]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'samsung-dt64-4.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213         unsigned long flags;
214
215         /*
216          * Disabling irqs at this point since the following code could be
217          * interrupted and executed through kvm_arch_hardware_disable()
218          */
219         local_irq_save(flags);
220         if (locals->registered) {
221                 locals->registered = false;
222                 user_return_notifier_unregister(urn);
223         }
224         local_irq_restore(flags);
225         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226                 values = &locals->values[slot];
227                 if (values->host != values->curr) {
228                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
229                         values->curr = values->host;
230                 }
231         }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236         u64 value;
237         unsigned int cpu = smp_processor_id();
238         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240         /* only read, and nobody should modify it at this time,
241          * so don't need lock */
242         if (slot >= shared_msrs_global.nr) {
243                 printk(KERN_ERR "kvm: invalid MSR slot!");
244                 return;
245         }
246         rdmsrl_safe(msr, &value);
247         smsr->values[slot].host = value;
248         smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254         shared_msrs_global.msrs[slot] = msr;
255         if (slot >= shared_msrs_global.nr)
256                 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262         unsigned i;
263
264         for (i = 0; i < shared_msrs_global.nr; ++i)
265                 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270         unsigned int cpu = smp_processor_id();
271         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272         int err;
273
274         if (((value ^ smsr->values[slot].curr) & mask) == 0)
275                 return 0;
276         smsr->values[slot].curr = value;
277         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278         if (err)
279                 return 1;
280
281         if (!smsr->registered) {
282                 smsr->urn.on_user_return = kvm_on_user_return;
283                 user_return_notifier_register(&smsr->urn);
284                 smsr->registered = true;
285         }
286         return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295         if (smsr->registered)
296                 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307         u64 old_state = vcpu->arch.apic_base &
308                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309         u64 new_state = msr_info->data &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314         if (!msr_info->host_initiated &&
315             ((msr_info->data & reserved_bits) != 0 ||
316              new_state == X2APIC_ENABLE ||
317              (new_state == MSR_IA32_APICBASE_ENABLE &&
318               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320               old_state == 0)))
321                 return 1;
322
323         kvm_lapic_set_base(vcpu, msr_info->data);
324         return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330         /* Fault while not rebooting.  We want the trace. */
331         BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN            0
336 #define EXCPT_CONTRIBUTORY      1
337 #define EXCPT_PF                2
338
339 static int exception_class(int vector)
340 {
341         switch (vector) {
342         case PF_VECTOR:
343                 return EXCPT_PF;
344         case DE_VECTOR:
345         case TS_VECTOR:
346         case NP_VECTOR:
347         case SS_VECTOR:
348         case GP_VECTOR:
349                 return EXCPT_CONTRIBUTORY;
350         default:
351                 break;
352         }
353         return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT             0
357 #define EXCPT_TRAP              1
358 #define EXCPT_ABORT             2
359 #define EXCPT_INTERRUPT         3
360
361 static int exception_type(int vector)
362 {
363         unsigned int mask;
364
365         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366                 return EXCPT_INTERRUPT;
367
368         mask = 1 << vector;
369
370         /* #DB is trap, as instruction watchpoints are handled elsewhere */
371         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372                 return EXCPT_TRAP;
373
374         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375                 return EXCPT_ABORT;
376
377         /* Reserved exceptions will result in fault */
378         return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382                 unsigned nr, bool has_error, u32 error_code,
383                 bool reinject)
384 {
385         u32 prev_nr;
386         int class1, class2;
387
388         kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390         if (!vcpu->arch.exception.pending) {
391         queue:
392                 if (has_error && !is_protmode(vcpu))
393                         has_error = false;
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = has_error;
396                 vcpu->arch.exception.nr = nr;
397                 vcpu->arch.exception.error_code = error_code;
398                 vcpu->arch.exception.reinject = reinject;
399                 return;
400         }
401
402         /* to check exception */
403         prev_nr = vcpu->arch.exception.nr;
404         if (prev_nr == DF_VECTOR) {
405                 /* triple fault -> shutdown */
406                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407                 return;
408         }
409         class1 = exception_class(prev_nr);
410         class2 = exception_class(nr);
411         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413                 /* generate double fault per SDM Table 5-5 */
414                 vcpu->arch.exception.pending = true;
415                 vcpu->arch.exception.has_error_code = true;
416                 vcpu->arch.exception.nr = DF_VECTOR;
417                 vcpu->arch.exception.error_code = 0;
418         } else
419                 /* replace previous exception with a new one in a hope
420                    that instruction re-execution will regenerate lost
421                    exception */
422                 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427         kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433         kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439         if (err)
440                 kvm_inject_gp(vcpu, 0);
441         else
442                 return kvm_skip_emulated_instruction(vcpu);
443
444         return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450         ++vcpu->stat.pf_guest;
451         vcpu->arch.cr2 = fault->address;
452         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460         else
461                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463         return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468         atomic_inc(&vcpu->arch.nmi_queued);
469         kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475         kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481         kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
487  * a #GP and return false.
488  */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492                 return true;
493         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494         return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501                 return true;
502
503         kvm_queue_exception(vcpu, UD_VECTOR);
504         return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509  * This function will be used to read from the physical memory of the currently
510  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511  * can read from guest physical or from the guest's guest physical memory.
512  */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514                             gfn_t ngfn, void *data, int offset, int len,
515                             u32 access)
516 {
517         struct x86_exception exception;
518         gfn_t real_gfn;
519         gpa_t ngpa;
520
521         ngpa     = gfn_to_gpa(ngfn);
522         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523         if (real_gfn == UNMAPPED_GVA)
524                 return -EFAULT;
525
526         real_gfn = gpa_to_gfn(real_gfn);
527
528         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533                                void *data, int offset, int len, u32 access)
534 {
535         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536                                        data, offset, len, access);
537 }
538
539 /*
540  * Load the pae pdptrs.  Return true is they are all valid.
541  */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546         int i;
547         int ret;
548         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551                                       offset * sizeof(u64), sizeof(pdpte),
552                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
553         if (ret < 0) {
554                 ret = 0;
555                 goto out;
556         }
557         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558                 if ((pdpte[i] & PT_PRESENT_MASK) &&
559                     (pdpte[i] &
560                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561                         ret = 0;
562                         goto out;
563                 }
564         }
565         ret = 1;
566
567         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568         __set_bit(VCPU_EXREG_PDPTR,
569                   (unsigned long *)&vcpu->arch.regs_avail);
570         __set_bit(VCPU_EXREG_PDPTR,
571                   (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574         return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581         bool changed = true;
582         int offset;
583         gfn_t gfn;
584         int r;
585
586         if (is_long_mode(vcpu) || !is_pae(vcpu))
587                 return false;
588
589         if (!test_bit(VCPU_EXREG_PDPTR,
590                       (unsigned long *)&vcpu->arch.regs_avail))
591                 return true;
592
593         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
597         if (r < 0)
598                 goto out;
599         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602         return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608         unsigned long old_cr0 = kvm_read_cr0(vcpu);
609         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611         cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614         if (cr0 & 0xffffffff00000000UL)
615                 return 1;
616 #endif
617
618         cr0 &= ~CR0_RESERVED_BITS;
619
620         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621                 return 1;
622
623         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624                 return 1;
625
626         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628                 if ((vcpu->arch.efer & EFER_LME)) {
629                         int cs_db, cs_l;
630
631                         if (!is_pae(vcpu))
632                                 return 1;
633                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634                         if (cs_l)
635                                 return 1;
636                 } else
637 #endif
638                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639                                                  kvm_read_cr3(vcpu)))
640                         return 1;
641         }
642
643         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644                 return 1;
645
646         kvm_x86_ops->set_cr0(vcpu, cr0);
647
648         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649                 kvm_clear_async_pf_completion_queue(vcpu);
650                 kvm_async_pf_hash_reset(vcpu);
651         }
652
653         if ((cr0 ^ old_cr0) & update_bits)
654                 kvm_mmu_reset_context(vcpu);
655
656         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661         return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674                         !vcpu->guest_xcr0_loaded) {
675                 /* kvm_set_xcr() also depends on this */
676                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677                 vcpu->guest_xcr0_loaded = 1;
678         }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683         if (vcpu->guest_xcr0_loaded) {
684                 if (vcpu->arch.xcr0 != host_xcr0)
685                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686                 vcpu->guest_xcr0_loaded = 0;
687         }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         u64 xcr0 = xcr;
693         u64 old_xcr0 = vcpu->arch.xcr0;
694         u64 valid_bits;
695
696         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
697         if (index != XCR_XFEATURE_ENABLED_MASK)
698                 return 1;
699         if (!(xcr0 & XFEATURE_MASK_FP))
700                 return 1;
701         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702                 return 1;
703
704         /*
705          * Do not allow the guest to set bits that we do not support
706          * saving.  However, xcr0 bit 0 is always set, even if the
707          * emulated CPU does not support XSAVE (see fx_init).
708          */
709         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710         if (xcr0 & ~valid_bits)
711                 return 1;
712
713         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715                 return 1;
716
717         if (xcr0 & XFEATURE_MASK_AVX512) {
718                 if (!(xcr0 & XFEATURE_MASK_YMM))
719                         return 1;
720                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721                         return 1;
722         }
723         vcpu->arch.xcr0 = xcr0;
724
725         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726                 kvm_update_cpuid(vcpu);
727         return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733             __kvm_set_xcr(vcpu, index, xcr)) {
734                 kvm_inject_gp(vcpu, 0);
735                 return 1;
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743         unsigned long old_cr4 = kvm_read_cr4(vcpu);
744         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747         if (cr4 & CR4_RESERVED_BITS)
748                 return 1;
749
750         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751                 return 1;
752
753         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754                 return 1;
755
756         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757                 return 1;
758
759         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760                 return 1;
761
762         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763                 return 1;
764
765         if (is_long_mode(vcpu)) {
766                 if (!(cr4 & X86_CR4_PAE))
767                         return 1;
768         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769                    && ((cr4 ^ old_cr4) & pdptr_bits)
770                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                    kvm_read_cr3(vcpu)))
772                 return 1;
773
774         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775                 if (!guest_cpuid_has_pcid(vcpu))
776                         return 1;
777
778                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780                         return 1;
781         }
782
783         if (kvm_x86_ops->set_cr4(vcpu, cr4))
784                 return 1;
785
786         if (((cr4 ^ old_cr4) & pdptr_bits) ||
787             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788                 kvm_mmu_reset_context(vcpu);
789
790         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791                 kvm_update_cpuid(vcpu);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800         cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804                 kvm_mmu_sync_roots(vcpu);
805                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806                 return 0;
807         }
808
809         if (is_long_mode(vcpu)) {
810                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811                         return 1;
812         } else if (is_pae(vcpu) && is_paging(vcpu) &&
813                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814                 return 1;
815
816         vcpu->arch.cr3 = cr3;
817         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818         kvm_mmu_new_cr3(vcpu);
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825         if (cr8 & CR8_RESERVED_BITS)
826                 return 1;
827         if (lapic_in_kernel(vcpu))
828                 kvm_lapic_set_tpr(vcpu, cr8);
829         else
830                 vcpu->arch.cr8 = cr8;
831         return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837         if (lapic_in_kernel(vcpu))
838                 return kvm_lapic_get_cr8(vcpu);
839         else
840                 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846         int i;
847
848         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849                 for (i = 0; i < KVM_NR_DB_REGS; i++)
850                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852         }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863         unsigned long dr7;
864
865         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866                 dr7 = vcpu->arch.guest_debug_dr7;
867         else
868                 dr7 = vcpu->arch.dr7;
869         kvm_x86_ops->set_dr7(vcpu, dr7);
870         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871         if (dr7 & DR7_BP_EN_MASK)
872                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877         u64 fixed = DR6_FIXED_1;
878
879         if (!guest_cpuid_has_rtm(vcpu))
880                 fixed |= DR6_RTM;
881         return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886         switch (dr) {
887         case 0 ... 3:
888                 vcpu->arch.db[dr] = val;
889                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                         vcpu->arch.eff_db[dr] = val;
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (val & 0xffffffff00000000ULL)
896                         return -1; /* #GP */
897                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898                 kvm_update_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 if (val & 0xffffffff00000000ULL)
904                         return -1; /* #GP */
905                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906                 kvm_update_dr7(vcpu);
907                 break;
908         }
909
910         return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915         if (__kvm_set_dr(vcpu, dr, val)) {
916                 kvm_inject_gp(vcpu, 0);
917                 return 1;
918         }
919         return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925         switch (dr) {
926         case 0 ... 3:
927                 *val = vcpu->arch.db[dr];
928                 break;
929         case 4:
930                 /* fall through */
931         case 6:
932                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933                         *val = vcpu->arch.dr6;
934                 else
935                         *val = kvm_x86_ops->get_dr6(vcpu);
936                 break;
937         case 5:
938                 /* fall through */
939         default: /* 7 */
940                 *val = vcpu->arch.dr7;
941                 break;
942         }
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950         u64 data;
951         int err;
952
953         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954         if (err)
955                 return err;
956         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958         return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965  *
966  * This list is modified at module load time to reflect the
967  * capabilities of the host cpu. This capabilities test skips MSRs that are
968  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969  * may depend on host virtualization features rather than host cpu features.
970  */
971
972 static u32 msrs_to_save[] = {
973         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974         MSR_STAR,
975 #ifdef CONFIG_X86_64
976         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991         HV_X64_MSR_RESET,
992         HV_X64_MSR_VP_INDEX,
993         HV_X64_MSR_VP_RUNTIME,
994         HV_X64_MSR_SCONTROL,
995         HV_X64_MSR_STIMER0_CONFIG,
996         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997         MSR_KVM_PV_EOI_EN,
998
999         MSR_IA32_TSC_ADJUST,
1000         MSR_IA32_TSCDEADLINE,
1001         MSR_IA32_MISC_ENABLE,
1002         MSR_IA32_MCG_STATUS,
1003         MSR_IA32_MCG_CTL,
1004         MSR_IA32_MCG_EXT_CTL,
1005         MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012         if (efer & efer_reserved_bits)
1013                 return false;
1014
1015         if (efer & EFER_FFXSR) {
1016                 struct kvm_cpuid_entry2 *feat;
1017
1018                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020                         return false;
1021         }
1022
1023         if (efer & EFER_SVME) {
1024                 struct kvm_cpuid_entry2 *feat;
1025
1026                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028                         return false;
1029         }
1030
1031         return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037         u64 old_efer = vcpu->arch.efer;
1038
1039         if (!kvm_valid_efer(vcpu, efer))
1040                 return 1;
1041
1042         if (is_paging(vcpu)
1043             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044                 return 1;
1045
1046         efer &= ~EFER_LMA;
1047         efer |= vcpu->arch.efer & EFER_LMA;
1048
1049         kvm_x86_ops->set_efer(vcpu, efer);
1050
1051         /* Update reserved bits */
1052         if ((efer ^ old_efer) & EFER_NX)
1053                 kvm_mmu_reset_context(vcpu);
1054
1055         return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060        efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065  * Writes msr value into into the appropriate "register".
1066  * Returns 0 on success, non-0 otherwise.
1067  * Assumes vcpu_load() was already called.
1068  */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071         switch (msr->index) {
1072         case MSR_FS_BASE:
1073         case MSR_GS_BASE:
1074         case MSR_KERNEL_GS_BASE:
1075         case MSR_CSTAR:
1076         case MSR_LSTAR:
1077                 if (is_noncanonical_address(msr->data))
1078                         return 1;
1079                 break;
1080         case MSR_IA32_SYSENTER_EIP:
1081         case MSR_IA32_SYSENTER_ESP:
1082                 /*
1083                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084                  * non-canonical address is written on Intel but not on
1085                  * AMD (which ignores the top 32-bits, because it does
1086                  * not implement 64-bit SYSENTER).
1087                  *
1088                  * 64-bit code should hence be able to write a non-canonical
1089                  * value on AMD.  Making the address canonical ensures that
1090                  * vmentry does not fail on Intel after writing a non-canonical
1091                  * value, and that something deterministic happens if the guest
1092                  * invokes 64-bit SYSENTER.
1093                  */
1094                 msr->data = get_canonical(msr->data);
1095         }
1096         return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101  * Adapt set_msr() to msr_io()'s calling convention
1102  */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105         struct msr_data msr;
1106         int r;
1107
1108         msr.index = index;
1109         msr.host_initiated = true;
1110         r = kvm_get_msr(vcpu, &msr);
1111         if (r)
1112                 return r;
1113
1114         *data = msr.data;
1115         return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120         struct msr_data msr;
1121
1122         msr.data = *data;
1123         msr.index = index;
1124         msr.host_initiated = true;
1125         return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130         seqcount_t      seq;
1131
1132         struct { /* extract of a clocksource struct */
1133                 int vclock_mode;
1134                 u64     cycle_last;
1135                 u64     mask;
1136                 u32     mult;
1137                 u32     shift;
1138         } clock;
1139
1140         u64             boot_ns;
1141         u64             nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149         u64 boot_ns;
1150
1151         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153         write_seqcount_begin(&vdata->seq);
1154
1155         /* copy pvclock gtod data */
1156         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1157         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1158         vdata->clock.mask               = tk->tkr_mono.mask;
1159         vdata->clock.mult               = tk->tkr_mono.mult;
1160         vdata->clock.shift              = tk->tkr_mono.shift;
1161
1162         vdata->boot_ns                  = boot_ns;
1163         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1164
1165         write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171         /*
1172          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173          * vcpu_enter_guest.  This function is only called from
1174          * the physical CPU that is running vcpu.
1175          */
1176         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181         int version;
1182         int r;
1183         struct pvclock_wall_clock wc;
1184         struct timespec64 boot;
1185
1186         if (!wall_clock)
1187                 return;
1188
1189         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190         if (r)
1191                 return;
1192
1193         if (version & 1)
1194                 ++version;  /* first time write, random junk */
1195
1196         ++version;
1197
1198         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199                 return;
1200
1201         /*
1202          * The guest calculates current wall clock time by adding
1203          * system time (updated by kvm_guest_time_update below) to the
1204          * wall clock specified here.  guest system time equals host
1205          * system time for us, thus we must fill in host boot time here.
1206          */
1207         getboottime64(&boot);
1208
1209         if (kvm->arch.kvmclock_offset) {
1210                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211                 boot = timespec64_sub(boot, ts);
1212         }
1213         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214         wc.nsec = boot.tv_nsec;
1215         wc.version = version;
1216
1217         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219         version++;
1220         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225         do_shl32_div32(dividend, divisor);
1226         return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230                                s8 *pshift, u32 *pmultiplier)
1231 {
1232         uint64_t scaled64;
1233         int32_t  shift = 0;
1234         uint64_t tps64;
1235         uint32_t tps32;
1236
1237         tps64 = base_hz;
1238         scaled64 = scaled_hz;
1239         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240                 tps64 >>= 1;
1241                 shift--;
1242         }
1243
1244         tps32 = (uint32_t)tps64;
1245         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247                         scaled64 >>= 1;
1248                 else
1249                         tps32 <<= 1;
1250                 shift++;
1251         }
1252
1253         *pshift = shift;
1254         *pmultiplier = div_frac(scaled64, tps32);
1255
1256         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269         u64 v = (u64)khz * (1000000 + ppm);
1270         do_div(v, 1000000);
1271         return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276         u64 ratio;
1277
1278         /* Guest TSC same frequency as host TSC? */
1279         if (!scale) {
1280                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281                 return 0;
1282         }
1283
1284         /* TSC scaling supported? */
1285         if (!kvm_has_tsc_control) {
1286                 if (user_tsc_khz > tsc_khz) {
1287                         vcpu->arch.tsc_catchup = 1;
1288                         vcpu->arch.tsc_always_catchup = 1;
1289                         return 0;
1290                 } else {
1291                         WARN(1, "user requested TSC rate below hardware speed\n");
1292                         return -1;
1293                 }
1294         }
1295
1296         /* TSC scaling required  - calculate ratio */
1297         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298                                 user_tsc_khz, tsc_khz);
1299
1300         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302                           user_tsc_khz);
1303                 return -1;
1304         }
1305
1306         vcpu->arch.tsc_scaling_ratio = ratio;
1307         return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312         u32 thresh_lo, thresh_hi;
1313         int use_scaling = 0;
1314
1315         /* tsc_khz can be zero if TSC calibration fails */
1316         if (user_tsc_khz == 0) {
1317                 /* set tsc_scaling_ratio to a safe value */
1318                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319                 return -1;
1320         }
1321
1322         /* Compute a scale to convert nanoseconds in TSC cycles */
1323         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324                            &vcpu->arch.virtual_tsc_shift,
1325                            &vcpu->arch.virtual_tsc_mult);
1326         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328         /*
1329          * Compute the variation in TSC rate which is acceptable
1330          * within the range of tolerance and decide if the
1331          * rate being applied is within that bounds of the hardware
1332          * rate.  If so, no scaling or compensation need be done.
1333          */
1334         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338                 use_scaling = 1;
1339         }
1340         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346                                       vcpu->arch.virtual_tsc_mult,
1347                                       vcpu->arch.virtual_tsc_shift);
1348         tsc += vcpu->arch.this_tsc_write;
1349         return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355         bool vcpus_matched;
1356         struct kvm_arch *ka = &vcpu->kvm->arch;
1357         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360                          atomic_read(&vcpu->kvm->online_vcpus));
1361
1362         /*
1363          * Once the masterclock is enabled, always perform request in
1364          * order to update it.
1365          *
1366          * In order to enable masterclock, the host clocksource must be TSC
1367          * and the vcpus need to have matched TSCs.  When that happens,
1368          * perform request to enable masterclock.
1369          */
1370         if (ka->use_master_clock ||
1371             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375                             atomic_read(&vcpu->kvm->online_vcpus),
1376                             ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382         u64 curr_offset = vcpu->arch.tsc_offset;
1383         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387  * Multiply tsc by a fixed point number represented by ratio.
1388  *
1389  * The most significant 64-N bits (mult) of ratio represent the
1390  * integral part of the fixed point number; the remaining N bits
1391  * (frac) represent the fractional part, ie. ratio represents a fixed
1392  * point number (mult + frac * 2^(-N)).
1393  *
1394  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395  */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403         u64 _tsc = tsc;
1404         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406         if (ratio != kvm_default_tsc_scaling_ratio)
1407                 _tsc = __scale_tsc(ratio, tsc);
1408
1409         return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415         u64 tsc;
1416
1417         tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419         return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431         vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436         struct kvm *kvm = vcpu->kvm;
1437         u64 offset, ns, elapsed;
1438         unsigned long flags;
1439         s64 usdiff;
1440         bool matched;
1441         bool already_matched;
1442         u64 data = msr->data;
1443
1444         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445         offset = kvm_compute_tsc_offset(vcpu, data);
1446         ns = ktime_get_boot_ns();
1447         elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449         if (vcpu->arch.virtual_tsc_khz) {
1450                 int faulted = 0;
1451
1452                 /* n.b - signed multiplication and division required */
1453                 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457                 /* do_div() only does unsigned */
1458                 asm("1: idivl %[divisor]\n"
1459                     "2: xor %%edx, %%edx\n"
1460                     "   movl $0, %[faulted]\n"
1461                     "3:\n"
1462                     ".section .fixup,\"ax\"\n"
1463                     "4: movl $1, %[faulted]\n"
1464                     "   jmp  3b\n"
1465                     ".previous\n"
1466
1467                 _ASM_EXTABLE(1b, 4b)
1468
1469                 : "=A"(usdiff), [faulted] "=r" (faulted)
1470                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473                 do_div(elapsed, 1000);
1474                 usdiff -= elapsed;
1475                 if (usdiff < 0)
1476                         usdiff = -usdiff;
1477
1478                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479                 if (faulted)
1480                         usdiff = USEC_PER_SEC;
1481         } else
1482                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484         /*
1485          * Special case: TSC write with a small delta (1 second) of virtual
1486          * cycle time against real time is interpreted as an attempt to
1487          * synchronize the CPU.
1488          *
1489          * For a reliable TSC, we can match TSC offsets, and for an unstable
1490          * TSC, we add elapsed time in this computation.  We could let the
1491          * compensation code attempt to catch up if we fall behind, but
1492          * it's better to try to match offsets from the beginning.
1493          */
1494         if (usdiff < USEC_PER_SEC &&
1495             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496                 if (!check_tsc_unstable()) {
1497                         offset = kvm->arch.cur_tsc_offset;
1498                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1499                 } else {
1500                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1501                         data += delta;
1502                         offset = kvm_compute_tsc_offset(vcpu, data);
1503                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504                 }
1505                 matched = true;
1506                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507         } else {
1508                 /*
1509                  * We split periods of matched TSC writes into generations.
1510                  * For each generation, we track the original measured
1511                  * nanosecond time, offset, and write, so if TSCs are in
1512                  * sync, we can match exact offset, and if not, we can match
1513                  * exact software computation in compute_guest_tsc()
1514                  *
1515                  * These values are tracked in kvm->arch.cur_xxx variables.
1516                  */
1517                 kvm->arch.cur_tsc_generation++;
1518                 kvm->arch.cur_tsc_nsec = ns;
1519                 kvm->arch.cur_tsc_write = data;
1520                 kvm->arch.cur_tsc_offset = offset;
1521                 matched = false;
1522                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523                          kvm->arch.cur_tsc_generation, data);
1524         }
1525
1526         /*
1527          * We also track th most recent recorded KHZ, write and time to
1528          * allow the matching interval to be extended at each write.
1529          */
1530         kvm->arch.last_tsc_nsec = ns;
1531         kvm->arch.last_tsc_write = data;
1532         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534         vcpu->arch.last_guest_tsc = data;
1535
1536         /* Keep track of which generation this VCPU has synchronized to */
1537         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542                 update_ia32_tsc_adjust_msr(vcpu, offset);
1543         kvm_vcpu_write_tsc_offset(vcpu, offset);
1544         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547         if (!matched) {
1548                 kvm->arch.nr_vcpus_matched_tsc = 0;
1549         } else if (!already_matched) {
1550                 kvm->arch.nr_vcpus_matched_tsc++;
1551         }
1552
1553         kvm_track_tsc_matching(vcpu);
1554         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560                                            s64 adjustment)
1561 {
1562         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568                 WARN_ON(adjustment < 0);
1569         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570         adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static u64 read_tsc(void)
1576 {
1577         u64 ret = (u64)rdtsc_ordered();
1578         u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580         if (likely(ret >= last))
1581                 return ret;
1582
1583         /*
1584          * GCC likes to generate cmov here, but this branch is extremely
1585          * predictable (it's just a function of time and the likely is
1586          * very likely) and there's a data dependence, so force GCC
1587          * to generate a branch instead.  I don't barrier() because
1588          * we don't actually need a barrier, and if this function
1589          * ever gets inlined it will generate worse code.
