]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
2f9fe6bf7091609cd667c7ae1517edbf46b3bff9
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142         int nr;
143         u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147         struct user_return_notifier urn;
148         bool registered;
149         struct kvm_shared_msr_values {
150                 u64 host;
151                 u64 curr;
152         } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159         { "pf_fixed", VCPU_STAT(pf_fixed) },
160         { "pf_guest", VCPU_STAT(pf_guest) },
161         { "tlb_flush", VCPU_STAT(tlb_flush) },
162         { "invlpg", VCPU_STAT(invlpg) },
163         { "exits", VCPU_STAT(exits) },
164         { "io_exits", VCPU_STAT(io_exits) },
165         { "mmio_exits", VCPU_STAT(mmio_exits) },
166         { "signal_exits", VCPU_STAT(signal_exits) },
167         { "irq_window", VCPU_STAT(irq_window_exits) },
168         { "nmi_window", VCPU_STAT(nmi_window_exits) },
169         { "halt_exits", VCPU_STAT(halt_exits) },
170         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174         { "hypercalls", VCPU_STAT(hypercalls) },
175         { "request_irq", VCPU_STAT(request_irq_exits) },
176         { "irq_exits", VCPU_STAT(irq_exits) },
177         { "host_state_reload", VCPU_STAT(host_state_reload) },
178         { "efer_reload", VCPU_STAT(efer_reload) },
179         { "fpu_reload", VCPU_STAT(fpu_reload) },
180         { "insn_emulation", VCPU_STAT(insn_emulation) },
181         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182         { "irq_injections", VCPU_STAT(irq_injections) },
183         { "nmi_injections", VCPU_STAT(nmi_injections) },
184         { "req_event", VCPU_STAT(req_event) },
185         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189         { "mmu_flooded", VM_STAT(mmu_flooded) },
190         { "mmu_recycled", VM_STAT(mmu_recycled) },
191         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192         { "mmu_unsync", VM_STAT(mmu_unsync) },
193         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194         { "largepages", VM_STAT(lpages) },
195         { "max_mmu_page_hash_collisions",
196                 VM_STAT(max_mmu_page_hash_collisions) },
197         { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206         int i;
207         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208                 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213         unsigned slot;
214         struct kvm_shared_msrs *locals
215                 = container_of(urn, struct kvm_shared_msrs, urn);
216         struct kvm_shared_msr_values *values;
217         unsigned long flags;
218
219         /*
220          * Disabling irqs at this point since the following code could be
221          * interrupted and executed through kvm_arch_hardware_disable()
222          */
223         local_irq_save(flags);
224         if (locals->registered) {
225                 locals->registered = false;
226                 user_return_notifier_unregister(urn);
227         }
228         local_irq_restore(flags);
229         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230                 values = &locals->values[slot];
231                 if (values->host != values->curr) {
232                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
233                         values->curr = values->host;
234                 }
235         }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240         u64 value;
241         unsigned int cpu = smp_processor_id();
242         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244         /* only read, and nobody should modify it at this time,
245          * so don't need lock */
246         if (slot >= shared_msrs_global.nr) {
247                 printk(KERN_ERR "kvm: invalid MSR slot!");
248                 return;
249         }
250         rdmsrl_safe(msr, &value);
251         smsr->values[slot].host = value;
252         smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258         shared_msrs_global.msrs[slot] = msr;
259         if (slot >= shared_msrs_global.nr)
260                 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266         unsigned i;
267
268         for (i = 0; i < shared_msrs_global.nr; ++i)
269                 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274         unsigned int cpu = smp_processor_id();
275         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276         int err;
277
278         if (((value ^ smsr->values[slot].curr) & mask) == 0)
279                 return 0;
280         smsr->values[slot].curr = value;
281         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282         if (err)
283                 return 1;
284
285         if (!smsr->registered) {
286                 smsr->urn.on_user_return = kvm_on_user_return;
287                 user_return_notifier_register(&smsr->urn);
288                 smsr->registered = true;
289         }
290         return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299         if (smsr->registered)
300                 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305         return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311         u64 old_state = vcpu->arch.apic_base &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 new_state = msr_info->data &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318         if (!msr_info->host_initiated &&
319             ((msr_info->data & reserved_bits) != 0 ||
320              new_state == X2APIC_ENABLE ||
321              (new_state == MSR_IA32_APICBASE_ENABLE &&
322               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324               old_state == 0)))
325                 return 1;
326
327         kvm_lapic_set_base(vcpu, msr_info->data);
328         return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334         /* Fault while not rebooting.  We want the trace. */
335         BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN            0
340 #define EXCPT_CONTRIBUTORY      1
341 #define EXCPT_PF                2
342
343 static int exception_class(int vector)
344 {
345         switch (vector) {
346         case PF_VECTOR:
347                 return EXCPT_PF;
348         case DE_VECTOR:
349         case TS_VECTOR:
350         case NP_VECTOR:
351         case SS_VECTOR:
352         case GP_VECTOR:
353                 return EXCPT_CONTRIBUTORY;
354         default:
355                 break;
356         }
357         return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT             0
361 #define EXCPT_TRAP              1
362 #define EXCPT_ABORT             2
363 #define EXCPT_INTERRUPT         3
364
365 static int exception_type(int vector)
366 {
367         unsigned int mask;
368
369         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370                 return EXCPT_INTERRUPT;
371
372         mask = 1 << vector;
373
374         /* #DB is trap, as instruction watchpoints are handled elsewhere */
375         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376                 return EXCPT_TRAP;
377
378         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379                 return EXCPT_ABORT;
380
381         /* Reserved exceptions will result in fault */
382         return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386                 unsigned nr, bool has_error, u32 error_code,
387                 bool reinject)
388 {
389         u32 prev_nr;
390         int class1, class2;
391
392         kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394         if (!vcpu->arch.exception.pending) {
395         queue:
396                 if (has_error && !is_protmode(vcpu))
397                         has_error = false;
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = has_error;
400                 vcpu->arch.exception.nr = nr;
401                 vcpu->arch.exception.error_code = error_code;
402                 vcpu->arch.exception.reinject = reinject;
403                 return;
404         }
405
406         /* to check exception */
407         prev_nr = vcpu->arch.exception.nr;
408         if (prev_nr == DF_VECTOR) {
409                 /* triple fault -> shutdown */
410                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411                 return;
412         }
413         class1 = exception_class(prev_nr);
414         class2 = exception_class(nr);
415         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417                 /* generate double fault per SDM Table 5-5 */
418                 vcpu->arch.exception.pending = true;
419                 vcpu->arch.exception.has_error_code = true;
420                 vcpu->arch.exception.nr = DF_VECTOR;
421                 vcpu->arch.exception.error_code = 0;
422         } else
423                 /* replace previous exception with a new one in a hope
424                    that instruction re-execution will regenerate lost
425                    exception */
426                 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431         kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437         kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443         if (err)
444                 kvm_inject_gp(vcpu, 0);
445         else
446                 return kvm_skip_emulated_instruction(vcpu);
447
448         return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454         ++vcpu->stat.pf_guest;
455         vcpu->arch.cr2 = fault->address;
456         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464         else
465                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467         return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472         atomic_inc(&vcpu->arch.nmi_queued);
473         kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479         kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485         kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
491  * a #GP and return false.
492  */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496                 return true;
497         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498         return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505                 return true;
506
507         kvm_queue_exception(vcpu, UD_VECTOR);
508         return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513  * This function will be used to read from the physical memory of the currently
514  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515  * can read from guest physical or from the guest's guest physical memory.
516  */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518                             gfn_t ngfn, void *data, int offset, int len,
519                             u32 access)
520 {
521         struct x86_exception exception;
522         gfn_t real_gfn;
523         gpa_t ngpa;
524
525         ngpa     = gfn_to_gpa(ngfn);
526         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527         if (real_gfn == UNMAPPED_GVA)
528                 return -EFAULT;
529
530         real_gfn = gpa_to_gfn(real_gfn);
531
532         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537                                void *data, int offset, int len, u32 access)
538 {
539         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540                                        data, offset, len, access);
541 }
542
543 /*
544  * Load the pae pdptrs.  Return true is they are all valid.
545  */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550         int i;
551         int ret;
552         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555                                       offset * sizeof(u64), sizeof(pdpte),
556                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
557         if (ret < 0) {
558                 ret = 0;
559                 goto out;
560         }
561         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562                 if ((pdpte[i] & PT_PRESENT_MASK) &&
563                     (pdpte[i] &
564                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565                         ret = 0;
566                         goto out;
567                 }
568         }
569         ret = 1;
570
571         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572         __set_bit(VCPU_EXREG_PDPTR,
573                   (unsigned long *)&vcpu->arch.regs_avail);
574         __set_bit(VCPU_EXREG_PDPTR,
575                   (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578         return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585         bool changed = true;
586         int offset;
587         gfn_t gfn;
588         int r;
589
590         if (is_long_mode(vcpu) || !is_pae(vcpu))
591                 return false;
592
593         if (!test_bit(VCPU_EXREG_PDPTR,
594                       (unsigned long *)&vcpu->arch.regs_avail))
595                 return true;
596
597         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
601         if (r < 0)
602                 goto out;
603         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606         return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612         unsigned long old_cr0 = kvm_read_cr0(vcpu);
613         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615         cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618         if (cr0 & 0xffffffff00000000UL)
619                 return 1;
620 #endif
621
622         cr0 &= ~CR0_RESERVED_BITS;
623
624         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625                 return 1;
626
627         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628                 return 1;
629
630         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632                 if ((vcpu->arch.efer & EFER_LME)) {
633                         int cs_db, cs_l;
634
635                         if (!is_pae(vcpu))
636                                 return 1;
637                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638                         if (cs_l)
639                                 return 1;
640                 } else
641 #endif
642                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643                                                  kvm_read_cr3(vcpu)))
644                         return 1;
645         }
646
647         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648                 return 1;
649
650         kvm_x86_ops->set_cr0(vcpu, cr0);
651
652         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653                 kvm_clear_async_pf_completion_queue(vcpu);
654                 kvm_async_pf_hash_reset(vcpu);
655         }
656
657         if ((cr0 ^ old_cr0) & update_bits)
658                 kvm_mmu_reset_context(vcpu);
659
660         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678                         !vcpu->guest_xcr0_loaded) {
679                 /* kvm_set_xcr() also depends on this */
680                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681                 vcpu->guest_xcr0_loaded = 1;
682         }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687         if (vcpu->guest_xcr0_loaded) {
688                 if (vcpu->arch.xcr0 != host_xcr0)
689                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690                 vcpu->guest_xcr0_loaded = 0;
691         }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696         u64 xcr0 = xcr;
697         u64 old_xcr0 = vcpu->arch.xcr0;
698         u64 valid_bits;
699
700         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
701         if (index != XCR_XFEATURE_ENABLED_MASK)
702                 return 1;
703         if (!(xcr0 & XFEATURE_MASK_FP))
704                 return 1;
705         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706                 return 1;
707
708         /*
709          * Do not allow the guest to set bits that we do not support
710          * saving.  However, xcr0 bit 0 is always set, even if the
711          * emulated CPU does not support XSAVE (see fx_init).
712          */
713         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714         if (xcr0 & ~valid_bits)
715                 return 1;
716
717         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719                 return 1;
720
721         if (xcr0 & XFEATURE_MASK_AVX512) {
722                 if (!(xcr0 & XFEATURE_MASK_YMM))
723                         return 1;
724                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725                         return 1;
726         }
727         vcpu->arch.xcr0 = xcr0;
728
729         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730                 kvm_update_cpuid(vcpu);
731         return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737             __kvm_set_xcr(vcpu, index, xcr)) {
738                 kvm_inject_gp(vcpu, 0);
739                 return 1;
740         }
741         return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747         unsigned long old_cr4 = kvm_read_cr4(vcpu);
748         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751         if (cr4 & CR4_RESERVED_BITS)
752                 return 1;
753
754         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755                 return 1;
756
757         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758                 return 1;
759
760         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761                 return 1;
762
763         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764                 return 1;
765
766         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767                 return 1;
768
769         if (is_long_mode(vcpu)) {
770                 if (!(cr4 & X86_CR4_PAE))
771                         return 1;
772         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773                    && ((cr4 ^ old_cr4) & pdptr_bits)
774                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                    kvm_read_cr3(vcpu)))
776                 return 1;
777
778         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779                 if (!guest_cpuid_has_pcid(vcpu))
780                         return 1;
781
782                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784                         return 1;
785         }
786
787         if (kvm_x86_ops->set_cr4(vcpu, cr4))
788                 return 1;
789
790         if (((cr4 ^ old_cr4) & pdptr_bits) ||
791             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792                 kvm_mmu_reset_context(vcpu);
793
794         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795                 kvm_update_cpuid(vcpu);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804         cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808                 kvm_mmu_sync_roots(vcpu);
809                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810                 return 0;
811         }
812
813         if (is_long_mode(vcpu)) {
814                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815                         return 1;
816         } else if (is_pae(vcpu) && is_paging(vcpu) &&
817                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818                 return 1;
819
820         vcpu->arch.cr3 = cr3;
821         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822         kvm_mmu_new_cr3(vcpu);
823         return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829         if (cr8 & CR8_RESERVED_BITS)
830                 return 1;
831         if (lapic_in_kernel(vcpu))
832                 kvm_lapic_set_tpr(vcpu, cr8);
833         else
834                 vcpu->arch.cr8 = cr8;
835         return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841         if (lapic_in_kernel(vcpu))
842                 return kvm_lapic_get_cr8(vcpu);
843         else
844                 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850         int i;
851
852         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853                 for (i = 0; i < KVM_NR_DB_REGS; i++)
854                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856         }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867         unsigned long dr7;
868
869         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870                 dr7 = vcpu->arch.guest_debug_dr7;
871         else
872                 dr7 = vcpu->arch.dr7;
873         kvm_x86_ops->set_dr7(vcpu, dr7);
874         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875         if (dr7 & DR7_BP_EN_MASK)
876                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881         u64 fixed = DR6_FIXED_1;
882
883         if (!guest_cpuid_has_rtm(vcpu))
884                 fixed |= DR6_RTM;
885         return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         switch (dr) {
891         case 0 ... 3:
892                 vcpu->arch.db[dr] = val;
893                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894                         vcpu->arch.eff_db[dr] = val;
895                 break;
896         case 4:
897                 /* fall through */
898         case 6:
899                 if (val & 0xffffffff00000000ULL)
900                         return -1; /* #GP */
901                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902                 kvm_update_dr6(vcpu);
903                 break;
904         case 5:
905                 /* fall through */
906         default: /* 7 */
907                 if (val & 0xffffffff00000000ULL)
908                         return -1; /* #GP */
909                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910                 kvm_update_dr7(vcpu);
911                 break;
912         }
913
914         return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919         if (__kvm_set_dr(vcpu, dr, val)) {
920                 kvm_inject_gp(vcpu, 0);
921                 return 1;
922         }
923         return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929         switch (dr) {
930         case 0 ... 3:
931                 *val = vcpu->arch.db[dr];
932                 break;
933         case 4:
934                 /* fall through */
935         case 6:
936                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937                         *val = vcpu->arch.dr6;
938                 else
939                         *val = kvm_x86_ops->get_dr6(vcpu);
940                 break;
941         case 5:
942                 /* fall through */
943         default: /* 7 */
944                 *val = vcpu->arch.dr7;
945                 break;
946         }
947         return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954         u64 data;
955         int err;
956
957         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958         if (err)
959                 return err;
960         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962         return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969  *
970  * This list is modified at module load time to reflect the
971  * capabilities of the host cpu. This capabilities test skips MSRs that are
972  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973  * may depend on host virtualization features rather than host cpu features.
