DB_VECTOR);
7348                 else
7349                         kvm_queue_exception(vcpu, BP_VECTOR);
7350         }
7351
7352         /*
7353          * Read rflags as long as potentially injected trace flags are still
7354          * filtered out.
7355          */
7356         rflags = kvm_get_rflags(vcpu);
7357
7358         vcpu->guest_debug = dbg->control;
7359         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7360                 vcpu->guest_debug = 0;
7361
7362         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7363                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7364                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7365                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7366         } else {
7367                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7368                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7369         }
7370         kvm_update_dr7(vcpu);
7371
7372         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7373                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7374                         get_segment_base(vcpu, VCPU_SREG_CS);
7375
7376         /*
7377          * Trigger an rflags update that will inject or remove the trace
7378          * flags.
7379          */
7380         kvm_set_rflags(vcpu, rflags);
7381
7382         kvm_x86_ops->update_bp_intercept(vcpu);
7383
7384         r = 0;
7385
7386 out:
7387
7388         return r;
7389 }
7390
7391 /*
7392  * Translate a guest virtual address to a guest physical address.
7393  */
7394 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7395                                     struct kvm_translation *tr)
7396 {
7397         unsigned long vaddr = tr->linear_address;
7398         gpa_t gpa;
7399         int idx;
7400
7401         idx = srcu_read_lock(&vcpu->kvm->srcu);
7402         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7403         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7404         tr->physical_address = gpa;
7405         tr->valid = gpa != UNMAPPED_GVA;
7406         tr->writeable = 1;
7407         tr->usermode = 0;
7408
7409         return 0;
7410 }
7411
7412 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7413 {
7414         struct fxregs_state *fxsave =
7415                         &vcpu->arch.guest_fpu.state.fxsave;
7416
7417         memcpy(fpu->fpr, fxsave->st_space, 128);
7418         fpu->fcw = fxsave->cwd;
7419         fpu->fsw = fxsave->swd;
7420         fpu->ftwx = fxsave->twd;
7421         fpu->last_opcode = fxsave->fop;
7422         fpu->last_ip = fxsave->rip;
7423         fpu->last_dp = fxsave->rdp;
7424         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7425
7426         return 0;
7427 }
7428
7429 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7430 {
7431         struct fxregs_state *fxsave =
7432                         &vcpu->arch.guest_fpu.state.fxsave;
7433
7434         memcpy(fxsave->st_space, fpu->fpr, 128);
7435         fxsave->cwd = fpu->fcw;
7436         fxsave->swd = fpu->fsw;
7437         fxsave->twd = fpu->ftwx;
7438         fxsave->fop = fpu->last_opcode;
7439         fxsave->rip = fpu->last_ip;
7440         fxsave->rdp = fpu->last_dp;
7441         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7442
7443         return 0;
7444 }
7445
7446 static void fx_init(struct kvm_vcpu *vcpu)
7447 {
7448         fpstate_init(&vcpu->arch.guest_fpu.state);
7449         if (boot_cpu_has(X86_FEATURE_XSAVES))
7450                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7451                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7452
7453         /*
7454          * Ensure guest xcr0 is valid for loading
7455          */
7456         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7457
7458         vcpu->arch.cr0 |= X86_CR0_ET;
7459 }
7460
7461 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7462 {
7463         if (vcpu->guest_fpu_loaded)
7464                 return;
7465
7466         /*
7467          * Restore all possible states in the guest,
7468          * and assume host would use all available bits.
7469          * Guest xcr0 would be loaded later.