1590          */
1591         asm volatile ("");
1592         return last;
1593 }
1594
1595 static inline u64 vgettsc(u64 *cycle_now)
1596 {
1597         long v;
1598         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600         *cycle_now = read_tsc();
1601
1602         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603         return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1607 {
1608         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609         unsigned long seq;
1610         int mode;
1611         u64 ns;
1612
1613         do {
1614                 seq = read_seqcount_begin(&gtod->seq);
1615                 mode = gtod->clock.vclock_mode;
1616                 ns = gtod->nsec_base;
1617                 ns += vgettsc(cycle_now);
1618                 ns >>= gtod->clock.shift;
1619                 ns += gtod->boot_ns;
1620         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621         *t = ns;
1622
1623         return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1628 {
1629         /* checked again under seqlock below */
1630         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631                 return false;
1632
1633         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638  *
1639  * Assuming a stable TSC across physical CPUS, and a stable TSC
1640  * across virtual CPUs, the following condition is possible.
1641  * Each numbered line represents an event visible to both
1642  * CPUs at the next numbered event.
1643  *
1644  * "timespecX" represents host monotonic time. "tscX" represents
1645  * RDTSC value.
1646  *
1647  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1648  *
1649  * 1.  read timespec0,tsc0
1650  * 2.                                   | timespec1 = timespec0 + N
1651  *                                      | tsc1 = tsc0 + M
1652  * 3. transition to guest               | transition to guest
1653  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1655  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656  *
1657  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658  *
1659  *      - ret0 < ret1
1660  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661  *              ...
1662  *      - 0 < N - M => M < N
1663  *
1664  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665  * always the case (the difference between two distinct xtime instances
1666  * might be smaller then the difference between corresponding TSC reads,
1667  * when updating guest vcpus pvclock areas).
1668  *
1669  * To avoid that problem, do not allow visibility of distinct
1670  * system_timestamp/tsc_timestamp values simultaneously: use a master
1671  * copy of host monotonic time values. Update that master copy
1672  * in lockstep.
1673  *
1674  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675  *
1676  */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681         struct kvm_arch *ka = &kvm->arch;
1682         int vclock_mode;
1683         bool host_tsc_clocksource, vcpus_matched;
1684
1685         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686                         atomic_read(&kvm->online_vcpus));
1687
1688         /*
1689          * If the host uses TSC clock, then passthrough TSC as stable
1690          * to the guest.
1691          */
1692         host_tsc_clocksource = kvm_get_time_and_clockread(
1693                                         &ka->master_kernel_ns,
1694                                         &ka->master_cycle_now);
1695
1696         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697                                 && !backwards_tsc_observed
1698                                 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700         if (ka->use_master_clock)
1701                 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705                                         vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717         int i;
1718         struct kvm_vcpu *vcpu;
1719         struct kvm_arch *ka = &kvm->arch;
1720
1721         spin_lock(&ka->pvclock_gtod_sync_lock);
1722         kvm_make_mclock_inprogress_request(kvm);
1723         /* no guest entries from this point */
1724         pvclock_update_vm_gtod_copy(kvm);
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm)
1727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729         /* guest entries allowed */
1730         kvm_for_each_vcpu(i, vcpu, kvm)
1731                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733         spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739         struct kvm_arch *ka = &kvm->arch;
1740         struct pvclock_vcpu_time_info hv_clock;
1741
1742         spin_lock(&ka->pvclock_gtod_sync_lock);
1743         if (!ka->use_master_clock) {
1744                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746         }
1747
1748         hv_clock.tsc_timestamp = ka->master_cycle_now;
1749         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750         spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753                            &hv_clock.tsc_shift,
1754                            &hv_clock.tsc_to_system_mul);
1755         return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760         unsigned long flags;
1761         s64 ns;
1762
1763         local_irq_save(flags);
1764         ns = __get_kvmclock_ns(kvm);
1765         local_irq_restore(flags);
1766
1767         return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772         struct kvm_vcpu_arch *vcpu = &v->arch;
1773         struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776                 &guest_hv_clock, sizeof(guest_hv_clock))))
1777                 return;
1778
1779         /* This VCPU is paused, but it's legal for a guest to read another
1780          * VCPU's kvmclock, so we really have to follow the specification where
1781          * it says that version is odd if data is being modified, and even after
1782          * it is consistent.
1783          *
1784          * Version field updates must be kept separate.  This is because
1785          * kvm_write_guest_cached might use a "rep movs" instruction, and
1786          * writes within a string instruction are weakly ordered.  So there
1787          * are three writes overall.
1788          *
1789          * As a small optimization, only write the version field in the first
1790          * and third write.  The vcpu->pv_time cache is still valid, because the
1791          * version field is the first in the struct.
1792          */
1793         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797                                 &vcpu->hv_clock,
1798                                 sizeof(vcpu->hv_clock.version));
1799
1800         smp_wmb();
1801
1802         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805         if (vcpu->pvclock_set_guest_stopped_request) {
1806                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807                 vcpu->pvclock_set_guest_stopped_request = false;
1808         }
1809
1810         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813                                 &vcpu->hv_clock,
1814                                 sizeof(vcpu->hv_clock));
1815
1816         smp_wmb();
1817
1818         vcpu->hv_clock.version++;
1819         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820                                 &vcpu->hv_clock,
1821                                 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826         unsigned long flags, tgt_tsc_khz;
1827         struct kvm_vcpu_arch *vcpu = &v->arch;
1828         struct kvm_arch *ka = &v->kvm->arch;
1829         s64 kernel_ns;
1830         u64 tsc_timestamp, host_tsc;
1831         u8 pvclock_flags;
1832         bool use_master_clock;
1833
1834         kernel_ns = 0;
1835         host_tsc = 0;
1836
1837         /*
1838          * If the host uses TSC clock, then passthrough TSC as stable
1839          * to the guest.
1840          */
1841         spin_lock(&ka->pvclock_gtod_sync_lock);
1842         use_master_clock = ka->use_master_clock;
1843         if (use_master_clock) {
1844                 host_tsc = ka->master_cycle_now;
1845                 kernel_ns = ka->master_kernel_ns;
1846         }
1847         spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849         /* Keep irq disabled to prevent changes to the clock */
1850         local_irq_save(flags);
1851         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852         if (unlikely(tgt_tsc_khz == 0)) {
1853                 local_irq_restore(flags);
1854                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855                 return 1;
1856         }
1857         if (!use_master_clock) {
1858                 host_tsc = rdtsc();
1859                 kernel_ns = ktime_get_boot_ns();
1860         }
1861
1862         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864         /*
1865          * We may have to catch up the TSC to match elapsed wall clock
1866          * time for two reasons, even if kvmclock is used.
1867          *   1) CPU could have been running below the maximum TSC rate
1868          *   2) Broken TSC compensation resets the base at each VCPU
1869          *      entry to avoid unknown leaps of TSC even when running
1870          *      again on the same CPU.  This may cause apparent elapsed
1871          *      time to disappear, and the guest to stand still or run
1872          *      very slowly.
1873          */
1874         if (vcpu->tsc_catchup) {
1875                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876                 if (tsc > tsc_timestamp) {
1877                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878                         tsc_timestamp = tsc;
1879                 }
1880         }
1881
1882         local_irq_restore(flags);
1883
1884         /* With all the info we got, fill in the values */
1885
1886         if (kvm_has_tsc_control)
1887                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891                                    &vcpu->hv_clock.tsc_shift,
1892                                    &vcpu->hv_clock.tsc_to_system_mul);
1893                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894         }
1895
1896         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898         vcpu->last_guest_tsc = tsc_timestamp;
1899
1900         /* If the host uses TSC clocksource, then it is stable */
1901         pvclock_flags = 0;
1902         if (use_master_clock)
1903                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905         vcpu->hv_clock.flags = pvclock_flags;
1906
1907         if (vcpu->pv_time_enabled)
1908                 kvm_setup_pvclock_page(v);
1909         if (v == kvm_get_vcpu(v->kvm, 0))
1910                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911         return 0;
1912 }
1913
1914 /*
1915  * kvmclock updates which are isolated to a given vcpu, such as
1916  * vcpu->cpu migration, should not allow system_timestamp from
1917  * the rest of the vcpus to remain static. Otherwise ntp frequency
1918  * correction applies to one vcpu's system_timestamp but not
1919  * the others.
1920  *
1921  * So in those cases, request a kvmclock update for all vcpus.
1922  * We need to rate-limit these requests though, as they can
1923  * considerably slow guests that have a large number of vcpus.
1924  * The time for a remote vcpu to update its kvmclock is bound
1925  * by the delay we use to rate-limit the updates.
1926  */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932         int i;
1933         struct delayed_work *dwork = to_delayed_work(work);
1934         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935                                            kvmclock_update_work);
1936         struct kvm *kvm = container_of(ka, struct kvm, arch);
1937         struct kvm_vcpu *vcpu;
1938
1939         kvm_for_each_vcpu(i, vcpu, kvm) {
1940                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941                 kvm_vcpu_kick(vcpu);
1942         }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947         struct kvm *kvm = v->kvm;
1948
1949         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951                                         KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958         struct delayed_work *dwork = to_delayed_work(work);
1959         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960                                            kvmclock_sync_work);
1961         struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963         if (!kvmclock_periodic_sync)
1964                 return;
1965
1966         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968                                         KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973         u64 mcg_cap = vcpu->arch.mcg_cap;
1974         unsigned bank_num = mcg_cap & 0xff;
1975
1976         switch (msr) {
1977         case MSR_IA32_MCG_STATUS:
1978                 vcpu->arch.mcg_status = data;
1979                 break;
1980         case MSR_IA32_MCG_CTL:
1981                 if (!(mcg_cap & MCG_CTL_P))
1982                         return 1;
1983                 if (data != 0 && data != ~(u64)0)
1984                         return -1;
1985                 vcpu->arch.mcg_ctl = data;
1986                 break;
1987         default:
1988                 if (msr >= MSR_IA32_MC0_CTL &&
1989                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1990                         u32 offset = msr - MSR_IA32_MC0_CTL;
1991                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1992                          * some Linux kernels though clear bit 10 in bank 4 to
1993                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994                          * this to avoid an uncatched #GP in the guest
1995                          */
1996                         if ((offset & 0x3) == 0 &&
1997                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1998                                 return -1;
1999                         vcpu->arch.mce_banks[offset] = data;
2000                         break;
2001                 }
2002                 return 1;
2003         }
2004         return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009         struct kvm *kvm = vcpu->kvm;
2010         int lm = is_long_mode(vcpu);
2011         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014                 : kvm->arch.xen_hvm_config.blob_size_32;
2015         u32 page_num = data & ~PAGE_MASK;
2016         u64 page_addr = data & PAGE_MASK;
2017         u8 *page;
2018         int r;
2019
2020         r = -E2BIG;
2021         if (page_num >= blob_size)
2022                 goto out;
2023         r = -ENOMEM;
2024         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025         if (IS_ERR(page)) {
2026                 r = PTR_ERR(page);
2027                 goto out;
2028         }
2029         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030                 goto out_free;
2031         r = 0;
2032 out_free:
2033         kfree(page);
2034 out:
2035         return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040         gpa_t gpa = data & ~0x3f;
2041
2042         /* Bits 2:5 are reserved, Should be zero */
2043         if (data & 0x3c)
2044                 return 1;
2045
2046         vcpu->arch.apf.msr_val = data;
2047
2048         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049                 kvm_clear_async_pf_completion_queue(vcpu);
2050                 kvm_async_pf_hash_reset(vcpu);
2051                 return 0;
2052         }
2053
2054         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055                                         sizeof(u32)))
2056                 return 1;
2057
2058         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059         kvm_async_pf_wakeup_all(vcpu);
2060         return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065         vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071                 return;
2072
2073         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075                 return;
2076
2077         vcpu->arch.st.steal.preempted = 0;
2078
2079         if (vcpu->arch.st.steal.version & 1)
2080                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2081
2082         vcpu->arch.st.steal.version += 1;
2083
2084         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087         smp_wmb();
2088
2089         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090                 vcpu->arch.st.last_steal;
2091         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096         smp_wmb();
2097
2098         vcpu->arch.st.steal.version += 1;
2099
2100         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106         bool pr = false;
2107         u32 msr = msr_info->index;
2108         u64 data = msr_info->data;
2109
2110         switch (msr) {
2111         case MSR_AMD64_NB_CFG:
2112         case MSR_IA32_UCODE_REV:
2113         case MSR_IA32_UCODE_WRITE:
2114         case MSR_VM_HSAVE_PA:
2115         case MSR_AMD64_PATCH_LOADER:
2116         case MSR_AMD64_BU_CFG2:
2117                 break;
2118
2119         case MSR_EFER:
2120                 return set_efer(vcpu, data);
2121         case MSR_K7_HWCR:
2122                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2123                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2124                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2125                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2126                 if (data != 0) {
2127                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128                                     data);
2129                         return 1;
2130                 }
2131                 break;
2132         case MSR_FAM10H_MMIO_CONF_BASE:
2133                 if (data != 0) {
2134                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135                                     "0x%llx\n", data);
2136                         return 1;
2137                 }
2138                 break;
2139         case MSR_IA32_DEBUGCTLMSR:
2140                 if (!data) {
2141                         /* We support the non-activated case already */
2142                         break;
2143                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144                         /* Values other than LBR and BTF are vendor-specific,
2145                            thus reserved and should throw a #GP */
2146                         return 1;
2147                 }
2148                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149                             __func__, data);
2150                 break;
2151         case 0x200 ... 0x2ff:
2152                 return kvm_mtrr_set_msr(vcpu, msr, data);
2153         case MSR_IA32_APICBASE:
2154                 return kvm_set_apic_base(vcpu, msr_info);
2155         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156                 return kvm_x2apic_msr_write(vcpu, msr, data);
2157         case MSR_IA32_TSCDEADLINE:
2158                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159                 break;
2160         case MSR_IA32_TSC_ADJUST:
2161                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162                         if (!msr_info->host_initiated) {
2163                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164                                 adjust_tsc_offset_guest(vcpu, adj);
2165                         }
2166                         vcpu->arch.ia32_tsc_adjust_msr = data;
2167                 }
2168                 break;
2169         case MSR_IA32_MISC_ENABLE:
2170                 vcpu->arch.ia32_misc_enable_msr = data;
2171                 break;
2172         case MSR_IA32_SMBASE:
2173                 if (!msr_info->host_initiated)
2174                         return 1;
2175                 vcpu->arch.smbase = data;
2176                 break;
2177         case MSR_KVM_WALL_CLOCK_NEW:
2178         case MSR_KVM_WALL_CLOCK:
2179                 vcpu->kvm->arch.wall_clock = data;
2180                 kvm_write_wall_clock(vcpu->kvm, data);
2181                 break;
2182         case MSR_KVM_SYSTEM_TIME_NEW:
2183         case MSR_KVM_SYSTEM_TIME: {
2184                 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186                 kvmclock_reset(vcpu);
2187
2188                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193                                         &vcpu->requests);
2194
2195                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2196                 }
2197
2198                 vcpu->arch.time = data;
2199                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201                 /* we verify if the enable bit is set... */
2202                 if (!(data & 1))
2203                         break;
2204
2205                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206                      &vcpu->arch.pv_time, data & ~1ULL,
2207                      sizeof(struct pvclock_vcpu_time_info)))
2208                         vcpu->arch.pv_time_enabled = false;
2209                 else
2210                         vcpu->arch.pv_time_enabled = true;
2211
2212                 break;
2213         }
2214         case MSR_KVM_ASYNC_PF_EN:
2215                 if (kvm_pv_enable_async_pf(vcpu, data))
2216                         return 1;
2217                 break;
2218         case MSR_KVM_STEAL_TIME:
2219
2220                 if (unlikely(!sched_info_on()))
2221                         return 1;
2222
2223                 if (data & KVM_STEAL_RESERVED_MASK)
2224                         return 1;
2225
2226                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227                                                 data & KVM_STEAL_VALID_BITS,
2228                                                 sizeof(struct kvm_steal_time)))
2229                         return 1;
2230
2231                 vcpu->arch.st.msr_val = data;
2232
2233                 if (!(data & KVM_MSR_ENABLED))
2234                         break;
2235
2236                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238                 break;
2239         case MSR_KVM_PV_EOI_EN:
2240                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241                         return 1;
2242                 break;
2243
2244         case MSR_IA32_MCG_CTL:
2245         case MSR_IA32_MCG_STATUS:
2246         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247                 return set_msr_mce(vcpu, msr, data);
2248
2249         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251                 pr = true; /* fall through */
2252         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255                         return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257                 if (pr || data != 0)
2258                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259                                     "0x%x data 0x%llx\n", msr, data);
2260                 break;
2261         case MSR_K7_CLK_CTL:
2262                 /*
2263                  * Ignore all writes to this no longer documented MSR.
2264                  * Writes are only relevant for old K7 processors,
2265                  * all pre-dating SVM, but a recommended workaround from
2266                  * AMD for these chips. It is possible to specify the
2267                  * affected processor models on the command line, hence
2268                  * the need to ignore the workaround.
2269                  */
2270                 break;
2271         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273         case HV_X64_MSR_CRASH_CTL:
2274         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275                 return kvm_hv_set_msr_common(vcpu, msr, data,
2276                                              msr_info->host_initiated);
2277         case MSR_IA32_BBL_CR_CTL3:
2278                 /* Drop writes to this legacy MSR -- see rdmsr
2279                  * counterpart for further detail.
2280                  */
2281                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282                 break;
2283         case MSR_AMD64_OSVW_ID_LENGTH:
2284                 if (!guest_cpuid_has_osvw(vcpu))
2285                         return 1;
2286                 vcpu->arch.osvw.length = data;
2287                 break;
2288         case MSR_AMD64_OSVW_STATUS:
2289                 if (!guest_cpuid_has_osvw(vcpu))
2290                         return 1;
2291                 vcpu->arch.osvw.status = data;
2292                 break;
2293         default:
2294                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295                         return xen_hvm_config(vcpu, data);
2296                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297                         return kvm_pmu_set_msr(vcpu, msr_info);
2298                 if (!ignore_msrs) {
2299                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300                                     msr, data);
2301                         return 1;
2302                 } else {
2303                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304                                     msr, data);
2305                         break;
2306                 }
2307         }
2308         return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314  * Reads an msr value (of 'msr_index') into 'pdata'.
2315  * Returns 0 on success, non-0 otherwise.
2316  * Assumes vcpu_load() was already called.
2317  */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320         return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327         u64 mcg_cap = vcpu->arch.mcg_cap;
2328         unsigned bank_num = mcg_cap & 0xff;
2329
2330         switch (msr) {
2331         case MSR_IA32_P5_MC_ADDR:
2332         case MSR_IA32_P5_MC_TYPE:
2333                 data = 0;
2334                 break;
2335         case MSR_IA32_MCG_CAP:
2336                 data = vcpu->arch.mcg_cap;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P))
2340                         return 1;
2341                 data = vcpu->arch.mcg_ctl;
2342                 break;
2343         case MSR_IA32_MCG_STATUS:
2344                 data = vcpu->arch.mcg_status;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         data = vcpu->arch.mce_banks[offset];
2351                         break;
2352                 }
2353                 return 1;
2354         }
2355         *pdata = data;
2356         return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361         switch (msr_info->index) {
2362         case MSR_IA32_PLATFORM_ID:
2363         case MSR_IA32_EBL_CR_POWERON:
2364         case MSR_IA32_DEBUGCTLMSR:
2365         case MSR_IA32_LASTBRANCHFROMIP:
2366         case MSR_IA32_LASTBRANCHTOIP:
2367         case MSR_IA32_LASTINTFROMIP:
2368         case MSR_IA32_LASTINTTOIP:
2369         case MSR_K8_SYSCFG:
2370         case MSR_K8_TSEG_ADDR:
2371         case MSR_K8_TSEG_MASK:
2372         case MSR_K7_HWCR:
2373         case MSR_VM_HSAVE_PA:
2374         case MSR_K8_INT_PENDING_MSG:
2375         case MSR_AMD64_NB_CFG:
2376         case MSR_FAM10H_MMIO_CONF_BASE:
2377         case MSR_AMD64_BU_CFG2:
2378         case MSR_IA32_PERF_CTL:
2379                 msr_info->data = 0;
2380                 break;
2381         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387                 msr_info->data = 0;
2388                 break;
2389         case MSR_IA32_UCODE_REV:
2390                 msr_info->data = 0x100000000ULL;
2391                 break;
2392         case MSR_MTRRcap:
2393         case 0x200 ... 0x2ff:
2394                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395         case 0xcd: /* fsb frequency */
2396                 msr_info->data = 3;
2397                 break;
2398                 /*
2399                  * MSR_EBC_FREQUENCY_ID
2400                  * Conservative value valid for even the basic CPU models.
2401                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403                  * and 266MHz for model 3, or 4. Set Core Clock
2404                  * Frequency to System Bus Frequency Ratio to 1 (bits
2405                  * 31:24) even though these are only valid for CPU
2406                  * models > 2, however guests may end up dividing or
2407                  * multiplying by zero otherwise.
2408                  */
2409         case MSR_EBC_FREQUENCY_ID:
2410                 msr_info->data = 1 << 24;
2411                 break;
2412         case MSR_IA32_APICBASE:
2413                 msr_info->data = kvm_get_apic_base(vcpu);
2414                 break;
2415         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_TSCDEADLINE:
2419                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420                 break;
2421         case MSR_IA32_TSC_ADJUST:
2422                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423                 break;
2424         case MSR_IA32_MISC_ENABLE:
2425                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426                 break;
2427         case MSR_IA32_SMBASE:
2428                 if (!msr_info->host_initiated)
2429                         return 1;
2430                 msr_info->data = vcpu->arch.smbase;
2431                 break;
2432         case MSR_IA32_PERF_STATUS:
2433                 /* TSC increment by tick */
2434                 msr_info->data = 1000ULL;
2435                 /* CPU multiplier */
2436                 msr_info->data |= (((uint64_t)4ULL) << 40);
2437                 break;
2438         case MSR_EFER:
2439                 msr_info->data = vcpu->arch.efer;
2440                 break;
2441         case MSR_KVM_WALL_CLOCK:
2442         case MSR_KVM_WALL_CLOCK_NEW:
2443                 msr_info->data = vcpu->kvm->arch.wall_clock;
2444                 break;
2445         case MSR_KVM_SYSTEM_TIME:
2446         case MSR_KVM_SYSTEM_TIME_NEW:
2447                 msr_info->data = vcpu->arch.time;
2448                 break;
2449         case MSR_KVM_ASYNC_PF_EN:
2450                 msr_info->data = vcpu->arch.apf.msr_val;
2451                 break;
2452         case MSR_KVM_STEAL_TIME:
2453                 msr_info->data = vcpu->arch.st.msr_val;
2454                 break;
2455         case MSR_KVM_PV_EOI_EN:
2456                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457                 break;
2458         case MSR_IA32_P5_MC_ADDR:
2459         case MSR_IA32_P5_MC_TYPE:
2460         case MSR_IA32_MCG_CAP:
2461         case MSR_IA32_MCG_CTL:
2462         case MSR_IA32_MCG_STATUS:
2463         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465         case MSR_K7_CLK_CTL:
2466                 /*
2467                  * Provide expected ramp-up count for K7. All other
2468                  * are set to zero, indicating minimum divisors for
2469                  * every field.
2470                  *
2471                  * This prevents guest kernels on AMD host with CPU
2472                  * type 6, model 8 and higher from exploding due to
2473                  * the rdmsr failing.
2474                  */
2475                 msr_info->data = 0x20000000;
2476                 break;
2477         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479         case HV_X64_MSR_CRASH_CTL:
2480         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481                 return kvm_hv_get_msr_common(vcpu,
2482                                              msr_info->index, &msr_info->data);
2483                 break;
2484         case MSR_IA32_BBL_CR_CTL3:
2485                 /* This legacy MSR exists but isn't fully documented in current
2486                  * silicon.  It is however accessed by winxp in very narrow
2487                  * scenarios where it sets bit #19, itself documented as
2488                  * a "reserved" bit.  Best effort attempt to source coherent
2489                  * read data here should the balance of the register be
2490                  * interpreted by the guest:
2491                  *
2492                  * L2 cache control register 3: 64GB range, 256KB size,
2493                  * enabled, latency 0x1, configured
2494                  */
2495                 msr_info->data = 0xbe702111;
2496                 break;
2497         case MSR_AMD64_OSVW_ID_LENGTH:
2498                 if (!guest_cpuid_has_osvw(vcpu))
2499                         return 1;
2500                 msr_info->data = vcpu->arch.osvw.length;
2501                 break;
2502         case MSR_AMD64_OSVW_STATUS:
2503                 if (!guest_cpuid_has_osvw(vcpu))
2504                         return 1;
2505                 msr_info->data = vcpu->arch.osvw.status;
2506                 break;
2507         default:
2508                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510                 if (!ignore_msrs) {
2511                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512                                                msr_info->index);
2513                         return 1;
2514                 } else {
2515                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516                         msr_info->data = 0;
2517                 }
2518                 break;
2519         }
2520         return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525  * Read or write a bunch of msrs. All parameters are kernel addresses.
2526  *
2527  * @return number of msrs set successfully.
2528  */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530                     struct kvm_msr_entry *entries,
2531                     int (*do_msr)(struct kvm_vcpu *vcpu,
2532                                   unsigned index, u64 *data))
2533 {
2534         int i, idx;
2535
2536         idx = srcu_read_lock(&vcpu->kvm->srcu);
2537         for (i = 0; i < msrs->nmsrs; ++i)
2538                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539                         break;
2540         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542         return i;
2543 }
2544
2545 /*
2546  * Read or write a bunch of msrs. Parameters are user addresses.
2547  *
2548  * @return number of msrs set successfully.