974  */
975
976 static u32 msrs_to_save[] = {
977         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978         MSR_STAR,
979 #ifdef CONFIG_X86_64
980         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995         HV_X64_MSR_RESET,
996         HV_X64_MSR_VP_INDEX,
997         HV_X64_MSR_VP_RUNTIME,
998         HV_X64_MSR_SCONTROL,
999         HV_X64_MSR_STIMER0_CONFIG,
1000         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001         MSR_KVM_PV_EOI_EN,
1002
1003         MSR_IA32_TSC_ADJUST,
1004         MSR_IA32_TSCDEADLINE,
1005         MSR_IA32_MISC_ENABLE,
1006         MSR_IA32_MCG_STATUS,
1007         MSR_IA32_MCG_CTL,
1008         MSR_IA32_MCG_EXT_CTL,
1009         MSR_IA32_SMBASE,
1010         MSR_PLATFORM_INFO,
1011         MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018         if (efer & efer_reserved_bits)
1019                 return false;
1020
1021         if (efer & EFER_FFXSR) {
1022                 struct kvm_cpuid_entry2 *feat;
1023
1024                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026                         return false;
1027         }
1028
1029         if (efer & EFER_SVME) {
1030                 struct kvm_cpuid_entry2 *feat;
1031
1032                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034                         return false;
1035         }
1036
1037         return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043         u64 old_efer = vcpu->arch.efer;
1044
1045         if (!kvm_valid_efer(vcpu, efer))
1046                 return 1;
1047
1048         if (is_paging(vcpu)
1049             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050                 return 1;
1051
1052         efer &= ~EFER_LMA;
1053         efer |= vcpu->arch.efer & EFER_LMA;
1054
1055         kvm_x86_ops->set_efer(vcpu, efer);
1056
1057         /* Update reserved bits */
1058         if ((efer ^ old_efer) & EFER_NX)
1059                 kvm_mmu_reset_context(vcpu);
1060
1061         return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066        efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071  * Writes msr value into into the appropriate "register".
1072  * Returns 0 on success, non-0 otherwise.
1073  * Assumes vcpu_load() was already called.
1074  */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077         switch (msr->index) {
1078         case MSR_FS_BASE:
1079         case MSR_GS_BASE:
1080         case MSR_KERNEL_GS_BASE:
1081         case MSR_CSTAR:
1082         case MSR_LSTAR:
1083                 if (is_noncanonical_address(msr->data))
1084                         return 1;
1085                 break;
1086         case MSR_IA32_SYSENTER_EIP:
1087         case MSR_IA32_SYSENTER_ESP:
1088                 /*
1089                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090                  * non-canonical address is written on Intel but not on
1091                  * AMD (which ignores the top 32-bits, because it does
1092                  * not implement 64-bit SYSENTER).
1093                  *
1094                  * 64-bit code should hence be able to write a non-canonical
1095                  * value on AMD.  Making the address canonical ensures that
1096                  * vmentry does not fail on Intel after writing a non-canonical
1097                  * value, and that something deterministic happens if the guest
1098                  * invokes 64-bit SYSENTER.
1099                  */
1100                 msr->data = get_canonical(msr->data);
1101         }
1102         return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107  * Adapt set_msr() to msr_io()'s calling convention
1108  */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111         struct msr_data msr;
1112         int r;
1113
1114         msr.index = index;
1115         msr.host_initiated = true;
1116         r = kvm_get_msr(vcpu, &msr);
1117         if (r)
1118                 return r;
1119
1120         *data = msr.data;
1121         return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126         struct msr_data msr;
1127
1128         msr.data = *data;
1129         msr.index = index;
1130         msr.host_initiated = true;
1131         return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136         seqcount_t      seq;
1137
1138         struct { /* extract of a clocksource struct */
1139                 int vclock_mode;
1140                 u64     cycle_last;
1141                 u64     mask;
1142                 u32     mult;
1143                 u32     shift;
1144         } clock;
1145
1146         u64             boot_ns;
1147         u64             nsec_base;
1148         u64             wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156         u64 boot_ns;
1157
1158         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160         write_seqcount_begin(&vdata->seq);
1161
1162         /* copy pvclock gtod data */
1163         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1164         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1165         vdata->clock.mask               = tk->tkr_mono.mask;
1166         vdata->clock.mult               = tk->tkr_mono.mult;
1167         vdata->clock.shift              = tk->tkr_mono.shift;
1168
1169         vdata->boot_ns                  = boot_ns;
1170         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1171
1172         vdata->wall_time_sec            = tk->xtime_sec;
1173
1174         write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180         /*
1181          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182          * vcpu_enter_guest.  This function is only called from
1183          * the physical CPU that is running vcpu.
1184          */
1185         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190         int version;
1191         int r;
1192         struct pvclock_wall_clock wc;
1193         struct timespec64 boot;
1194
1195         if (!wall_clock)
1196                 return;
1197
1198         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199         if (r)
1200                 return;
1201
1202         if (version & 1)
1203                 ++version;  /* first time write, random junk */
1204
1205         ++version;
1206
1207         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208                 return;
1209
1210         /*
1211          * The guest calculates current wall clock time by adding
1212          * system time (updated by kvm_guest_time_update below) to the
1213          * wall clock specified here.  guest system time equals host
1214          * system time for us, thus we must fill in host boot time here.
1215          */
1216         getboottime64(&boot);
1217
1218         if (kvm->arch.kvmclock_offset) {
1219                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220                 boot = timespec64_sub(boot, ts);
1221         }
1222         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223         wc.nsec = boot.tv_nsec;
1224         wc.version = version;
1225
1226         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228         version++;
1229         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234         do_shl32_div32(dividend, divisor);
1235         return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239                                s8 *pshift, u32 *pmultiplier)
1240 {
1241         uint64_t scaled64;
1242         int32_t  shift = 0;
1243         uint64_t tps64;
1244         uint32_t tps32;
1245
1246         tps64 = base_hz;
1247         scaled64 = scaled_hz;
1248         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249                 tps64 >>= 1;
1250                 shift--;
1251         }
1252
1253         tps32 = (uint32_t)tps64;
1254         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256                         scaled64 >>= 1;
1257                 else
1258                         tps32 <<= 1;
1259                 shift++;
1260         }
1261
1262         *pshift = shift;
1263         *pmultiplier = div_frac(scaled64, tps32);
1264
1265         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278         u64 v = (u64)khz * (1000000 + ppm);
1279         do_div(v, 1000000);
1280         return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285         u64 ratio;
1286
1287         /* Guest TSC same frequency as host TSC? */
1288         if (!scale) {
1289                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290                 return 0;
1291         }
1292
1293         /* TSC scaling supported? */
1294         if (!kvm_has_tsc_control) {
1295                 if (user_tsc_khz > tsc_khz) {
1296                         vcpu->arch.tsc_catchup = 1;
1297                         vcpu->arch.tsc_always_catchup = 1;
1298                         return 0;
1299                 } else {
1300                         WARN(1, "user requested TSC rate below hardware speed\n");
1301                         return -1;
1302                 }
1303         }
1304
1305         /* TSC scaling required  - calculate ratio */
1306         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307                                 user_tsc_khz, tsc_khz);
1308
1309         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311                           user_tsc_khz);
1312                 return -1;
1313         }
1314
1315         vcpu->arch.tsc_scaling_ratio = ratio;
1316         return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321         u32 thresh_lo, thresh_hi;
1322         int use_scaling = 0;
1323
1324         /* tsc_khz can be zero if TSC calibration fails */
1325         if (user_tsc_khz == 0) {
1326                 /* set tsc_scaling_ratio to a safe value */
1327                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328                 return -1;
1329         }
1330
1331         /* Compute a scale to convert nanoseconds in TSC cycles */
1332         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333                            &vcpu->arch.virtual_tsc_shift,
1334                            &vcpu->arch.virtual_tsc_mult);
1335         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337         /*
1338          * Compute the variation in TSC rate which is acceptable
1339          * within the range of tolerance and decide if the
1340          * rate being applied is within that bounds of the hardware
1341          * rate.  If so, no scaling or compensation need be done.
1342          */
1343         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347                 use_scaling = 1;
1348         }
1349         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355                                       vcpu->arch.virtual_tsc_mult,
1356                                       vcpu->arch.virtual_tsc_shift);
1357         tsc += vcpu->arch.this_tsc_write;
1358         return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364         bool vcpus_matched;
1365         struct kvm_arch *ka = &vcpu->kvm->arch;
1366         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369                          atomic_read(&vcpu->kvm->online_vcpus));
1370
1371         /*
1372          * Once the masterclock is enabled, always perform request in
1373          * order to update it.
1374          *
1375          * In order to enable masterclock, the host clocksource must be TSC
1376          * and the vcpus need to have matched TSCs.  When that happens,
1377          * perform request to enable masterclock.
1378          */
1379         if (ka->use_master_clock ||
1380             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384                             atomic_read(&vcpu->kvm->online_vcpus),
1385                             ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391         u64 curr_offset = vcpu->arch.tsc_offset;
1392         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396  * Multiply tsc by a fixed point number represented by ratio.
1397  *
1398  * The most significant 64-N bits (mult) of ratio represent the
1399  * integral part of the fixed point number; the remaining N bits
1400  * (frac) represent the fractional part, ie. ratio represents a fixed
1401  * point number (mult + frac * 2^(-N)).
1402  *
1403  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404  */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412         u64 _tsc = tsc;
1413         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415         if (ratio != kvm_default_tsc_scaling_ratio)
1416                 _tsc = __scale_tsc(ratio, tsc);
1417
1418         return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424         u64 tsc;
1425
1426         tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428         return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440         vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445         struct kvm *kvm = vcpu->kvm;
1446         u64 offset, ns, elapsed;
1447         unsigned long flags;
1448         bool matched;
1449         bool already_matched;
1450         u64 data = msr->data;
1451         bool synchronizing = false;
1452
1453         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454         offset = kvm_compute_tsc_offset(vcpu, data);
1455         ns = ktime_get_boot_ns();
1456         elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458         if (vcpu->arch.virtual_tsc_khz) {
1459                 if (data == 0 && msr->host_initiated) {
1460                         /*
1461                          * detection of vcpu initialization -- need to sync
1462                          * with other vCPUs. This particularly helps to keep
1463                          * kvm_clock stable after CPU hotplug
1464                          */
1465                         synchronizing = true;
1466                 } else {
1467                         u64 tsc_exp = kvm->arch.last_tsc_write +
1468                                                 nsec_to_cycles(vcpu, elapsed);
1469                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470                         /*
1471                          * Special case: TSC write with a small delta (1 second)
1472                          * of virtual cycle time against real time is
1473                          * interpreted as an attempt to synchronize the CPU.
1474                          */
1475                         synchronizing = data < tsc_exp + tsc_hz &&
1476                                         data + tsc_hz > tsc_exp;
1477                 }
1478         }
1479
1480         /*
1481          * For a reliable TSC, we can match TSC offsets, and for an unstable
1482          * TSC, we add elapsed time in this computation.  We could let the
1483          * compensation code attempt to catch up if we fall behind, but
1484          * it's better to try to match offsets from the beginning.
1485          */
1486         if (synchronizing &&
1487             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488                 if (!check_tsc_unstable()) {
1489                         offset = kvm->arch.cur_tsc_offset;
1490                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1491                 } else {
1492                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1493                         data += delta;
1494                         offset = kvm_compute_tsc_offset(vcpu, data);
1495                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496                 }
1497                 matched = true;
1498                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499         } else {
1500                 /*
1501                  * We split periods of matched TSC writes into generations.
1502                  * For each generation, we track the original measured
1503                  * nanosecond time, offset, and write, so if TSCs are in
1504                  * sync, we can match exact offset, and if not, we can match
1505                  * exact software computation in compute_guest_tsc()
1506                  *
1507                  * These values are tracked in kvm->arch.cur_xxx variables.
1508                  */
1509                 kvm->arch.cur_tsc_generation++;
1510                 kvm->arch.cur_tsc_nsec = ns;
1511                 kvm->arch.cur_tsc_write = data;
1512                 kvm->arch.cur_tsc_offset = offset;
1513                 matched = false;
1514                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515                          kvm->arch.cur_tsc_generation, data);
1516         }
1517
1518         /*
1519          * We also track th most recent recorded KHZ, write and time to
1520          * allow the matching interval to be extended at each write.
1521          */
1522         kvm->arch.last_tsc_nsec = ns;
1523         kvm->arch.last_tsc_write = data;
1524         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526         vcpu->arch.last_guest_tsc = data;
1527
1528         /* Keep track of which generation this VCPU has synchronized to */
1529         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534                 update_ia32_tsc_adjust_msr(vcpu, offset);
1535         kvm_vcpu_write_tsc_offset(vcpu, offset);
1536         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539         if (!matched) {
1540                 kvm->arch.nr_vcpus_matched_tsc = 0;
1541         } else if (!already_matched) {
1542                 kvm->arch.nr_vcpus_matched_tsc++;
1543         }
1544
1545         kvm_track_tsc_matching(vcpu);
1546         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552                                            s64 adjustment)
1553 {
1554         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560                 WARN_ON(adjustment < 0);
1561         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562         adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569         u64 ret = (u64)rdtsc_ordered();
1570         u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572         if (likely(ret >= last))
1573                 return ret;
1574
1575         /*
1576          * GCC likes to generate cmov here, but this branch is extremely
1577          * predictable (it's just a function of time and the likely is
1578          * very likely) and there's a data dependence, so force GCC
1579          * to generate a branch instead.  I don't barrier() because
1580          * we don't actually need a barrier, and if this function
1581          * ever gets inlined it will generate worse code.
1582          */
1583         asm volatile ("");
1584         return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589         long v;
1590         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592         *cycle_now = read_tsc();
1593
1594         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595         return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601         unsigned long seq;
1602         int mode;
1603         u64 ns;
1604
1605         do {
1606                 seq = read_seqcount_begin(&gtod->seq);
1607                 mode = gtod->clock.vclock_mode;
1608                 ns = gtod->nsec_base;
1609                 ns += vgettsc(cycle_now);
1610                 ns >>= gtod->clock.shift;
1611                 ns += gtod->boot_ns;
1612         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613         *t = ns;
1614
1615         return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621         unsigned long seq;
1622         int mode;
1623         u64 ns;
1624
1625         do {
1626                 seq = read_seqcount_begin(&gtod->seq);
1627                 mode = gtod->clock.vclock_mode;
1628                 ts->tv_sec = gtod->wall_time_sec;
1629                 ns = gtod->nsec_base;
1630                 ns += vgettsc(cycle_now);
1631                 ns >>= gtod->clock.shift;
1632         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635         ts->tv_nsec = ns;
1636
1637         return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643         /* checked again under seqlock below */
1644         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645                 return false;
1646
1647         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652                                            u64 *cycle_now)
1653 {
1654         /* checked again under seqlock below */
1655         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656                 return false;
1657
1658         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663  *
1664  * Assuming a stable TSC across physical CPUS, and a stable TSC
1665  * across virtual CPUs, the following condition is possible.
1666  * Each numbered line represents an event visible to both
1667  * CPUs at the next numbered event.
1668  *
1669  * "timespecX" represents host monotonic time. "tscX" represents
1670  * RDTSC value.
1671  *
1672  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1673  *
1674  * 1.  read timespec0,tsc0
1675  * 2.                                   | timespec1 = timespec0 + N
1676  *                                      | tsc1 = tsc0 + M
1677  * 3. transition to guest               | transition to guest
1678  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1680  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681  *
1682  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683  *
1684  *      - ret0 < ret1
1685  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686  *              ...
1687  *      - 0 < N - M => M < N
1688  *
1689  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690  * always the case (the difference between two distinct xtime instances
1691  * might be smaller then the difference between corresponding TSC reads,
1692  * when updating guest vcpus pvclock areas).
1693  *
1694  * To avoid that problem, do not allow visibility of distinct
1695  * system_timestamp/tsc_timestamp values simultaneously: use a master
1696  * copy of host monotonic time values. Update that master copy
1697  * in lockstep.