7470          */
7471         vcpu->guest_fpu_loaded = 1;
7472         __kernel_fpu_begin();
7473         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7474         trace_kvm_fpu(1);
7475 }
7476
7477 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7478 {
7479         if (!vcpu->guest_fpu_loaded)
7480                 return;
7481
7482         vcpu->guest_fpu_loaded = 0;
7483         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7484         __kernel_fpu_end();
7485         ++vcpu->stat.fpu_reload;
7486         trace_kvm_fpu(0);
7487 }
7488
7489 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7490 {
7491         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7492
7493         kvmclock_reset(vcpu);
7494
7495         kvm_x86_ops->vcpu_free(vcpu);
7496         free_cpumask_var(wbinvd_dirty_mask);
7497 }
7498
7499 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7500                                                 unsigned int id)
7501 {
7502         struct kvm_vcpu *vcpu;
7503
7504         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7505                 printk_once(KERN_WARNING
7506                 "kvm: SMP vm created on host with unstable TSC; "
7507                 "guest TSC will not be reliable\n");
7508
7509         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7510
7511         return vcpu;
7512 }
7513
7514 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7515 {
7516         int r;
7517
7518         kvm_vcpu_mtrr_init(vcpu);
7519         r = vcpu_load(vcpu);
7520         if (r)
7521                 return r;
7522         kvm_vcpu_reset(vcpu, false);
7523         kvm_mmu_setup(vcpu);
7524         vcpu_put(vcpu);
7525         return r;
7526 }
7527
7528 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7529 {
7530         struct msr_data msr;
7531         struct kvm *kvm = vcpu->kvm;
7532
7533         if (vcpu_load(vcpu))
7534                 return;
7535         msr.data = 0x0;
7536         msr.index = MSR_IA32_TSC;
7537         msr.host_initiated = true;
7538         kvm_write_tsc(vcpu, &msr);
7539         vcpu_put(vcpu);
7540
7541         if (!kvmclock_periodic_sync)
7542                 return;
7543
7544         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7545                                         KVMCLOCK_SYNC_PERIOD);
7546 }
7547
7548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7549 {
7550         int r;
7551         vcpu->arch.apf.msr_val = 0;
7552
7553         r = vcpu_load(vcpu);
7554         BUG_ON(r);
7555         kvm_mmu_unload(vcpu);
7556         vcpu_put(vcpu);
7557
7558         kvm_x86_ops->vcpu_free(vcpu);
7559 }
7560
7561 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7562 {
7563         vcpu->arch.hflags = 0;
7564
7565         vcpu->arch.smi_pending = 0;
7566         atomic_set(&vcpu->arch.nmi_queued, 0);
7567         vcpu->arch.nmi_pending = 0;
7568         vcpu->arch.nmi_injected = false;
7569         kvm_clear_interrupt_queue(vcpu);
7570         kvm_clear_exception_queue(vcpu);
7571
7572         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7573         kvm_update_dr0123(vcpu);
7574         vcpu->arch.dr6 = DR6_INIT;
7575         kvm_update_dr6(vcpu);
7576         vcpu->arch.dr7 = DR7_FIXED_1;
7577         kvm_update_dr7(vcpu);
7578
7579         vcpu->arch.cr2 = 0;
7580
7581         kvm_make_request(KVM_REQ_EVENT, vcpu);
7582         vcpu->arch.apf.msr_val = 0;
7583         vcpu->arch.st.msr_val = 0;
7584
7585         kvmclock_reset(vcpu);
7586
7587         kvm_clear_async_pf_completion_queue(vcpu);
7588         kvm_async_pf_hash_reset(vcpu);
7589         vcpu->arch.apf.halted = false;
7590
7591         if (!init_event) {
7592                 kvm_pmu_reset(vcpu);
7593                 vcpu->arch.smbase = 0x30000;
7594         }
7595
7596         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7597         vcpu->arch.regs_avail = ~0;
7598         vcpu->arch.regs_dirty = ~0;
7599
7600         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7601 }
7602
7603 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7604 {
7605         struct kvm_segment cs;
7606
7607         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7608         cs.selector = vector << 8;
7609         cs.base = vector << 12;
7610         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7611         kvm_rip_write(vcpu, 0);
7612 }
7613
7614 int kvm_arch_hardware_enable(void)
7615 {
7616         struct kvm *kvm;
7617         struct kvm_vcpu *vcpu;
7618         int i;
7619         int ret;
7620         u64 local_tsc;
7621         u64 max_tsc = 0;
7622         bool stable, backwards_tsc = false;
7623
7624         kvm_shared_msr_cpu_online();
7625         ret = kvm_x86_ops->hardware_enable();
7626         if (ret != 0)
7627                 return ret;
7628
7629         local_tsc = rdtsc();
7630         stable = !check_tsc_unstable();
7631         list_for_each_entry(kvm, &vm_list, vm_list) {
7632                 kvm_for_each_vcpu(i, vcpu, kvm) {
7633                         if (!stable && vcpu->cpu == smp_processor_id())
7634                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7635                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7636                                 backwards_tsc = true;
7637                                 if (vcpu->arch.last_host_tsc > max_tsc)
7638                                         max_tsc = vcpu->arch.last_host_tsc;
7639                         }
7640                 }
7641         }
7642
7643         /*
7644          * Sometimes, even reliable TSCs go backwards.  This happens on
7645          * platforms that reset TSC during suspend or hibernate actions, but
7646          * maintain synchronization.  We must compensate.  Fortunately, we can
7647          * detect that condition here, which happens early in CPU bringup,
7648          * before any KVM threads can be running.  Unfortunately, we can't
7649          * bring the TSCs fully up to date with real time, as we aren't yet far
7650          * enough into CPU bringup that we know how much real time has actually
7651          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7652          * variables that haven't been updated yet.