2549  */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551                   int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                 unsigned index, u64 *data),
2553                   int writeback)
2554 {
2555         struct kvm_msrs msrs;
2556         struct kvm_msr_entry *entries;
2557         int r, n;
2558         unsigned size;
2559
2560         r = -EFAULT;
2561         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562                 goto out;
2563
2564         r = -E2BIG;
2565         if (msrs.nmsrs >= MAX_IO_MSRS)
2566                 goto out;
2567
2568         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569         entries = memdup_user(user_msrs->entries, size);
2570         if (IS_ERR(entries)) {
2571                 r = PTR_ERR(entries);
2572                 goto out;
2573         }
2574
2575         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576         if (r < 0)
2577                 goto out_free;
2578
2579         r = -EFAULT;
2580         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581                 goto out_free;
2582
2583         r = n;
2584
2585 out_free:
2586         kfree(entries);
2587 out:
2588         return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593         int r;
2594
2595         switch (ext) {
2596         case KVM_CAP_IRQCHIP:
2597         case KVM_CAP_HLT:
2598         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599         case KVM_CAP_SET_TSS_ADDR:
2600         case KVM_CAP_EXT_CPUID:
2601         case KVM_CAP_EXT_EMUL_CPUID:
2602         case KVM_CAP_CLOCKSOURCE:
2603         case KVM_CAP_PIT:
2604         case KVM_CAP_NOP_IO_DELAY:
2605         case KVM_CAP_MP_STATE:
2606         case KVM_CAP_SYNC_MMU:
2607         case KVM_CAP_USER_NMI:
2608         case KVM_CAP_REINJECT_CONTROL:
2609         case KVM_CAP_IRQ_INJECT_STATUS:
2610         case KVM_CAP_IOEVENTFD:
2611         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612         case KVM_CAP_PIT2:
2613         case KVM_CAP_PIT_STATE2:
2614         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615         case KVM_CAP_XEN_HVM:
2616         case KVM_CAP_VCPU_EVENTS:
2617         case KVM_CAP_HYPERV:
2618         case KVM_CAP_HYPERV_VAPIC:
2619         case KVM_CAP_HYPERV_SPIN:
2620         case KVM_CAP_HYPERV_SYNIC:
2621         case KVM_CAP_PCI_SEGMENT:
2622         case KVM_CAP_DEBUGREGS:
2623         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624         case KVM_CAP_XSAVE:
2625         case KVM_CAP_ASYNC_PF:
2626         case KVM_CAP_GET_TSC_KHZ:
2627         case KVM_CAP_KVMCLOCK_CTRL:
2628         case KVM_CAP_READONLY_MEM:
2629         case KVM_CAP_HYPERV_TIME:
2630         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631         case KVM_CAP_TSC_DEADLINE_TIMER:
2632         case KVM_CAP_ENABLE_CAP_VM:
2633         case KVM_CAP_DISABLE_QUIRKS:
2634         case KVM_CAP_SET_BOOT_CPU_ID:
2635         case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637         case KVM_CAP_ASSIGN_DEV_IRQ:
2638         case KVM_CAP_PCI_2_3:
2639 #endif
2640                 r = 1;
2641                 break;
2642         case KVM_CAP_ADJUST_CLOCK:
2643                 r = KVM_CLOCK_TSC_STABLE;
2644                 break;
2645         case KVM_CAP_X86_SMM:
2646                 /* SMBASE is usually relocated above 1M on modern chipsets,
2647                  * and SMM handlers might indeed rely on 4G segment limits,
2648                  * so do not report SMM to be available if real mode is
2649                  * emulated via vm86 mode.  Still, do not go to great lengths
2650                  * to avoid userspace's usage of the feature, because it is a
2651                  * fringe case that is not enabled except via specific settings
2652                  * of the module parameters.
2653                  */
2654                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655                 break;
2656         case KVM_CAP_COALESCED_MMIO:
2657                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658                 break;
2659         case KVM_CAP_VAPIC:
2660                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661                 break;
2662         case KVM_CAP_NR_VCPUS:
2663                 r = KVM_SOFT_MAX_VCPUS;
2664                 break;
2665         case KVM_CAP_MAX_VCPUS:
2666                 r = KVM_MAX_VCPUS;
2667                 break;
2668         case KVM_CAP_NR_MEMSLOTS:
2669                 r = KVM_USER_MEM_SLOTS;
2670                 break;
2671         case KVM_CAP_PV_MMU:    /* obsolete */
2672                 r = 0;
2673                 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675         case KVM_CAP_IOMMU:
2676                 r = iommu_present(&pci_bus_type);
2677                 break;
2678 #endif
2679         case KVM_CAP_MCE:
2680                 r = KVM_MAX_MCE_BANKS;
2681                 break;
2682         case KVM_CAP_XCRS:
2683                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684                 break;
2685         case KVM_CAP_TSC_CONTROL:
2686                 r = kvm_has_tsc_control;
2687                 break;
2688         case KVM_CAP_X2APIC_API:
2689                 r = KVM_X2APIC_API_VALID_FLAGS;
2690                 break;
2691         default:
2692                 r = 0;
2693                 break;
2694         }
2695         return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700                         unsigned int ioctl, unsigned long arg)
2701 {
2702         void __user *argp = (void __user *)arg;
2703         long r;
2704
2705         switch (ioctl) {
2706         case KVM_GET_MSR_INDEX_LIST: {
2707                 struct kvm_msr_list __user *user_msr_list = argp;
2708                 struct kvm_msr_list msr_list;
2709                 unsigned n;
2710
2711                 r = -EFAULT;
2712                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713                         goto out;
2714                 n = msr_list.nmsrs;
2715                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717                         goto out;
2718                 r = -E2BIG;
2719                 if (n < msr_list.nmsrs)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723                                  num_msrs_to_save * sizeof(u32)))
2724                         goto out;
2725                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726                                  &emulated_msrs,
2727                                  num_emulated_msrs * sizeof(u32)))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_GET_SUPPORTED_CPUID:
2733         case KVM_GET_EMULATED_CPUID: {
2734                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735                 struct kvm_cpuid2 cpuid;
2736
2737                 r = -EFAULT;
2738                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739                         goto out;
2740
2741                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742                                             ioctl);
2743                 if (r)
2744                         goto out;
2745
2746                 r = -EFAULT;
2747                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748                         goto out;
2749                 r = 0;
2750                 break;
2751         }
2752         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753                 r = -EFAULT;
2754                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755                                  sizeof(kvm_mce_cap_supported)))
2756                         goto out;
2757                 r = 0;
2758                 break;
2759         }
2760         default:
2761                 r = -EINVAL;
2762         }
2763 out:
2764         return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769         wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784         /* Address WBINVD may be executed by guest */
2785         if (need_emulate_wbinvd(vcpu)) {
2786                 if (kvm_x86_ops->has_wbinvd_exit())
2787                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789                         smp_call_function_single(vcpu->cpu,
2790                                         wbinvd_ipi, NULL, 1);
2791         }
2792
2793         kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795         /* Apply any externally detected TSC adjustments (due to suspend) */
2796         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798                 vcpu->arch.tsc_offset_adjustment = 0;
2799                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800         }
2801
2802         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804                                 rdtsc() - vcpu->arch.last_host_tsc;
2805                 if (tsc_delta < 0)
2806                         mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808                 if (check_tsc_unstable()) {
2809                         u64 offset = kvm_compute_tsc_offset(vcpu,
2810                                                 vcpu->arch.last_guest_tsc);
2811                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2812                         vcpu->arch.tsc_catchup = 1;
2813                 }
2814                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815                                 kvm_x86_ops->set_hv_timer(vcpu,
2816                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2817                         kvm_lapic_switch_to_sw_timer(vcpu);
2818                 /*
2819                  * On a host with synchronized TSC, there is no need to update
2820                  * kvmclock on vcpu->cpu migration
2821                  */
2822                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824                 if (vcpu->cpu != cpu)
2825                         kvm_migrate_timers(vcpu);
2826                 vcpu->cpu = cpu;
2827         }
2828
2829         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835                 return;
2836
2837         vcpu->arch.st.steal.preempted = 1;
2838
2839         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840                         &vcpu->arch.st.steal.preempted,
2841                         offsetof(struct kvm_steal_time, preempted),
2842                         sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847         int idx;
2848         /*
2849          * Disable page faults because we're in atomic context here.
2850          * kvm_write_guest_offset_cached() would call might_fault()
2851          * that relies on pagefault_disable() to tell if there's a
2852          * bug. NOTE: the write to guest memory may not go through if
2853          * during postcopy live migration or if there's heavy guest
2854          * paging.
2855          */
2856         pagefault_disable();
2857         /*
2858          * kvm_memslots() will be called by
2859          * kvm_write_guest_offset_cached() so take the srcu lock.
2860          */
2861         idx = srcu_read_lock(&vcpu->kvm->srcu);
2862         kvm_steal_time_set_preempted(vcpu);
2863         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2864         pagefault_enable();
2865         kvm_x86_ops->vcpu_put(vcpu);
2866         kvm_put_guest_fpu(vcpu);
2867         vcpu->arch.last_host_tsc = rdtsc();
2868 }
2869
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2871                                     struct kvm_lapic_state *s)
2872 {
2873         if (vcpu->arch.apicv_active)
2874                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2875
2876         return kvm_apic_get_state(vcpu, s);
2877 }
2878
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2880                                     struct kvm_lapic_state *s)
2881 {
2882         int r;
2883
2884         r = kvm_apic_set_state(vcpu, s);
2885         if (r)
2886                 return r;
2887         update_cr8_intercept(vcpu);
2888
2889         return 0;
2890 }
2891
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2893 {
2894         return (!lapic_in_kernel(vcpu) ||
2895                 kvm_apic_accept_pic_intr(vcpu));
2896 }
2897
2898 /*
2899  * if userspace requested an interrupt window, check that the
2900  * interrupt window is open.
2901  *
2902  * No need to exit to userspace if we already have an interrupt queued.
2903  */
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2905 {
2906         return kvm_arch_interrupt_allowed(vcpu) &&
2907                 !kvm_cpu_has_interrupt(vcpu) &&
2908                 !kvm_event_needs_reinjection(vcpu) &&
2909                 kvm_cpu_accept_dm_intr(vcpu);
2910 }
2911
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2913                                     struct kvm_interrupt *irq)
2914 {
2915         if (irq->irq >= KVM_NR_INTERRUPTS)
2916                 return -EINVAL;
2917
2918         if (!irqchip_in_kernel(vcpu->kvm)) {
2919                 kvm_queue_interrupt(vcpu, irq->irq, false);
2920                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2921                 return 0;
2922         }
2923
2924         /*
2925          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926          * fail for in-kernel 8259.
2927          */
2928         if (pic_in_kernel(vcpu->kvm))
2929                 return -ENXIO;
2930
2931         if (vcpu->arch.pending_external_vector != -1)
2932                 return -EEXIST;
2933
2934         vcpu->arch.pending_external_vector = irq->irq;
2935         kvm_make_request(KVM_REQ_EVENT, vcpu);
2936         return 0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2940 {
2941         kvm_inject_nmi(vcpu);
2942
2943         return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2947 {
2948         kvm_make_request(KVM_REQ_SMI, vcpu);
2949
2950         return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954                                            struct kvm_tpr_access_ctl *tac)
2955 {
2956         if (tac->flags)
2957                 return -EINVAL;
2958         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959         return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963                                         u64 mcg_cap)
2964 {
2965         int r;
2966         unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968         r = -EINVAL;
2969         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970                 goto out;
2971         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2972                 goto out;
2973         r = 0;
2974         vcpu->arch.mcg_cap = mcg_cap;
2975         /* Init IA32_MCG_CTL to all 1s */
2976         if (mcg_cap & MCG_CTL_P)
2977                 vcpu->arch.mcg_ctl = ~(u64)0;
2978         /* Init IA32_MCi_CTL to all 1s */
2979         for (bank = 0; bank < bank_num; bank++)
2980                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981
2982         if (kvm_x86_ops->setup_mce)
2983                 kvm_x86_ops->setup_mce(vcpu);
2984 out:
2985         return r;
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2989                                       struct kvm_x86_mce *mce)
2990 {
2991         u64 mcg_cap = vcpu->arch.mcg_cap;
2992         unsigned bank_num = mcg_cap & 0xff;
2993         u64 *banks = vcpu->arch.mce_banks;
2994
2995         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2996                 return -EINVAL;
2997         /*
2998          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999          * reporting is disabled
3000          */
3001         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3002             vcpu->arch.mcg_ctl != ~(u64)0)
3003                 return 0;
3004         banks += 4 * mce->bank;
3005         /*
3006          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007          * reporting is disabled for the bank
3008          */
3009         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3010                 return 0;
3011         if (mce->status & MCI_STATUS_UC) {
3012                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3013                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3014                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3015                         return 0;
3016                 }
3017                 if (banks[1] & MCI_STATUS_VAL)
3018                         mce->status |= MCI_STATUS_OVER;
3019                 banks[2] = mce->addr;
3020                 banks[3] = mce->misc;
3021                 vcpu->arch.mcg_status = mce->mcg_status;
3022                 banks[1] = mce->status;
3023                 kvm_queue_exception(vcpu, MC_VECTOR);
3024         } else if (!(banks[1] & MCI_STATUS_VAL)
3025                    || !(banks[1] & MCI_STATUS_UC)) {
3026                 if (banks[1] & MCI_STATUS_VAL)
3027                         mce->status |= MCI_STATUS_OVER;
3028                 banks[2] = mce->addr;
3029                 banks[3] = mce->misc;
3030                 banks[1] = mce->status;
3031         } else
3032                 banks[1] |= MCI_STATUS_OVER;
3033         return 0;
3034 }
3035
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3037                                                struct kvm_vcpu_events *events)
3038 {
3039         process_nmi(vcpu);
3040         events->exception.injected =
3041                 vcpu->arch.exception.pending &&
3042                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3043         events->exception.nr = vcpu->arch.exception.nr;
3044         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3045         events->exception.pad = 0;
3046         events->exception.error_code = vcpu->arch.exception.error_code;
3047
3048         events->interrupt.injected =
3049                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3050         events->interrupt.nr = vcpu->arch.interrupt.nr;
3051         events->interrupt.soft = 0;
3052         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3053
3054         events->nmi.injected = vcpu->arch.nmi_injected;
3055         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3056         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3057         events->nmi.pad = 0;
3058
3059         events->sipi_vector = 0; /* never valid when reporting to user space */
3060
3061         events->smi.smm = is_smm(vcpu);
3062         events->smi.pending = vcpu->arch.smi_pending;
3063         events->smi.smm_inside_nmi =
3064                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3065         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3066
3067         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068                          | KVM_VCPUEVENT_VALID_SHADOW
3069                          | KVM_VCPUEVENT_VALID_SMM);
3070         memset(&events->reserved, 0, sizeof(events->reserved));
3071 }
3072
3073 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3074
3075 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3076                                               struct kvm_vcpu_events *events)
3077 {
3078         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3079                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3080                               | KVM_VCPUEVENT_VALID_SHADOW
3081                               | KVM_VCPUEVENT_VALID_SMM))
3082                 return -EINVAL;
3083
3084         if (events->exception.injected &&
3085             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3086                 return -EINVAL;
3087
3088         process_nmi(vcpu);
3089         vcpu->arch.exception.pending = events->exception.injected;
3090         vcpu->arch.exception.nr = events->exception.nr;
3091         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3092         vcpu->arch.exception.error_code = events->exception.error_code;
3093
3094         vcpu->arch.interrupt.pending = events->interrupt.injected;
3095         vcpu->arch.interrupt.nr = events->interrupt.nr;
3096         vcpu->arch.interrupt.soft = events->interrupt.soft;
3097         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3098                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3099                                                   events->interrupt.shadow);
3100
3101         vcpu->arch.nmi_injected = events->nmi.injected;
3102         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3103                 vcpu->arch.nmi_pending = events->nmi.pending;
3104         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3105
3106         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3107             lapic_in_kernel(vcpu))
3108                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3109
3110         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3111                 u32 hflags = vcpu->arch.hflags;
3112                 if (events->smi.smm)
3113                         hflags |= HF_SMM_MASK;
3114                 else
3115                         hflags &= ~HF_SMM_MASK;
3116                 kvm_set_hflags(vcpu, hflags);
3117
3118                 vcpu->arch.smi_pending = events->smi.pending;
3119                 if (events->smi.smm_inside_nmi)
3120                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3121                 else
3122                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3123                 if (lapic_in_kernel(vcpu)) {
3124                         if (events->smi.latched_init)
3125                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3126                         else
3127                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3128                 }
3129         }
3130
3131         kvm_make_request(KVM_REQ_EVENT, vcpu);
3132
3133         return 0;
3134 }
3135
3136 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3137                                              struct kvm_debugregs *dbgregs)
3138 {
3139         unsigned long val;
3140
3141         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3142         kvm_get_dr(vcpu, 6, &val);
3143         dbgregs->dr6 = val;
3144         dbgregs->dr7 = vcpu->arch.dr7;
3145         dbgregs->flags = 0;
3146         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3147 }
3148
3149 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3150                                             struct kvm_debugregs *dbgregs)
3151 {
3152         if (dbgregs->flags)
3153                 return -EINVAL;
3154
3155         if (dbgregs->dr6 & ~0xffffffffull)
3156                 return -EINVAL;
3157         if (dbgregs->dr7 & ~0xffffffffull)
3158                 return -EINVAL;
3159
3160         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3161         kvm_update_dr0123(vcpu);
3162         vcpu->arch.dr6 = dbgregs->dr6;
3163         kvm_update_dr6(vcpu);
3164         vcpu->arch.dr7 = dbgregs->dr7;
3165         kvm_update_dr7(vcpu);
3166
3167         return 0;
3168 }
3169
3170 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3171
3172 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3173 {
3174         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3175         u64 xstate_bv = xsave->header.xfeatures;
3176         u64 valid;
3177
3178         /*
3179          * Copy legacy XSAVE area, to avoid complications with CPUID
3180          * leaves 0 and 1 in the loop below.
3181          */
3182         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3183
3184         /* Set XSTATE_BV */
3185         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3186
3187         /*
3188          * Copy each region from the possibly compacted offset to the
3189          * non-compacted offset.
3190          */
3191         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3192         while (valid) {
3193                 u64 feature = valid & -valid;
3194                 int index = fls64(feature) - 1;
3195                 void *src = get_xsave_addr(xsave, feature);
3196
3197                 if (src) {
3198                         u32 size, offset, ecx, edx;
3199                         cpuid_count(XSTATE_CPUID, index,
3200                                     &size, &offset, &ecx, &edx);
3201                         memcpy(dest + offset, src, size);
3202                 }
3203
3204                 valid -= feature;
3205         }
3206 }
3207
3208 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3209 {
3210         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3211         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3212         u64 valid;
3213
3214         /*
3215          * Copy legacy XSAVE area, to avoid complications with CPUID
3216          * leaves 0 and 1 in the loop below.
3217          */
3218         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3219
3220         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3221         xsave->header.xfeatures = xstate_bv;
3222         if (boot_cpu_has(X86_FEATURE_XSAVES))
3223                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3224
3225         /*
3226          * Copy each region from the non-compacted offset to the
3227          * possibly compacted offset.
3228          */
3229         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3230         while (valid) {
3231                 u64 feature = valid & -valid;
3232                 int index = fls64(feature) - 1;
3233                 void *dest = get_xsave_addr(xsave, feature);
3234
3235                 if (dest) {
3236                         u32 size, offset, ecx, edx;
3237                         cpuid_count(XSTATE_CPUID, index,
3238                                     &size, &offset, &ecx, &edx);
3239                         memcpy(dest, src + offset, size);
3240                 }
3241
3242                 valid -= feature;
3243         }
3244 }
3245
3246 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3247                                          struct kvm_xsave *guest_xsave)
3248 {
3249         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3250                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3251                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3252         } else {
3253                 memcpy(guest_xsave->region,
3254                         &vcpu->arch.guest_fpu.state.fxsave,
3255                         sizeof(struct fxregs_state));
3256                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3257                         XFEATURE_MASK_FPSSE;
3258         }
3259 }
3260
3261 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3262                                         struct kvm_xsave *guest_xsave)
3263 {
3264         u64 xstate_bv =
3265                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3266
3267         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3268                 /*
3269                  * Here we allow setting states that are not present in
3270                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3271                  * with old userspace.
3272                  */
3273                 if (xstate_bv & ~kvm_supported_xcr0())
3274                         return -EINVAL;
3275                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3276         } else {
3277                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3278                         return -EINVAL;
3279                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3280                         guest_xsave->region, sizeof(struct fxregs_state));
3281         }
3282         return 0;
3283 }
3284
3285 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3286                                         struct kvm_xcrs *guest_xcrs)
3287 {
3288         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3289                 guest_xcrs->nr_xcrs = 0;
3290                 return;
3291         }
3292
3293         guest_xcrs->nr_xcrs = 1;
3294         guest_xcrs->flags = 0;
3295         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3296         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3297 }
3298
3299 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3300                                        struct kvm_xcrs *guest_xcrs)
3301 {
3302         int i, r = 0;
3303
3304         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3305                 return -EINVAL;
3306
3307         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3308                 return -EINVAL;
3309
3310         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3311                 /* Only support XCR0 currently */
3312                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3313                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3314                                 guest_xcrs->xcrs[i].value);
3315                         break;
3316                 }
3317         if (r)
3318                 r = -EINVAL;
3319         return r;
3320 }
3321
3322 /*
3323  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3324  * stopped by the hypervisor.  This function will be called from the host only.
3325  * EINVAL is returned when the host attempts to set the flag for a guest that
3326  * does not support pv clocks.
3327  */
3328 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3329 {
3330         if (!vcpu->arch.pv_time_enabled)
3331                 return -EINVAL;
3332         vcpu->arch.pvclock_set_guest_stopped_request = true;
3333         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3334         return 0;
3335 }
3336
3337 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3338                                      struct kvm_enable_cap *cap)
3339 {
3340         if (cap->flags)
3341                 return -EINVAL;
3342
3343         switch (cap->cap) {
3344         case KVM_CAP_HYPERV_SYNIC:
3345                 return kvm_hv_activate_synic(vcpu);
3346         default:
3347                 return -EINVAL;
3348         }
3349 }
3350
3351 long kvm_arch_vcpu_ioctl(struct file *filp,
3352                          unsigned int ioctl, unsigned long arg)
3353 {
3354         struct kvm_vcpu *vcpu = filp->private_data;
3355         void __user *argp = (void __user *)arg;
3356         int r;
3357         union {
3358                 struct kvm_lapic_state *lapic;
3359                 struct kvm_xsave *xsave;
3360                 struct kvm_xcrs *xcrs;
3361                 void *buffer;
3362         } u;
3363
3364         u.buffer = NULL;
3365         switch (ioctl) {
3366         case KVM_GET_LAPIC: {
3367                 r = -EINVAL;
3368                 if (!lapic_in_kernel(vcpu))
3369                         goto out;
3370                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3371
3372                 r = -ENOMEM;
3373                 if (!u.lapic)
3374                         goto out;
3375                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3376                 if (r)
3377                         goto out;
3378                 r = -EFAULT;
3379                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3380                         goto out;
3381                 r = 0;
3382                 break;
3383         }
3384         case KVM_SET_LAPIC: {
3385                 r = -EINVAL;
3386                 if (!lapic_in_kernel(vcpu))
3387                         goto out;
3388                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3389                 if (IS_ERR(u.lapic))
3390                         return PTR_ERR(u.lapic);
3391
3392                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3393                 break;
3394         }
3395         case KVM_INTERRUPT: {
3396                 struct kvm_interrupt irq;
3397
3398                 r = -EFAULT;
3399                 if (copy_from_user(&irq, argp, sizeof irq))
3400                         goto out;
3401                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3402                 break;
3403         }
3404         case KVM_NMI: {
3405                 r = kvm_vcpu_ioctl_nmi(vcpu);
3406                 break;
3407         }
3408         case KVM_SMI: {
3409                 r = kvm_vcpu_ioctl_smi(vcpu);
3410                 break;
3411         }
3412         case KVM_SET_CPUID: {
3413                 struct kvm_cpuid __user *cpuid_arg = argp;
3414                 struct kvm_cpuid cpuid;
3415
3416                 r = -EFAULT;
3417                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3418                         goto out;
3419                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3420                 break;
3421         }
3422         case KVM_SET_CPUID2: {
3423                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3424                 struct kvm_cpuid2 cpuid;
3425
3426                 r = -EFAULT;
3427                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3428                         goto out;
3429                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3430                                               cpuid_arg->entries);
3431                 break;
3432         }
3433         case KVM_GET_CPUID2: {
3434                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3435                 struct kvm_cpuid2 cpuid;
3436
3437                 r = -EFAULT;
3438                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3439                         goto out;
3440                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3441                                               cpuid_arg->entries);
3442                 if (r)
3443                         goto out;
3444                 r = -EFAULT;
3445                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3446                         goto out;
3447                 r = 0;
3448                 break;
3449         }
3450         case KVM_GET_MSRS:
3451                 r = msr_io(vcpu, argp, do_get_msr, 1);
3452                 break;
3453         case KVM_SET_MSRS:
3454                 r = msr_io(vcpu, argp, do_set_msr, 0);
3455                 break;
3456         case KVM_TPR_ACCESS_REPORTING: {
3457                 struct kvm_tpr_access_ctl tac;
3458
3459                 r = -EFAULT;
3460                 if (copy_from_user(&tac, argp, sizeof tac))
3461                         goto out;
3462                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3463                 if (r)
3464                         goto out;
3465                 r = -EFAULT;
3466                 if (copy_to_user(argp, &tac, sizeof tac))
3467                         goto out;
3468                 r = 0;
3469                 break;
3470         };
3471         case KVM_SET_VAPIC_ADDR: {
3472                 struct kvm_vapic_addr va;
3473                 int idx;
3474
3475                 r = -EINVAL;
3476                 if (!lapic_in_kernel(vcpu))
3477                         goto out;
3478                 r = -EFAULT;
3479                 if (copy_from_user(&va, argp, sizeof va))
3480                         goto out;
3481                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3482                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3483                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3484                 break;
3485         }
3486         case KVM_X86_SETUP_MCE: {
3487                 u64 mcg_cap;
3488
3489                 r = -EFAULT;
3490                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3491                         goto out;
3492                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3493                 break;
3494         }
3495         case KVM_X86_SET_MCE: {
3496                 struct kvm_x86_mce mce;
3497
3498                 r = -EFAULT;
3499                 if (copy_from_user(&mce, argp, sizeof mce))
3500                         goto out;
3501                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3502                 break;
3503         }
3504         case KVM_GET_VCPU_EVENTS: {
3505                 struct kvm_vcpu_events events;
3506
3507                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3508
3509                 r = -EFAULT;
3510                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3511                         break;
3512                 r = 0;
3513                 break;
3514         }
3515         case KVM_SET_VCPU_EVENTS: {
3516                 struct kvm_vcpu_events events;
3517
3518                 r = -EFAULT;
3519                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3520                         break;
3521
3522                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3523                 break;
3524         }
3525         case KVM_GET_DEBUGREGS: {
3526                 struct kvm_debugregs dbgregs;
3527
3528                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3529
3530                 r = -EFAULT;
3531                 if (copy_to_user(argp, &dbgregs,
3532                                  sizeof(struct kvm_debugregs)))
3533                         break;
3534                 r = 0;
3535                 break;
3536         }
3537         case KVM_SET_DEBUGREGS: {
3538                 struct kvm_debugregs dbgregs;
3539
3540                 r = -EFAULT;
3541                 if (copy_from_user(&dbgregs, argp,
3542                                    sizeof(struct kvm_debugregs)))
3543                         break;
3544
3545                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3546                 break;
3547         }
3548         case KVM_GET_XSAVE: {
3549                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3550                 r = -ENOMEM;
3551                 if (!u.xsave)
3552                         break;
3553
3554                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3555
3556                 r = -EFAULT;
3557                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3558                         break;
3559                 r = 0;
3560                 break;
3561         }
3562         case KVM_SET_XSAVE: {
3563                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3564                 if (IS_ERR(u.xsave))
3565                         return PTR_ERR(u.xsave);
3566
3567                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3568                 break;
3569         }
3570         case KVM_GET_XCRS: {
3571                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3572                 r = -ENOMEM;
3573                 if (!u.xcrs)
3574                         break;
3575
3576                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3577
3578                 r = -EFAULT;
3579                 if (copy_to_user(argp, u.xcrs,
3580                                  sizeof(struct kvm_xcrs)))
3581                         break;
3582                 r = 0;
3583                 break;
3584         }
3585         case KVM_SET_XCRS: {
3586                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3587                 if (IS_ERR(u.xcrs))
3588                         return PTR_ERR(u.xcrs);
3589
3590                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3591                 break;
3592         }
3593         case KVM_SET_TSC_KHZ: {
3594                 u32 user_tsc_khz;
3595
3596                 r = -EINVAL;
3597                 user_tsc_khz = (u32)arg;
3598
3599                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3600                         goto out;
3601
3602                 if (user_tsc_khz == 0)
3603                         user_tsc_khz = tsc_khz;
3604
3605                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3606                         r = 0;
3607
3608                 goto out;
3609         }
3610         case KVM_GET_TSC_KHZ: {
3611                 r = vcpu->arch.virtual_tsc_khz;
3612                 goto out;
3613         }
3614         case KVM_KVMCLOCK_CTRL: {
3615                 r = kvm_set_guest_paused(vcpu);
3616                 goto out;
3617         }
3618         case KVM_ENABLE_CAP: {
3619                 struct kvm_enable_cap cap;
3620
3621                 r = -EFAULT;
3622                 if (copy_from_user(&cap, argp, sizeof(cap)))
3623                         goto out;
3624                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3625                 break;
3626         }
3627         default:
3628                 r = -EINVAL;
3629         }
3630 out:
3631         kfree(u.buffer);
3632         return r;
3633 }
3634
3635 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3636 {
3637         return VM_FAULT_SIGBUS;
3638 }
3639
3640 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3641 {
3642         int ret;
3643
3644         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3645                 return -EINVAL;
3646         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3647         return ret;
3648 }
3649
3650 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3651                                               u64 ident_addr)
3652 {
3653         kvm->arch.ept_identity_map_addr = ident_addr;
3654         return 0;
3655 }
3656
3657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3658                                           u32 kvm_nr_mmu_pages)
3659 {
3660         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3661                 return -EINVAL;
3662
3663         mutex_lock(&kvm->slots_lock);
3664
3665         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3666         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3667
3668         mutex_unlock(&kvm->slots_lock);
3669         return 0;
3670 }
3671
3672 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3673 {
3674         return kvm->arch.n_max_mmu_pages;
3675 }
3676
3677 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3678 {
3679         int r;
3680
3681         r = 0;
3682         switch (chip->chip_id) {
3683         case KVM_IRQCHIP_PIC_MASTER:
3684                 memcpy(&chip->chip.pic,
3685                         &pic_irqchip(kvm)->pics[0],
3686                         sizeof(struct kvm_pic_state));
3687                 break;
3688         case KVM_IRQCHIP_PIC_SLAVE:
3689                 memcpy(&chip->chip.pic,
3690                         &pic_irqchip(kvm)->pics[1],
3691                         sizeof(struct kvm_pic_state));
3692                 break;
3693         case KVM_IRQCHIP_IOAPIC:
3694                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3695                 break;
3696         default:
3697                 r = -EINVAL;
3698                 break;
3699         }
3700         return r;
3701 }
3702
3703 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3704 {
3705         int r;
3706
3707         r = 0;
3708         switch (chip->chip_id) {
3709         case KVM_IRQCHIP_PIC_MASTER:
3710                 spin_lock(&pic_irqchip(kvm)->lock);
3711                 memcpy(&pic_irqchip(kvm)->pics[0],
3712                         &chip->chip.pic,
3713                         sizeof(struct kvm_pic_state));
3714                 spin_unlock(&pic_irqchip(kvm)->lock);
3715                 break;
3716         case KVM_IRQCHIP_PIC_SLAVE:
3717                 spin_lock(&pic_irqchip(kvm)->lock);
3718                 memcpy(&pic_irqchip(kvm)->pics[1],
3719                         &chip->chip.pic,
3720                         sizeof(struct kvm_pic_state));
3721                 spin_unlock(&pic_irqchip(kvm)->lock);
3722                 break;
3723         case KVM_IRQCHIP_IOAPIC:
3724                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3725                 break;
3726         default:
3727                 r = -EINVAL;
3728                 break;
3729         }
3730         kvm_pic_update_irq(pic_irqchip(kvm));
3731         return r;
3732 }
3733
3734 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3735 {
3736         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3737
3738         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3739
3740         mutex_lock(&kps->lock);
3741         memcpy(ps, &kps->channels, sizeof(*ps));
3742         mutex_unlock(&kps->lock);
3743         return 0;
3744 }
3745
3746 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3747 {
3748         int i;
3749         struct kvm_pit *pit = kvm->arch.vpit;
3750
3751         mutex_lock(&pit->pit_state.lock);
3752         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3753         for (i = 0; i < 3; i++)
3754                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3755         mutex_unlock(&pit->pit_state.lock);
3756         return 0;
3757 }
3758
3759 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3760 {
3761         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3762         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3763                 sizeof(ps->channels));
3764         ps->flags = kvm->arch.vpit->pit_state.flags;
3765         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3766         memset(&ps->reserved, 0, sizeof(ps->reserved));
3767         return 0;
3768 }
3769
3770 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3771 {
3772         int start = 0;
3773         int i;
3774         u32 prev_legacy, cur_legacy;
3775         struct kvm_pit *pit = kvm->arch.vpit;
3776
3777         mutex_lock(&pit->pit_state.lock);
3778         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3779         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3780         if (!prev_legacy && cur_legacy)
3781                 start = 1;
3782         memcpy(&pit->pit_state.channels, &ps->channels,
3783                sizeof(pit->pit_state.channels));
3784         pit->pit_state.flags = ps->flags;
3785         for (i = 0; i < 3; i++)
3786                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3787                                    start && i == 0);
3788         mutex_unlock(&pit->pit_state.lock);
3789         return 0;
3790 }
3791
3792 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3793                                  struct kvm_reinject_control *control)
3794 {
3795         struct kvm_pit *pit = kvm->arch.vpit;
3796
3797         if (!pit)
3798                 return -ENXIO;
3799
3800         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3801          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3802          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3803          */
3804         mutex_lock(&pit->pit_state.lock);
3805         kvm_pit_set_reinject(pit, control->pit_reinject);
3806         mutex_unlock(&pit->pit_state.lock);
3807
3808         return 0;
3809 }
3810
3811 /**
3812  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3813  * @kvm: kvm instance
3814  * @log: slot id and address to which we copy the log
3815  *
3816  * Steps 1-4 below provide general overview of dirty page logging. See
3817  * kvm_get_dirty_log_protect() function description for additional details.