1698  *
1699  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700  *
1701  */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706         struct kvm_arch *ka = &kvm->arch;
1707         int vclock_mode;
1708         bool host_tsc_clocksource, vcpus_matched;
1709
1710         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711                         atomic_read(&kvm->online_vcpus));
1712
1713         /*
1714          * If the host uses TSC clock, then passthrough TSC as stable
1715          * to the guest.
1716          */
1717         host_tsc_clocksource = kvm_get_time_and_clockread(
1718                                         &ka->master_kernel_ns,
1719                                         &ka->master_cycle_now);
1720
1721         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722                                 && !backwards_tsc_observed
1723                                 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725         if (ka->use_master_clock)
1726                 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730                                         vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742         int i;
1743         struct kvm_vcpu *vcpu;
1744         struct kvm_arch *ka = &kvm->arch;
1745
1746         spin_lock(&ka->pvclock_gtod_sync_lock);
1747         kvm_make_mclock_inprogress_request(kvm);
1748         /* no guest entries from this point */
1749         pvclock_update_vm_gtod_copy(kvm);
1750
1751         kvm_for_each_vcpu(i, vcpu, kvm)
1752                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754         /* guest entries allowed */
1755         kvm_for_each_vcpu(i, vcpu, kvm)
1756                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1757
1758         spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 static u64 __get_kvmclock_ns(struct kvm *kvm)
1763 {
1764         struct kvm_arch *ka = &kvm->arch;
1765         struct pvclock_vcpu_time_info hv_clock;
1766
1767         spin_lock(&ka->pvclock_gtod_sync_lock);
1768         if (!ka->use_master_clock) {
1769                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1770                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1771         }
1772
1773         hv_clock.tsc_timestamp = ka->master_cycle_now;
1774         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1775         spin_unlock(&ka->pvclock_gtod_sync_lock);
1776
1777         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1778                            &hv_clock.tsc_shift,
1779                            &hv_clock.tsc_to_system_mul);
1780         return __pvclock_read_cycles(&hv_clock, rdtsc());
1781 }
1782
1783 u64 get_kvmclock_ns(struct kvm *kvm)
1784 {
1785         unsigned long flags;
1786         s64 ns;
1787
1788         local_irq_save(flags);
1789         ns = __get_kvmclock_ns(kvm);
1790         local_irq_restore(flags);
1791
1792         return ns;
1793 }
1794
1795 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1796 {
1797         struct kvm_vcpu_arch *vcpu = &v->arch;
1798         struct pvclock_vcpu_time_info guest_hv_clock;
1799
1800         if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1801                 &guest_hv_clock, sizeof(guest_hv_clock))))
1802                 return;
1803
1804         /* This VCPU is paused, but it's legal for a guest to read another
1805          * VCPU's kvmclock, so we really have to follow the specification where
1806          * it says that version is odd if data is being modified, and even after
1807          * it is consistent.
1808          *
1809          * Version field updates must be kept separate.  This is because
1810          * kvm_write_guest_cached might use a "rep movs" instruction, and
1811          * writes within a string instruction are weakly ordered.  So there
1812          * are three writes overall.
1813          *
1814          * As a small optimization, only write the version field in the first
1815          * and third write.  The vcpu->pv_time cache is still valid, because the
1816          * version field is the first in the struct.
1817          */
1818         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1819
1820         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1821         kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1822                                     &vcpu->hv_clock,
1823                                     sizeof(vcpu->hv_clock.version));
1824
1825         smp_wmb();
1826
1827         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1828         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1829
1830         if (vcpu->pvclock_set_guest_stopped_request) {
1831                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1832                 vcpu->pvclock_set_guest_stopped_request = false;
1833         }
1834
1835         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1836
1837         kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1838                                     &vcpu->hv_clock,
1839                                     sizeof(vcpu->hv_clock));
1840
1841         smp_wmb();
1842
1843         vcpu->hv_clock.version++;
1844         kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1845                                     &vcpu->hv_clock,
1846                                     sizeof(vcpu->hv_clock.version));
1847 }
1848
1849 static int kvm_guest_time_update(struct kvm_vcpu *v)
1850 {
1851         unsigned long flags, tgt_tsc_khz;
1852         struct kvm_vcpu_arch *vcpu = &v->arch;
1853         struct kvm_arch *ka = &v->kvm->arch;
1854         s64 kernel_ns;
1855         u64 tsc_timestamp, host_tsc;
1856         u8 pvclock_flags;
1857         bool use_master_clock;
1858
1859         kernel_ns = 0;
1860         host_tsc = 0;
1861
1862         /*
1863          * If the host uses TSC clock, then passthrough TSC as stable
1864          * to the guest.
1865          */
1866         spin_lock(&ka->pvclock_gtod_sync_lock);
1867         use_master_clock = ka->use_master_clock;
1868         if (use_master_clock) {
1869                 host_tsc = ka->master_cycle_now;
1870                 kernel_ns = ka->master_kernel_ns;
1871         }
1872         spin_unlock(&ka->pvclock_gtod_sync_lock);
1873
1874         /* Keep irq disabled to prevent changes to the clock */
1875         local_irq_save(flags);
1876         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1877         if (unlikely(tgt_tsc_khz == 0)) {
1878                 local_irq_restore(flags);
1879                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1880                 return 1;
1881         }
1882         if (!use_master_clock) {
1883                 host_tsc = rdtsc();
1884                 kernel_ns = ktime_get_boot_ns();
1885         }
1886
1887         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1888
1889         /*
1890          * We may have to catch up the TSC to match elapsed wall clock
1891          * time for two reasons, even if kvmclock is used.
1892          *   1) CPU could have been running below the maximum TSC rate
1893          *   2) Broken TSC compensation resets the base at each VCPU
1894          *      entry to avoid unknown leaps of TSC even when running
1895          *      again on the same CPU.  This may cause apparent elapsed
1896          *      time to disappear, and the guest to stand still or run
1897          *      very slowly.
1898          */
1899         if (vcpu->tsc_catchup) {
1900                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1901                 if (tsc > tsc_timestamp) {
1902                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1903                         tsc_timestamp = tsc;
1904                 }
1905         }
1906
1907         local_irq_restore(flags);
1908
1909         /* With all the info we got, fill in the values */
1910
1911         if (kvm_has_tsc_control)
1912                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1913
1914         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1915                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1916                                    &vcpu->hv_clock.tsc_shift,
1917                                    &vcpu->hv_clock.tsc_to_system_mul);
1918                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1919         }
1920
1921         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1922         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1923         vcpu->last_guest_tsc = tsc_timestamp;
1924
1925         /* If the host uses TSC clocksource, then it is stable */
1926         pvclock_flags = 0;
1927         if (use_master_clock)
1928                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1929
1930         vcpu->hv_clock.flags = pvclock_flags;
1931
1932         if (vcpu->pv_time_enabled)
1933                 kvm_setup_pvclock_page(v);
1934         if (v == kvm_get_vcpu(v->kvm, 0))
1935                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1936         return 0;
1937 }
1938
1939 /*
1940  * kvmclock updates which are isolated to a given vcpu, such as
1941  * vcpu->cpu migration, should not allow system_timestamp from
1942  * the rest of the vcpus to remain static. Otherwise ntp frequency
1943  * correction applies to one vcpu's system_timestamp but not
1944  * the others.
1945  *
1946  * So in those cases, request a kvmclock update for all vcpus.
1947  * We need to rate-limit these requests though, as they can
1948  * considerably slow guests that have a large number of vcpus.
1949  * The time for a remote vcpu to update its kvmclock is bound
1950  * by the delay we use to rate-limit the updates.
1951  */
1952
1953 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1954
1955 static void kvmclock_update_fn(struct work_struct *work)
1956 {
1957         int i;
1958         struct delayed_work *dwork = to_delayed_work(work);
1959         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960                                            kvmclock_update_work);
1961         struct kvm *kvm = container_of(ka, struct kvm, arch);
1962         struct kvm_vcpu *vcpu;
1963
1964         kvm_for_each_vcpu(i, vcpu, kvm) {
1965                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1966                 kvm_vcpu_kick(vcpu);
1967         }
1968 }
1969
1970 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1971 {
1972         struct kvm *kvm = v->kvm;
1973
1974         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1975         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1976                                         KVMCLOCK_UPDATE_DELAY);
1977 }
1978
1979 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1980
1981 static void kvmclock_sync_fn(struct work_struct *work)
1982 {
1983         struct delayed_work *dwork = to_delayed_work(work);
1984         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1985                                            kvmclock_sync_work);
1986         struct kvm *kvm = container_of(ka, struct kvm, arch);
1987
1988         if (!kvmclock_periodic_sync)
1989                 return;
1990
1991         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1992         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1993                                         KVMCLOCK_SYNC_PERIOD);
1994 }
1995
1996 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1997 {
1998         u64 mcg_cap = vcpu->arch.mcg_cap;
1999         unsigned bank_num = mcg_cap & 0xff;
2000
2001         switch (msr) {
2002         case MSR_IA32_MCG_STATUS:
2003                 vcpu->arch.mcg_status = data;
2004                 break;
2005         case MSR_IA32_MCG_CTL:
2006                 if (!(mcg_cap & MCG_CTL_P))
2007                         return 1;
2008                 if (data != 0 && data != ~(u64)0)
2009                         return -1;
2010                 vcpu->arch.mcg_ctl = data;
2011                 break;
2012         default:
2013                 if (msr >= MSR_IA32_MC0_CTL &&
2014                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2015                         u32 offset = msr - MSR_IA32_MC0_CTL;
2016                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2017                          * some Linux kernels though clear bit 10 in bank 4 to
2018                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2019                          * this to avoid an uncatched #GP in the guest
2020                          */
2021                         if ((offset & 0x3) == 0 &&
2022                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2023                                 return -1;
2024                         vcpu->arch.mce_banks[offset] = data;
2025                         break;
2026                 }
2027                 return 1;
2028         }
2029         return 0;
2030 }
2031
2032 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2033 {
2034         struct kvm *kvm = vcpu->kvm;
2035         int lm = is_long_mode(vcpu);
2036         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2037                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2038         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2039                 : kvm->arch.xen_hvm_config.blob_size_32;
2040         u32 page_num = data & ~PAGE_MASK;
2041         u64 page_addr = data & PAGE_MASK;
2042         u8 *page;
2043         int r;
2044
2045         r = -E2BIG;
2046         if (page_num >= blob_size)
2047                 goto out;
2048         r = -ENOMEM;
2049         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2050         if (IS_ERR(page)) {
2051                 r = PTR_ERR(page);
2052                 goto out;
2053         }
2054         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2055                 goto out_free;
2056         r = 0;
2057 out_free:
2058         kfree(page);
2059 out:
2060         return r;
2061 }
2062
2063 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2064 {
2065         gpa_t gpa = data & ~0x3f;
2066
2067         /* Bits 2:5 are reserved, Should be zero */
2068         if (data & 0x3c)
2069                 return 1;
2070
2071         vcpu->arch.apf.msr_val = data;
2072
2073         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2074                 kvm_clear_async_pf_completion_queue(vcpu);
2075                 kvm_async_pf_hash_reset(vcpu);
2076                 return 0;
2077         }
2078
2079         if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2080                                         sizeof(u32)))
2081                 return 1;
2082
2083         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2084         kvm_async_pf_wakeup_all(vcpu);
2085         return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096                 return;
2097
2098         if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2099                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100                 return;
2101
2102         vcpu->arch.st.steal.preempted = 0;
2103
2104         if (vcpu->arch.st.steal.version & 1)
2105                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2106
2107         vcpu->arch.st.steal.version += 1;
2108
2109         kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2110                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112         smp_wmb();
2113
2114         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115                 vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118         kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2119                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121         smp_wmb();
2122
2123         vcpu->arch.st.steal.version += 1;
2124
2125         kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131         bool pr = false;
2132         u32 msr = msr_info->index;
2133         u64 data = msr_info->data;
2134
2135         switch (msr) {
2136         case MSR_AMD64_NB_CFG:
2137         case MSR_IA32_UCODE_REV:
2138         case MSR_IA32_UCODE_WRITE:
2139         case MSR_VM_HSAVE_PA:
2140         case MSR_AMD64_PATCH_LOADER:
2141         case MSR_AMD64_BU_CFG2:
2142         case MSR_AMD64_DC_CFG:
2143                 break;
2144
2145         case MSR_EFER:
2146                 return set_efer(vcpu, data);
2147         case MSR_K7_HWCR:
2148                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2149                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2150                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2151                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2152                 if (data != 0) {
2153                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154                                     data);
2155                         return 1;
2156                 }
2157                 break;
2158         case MSR_FAM10H_MMIO_CONF_BASE:
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161                                     "0x%llx\n", data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_IA32_DEBUGCTLMSR:
2166                 if (!data) {
2167                         /* We support the non-activated case already */
2168                         break;
2169                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170                         /* Values other than LBR and BTF are vendor-specific,
2171                            thus reserved and should throw a #GP */
2172                         return 1;
2173                 }
2174                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175                             __func__, data);
2176                 break;
2177         case 0x200 ... 0x2ff:
2178                 return kvm_mtrr_set_msr(vcpu, msr, data);
2179         case MSR_IA32_APICBASE:
2180                 return kvm_set_apic_base(vcpu, msr_info);
2181         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182                 return kvm_x2apic_msr_write(vcpu, msr, data);
2183         case MSR_IA32_TSCDEADLINE:
2184                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185                 break;
2186         case MSR_IA32_TSC_ADJUST:
2187                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188                         if (!msr_info->host_initiated) {
2189                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190                                 adjust_tsc_offset_guest(vcpu, adj);
2191                         }
2192                         vcpu->arch.ia32_tsc_adjust_msr = data;
2193                 }
2194                 break;
2195         case MSR_IA32_MISC_ENABLE:
2196                 vcpu->arch.ia32_misc_enable_msr = data;
2197                 break;
2198         case MSR_IA32_SMBASE:
2199                 if (!msr_info->host_initiated)
2200                         return 1;
2201                 vcpu->arch.smbase = data;
2202                 break;
2203         case MSR_KVM_WALL_CLOCK_NEW:
2204         case MSR_KVM_WALL_CLOCK:
2205                 vcpu->kvm->arch.wall_clock = data;
2206                 kvm_write_wall_clock(vcpu->kvm, data);
2207                 break;
2208         case MSR_KVM_SYSTEM_TIME_NEW:
2209         case MSR_KVM_SYSTEM_TIME: {
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2219                                         &vcpu->requests);
2220
2221                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2222                 }
2223
2224                 vcpu->arch.time = data;
2225                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2226
2227                 /* we verify if the enable bit is set... */
2228                 if (!(data & 1))
2229                         break;
2230
2231                 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2232                      &vcpu->arch.pv_time, data & ~1ULL,
2233                      sizeof(struct pvclock_vcpu_time_info)))
2234                         vcpu->arch.pv_time_enabled = false;
2235                 else
2236                         vcpu->arch.pv_time_enabled = true;
2237
2238                 break;
2239         }
2240         case MSR_KVM_ASYNC_PF_EN:
2241                 if (kvm_pv_enable_async_pf(vcpu, data))
2242                         return 1;
2243                 break;
2244         case MSR_KVM_STEAL_TIME:
2245
2246                 if (unlikely(!sched_info_on()))
2247                         return 1;
2248
2249                 if (data & KVM_STEAL_RESERVED_MASK)
2250                         return 1;
2251
2252                 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2253                                                 data & KVM_STEAL_VALID_BITS,
2254                                                 sizeof(struct kvm_steal_time)))
2255                         return 1;
2256
2257                 vcpu->arch.st.msr_val = data;
2258
2259                 if (!(data & KVM_MSR_ENABLED))
2260                         break;
2261
2262                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2263
2264                 break;
2265         case MSR_KVM_PV_EOI_EN:
2266                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2267                         return 1;
2268                 break;
2269
2270         case MSR_IA32_MCG_CTL:
2271         case MSR_IA32_MCG_STATUS:
2272         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2273                 return set_msr_mce(vcpu, msr, data);
2274
2275         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2276         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2277                 pr = true; /* fall through */
2278         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2279         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2280                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2281                         return kvm_pmu_set_msr(vcpu, msr_info);
2282
2283                 if (pr || data != 0)
2284                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2285                                     "0x%x data 0x%llx\n", msr, data);
2286                 break;
2287         case MSR_K7_CLK_CTL:
2288                 /*
2289                  * Ignore all writes to this no longer documented MSR.