7653          *
7654          * So we simply find the maximum observed TSC above, then record the
7655          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7656          * the adjustment will be applied.  Note that we accumulate
7657          * adjustments, in case multiple suspend cycles happen before some VCPU
7658          * gets a chance to run again.  In the event that no KVM threads get a
7659          * chance to run, we will miss the entire elapsed period, as we'll have
7660          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7661          * loose cycle time.  This isn't too big a deal, since the loss will be
7662          * uniform across all VCPUs (not to mention the scenario is extremely
7663          * unlikely). It is possible that a second hibernate recovery happens
7664          * much faster than a first, causing the observed TSC here to be
7665          * smaller; this would require additional padding adjustment, which is
7666          * why we set last_host_tsc to the local tsc observed here.
7667          *
7668          * N.B. - this code below runs only on platforms with reliable TSC,
7669          * as that is the only way backwards_tsc is set above.  Also note
7670          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7671          * have the same delta_cyc adjustment applied if backwards_tsc
7672          * is detected.  Note further, this adjustment is only done once,
7673          * as we reset last_host_tsc on all VCPUs to stop this from being
7674          * called multiple times (one for each physical CPU bringup).
7675          *
7676          * Platforms with unreliable TSCs don't have to deal with this, they
7677          * will be compensated by the logic in vcpu_load, which sets the TSC to
7678          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7679          * guarantee that they stay in perfect synchronization.
7680          */
7681         if (backwards_tsc) {
7682                 u64 delta_cyc = max_tsc - local_tsc;
7683                 backwards_tsc_observed = true;
7684                 list_for_each_entry(kvm, &vm_list, vm_list) {
7685                         kvm_for_each_vcpu(i, vcpu, kvm) {
7686                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7687                                 vcpu->arch.last_host_tsc = local_tsc;
7688                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7689                         }
7690
7691                         /*
7692                          * We have to disable TSC offset matching.. if you were
7693                          * booting a VM while issuing an S4 host suspend....
7694                          * you may have some problem.  Solving this issue is
7695                          * left as an exercise to the reader.
7696                          */
7697                         kvm->arch.last_tsc_nsec = 0;
7698                         kvm->arch.last_tsc_write = 0;
7699                 }
7700
7701         }
7702         return 0;
7703 }
7704
7705 void kvm_arch_hardware_disable(void)
7706 {
7707         kvm_x86_ops->hardware_disable();
7708         drop_user_return_notifiers();
7709 }
7710
7711 int kvm_arch_hardware_setup(void)
7712 {
7713         int r;
7714
7715         r = kvm_x86_ops->hardware_setup();
7716         if (r != 0)
7717                 return r;
7718
7719         if (kvm_has_tsc_control) {
7720                 /*
7721                  * Make sure the user can only configure tsc_khz values that
7722                  * fit into a signed integer.
7723                  * A min value is not calculated needed because it will always
7724                  * be 1 on all machines.