3818  *
3819  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3820  * always flush the TLB (step 4) even if previous step failed  and the dirty
3821  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3822  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3823  * writes will be marked dirty for next log read.
3824  *
3825  *   1. Take a snapshot of the bit and clear it if needed.
3826  *   2. Write protect the corresponding page.
3827  *   3. Copy the snapshot to the userspace.
3828  *   4. Flush TLB's if needed.
3829  */
3830 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3831 {
3832         bool is_dirty = false;
3833         int r;
3834
3835         mutex_lock(&kvm->slots_lock);
3836
3837         /*
3838          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3839          */
3840         if (kvm_x86_ops->flush_log_dirty)
3841                 kvm_x86_ops->flush_log_dirty(kvm);
3842
3843         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3844
3845         /*
3846          * All the TLBs can be flushed out of mmu lock, see the comments in
3847          * kvm_mmu_slot_remove_write_access().
3848          */
3849         lockdep_assert_held(&kvm->slots_lock);
3850         if (is_dirty)
3851                 kvm_flush_remote_tlbs(kvm);
3852
3853         mutex_unlock(&kvm->slots_lock);
3854         return r;
3855 }
3856
3857 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3858                         bool line_status)
3859 {
3860         if (!irqchip_in_kernel(kvm))
3861                 return -ENXIO;
3862
3863         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3864                                         irq_event->irq, irq_event->level,
3865                                         line_status);
3866         return 0;
3867 }
3868
3869 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3870                                    struct kvm_enable_cap *cap)
3871 {
3872         int r;
3873
3874         if (cap->flags)
3875                 return -EINVAL;
3876
3877         switch (cap->cap) {
3878         case KVM_CAP_DISABLE_QUIRKS:
3879                 kvm->arch.disabled_quirks = cap->args[0];
3880                 r = 0;
3881                 break;
3882         case KVM_CAP_SPLIT_IRQCHIP: {
3883                 mutex_lock(&kvm->lock);
3884                 r = -EINVAL;
3885                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3886                         goto split_irqchip_unlock;
3887                 r = -EEXIST;
3888                 if (irqchip_in_kernel(kvm))
3889                         goto split_irqchip_unlock;
3890                 if (kvm->created_vcpus)
3891                         goto split_irqchip_unlock;
3892                 r = kvm_setup_empty_irq_routing(kvm);
3893                 if (r)
3894                         goto split_irqchip_unlock;
3895                 /* Pairs with irqchip_in_kernel. */
3896                 smp_wmb();
3897                 kvm->arch.irqchip_split = true;
3898                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3899                 r = 0;
3900 split_irqchip_unlock:
3901                 mutex_unlock(&kvm->lock);
3902                 break;
3903         }
3904         case KVM_CAP_X2APIC_API:
3905                 r = -EINVAL;
3906                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3907                         break;
3908
3909                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3910                         kvm->arch.x2apic_format = true;
3911                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3912                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3913
3914                 r = 0;
3915                 break;
3916         default:
3917                 r = -EINVAL;
3918                 break;
3919         }
3920         return r;
3921 }
3922
3923 long kvm_arch_vm_ioctl(struct file *filp,
3924                        unsigned int ioctl, unsigned long arg)
3925 {
3926         struct kvm *kvm = filp->private_data;
3927         void __user *argp = (void __user *)arg;
3928         int r = -ENOTTY;
3929         /*
3930          * This union makes it completely explicit to gcc-3.x
3931          * that these two variables' stack usage should be
3932          * combined, not added together.
3933          */
3934         union {
3935                 struct kvm_pit_state ps;
3936                 struct kvm_pit_state2 ps2;
3937                 struct kvm_pit_config pit_config;
3938         } u;
3939
3940         switch (ioctl) {
3941         case KVM_SET_TSS_ADDR:
3942                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3943                 break;
3944         case KVM_SET_IDENTITY_MAP_ADDR: {
3945                 u64 ident_addr;
3946
3947                 r = -EFAULT;
3948                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3949                         goto out;
3950                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3951                 break;
3952         }
3953         case KVM_SET_NR_MMU_PAGES:
3954                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3955                 break;
3956         case KVM_GET_NR_MMU_PAGES:
3957                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3958                 break;
3959         case KVM_CREATE_IRQCHIP: {
3960                 struct kvm_pic *vpic;
3961
3962                 mutex_lock(&kvm->lock);
3963                 r = -EEXIST;
3964                 if (kvm->arch.vpic)
3965                         goto create_irqchip_unlock;
3966                 r = -EINVAL;
3967                 if (kvm->created_vcpus)
3968                         goto create_irqchip_unlock;
3969                 r = -ENOMEM;
3970                 vpic = kvm_create_pic(kvm);
3971                 if (vpic) {
3972                         r = kvm_ioapic_init(kvm);
3973                         if (r) {
3974                                 mutex_lock(&kvm->slots_lock);
3975                                 kvm_destroy_pic(vpic);
3976                                 mutex_unlock(&kvm->slots_lock);
3977                                 goto create_irqchip_unlock;
3978                         }
3979                 } else
3980                         goto create_irqchip_unlock;
3981                 r = kvm_setup_default_irq_routing(kvm);
3982                 if (r) {
3983                         mutex_lock(&kvm->slots_lock);
3984                         mutex_lock(&kvm->irq_lock);
3985                         kvm_ioapic_destroy(kvm);
3986                         kvm_destroy_pic(vpic);
3987                         mutex_unlock(&kvm->irq_lock);
3988                         mutex_unlock(&kvm->slots_lock);
3989                         goto create_irqchip_unlock;
3990                 }
3991                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3992                 smp_wmb();
3993                 kvm->arch.vpic = vpic;
3994         create_irqchip_unlock:
3995                 mutex_unlock(&kvm->lock);
3996                 break;
3997         }
3998         case KVM_CREATE_PIT:
3999                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4000                 goto create_pit;
4001         case KVM_CREATE_PIT2:
4002                 r = -EFAULT;
4003                 if (copy_from_user(&u.pit_config, argp,
4004                                    sizeof(struct kvm_pit_config)))
4005                         goto out;
4006         create_pit:
4007                 mutex_lock(&kvm->lock);
4008                 r = -EEXIST;
4009                 if (kvm->arch.vpit)
4010                         goto create_pit_unlock;
4011                 r = -ENOMEM;
4012                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4013                 if (kvm->arch.vpit)
4014                         r = 0;
4015         create_pit_unlock:
4016                 mutex_unlock(&kvm->lock);
4017                 break;
4018         case KVM_GET_IRQCHIP: {
4019                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4020                 struct kvm_irqchip *chip;
4021
4022                 chip = memdup_user(argp, sizeof(*chip));
4023                 if (IS_ERR(chip)) {
4024                         r = PTR_ERR(chip);
4025                         goto out;
4026                 }
4027
4028                 r = -ENXIO;
4029                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4030                         goto get_irqchip_out;
4031                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4032                 if (r)
4033                         goto get_irqchip_out;
4034                 r = -EFAULT;
4035                 if (copy_to_user(argp, chip, sizeof *chip))
4036                         goto get_irqchip_out;
4037                 r = 0;
4038         get_irqchip_out:
4039                 kfree(chip);
4040                 break;
4041         }
4042         case KVM_SET_IRQCHIP: {
4043                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4044                 struct kvm_irqchip *chip;
4045
4046                 chip = memdup_user(argp, sizeof(*chip));
4047                 if (IS_ERR(chip)) {
4048                         r = PTR_ERR(chip);
4049                         goto out;
4050                 }
4051
4052                 r = -ENXIO;
4053                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4054                         goto set_irqchip_out;
4055                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4056                 if (r)
4057                         goto set_irqchip_out;
4058                 r = 0;
4059         set_irqchip_out:
4060                 kfree(chip);
4061                 break;
4062         }
4063         case KVM_GET_PIT: {
4064                 r = -EFAULT;
4065                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4066                         goto out;
4067                 r = -ENXIO;
4068                 if (!kvm->arch.vpit)
4069                         goto out;
4070                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4071                 if (r)
4072                         goto out;
4073                 r = -EFAULT;
4074                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4075                         goto out;
4076                 r = 0;
4077                 break;
4078         }
4079         case KVM_SET_PIT: {
4080                 r = -EFAULT;
4081                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4082                         goto out;
4083                 r = -ENXIO;
4084                 if (!kvm->arch.vpit)
4085                         goto out;
4086                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4087                 break;
4088         }
4089         case KVM_GET_PIT2: {
4090                 r = -ENXIO;
4091                 if (!kvm->arch.vpit)
4092                         goto out;
4093                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4094                 if (r)
4095                         goto out;
4096                 r = -EFAULT;
4097                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4098                         goto out;
4099                 r = 0;
4100                 break;
4101         }
4102         case KVM_SET_PIT2: {
4103                 r = -EFAULT;
4104                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4105                         goto out;
4106                 r = -ENXIO;
4107                 if (!kvm->arch.vpit)
4108                         goto out;
4109                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4110                 break;
4111         }
4112         case KVM_REINJECT_CONTROL: {
4113                 struct kvm_reinject_control control;
4114                 r =  -EFAULT;
4115                 if (copy_from_user(&control, argp, sizeof(control)))
4116                         goto out;
4117                 r = kvm_vm_ioctl_reinject(kvm, &control);
4118                 break;
4119         }
4120         case KVM_SET_BOOT_CPU_ID:
4121                 r = 0;
4122                 mutex_lock(&kvm->lock);
4123                 if (kvm->created_vcpus)
4124                         r = -EBUSY;
4125                 else
4126                         kvm->arch.bsp_vcpu_id = arg;
4127                 mutex_unlock(&kvm->lock);
4128                 break;
4129         case KVM_XEN_HVM_CONFIG: {
4130                 r = -EFAULT;
4131                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4132                                    sizeof(struct kvm_xen_hvm_config)))
4133                         goto out;
4134                 r = -EINVAL;
4135                 if (kvm->arch.xen_hvm_config.flags)
4136                         goto out;
4137                 r = 0;
4138                 break;
4139         }
4140         case KVM_SET_CLOCK: {
4141                 struct kvm_clock_data user_ns;
4142                 u64 now_ns;
4143
4144                 r = -EFAULT;
4145                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4146                         goto out;
4147
4148                 r = -EINVAL;
4149                 if (user_ns.flags)
4150                         goto out;
4151
4152                 r = 0;
4153                 local_irq_disable();
4154                 now_ns = __get_kvmclock_ns(kvm);
4155                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4156                 local_irq_enable();
4157                 kvm_gen_update_masterclock(kvm);
4158                 break;
4159         }
4160         case KVM_GET_CLOCK: {
4161                 struct kvm_clock_data user_ns;
4162                 u64 now_ns;
4163
4164                 local_irq_disable();
4165                 now_ns = __get_kvmclock_ns(kvm);
4166                 user_ns.clock = now_ns;
4167                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4168                 local_irq_enable();
4169                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4170
4171                 r = -EFAULT;
4172                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4173                         goto out;
4174                 r = 0;
4175                 break;
4176         }
4177         case KVM_ENABLE_CAP: {
4178                 struct kvm_enable_cap cap;
4179
4180                 r = -EFAULT;
4181                 if (copy_from_user(&cap, argp, sizeof(cap)))
4182                         goto out;
4183                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4184                 break;
4185         }
4186         default:
4187                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4188         }
4189 out:
4190         return r;
4191 }
4192
4193 static void kvm_init_msr_list(void)
4194 {
4195         u32 dummy[2];
4196         unsigned i, j;
4197
4198         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4199                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4200                         continue;
4201
4202                 /*
4203                  * Even MSRs that are valid in the host may not be exposed
4204                  * to the guests in some cases.
4205                  */
4206                 switch (msrs_to_save[i]) {
4207                 case MSR_IA32_BNDCFGS:
4208                         if (!kvm_x86_ops->mpx_supported())
4209                                 continue;
4210                         break;
4211                 case MSR_TSC_AUX:
4212                         if (!kvm_x86_ops->rdtscp_supported())
4213                                 continue;
4214                         break;
4215                 default:
4216                         break;
4217                 }
4218
4219                 if (j < i)
4220                         msrs_to_save[j] = msrs_to_save[i];
4221                 j++;
4222         }
4223         num_msrs_to_save = j;
4224
4225         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4226                 switch (emulated_msrs[i]) {
4227                 case MSR_IA32_SMBASE:
4228                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4229                                 continue;
4230                         break;
4231                 default:
4232                         break;
4233                 }
4234
4235                 if (j < i)
4236                         emulated_msrs[j] = emulated_msrs[i];
4237                 j++;
4238         }
4239         num_emulated_msrs = j;
4240 }
4241
4242 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4243                            const void *v)
4244 {
4245         int handled = 0;
4246         int n;
4247
4248         do {
4249                 n = min(len, 8);
4250                 if (!(lapic_in_kernel(vcpu) &&
4251                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4252                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4253                         break;
4254                 handled += n;
4255                 addr += n;
4256                 len -= n;
4257                 v += n;
4258         } while (len);
4259
4260         return handled;
4261 }
4262
4263 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4264 {
4265         int handled = 0;
4266         int n;
4267
4268         do {
4269                 n = min(len, 8);
4270                 if (!(lapic_in_kernel(vcpu) &&
4271                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4272                                          addr, n, v))
4273                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4274                         break;
4275                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4276                 handled += n;
4277                 addr += n;
4278                 len -= n;
4279                 v += n;
4280         } while (len);
4281
4282         return handled;
4283 }
4284
4285 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4286                         struct kvm_segment *var, int seg)
4287 {
4288         kvm_x86_ops->set_segment(vcpu, var, seg);
4289 }
4290
4291 void kvm_get_segment(struct kvm_vcpu *vcpu,
4292                      struct kvm_segment *var, int seg)
4293 {
4294         kvm_x86_ops->get_segment(vcpu, var, seg);
4295 }
4296
4297 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4298                            struct x86_exception *exception)
4299 {
4300         gpa_t t_gpa;
4301
4302         BUG_ON(!mmu_is_nested(vcpu));
4303
4304         /* NPT walks are always user-walks */
4305         access |= PFERR_USER_MASK;
4306         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4307
4308         return t_gpa;
4309 }
4310
4311 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4312                               struct x86_exception *exception)
4313 {
4314         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4315         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4316 }
4317
4318  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4319                                 struct x86_exception *exception)
4320 {
4321         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4322         access |= PFERR_FETCH_MASK;
4323         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4324 }
4325
4326 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4327                                struct x86_exception *exception)
4328 {
4329         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4330         access |= PFERR_WRITE_MASK;
4331         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4332 }
4333
4334 /* uses this to access any guest's mapped memory without checking CPL */
4335 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4336                                 struct x86_exception *exception)
4337 {
4338         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4339 }
4340
4341 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4342                                       struct kvm_vcpu *vcpu, u32 access,
4343                                       struct x86_exception *exception)
4344 {
4345         void *data = val;
4346         int r = X86EMUL_CONTINUE;
4347
4348         while (bytes) {
4349                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4350                                                             exception);
4351                 unsigned offset = addr & (PAGE_SIZE-1);
4352                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4353                 int ret;
4354
4355                 if (gpa == UNMAPPED_GVA)
4356                         return X86EMUL_PROPAGATE_FAULT;
4357                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4358                                                offset, toread);
4359                 if (ret < 0) {
4360                         r = X86EMUL_IO_NEEDED;
4361                         goto out;
4362                 }
4363
4364                 bytes -= toread;
4365                 data += toread;
4366                 addr += toread;
4367         }
4368 out:
4369         return r;
4370 }
4371
4372 /* used for instruction fetching */
4373 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4374                                 gva_t addr, void *val, unsigned int bytes,
4375                                 struct x86_exception *exception)
4376 {
4377         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4378         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4379         unsigned offset;
4380         int ret;
4381
4382         /* Inline kvm_read_guest_virt_helper for speed.  */
4383         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4384                                                     exception);
4385         if (unlikely(gpa == UNMAPPED_GVA))
4386                 return X86EMUL_PROPAGATE_FAULT;
4387
4388         offset = addr & (PAGE_SIZE-1);
4389         if (WARN_ON(offset + bytes > PAGE_SIZE))
4390                 bytes = (unsigned)PAGE_SIZE - offset;
4391         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4392                                        offset, bytes);
4393         if (unlikely(ret < 0))
4394                 return X86EMUL_IO_NEEDED;
4395
4396         return X86EMUL_CONTINUE;
4397 }
4398
4399 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4400                                gva_t addr, void *val, unsigned int bytes,
4401                                struct x86_exception *exception)
4402 {
4403         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4404         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4405
4406         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4407                                           exception);
4408 }
4409 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4410
4411 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4412                                       gva_t addr, void *val, unsigned int bytes,
4413                                       struct x86_exception *exception)
4414 {
4415         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4416         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4417 }
4418
4419 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4420                 unsigned long addr, void *val, unsigned int bytes)
4421 {
4422         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4424
4425         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4426 }
4427
4428 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4429                                        gva_t addr, void *val,
4430                                        unsigned int bytes,
4431                                        struct x86_exception *exception)
4432 {
4433         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4434         void *data = val;
4435         int r = X86EMUL_CONTINUE;
4436
4437         while (bytes) {
4438                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4439                                                              PFERR_WRITE_MASK,
4440                                                              exception);
4441                 unsigned offset = addr & (PAGE_SIZE-1);
4442                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4443                 int ret;
4444
4445                 if (gpa == UNMAPPED_GVA)
4446                         return X86EMUL_PROPAGATE_FAULT;
4447                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4448                 if (ret < 0) {
4449                         r = X86EMUL_IO_NEEDED;
4450                         goto out;
4451                 }
4452
4453                 bytes -= towrite;
4454                 data += towrite;
4455                 addr += towrite;
4456         }
4457 out:
4458         return r;
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4461
4462 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4463                                 gpa_t *gpa, struct x86_exception *exception,
4464                                 bool write)
4465 {
4466         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4467                 | (write ? PFERR_WRITE_MASK : 0);
4468
4469         /*
4470          * currently PKRU is only applied to ept enabled guest so
4471          * there is no pkey in EPT page table for L1 guest or EPT
4472          * shadow page table for L2 guest.
4473          */
4474         if (vcpu_match_mmio_gva(vcpu, gva)
4475             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4476                                  vcpu->arch.access, 0, access)) {
4477                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4478                                         (gva & (PAGE_SIZE - 1));
4479                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4480                 return 1;
4481         }
4482
4483         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4484
4485         if (*gpa == UNMAPPED_GVA)
4486                 return -1;
4487
4488         /* For APIC access vmexit */
4489         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4490                 return 1;
4491
4492         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4493                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4494                 return 1;
4495         }
4496
4497         return 0;
4498 }
4499
4500 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4501                         const void *val, int bytes)
4502 {
4503         int ret;
4504
4505         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4506         if (ret < 0)
4507                 return 0;
4508         kvm_page_track_write(vcpu, gpa, val, bytes);
4509         return 1;
4510 }
4511
4512 struct read_write_emulator_ops {
4513         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4514                                   int bytes);
4515         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4516                                   void *val, int bytes);
4517         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4518                                int bytes, void *val);
4519         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4520                                     void *val, int bytes);
4521         bool write;
4522 };
4523
4524 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4525 {
4526         if (vcpu->mmio_read_completed) {
4527                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4528                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4529                 vcpu->mmio_read_completed = 0;
4530                 return 1;
4531         }
4532
4533         return 0;
4534 }
4535
4536 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4537                         void *val, int bytes)
4538 {
4539         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4540 }
4541
4542 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4543                          void *val, int bytes)
4544 {
4545         return emulator_write_phys(vcpu, gpa, val, bytes);
4546 }
4547
4548 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4549 {
4550         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4551         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4552 }
4553
4554 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4555                           void *val, int bytes)
4556 {
4557         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4558         return X86EMUL_IO_NEEDED;
4559 }
4560
4561 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4562                            void *val, int bytes)
4563 {
4564         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4565
4566         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4567         return X86EMUL_CONTINUE;
4568 }
4569
4570 static const struct read_write_emulator_ops read_emultor = {
4571         .read_write_prepare = read_prepare,
4572         .read_write_emulate = read_emulate,
4573         .read_write_mmio = vcpu_mmio_read,
4574         .read_write_exit_mmio = read_exit_mmio,
4575 };
4576
4577 static const struct read_write_emulator_ops write_emultor = {
4578         .read_write_emulate = write_emulate,
4579         .read_write_mmio = write_mmio,
4580         .read_write_exit_mmio = write_exit_mmio,
4581         .write = true,
4582 };
4583
4584 static int emulator_read_write_onepage(unsigned long addr, void *val,
4585                                        unsigned int bytes,
4586                                        struct x86_exception *exception,
4587                                        struct kvm_vcpu *vcpu,
4588                                        const struct read_write_emulator_ops *ops)
4589 {
4590         gpa_t gpa;
4591         int handled, ret;
4592         bool write = ops->write;
4593         struct kvm_mmio_fragment *frag;
4594
4595         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4596
4597         if (ret < 0)
4598                 return X86EMUL_PROPAGATE_FAULT;
4599
4600         /* For APIC access vmexit */
4601         if (ret)
4602                 goto mmio;
4603
4604         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4605                 return X86EMUL_CONTINUE;
4606
4607 mmio:
4608         /*
4609          * Is this MMIO handled locally?