2290                  * Writes are only relevant for old K7 processors,
2291                  * all pre-dating SVM, but a recommended workaround from
2292                  * AMD for these chips. It is possible to specify the
2293                  * affected processor models on the command line, hence
2294                  * the need to ignore the workaround.
2295                  */
2296                 break;
2297         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2298         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2299         case HV_X64_MSR_CRASH_CTL:
2300         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2301                 return kvm_hv_set_msr_common(vcpu, msr, data,
2302                                              msr_info->host_initiated);
2303         case MSR_IA32_BBL_CR_CTL3:
2304                 /* Drop writes to this legacy MSR -- see rdmsr
2305                  * counterpart for further detail.
2306                  */
2307                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2308                 break;
2309         case MSR_AMD64_OSVW_ID_LENGTH:
2310                 if (!guest_cpuid_has_osvw(vcpu))
2311                         return 1;
2312                 vcpu->arch.osvw.length = data;
2313                 break;
2314         case MSR_AMD64_OSVW_STATUS:
2315                 if (!guest_cpuid_has_osvw(vcpu))
2316                         return 1;
2317                 vcpu->arch.osvw.status = data;
2318                 break;
2319         case MSR_PLATFORM_INFO:
2320                 if (!msr_info->host_initiated ||
2321                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2322                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2323                      cpuid_fault_enabled(vcpu)))
2324                         return 1;
2325                 vcpu->arch.msr_platform_info = data;
2326                 break;
2327         case MSR_MISC_FEATURES_ENABLES:
2328                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2329                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2330                      !supports_cpuid_fault(vcpu)))
2331                         return 1;
2332                 vcpu->arch.msr_misc_features_enables = data;
2333                 break;
2334         default:
2335                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2336                         return xen_hvm_config(vcpu, data);
2337                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2338                         return kvm_pmu_set_msr(vcpu, msr_info);
2339                 if (!ignore_msrs) {
2340                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2341                                     msr, data);
2342                         return 1;
2343                 } else {
2344                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2345                                     msr, data);
2346                         break;
2347                 }
2348         }
2349         return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2352
2353
2354 /*
2355  * Reads an msr value (of 'msr_index') into 'pdata'.
2356  * Returns 0 on success, non-0 otherwise.
2357  * Assumes vcpu_load() was already called.
2358  */
2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2360 {
2361         return kvm_x86_ops->get_msr(vcpu, msr);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_get_msr);
2364
2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 {
2367         u64 data;
2368         u64 mcg_cap = vcpu->arch.mcg_cap;
2369         unsigned bank_num = mcg_cap & 0xff;
2370
2371         switch (msr) {
2372         case MSR_IA32_P5_MC_ADDR:
2373         case MSR_IA32_P5_MC_TYPE:
2374                 data = 0;
2375                 break;
2376         case MSR_IA32_MCG_CAP:
2377                 data = vcpu->arch.mcg_cap;
2378                 break;
2379         case MSR_IA32_MCG_CTL:
2380                 if (!(mcg_cap & MCG_CTL_P))
2381                         return 1;
2382                 data = vcpu->arch.mcg_ctl;
2383                 break;
2384         case MSR_IA32_MCG_STATUS:
2385                 data = vcpu->arch.mcg_status;
2386                 break;
2387         default:
2388                 if (msr >= MSR_IA32_MC0_CTL &&
2389                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2390                         u32 offset = msr - MSR_IA32_MC0_CTL;
2391                         data = vcpu->arch.mce_banks[offset];
2392                         break;
2393                 }
2394                 return 1;
2395         }
2396         *pdata = data;
2397         return 0;
2398 }
2399
2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402         switch (msr_info->index) {
2403         case MSR_IA32_PLATFORM_ID:
2404         case MSR_IA32_EBL_CR_POWERON:
2405         case MSR_IA32_DEBUGCTLMSR:
2406         case MSR_IA32_LASTBRANCHFROMIP:
2407         case MSR_IA32_LASTBRANCHTOIP:
2408         case MSR_IA32_LASTINTFROMIP:
2409         case MSR_IA32_LASTINTTOIP:
2410         case MSR_K8_SYSCFG:
2411         case MSR_K8_TSEG_ADDR:
2412         case MSR_K8_TSEG_MASK:
2413         case MSR_K7_HWCR:
2414         case MSR_VM_HSAVE_PA:
2415         case MSR_K8_INT_PENDING_MSG:
2416         case MSR_AMD64_NB_CFG:
2417         case MSR_FAM10H_MMIO_CONF_BASE:
2418         case MSR_AMD64_BU_CFG2:
2419         case MSR_IA32_PERF_CTL:
2420         case MSR_AMD64_DC_CFG:
2421                 msr_info->data = 0;
2422                 break;
2423         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2424         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2425         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2426         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2427                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2428                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2429                 msr_info->data = 0;
2430                 break;
2431         case MSR_IA32_UCODE_REV:
2432                 msr_info->data = 0x100000000ULL;
2433                 break;
2434         case MSR_MTRRcap:
2435         case 0x200 ... 0x2ff:
2436                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2437         case 0xcd: /* fsb frequency */
2438                 msr_info->data = 3;
2439                 break;
2440                 /*
2441                  * MSR_EBC_FREQUENCY_ID
2442                  * Conservative value valid for even the basic CPU models.
2443                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2444                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2445                  * and 266MHz for model 3, or 4. Set Core Clock
2446                  * Frequency to System Bus Frequency Ratio to 1 (bits
2447                  * 31:24) even though these are only valid for CPU
2448                  * models > 2, however guests may end up dividing or
2449                  * multiplying by zero otherwise.
2450                  */
2451         case MSR_EBC_FREQUENCY_ID:
2452                 msr_info->data = 1 << 24;
2453                 break;
2454         case MSR_IA32_APICBASE:
2455                 msr_info->data = kvm_get_apic_base(vcpu);
2456                 break;
2457         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2458                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2459                 break;
2460         case MSR_IA32_TSCDEADLINE:
2461                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2462                 break;
2463         case MSR_IA32_TSC_ADJUST:
2464                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2465                 break;
2466         case MSR_IA32_MISC_ENABLE:
2467                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2468                 break;
2469         case MSR_IA32_SMBASE:
2470                 if (!msr_info->host_initiated)
2471                         return 1;
2472                 msr_info->data = vcpu->arch.smbase;
2473                 break;
2474         case MSR_IA32_PERF_STATUS:
2475                 /* TSC increment by tick */
2476                 msr_info->data = 1000ULL;
2477                 /* CPU multiplier */
2478                 msr_info->data |= (((uint64_t)4ULL) << 40);
2479                 break;
2480         case MSR_EFER:
2481                 msr_info->data = vcpu->arch.efer;
2482                 break;
2483         case MSR_KVM_WALL_CLOCK:
2484         case MSR_KVM_WALL_CLOCK_NEW:
2485                 msr_info->data = vcpu->kvm->arch.wall_clock;
2486                 break;
2487         case MSR_KVM_SYSTEM_TIME:
2488         case MSR_KVM_SYSTEM_TIME_NEW:
2489                 msr_info->data = vcpu->arch.time;
2490                 break;
2491         case MSR_KVM_ASYNC_PF_EN:
2492                 msr_info->data = vcpu->arch.apf.msr_val;
2493                 break;
2494         case MSR_KVM_STEAL_TIME:
2495                 msr_info->data = vcpu->arch.st.msr_val;
2496                 break;
2497         case MSR_KVM_PV_EOI_EN:
2498                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2499                 break;
2500         case MSR_IA32_P5_MC_ADDR:
2501         case MSR_IA32_P5_MC_TYPE:
2502         case MSR_IA32_MCG_CAP:
2503         case MSR_IA32_MCG_CTL:
2504         case MSR_IA32_MCG_STATUS:
2505         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2506                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2507         case MSR_K7_CLK_CTL:
2508                 /*
2509                  * Provide expected ramp-up count for K7. All other
2510                  * are set to zero, indicating minimum divisors for
2511                  * every field.
2512                  *
2513                  * This prevents guest kernels on AMD host with CPU
2514                  * type 6, model 8 and higher from exploding due to
2515                  * the rdmsr failing.
2516                  */
2517                 msr_info->data = 0x20000000;
2518                 break;
2519         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2520         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2521         case HV_X64_MSR_CRASH_CTL:
2522         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2523                 return kvm_hv_get_msr_common(vcpu,
2524                                              msr_info->index, &msr_info->data);
2525                 break;
2526         case MSR_IA32_BBL_CR_CTL3:
2527                 /* This legacy MSR exists but isn't fully documented in current
2528                  * silicon.  It is however accessed by winxp in very narrow
2529                  * scenarios where it sets bit #19, itself documented as
2530                  * a "reserved" bit.  Best effort attempt to source coherent
2531                  * read data here should the balance of the register be
2532                  * interpreted by the guest:
2533                  *
2534                  * L2 cache control register 3: 64GB range, 256KB size,
2535                  * enabled, latency 0x1, configured
2536                  */
2537                 msr_info->data = 0xbe702111;
2538                 break;
2539         case MSR_AMD64_OSVW_ID_LENGTH:
2540                 if (!guest_cpuid_has_osvw(vcpu))
2541                         return 1;
2542                 msr_info->data = vcpu->arch.osvw.length;
2543                 break;
2544         case MSR_AMD64_OSVW_STATUS:
2545                 if (!guest_cpuid_has_osvw(vcpu))
2546                         return 1;
2547                 msr_info->data = vcpu->arch.osvw.status;
2548                 break;
2549         case MSR_PLATFORM_INFO:
2550                 msr_info->data = vcpu->arch.msr_platform_info;
2551                 break;
2552         case MSR_MISC_FEATURES_ENABLES:
2553                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2554                 break;
2555         default:
2556                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2557                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2558                 if (!ignore_msrs) {
2559                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2560                                                msr_info->index);
2561                         return 1;
2562                 } else {
2563                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2564                         msr_info->data = 0;
2565                 }
2566                 break;
2567         }
2568         return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2571
2572 /*
2573  * Read or write a bunch of msrs. All parameters are kernel addresses.
2574  *
2575  * @return number of msrs set successfully.
2576  */
2577 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2578                     struct kvm_msr_entry *entries,
2579                     int (*do_msr)(struct kvm_vcpu *vcpu,
2580                                   unsigned index, u64 *data))
2581 {
2582         int i, idx;
2583
2584         idx = srcu_read_lock(&vcpu->kvm->srcu);
2585         for (i = 0; i < msrs->nmsrs; ++i)
2586                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2587                         break;
2588         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2589
2590         return i;
2591 }
2592
2593 /*
2594  * Read or write a bunch of msrs. Parameters are user addresses.
2595  *
2596  * @return number of msrs set successfully.
2597  */
2598 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2599                   int (*do_msr)(struct kvm_vcpu *vcpu,
2600                                 unsigned index, u64 *data),
2601                   int writeback)
2602 {
2603         struct kvm_msrs msrs;
2604         struct kvm_msr_entry *entries;
2605         int r, n;
2606         unsigned size;
2607
2608         r = -EFAULT;
2609         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2610                 goto out;
2611
2612         r = -E2BIG;
2613         if (msrs.nmsrs >= MAX_IO_MSRS)
2614                 goto out;
2615
2616         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2617         entries = memdup_user(user_msrs->entries, size);
2618         if (IS_ERR(entries)) {
2619                 r = PTR_ERR(entries);
2620                 goto out;
2621         }
2622
2623         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2624         if (r < 0)
2625                 goto out_free;
2626
2627         r = -EFAULT;
2628         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2629                 goto out_free;
2630
2631         r = n;
2632
2633 out_free:
2634         kfree(entries);
2635 out:
2636         return r;
2637 }
2638
2639 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2640 {
2641         int r;
2642
2643         switch (ext) {
2644         case KVM_CAP_IRQCHIP:
2645         case KVM_CAP_HLT:
2646         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2647         case KVM_CAP_SET_TSS_ADDR:
2648         case KVM_CAP_EXT_CPUID:
2649         case KVM_CAP_EXT_EMUL_CPUID:
2650         case KVM_CAP_CLOCKSOURCE:
2651         case KVM_CAP_PIT:
2652         case KVM_CAP_NOP_IO_DELAY:
2653         case KVM_CAP_MP_STATE:
2654         case KVM_CAP_SYNC_MMU:
2655         case KVM_CAP_USER_NMI:
2656         case KVM_CAP_REINJECT_CONTROL:
2657         case KVM_CAP_IRQ_INJECT_STATUS:
2658         case KVM_CAP_IOEVENTFD:
2659         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2660         case KVM_CAP_PIT2:
2661         case KVM_CAP_PIT_STATE2:
2662         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2663         case KVM_CAP_XEN_HVM:
2664         case KVM_CAP_VCPU_EVENTS:
2665         case KVM_CAP_HYPERV:
2666         case KVM_CAP_HYPERV_VAPIC:
2667         case KVM_CAP_HYPERV_SPIN:
2668         case KVM_CAP_HYPERV_SYNIC:
2669         case KVM_CAP_PCI_SEGMENT:
2670         case KVM_CAP_DEBUGREGS:
2671         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2672         case KVM_CAP_XSAVE:
2673         case KVM_CAP_ASYNC_PF:
2674         case KVM_CAP_GET_TSC_KHZ:
2675         case KVM_CAP_KVMCLOCK_CTRL:
2676         case KVM_CAP_READONLY_MEM:
2677         case KVM_CAP_HYPERV_TIME:
2678         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2679         case KVM_CAP_TSC_DEADLINE_TIMER:
2680         case KVM_CAP_ENABLE_CAP_VM:
2681         case KVM_CAP_DISABLE_QUIRKS:
2682         case KVM_CAP_SET_BOOT_CPU_ID:
2683         case KVM_CAP_SPLIT_IRQCHIP:
2684         case KVM_CAP_IMMEDIATE_EXIT:
2685                 r = 1;
2686                 break;
2687         case KVM_CAP_ADJUST_CLOCK:
2688                 r = KVM_CLOCK_TSC_STABLE;
2689                 break;
2690         case KVM_CAP_X86_GUEST_MWAIT:
2691                 r = kvm_mwait_in_guest();
2692                 break;
2693         case KVM_CAP_X86_SMM:
2694                 /* SMBASE is usually relocated above 1M on modern chipsets,
2695                  * and SMM handlers might indeed rely on 4G segment limits,
2696                  * so do not report SMM to be available if real mode is
2697                  * emulated via vm86 mode.  Still, do not go to great lengths
2698                  * to avoid userspace's usage of the feature, because it is a
2699                  * fringe case that is not enabled except via specific settings
2700                  * of the module parameters.