7725                  */
7726                 u64 max = min(0x7fffffffULL,
7727                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7728                 kvm_max_guest_tsc_khz = max;
7729
7730                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7731         }
7732
7733         kvm_init_msr_list();
7734         return 0;
7735 }
7736
7737 void kvm_arch_hardware_unsetup(void)
7738 {
7739         kvm_x86_ops->hardware_unsetup();
7740 }
7741
7742 void kvm_arch_check_processor_compat(void *rtn)
7743 {
7744         kvm_x86_ops->check_processor_compatibility(rtn);
7745 }
7746
7747 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7748 {
7749         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7750 }
7751 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7752
7753 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7754 {
7755         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7756 }
7757
7758 struct static_key kvm_no_apic_vcpu __read_mostly;
7759 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7760
7761 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7762 {
7763         struct page *page;
7764         struct kvm *kvm;
7765         int r;
7766
7767         BUG_ON(vcpu->kvm == NULL);
7768         kvm = vcpu->kvm;
7769
7770         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7771         vcpu->arch.pv.pv_unhalted = false;
7772         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7773         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7774                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7775         else
7776                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7777
7778         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7779         if (!page) {
7780                 r = -ENOMEM;
7781                 goto fail;
7782         }
7783         vcpu->arch.pio_data = page_address(page);
7784
7785         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7786
7787         r = kvm_mmu_create(vcpu);
7788         if (r < 0)
7789                 goto fail_free_pio_data;
7790
7791         if (irqchip_in_kernel(kvm)) {
7792                 r = kvm_create_lapic(vcpu);
7793                 if (r < 0)
7794                         goto fail_mmu_destroy;
7795         } else
7796                 static_key_slow_inc(&kvm_no_apic_vcpu);
7797
7798         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7799                                        GFP_KERNEL);
7800         if (!vcpu->arch.mce_banks) {
7801                 r = -ENOMEM;
7802                 goto fail_free_lapic;
7803         }
7804         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7805
7806         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7807                 r = -ENOMEM;
7808                 goto fail_free_mce_banks;
7809         }
7810
7811         fx_init(vcpu);
7812
7813         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7814         vcpu->arch.pv_time_enabled = false;
7815
7816         vcpu->arch.guest_supported_xcr0 = 0;
7817         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7818
7819         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7820
7821         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7822
7823         kvm_async_pf_hash_reset(vcpu);
7824         kvm_pmu_init(vcpu);
7825
7826         vcpu->arch.pending_external_vector = -1;
7827
7828         kvm_hv_vcpu_init(vcpu);
7829
7830         return 0;
7831
7832 fail_free_mce_banks:
7833         kfree(vcpu->arch.mce_banks);
7834 fail_free_lapic:
7835         kvm_free_lapic(vcpu);
7836 fail_mmu_destroy:
7837         kvm_mmu_destroy(vcpu);
7838 fail_free_pio_data:
7839         free_page((unsigned long)vcpu->arch.pio_data);
7840 fail:
7841         return r;
7842 }
7843
7844 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7845 {
7846         int idx;
7847
7848         kvm_hv_vcpu_uninit(vcpu);
7849         kvm_pmu_destroy(vcpu);
7850         kfree(vcpu->arch.mce_banks);
7851         kvm_free_lapic(vcpu);
7852         idx = srcu_read_lock(&vcpu->kvm->srcu);
7853         kvm_mmu_destroy(vcpu);
7854         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7855         free_page((unsigned long)vcpu->arch.pio_data);
7856         if (!lapic_in_kernel(vcpu))
7857                 static_key_slow_dec(&kvm_no_apic_vcpu);
7858 }
7859
7860 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7861 {
7862         kvm_x86_ops->sched_in(vcpu, cpu);
7863 }
7864
7865 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7866 {
7867         if (type)
7868                 return -EINVAL;
7869
7870         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7871         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7872         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7873         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7874         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7875
7876         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7877         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7878         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7879         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7880                 &kvm->arch.irq_sources_bitmap);
7881
7882         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7883         mutex_init(&kvm->arch.apic_map_lock);
7884         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7885
7886         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7887         pvclock_update_vm_gtod_copy(kvm);
7888
7889         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7890         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7891
7892         kvm_page_track_init(kvm);
7893         kvm_mmu_init_vm(kvm);
7894
7895         if (kvm_x86_ops->vm_init)
7896                 return kvm_x86_ops->vm_init(kvm);
7897
7898         return 0;
7899 }
7900
7901 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7902 {
7903         int r;
7904         r = vcpu_load(vcpu);
7905         BUG_ON(r);
7906         kvm_mmu_unload(vcpu);
7907         vcpu_put(vcpu);
7908 }
7909
7910 static void kvm_free_vcpus(struct kvm *kvm)
7911 {
7912         unsigned int i;
7913         struct kvm_vcpu *vcpu;
7914
7915         /*
7916          * Unpin any mmu pages first.