4610          */
4611         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4612         if (handled == bytes)
4613                 return X86EMUL_CONTINUE;
4614
4615         gpa += handled;
4616         bytes -= handled;
4617         val += handled;
4618
4619         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4620         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4621         frag->gpa = gpa;
4622         frag->data = val;
4623         frag->len = bytes;
4624         return X86EMUL_CONTINUE;
4625 }
4626
4627 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4628                         unsigned long addr,
4629                         void *val, unsigned int bytes,
4630                         struct x86_exception *exception,
4631                         const struct read_write_emulator_ops *ops)
4632 {
4633         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4634         gpa_t gpa;
4635         int rc;
4636
4637         if (ops->read_write_prepare &&
4638                   ops->read_write_prepare(vcpu, val, bytes))
4639                 return X86EMUL_CONTINUE;
4640
4641         vcpu->mmio_nr_fragments = 0;
4642
4643         /* Crossing a page boundary? */
4644         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4645                 int now;
4646
4647                 now = -addr & ~PAGE_MASK;
4648                 rc = emulator_read_write_onepage(addr, val, now, exception,
4649                                                  vcpu, ops);
4650
4651                 if (rc != X86EMUL_CONTINUE)
4652                         return rc;
4653                 addr += now;
4654                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4655                         addr = (u32)addr;
4656                 val += now;
4657                 bytes -= now;
4658         }
4659
4660         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4661                                          vcpu, ops);
4662         if (rc != X86EMUL_CONTINUE)
4663                 return rc;
4664
4665         if (!vcpu->mmio_nr_fragments)
4666                 return rc;
4667
4668         gpa = vcpu->mmio_fragments[0].gpa;
4669
4670         vcpu->mmio_needed = 1;
4671         vcpu->mmio_cur_fragment = 0;
4672
4673         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4674         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4675         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4676         vcpu->run->mmio.phys_addr = gpa;
4677
4678         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4679 }
4680
4681 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4682                                   unsigned long addr,
4683                                   void *val,
4684                                   unsigned int bytes,
4685                                   struct x86_exception *exception)
4686 {
4687         return emulator_read_write(ctxt, addr, val, bytes,
4688                                    exception, &read_emultor);
4689 }
4690
4691 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4692                             unsigned long addr,
4693                             const void *val,
4694                             unsigned int bytes,
4695                             struct x86_exception *exception)
4696 {
4697         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4698                                    exception, &write_emultor);
4699 }
4700
4701 #define CMPXCHG_TYPE(t, ptr, old, new) \
4702         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4703
4704 #ifdef CONFIG_X86_64
4705 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4706 #else
4707 #  define CMPXCHG64(ptr, old, new) \
4708         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4709 #endif
4710
4711 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4712                                      unsigned long addr,
4713                                      const void *old,
4714                                      const void *new,
4715                                      unsigned int bytes,
4716                                      struct x86_exception *exception)
4717 {
4718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719         gpa_t gpa;
4720         struct page *page;
4721         char *kaddr;
4722         bool exchanged;
4723
4724         /* guests cmpxchg8b have to be emulated atomically */
4725         if (bytes > 8 || (bytes & (bytes - 1)))
4726                 goto emul_write;
4727
4728         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4729
4730         if (gpa == UNMAPPED_GVA ||
4731             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4732                 goto emul_write;
4733
4734         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4735                 goto emul_write;
4736
4737         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4738         if (is_error_page(page))
4739                 goto emul_write;
4740
4741         kaddr = kmap_atomic(page);
4742         kaddr += offset_in_page(gpa);
4743         switch (bytes) {
4744         case 1:
4745                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4746                 break;
4747         case 2:
4748                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4749                 break;
4750         case 4:
4751                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4752                 break;
4753         case 8:
4754                 exchanged = CMPXCHG64(kaddr, old, new);
4755                 break;
4756         default:
4757                 BUG();
4758         }
4759         kunmap_atomic(kaddr);
4760         kvm_release_page_dirty(page);
4761
4762         if (!exchanged)
4763                 return X86EMUL_CMPXCHG_FAILED;
4764
4765         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4766         kvm_page_track_write(vcpu, gpa, new, bytes);
4767
4768         return X86EMUL_CONTINUE;
4769
4770 emul_write:
4771         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4772
4773         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4774 }
4775
4776 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4777 {
4778         /* TODO: String I/O for in kernel device */
4779         int r;
4780
4781         if (vcpu->arch.pio.in)
4782                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4783                                     vcpu->arch.pio.size, pd);
4784         else
4785                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4786                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4787                                      pd);
4788         return r;
4789 }
4790
4791 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4792                                unsigned short port, void *val,
4793                                unsigned int count, bool in)
4794 {
4795         vcpu->arch.pio.port = port;
4796         vcpu->arch.pio.in = in;
4797         vcpu->arch.pio.count  = count;
4798         vcpu->arch.pio.size = size;
4799
4800         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4801                 vcpu->arch.pio.count = 0;
4802                 return 1;
4803         }
4804
4805         vcpu->run->exit_reason = KVM_EXIT_IO;
4806         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4807         vcpu->run->io.size = size;
4808         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4809         vcpu->run->io.count = count;
4810         vcpu->run->io.port = port;
4811
4812         return 0;
4813 }
4814
4815 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4816                                     int size, unsigned short port, void *val,
4817                                     unsigned int count)
4818 {
4819         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820         int ret;
4821
4822         if (vcpu->arch.pio.count)
4823                 goto data_avail;
4824
4825         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4826         if (ret) {
4827 data_avail:
4828                 memcpy(val, vcpu->arch.pio_data, size * count);
4829                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4830                 vcpu->arch.pio.count = 0;
4831                 return 1;
4832         }
4833
4834         return 0;
4835 }
4836
4837 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4838                                      int size, unsigned short port,
4839                                      const void *val, unsigned int count)
4840 {
4841         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4842
4843         memcpy(vcpu->arch.pio_data, val, size * count);
4844         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4845         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4846 }
4847
4848 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4849 {
4850         return kvm_x86_ops->get_segment_base(vcpu, seg);
4851 }
4852
4853 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4854 {
4855         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4856 }
4857
4858 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4859 {
4860         if (!need_emulate_wbinvd(vcpu))
4861                 return X86EMUL_CONTINUE;
4862
4863         if (kvm_x86_ops->has_wbinvd_exit()) {
4864                 int cpu = get_cpu();
4865
4866                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4867                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4868                                 wbinvd_ipi, NULL, 1);
4869                 put_cpu();
4870                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4871         } else
4872                 wbinvd();
4873         return X86EMUL_CONTINUE;
4874 }
4875
4876 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4877 {
4878         kvm_emulate_wbinvd_noskip(vcpu);
4879         return kvm_skip_emulated_instruction(vcpu);
4880 }
4881 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4882
4883
4884
4885 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4886 {
4887         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4888 }
4889
4890 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4891                            unsigned long *dest)
4892 {
4893         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4894 }
4895
4896 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4897                            unsigned long value)
4898 {
4899
4900         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4901 }
4902
4903 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4904 {
4905         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4906 }
4907
4908 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4909 {
4910         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4911         unsigned long value;
4912
4913         switch (cr) {
4914         case 0:
4915                 value = kvm_read_cr0(vcpu);
4916                 break;
4917         case 2:
4918                 value = vcpu->arch.cr2;
4919                 break;
4920         case 3:
4921                 value = kvm_read_cr3(vcpu);
4922                 break;
4923         case 4:
4924                 value = kvm_read_cr4(vcpu);
4925                 break;
4926         case 8:
4927                 value = kvm_get_cr8(vcpu);
4928                 break;
4929         default:
4930                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4931                 return 0;
4932         }
4933
4934         return value;
4935 }
4936
4937 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4938 {
4939         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4940         int res = 0;
4941
4942         switch (cr) {
4943         case 0:
4944                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4945                 break;
4946         case 2:
4947                 vcpu->arch.cr2 = val;
4948                 break;
4949         case 3:
4950                 res = kvm_set_cr3(vcpu, val);
4951                 break;
4952         case 4:
4953                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4954                 break;
4955         case 8:
4956                 res = kvm_set_cr8(vcpu, val);
4957                 break;
4958         default:
4959                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4960                 res = -1;
4961         }
4962
4963         return res;
4964 }
4965
4966 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4967 {
4968         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4969 }
4970
4971 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4972 {
4973         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4974 }
4975
4976 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4977 {
4978         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4979 }
4980
4981 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4982 {
4983         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4984 }
4985
4986 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4987 {
4988         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4989 }
4990
4991 static unsigned long emulator_get_cached_segment_base(
4992         struct x86_emulate_ctxt *ctxt, int seg)
4993 {
4994         return get_segment_base(emul_to_vcpu(ctxt), seg);
4995 }
4996
4997 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4998                                  struct desc_struct *desc, u32 *base3,
4999                                  int seg)
5000 {
5001         struct kvm_segment var;
5002
5003         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5004         *selector = var.selector;
5005
5006         if (var.unusable) {
5007                 memset(desc, 0, sizeof(*desc));
5008                 return false;
5009         }
5010
5011         if (var.g)
5012                 var.limit >>= 12;
5013         set_desc_limit(desc, var.limit);
5014         set_desc_base(desc, (unsigned long)var.base);
5015 #ifdef CONFIG_X86_64
5016         if (base3)
5017                 *base3 = var.base >> 32;
5018 #endif
5019         desc->type = var.type;
5020         desc->s = var.s;
5021         desc->dpl = var.dpl;
5022         desc->p = var.present;
5023         desc->avl = var.avl;
5024         desc->l = var.l;
5025         desc->d = var.db;
5026         desc->g = var.g;
5027
5028         return true;
5029 }
5030
5031 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5032                                  struct desc_struct *desc, u32 base3,
5033                                  int seg)
5034 {
5035         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5036         struct kvm_segment var;
5037
5038         var.selector = selector;
5039         var.base = get_desc_base(desc);
5040 #ifdef CONFIG_X86_64
5041         var.base |= ((u64)base3) << 32;
5042 #endif
5043         var.limit = get_desc_limit(desc);
5044         if (desc->g)
5045                 var.limit = (var.limit << 12) | 0xfff;
5046         var.type = desc->type;
5047         var.dpl = desc->dpl;
5048         var.db = desc->d;
5049         var.s = desc->s;
5050         var.l = desc->l;
5051         var.g = desc->g;
5052         var.avl = desc->avl;
5053         var.present = desc->p;
5054         var.unusable = !var.present;
5055         var.padding = 0;
5056
5057         kvm_set_segment(vcpu, &var, seg);
5058         return;
5059 }
5060
5061 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5062                             u32 msr_index, u64 *pdata)
5063 {
5064         struct msr_data msr;
5065         int r;
5066
5067         msr.index = msr_index;
5068         msr.host_initiated = false;
5069         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5070         if (r)
5071                 return r;
5072
5073         *pdata = msr.data;
5074         return 0;
5075 }
5076
5077 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5078                             u32 msr_index, u64 data)
5079 {
5080         struct msr_data msr;
5081
5082         msr.data = data;
5083         msr.index = msr_index;
5084         msr.host_initiated = false;
5085         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5086 }
5087
5088 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5089 {
5090         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5091
5092         return vcpu->arch.smbase;
5093 }
5094
5095 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5096 {
5097         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5098
5099         vcpu->arch.smbase = smbase;
5100 }
5101
5102 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5103                               u32 pmc)
5104 {
5105         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5106 }
5107
5108 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5109                              u32 pmc, u64 *pdata)
5110 {
5111         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5112 }
5113
5114 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5115 {
5116         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5117 }
5118
5119 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5120 {
5121         preempt_disable();
5122         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5123 }
5124
5125 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5126 {
5127         preempt_enable();
5128 }
5129
5130 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5131                               struct x86_instruction_info *info,
5132                               enum x86_intercept_stage stage)
5133 {
5134         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5135 }
5136
5137 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5138                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5139 {
5140         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5141 }
5142
5143 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5144 {
5145         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5146 }
5147
5148 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5149 {
5150         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5151 }
5152
5153 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5154 {
5155         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5156 }
5157
5158 static const struct x86_emulate_ops emulate_ops = {
5159         .read_gpr            = emulator_read_gpr,
5160         .write_gpr           = emulator_write_gpr,
5161         .read_std            = kvm_read_guest_virt_system,
5162         .write_std           = kvm_write_guest_virt_system,
5163         .read_phys           = kvm_read_guest_phys_system,
5164         .fetch               = kvm_fetch_guest_virt,
5165         .read_emulated       = emulator_read_emulated,
5166         .write_emulated      = emulator_write_emulated,
5167         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5168         .invlpg              = emulator_invlpg,
5169         .pio_in_emulated     = emulator_pio_in_emulated,
5170         .pio_out_emulated    = emulator_pio_out_emulated,
5171         .get_segment         = emulator_get_segment,
5172         .set_segment         = emulator_set_segment,
5173         .get_cached_segment_base = emulator_get_cached_segment_base,
5174         .get_gdt             = emulator_get_gdt,
5175         .get_idt             = emulator_get_idt,
5176         .set_gdt             = emulator_set_gdt,
5177         .set_idt             = emulator_set_idt,
5178         .get_cr              = emulator_get_cr,
5179         .set_cr              = emulator_set_cr,
5180         .cpl                 = emulator_get_cpl,
5181         .get_dr              = emulator_get_dr,
5182         .set_dr              = emulator_set_dr,
5183         .get_smbase          = emulator_get_smbase,
5184         .set_smbase          = emulator_set_smbase,
5185         .set_msr             = emulator_set_msr,
5186         .get_msr             = emulator_get_msr,
5187         .check_pmc           = emulator_check_pmc,
5188         .read_pmc            = emulator_read_pmc,
5189         .halt                = emulator_halt,
5190         .wbinvd              = emulator_wbinvd,
5191         .fix_hypercall       = emulator_fix_hypercall,
5192         .get_fpu             = emulator_get_fpu,
5193         .put_fpu             = emulator_put_fpu,
5194         .intercept           = emulator_intercept,
5195         .get_cpuid           = emulator_get_cpuid,
5196         .set_nmi_mask        = emulator_set_nmi_mask,
5197 };
5198
5199 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5200 {
5201         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5202         /*
5203          * an sti; sti; sequence only disable interrupts for the first
5204          * instruction. So, if the last instruction, be it emulated or
5205          * not, left the system with the INT_STI flag enabled, it
5206          * means that the last instruction is an sti. We should not
5207          * leave the flag on in this case. The same goes for mov ss
5208          */
5209         if (int_shadow & mask)
5210                 mask = 0;
5211         if (unlikely(int_shadow || mask)) {
5212                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5213                 if (!mask)
5214                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5215         }
5216 }
5217
5218 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5219 {
5220         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5221         if (ctxt->exception.vector == PF_VECTOR)
5222                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5223
5224         if (ctxt->exception.error_code_valid)
5225                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5226                                       ctxt->exception.error_code);
5227         else
5228                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5229         return false;
5230 }
5231
5232 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5233 {
5234         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5235         int cs_db, cs_l;
5236
5237         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5238
5239         ctxt->eflags = kvm_get_rflags(vcpu);
5240         ctxt->eip = kvm_rip_read(vcpu);
5241         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5242                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5243                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5244                      cs_db                              ? X86EMUL_MODE_PROT32 :
5245                                                           X86EMUL_MODE_PROT16;
5246         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5247         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5248         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5249         ctxt->emul_flags = vcpu->arch.hflags;
5250
5251         init_decode_cache(ctxt);
5252         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5253 }
5254
5255 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5256 {
5257         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5258         int ret;
5259
5260         init_emulate_ctxt(vcpu);
5261
5262         ctxt->op_bytes = 2;
5263         ctxt->ad_bytes = 2;
5264         ctxt->_eip = ctxt->eip + inc_eip;
5265         ret = emulate_int_real(ctxt, irq);
5266
5267         if (ret != X86EMUL_CONTINUE)
5268                 return EMULATE_FAIL;
5269
5270         ctxt->eip = ctxt->_eip;
5271         kvm_rip_write(vcpu, ctxt->eip);
5272         kvm_set_rflags(vcpu, ctxt->eflags);
5273
5274         if (irq == NMI_VECTOR)
5275                 vcpu->arch.nmi_pending = 0;
5276         else
5277                 vcpu->arch.interrupt.pending = false;
5278
5279         return EMULATE_DONE;
5280 }
5281 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5282
5283 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5284 {
5285         int r = EMULATE_DONE;
5286
5287         ++vcpu->stat.insn_emulation_fail;
5288         trace_kvm_emulate_insn_failed(vcpu);
5289         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5290                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5291                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5292                 vcpu->run->internal.ndata = 0;
5293                 r = EMULATE_FAIL;
5294         }
5295         kvm_queue_exception(vcpu, UD_VECTOR);
5296
5297         return r;
5298 }
5299
5300 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5301                                   bool write_fault_to_shadow_pgtable,
5302                                   int emulation_type)
5303 {
5304         gpa_t gpa = cr2;
5305         kvm_pfn_t pfn;
5306
5307         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5308                 return false;
5309
5310         if (!vcpu->arch.mmu.direct_map) {
5311                 /*
5312                  * Write permission should be allowed since only
5313                  * write access need to be emulated.
5314                  */
5315                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5316
5317                 /*
5318                  * If the mapping is invalid in guest, let cpu retry
5319                  * it to generate fault.
5320                  */
5321                 if (gpa == UNMAPPED_GVA)
5322                         return true;
5323         }
5324
5325         /*
5326          * Do not retry the unhandleable instruction if it faults on the
5327          * readonly host memory, otherwise it will goto a infinite loop:
5328          * retry instruction -> write #PF -> emulation fail -> retry
5329          * instruction -> ...
5330          */
5331         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5332
5333         /*
5334          * If the instruction failed on the error pfn, it can not be fixed,
5335          * report the error to userspace.
5336          */
5337         if (is_error_noslot_pfn(pfn))
5338                 return false;
5339
5340         kvm_release_pfn_clean(pfn);
5341
5342         /* The instructions are well-emulated on direct mmu. */
5343         if (vcpu->arch.mmu.direct_map) {
5344                 unsigned int indirect_shadow_pages;
5345
5346                 spin_lock(&vcpu->kvm->mmu_lock);
5347                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5348                 spin_unlock(&vcpu->kvm->mmu_lock);
5349
5350                 if (indirect_shadow_pages)
5351                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5352
5353                 return true;
5354         }
5355
5356         /*
5357          * if emulation was due to access to shadowed page table
5358          * and it failed try to unshadow page and re-enter the
5359          * guest to let CPU execute the instruction.
5360          */
5361         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5362
5363         /*
5364          * If the access faults on its page table, it can not
5365          * be fixed by unprotecting shadow page and it should
5366          * be reported to userspace.
5367          */
5368         return !write_fault_to_shadow_pgtable;
5369 }
5370
5371 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5372                               unsigned long cr2,  int emulation_type)
5373 {
5374         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5375         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5376
5377         last_retry_eip = vcpu->arch.last_retry_eip;
5378         last_retry_addr = vcpu->arch.last_retry_addr;
5379
5380         /*
5381          * If the emulation is caused by #PF and it is non-page_table
5382          * writing instruction, it means the VM-EXIT is caused by shadow
5383          * page protected, we can zap the shadow page and retry this
5384          * instruction directly.
5385          *
5386          * Note: if the guest uses a non-page-table modifying instruction
5387          * on the PDE that points to the instruction, then we will unmap
5388          * the instruction and go to an infinite loop. So, we cache the
5389          * last retried eip and the last fault address, if we meet the eip
5390          * and the address again, we can break out of the potential infinite
5391          * loop.
5392          */
5393         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5394
5395         if (!(emulation_type & EMULTYPE_RETRY))
5396                 return false;
5397
5398         if (x86_page_table_writing_insn(ctxt))
5399                 return false;
5400
5401         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5402                 return false;
5403
5404         vcpu->arch.last_retry_eip = ctxt->eip;
5405         vcpu->arch.last_retry_addr = cr2;
5406
5407         if (!vcpu->arch.mmu.direct_map)
5408                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5409
5410         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5411
5412         return true;
5413 }
5414
5415 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5416 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5417
5418 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5419 {
5420         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5421                 /* This is a good place to trace that we are exiting SMM.  */
5422                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5423
5424                 /* Process a latched INIT or SMI, if any.  */
5425                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5426         }
5427
5428         kvm_mmu_reset_context(vcpu);
5429 }
5430
5431 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5432 {
5433         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5434
5435         vcpu->arch.hflags = emul_flags;
5436
5437         if (changed & HF_SMM_MASK)
5438                 kvm_smm_changed(vcpu);
5439 }
5440
5441 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5442                                 unsigned long *db)
5443 {
5444         u32 dr6 = 0;
5445         int i;
5446         u32 enable, rwlen;
5447
5448         enable = dr7;
5449         rwlen = dr7 >> 16;
5450         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5451                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5452                         dr6 |= (1 << i);
5453         return dr6;
5454 }
5455
5456 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5457 {
5458         struct kvm_run *kvm_run = vcpu->run;
5459
5460         /*
5461          * rflags is the old, "raw" value of the flags.  The new value has
5462          * not been saved yet.
5463          *
5464          * This is correct even for TF set by the guest, because "the
5465          * processor will not generate this exception after the instruction
5466          * that sets the TF flag".
5467          */
5468         if (unlikely(rflags & X86_EFLAGS_TF)) {
5469                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5470                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5471                                                   DR6_RTM;
5472                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5473                         kvm_run->debug.arch.exception = DB_VECTOR;
5474                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5475                         *r = EMULATE_USER_EXIT;
5476                 } else {
5477                         /*
5478                          * "Certain debug exceptions may clear bit 0-3.  The
5479                          * remaining contents of the DR6 register are never
5480                          * cleared by the processor".
5481                          */
5482                         vcpu->arch.dr6 &= ~15;
5483                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5484                         kvm_queue_exception(vcpu, DB_VECTOR);
5485                 }
5486         }
5487 }
5488
5489 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5490 {
5491         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5492         int r = EMULATE_DONE;
5493
5494         kvm_x86_ops->skip_emulated_instruction(vcpu);
5495         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5496         return r == EMULATE_DONE;
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5499
5500 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5501 {
5502         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5503             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5504                 struct kvm_run *kvm_run = vcpu->run;
5505                 unsigned long eip = kvm_get_linear_rip(vcpu);
5506                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5507                                            vcpu->arch.guest_debug_dr7,
5508                                            vcpu->arch.eff_db);
5509
5510                 if (dr6 != 0) {
5511                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5512                         kvm_run->debug.arch.pc = eip;
5513                         kvm_run->debug.arch.exception = DB_VECTOR;
5514                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5515                         *r = EMULATE_USER_EXIT;
5516                         return true;
5517                 }
5518         }
5519
5520         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5521             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5522                 unsigned long eip = kvm_get_linear_rip(vcpu);
5523                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5524                                            vcpu->arch.dr7,
5525                                            vcpu->arch.db);
5526
5527                 if (dr6 != 0) {
5528                         vcpu->arch.dr6 &= ~15;
5529                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5530                         kvm_queue_exception(vcpu, DB_VECTOR);
5531                         *r = EMULATE_DONE;
5532                         return true;
5533                 }
5534         }
5535
5536         return false;
5537 }
5538
5539 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5540                             unsigned long cr2,
5541                             int emulation_type,
5542                             void *insn,
5543                             int insn_len)
5544 {
5545         int r;
5546         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5547         bool writeback = true;
5548         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5549
5550         /*
5551          * Clear write_fault_to_shadow_pgtable here to ensure it is
5552          * never reused.
5553          */
5554         vcpu->arch.write_fault_to_shadow_pgtable = false;
5555         kvm_clear_exception_queue(vcpu);
5556
5557         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5558                 init_emulate_ctxt(vcpu);
5559
5560                 /*
5561                  * We will reenter on the same instruction since
5562                  * we do not set complete_userspace_io.  This does not
5563                  * handle watchpoints yet, those would be handled in
5564                  * the emulate_ops.
5565                  */
5566                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5567                         return r;
5568
5569                 ctxt->interruptibility = 0;
5570                 ctxt->have_exception = false;
5571                 ctxt->exception.vector = -1;
5572                 ctxt->perm_ok = false;
5573
5574                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5575
5576                 r = x86_decode_insn(ctxt, insn, insn_len);
5577
5578                 trace_kvm_emulate_insn_start(vcpu);
5579                 ++vcpu->stat.insn_emulation;
5580                 if (r != EMULATION_OK)  {
5581                         if (emulation_type & EMULTYPE_TRAP_UD)
5582                                 return EMULATE_FAIL;
5583                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5584                                                 emulation_type))
5585                                 return EMULATE_DONE;
5586                         if (emulation_type & EMULTYPE_SKIP)
5587                                 return EMULATE_FAIL;
5588                         return handle_emulation_failure(vcpu);
5589                 }
5590         }
5591
5592         if (emulation_type & EMULTYPE_SKIP) {
5593                 kvm_rip_write(vcpu, ctxt->_eip);
5594                 if (ctxt->eflags & X86_EFLAGS_RF)
5595                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5596                 return EMULATE_DONE;
5597         }
5598
5599         if (retry_instruction(ctxt, cr2, emulation_type))
5600                 return EMULATE_DONE;
5601
5602         /* this is needed for vmware backdoor interface to work since it
5603            changes registers values  during IO operation */
5604         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5605                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5606                 emulator_invalidate_register_cache(ctxt);
5607         }
5608
5609 restart:
5610         r = x86_emulate_insn(ctxt);
5611
5612         if (r == EMULATION_INTERCEPTED)
5613                 return EMULATE_DONE;
5614
5615         if (r == EMULATION_FAILED) {
5616                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5617                                         emulation_type))
5618                         return EMULATE_DONE;
5619
5620                 return handle_emulation_failure(vcpu);
5621         }
5622
5623         if (ctxt->have_exception) {
5624                 r = EMULATE_DONE;
5625                 if (inject_emulated_exception(vcpu))
5626                         return r;
5627         } else if (vcpu->arch.pio.count) {
5628                 if (!vcpu->arch.pio.in) {
5629                         /* FIXME: return into emulator if single-stepping.  */
5630                         vcpu->arch.pio.count = 0;
5631                 } else {
5632                         writeback = false;
5633                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5634                 }
5635                 r = EMULATE_USER_EXIT;
5636         } else if (vcpu->mmio_needed) {
5637                 if (!vcpu->mmio_is_write)
5638                         writeback = false;
5639                 r = EMULATE_USER_EXIT;
5640                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5641         } else if (r == EMULATION_RESTART)
5642                 goto restart;
5643         else
5644                 r = EMULATE_DONE;
5645
5646         if (writeback) {
5647                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5648                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5649                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5650                 if (vcpu->arch.hflags != ctxt->emul_flags)
5651                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5652                 kvm_rip_write(vcpu, ctxt->eip);
5653                 if (r == EMULATE_DONE)
5654                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5655                 if (!ctxt->have_exception ||
5656                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5657                         __kvm_set_rflags(vcpu, ctxt->eflags);
5658
5659                 /*
5660                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5661                  * do nothing, and it will be requested again as soon as
5662                  * the shadow expires.  But we still need to check here,
5663                  * because POPF has no interrupt shadow.