2701                  */
2702                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2703                 break;
2704         case KVM_CAP_VAPIC:
2705                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2706                 break;
2707         case KVM_CAP_NR_VCPUS:
2708                 r = KVM_SOFT_MAX_VCPUS;
2709                 break;
2710         case KVM_CAP_MAX_VCPUS:
2711                 r = KVM_MAX_VCPUS;
2712                 break;
2713         case KVM_CAP_NR_MEMSLOTS:
2714                 r = KVM_USER_MEM_SLOTS;
2715                 break;
2716         case KVM_CAP_PV_MMU:    /* obsolete */
2717                 r = 0;
2718                 break;
2719         case KVM_CAP_MCE:
2720                 r = KVM_MAX_MCE_BANKS;
2721                 break;
2722         case KVM_CAP_XCRS:
2723                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2724                 break;
2725         case KVM_CAP_TSC_CONTROL:
2726                 r = kvm_has_tsc_control;
2727                 break;
2728         case KVM_CAP_X2APIC_API:
2729                 r = KVM_X2APIC_API_VALID_FLAGS;
2730                 break;
2731         default:
2732                 r = 0;
2733                 break;
2734         }
2735         return r;
2736
2737 }
2738
2739 long kvm_arch_dev_ioctl(struct file *filp,
2740                         unsigned int ioctl, unsigned long arg)
2741 {
2742         void __user *argp = (void __user *)arg;
2743         long r;
2744
2745         switch (ioctl) {
2746         case KVM_GET_MSR_INDEX_LIST: {
2747                 struct kvm_msr_list __user *user_msr_list = argp;
2748                 struct kvm_msr_list msr_list;
2749                 unsigned n;
2750
2751                 r = -EFAULT;
2752                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2753                         goto out;
2754                 n = msr_list.nmsrs;
2755                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2756                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2757                         goto out;
2758                 r = -E2BIG;
2759                 if (n < msr_list.nmsrs)
2760                         goto out;
2761                 r = -EFAULT;
2762                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2763                                  num_msrs_to_save * sizeof(u32)))
2764                         goto out;
2765                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2766                                  &emulated_msrs,
2767                                  num_emulated_msrs * sizeof(u32)))
2768                         goto out;
2769                 r = 0;
2770                 break;
2771         }
2772         case KVM_GET_SUPPORTED_CPUID:
2773         case KVM_GET_EMULATED_CPUID: {
2774                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2775                 struct kvm_cpuid2 cpuid;
2776
2777                 r = -EFAULT;
2778                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2779                         goto out;
2780
2781                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2782                                             ioctl);
2783                 if (r)
2784                         goto out;
2785
2786                 r = -EFAULT;
2787                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2788                         goto out;
2789                 r = 0;
2790                 break;
2791         }
2792         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2793                 r = -EFAULT;
2794                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2795                                  sizeof(kvm_mce_cap_supported)))
2796                         goto out;
2797                 r = 0;
2798                 break;
2799         }
2800         default:
2801                 r = -EINVAL;
2802         }
2803 out:
2804         return r;
2805 }
2806
2807 static void wbinvd_ipi(void *garbage)
2808 {
2809         wbinvd();
2810 }
2811
2812 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2813 {
2814         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2815 }
2816
2817 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2818 {
2819         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2820 }
2821
2822 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2823 {
2824         /* Address WBINVD may be executed by guest */
2825         if (need_emulate_wbinvd(vcpu)) {
2826                 if (kvm_x86_ops->has_wbinvd_exit())
2827                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2828                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2829                         smp_call_function_single(vcpu->cpu,
2830                                         wbinvd_ipi, NULL, 1);
2831         }
2832
2833         kvm_x86_ops->vcpu_load(vcpu, cpu);
2834
2835         /* Apply any externally detected TSC adjustments (due to suspend) */
2836         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2837                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2838                 vcpu->arch.tsc_offset_adjustment = 0;
2839                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2840         }
2841
2842         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2843                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2844                                 rdtsc() - vcpu->arch.last_host_tsc;
2845                 if (tsc_delta < 0)
2846                         mark_tsc_unstable("KVM discovered backwards TSC");
2847
2848                 if (check_tsc_unstable()) {
2849                         u64 offset = kvm_compute_tsc_offset(vcpu,
2850                                                 vcpu->arch.last_guest_tsc);
2851                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2852                         vcpu->arch.tsc_catchup = 1;
2853                 }
2854                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2855                                 kvm_x86_ops->set_hv_timer(vcpu,
2856                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2857                         kvm_lapic_switch_to_sw_timer(vcpu);
2858                 /*
2859                  * On a host with synchronized TSC, there is no need to update
2860                  * kvmclock on vcpu->cpu migration
2861                  */
2862                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2863                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2864                 if (vcpu->cpu != cpu)
2865                         kvm_migrate_timers(vcpu);
2866                 vcpu->cpu = cpu;
2867         }
2868
2869         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2870 }
2871
2872 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2873 {
2874         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2875                 return;
2876
2877         vcpu->arch.st.steal.preempted = 1;
2878
2879         kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2880                         &vcpu->arch.st.steal.preempted,
2881                         offsetof(struct kvm_steal_time, preempted),
2882                         sizeof(vcpu->arch.st.steal.preempted));
2883 }
2884
2885 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2886 {
2887         int idx;
2888         /*
2889          * Disable page faults because we're in atomic context here.
2890          * kvm_write_guest_offset_cached() would call might_fault()
2891          * that relies on pagefault_disable() to tell if there's a
2892          * bug. NOTE: the write to guest memory may not go through if
2893          * during postcopy live migration or if there's heavy guest
2894          * paging.
2895          */
2896         pagefault_disable();
2897         /*
2898          * kvm_memslots() will be called by
2899          * kvm_write_guest_offset_cached() so take the srcu lock.
2900          */
2901         idx = srcu_read_lock(&vcpu->kvm->srcu);
2902         kvm_steal_time_set_preempted(vcpu);
2903         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2904         pagefault_enable();
2905         kvm_x86_ops->vcpu_put(vcpu);
2906         kvm_put_guest_fpu(vcpu);
2907         vcpu->arch.last_host_tsc = rdtsc();
2908 }
2909
2910 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2911                                     struct kvm_lapic_state *s)
2912 {
2913         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2914                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2915
2916         return kvm_apic_get_state(vcpu, s);
2917 }
2918
2919 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2920                                     struct kvm_lapic_state *s)
2921 {
2922         int r;
2923
2924         r = kvm_apic_set_state(vcpu, s);
2925         if (r)
2926                 return r;
2927         update_cr8_intercept(vcpu);
2928
2929         return 0;
2930 }
2931
2932 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2933 {
2934         return (!lapic_in_kernel(vcpu) ||
2935                 kvm_apic_accept_pic_intr(vcpu));
2936 }
2937
2938 /*
2939  * if userspace requested an interrupt window, check that the
2940  * interrupt window is open.
2941  *
2942  * No need to exit to userspace if we already have an interrupt queued.
2943  */
2944 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2945 {
2946         return kvm_arch_interrupt_allowed(vcpu) &&
2947                 !kvm_cpu_has_interrupt(vcpu) &&
2948                 !kvm_event_needs_reinjection(vcpu) &&
2949                 kvm_cpu_accept_dm_intr(vcpu);
2950 }
2951
2952 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2953                                     struct kvm_interrupt *irq)
2954 {
2955         if (irq->irq >= KVM_NR_INTERRUPTS)
2956                 return -EINVAL;
2957
2958         if (!irqchip_in_kernel(vcpu->kvm)) {
2959                 kvm_queue_interrupt(vcpu, irq->irq, false);
2960                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2961                 return 0;
2962         }
2963
2964         /*
2965          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2966          * fail for in-kernel 8259.
2967          */
2968         if (pic_in_kernel(vcpu->kvm))
2969                 return -ENXIO;
2970
2971         if (vcpu->arch.pending_external_vector != -1)
2972                 return -EEXIST;
2973
2974         vcpu->arch.pending_external_vector = irq->irq;
2975         kvm_make_request(KVM_REQ_EVENT, vcpu);
2976         return 0;
2977 }
2978
2979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2980 {
2981         kvm_inject_nmi(vcpu);
2982
2983         return 0;
2984 }
2985
2986 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2987 {
2988         kvm_make_request(KVM_REQ_SMI, vcpu);
2989
2990         return 0;
2991 }
2992
2993 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2994                                            struct kvm_tpr_access_ctl *tac)
2995 {
2996         if (tac->flags)
2997                 return -EINVAL;
2998         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2999         return 0;
3000 }
3001
3002 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3003                                         u64 mcg_cap)
3004 {
3005         int r;
3006         unsigned bank_num = mcg_cap & 0xff, bank;
3007
3008         r = -EINVAL;
3009         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3010                 goto out;
3011         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3012                 goto out;
3013         r = 0;
3014         vcpu->arch.mcg_cap = mcg_cap;
3015         /* Init IA32_MCG_CTL to all 1s */
3016         if (mcg_cap & MCG_CTL_P)
3017                 vcpu->arch.mcg_ctl = ~(u64)0;
3018         /* Init IA32_MCi_CTL to all 1s */
3019         for (bank = 0; bank < bank_num; bank++)
3020                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3021
3022         if (kvm_x86_ops->setup_mce)
3023                 kvm_x86_ops->setup_mce(vcpu);
3024 out:
3025         return r;
3026 }
3027
3028 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3029                                       struct kvm_x86_mce *mce)
3030 {
3031         u64 mcg_cap = vcpu->arch.mcg_cap;
3032         unsigned bank_num = mcg_cap & 0xff;
3033         u64 *banks = vcpu->arch.mce_banks;
3034
3035         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3036                 return -EINVAL;
3037         /*
3038          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3039          * reporting is disabled
3040          */
3041         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3042             vcpu->arch.mcg_ctl != ~(u64)0)
3043                 return 0;
3044         banks += 4 * mce->bank;
3045         /*
3046          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3047          * reporting is disabled for the bank
3048          */
3049         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3050                 return 0;
3051         if (mce->status & MCI_STATUS_UC) {
3052                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3053                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3054                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3055                         return 0;
3056                 }
3057                 if (banks[1] & MCI_STATUS_VAL)
3058                         mce->status |= MCI_STATUS_OVER;
3059                 banks[2] = mce->addr;
3060                 banks[3] = mce->misc;
3061                 vcpu->arch.mcg_status = mce->mcg_status;
3062                 banks[1] = mce->status;
3063                 kvm_queue_exception(vcpu, MC_VECTOR);
3064         } else if (!(banks[1] & MCI_STATUS_VAL)
3065                    || !(banks[1] & MCI_STATUS_UC)) {
3066                 if (banks[1] & MCI_STATUS_VAL)
3067                         mce->status |= MCI_STATUS_OVER;
3068                 banks[2] = mce->addr;
3069                 banks[3] = mce->misc;
3070                 banks[1] = mce->status;
3071         } else
3072                 banks[1] |= MCI_STATUS_OVER;
3073         return 0;
3074 }
3075
3076 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3077                                                struct kvm_vcpu_events *events)
3078 {
3079         process_nmi(vcpu);
3080         events->exception.injected =
3081                 vcpu->arch.exception.pending &&
3082                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3083         events->exception.nr = vcpu->arch.exception.nr;
3084         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3085         events->exception.pad = 0;
3086         events->exception.error_code = vcpu->arch.exception.error_code;
3087
3088         events->interrupt.injected =
3089                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3090         events->interrupt.nr = vcpu->arch.interrupt.nr;
3091         events->interrupt.soft = 0;
3092         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3093
3094         events->nmi.injected = vcpu->arch.nmi_injected;
3095         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3096         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3097         events->nmi.pad = 0;
3098
3099         events->sipi_vector = 0; /* never valid when reporting to user space */
3100
3101         events->smi.smm = is_smm(vcpu);
3102         events->smi.pending = vcpu->arch.smi_pending;
3103         events->smi.smm_inside_nmi =
3104                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3105         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3106
3107         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3108                          | KVM_VCPUEVENT_VALID_SHADOW
3109                          | KVM_VCPUEVENT_VALID_SMM);
3110         memset(&events->reserved, 0, sizeof(events->reserved));
3111 }
3112
3113 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3114
3115 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3116                                               struct kvm_vcpu_events *events)
3117 {
3118         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3119                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3120                               | KVM_VCPUEVENT_VALID_SHADOW
3121                               | KVM_VCPUEVENT_VALID_SMM))
3122                 return -EINVAL;
3123
3124         if (events->exception.injected &&
3125             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3126              is_guest_mode(vcpu)))
3127                 return -EINVAL;
3128
3129         /* INITs are latched while in SMM */
3130         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3131             (events->smi.smm || events->smi.pending) &&
3132             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3133                 return -EINVAL;
3134
3135         process_nmi(vcpu);
3136         vcpu->arch.exception.pending = events->exception.injected;
3137         vcpu->arch.exception.nr = events->exception.nr;
3138         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3139         vcpu->arch.exception.error_code = events->exception.error_code;
3140
3141         vcpu->arch.interrupt.pending = events->interrupt.injected;
3142         vcpu->arch.interrupt.nr = events->interrupt.nr;
3143         vcpu->arch.interrupt.soft = events->interrupt.soft;
3144         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3145                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3146                                                   events->interrupt.shadow);
3147
3148         vcpu->arch.nmi_injected = events->nmi.injected;
3149         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3150                 vcpu->arch.nmi_pending = events->nmi.pending;
3151         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3152
3153         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3154             lapic_in_kernel(vcpu))
3155                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3156
3157         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3158                 u32 hflags = vcpu->arch.hflags;
3159                 if (events->smi.smm)
3160                         hflags |= HF_SMM_MASK;
3161                 else
3162                         hflags &= ~HF_SMM_MASK;
3163                 kvm_set_hflags(vcpu, hflags);
3164
3165                 vcpu->arch.smi_pending = events->smi.pending;
3166                 if (events->smi.smm_inside_nmi)
3167                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3168                 else
3169                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3170                 if (lapic_in_kernel(vcpu)) {
3171                         if (events->smi.latched_init)
3172                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3173                         else
3174                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3175                 }
3176         }
3177
3178         kvm_make_request(KVM_REQ_EVENT, vcpu);
3179
3180         return 0;
3181 }
3182
3183 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3184                                              struct kvm_debugregs *dbgregs)
3185 {
3186         unsigned long val;
3187
3188         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3189         kvm_get_dr(vcpu, 6, &val);
3190         dbgregs->dr6 = val;
3191         dbgregs->dr7 = vcpu->arch.dr7;
3192         dbgregs->flags = 0;
3193         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3194 }
3195
3196 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3197                                             struct kvm_debugregs *dbgregs)
3198 {
3199         if (dbgregs->flags)
3200                 return -EINVAL;
3201
3202         if (dbgregs->dr6 & ~0xffffffffull)
3203                 return -EINVAL;
3204         if (dbgregs->dr7 & ~0xffffffffull)
3205                 return -EINVAL;
3206
3207         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3208         kvm_update_dr0123(vcpu);
3209         vcpu->arch.dr6 = dbgregs->dr6;
3210         kvm_update_dr6(vcpu);
3211         vcpu->arch.dr7 = dbgregs->dr7;
3212         kvm_update_dr7(vcpu);
3213
3214         return 0;
3215 }
3216
3217 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3218
3219 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3220 {
3221         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3222         u64 xstate_bv = xsave->header.xfeatures;
3223         u64 valid;
3224
3225         /*
3226          * Copy legacy XSAVE area, to avoid complications with CPUID
3227          * leaves 0 and 1 in the loop below.
3228          */
3229         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3230
3231         /* Set XSTATE_BV */
3232         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3233         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3234
3235         /*
3236          * Copy each region from the possibly compacted offset to the
3237          * non-compacted offset.
3238          */
3239         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3240         while (valid) {
3241                 u64 feature = valid & -valid;
3242                 int index = fls64(feature) - 1;
3243                 void *src = get_xsave_addr(xsave, feature);
3244
3245                 if (src) {
3246                         u32 size, offset, ecx, edx;
3247                         cpuid_count(XSTATE_CPUID, index,
3248                                     &size, &offset, &ecx, &edx);
3249                         memcpy(dest + offset, src, size);
3250                 }
3251
3252                 valid -= feature;
3253         }
3254 }
3255
3256 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3257 {
3258         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3259         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3260         u64 valid;
3261
3262         /*
3263          * Copy legacy XSAVE area, to avoid complications with CPUID
3264          * leaves 0 and 1 in the loop below.