7917          */
7918         kvm_for_each_vcpu(i, vcpu, kvm) {
7919                 kvm_clear_async_pf_completion_queue(vcpu);
7920                 kvm_unload_vcpu_mmu(vcpu);
7921         }
7922         kvm_for_each_vcpu(i, vcpu, kvm)
7923                 kvm_arch_vcpu_free(vcpu);
7924
7925         mutex_lock(&kvm->lock);
7926         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7927                 kvm->vcpus[i] = NULL;
7928
7929         atomic_set(&kvm->online_vcpus, 0);
7930         mutex_unlock(&kvm->lock);
7931 }
7932
7933 void kvm_arch_sync_events(struct kvm *kvm)
7934 {
7935         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7936         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7937         kvm_free_all_assigned_devices(kvm);
7938         kvm_free_pit(kvm);
7939 }
7940
7941 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7942 {
7943         int i, r;
7944         unsigned long hva;
7945         struct kvm_memslots *slots = kvm_memslots(kvm);
7946         struct kvm_memory_slot *slot, old;
7947
7948         /* Called with kvm->slots_lock held.  */
7949         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7950                 return -EINVAL;
7951
7952         slot = id_to_memslot(slots, id);
7953         if (size) {
7954                 if (slot->npages)
7955                         return -EEXIST;
7956
7957                 /*
7958                  * MAP_SHARED to prevent internal slot pages from being moved
7959                  * by fork()/COW.
7960                  */
7961                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7962                               MAP_SHARED | MAP_ANONYMOUS, 0);
7963                 if (IS_ERR((void *)hva))
7964                         return PTR_ERR((void *)hva);
7965         } else {
7966                 if (!slot->npages)
7967                         return 0;
7968
7969                 hva = 0;
7970         }
7971
7972         old = *slot;
7973         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7974                 struct kvm_userspace_memory_region m;
7975
7976                 m.slot = id | (i << 16);
7977                 m.flags = 0;
7978                 m.guest_phys_addr = gpa;
7979                 m.userspace_addr = hva;
7980                 m.memory_size = size;
7981                 r = __kvm_set_memory_region(kvm, &m);
7982                 if (r < 0)
7983                         return r;
7984         }
7985
7986         if (!size) {
7987                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7988                 WARN_ON(r < 0);
7989         }
7990
7991         return 0;
7992 }
7993 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7994
7995 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7996 {
7997         int r;
7998
7999         mutex_lock(&kvm->slots_lock);
8000         r = __x86_set_memory_region(kvm, id, gpa, size);
8001         mutex_unlock(&kvm->slots_lock);
8002
8003         return r;
8004 }
8005 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8006
8007 void kvm_arch_destroy_vm(struct kvm *kvm)
8008 {
8009         if (current->mm == kvm->mm) {
8010                 /*
8011                  * Free memory regions allocated on behalf of userspace,
8012                  * unless the the memory map has changed due to process exit
8013                  * or fd copying.
8014                  */
8015                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8016                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8017                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8018         }
8019         if (kvm_x86_ops->vm_destroy)
8020                 kvm_x86_ops->vm_destroy(kvm);
8021         kvm_iommu_unmap_guest(kvm);
8022         kfree(kvm->arch.vpic);
8023         kfree(kvm->arch.vioapic);
8024         kvm_free_vcpus(kvm);
8025         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8026         kvm_mmu_uninit_vm(kvm);
8027 }
8028
8029 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8030                            struct kvm_memory_slot *dont)
8031 {
8032         int i;
8033
8034         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8035                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8036                         kvfree(free->arch.rmap[i]);
8037                         free->arch.rmap[i] = NULL;
8038                 }
8039                 if (i == 0)
8040                         continue;
8041
8042                 if (!dont || free->arch.lpage_info[i - 1] !=
8043                              dont->arch.lpage_info[i - 1]) {
8044                         kvfree(free->arch.lpage_info[i - 1]);
8045                         free->arch.lpage_info[i - 1] = NULL;
8046                 }
8047         }
8048
8049         kvm_page_track_free_memslot(free, dont);
8050 }
8051
8052 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8053                             unsigned long npages)
8054 {
8055         int i;
8056
8057         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8058                 struct kvm_lpage_info *linfo;
8059                 unsigned long ugfn;
8060                 int lpages;
8061                 int level = i + 1;
8062
8063                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8064                                       slot->base_gfn, level) + 1;
8065
8066                 slot->arch.rmap[i] =
8067                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8068                 if (!slot->arch.rmap[i])
8069                         goto out_free;
8070                 if (i == 0)
8071                         continue;
8072