5664                  */
5665                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5666                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5667         } else
5668                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5669
5670         return r;
5671 }
5672 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5673
5674 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5675 {
5676         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5677         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5678                                             size, port, &val, 1);
5679         /* do not return to emulator after return from userspace */
5680         vcpu->arch.pio.count = 0;
5681         return ret;
5682 }
5683 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5684
5685 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5686 {
5687         unsigned long val;
5688
5689         /* We should only ever be called with arch.pio.count equal to 1 */
5690         BUG_ON(vcpu->arch.pio.count != 1);
5691
5692         /* For size less than 4 we merge, else we zero extend */
5693         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5694                                         : 0;
5695
5696         /*
5697          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5698          * the copy and tracing
5699          */
5700         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5701                                  vcpu->arch.pio.port, &val, 1);
5702         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5703
5704         return 1;
5705 }
5706
5707 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5708 {
5709         unsigned long val;
5710         int ret;
5711
5712         /* For size less than 4 we merge, else we zero extend */
5713         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5714
5715         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5716                                        &val, 1);
5717         if (ret) {
5718                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5719                 return ret;
5720         }
5721
5722         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5723
5724         return 0;
5725 }
5726 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5727
5728 static int kvmclock_cpu_down_prep(unsigned int cpu)
5729 {
5730         __this_cpu_write(cpu_tsc_khz, 0);
5731         return 0;
5732 }
5733
5734 static void tsc_khz_changed(void *data)
5735 {
5736         struct cpufreq_freqs *freq = data;
5737         unsigned long khz = 0;
5738
5739         if (data)
5740                 khz = freq->new;
5741         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5742                 khz = cpufreq_quick_get(raw_smp_processor_id());
5743         if (!khz)
5744                 khz = tsc_khz;
5745         __this_cpu_write(cpu_tsc_khz, khz);
5746 }
5747
5748 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5749                                      void *data)
5750 {
5751         struct cpufreq_freqs *freq = data;
5752         struct kvm *kvm;
5753         struct kvm_vcpu *vcpu;
5754         int i, send_ipi = 0;
5755
5756         /*
5757          * We allow guests to temporarily run on slowing clocks,
5758          * provided we notify them after, or to run on accelerating
5759          * clocks, provided we notify them before.  Thus time never
5760          * goes backwards.
5761          *
5762          * However, we have a problem.  We can't atomically update
5763          * the frequency of a given CPU from this function; it is
5764          * merely a notifier, which can be called from any CPU.
5765          * Changing the TSC frequency at arbitrary points in time
5766          * requires a recomputation of local variables related to
5767          * the TSC for each VCPU.  We must flag these local variables
5768          * to be updated and be sure the update takes place with the
5769          * new frequency before any guests proceed.
5770          *
5771          * Unfortunately, the combination of hotplug CPU and frequency
5772          * change creates an intractable locking scenario; the order
5773          * of when these callouts happen is undefined with respect to
5774          * CPU hotplug, and they can race with each other.  As such,
5775          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5776          * undefined; you can actually have a CPU frequency change take
5777          * place in between the computation of X and the setting of the
5778          * variable.  To protect against this problem, all updates of
5779          * the per_cpu tsc_khz variable are done in an interrupt
5780          * protected IPI, and all callers wishing to update the value
5781          * must wait for a synchronous IPI to complete (which is trivial
5782          * if the caller is on the CPU already).  This establishes the
5783          * necessary total order on variable updates.
5784          *
5785          * Note that because a guest time update may take place
5786          * anytime after the setting of the VCPU's request bit, the
5787          * correct TSC value must be set before the request.  However,
5788          * to ensure the update actually makes it to any guest which
5789          * starts running in hardware virtualization between the set
5790          * and the acquisition of the spinlock, we must also ping the
5791          * CPU after setting the request bit.
5792          *
5793          */
5794
5795         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5796                 return 0;
5797         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5798                 return 0;
5799
5800         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5801
5802         spin_lock(&kvm_lock);
5803         list_for_each_entry(kvm, &vm_list, vm_list) {
5804                 kvm_for_each_vcpu(i, vcpu, kvm) {
5805                         if (vcpu->cpu != freq->cpu)
5806                                 continue;
5807                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5808                         if (vcpu->cpu != smp_processor_id())
5809                                 send_ipi = 1;
5810                 }
5811         }
5812         spin_unlock(&kvm_lock);
5813
5814         if (freq->old < freq->new && send_ipi) {
5815                 /*
5816                  * We upscale the frequency.  Must make the guest
5817                  * doesn't see old kvmclock values while running with
5818                  * the new frequency, otherwise we risk the guest sees
5819                  * time go backwards.
5820                  *
5821                  * In case we update the frequency for another cpu
5822                  * (which might be in guest context) send an interrupt
5823                  * to kick the cpu out of guest context.  Next time
5824                  * guest context is entered kvmclock will be updated,
5825                  * so the guest will not see stale values.
5826                  */
5827                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5828         }
5829         return 0;
5830 }
5831
5832 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5833         .notifier_call  = kvmclock_cpufreq_notifier
5834 };
5835
5836 static int kvmclock_cpu_online(unsigned int cpu)
5837 {
5838         tsc_khz_changed(NULL);
5839         return 0;
5840 }
5841
5842 static void kvm_timer_init(void)
5843 {
5844         max_tsc_khz = tsc_khz;
5845
5846         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5847 #ifdef CONFIG_CPU_FREQ
5848                 struct cpufreq_policy policy;
5849                 int cpu;
5850
5851                 memset(&policy, 0, sizeof(policy));
5852                 cpu = get_cpu();
5853                 cpufreq_get_policy(&policy, cpu);
5854                 if (policy.cpuinfo.max_freq)
5855                         max_tsc_khz = policy.cpuinfo.max_freq;
5856                 put_cpu();
5857 #endif
5858                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5859                                           CPUFREQ_TRANSITION_NOTIFIER);
5860         }
5861         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5862
5863         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5864                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5865 }
5866
5867 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5868
5869 int kvm_is_in_guest(void)
5870 {
5871         return __this_cpu_read(current_vcpu) != NULL;
5872 }
5873
5874 static int kvm_is_user_mode(void)
5875 {
5876         int user_mode = 3;
5877
5878         if (__this_cpu_read(current_vcpu))
5879                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5880
5881         return user_mode != 0;
5882 }
5883
5884 static unsigned long kvm_get_guest_ip(void)
5885 {
5886         unsigned long ip = 0;
5887
5888         if (__this_cpu_read(current_vcpu))
5889                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5890
5891         return ip;
5892 }
5893
5894 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5895         .is_in_guest            = kvm_is_in_guest,
5896         .is_user_mode           = kvm_is_user_mode,
5897         .get_guest_ip           = kvm_get_guest_ip,
5898 };
5899
5900 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5901 {
5902         __this_cpu_write(current_vcpu, vcpu);
5903 }
5904 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5905
5906 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5907 {
5908         __this_cpu_write(current_vcpu, NULL);
5909 }
5910 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5911
5912 static void kvm_set_mmio_spte_mask(void)
5913 {
5914         u64 mask;
5915         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5916
5917         /*
5918          * Set the reserved bits and the present bit of an paging-structure
5919          * entry to generate page fault with PFER.RSV = 1.
5920          */
5921          /* Mask the reserved physical address bits. */
5922         mask = rsvd_bits(maxphyaddr, 51);
5923
5924         /* Bit 62 is always reserved for 32bit host. */
5925         mask |= 0x3ull << 62;
5926
5927         /* Set the present bit. */
5928         mask |= 1ull;
5929
5930 #ifdef CONFIG_X86_64
5931         /*
5932          * If reserved bit is not supported, clear the present bit to disable
5933          * mmio page fault.
5934          */
5935         if (maxphyaddr == 52)
5936                 mask &= ~1ull;
5937 #endif
5938
5939         kvm_mmu_set_mmio_spte_mask(mask);
5940 }
5941
5942 #ifdef CONFIG_X86_64
5943 static void pvclock_gtod_update_fn(struct work_struct *work)
5944 {
5945         struct kvm *kvm;
5946
5947         struct kvm_vcpu *vcpu;
5948         int i;
5949
5950         spin_lock(&kvm_lock);
5951         list_for_each_entry(kvm, &vm_list, vm_list)
5952                 kvm_for_each_vcpu(i, vcpu, kvm)
5953                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5954         atomic_set(&kvm_guest_has_master_clock, 0);
5955         spin_unlock(&kvm_lock);
5956 }
5957
5958 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5959
5960 /*
5961  * Notification about pvclock gtod data update.
5962  */
5963 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5964                                void *priv)
5965 {
5966         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5967         struct timekeeper *tk = priv;
5968
5969         update_pvclock_gtod(tk);
5970
5971         /* disable master clock if host does not trust, or does not
5972          * use, TSC clocksource
5973          */
5974         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5975             atomic_read(&kvm_guest_has_master_clock) != 0)
5976                 queue_work(system_long_wq, &pvclock_gtod_work);
5977
5978         return 0;
5979 }
5980
5981 static struct notifier_block pvclock_gtod_notifier = {
5982         .notifier_call = pvclock_gtod_notify,
5983 };
5984 #endif
5985
5986 int kvm_arch_init(void *opaque)
5987 {
5988         int r;
5989         struct kvm_x86_ops *ops = opaque;
5990
5991         if (kvm_x86_ops) {
5992                 printk(KERN_ERR "kvm: already loaded the other module\n");
5993                 r = -EEXIST;
5994                 goto out;
5995         }
5996
5997         if (!ops->cpu_has_kvm_support()) {
5998                 printk(KERN_ERR "kvm: no hardware support\n");
5999                 r = -EOPNOTSUPP;
6000                 goto out;
6001         }
6002         if (ops->disabled_by_bios()) {
6003                 printk(KERN_ERR "kvm: disabled by bios\n");
6004                 r = -EOPNOTSUPP;
6005                 goto out;
6006         }
6007
6008         r = -ENOMEM;
6009         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6010         if (!shared_msrs) {
6011                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6012                 goto out;
6013         }
6014
6015         r = kvm_mmu_module_init();
6016         if (r)
6017                 goto out_free_percpu;
6018
6019         kvm_set_mmio_spte_mask();
6020
6021         kvm_x86_ops = ops;
6022
6023         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6024                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6025                         PT_PRESENT_MASK);
6026         kvm_timer_init();
6027
6028         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6029
6030         if (boot_cpu_has(X86_FEATURE_XSAVE))
6031                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6032
6033         kvm_lapic_init();
6034 #ifdef CONFIG_X86_64
6035         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6036 #endif
6037
6038         return 0;
6039
6040 out_free_percpu:
6041         free_percpu(shared_msrs);
6042 out:
6043         return r;
6044 }
6045
6046 void kvm_arch_exit(void)
6047 {
6048         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6049
6050         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6051                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6052                                             CPUFREQ_TRANSITION_NOTIFIER);
6053         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6054 #ifdef CONFIG_X86_64
6055         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6056 #endif
6057         kvm_x86_ops = NULL;
6058         kvm_mmu_module_exit();
6059         free_percpu(shared_msrs);
6060 }
6061
6062 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6063 {
6064         ++vcpu->stat.halt_exits;
6065         if (lapic_in_kernel(vcpu)) {
6066                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6067                 return 1;
6068         } else {
6069                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6070                 return 0;
6071         }
6072 }
6073 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6074
6075 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6076 {
6077         int ret = kvm_skip_emulated_instruction(vcpu);
6078         /*
6079          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6080          * KVM_EXIT_DEBUG here.
6081          */
6082         return kvm_vcpu_halt(vcpu) && ret;
6083 }
6084 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6085
6086 /*
6087  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6088  *
6089  * @apicid - apicid of vcpu to be kicked.
6090  */
6091 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6092 {
6093         struct kvm_lapic_irq lapic_irq;
6094
6095         lapic_irq.shorthand = 0;
6096         lapic_irq.dest_mode = 0;
6097         lapic_irq.dest_id = apicid;
6098         lapic_irq.msi_redir_hint = false;
6099
6100         lapic_irq.delivery_mode = APIC_DM_REMRD;
6101         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6102 }
6103
6104 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6105 {
6106         vcpu->arch.apicv_active = false;
6107         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6108 }
6109
6110 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6111 {
6112         unsigned long nr, a0, a1, a2, a3, ret;
6113         int op_64_bit, r;
6114
6115         r = kvm_skip_emulated_instruction(vcpu);
6116
6117         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6118                 return kvm_hv_hypercall(vcpu);
6119
6120         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6121         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6122         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6123         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6124         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6125
6126         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6127
6128         op_64_bit = is_64_bit_mode(vcpu);
6129         if (!op_64_bit) {
6130                 nr &= 0xFFFFFFFF;
6131                 a0 &= 0xFFFFFFFF;
6132                 a1 &= 0xFFFFFFFF;
6133                 a2 &= 0xFFFFFFFF;
6134                 a3 &= 0xFFFFFFFF;
6135         }
6136
6137         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6138                 ret = -KVM_EPERM;
6139                 goto out;
6140         }
6141
6142         switch (nr) {
6143         case KVM_HC_VAPIC_POLL_IRQ:
6144                 ret = 0;
6145                 break;
6146         case KVM_HC_KICK_CPU:
6147                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6148                 ret = 0;
6149                 break;
6150         default:
6151                 ret = -KVM_ENOSYS;
6152                 break;
6153         }
6154 out:
6155         if (!op_64_bit)
6156                 ret = (u32)ret;
6157         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6158         ++vcpu->stat.hypercalls;
6159         return r;
6160 }
6161 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6162
6163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6164 {
6165         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6166         char instruction[3];
6167         unsigned long rip = kvm_rip_read(vcpu);
6168
6169         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6170
6171         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6172 }
6173
6174 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6175 {
6176         return vcpu->run->request_interrupt_window &&
6177                 likely(!pic_in_kernel(vcpu->kvm));
6178 }
6179
6180 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6181 {
6182         struct kvm_run *kvm_run = vcpu->run;
6183
6184         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6185         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6186         kvm_run->cr8 = kvm_get_cr8(vcpu);
6187         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6188         kvm_run->ready_for_interrupt_injection =
6189                 pic_in_kernel(vcpu->kvm) ||
6190                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6191 }
6192
6193 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6194 {
6195         int max_irr, tpr;
6196
6197         if (!kvm_x86_ops->update_cr8_intercept)
6198                 return;
6199
6200         if (!lapic_in_kernel(vcpu))
6201                 return;
6202
6203         if (vcpu->arch.apicv_active)
6204                 return;
6205
6206         if (!vcpu->arch.apic->vapic_addr)
6207                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6208         else
6209                 max_irr = -1;
6210
6211         if (max_irr != -1)
6212                 max_irr >>= 4;
6213
6214         tpr = kvm_lapic_get_cr8(vcpu);
6215
6216         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6217 }
6218
6219 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6220 {
6221         int r;
6222
6223         /* try to reinject previous events if any */
6224         if (vcpu->arch.exception.pending) {
6225                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6226                                         vcpu->arch.exception.has_error_code,
6227                                         vcpu->arch.exception.error_code);
6228
6229                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6230                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6231                                              X86_EFLAGS_RF);
6232
6233                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6234                     (vcpu->arch.dr7 & DR7_GD)) {
6235                         vcpu->arch.dr7 &= ~DR7_GD;
6236                         kvm_update_dr7(vcpu);
6237                 }
6238
6239                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6240                                           vcpu->arch.exception.has_error_code,
6241                                           vcpu->arch.exception.error_code,
6242                                           vcpu->arch.exception.reinject);
6243                 return 0;
6244         }
6245
6246         if (vcpu->arch.nmi_injected) {
6247                 kvm_x86_ops->set_nmi(vcpu);
6248                 return 0;
6249         }
6250
6251         if (vcpu->arch.interrupt.pending) {
6252                 kvm_x86_ops->set_irq(vcpu);
6253                 return 0;
6254         }
6255
6256         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6257                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6258                 if (r != 0)
6259                         return r;
6260         }
6261
6262         /* try to inject new event if pending */
6263         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6264                 vcpu->arch.smi_pending = false;
6265                 enter_smm(vcpu);
6266         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6267                 --vcpu->arch.nmi_pending;
6268                 vcpu->arch.nmi_injected = true;
6269                 kvm_x86_ops->set_nmi(vcpu);
6270         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6271                 /*
6272                  * Because interrupts can be injected asynchronously, we are
6273                  * calling check_nested_events again here to avoid a race condition.
6274                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6275                  * proposal and current concerns.  Perhaps we should be setting
6276                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6277                  */
6278                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6279                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6280                         if (r != 0)
6281                                 return r;
6282                 }
6283                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6284                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6285                                             false);
6286                         kvm_x86_ops->set_irq(vcpu);
6287                 }
6288         }
6289
6290         return 0;
6291 }
6292
6293 static void process_nmi(struct kvm_vcpu *vcpu)
6294 {
6295         unsigned limit = 2;
6296
6297         /*
6298          * x86 is limited to one NMI running, and one NMI pending after it.
6299          * If an NMI is already in progress, limit further NMIs to just one.
6300          * Otherwise, allow two (and we'll inject the first one immediately).
6301          */
6302         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6303                 limit = 1;
6304
6305         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6306         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6307         kvm_make_request(KVM_REQ_EVENT, vcpu);
6308 }
6309
6310 #define put_smstate(type, buf, offset, val)                       \
6311         *(type *)((buf) + (offset) - 0x7e00) = val
6312
6313 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6314 {
6315         u32 flags = 0;
6316         flags |= seg->g       << 23;
6317         flags |= seg->db      << 22;
6318         flags |= seg->l       << 21;
6319         flags |= seg->avl     << 20;
6320         flags |= seg->present << 15;
6321         flags |= seg->dpl     << 13;
6322         flags |= seg->s       << 12;
6323         flags |= seg->type    << 8;
6324         return flags;
6325 }
6326
6327 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6328 {
6329         struct kvm_segment seg;
6330         int offset;
6331
6332         kvm_get_segment(vcpu, &seg, n);
6333         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6334
6335         if (n < 3)
6336                 offset = 0x7f84 + n * 12;
6337         else
6338                 offset = 0x7f2c + (n - 3) * 12;
6339
6340         put_smstate(u32, buf, offset + 8, seg.base);
6341         put_smstate(u32, buf, offset + 4, seg.limit);
6342         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6343 }
6344
6345 #ifdef CONFIG_X86_64
6346 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6347 {
6348         struct kvm_segment seg;
6349         int offset;
6350         u16 flags;
6351
6352         kvm_get_segment(vcpu, &seg, n);
6353         offset = 0x7e00 + n * 16;
6354
6355         flags = enter_smm_get_segment_flags(&seg) >> 8;
6356         put_smstate(u16, buf, offset, seg.selector);
6357         put_smstate(u16, buf, offset + 2, flags);
6358         put_smstate(u32, buf, offset + 4, seg.limit);
6359         put_smstate(u64, buf, offset + 8, seg.base);
6360 }
6361 #endif
6362
6363 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6364 {
6365         struct desc_ptr dt;
6366         struct kvm_segment seg;
6367         unsigned long val;
6368         int i;
6369
6370         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6371         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6372         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6373         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6374
6375         for (i = 0; i < 8; i++)
6376                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6377
6378         kvm_get_dr(vcpu, 6, &val);
6379         put_smstate(u32, buf, 0x7fcc, (u32)val);
6380         kvm_get_dr(vcpu, 7, &val);
6381         put_smstate(u32, buf, 0x7fc8, (u32)val);
6382
6383         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6384         put_smstate(u32, buf, 0x7fc4, seg.selector);
6385         put_smstate(u32, buf, 0x7f64, seg.base);
6386         put_smstate(u32, buf, 0x7f60, seg.limit);
6387         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6388
6389         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6390         put_smstate(u32, buf, 0x7fc0, seg.selector);
6391         put_smstate(u32, buf, 0x7f80, seg.base);
6392         put_smstate(u32, buf, 0x7f7c, seg.limit);
6393         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6394
6395         kvm_x86_ops->get_gdt(vcpu, &dt);
6396         put_smstate(u32, buf, 0x7f74, dt.address);
6397         put_smstate(u32, buf, 0x7f70, dt.size);
6398
6399         kvm_x86_ops->get_idt(vcpu, &dt);
6400         put_smstate(u32, buf, 0x7f58, dt.address);
6401         put_smstate(u32, buf, 0x7f54, dt.size);
6402
6403         for (i = 0; i < 6; i++)
6404                 enter_smm_save_seg_32(vcpu, buf, i);
6405
6406         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6407
6408         /* revision id */
6409         put_smstate(u32, buf, 0x7efc, 0x00020000);
6410         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6411 }
6412
6413 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6414 {
6415 #ifdef CONFIG_X86_64
6416         struct desc_ptr dt;
6417         struct kvm_segment seg;
6418         unsigned long val;
6419         int i;
6420
6421         for (i = 0; i < 16; i++)
6422                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6423
6424         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6425         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6426
6427         kvm_get_dr(vcpu, 6, &val);
6428         put_smstate(u64, buf, 0x7f68, val);
6429         kvm_get_dr(vcpu, 7, &val);
6430         put_smstate(u64, buf, 0x7f60, val);
6431
6432         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6433         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6434         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6435
6436         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6437
6438         /* revision id */
6439         put_smstate(u32, buf, 0x7efc, 0x00020064);
6440
6441         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6442
6443         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6444         put_smstate(u16, buf, 0x7e90, seg.selector);
6445         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6446         put_smstate(u32, buf, 0x7e94, seg.limit);
6447         put_smstate(u64, buf, 0x7e98, seg.base);
6448
6449         kvm_x86_ops->get_idt(vcpu, &dt);
6450         put_smstate(u32, buf, 0x7e84, dt.size);
6451         put_smstate(u64, buf, 0x7e88, dt.address);
6452
6453         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6454         put_smstate(u16, buf, 0x7e70, seg.selector);
6455         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6456         put_smstate(u32, buf, 0x7e74, seg.limit);
6457         put_smstate(u64, buf, 0x7e78, seg.base);
6458
6459         kvm_x86_ops->get_gdt(vcpu, &dt);
6460         put_smstate(u32, buf, 0x7e64, dt.size);
6461         put_smstate(u64, buf, 0x7e68, dt.address);
6462
6463         for (i = 0; i < 6; i++)
6464                 enter_smm_save_seg_64(vcpu, buf, i);
6465 #else
6466         WARN_ON_ONCE(1);
6467 #endif
6468 }
6469
6470 static void enter_smm(struct kvm_vcpu *vcpu)
6471 {
6472         struct kvm_segment cs, ds;
6473         struct desc_ptr dt;
6474         char buf[512];
6475         u32 cr0;
6476
6477         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6478         vcpu->arch.hflags |= HF_SMM_MASK;
6479         memset(buf, 0, 512);
6480         if (guest_cpuid_has_longmode(vcpu))
6481                 enter_smm_save_state_64(vcpu, buf);
6482         else
6483                 enter_smm_save_state_32(vcpu, buf);
6484
6485         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6486
6487         if (kvm_x86_ops->get_nmi_mask(vcpu))
6488                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6489         else
6490                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6491
6492         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6493         kvm_rip_write(vcpu, 0x8000);
6494
6495         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6496         kvm_x86_ops->set_cr0(vcpu, cr0);
6497         vcpu->arch.cr0 = cr0;
6498
6499         kvm_x86_ops->set_cr4(vcpu, 0);
6500
6501         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6502         dt.address = dt.size = 0;
6503         kvm_x86_ops->set_idt(vcpu, &dt);
6504
6505         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6506
6507         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6508         cs.base = vcpu->arch.smbase;
6509
6510         ds.selector = 0;
6511         ds.base = 0;
6512
6513         cs.limit    = ds.limit = 0xffffffff;
6514         cs.type     = ds.type = 0x3;
6515         cs.dpl      = ds.dpl = 0;
6516         cs.db       = ds.db = 0;
6517         cs.s        = ds.s = 1;
6518         cs.l        = ds.l = 0;
6519         cs.g        = ds.g = 1;
6520         cs.avl      = ds.avl = 0;
6521         cs.present  = ds.present = 1;
6522         cs.unusable = ds.unusable = 0;
6523         cs.padding  = ds.padding = 0;
6524
6525         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6526         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6527         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6528         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6529         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6530         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6531
6532         if (guest_cpuid_has_longmode(vcpu))
6533                 kvm_x86_ops->set_efer(vcpu, 0);
6534
6535         kvm_update_cpuid(vcpu);
6536         kvm_mmu_reset_context(vcpu);
6537 }
6538
6539 static void process_smi(struct kvm_vcpu *vcpu)
6540 {
6541         vcpu->arch.smi_pending = true;
6542         kvm_make_request(KVM_REQ_EVENT, vcpu);
6543 }
6544
6545 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6546 {
6547         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6548 }
6549
6550 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6551 {
6552         u64 eoi_exit_bitmap[4];
6553
6554         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6555                 return;
6556
6557         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6558
6559         if (irqchip_split(vcpu->kvm))
6560                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6561         else {
6562                 if (vcpu->arch.apicv_active)
6563                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6564                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6565         }
6566         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6567                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6568         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6569 }
6570
6571 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6572 {
6573         ++vcpu->stat.tlb_flush;
6574         kvm_x86_ops->tlb_flush(vcpu);
6575 }
6576
6577 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6578 {
6579         struct page *page = NULL;
6580
6581         if (!lapic_in_kernel(vcpu))
6582                 return;
6583
6584         if (!kvm_x86_ops->set_apic_access_page_addr)
6585                 return;
6586
6587         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6588         if (is_error_page(page))
6589                 return;
6590         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6591
6592         /*
6593          * Do not pin apic access page in memory, the MMU notifier
6594          * will call us again if it is migrated or swapped out.
6595          */
6596         put_page(page);
6597 }
6598 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6599
6600 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6601                                            unsigned long address)
6602 {
6603         /*
6604          * The physical address of apic access page is stored in the VMCS.
6605          * Update it when it becomes invalid.
6606          */
6607         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6608                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6609 }
6610
6611 /*
6612  * Returns 1 to let vcpu_run() continue the guest execution loop without
6613  * exiting to the userspace.  Otherwise, the value will be returned to the
6614  * userspace.