3265          */
3266         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3267
3268         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3269         xsave->header.xfeatures = xstate_bv;
3270         if (boot_cpu_has(X86_FEATURE_XSAVES))
3271                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3272
3273         /*
3274          * Copy each region from the non-compacted offset to the
3275          * possibly compacted offset.
3276          */
3277         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3278         while (valid) {
3279                 u64 feature = valid & -valid;
3280                 int index = fls64(feature) - 1;
3281                 void *dest = get_xsave_addr(xsave, feature);
3282
3283                 if (dest) {
3284                         u32 size, offset, ecx, edx;
3285                         cpuid_count(XSTATE_CPUID, index,
3286                                     &size, &offset, &ecx, &edx);
3287                         memcpy(dest, src + offset, size);
3288                 }
3289
3290                 valid -= feature;
3291         }
3292 }
3293
3294 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3295                                          struct kvm_xsave *guest_xsave)
3296 {
3297         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3298                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3299                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3300         } else {
3301                 memcpy(guest_xsave->region,
3302                         &vcpu->arch.guest_fpu.state.fxsave,
3303                         sizeof(struct fxregs_state));
3304                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3305                         XFEATURE_MASK_FPSSE;
3306         }
3307 }
3308
3309 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3310                                         struct kvm_xsave *guest_xsave)
3311 {
3312         u64 xstate_bv =
3313                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3314
3315         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3316                 /*
3317                  * Here we allow setting states that are not present in
3318                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3319                  * with old userspace.
3320                  */
3321                 if (xstate_bv & ~kvm_supported_xcr0())
3322                         return -EINVAL;
3323                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3324         } else {
3325                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3326                         return -EINVAL;
3327                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3328                         guest_xsave->region, sizeof(struct fxregs_state));
3329         }
3330         return 0;
3331 }
3332
3333 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3334                                         struct kvm_xcrs *guest_xcrs)
3335 {
3336         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3337                 guest_xcrs->nr_xcrs = 0;
3338                 return;
3339         }
3340
3341         guest_xcrs->nr_xcrs = 1;
3342         guest_xcrs->flags = 0;
3343         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3344         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3345 }
3346
3347 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3348                                        struct kvm_xcrs *guest_xcrs)
3349 {
3350         int i, r = 0;
3351
3352         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3353                 return -EINVAL;
3354
3355         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3356                 return -EINVAL;
3357
3358         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3359                 /* Only support XCR0 currently */
3360                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3361                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3362                                 guest_xcrs->xcrs[i].value);
3363                         break;
3364                 }
3365         if (r)
3366                 r = -EINVAL;
3367         return r;
3368 }
3369
3370 /*
3371  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3372  * stopped by the hypervisor.  This function will be called from the host only.
3373  * EINVAL is returned when the host attempts to set the flag for a guest that
3374  * does not support pv clocks.
3375  */
3376 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3377 {
3378         if (!vcpu->arch.pv_time_enabled)
3379                 return -EINVAL;
3380         vcpu->arch.pvclock_set_guest_stopped_request = true;
3381         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3382         return 0;
3383 }
3384
3385 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3386                                      struct kvm_enable_cap *cap)
3387 {
3388         if (cap->flags)
3389                 return -EINVAL;
3390
3391         switch (cap->cap) {
3392         case KVM_CAP_HYPERV_SYNIC:
3393                 if (!irqchip_in_kernel(vcpu->kvm))
3394                         return -EINVAL;
3395                 return kvm_hv_activate_synic(vcpu);
3396         default:
3397                 return -EINVAL;
3398         }
3399 }
3400
3401 long kvm_arch_vcpu_ioctl(struct file *filp,
3402                          unsigned int ioctl, unsigned long arg)
3403 {
3404         struct kvm_vcpu *vcpu = filp->private_data;
3405         void __user *argp = (void __user *)arg;
3406         int r;
3407         union {
3408                 struct kvm_lapic_state *lapic;
3409                 struct kvm_xsave *xsave;
3410                 struct kvm_xcrs *xcrs;
3411                 void *buffer;
3412         } u;
3413
3414         u.buffer = NULL;
3415         switch (ioctl) {
3416         case KVM_GET_LAPIC: {
3417                 r = -EINVAL;
3418                 if (!lapic_in_kernel(vcpu))
3419                         goto out;
3420                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3421
3422                 r = -ENOMEM;
3423                 if (!u.lapic)
3424                         goto out;
3425                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3426                 if (r)
3427                         goto out;
3428                 r = -EFAULT;
3429                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3430                         goto out;
3431                 r = 0;
3432                 break;
3433         }
3434         case KVM_SET_LAPIC: {
3435                 r = -EINVAL;
3436                 if (!lapic_in_kernel(vcpu))
3437                         goto out;
3438                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3439                 if (IS_ERR(u.lapic))
3440                         return PTR_ERR(u.lapic);
3441
3442                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3443                 break;
3444         }
3445         case KVM_INTERRUPT: {
3446                 struct kvm_interrupt irq;
3447
3448                 r = -EFAULT;
3449                 if (copy_from_user(&irq, argp, sizeof irq))
3450                         goto out;
3451                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3452                 break;
3453         }
3454         case KVM_NMI: {
3455                 r = kvm_vcpu_ioctl_nmi(vcpu);
3456                 break;
3457         }
3458         case KVM_SMI: {
3459                 r = kvm_vcpu_ioctl_smi(vcpu);
3460                 break;
3461         }
3462         case KVM_SET_CPUID: {
3463                 struct kvm_cpuid __user *cpuid_arg = argp;
3464                 struct kvm_cpuid cpuid;
3465
3466                 r = -EFAULT;
3467                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3468                         goto out;
3469                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3470                 break;
3471         }
3472         case KVM_SET_CPUID2: {
3473                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3474                 struct kvm_cpuid2 cpuid;
3475
3476                 r = -EFAULT;
3477                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3478                         goto out;
3479                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3480                                               cpuid_arg->entries);
3481                 break;
3482         }
3483         case KVM_GET_CPUID2: {
3484                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3485                 struct kvm_cpuid2 cpuid;
3486
3487                 r = -EFAULT;
3488                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3489                         goto out;
3490                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3491                                               cpuid_arg->entries);
3492                 if (r)
3493                         goto out;
3494                 r = -EFAULT;
3495                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3496                         goto out;
3497                 r = 0;
3498                 break;
3499         }
3500         case KVM_GET_MSRS:
3501                 r = msr_io(vcpu, argp, do_get_msr, 1);
3502                 break;
3503         case KVM_SET_MSRS:
3504                 r = msr_io(vcpu, argp, do_set_msr, 0);
3505                 break;
3506         case KVM_TPR_ACCESS_REPORTING: {
3507                 struct kvm_tpr_access_ctl tac;
3508
3509                 r = -EFAULT;
3510                 if (copy_from_user(&tac, argp, sizeof tac))
3511                         goto out;
3512                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3513                 if (r)
3514                         goto out;
3515                 r = -EFAULT;
3516                 if (copy_to_user(argp, &tac, sizeof tac))
3517                         goto out;
3518                 r = 0;
3519                 break;
3520         };
3521         case KVM_SET_VAPIC_ADDR: {
3522                 struct kvm_vapic_addr va;
3523                 int idx;
3524
3525                 r = -EINVAL;
3526                 if (!lapic_in_kernel(vcpu))
3527                         goto out;
3528                 r = -EFAULT;
3529                 if (copy_from_user(&va, argp, sizeof va))
3530                         goto out;
3531                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3532                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3533                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3534                 break;
3535         }
3536         case KVM_X86_SETUP_MCE: {
3537                 u64 mcg_cap;
3538
3539                 r = -EFAULT;
3540                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3541                         goto out;
3542                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3543                 break;
3544         }
3545         case KVM_X86_SET_MCE: {
3546                 struct kvm_x86_mce mce;
3547
3548                 r = -EFAULT;
3549                 if (copy_from_user(&mce, argp, sizeof mce))
3550                         goto out;
3551                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3552                 break;
3553         }
3554         case KVM_GET_VCPU_EVENTS: {
3555                 struct kvm_vcpu_events events;
3556
3557                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3558
3559                 r = -EFAULT;
3560                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3561                         break;
3562                 r = 0;
3563                 break;
3564         }
3565         case KVM_SET_VCPU_EVENTS: {
3566                 struct kvm_vcpu_events events;
3567
3568                 r = -EFAULT;
3569                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3570                         break;
3571
3572                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3573                 break;
3574         }
3575         case KVM_GET_DEBUGREGS: {
3576                 struct kvm_debugregs dbgregs;
3577
3578                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3579
3580                 r = -EFAULT;
3581                 if (copy_to_user(argp, &dbgregs,
3582                                  sizeof(struct kvm_debugregs)))
3583                         break;
3584                 r = 0;
3585                 break;
3586         }
3587         case KVM_SET_DEBUGREGS: {
3588                 struct kvm_debugregs dbgregs;
3589
3590                 r = -EFAULT;
3591                 if (copy_from_user(&dbgregs, argp,
3592                                    sizeof(struct kvm_debugregs)))
3593                         break;
3594
3595                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3596                 break;
3597         }
3598         case KVM_GET_XSAVE: {
3599                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3600                 r = -ENOMEM;
3601                 if (!u.xsave)
3602                         break;
3603
3604                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3605
3606                 r = -EFAULT;
3607                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3608                         break;
3609                 r = 0;
3610                 break;
3611         }
3612         case KVM_SET_XSAVE: {
3613                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3614                 if (IS_ERR(u.xsave))
3615                         return PTR_ERR(u.xsave);
3616
3617                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3618                 break;
3619         }
3620         case KVM_GET_XCRS: {
3621                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3622                 r = -ENOMEM;
3623                 if (!u.xcrs)
3624                         break;
3625
3626                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3627
3628                 r = -EFAULT;
3629                 if (copy_to_user(argp, u.xcrs,
3630                                  sizeof(struct kvm_xcrs)))
3631                         break;
3632                 r = 0;
3633                 break;
3634         }
3635         case KVM_SET_XCRS: {
3636                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3637                 if (IS_ERR(u.xcrs))
3638                         return PTR_ERR(u.xcrs);
3639
3640                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3641                 break;
3642         }
3643         case KVM_SET_TSC_KHZ: {
3644                 u32 user_tsc_khz;
3645
3646                 r = -EINVAL;
3647                 user_tsc_khz = (u32)arg;
3648
3649                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3650                         goto out;
3651
3652                 if (user_tsc_khz == 0)
3653                         user_tsc_khz = tsc_khz;
3654
3655                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3656                         r = 0;
3657
3658                 goto out;
3659         }
3660         case KVM_GET_TSC_KHZ: {
3661                 r = vcpu->arch.virtual_tsc_khz;
3662                 goto out;
3663         }
3664         case KVM_KVMCLOCK_CTRL: {
3665                 r = kvm_set_guest_paused(vcpu);
3666                 goto out;
3667         }
3668         case KVM_ENABLE_CAP: {
3669                 struct kvm_enable_cap cap;
3670
3671                 r = -EFAULT;
3672                 if (copy_from_user(&cap, argp, sizeof(cap)))
3673                         goto out;
3674                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3675                 break;
3676         }
3677         default:
3678                 r = -EINVAL;
3679         }
3680 out:
3681         kfree(u.buffer);
3682         return r;
3683 }
3684
3685 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3686 {
3687         return VM_FAULT_SIGBUS;
3688 }
3689
3690 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3691 {
3692         int ret;
3693
3694         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3695                 return -EINVAL;
3696         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3697         return ret;
3698 }
3699
3700 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3701                                               u64 ident_addr)
3702 {
3703         kvm->arch.ept_identity_map_addr = ident_addr;
3704         return 0;
3705 }
3706
3707 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3708                                           u32 kvm_nr_mmu_pages)
3709 {
3710         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3711                 return -EINVAL;
3712
3713         mutex_lock(&kvm->slots_lock);
3714
3715         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3716         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3717
3718         mutex_unlock(&kvm->slots_lock);
3719         return 0;
3720 }
3721
3722 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3723 {
3724         return kvm->arch.n_max_mmu_pages;
3725 }
3726
3727 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3728 {
3729         struct kvm_pic *pic = kvm->arch.vpic;
3730         int r;
3731
3732         r = 0;
3733         switch (chip->chip_id) {
3734         case KVM_IRQCHIP_PIC_MASTER:
3735                 memcpy(&chip->chip.pic, &pic->pics[0],
3736                         sizeof(struct kvm_pic_state));
3737                 break;
3738         case KVM_IRQCHIP_PIC_SLAVE:
3739                 memcpy(&chip->chip.pic, &pic->pics[1],
3740                         sizeof(struct kvm_pic_state));
3741                 break;
3742         case KVM_IRQCHIP_IOAPIC:
3743                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3744                 break;
3745         default:
3746                 r = -EINVAL;
3747                 break;
3748         }
3749         return r;
3750 }
3751
3752 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3753 {
3754         struct kvm_pic *pic = kvm->arch.vpic;
3755         int r;
3756
3757         r = 0;
3758         switch (chip->chip_id) {
3759         case KVM_IRQCHIP_PIC_MASTER:
3760                 spin_lock(&pic->lock);
3761                 memcpy(&pic->pics[0], &chip->chip.pic,
3762                         sizeof(struct kvm_pic_state));
3763                 spin_unlock(&pic->lock);
3764                 break;
3765         case KVM_IRQCHIP_PIC_SLAVE:
3766                 spin_lock(&pic->lock);
3767                 memcpy(&pic->pics[1], &chip->chip.pic,
3768                         sizeof(struct kvm_pic_state));
3769                 spin_unlock(&pic->lock);
3770                 break;
3771         case KVM_IRQCHIP_IOAPIC:
3772                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3773                 break;
3774         default:
3775                 r = -EINVAL;
3776                 break;
3777         }
3778         kvm_pic_update_irq(pic);
3779         return r;
3780 }
3781
3782 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3783 {
3784         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3785
3786         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3787
3788         mutex_lock(&kps->lock);
3789         memcpy(ps, &kps->channels, sizeof(*ps));
3790         mutex_unlock(&kps->lock);
3791         return 0;
3792 }
3793
3794 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3795 {
3796         int i;
3797         struct kvm_pit *pit = kvm->arch.vpit;
3798
3799         mutex_lock(&pit->pit_state.lock);
3800         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3801         for (i = 0; i < 3; i++)
3802                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3803         mutex_unlock(&pit->pit_state.lock);
3804         return 0;
3805 }
3806
3807 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3808 {
3809         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3810         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3811                 sizeof(ps->channels));
3812         ps->flags = kvm->arch.vpit->pit_state.flags;
3813         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3814         memset(&ps->reserved, 0, sizeof(ps->reserved));
3815         return 0;
3816 }
3817
3818 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3819 {
3820         int start = 0;
3821         int i;
3822         u32 prev_legacy, cur_legacy;
3823         struct kvm_pit *pit = kvm->arch.vpit;
3824
3825         mutex_lock(&pit->pit_state.lock);
3826         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3827         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3828         if (!prev_legacy && cur_legacy)
3829                 start = 1;
3830         memcpy(&pit->pit_state.channels, &ps->channels,
3831                sizeof(pit->pit_state.channels));
3832         pit->pit_state.flags = ps->flags;
3833         for (i = 0; i < 3; i++)
3834                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3835                                    start && i == 0);
3836         mutex_unlock(&pit->pit_state.lock);
3837         return 0;
3838 }
3839
3840 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3841                                  struct kvm_reinject_control *control)
3842 {
3843         struct kvm_pit *pit = kvm->arch.vpit;
3844
3845         if (!pit)
3846                 return -ENXIO;
3847
3848         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3849          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3850          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3851          */
3852         mutex_lock(&pit->pit_state.lock);
3853         kvm_pit_set_reinject(pit, control->pit_reinject);
3854         mutex_unlock(&pit->pit_state.lock);
3855
3856         return 0;
3857 }
3858
3859 /**
3860  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3861  * @kvm: kvm instance
3862  * @log: slot id and address to which we copy the log
3863  *
3864  * Steps 1-4 below provide general overview of dirty page logging. See
3865  * kvm_get_dirty_log_protect() function description for additional details.