8073                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8074                 if (!linfo)
8075                         goto out_free;
8076
8077                 slot->arch.lpage_info[i - 1] = linfo;
8078
8079                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8080                         linfo[0].disallow_lpage = 1;
8081                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8082                         linfo[lpages - 1].disallow_lpage = 1;
8083                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8084                 /*
8085                  * If the gfn and userspace address are not aligned wrt each
8086                  * other, or if explicitly asked to, disable large page
8087                  * support for this slot
8088                  */
8089                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8090                     !kvm_largepages_enabled()) {
8091                         unsigned long j;
8092
8093                         for (j = 0; j < lpages; ++j)
8094                                 linfo[j].disallow_lpage = 1;
8095                 }
8096         }
8097
8098         if (kvm_page_track_create_memslot(slot, npages))
8099                 goto out_free;
8100
8101         return 0;
8102
8103 out_free:
8104         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8105                 kvfree(slot->arch.rmap[i]);
8106                 slot->arch.rmap[i] = NULL;
8107                 if (i == 0)
8108                         continue;
8109
8110                 kvfree(slot->arch.lpage_info[i - 1]);
8111                 slot->arch.lpage_info[i - 1] = NULL;
8112         }
8113         return -ENOMEM;
8114 }
8115
8116 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8117 {
8118         /*
8119          * memslots->generation has been incremented.
8120          * mmio generation may have reached its maximum value.
8121          */
8122         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8123 }
8124
8125 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8126                                 struct kvm_memory_slot *memslot,
8127                                 const struct kvm_userspace_memory_region *mem,
8128                                 enum kvm_mr_change change)
8129 {
8130         return 0;
8131 }
8132
8133 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8134                                      struct kvm_memory_slot *new)
8135 {
8136         /* Still write protect RO slot */
8137         if (new->flags & KVM_MEM_READONLY) {
8138                 kvm_mmu_slot_remove_write_access(kvm, new);
8139                 return;
8140         }
8141
8142         /*
8143          * Call kvm_x86_ops dirty logging hooks when they are valid.
8144          *
8145          * kvm_x86_ops->slot_disable_log_dirty is called when:
8146          *
8147          *  - KVM_MR_CREATE with dirty logging is disabled
8148          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8149          *
8150          * The reason is, in case of PML, we need to set D-bit for any slots
8151          * with dirty logging disabled in order to eliminate unnecessary GPA
8152          * logging in PML buffer (and potential PML buffer full VMEXT). This
8153          * guarantees leaving PML enabled during guest's lifetime won't have
8154          * any additonal overhead from PML when guest is running with dirty
8155          * logging disabled for memory slots.
8156          *
8157          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8158          * to dirty logging mode.
8159          *
8160          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8161          *
8162          * In case of write protect:
8163          *
8164          * Write protect all pages for dirty logging.
8165          *
8166          * All the sptes including the large sptes which point to this
8167          * slot are set to readonly. We can not create any new large
8168          * spte on this slot until the end of the logging.
8169          *
8170          * See the comments in fast_page_fault().
8171          */
8172         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8173                 if (kvm_x86_ops->slot_enable_log_dirty)
8174                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8175                 else
8176                         kvm_mmu_slot_remove_write_access(kvm, new);
8177         } else {
8178                 if (kvm_x86_ops->slot_disable_log_dirty)
8179                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8180         }
8181 }
8182
8183 void kvm_arch_commit_memory_region(struct kvm *kvm,
8184                                 const struct kvm_userspace_memory_region *mem,
8185                                 const struct kvm_memory_slot *old,
8186                                 const struct kvm_memory_slot *new,
8187                                 enum kvm_mr_change change)
8188 {
8189         int nr_mmu_pages = 0;
8190
8191         if (!kvm->arch.n_requested_mmu_pages)
8192                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8193
8194         if (nr_mmu_pages)
8195                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8196
8197         /*
8198          * Dirty logging tracks sptes in 4k granularity, meaning that large
8199          * sptes have to be split.  If live migration is successful, the guest
8200          * in the source machine will be destroyed and large sptes will be
8201          * created in the destination. However, if the guest continues to run
8202          * in the source machine (for example if live migration fails), small
8203          * sptes will remain around and cause bad performance.