6615  */
6616 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6617 {
6618         int r;
6619         bool req_int_win =
6620                 dm_request_for_irq_injection(vcpu) &&
6621                 kvm_cpu_accept_dm_intr(vcpu);
6622
6623         bool req_immediate_exit = false;
6624
6625         if (vcpu->requests) {
6626                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6627                         kvm_mmu_unload(vcpu);
6628                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6629                         __kvm_migrate_timers(vcpu);
6630                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6631                         kvm_gen_update_masterclock(vcpu->kvm);
6632                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6633                         kvm_gen_kvmclock_update(vcpu);
6634                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6635                         r = kvm_guest_time_update(vcpu);
6636                         if (unlikely(r))
6637                                 goto out;
6638                 }
6639                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6640                         kvm_mmu_sync_roots(vcpu);
6641                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6642                         kvm_vcpu_flush_tlb(vcpu);
6643                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6644                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6645                         r = 0;
6646                         goto out;
6647                 }
6648                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6649                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6650                         r = 0;
6651                         goto out;
6652                 }
6653                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6654                         vcpu->fpu_active = 0;
6655                         kvm_x86_ops->fpu_deactivate(vcpu);
6656                 }
6657                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6658                         /* Page is swapped out. Do synthetic halt */
6659                         vcpu->arch.apf.halted = true;
6660                         r = 1;
6661                         goto out;
6662                 }
6663                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6664                         record_steal_time(vcpu);
6665                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6666                         process_smi(vcpu);
6667                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6668                         process_nmi(vcpu);
6669                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6670                         kvm_pmu_handle_event(vcpu);
6671                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6672                         kvm_pmu_deliver_pmi(vcpu);
6673                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6674                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6675                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6676                                      vcpu->arch.ioapic_handled_vectors)) {
6677                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6678                                 vcpu->run->eoi.vector =
6679                                                 vcpu->arch.pending_ioapic_eoi;
6680                                 r = 0;
6681                                 goto out;
6682                         }
6683                 }
6684                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6685                         vcpu_scan_ioapic(vcpu);
6686                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6687                         kvm_vcpu_reload_apic_access_page(vcpu);
6688                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6689                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6690                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6691                         r = 0;
6692                         goto out;
6693                 }
6694                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6695                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6696                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6697                         r = 0;
6698                         goto out;
6699                 }
6700                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6701                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6702                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6703                         r = 0;
6704                         goto out;
6705                 }
6706
6707                 /*
6708                  * KVM_REQ_HV_STIMER has to be processed after
6709                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6710                  * depend on the guest clock being up-to-date
6711                  */
6712                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6713                         kvm_hv_process_stimers(vcpu);
6714         }
6715
6716         /*
6717          * KVM_REQ_EVENT is not set when posted interrupts are set by
6718          * VT-d hardware, so we have to update RVI unconditionally.
6719          */
6720         if (kvm_lapic_enabled(vcpu)) {
6721                 /*
6722                  * Update architecture specific hints for APIC
6723                  * virtual interrupt delivery.
6724                  */
6725                 if (vcpu->arch.apicv_active)
6726                         kvm_x86_ops->hwapic_irr_update(vcpu,
6727                                 kvm_lapic_find_highest_irr(vcpu));
6728         }
6729
6730         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6731                 kvm_apic_accept_events(vcpu);
6732                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6733                         r = 1;
6734                         goto out;
6735                 }
6736
6737                 if (inject_pending_event(vcpu, req_int_win) != 0)
6738                         req_immediate_exit = true;
6739                 else {
6740                         /* Enable NMI/IRQ window open exits if needed.
6741                          *
6742                          * SMIs have two cases: 1) they can be nested, and
6743                          * then there is nothing to do here because RSM will
6744                          * cause a vmexit anyway; 2) or the SMI can be pending
6745                          * because inject_pending_event has completed the
6746                          * injection of an IRQ or NMI from the previous vmexit,
6747                          * and then we request an immediate exit to inject the SMI.
6748                          */
6749                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6750                                 req_immediate_exit = true;
6751                         if (vcpu->arch.nmi_pending)
6752                                 kvm_x86_ops->enable_nmi_window(vcpu);
6753                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6754                                 kvm_x86_ops->enable_irq_window(vcpu);
6755                 }
6756
6757                 if (kvm_lapic_enabled(vcpu)) {
6758                         update_cr8_intercept(vcpu);
6759                         kvm_lapic_sync_to_vapic(vcpu);
6760                 }
6761         }
6762
6763         r = kvm_mmu_reload(vcpu);
6764         if (unlikely(r)) {
6765                 goto cancel_injection;
6766         }
6767
6768         preempt_disable();
6769
6770         kvm_x86_ops->prepare_guest_switch(vcpu);
6771         if (vcpu->fpu_active)
6772                 kvm_load_guest_fpu(vcpu);
6773         vcpu->mode = IN_GUEST_MODE;
6774
6775         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6776
6777         /*
6778          * We should set ->mode before check ->requests,
6779          * Please see the comment in kvm_make_all_cpus_request.
6780          * This also orders the write to mode from any reads
6781          * to the page tables done while the VCPU is running.
6782          * Please see the comment in kvm_flush_remote_tlbs.
6783          */
6784         smp_mb__after_srcu_read_unlock();
6785
6786         local_irq_disable();
6787
6788         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6789             || need_resched() || signal_pending(current)) {
6790                 vcpu->mode = OUTSIDE_GUEST_MODE;
6791                 smp_wmb();
6792                 local_irq_enable();
6793                 preempt_enable();
6794                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6795                 r = 1;
6796                 goto cancel_injection;
6797         }
6798
6799         kvm_load_guest_xcr0(vcpu);
6800
6801         if (req_immediate_exit) {
6802                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6803                 smp_send_reschedule(vcpu->cpu);
6804         }
6805
6806         trace_kvm_entry(vcpu->vcpu_id);
6807         wait_lapic_expire(vcpu);
6808         guest_enter_irqoff();
6809
6810         if (unlikely(vcpu->arch.switch_db_regs)) {
6811                 set_debugreg(0, 7);
6812                 set_debugreg(vcpu->arch.eff_db[0], 0);
6813                 set_debugreg(vcpu->arch.eff_db[1], 1);
6814                 set_debugreg(vcpu->arch.eff_db[2], 2);
6815                 set_debugreg(vcpu->arch.eff_db[3], 3);
6816                 set_debugreg(vcpu->arch.dr6, 6);
6817                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6818         }
6819
6820         kvm_x86_ops->run(vcpu);
6821
6822         /*
6823          * Do this here before restoring debug registers on the host.  And
6824          * since we do this before handling the vmexit, a DR access vmexit
6825          * can (a) read the correct value of the debug registers, (b) set
6826          * KVM_DEBUGREG_WONT_EXIT again.
6827          */
6828         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6829                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6830                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6831                 kvm_update_dr0123(vcpu);
6832                 kvm_update_dr6(vcpu);
6833                 kvm_update_dr7(vcpu);
6834                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6835         }
6836
6837         /*
6838          * If the guest has used debug registers, at least dr7
6839          * will be disabled while returning to the host.
6840          * If we don't have active breakpoints in the host, we don't
6841          * care about the messed up debug address registers. But if
6842          * we have some of them active, restore the old state.
6843          */
6844         if (hw_breakpoint_active())
6845                 hw_breakpoint_restore();
6846
6847         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6848
6849         vcpu->mode = OUTSIDE_GUEST_MODE;
6850         smp_wmb();
6851
6852         kvm_put_guest_xcr0(vcpu);
6853
6854         kvm_x86_ops->handle_external_intr(vcpu);
6855
6856         ++vcpu->stat.exits;
6857
6858         guest_exit_irqoff();
6859
6860         local_irq_enable();
6861         preempt_enable();
6862
6863         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6864
6865         /*
6866          * Profile KVM exit RIPs:
6867          */
6868         if (unlikely(prof_on == KVM_PROFILING)) {
6869                 unsigned long rip = kvm_rip_read(vcpu);
6870                 profile_hit(KVM_PROFILING, (void *)rip);
6871         }
6872
6873         if (unlikely(vcpu->arch.tsc_always_catchup))
6874                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6875
6876         if (vcpu->arch.apic_attention)
6877                 kvm_lapic_sync_from_vapic(vcpu);
6878
6879         r = kvm_x86_ops->handle_exit(vcpu);
6880         return r;
6881
6882 cancel_injection:
6883         kvm_x86_ops->cancel_injection(vcpu);
6884         if (unlikely(vcpu->arch.apic_attention))
6885                 kvm_lapic_sync_from_vapic(vcpu);
6886 out:
6887         return r;
6888 }
6889
6890 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6891 {
6892         if (!kvm_arch_vcpu_runnable(vcpu) &&
6893             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6894                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6895                 kvm_vcpu_block(vcpu);
6896                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6897
6898                 if (kvm_x86_ops->post_block)
6899                         kvm_x86_ops->post_block(vcpu);
6900
6901                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6902                         return 1;
6903         }
6904
6905         kvm_apic_accept_events(vcpu);
6906         switch(vcpu->arch.mp_state) {
6907         case KVM_MP_STATE_HALTED:
6908                 vcpu->arch.pv.pv_unhalted = false;
6909                 vcpu->arch.mp_state =
6910                         KVM_MP_STATE_RUNNABLE;
6911         case KVM_MP_STATE_RUNNABLE:
6912                 vcpu->arch.apf.halted = false;
6913                 break;
6914         case KVM_MP_STATE_INIT_RECEIVED:
6915                 break;
6916         default:
6917                 return -EINTR;
6918                 break;
6919         }
6920         return 1;
6921 }
6922
6923 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6924 {
6925         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6926                 !vcpu->arch.apf.halted);
6927 }
6928
6929 static int vcpu_run(struct kvm_vcpu *vcpu)
6930 {
6931         int r;
6932         struct kvm *kvm = vcpu->kvm;
6933
6934         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6935
6936         for (;;) {
6937                 if (kvm_vcpu_running(vcpu)) {
6938                         r = vcpu_enter_guest(vcpu);
6939                 } else {
6940                         r = vcpu_block(kvm, vcpu);
6941                 }
6942
6943                 if (r <= 0)
6944                         break;
6945
6946                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6947                 if (kvm_cpu_has_pending_timer(vcpu))
6948                         kvm_inject_pending_timer_irqs(vcpu);
6949
6950                 if (dm_request_for_irq_injection(vcpu) &&
6951                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6952                         r = 0;
6953                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6954                         ++vcpu->stat.request_irq_exits;
6955                         break;
6956                 }
6957
6958                 kvm_check_async_pf_completion(vcpu);
6959
6960                 if (signal_pending(current)) {
6961                         r = -EINTR;
6962                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6963                         ++vcpu->stat.signal_exits;
6964                         break;
6965                 }
6966                 if (need_resched()) {
6967                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6968                         cond_resched();
6969                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6970                 }
6971         }
6972
6973         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6974
6975         return r;
6976 }
6977
6978 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6979 {
6980         int r;
6981         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6982         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6983         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6984         if (r != EMULATE_DONE)
6985                 return 0;
6986         return 1;
6987 }
6988
6989 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6990 {
6991         BUG_ON(!vcpu->arch.pio.count);
6992
6993         return complete_emulated_io(vcpu);
6994 }
6995
6996 /*
6997  * Implements the following, as a state machine:
6998  *
6999  * read:
7000  *   for each fragment
7001  *     for each mmio piece in the fragment
7002  *       write gpa, len
7003  *       exit
7004  *       copy data
7005  *   execute insn
7006  *
7007  * write:
7008  *   for each fragment
7009  *     for each mmio piece in the fragment
7010  *       write gpa, len
7011  *       copy data
7012  *       exit
7013  */
7014 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7015 {
7016         struct kvm_run *run = vcpu->run;
7017         struct kvm_mmio_fragment *frag;
7018         unsigned len;
7019
7020         BUG_ON(!vcpu->mmio_needed);
7021
7022         /* Complete previous fragment */
7023         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7024         len = min(8u, frag->len);
7025         if (!vcpu->mmio_is_write)
7026                 memcpy(frag->data, run->mmio.data, len);
7027
7028         if (frag->len <= 8) {
7029                 /* Switch to the next fragment. */
7030                 frag++;
7031                 vcpu->mmio_cur_fragment++;
7032         } else {
7033                 /* Go forward to the next mmio piece. */
7034                 frag->data += len;
7035                 frag->gpa += len;
7036                 frag->len -= len;
7037         }
7038
7039         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7040                 vcpu->mmio_needed = 0;
7041
7042                 /* FIXME: return into emulator if single-stepping.  */
7043                 if (vcpu->mmio_is_write)
7044                         return 1;
7045                 vcpu->mmio_read_completed = 1;
7046                 return complete_emulated_io(vcpu);
7047         }
7048
7049         run->exit_reason = KVM_EXIT_MMIO;
7050         run->mmio.phys_addr = frag->gpa;
7051         if (vcpu->mmio_is_write)
7052                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7053         run->mmio.len = min(8u, frag->len);
7054         run->mmio.is_write = vcpu->mmio_is_write;
7055         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7056         return 0;
7057 }
7058
7059
7060 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7061 {
7062         struct fpu *fpu = &current->thread.fpu;
7063         int r;
7064         sigset_t sigsaved;
7065
7066         fpu__activate_curr(fpu);
7067
7068         if (vcpu->sigset_active)
7069                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7070
7071         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7072                 kvm_vcpu_block(vcpu);
7073                 kvm_apic_accept_events(vcpu);
7074                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7075                 r = -EAGAIN;
7076                 goto out;
7077         }
7078
7079         /* re-sync apic's tpr */
7080         if (!lapic_in_kernel(vcpu)) {
7081                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7082                         r = -EINVAL;
7083                         goto out;
7084                 }
7085         }
7086
7087         if (unlikely(vcpu->arch.complete_userspace_io)) {
7088                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7089                 vcpu->arch.complete_userspace_io = NULL;
7090                 r = cui(vcpu);
7091                 if (r <= 0)
7092                         goto out;
7093         } else
7094                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7095
7096         r = vcpu_run(vcpu);
7097
7098 out:
7099         post_kvm_run_save(vcpu);
7100         if (vcpu->sigset_active)
7101                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7102
7103         return r;
7104 }
7105
7106 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7107 {
7108         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7109                 /*
7110                  * We are here if userspace calls get_regs() in the middle of
7111                  * instruction emulation. Registers state needs to be copied
7112                  * back from emulation context to vcpu. Userspace shouldn't do
7113                  * that usually, but some bad designed PV devices (vmware
7114                  * backdoor interface) need this to work
7115                  */
7116                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7117                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7118         }
7119         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7120         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7121         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7122         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7123         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7124         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7125         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7126         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7127 #ifdef CONFIG_X86_64
7128         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7129         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7130         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7131         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7132         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7133         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7134         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7135         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7136 #endif
7137
7138         regs->rip = kvm_rip_read(vcpu);
7139         regs->rflags = kvm_get_rflags(vcpu);
7140
7141         return 0;
7142 }
7143
7144 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7145 {
7146         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7147         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7148
7149         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7150         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7151         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7152         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7153         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7154         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7155         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7156         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7157 #ifdef CONFIG_X86_64
7158         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7159         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7160         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7161         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7162         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7163         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7164         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7165         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7166 #endif
7167
7168         kvm_rip_write(vcpu, regs->rip);
7169         kvm_set_rflags(vcpu, regs->rflags);
7170
7171         vcpu->arch.exception.pending = false;
7172
7173         kvm_make_request(KVM_REQ_EVENT, vcpu);
7174
7175         return 0;
7176 }
7177
7178 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7179 {
7180         struct kvm_segment cs;
7181
7182         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7183         *db = cs.db;
7184         *l = cs.l;
7185 }
7186 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7187
7188 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7189                                   struct kvm_sregs *sregs)
7190 {
7191         struct desc_ptr dt;
7192
7193         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7194         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7195         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7196         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7197         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7198         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7199
7200         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7201         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7202
7203         kvm_x86_ops->get_idt(vcpu, &dt);
7204         sregs->idt.limit = dt.size;
7205         sregs->idt.base = dt.address;
7206         kvm_x86_ops->get_gdt(vcpu, &dt);
7207         sregs->gdt.limit = dt.size;
7208         sregs->gdt.base = dt.address;
7209
7210         sregs->cr0 = kvm_read_cr0(vcpu);
7211         sregs->cr2 = vcpu->arch.cr2;
7212         sregs->cr3 = kvm_read_cr3(vcpu);
7213         sregs->cr4 = kvm_read_cr4(vcpu);
7214         sregs->cr8 = kvm_get_cr8(vcpu);
7215         sregs->efer = vcpu->arch.efer;
7216         sregs->apic_base = kvm_get_apic_base(vcpu);
7217
7218         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7219
7220         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7221                 set_bit(vcpu->arch.interrupt.nr,
7222                         (unsigned long *)sregs->interrupt_bitmap);
7223
7224         return 0;
7225 }
7226
7227 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7228                                     struct kvm_mp_state *mp_state)
7229 {
7230         kvm_apic_accept_events(vcpu);
7231         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7232                                         vcpu->arch.pv.pv_unhalted)
7233                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7234         else
7235                 mp_state->mp_state = vcpu->arch.mp_state;
7236
7237         return 0;
7238 }
7239
7240 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7241                                     struct kvm_mp_state *mp_state)
7242 {
7243         if (!lapic_in_kernel(vcpu) &&
7244             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7245                 return -EINVAL;
7246
7247         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7248                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7249                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7250         } else
7251                 vcpu->arch.mp_state = mp_state->mp_state;
7252         kvm_make_request(KVM_REQ_EVENT, vcpu);
7253         return 0;
7254 }
7255
7256 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7257                     int reason, bool has_error_code, u32 error_code)
7258 {
7259         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7260         int ret;
7261
7262         init_emulate_ctxt(vcpu);
7263
7264         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7265                                    has_error_code, error_code);
7266
7267         if (ret)
7268                 return EMULATE_FAIL;
7269
7270         kvm_rip_write(vcpu, ctxt->eip);
7271         kvm_set_rflags(vcpu, ctxt->eflags);
7272         kvm_make_request(KVM_REQ_EVENT, vcpu);
7273         return EMULATE_DONE;
7274 }
7275 EXPORT_SYMBOL_GPL(kvm_task_switch);
7276
7277 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7278                                   struct kvm_sregs *sregs)
7279 {
7280         struct msr_data apic_base_msr;
7281         int mmu_reset_needed = 0;
7282         int pending_vec, max_bits, idx;
7283         struct desc_ptr dt;
7284
7285         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7286                 return -EINVAL;
7287
7288         dt.size = sregs->idt.limit;
7289         dt.address = sregs->idt.base;
7290         kvm_x86_ops->set_idt(vcpu, &dt);
7291         dt.size = sregs->gdt.limit;
7292         dt.address = sregs->gdt.base;
7293         kvm_x86_ops->set_gdt(vcpu, &dt);
7294
7295         vcpu->arch.cr2 = sregs->cr2;
7296         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7297         vcpu->arch.cr3 = sregs->cr3;
7298         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7299
7300         kvm_set_cr8(vcpu, sregs->cr8);
7301
7302         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7303         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7304         apic_base_msr.data = sregs->apic_base;
7305         apic_base_msr.host_initiated = true;
7306         kvm_set_apic_base(vcpu, &apic_base_msr);
7307
7308         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7309         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7310         vcpu->arch.cr0 = sregs->cr0;
7311
7312         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7313         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7314         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7315                 kvm_update_cpuid(vcpu);
7316
7317         idx = srcu_read_lock(&vcpu->kvm->srcu);
7318         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7319                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7320                 mmu_reset_needed = 1;
7321         }
7322         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7323
7324         if (mmu_reset_needed)
7325                 kvm_mmu_reset_context(vcpu);
7326
7327         max_bits = KVM_NR_INTERRUPTS;
7328         pending_vec = find_first_bit(
7329                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7330         if (pending_vec < max_bits) {
7331                 kvm_queue_interrupt(vcpu, pending_vec, false);
7332                 pr_debug("Set back pending irq %d\n", pending_vec);
7333         }
7334
7335         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7336         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7337         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7338         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7339         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7340         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7341
7342         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7343         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7344
7345         update_cr8_intercept(vcpu);
7346
7347         /* Older userspace won't unhalt the vcpu on reset. */
7348         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7349             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7350             !is_protmode(vcpu))
7351                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7352
7353         kvm_make_request(KVM_REQ_EVENT, vcpu);
7354
7355         return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7359                                         struct kvm_guest_debug *dbg)
7360 {
7361         unsigned long rflags;
7362         int i, r;
7363
7364         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7365                 r = -EBUSY;
7366                 if (vcpu->arch.exception.pending)
7367                         goto out;
7368                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7369                         kvm_queue_exception(vcpu, DB_VECTOR);
7370                 else
7371                         kvm_queue_exception(vcpu, BP_VECTOR);
7372         }
7373
7374         /*
7375          * Read rflags as long as potentially injected trace flags are still
7376          * filtered out.
7377          */
7378         rflags = kvm_get_rflags(vcpu);
7379
7380         vcpu->guest_debug = dbg->control;
7381         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7382                 vcpu->guest_debug = 0;
7383
7384         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7385                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7386                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7387                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7388         } else {
7389                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7390                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7391         }
7392         kvm_update_dr7(vcpu);
7393
7394         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7395                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7396                         get_segment_base(vcpu, VCPU_SREG_CS);
7397
7398         /*
7399          * Trigger an rflags update that will inject or remove the trace
7400          * flags.
7401          */
7402         kvm_set_rflags(vcpu, rflags);
7403
7404         kvm_x86_ops->update_bp_intercept(vcpu);
7405
7406         r = 0;
7407
7408 out:
7409
7410         return r;
7411 }
7412
7413 /*
7414  * Translate a guest virtual address to a guest physical address.
7415  */
7416 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7417                                     struct kvm_translation *tr)
7418 {
7419         unsigned long vaddr = tr->linear_address;
7420         gpa_t gpa;
7421         int idx;
7422
7423         idx = srcu_read_lock(&vcpu->kvm->srcu);
7424         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7425         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7426         tr->physical_address = gpa;
7427         tr->valid = gpa != UNMAPPED_GVA;
7428         tr->writeable = 1;
7429         tr->usermode = 0;
7430
7431         return 0;
7432 }
7433
7434 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7435 {
7436         struct fxregs_state *fxsave =
7437                         &vcpu->arch.guest_fpu.state.fxsave;
7438
7439         memcpy(fpu->fpr, fxsave->st_space, 128);
7440         fpu->fcw = fxsave->cwd;
7441         fpu->fsw = fxsave->swd;
7442         fpu->ftwx = fxsave->twd;
7443         fpu->last_opcode = fxsave->fop;
7444         fpu->last_ip = fxsave->rip;
7445         fpu->last_dp = fxsave->rdp;
7446         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7447
7448         return 0;
7449 }
7450
7451 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7452 {
7453         struct fxregs_state *fxsave =
7454                         &vcpu->arch.guest_fpu.state.fxsave;
7455
7456         memcpy(fxsave->st_space, fpu->fpr, 128);
7457         fxsave->cwd = fpu->fcw;
7458         fxsave->swd = fpu->fsw;
7459         fxsave->twd = fpu->ftwx;
7460         fxsave->fop = fpu->last_opcode;
7461         fxsave->rip = fpu->last_ip;
7462         fxsave->rdp = fpu->last_dp;
7463         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7464
7465         return 0;
7466 }
7467
7468 static void fx_init(struct kvm_vcpu *vcpu)
7469 {
7470         fpstate_init(&vcpu->arch.guest_fpu.state);
7471         if (boot_cpu_has(X86_FEATURE_XSAVES))
7472                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7473                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7474
7475         /*
7476          * Ensure guest xcr0 is valid for loading
7477          */
7478         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7479
7480         vcpu->arch.cr0 |= X86_CR0_ET;
7481 }
7482
7483 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7484 {
7485         if (vcpu->guest_fpu_loaded)
7486                 return;
7487
7488         /*
7489          * Restore all possible states in the guest,
7490          * and assume host would use all available bits.
7491          * Guest xcr0 would be loaded later.
7492          */
7493         vcpu->guest_fpu_loaded = 1;
7494         __kernel_fpu_begin();
7495         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7496         trace_kvm_fpu(1);
7497 }
7498
7499 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7500 {
7501         if (!vcpu->guest_fpu_loaded)
7502                 return;
7503
7504         vcpu->guest_fpu_loaded = 0;
7505         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7506         __kernel_fpu_end();
7507         ++vcpu->stat.fpu_reload;
7508         trace_kvm_fpu(0);
7509 }
7510
7511 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7512 {
7513         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7514
7515         kvmclock_reset(vcpu);
7516
7517         kvm_x86_ops->vcpu_free(vcpu);
7518         free_cpumask_var(wbinvd_dirty_mask);
7519 }
7520
7521 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7522                                                 unsigned int id)
7523 {
7524         struct kvm_vcpu *vcpu;
7525
7526         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7527                 printk_once(KERN_WARNING
7528                 "kvm: SMP vm created on host with unstable TSC; "
7529                 "guest TSC will not be reliable\n");
7530
7531         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7532
7533         return vcpu;
7534 }
7535
7536 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7537 {
7538         int r;
7539
7540         kvm_vcpu_mtrr_init(vcpu);
7541         r = vcpu_load(vcpu);
7542         if (r)
7543                 return r;
7544         kvm_vcpu_reset(vcpu, false);
7545         kvm_mmu_setup(vcpu);
7546         vcpu_put(vcpu);
7547         return r;
7548 }
7549
7550 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7551 {
7552         struct msr_data msr;
7553         struct kvm *kvm = vcpu->kvm;
7554
7555         if (vcpu_load(vcpu))
7556                 return;
7557         msr.data = 0x0;
7558         msr.index = MSR_IA32_TSC;
7559         msr.host_initiated = true;
7560         kvm_write_tsc(vcpu, &msr);
7561         vcpu_put(vcpu);
7562
7563         if (!kvmclock_periodic_sync)
7564                 return;
7565
7566         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7567                                         KVMCLOCK_SYNC_PERIOD);
7568 }
7569
7570 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7571 {
7572         int r;
7573         vcpu->arch.apf.msr_val = 0;
7574
7575         r = vcpu_load(vcpu);
7576         BUG_ON(r);
7577         kvm_mmu_unload(vcpu);
7578         vcpu_put(vcpu);
7579
7580         kvm_x86_ops->vcpu_free(vcpu);
7581 }
7582
7583 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7584 {
7585         vcpu->arch.hflags = 0;
7586
7587         vcpu->arch.smi_pending = 0;
7588         atomic_set(&vcpu->arch.nmi_queued, 0);
7589         vcpu->arch.nmi_pending = 0;
7590         vcpu->arch.nmi_injected = false;
7591         kvm_clear_interrupt_queue(vcpu);
7592         kvm_clear_exception_queue(vcpu);
7593
7594         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7595         kvm_update_dr0123(vcpu);
7596         vcpu->arch.dr6 = DR6_INIT;
7597         kvm_update_dr6(vcpu);
7598         vcpu->arch.dr7 = DR7_FIXED_1;
7599         kvm_update_dr7(vcpu);
7600
7601         vcpu->arch.cr2 = 0;
7602
7603         kvm_make_request(KVM_REQ_EVENT, vcpu);
7604         vcpu->arch.apf.msr_val = 0;
7605         vcpu->arch.st.msr_val = 0;
7606
7607         kvmclock_reset(vcpu);
7608
7609         kvm_clear_async_pf_completion_queue(vcpu);
7610         kvm_async_pf_hash_reset(vcpu);
7611         vcpu->arch.apf.halted = false;
7612
7613         if (!init_event) {
7614                 kvm_pmu_reset(vcpu);
7615                 vcpu->arch.smbase = 0x30000;
7616         }
7617
7618         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7619         vcpu->arch.regs_avail = ~0;
7620         vcpu->arch.regs_dirty = ~0;
7621
7622         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7623 }
7624
7625 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7626 {
7627         struct kvm_segment cs;
7628
7629         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7630         cs.selector = vector << 8;
7631         cs.base = vector << 12;
7632         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7633         kvm_rip_write(vcpu, 0);
7634 }
7635
7636 int kvm_arch_hardware_enable(void)
7637 {
7638         struct kvm *kvm;
7639         struct kvm_vcpu *vcpu;
7640         int i;
7641         int ret;
7642         u64 local_tsc;
7643         u64 max_tsc = 0;
7644         bool stable, backwards_tsc = false;
7645
7646         kvm_shared_msr_cpu_online();
7647         ret = kvm_x86_ops->hardware_enable();
7648         if (ret != 0)
7649                 return ret;
7650
7651         local_tsc = rdtsc();
7652         stable = !check_tsc_unstable();
7653         list_for_each_entry(kvm, &vm_list, vm_list) {
7654                 kvm_for_each_vcpu(i, vcpu, kvm) {
7655                         if (!stable && vcpu->cpu == smp_processor_id())
7656                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7657                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7658                                 backwards_tsc = true;
7659                                 if (vcpu->arch.last_host_tsc > max_tsc)
7660                                         max_tsc = vcpu->arch.last_host_tsc;
7661                         }
7662                 }
7663         }
7664
7665         /*
7666          * Sometimes, even reliable TSCs go backwards.  This happens on
7667          * platforms that reset TSC during suspend or hibernate actions, but
7668          * maintain synchronization.  We must compensate.  Fortunately, we can
7669          * detect that condition here, which happens early in CPU bringup,
7670          * before any KVM threads can be running.  Unfortunately, we can't
7671          * bring the TSCs fully up to date with real time, as we aren't yet far
7672          * enough into CPU bringup that we know how much real time has actually
7673          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7674          * variables that haven't been updated yet.