3866  *
3867  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3868  * always flush the TLB (step 4) even if previous step failed  and the dirty
3869  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3870  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3871  * writes will be marked dirty for next log read.
3872  *
3873  *   1. Take a snapshot of the bit and clear it if needed.
3874  *   2. Write protect the corresponding page.
3875  *   3. Copy the snapshot to the userspace.
3876  *   4. Flush TLB's if needed.
3877  */
3878 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3879 {
3880         bool is_dirty = false;
3881         int r;
3882
3883         mutex_lock(&kvm->slots_lock);
3884
3885         /*
3886          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3887          */
3888         if (kvm_x86_ops->flush_log_dirty)
3889                 kvm_x86_ops->flush_log_dirty(kvm);
3890
3891         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3892
3893         /*
3894          * All the TLBs can be flushed out of mmu lock, see the comments in
3895          * kvm_mmu_slot_remove_write_access().
3896          */
3897         lockdep_assert_held(&kvm->slots_lock);
3898         if (is_dirty)
3899                 kvm_flush_remote_tlbs(kvm);
3900
3901         mutex_unlock(&kvm->slots_lock);
3902         return r;
3903 }
3904
3905 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3906                         bool line_status)
3907 {
3908         if (!irqchip_in_kernel(kvm))
3909                 return -ENXIO;
3910
3911         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3912                                         irq_event->irq, irq_event->level,
3913                                         line_status);
3914         return 0;
3915 }
3916
3917 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3918                                    struct kvm_enable_cap *cap)
3919 {
3920         int r;
3921
3922         if (cap->flags)
3923                 return -EINVAL;
3924
3925         switch (cap->cap) {
3926         case KVM_CAP_DISABLE_QUIRKS:
3927                 kvm->arch.disabled_quirks = cap->args[0];
3928                 r = 0;
3929                 break;
3930         case KVM_CAP_SPLIT_IRQCHIP: {
3931                 mutex_lock(&kvm->lock);
3932                 r = -EINVAL;
3933                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3934                         goto split_irqchip_unlock;
3935                 r = -EEXIST;
3936                 if (irqchip_in_kernel(kvm))
3937                         goto split_irqchip_unlock;
3938                 if (kvm->created_vcpus)
3939                         goto split_irqchip_unlock;
3940                 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
3941                 r = kvm_setup_empty_irq_routing(kvm);
3942                 if (r) {
3943                         kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
3944                         /* Pairs with smp_rmb() when reading irqchip_mode */
3945                         smp_wmb();
3946                         goto split_irqchip_unlock;
3947                 }
3948                 /* Pairs with irqchip_in_kernel. */
3949                 smp_wmb();
3950                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3951                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3952                 r = 0;
3953 split_irqchip_unlock:
3954                 mutex_unlock(&kvm->lock);
3955                 break;
3956         }
3957         case KVM_CAP_X2APIC_API:
3958                 r = -EINVAL;
3959                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3960                         break;
3961
3962                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3963                         kvm->arch.x2apic_format = true;
3964                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3965                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3966
3967                 r = 0;
3968                 break;
3969         default:
3970                 r = -EINVAL;
3971                 break;
3972         }
3973         return r;
3974 }
3975
3976 long kvm_arch_vm_ioctl(struct file *filp,
3977                        unsigned int ioctl, unsigned long arg)
3978 {
3979         struct kvm *kvm = filp->private_data;
3980         void __user *argp = (void __user *)arg;
3981         int r = -ENOTTY;
3982         /*
3983          * This union makes it completely explicit to gcc-3.x
3984          * that these two variables' stack usage should be
3985          * combined, not added together.
3986          */
3987         union {
3988                 struct kvm_pit_state ps;
3989                 struct kvm_pit_state2 ps2;
3990                 struct kvm_pit_config pit_config;
3991         } u;
3992
3993         switch (ioctl) {
3994         case KVM_SET_TSS_ADDR:
3995                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3996                 break;
3997         case KVM_SET_IDENTITY_MAP_ADDR: {
3998                 u64 ident_addr;
3999
4000                 r = -EFAULT;
4001                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4002                         goto out;
4003                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4004                 break;
4005         }
4006         case KVM_SET_NR_MMU_PAGES:
4007                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4008                 break;
4009         case KVM_GET_NR_MMU_PAGES:
4010                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4011                 break;
4012         case KVM_CREATE_IRQCHIP: {
4013                 mutex_lock(&kvm->lock);
4014
4015                 r = -EEXIST;
4016                 if (irqchip_in_kernel(kvm))
4017                         goto create_irqchip_unlock;
4018
4019                 r = -EINVAL;
4020                 if (kvm->created_vcpus)
4021                         goto create_irqchip_unlock;
4022
4023                 r = kvm_pic_init(kvm);
4024                 if (r)
4025                         goto create_irqchip_unlock;
4026
4027                 r = kvm_ioapic_init(kvm);
4028                 if (r) {
4029                         kvm_pic_destroy(kvm);
4030                         goto create_irqchip_unlock;
4031                 }
4032
4033                 kvm->arch.irqchip_mode = KVM_IRQCHIP_INIT_IN_PROGRESS;
4034                 r = kvm_setup_default_irq_routing(kvm);
4035                 if (r) {
4036                         kvm->arch.irqchip_mode = KVM_IRQCHIP_NONE;
4037                         /* Pairs with smp_rmb() when reading irqchip_mode */
4038                         smp_wmb();
4039                         kvm_ioapic_destroy(kvm);
4040                         kvm_pic_destroy(kvm);
4041                         goto create_irqchip_unlock;
4042                 }
4043                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4044                 smp_wmb();
4045                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4046         create_irqchip_unlock:
4047                 mutex_unlock(&kvm->lock);
4048                 break;
4049         }
4050         case KVM_CREATE_PIT:
4051                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4052                 goto create_pit;
4053         case KVM_CREATE_PIT2:
4054                 r = -EFAULT;
4055                 if (copy_from_user(&u.pit_config, argp,
4056                                    sizeof(struct kvm_pit_config)))
4057                         goto out;
4058         create_pit:
4059                 mutex_lock(&kvm->lock);
4060                 r = -EEXIST;
4061                 if (kvm->arch.vpit)
4062                         goto create_pit_unlock;
4063                 r = -ENOMEM;
4064                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4065                 if (kvm->arch.vpit)
4066                         r = 0;
4067         create_pit_unlock:
4068                 mutex_unlock(&kvm->lock);
4069                 break;
4070         case KVM_GET_IRQCHIP: {
4071                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4072                 struct kvm_irqchip *chip;
4073
4074                 chip = memdup_user(argp, sizeof(*chip));
4075                 if (IS_ERR(chip)) {
4076                         r = PTR_ERR(chip);
4077                         goto out;
4078                 }
4079
4080                 r = -ENXIO;
4081                 if (!irqchip_kernel(kvm))
4082                         goto get_irqchip_out;
4083                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4084                 if (r)
4085                         goto get_irqchip_out;
4086                 r = -EFAULT;
4087                 if (copy_to_user(argp, chip, sizeof *chip))
4088                         goto get_irqchip_out;
4089                 r = 0;
4090         get_irqchip_out:
4091                 kfree(chip);
4092                 break;
4093         }
4094         case KVM_SET_IRQCHIP: {
4095                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4096                 struct kvm_irqchip *chip;
4097
4098                 chip = memdup_user(argp, sizeof(*chip));
4099                 if (IS_ERR(chip)) {
4100                         r = PTR_ERR(chip);
4101                         goto out;
4102                 }
4103
4104                 r = -ENXIO;
4105                 if (!irqchip_kernel(kvm))
4106                         goto set_irqchip_out;
4107                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4108                 if (r)
4109                         goto set_irqchip_out;
4110                 r = 0;
4111         set_irqchip_out:
4112                 kfree(chip);
4113                 break;
4114         }
4115         case KVM_GET_PIT: {
4116                 r = -EFAULT;
4117                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4118                         goto out;
4119                 r = -ENXIO;
4120                 if (!kvm->arch.vpit)
4121                         goto out;
4122                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4123                 if (r)
4124                         goto out;
4125                 r = -EFAULT;
4126                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4127                         goto out;
4128                 r = 0;
4129                 break;
4130         }
4131         case KVM_SET_PIT: {
4132                 r = -EFAULT;
4133                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4134                         goto out;
4135                 r = -ENXIO;
4136                 if (!kvm->arch.vpit)
4137                         goto out;
4138                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4139                 break;
4140         }
4141         case KVM_GET_PIT2: {
4142                 r = -ENXIO;
4143                 if (!kvm->arch.vpit)
4144                         goto out;
4145                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4146                 if (r)
4147                         goto out;
4148                 r = -EFAULT;
4149                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4150                         goto out;
4151                 r = 0;
4152                 break;
4153         }
4154         case KVM_SET_PIT2: {
4155                 r = -EFAULT;
4156                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4157                         goto out;
4158                 r = -ENXIO;
4159                 if (!kvm->arch.vpit)
4160                         goto out;
4161                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4162                 break;
4163         }
4164         case KVM_REINJECT_CONTROL: {
4165                 struct kvm_reinject_control control;
4166                 r =  -EFAULT;
4167                 if (copy_from_user(&control, argp, sizeof(control)))
4168                         goto out;
4169                 r = kvm_vm_ioctl_reinject(kvm, &control);
4170                 break;
4171         }
4172         case KVM_SET_BOOT_CPU_ID:
4173                 r = 0;
4174                 mutex_lock(&kvm->lock);
4175                 if (kvm->created_vcpus)
4176                         r = -EBUSY;
4177                 else
4178                         kvm->arch.bsp_vcpu_id = arg;
4179                 mutex_unlock(&kvm->lock);
4180                 break;
4181         case KVM_XEN_HVM_CONFIG: {
4182                 r = -EFAULT;
4183                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4184                                    sizeof(struct kvm_xen_hvm_config)))
4185                         goto out;
4186                 r = -EINVAL;
4187                 if (kvm->arch.xen_hvm_config.flags)
4188                         goto out;
4189                 r = 0;
4190                 break;
4191         }
4192         case KVM_SET_CLOCK: {
4193                 struct kvm_clock_data user_ns;
4194                 u64 now_ns;
4195
4196                 r = -EFAULT;
4197                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4198                         goto out;
4199
4200                 r = -EINVAL;
4201                 if (user_ns.flags)
4202                         goto out;
4203
4204                 r = 0;
4205                 local_irq_disable();
4206                 now_ns = __get_kvmclock_ns(kvm);
4207                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4208                 local_irq_enable();
4209                 kvm_gen_update_masterclock(kvm);
4210                 break;
4211         }
4212         case KVM_GET_CLOCK: {
4213                 struct kvm_clock_data user_ns;
4214                 u64 now_ns;
4215
4216                 local_irq_disable();
4217                 now_ns = __get_kvmclock_ns(kvm);
4218                 user_ns.clock = now_ns;
4219                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4220                 local_irq_enable();
4221                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4222
4223                 r = -EFAULT;
4224                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4225                         goto out;
4226                 r = 0;
4227                 break;
4228         }
4229         case KVM_ENABLE_CAP: {
4230                 struct kvm_enable_cap cap;
4231
4232                 r = -EFAULT;
4233                 if (copy_from_user(&cap, argp, sizeof(cap)))
4234                         goto out;
4235                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4236                 break;
4237         }
4238         default:
4239                 r = -ENOTTY;
4240         }
4241 out:
4242         return r;
4243 }
4244
4245 static void kvm_init_msr_list(void)
4246 {
4247         u32 dummy[2];
4248         unsigned i, j;
4249
4250         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4251                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4252                         continue;
4253
4254                 /*
4255                  * Even MSRs that are valid in the host may not be exposed
4256                  * to the guests in some cases.
4257                  */
4258                 switch (msrs_to_save[i]) {
4259                 case MSR_IA32_BNDCFGS:
4260                         if (!kvm_x86_ops->mpx_supported())
4261                                 continue;
4262                         break;
4263                 case MSR_TSC_AUX:
4264                         if (!kvm_x86_ops->rdtscp_supported())
4265                                 continue;
4266                         break;
4267                 default:
4268                         break;
4269                 }
4270
4271                 if (j < i)
4272                         msrs_to_save[j] = msrs_to_save[i];
4273                 j++;
4274         }
4275         num_msrs_to_save = j;
4276
4277         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4278                 switch (emulated_msrs[i]) {
4279                 case MSR_IA32_SMBASE:
4280                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4281                                 continue;
4282                         break;
4283                 default:
4284                         break;
4285                 }
4286
4287                 if (j < i)
4288                         emulated_msrs[j] = emulated_msrs[i];
4289                 j++;
4290         }
4291         num_emulated_msrs = j;
4292 }
4293
4294 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4295                            const void *v)
4296 {
4297         int handled = 0;
4298         int n;
4299
4300         do {
4301                 n = min(len, 8);
4302                 if (!(lapic_in_kernel(vcpu) &&
4303                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4304                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4305                         break;
4306                 handled += n;
4307                 addr += n;
4308                 len -= n;
4309                 v += n;
4310         } while (len);
4311
4312         return handled;
4313 }
4314
4315 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4316 {
4317         int handled = 0;
4318         int n;
4319
4320         do {
4321                 n = min(len, 8);
4322                 if (!(lapic_in_kernel(vcpu) &&
4323                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4324                                          addr, n, v))
4325                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4326                         break;
4327                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4328                 handled += n;
4329                 addr += n;
4330                 len -= n;
4331                 v += n;
4332         } while (len);
4333
4334         return handled;
4335 }
4336
4337 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4338                         struct kvm_segment *var, int seg)
4339 {
4340         kvm_x86_ops->set_segment(vcpu, var, seg);
4341 }
4342
4343 void kvm_get_segment(struct kvm_vcpu *vcpu,
4344                      struct kvm_segment *var, int seg)
4345 {
4346         kvm_x86_ops->get_segment(vcpu, var, seg);
4347 }
4348
4349 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4350                            struct x86_exception *exception)
4351 {
4352         gpa_t t_gpa;
4353
4354         BUG_ON(!mmu_is_nested(vcpu));
4355
4356         /* NPT walks are always user-walks */
4357         access |= PFERR_USER_MASK;
4358         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4359
4360         return t_gpa;
4361 }
4362
4363 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4364                               struct x86_exception *exception)
4365 {
4366         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4367         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4368 }
4369
4370  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4371                                 struct x86_exception *exception)
4372 {
4373         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4374         access |= PFERR_FETCH_MASK;
4375         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4376 }
4377
4378 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4379                                struct x86_exception *exception)
4380 {
4381         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4382         access |= PFERR_WRITE_MASK;
4383         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4384 }
4385
4386 /* uses this to access any guest's mapped memory without checking CPL */
4387 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4388                                 struct x86_exception *exception)
4389 {
4390         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4391 }
4392
4393 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4394                                       struct kvm_vcpu *vcpu, u32 access,
4395                                       struct x86_exception *exception)
4396 {
4397         void *data = val;
4398         int r = X86EMUL_CONTINUE;
4399
4400         while (bytes) {
4401                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4402                                                             exception);
4403                 unsigned offset = addr & (PAGE_SIZE-1);
4404                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4405                 int ret;
4406
4407                 if (gpa == UNMAPPED_GVA)
4408                         return X86EMUL_PROPAGATE_FAULT;
4409                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4410                                                offset, toread);
4411                 if (ret < 0) {
4412                         r = X86EMUL_IO_NEEDED;
4413                         goto out;
4414                 }
4415
4416                 bytes -= toread;
4417                 data += toread;
4418                 addr += toread;
4419         }
4420 out:
4421         return r;
4422 }
4423
4424 /* used for instruction fetching */
4425 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4426                                 gva_t addr, void *val, unsigned int bytes,
4427                                 struct x86_exception *exception)
4428 {
4429         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4430         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4431         unsigned offset;
4432         int ret;
4433
4434         /* Inline kvm_read_guest_virt_helper for speed.  */
4435         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4436                                                     exception);
4437         if (unlikely(gpa == UNMAPPED_GVA))
4438                 return X86EMUL_PROPAGATE_FAULT;
4439
4440         offset = addr & (PAGE_SIZE-1);
4441         if (WARN_ON(offset + bytes > PAGE_SIZE))
4442                 bytes = (unsigned)PAGE_SIZE - offset;
4443         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4444                                        offset, bytes);
4445         if (unlikely(ret < 0))
4446                 return X86EMUL_IO_NEEDED;
4447
4448         return X86EMUL_CONTINUE;
4449 }
4450
4451 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4452                                gva_t addr, void *val, unsigned int bytes,
4453                                struct x86_exception *exception)
4454 {
4455         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4456         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4457
4458         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4459                                           exception);
4460 }
4461 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4462
4463 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4464                                       gva_t addr, void *val, unsigned int bytes,
4465                                       struct x86_exception *exception)
4466 {
4467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4468         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4469 }
4470
4471 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4472                 unsigned long addr, void *val, unsigned int bytes)
4473 {
4474         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4475         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4476
4477         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4478 }
4479
4480 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4481                                        gva_t addr, void *val,
4482                                        unsigned int bytes,
4483                                        struct x86_exception *exception)
4484 {
4485         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4486         void *data = val;
4487         int r = X86EMUL_CONTINUE;
4488
4489         while (bytes) {
4490                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4491                                                              PFERR_WRITE_MASK,
4492                                                              exception);
4493                 unsigned offset = addr & (PAGE_SIZE-1);
4494                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4495                 int ret;
4496
4497                 if (gpa == UNMAPPED_GVA)
4498                         return X86EMUL_PROPAGATE_FAULT;
4499                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4500                 if (ret < 0) {
4501                         r = X86EMUL_IO_NEEDED;
4502                         goto out;
4503                 }
4504
4505                 bytes -= towrite;
4506                 data += towrite;
4507                 addr += towrite;
4508         }
4509 out:
4510         return r;
4511 }
4512 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4513
4514 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4515                             gpa_t gpa, bool write)
4516 {
4517         /* For APIC access vmexit */
4518         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4519                 return 1;
4520
4521         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4522                 trace_vcpu_match_mmio(gva, gpa, write, true);
4523                 return 1;
4524         }
4525
4526         return 0;
4527 }
4528
4529 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4530                                 gpa_t *gpa, struct x86_exception *exception,
4531                                 bool write)
4532 {
4533         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4534                 | (write ? PFERR_WRITE_MASK : 0);
4535
4536         /*
4537          * currently PKRU is only applied to ept enabled guest so
4538          * there is no pkey in EPT page table for L1 guest or EPT
4539          * shadow page table for L2 guest.