8204          *
8205          * Scan sptes if dirty logging has been stopped, dropping those
8206          * which can be collapsed into a single large-page spte.  Later
8207          * page faults will create the large-page sptes.
8208          */
8209         if ((change != KVM_MR_DELETE) &&
8210                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8211                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8212                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8213
8214         /*
8215          * Set up write protection and/or dirty logging for the new slot.
8216          *
8217          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8218          * been zapped so no dirty logging staff is needed for old slot. For
8219          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8220          * new and it's also covered when dealing with the new slot.
8221          *
8222          * FIXME: const-ify all uses of struct kvm_memory_slot.
8223          */
8224         if (change != KVM_MR_DELETE)
8225                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8226 }
8227
8228 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8229 {
8230         kvm_mmu_invalidate_zap_all_pages(kvm);
8231 }
8232
8233 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8234                                    struct kvm_memory_slot *slot)
8235 {
8236         kvm_page_track_flush_slot(kvm, slot);
8237 }
8238
8239 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8240 {
8241         if (!list_empty_careful(&vcpu->async_pf.done))
8242                 return true;
8243
8244         if (kvm_apic_has_events(vcpu))
8245                 return true;
8246
8247         if (vcpu->arch.pv.pv_unhalted)
8248                 return true;
8249
8250         if (atomic_read(&vcpu->arch.nmi_queued))
8251                 return true;
8252
8253         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8254                 return true;
8255
8256         if (kvm_arch_interrupt_allowed(vcpu) &&
8257             kvm_cpu_has_interrupt(vcpu))
8258                 return true;
8259
8260         if (kvm_hv_has_stimer_pending(vcpu))
8261                 return true;
8262
8263         return false;
8264 }
8265
8266 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8267 {
8268         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8269                 kvm_x86_ops->check_nested_events(vcpu, false);
8270
8271         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8272 }
8273
8274 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8275 {
8276         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8277 }
8278
8279 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8280 {
8281         return kvm_x86_ops->interrupt_allowed(vcpu);
8282 }
8283
8284 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8285 {
8286         if (is_64_bit_mode(vcpu))
8287                 return kvm_rip_read(vcpu);
8288         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8289                      kvm_rip_read(vcpu));
8290 }
8291 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8292
8293 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8294 {
8295         return kvm_get_linear_rip(vcpu) == linear_rip;
8296 }
8297 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8298
8299 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8300 {
8301         unsigned long rflags;
8302
8303         rflags = kvm_x86_ops->get_rflags(vcpu);
8304         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8305                 rflags &= ~X86_EFLAGS_TF;
8306         return rflags;
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8309
8310 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8311 {
8312         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8313             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8314                 rflags |= X86_EFLAGS_TF;
8315         kvm_x86_ops->set_rflags(vcpu, rflags);
8316 }
8317
8318 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8319 {
8320         __kvm_set_rflags(vcpu, rflags);
8321         kvm_make_request(KVM_REQ_EVENT, vcpu);
8322 }
8323 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8324
8325 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8326 {
8327         int r;
8328
8329         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8330               work->wakeup_all)
8331                 return;
8332
8333         r = kvm_mmu_reload(vcpu);
8334         if (unlikely(r))
8335                 return;
8336
8337         if (!vcpu->arch.mmu.direct_map &&
8338               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8339                 return;
8340
8341         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8342 }
8343
8344 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8345 {
8346         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8347 }
8348
8349 static inline u32 kvm_async_pf_next_probe(u32 key)
8350 {
8351         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8352 }
8353
8354 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8355 {
8356         u32 key = kvm_async_pf_hash_fn(gfn);
8357
8358         while (vcpu->arch.apf.gfns[key] != ~0)
8359                 key = kvm_async_pf_next_probe(key);
8360
8361         vcpu->arch.apf.gfns[key] = gfn;
8362 }
8363
8364 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8365 {
8366         int i;
8367         u32 key = kvm_async_pf_hash_fn(gfn);
8368
8369         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8370                      (vcpu->arch.apf.gfns[key] != gfn &&
8371                       vcpu->arch.apf.gfns[key] != ~0); i++)
8372                 key = kvm_async_pf_next_probe(key);
8373
8374         return key;
8375 }
8376
8377 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8378 {
8379         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8380 }
8381
8382 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384         u32 i, j, k;
8385
8386         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8387         while (true) {
8388                 vcpu->arch.apf.gfns[i] = ~0;
8389                 do {
8390                         j = kvm_async_pf_next_probe(j);