7675          *
7676          * So we simply find the maximum observed TSC above, then record the
7677          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7678          * the adjustment will be applied.  Note that we accumulate
7679          * adjustments, in case multiple suspend cycles happen before some VCPU
7680          * gets a chance to run again.  In the event that no KVM threads get a
7681          * chance to run, we will miss the entire elapsed period, as we'll have
7682          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7683          * loose cycle time.  This isn't too big a deal, since the loss will be
7684          * uniform across all VCPUs (not to mention the scenario is extremely
7685          * unlikely). It is possible that a second hibernate recovery happens
7686          * much faster than a first, causing the observed TSC here to be
7687          * smaller; this would require additional padding adjustment, which is
7688          * why we set last_host_tsc to the local tsc observed here.
7689          *
7690          * N.B. - this code below runs only on platforms with reliable TSC,
7691          * as that is the only way backwards_tsc is set above.  Also note
7692          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7693          * have the same delta_cyc adjustment applied if backwards_tsc
7694          * is detected.  Note further, this adjustment is only done once,
7695          * as we reset last_host_tsc on all VCPUs to stop this from being
7696          * called multiple times (one for each physical CPU bringup).
7697          *
7698          * Platforms with unreliable TSCs don't have to deal with this, they
7699          * will be compensated by the logic in vcpu_load, which sets the TSC to
7700          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7701          * guarantee that they stay in perfect synchronization.
7702          */
7703         if (backwards_tsc) {
7704                 u64 delta_cyc = max_tsc - local_tsc;
7705                 backwards_tsc_observed = true;
7706                 list_for_each_entry(kvm, &vm_list, vm_list) {
7707                         kvm_for_each_vcpu(i, vcpu, kvm) {
7708                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7709                                 vcpu->arch.last_host_tsc = local_tsc;
7710                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7711                         }
7712
7713                         /*
7714                          * We have to disable TSC offset matching.. if you were
7715                          * booting a VM while issuing an S4 host suspend....
7716                          * you may have some problem.  Solving this issue is
7717                          * left as an exercise to the reader.
7718                          */
7719                         kvm->arch.last_tsc_nsec = 0;
7720                         kvm->arch.last_tsc_write = 0;
7721                 }
7722
7723         }
7724         return 0;
7725 }
7726
7727 void kvm_arch_hardware_disable(void)
7728 {
7729         kvm_x86_ops->hardware_disable();
7730         drop_user_return_notifiers();
7731 }
7732
7733 int kvm_arch_hardware_setup(void)
7734 {
7735         int r;
7736
7737         r = kvm_x86_ops->hardware_setup();
7738         if (r != 0)
7739                 return r;
7740
7741         if (kvm_has_tsc_control) {
7742                 /*
7743                  * Make sure the user can only configure tsc_khz values that
7744                  * fit into a signed integer.
7745                  * A min value is not calculated needed because it will always
7746                  * be 1 on all machines.
7747                  */
7748                 u64 max = min(0x7fffffffULL,
7749                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7750                 kvm_max_guest_tsc_khz = max;
7751
7752                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7753         }
7754
7755         kvm_init_msr_list();
7756         return 0;
7757 }
7758
7759 void kvm_arch_hardware_unsetup(void)
7760 {
7761         kvm_x86_ops->hardware_unsetup();
7762 }
7763
7764 void kvm_arch_check_processor_compat(void *rtn)
7765 {
7766         kvm_x86_ops->check_processor_compatibility(rtn);
7767 }
7768
7769 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7770 {
7771         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7772 }
7773 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7774
7775 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7776 {
7777         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7778 }
7779
7780 struct static_key kvm_no_apic_vcpu __read_mostly;
7781 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7782
7783 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7784 {
7785         struct page *page;
7786         struct kvm *kvm;
7787         int r;
7788
7789         BUG_ON(vcpu->kvm == NULL);
7790         kvm = vcpu->kvm;
7791
7792         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7793         vcpu->arch.pv.pv_unhalted = false;
7794         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7795         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7796                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7797         else
7798                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7799
7800         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7801         if (!page) {
7802                 r = -ENOMEM;
7803                 goto fail;
7804         }
7805         vcpu->arch.pio_data = page_address(page);
7806
7807         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7808
7809         r = kvm_mmu_create(vcpu);
7810         if (r < 0)
7811                 goto fail_free_pio_data;
7812
7813         if (irqchip_in_kernel(kvm)) {
7814                 r = kvm_create_lapic(vcpu);
7815                 if (r < 0)
7816                         goto fail_mmu_destroy;
7817         } else
7818                 static_key_slow_inc(&kvm_no_apic_vcpu);
7819
7820         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7821                                        GFP_KERNEL);
7822         if (!vcpu->arch.mce_banks) {
7823                 r = -ENOMEM;
7824                 goto fail_free_lapic;
7825         }
7826         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7827
7828         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7829                 r = -ENOMEM;
7830                 goto fail_free_mce_banks;
7831         }
7832
7833         fx_init(vcpu);
7834
7835         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7836         vcpu->arch.pv_time_enabled = false;
7837
7838         vcpu->arch.guest_supported_xcr0 = 0;
7839         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7840
7841         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7842
7843         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7844
7845         kvm_async_pf_hash_reset(vcpu);
7846         kvm_pmu_init(vcpu);
7847
7848         vcpu->arch.pending_external_vector = -1;
7849
7850         kvm_hv_vcpu_init(vcpu);
7851
7852         return 0;
7853
7854 fail_free_mce_banks:
7855         kfree(vcpu->arch.mce_banks);
7856 fail_free_lapic:
7857         kvm_free_lapic(vcpu);
7858 fail_mmu_destroy:
7859         kvm_mmu_destroy(vcpu);
7860 fail_free_pio_data:
7861         free_page((unsigned long)vcpu->arch.pio_data);
7862 fail:
7863         return r;
7864 }
7865
7866 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7867 {
7868         int idx;
7869
7870         kvm_hv_vcpu_uninit(vcpu);
7871         kvm_pmu_destroy(vcpu);
7872         kfree(vcpu->arch.mce_banks);
7873         kvm_free_lapic(vcpu);
7874         idx = srcu_read_lock(&vcpu->kvm->srcu);
7875         kvm_mmu_destroy(vcpu);
7876         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7877         free_page((unsigned long)vcpu->arch.pio_data);
7878         if (!lapic_in_kernel(vcpu))
7879                 static_key_slow_dec(&kvm_no_apic_vcpu);
7880 }
7881
7882 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7883 {
7884         kvm_x86_ops->sched_in(vcpu, cpu);
7885 }
7886
7887 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7888 {
7889         if (type)
7890                 return -EINVAL;
7891
7892         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7893         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7894         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7895         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7896         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7897
7898         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7899         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7900         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7901         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7902                 &kvm->arch.irq_sources_bitmap);
7903
7904         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7905         mutex_init(&kvm->arch.apic_map_lock);
7906         mutex_init(&kvm->arch.hyperv.hv_lock);
7907         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7908
7909         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7910         pvclock_update_vm_gtod_copy(kvm);
7911
7912         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7913         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7914
7915         kvm_page_track_init(kvm);
7916         kvm_mmu_init_vm(kvm);
7917
7918         if (kvm_x86_ops->vm_init)
7919                 return kvm_x86_ops->vm_init(kvm);
7920
7921         return 0;
7922 }
7923
7924 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7925 {
7926         int r;
7927         r = vcpu_load(vcpu);
7928         BUG_ON(r);
7929         kvm_mmu_unload(vcpu);
7930         vcpu_put(vcpu);
7931 }
7932
7933 static void kvm_free_vcpus(struct kvm *kvm)
7934 {
7935         unsigned int i;
7936         struct kvm_vcpu *vcpu;
7937
7938         /*
7939          * Unpin any mmu pages first.
7940          */
7941         kvm_for_each_vcpu(i, vcpu, kvm) {
7942                 kvm_clear_async_pf_completion_queue(vcpu);
7943                 kvm_unload_vcpu_mmu(vcpu);
7944         }
7945         kvm_for_each_vcpu(i, vcpu, kvm)
7946                 kvm_arch_vcpu_free(vcpu);
7947
7948         mutex_lock(&kvm->lock);
7949         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7950                 kvm->vcpus[i] = NULL;
7951
7952         atomic_set(&kvm->online_vcpus, 0);
7953         mutex_unlock(&kvm->lock);
7954 }
7955
7956 void kvm_arch_sync_events(struct kvm *kvm)
7957 {
7958         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7959         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7960         kvm_free_all_assigned_devices(kvm);
7961         kvm_free_pit(kvm);
7962 }
7963
7964 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7965 {
7966         int i, r;
7967         unsigned long hva;
7968         struct kvm_memslots *slots = kvm_memslots(kvm);
7969         struct kvm_memory_slot *slot, old;
7970
7971         /* Called with kvm->slots_lock held.  */
7972         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7973                 return -EINVAL;
7974
7975         slot = id_to_memslot(slots, id);
7976         if (size) {
7977                 if (slot->npages)
7978                         return -EEXIST;
7979
7980                 /*
7981                  * MAP_SHARED to prevent internal slot pages from being moved
7982                  * by fork()/COW.
7983                  */
7984                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7985                               MAP_SHARED | MAP_ANONYMOUS, 0);
7986                 if (IS_ERR((void *)hva))
7987                         return PTR_ERR((void *)hva);
7988         } else {
7989                 if (!slot->npages)
7990                         return 0;
7991
7992                 hva = 0;
7993         }
7994
7995         old = *slot;
7996         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7997                 struct kvm_userspace_memory_region m;
7998
7999                 m.slot = id | (i << 16);
8000                 m.flags = 0;
8001                 m.guest_phys_addr = gpa;
8002                 m.userspace_addr = hva;
8003                 m.memory_size = size;
8004                 r = __kvm_set_memory_region(kvm, &m);
8005                 if (r < 0)
8006                         return r;
8007         }
8008
8009         if (!size) {
8010                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8011                 WARN_ON(r < 0);
8012         }
8013
8014         return 0;
8015 }
8016 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8017
8018 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8019 {
8020         int r;
8021
8022         mutex_lock(&kvm->slots_lock);
8023         r = __x86_set_memory_region(kvm, id, gpa, size);
8024         mutex_unlock(&kvm->slots_lock);
8025
8026         return r;
8027 }
8028 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8029
8030 void kvm_arch_destroy_vm(struct kvm *kvm)
8031 {
8032         if (current->mm == kvm->mm) {
8033                 /*
8034                  * Free memory regions allocated on behalf of userspace,
8035                  * unless the the memory map has changed due to process exit
8036                  * or fd copying.
8037                  */
8038                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8039                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8040                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8041         }
8042         if (kvm_x86_ops->vm_destroy)
8043                 kvm_x86_ops->vm_destroy(kvm);
8044         kvm_iommu_unmap_guest(kvm);
8045         kfree(kvm->arch.vpic);
8046         kfree(kvm->arch.vioapic);
8047         kvm_free_vcpus(kvm);
8048         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8049         kvm_mmu_uninit_vm(kvm);
8050 }
8051
8052 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8053                            struct kvm_memory_slot *dont)
8054 {
8055         int i;
8056
8057         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8058                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8059                         kvfree(free->arch.rmap[i]);
8060                         free->arch.rmap[i] = NULL;
8061                 }
8062                 if (i == 0)
8063                         continue;
8064
8065                 if (!dont || free->arch.lpage_info[i - 1] !=
8066                              dont->arch.lpage_info[i - 1]) {
8067                         kvfree(free->arch.lpage_info[i - 1]);
8068                         free->arch.lpage_info[i - 1] = NULL;
8069                 }
8070         }
8071
8072         kvm_page_track_free_memslot(free, dont);
8073 }
8074
8075 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8076                             unsigned long npages)
8077 {
8078         int i;
8079
8080         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8081                 struct kvm_lpage_info *linfo;
8082                 unsigned long ugfn;
8083                 int lpages;
8084                 int level = i + 1;
8085
8086                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8087                                       slot->base_gfn, level) + 1;
8088
8089                 slot->arch.rmap[i] =
8090                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8091                 if (!slot->arch.rmap[i])
8092                         goto out_free;
8093                 if (i == 0)
8094                         continue;
8095
8096                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8097                 if (!linfo)
8098                         goto out_free;
8099
8100                 slot->arch.lpage_info[i - 1] = linfo;
8101
8102                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8103                         linfo[0].disallow_lpage = 1;
8104                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8105                         linfo[lpages - 1].disallow_lpage = 1;
8106                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8107                 /*
8108                  * If the gfn and userspace address are not aligned wrt each
8109                  * other, or if explicitly asked to, disable large page
8110                  * support for this slot
8111                  */
8112                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8113                     !kvm_largepages_enabled()) {
8114                         unsigned long j;
8115
8116                         for (j = 0; j < lpages; ++j)
8117                                 linfo[j].disallow_lpage = 1;
8118                 }
8119         }
8120
8121         if (kvm_page_track_create_memslot(slot, npages))
8122                 goto out_free;
8123
8124         return 0;
8125
8126 out_free:
8127         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8128                 kvfree(slot->arch.rmap[i]);
8129                 slot->arch.rmap[i] = NULL;
8130                 if (i == 0)
8131                         continue;
8132
8133                 kvfree(slot->arch.lpage_info[i - 1]);
8134                 slot->arch.lpage_info[i - 1] = NULL;
8135         }
8136         return -ENOMEM;
8137 }
8138
8139 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8140 {
8141         /*
8142          * memslots->generation has been incremented.
8143          * mmio generation may have reached its maximum value.
8144          */
8145         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8146 }
8147
8148 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8149                                 struct kvm_memory_slot *memslot,
8150                                 const struct kvm_userspace_memory_region *mem,
8151                                 enum kvm_mr_change change)
8152 {
8153         return 0;
8154 }
8155
8156 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8157                                      struct kvm_memory_slot *new)
8158 {
8159         /* Still write protect RO slot */
8160         if (new->flags & KVM_MEM_READONLY) {
8161                 kvm_mmu_slot_remove_write_access(kvm, new);
8162                 return;
8163         }
8164
8165         /*
8166          * Call kvm_x86_ops dirty logging hooks when they are valid.
8167          *
8168          * kvm_x86_ops->slot_disable_log_dirty is called when:
8169          *
8170          *  - KVM_MR_CREATE with dirty logging is disabled
8171          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8172          *
8173          * The reason is, in case of PML, we need to set D-bit for any slots
8174          * with dirty logging disabled in order to eliminate unnecessary GPA
8175          * logging in PML buffer (and potential PML buffer full VMEXT). This
8176          * guarantees leaving PML enabled during guest's lifetime won't have
8177          * any additonal overhead from PML when guest is running with dirty
8178          * logging disabled for memory slots.
8179          *
8180          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8181          * to dirty logging mode.
8182          *
8183          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8184          *
8185          * In case of write protect:
8186          *
8187          * Write protect all pages for dirty logging.
8188          *
8189          * All the sptes including the large sptes which point to this
8190          * slot are set to readonly. We can not create any new large
8191          * spte on this slot until the end of the logging.
8192          *
8193          * See the comments in fast_page_fault().
8194          */
8195         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8196                 if (kvm_x86_ops->slot_enable_log_dirty)
8197                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8198                 else
8199                         kvm_mmu_slot_remove_write_access(kvm, new);
8200         } else {
8201                 if (kvm_x86_ops->slot_disable_log_dirty)
8202                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8203         }
8204 }
8205
8206 void kvm_arch_commit_memory_region(struct kvm *kvm,
8207                                 const struct kvm_userspace_memory_region *mem,
8208                                 const struct kvm_memory_slot *old,
8209                                 const struct kvm_memory_slot *new,
8210                                 enum kvm_mr_change change)
8211 {
8212         int nr_mmu_pages = 0;
8213
8214         if (!kvm->arch.n_requested_mmu_pages)
8215                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8216
8217         if (nr_mmu_pages)
8218                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8219
8220         /*
8221          * Dirty logging tracks sptes in 4k granularity, meaning that large
8222          * sptes have to be split.  If live migration is successful, the guest
8223          * in the source machine will be destroyed and large sptes will be
8224          * created in the destination. However, if the guest continues to run
8225          * in the source machine (for example if live migration fails), small
8226          * sptes will remain around and cause bad performance.
8227          *
8228          * Scan sptes if dirty logging has been stopped, dropping those
8229          * which can be collapsed into a single large-page spte.  Later
8230          * page faults will create the large-page sptes.
8231          */
8232         if ((change != KVM_MR_DELETE) &&
8233                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8234                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8235                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8236
8237         /*
8238          * Set up write protection and/or dirty logging for the new slot.
8239          *
8240          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8241          * been zapped so no dirty logging staff is needed for old slot. For
8242          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8243          * new and it's also covered when dealing with the new slot.
8244          *
8245          * FIXME: const-ify all uses of struct kvm_memory_slot.
8246          */
8247         if (change != KVM_MR_DELETE)
8248                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8249 }
8250
8251 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8252 {
8253         kvm_mmu_invalidate_zap_all_pages(kvm);
8254 }
8255
8256 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8257                                    struct kvm_memory_slot *slot)
8258 {
8259         kvm_page_track_flush_slot(kvm, slot);
8260 }
8261
8262 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8263 {
8264         if (!list_empty_careful(&vcpu->async_pf.done))
8265                 return true;
8266
8267         if (kvm_apic_has_events(vcpu))
8268                 return true;
8269
8270         if (vcpu->arch.pv.pv_unhalted)
8271                 return true;
8272
8273         if (atomic_read(&vcpu->arch.nmi_queued))
8274                 return true;
8275
8276         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8277                 return true;
8278
8279         if (kvm_arch_interrupt_allowed(vcpu) &&
8280             kvm_cpu_has_interrupt(vcpu))
8281                 return true;
8282
8283         if (kvm_hv_has_stimer_pending(vcpu))
8284                 return true;
8285
8286         return false;
8287 }
8288
8289 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8290 {
8291         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8292                 kvm_x86_ops->check_nested_events(vcpu, false);
8293
8294         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8295 }
8296
8297 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8298 {
8299         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8300 }
8301
8302 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8303 {
8304         return kvm_x86_ops->interrupt_allowed(vcpu);
8305 }
8306
8307 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8308 {
8309         if (is_64_bit_mode(vcpu))
8310                 return kvm_rip_read(vcpu);
8311         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8312                      kvm_rip_read(vcpu));
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8315
8316 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8317 {
8318         return kvm_get_linear_rip(vcpu) == linear_rip;
8319 }
8320 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8321
8322 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8323 {
8324         unsigned long rflags;
8325
8326         rflags = kvm_x86_ops->get_rflags(vcpu);
8327         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8328                 rflags &= ~X86_EFLAGS_TF;
8329         return rflags;
8330 }
8331 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8332
8333 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8334 {
8335         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8336             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8337                 rflags |= X86_EFLAGS_TF;
8338         kvm_x86_ops->set_rflags(vcpu, rflags);
8339 }
8340
8341 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8342 {
8343         __kvm_set_rflags(vcpu, rflags);
8344         kvm_make_request(KVM_REQ_EVENT, vcpu);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8347
8348 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8349 {
8350         int r;
8351
8352         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8353               work->wakeup_all)
8354                 return;
8355
8356         r = kvm_mmu_reload(vcpu);
8357         if (unlikely(r))
8358                 return;
8359
8360         if (!vcpu->arch.mmu.direct_map &&
8361               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8362                 return;
8363
8364         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8365 }
8366
8367 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8368 {
8369         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8370 }
8371
8372 static inline u32 kvm_async_pf_next_probe(u32 key)
8373 {
8374         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8375 }
8376
8377 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8378 {
8379         u32 key = kvm_async_pf_hash_fn(gfn);
8380
8381         while (vcpu->arch.apf.gfns[key] != ~0)
8382                 key = kvm_async_pf_next_probe(key);
8383
8384         vcpu->arch.apf.gfns[key] = gfn;
8385 }
8386
8387 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8388 {
8389         int i;
8390         u32 key = kvm_async_pf_hash_fn(gfn);
8391
8392         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8393                      (vcpu->arch.apf.gfns[key] != gfn &&
8394                       vcpu->arch.apf.gfns[key] != ~0); i++)
8395                 key = kvm_async_pf_next_probe(key);
8396
8397         return key;
8398 }
8399
8400 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8401 {
8402         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8403 }
8404
8405 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8406 {
8407         u32 i, j, k;
8408
8409         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8410         while (true) {
8411                 vcpu->arch.apf.gfns[i] = ~0;
8412                 do {
8413                         j = kvm_async_pf_next_probe(j);
8414                         if (vcpu->arch.apf.gfns[j] == ~0)
8415                                 return;
8416                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8417                         /*
8418                          * k lies cyclically in ]i,j]
8419                          * |    i.k.j |
8420                          * |....j i.k.| or  |.k..j i...|
8421                          */
8422                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8423                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8424                 i = j;
8425         }
8426 }
8427
8428 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8429 {
8430
8431         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8432                                       sizeof(val));
8433 }
8434
8435 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8436                                      struct kvm_async_pf *work)
8437 {
8438         struct x86_exception fault;
8439
8440         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8441         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8442
8443         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8444             (vcpu->arch.apf.send_user_only &&
8445              kvm_x86_ops->get_cpl(vcpu) == 0))
8446                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8447         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8448                 fault.vector = PF_VECTOR;
8449                 fault.error_code_valid = true;
8450                 fault.error_code = 0;
8451                 fault.nested_page_fault = false;
8452                 fault.address = work->arch.token;
8453                 kvm_inject_page_fault(vcpu, &fault);
8454         }
8455 }
8456
8457 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8458                                  struct kvm_async_pf *work)
8459 {
8460         struct x86_exception fault;
8461
8462         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8463         if (work->wakeup_all)
8464                 work->arch.token = ~0; /* broadcast wakeup */
8465         else
8466                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8467
8468         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8469             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8470                 fault.vector = PF_VECTOR;
8471                 fault.error_code_valid = true;
8472                 fault.error_code = 0;
8473                 fault.nested_page_fault = false;
8474                 fault.address = work->arch.token;
8475                 kvm_inject_page_fault(vcpu, &fault);
8476         }
8477         vcpu->arch.apf.halted = false;
8478         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8479 }
8480
8481 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8482 {
8483         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8484                 return true;
8485         else
8486                 return !kvm_event_needs_reinjection(vcpu) &&
8487                         kvm_x86_ops->interrupt_allowed(vcpu);
8488 }
8489
8490 void kvm_arch_start_assignment(struct kvm *kvm)
8491 {
8492         atomic_inc(&kvm->arch.assigned_device_count);
8493 }
8494 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8495
8496 void kvm_arch_end_assignment(struct kvm *kvm)
8497 {
8498         atomic_dec(&kvm->arch.assigned_device_count);
8499 }
8500 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8501
8502 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8503 {
8504         return atomic_read(&kvm->arch.assigned_device_count);
8505 }
8506 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8507
8508 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8509 {
8510         atomic_inc(&kvm->arch.noncoherent_dma_count);
8511 }
8512 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8513
8514 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8515 {
8516         atomic_dec(&kvm->arch.noncoherent_dma_count);
8517 }
8518 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8519
8520 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8521 {
8522         return atomic_read(&kvm->arch.noncoherent_dma_count);
8523 }
8524 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8525
8526 bool kvm_arch_has_irq_bypass(void)
8527 {
8528         return kvm_x86_ops->update_pi_irte != NULL;
8529 }
8530
8531 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8532                                       struct irq_bypass_producer *prod)
8533 {
8534         struct kvm_kernel_irqfd *irqfd =
8535                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8536
8537         irqfd->producer = prod;
8538
8539         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8540                                            prod->irq, irqfd->gsi, 1);
8541 }
8542
8543 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8544                                       struct irq_bypass_producer *prod)
8545 {
8546         int ret;
8547         struct kvm_kernel_irqfd *irqfd =
8548                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8549
8550         WARN_ON(irqfd->producer != prod);
8551         irqfd->producer = NULL;
8552
8553         /*
8554          * When producer of consumer is unregistered, we change back to
8555          * remapped mode, so we can re-use the current implementation
8556          * when the irq is masked/disabled or the consumer side (KVM
8557          * int this case doesn't want to receive the interrupts.
8558         */
8559         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8560         if (ret)
8561                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8562                        " fails: %d\n", irqfd->consumer.token, ret);
8563 }
8564
8565 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8566                                    uint32_t guest_irq, bool set)
8567 {
8568         if (!kvm_x86_ops->update_pi_irte)
8569                 return -EINVAL;
8570
8571         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8572 }
8573
8574 bool kvm_vector_hashing_enabled(void)
8575 {
8576         return vector_hashing;
8577 }
8578 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8579
8580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);