8391                         if (vcpu->arch.apf.gfns[j] == ~0)
8392                                 return;
8393                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8394                         /*
8395                          * k lies cyclically in ]i,j]
8396                          * |    i.k.j |
8397                          * |....j i.k.| or  |.k..j i...|
8398                          */
8399                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8400                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8401                 i = j;
8402         }
8403 }
8404
8405 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8406 {
8407
8408         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8409                                       sizeof(val));
8410 }
8411
8412 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8413                                      struct kvm_async_pf *work)
8414 {
8415         struct x86_exception fault;
8416
8417         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8418         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8419
8420         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8421             (vcpu->arch.apf.send_user_only &&
8422              kvm_x86_ops->get_cpl(vcpu) == 0))
8423                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8424         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8425                 fault.vector = PF_VECTOR;
8426                 fault.error_code_valid = true;
8427                 fault.error_code = 0;
8428                 fault.nested_page_fault = false;
8429                 fault.address = work->arch.token;
8430                 kvm_inject_page_fault(vcpu, &fault);
8431         }
8432 }
8433
8434 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8435                                  struct kvm_async_pf *work)
8436 {
8437         struct x86_exception fault;
8438
8439         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8440         if (work->wakeup_all)
8441                 work->arch.token = ~0; /* broadcast wakeup */
8442         else
8443                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8444
8445         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8446             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8447                 fault.vector = PF_VECTOR;
8448                 fault.error_code_valid = true;
8449                 fault.error_code = 0;
8450                 fault.nested_page_fault = false;
8451                 fault.address = work->arch.token;
8452                 kvm_inject_page_fault(vcpu, &fault);
8453         }
8454         vcpu->arch.apf.halted = false;
8455         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8456 }
8457
8458 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8459 {
8460         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8461                 return true;
8462         else
8463                 return !kvm_event_needs_reinjection(vcpu) &&
8464                         kvm_x86_ops->interrupt_allowed(vcpu);
8465 }
8466
8467 void kvm_arch_start_assignment(struct kvm *kvm)
8468 {
8469         atomic_inc(&kvm->arch.assigned_device_count);
8470 }
8471 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8472
8473 void kvm_arch_end_assignment(struct kvm *kvm)
8474 {
8475         atomic_dec(&kvm->arch.assigned_device_count);
8476 }
8477 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8478
8479 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8480 {
8481         return atomic_read(&kvm->arch.assigned_device_count);
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8484
8485 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8486 {
8487         atomic_inc(&kvm->arch.noncoherent_dma_count);
8488 }
8489 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8490
8491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8492 {
8493         atomic_dec(&kvm->arch.noncoherent_dma_count);
8494 }
8495 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8496
8497 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8498 {
8499         return atomic_read(&kvm->arch.noncoherent_dma_count);
8500 }
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8502
8503 bool kvm_arch_has_irq_bypass(void)
8504 {
8505         return kvm_x86_ops->update_pi_irte != NULL;
8506 }
8507
8508 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8509                                       struct irq_bypass_producer *prod)
8510 {
8511         struct kvm_kernel_irqfd *irqfd =
8512                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8513
8514         irqfd->producer = prod;
8515
8516         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8517                                            prod->irq, irqfd->gsi, 1);
8518 }
8519
8520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8521                                       struct irq_bypass_producer *prod)
8522 {
8523         int ret;
8524         struct kvm_kernel_irqfd *irqfd =
8525                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8526
8527         WARN_ON(irqfd->producer != prod);
8528         irqfd->producer = NULL;
8529
8530         /*
8531          * When producer of consumer is unregistered, we change back to
8532          * remapped mode, so we can re-use the current implementation
8533          * when the irq is masked/disabled or the consumer side (KVM
8534          * int this case doesn't want to receive the interrupts.
8535         */
8536         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8537         if (ret)
8538                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8539                        " fails: %d\n", irqfd->consumer.token, ret);
8540 }
8541
8542 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8543                                    uint32_t guest_irq, bool set)
8544 {
8545         if (!kvm_x86_ops->update_pi_irte)
8546                 return -EINVAL;
8547
8548         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8549 }
8550
8551 bool kvm_vector_hashing_enabled(void)
8552 {
8553         return vector_hashing;
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8556
8557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);