4540          */
4541         if (vcpu_match_mmio_gva(vcpu, gva)
4542             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4543                                  vcpu->arch.access, 0, access)) {
4544                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4545                                         (gva & (PAGE_SIZE - 1));
4546                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4547                 return 1;
4548         }
4549
4550         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4551
4552         if (*gpa == UNMAPPED_GVA)
4553                 return -1;
4554
4555         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4556 }
4557
4558 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4559                         const void *val, int bytes)
4560 {
4561         int ret;
4562
4563         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4564         if (ret < 0)
4565                 return 0;
4566         kvm_page_track_write(vcpu, gpa, val, bytes);
4567         return 1;
4568 }
4569
4570 struct read_write_emulator_ops {
4571         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4572                                   int bytes);
4573         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4574                                   void *val, int bytes);
4575         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4576                                int bytes, void *val);
4577         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4578                                     void *val, int bytes);
4579         bool write;
4580 };
4581
4582 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4583 {
4584         if (vcpu->mmio_read_completed) {
4585                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4586                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4587                 vcpu->mmio_read_completed = 0;
4588                 return 1;
4589         }
4590
4591         return 0;
4592 }
4593
4594 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4595                         void *val, int bytes)
4596 {
4597         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4598 }
4599
4600 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4601                          void *val, int bytes)
4602 {
4603         return emulator_write_phys(vcpu, gpa, val, bytes);
4604 }
4605
4606 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4607 {
4608         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4609         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4610 }
4611
4612 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4613                           void *val, int bytes)
4614 {
4615         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4616         return X86EMUL_IO_NEEDED;
4617 }
4618
4619 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4620                            void *val, int bytes)
4621 {
4622         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4623
4624         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4625         return X86EMUL_CONTINUE;
4626 }
4627
4628 static const struct read_write_emulator_ops read_emultor = {
4629         .read_write_prepare = read_prepare,
4630         .read_write_emulate = read_emulate,
4631         .read_write_mmio = vcpu_mmio_read,
4632         .read_write_exit_mmio = read_exit_mmio,
4633 };
4634
4635 static const struct read_write_emulator_ops write_emultor = {
4636         .read_write_emulate = write_emulate,
4637         .read_write_mmio = write_mmio,
4638         .read_write_exit_mmio = write_exit_mmio,
4639         .write = true,
4640 };
4641
4642 static int emulator_read_write_onepage(unsigned long addr, void *val,
4643                                        unsigned int bytes,
4644                                        struct x86_exception *exception,
4645                                        struct kvm_vcpu *vcpu,
4646                                        const struct read_write_emulator_ops *ops)
4647 {
4648         gpa_t gpa;
4649         int handled, ret;
4650         bool write = ops->write;
4651         struct kvm_mmio_fragment *frag;
4652         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4653
4654         /*
4655          * If the exit was due to a NPF we may already have a GPA.
4656          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4657          * Note, this cannot be used on string operations since string
4658          * operation using rep will only have the initial GPA from the NPF
4659          * occurred.
4660          */
4661         if (vcpu->arch.gpa_available &&
4662             emulator_can_use_gpa(ctxt) &&
4663             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4664             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4665                 gpa = exception->address;
4666                 goto mmio;
4667         }
4668
4669         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4670
4671         if (ret < 0)
4672                 return X86EMUL_PROPAGATE_FAULT;
4673
4674         /* For APIC access vmexit */
4675         if (ret)
4676                 goto mmio;
4677
4678         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4679                 return X86EMUL_CONTINUE;
4680
4681 mmio:
4682         /*
4683          * Is this MMIO handled locally?
4684          */
4685         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4686         if (handled == bytes)
4687                 return X86EMUL_CONTINUE;
4688
4689         gpa += handled;
4690         bytes -= handled;
4691         val += handled;
4692
4693         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4694         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4695         frag->gpa = gpa;
4696         frag->data = val;
4697         frag->len = bytes;
4698         return X86EMUL_CONTINUE;
4699 }
4700
4701 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4702                         unsigned long addr,
4703                         void *val, unsigned int bytes,
4704                         struct x86_exception *exception,
4705                         const struct read_write_emulator_ops *ops)
4706 {
4707         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4708         gpa_t gpa;
4709         int rc;
4710
4711         if (ops->read_write_prepare &&
4712                   ops->read_write_prepare(vcpu, val, bytes))
4713                 return X86EMUL_CONTINUE;
4714
4715         vcpu->mmio_nr_fragments = 0;
4716
4717         /* Crossing a page boundary? */
4718         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4719                 int now;
4720
4721                 now = -addr & ~PAGE_MASK;
4722                 rc = emulator_read_write_onepage(addr, val, now, exception,
4723                                                  vcpu, ops);
4724
4725                 if (rc != X86EMUL_CONTINUE)
4726                         return rc;
4727                 addr += now;
4728                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4729                         addr = (u32)addr;
4730                 val += now;
4731                 bytes -= now;
4732         }
4733
4734         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4735                                          vcpu, ops);
4736         if (rc != X86EMUL_CONTINUE)
4737                 return rc;
4738
4739         if (!vcpu->mmio_nr_fragments)
4740                 return rc;
4741
4742         gpa = vcpu->mmio_fragments[0].gpa;
4743
4744         vcpu->mmio_needed = 1;
4745         vcpu->mmio_cur_fragment = 0;
4746
4747         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4748         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4749         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4750         vcpu->run->mmio.phys_addr = gpa;
4751
4752         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4753 }
4754
4755 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4756                                   unsigned long addr,
4757                                   void *val,
4758                                   unsigned int bytes,
4759                                   struct x86_exception *exception)
4760 {
4761         return emulator_read_write(ctxt, addr, val, bytes,
4762                                    exception, &read_emultor);
4763 }
4764
4765 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4766                             unsigned long addr,
4767                             const void *val,
4768                             unsigned int bytes,
4769                             struct x86_exception *exception)
4770 {
4771         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4772                                    exception, &write_emultor);
4773 }
4774
4775 #define CMPXCHG_TYPE(t, ptr, old, new) \
4776         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4777
4778 #ifdef CONFIG_X86_64
4779 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4780 #else
4781 #  define CMPXCHG64(ptr, old, new) \
4782         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4783 #endif
4784
4785 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4786                                      unsigned long addr,
4787                                      const void *old,
4788                                      const void *new,
4789                                      unsigned int bytes,
4790                                      struct x86_exception *exception)
4791 {
4792         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4793         gpa_t gpa;
4794         struct page *page;
4795         char *kaddr;
4796         bool exchanged;
4797
4798         /* guests cmpxchg8b have to be emulated atomically */
4799         if (bytes > 8 || (bytes & (bytes - 1)))
4800                 goto emul_write;
4801
4802         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4803
4804         if (gpa == UNMAPPED_GVA ||
4805             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4806                 goto emul_write;
4807
4808         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4809                 goto emul_write;
4810
4811         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4812         if (is_error_page(page))
4813                 goto emul_write;
4814
4815         kaddr = kmap_atomic(page);
4816         kaddr += offset_in_page(gpa);
4817         switch (bytes) {
4818         case 1:
4819                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4820                 break;
4821         case 2:
4822                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4823                 break;
4824         case 4:
4825                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4826                 break;
4827         case 8:
4828                 exchanged = CMPXCHG64(kaddr, old, new);
4829                 break;
4830         default:
4831                 BUG();
4832         }
4833         kunmap_atomic(kaddr);
4834         kvm_release_page_dirty(page);
4835
4836         if (!exchanged)
4837                 return X86EMUL_CMPXCHG_FAILED;
4838
4839         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4840         kvm_page_track_write(vcpu, gpa, new, bytes);
4841
4842         return X86EMUL_CONTINUE;
4843
4844 emul_write:
4845         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4846
4847         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4848 }
4849
4850 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4851 {
4852         /* TODO: String I/O for in kernel device */
4853         int r;
4854
4855         if (vcpu->arch.pio.in)
4856                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4857                                     vcpu->arch.pio.size, pd);
4858         else
4859                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4860                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4861                                      pd);
4862         return r;
4863 }
4864
4865 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4866                                unsigned short port, void *val,
4867                                unsigned int count, bool in)
4868 {
4869         vcpu->arch.pio.port = port;
4870         vcpu->arch.pio.in = in;
4871         vcpu->arch.pio.count  = count;
4872         vcpu->arch.pio.size = size;
4873
4874         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4875                 vcpu->arch.pio.count = 0;
4876                 return 1;
4877         }
4878
4879         vcpu->run->exit_reason = KVM_EXIT_IO;
4880         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4881         vcpu->run->io.size = size;
4882         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4883         vcpu->run->io.count = count;
4884         vcpu->run->io.port = port;
4885
4886         return 0;
4887 }
4888
4889 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4890                                     int size, unsigned short port, void *val,
4891                                     unsigned int count)
4892 {
4893         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4894         int ret;
4895
4896         if (vcpu->arch.pio.count)
4897                 goto data_avail;
4898
4899         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4900         if (ret) {
4901 data_avail:
4902                 memcpy(val, vcpu->arch.pio_data, size * count);
4903                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4904                 vcpu->arch.pio.count = 0;
4905                 return 1;
4906         }
4907
4908         return 0;
4909 }
4910
4911 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4912                                      int size, unsigned short port,
4913                                      const void *val, unsigned int count)
4914 {
4915         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4916
4917         memcpy(vcpu->arch.pio_data, val, size * count);
4918         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4919         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4920 }
4921
4922 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4923 {
4924         return kvm_x86_ops->get_segment_base(vcpu, seg);
4925 }
4926
4927 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4928 {
4929         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4930 }
4931
4932 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4933 {
4934         if (!need_emulate_wbinvd(vcpu))
4935                 return X86EMUL_CONTINUE;
4936
4937         if (kvm_x86_ops->has_wbinvd_exit()) {
4938                 int cpu = get_cpu();
4939
4940                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4941                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4942                                 wbinvd_ipi, NULL, 1);
4943                 put_cpu();
4944                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4945         } else
4946                 wbinvd();
4947         return X86EMUL_CONTINUE;
4948 }
4949
4950 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4951 {
4952         kvm_emulate_wbinvd_noskip(vcpu);
4953         return kvm_skip_emulated_instruction(vcpu);
4954 }
4955 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4956
4957
4958
4959 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4960 {
4961         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4962 }
4963
4964 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4965                            unsigned long *dest)
4966 {
4967         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4968 }
4969
4970 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4971                            unsigned long value)
4972 {
4973
4974         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4975 }
4976
4977 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4978 {
4979         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4980 }
4981
4982 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4983 {
4984         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4985         unsigned long value;
4986
4987         switch (cr) {
4988         case 0:
4989                 value = kvm_read_cr0(vcpu);
4990                 break;
4991         case 2:
4992                 value = vcpu->arch.cr2;
4993                 break;
4994         case 3:
4995                 value = kvm_read_cr3(vcpu);
4996                 break;
4997         case 4:
4998                 value = kvm_read_cr4(vcpu);
4999                 break;
5000         case 8:
5001                 value = kvm_get_cr8(vcpu);
5002                 break;
5003         default:
5004                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5005                 return 0;
5006         }
5007
5008         return value;
5009 }
5010
5011 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5012 {
5013         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5014         int res = 0;
5015
5016         switch (cr) {
5017         case 0:
5018                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5019                 break;
5020         case 2:
5021                 vcpu->arch.cr2 = val;
5022                 break;
5023         case 3:
5024                 res = kvm_set_cr3(vcpu, val);
5025                 break;
5026         case 4:
5027                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5028                 break;
5029         case 8:
5030                 res = kvm_set_cr8(vcpu, val);
5031                 break;
5032         default:
5033                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5034                 res = -1;
5035         }
5036
5037         return res;
5038 }
5039
5040 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5041 {
5042         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5043 }
5044
5045 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5046 {
5047         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5048 }
5049
5050 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5051 {
5052         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5053 }
5054
5055 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5056 {
5057         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5058 }
5059
5060 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5061 {
5062         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5063 }
5064
5065 static unsigned long emulator_get_cached_segment_base(
5066         struct x86_emulate_ctxt *ctxt, int seg)
5067 {
5068         return get_segment_base(emul_to_vcpu(ctxt), seg);
5069 }
5070
5071 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5072                                  struct desc_struct *desc, u32 *base3,
5073                                  int seg)
5074 {
5075         struct kvm_segment var;
5076
5077         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5078         *selector = var.selector;
5079
5080         if (var.unusable) {
5081                 memset(desc, 0, sizeof(*desc));
5082                 return false;
5083         }
5084
5085         if (var.g)
5086                 var.limit >>= 12;
5087         set_desc_limit(desc, var.limit);
5088         set_desc_base(desc, (unsigned long)var.base);
5089 #ifdef CONFIG_X86_64
5090         if (base3)
5091                 *base3 = var.base >> 32;
5092 #endif
5093         desc->type = var.type;
5094         desc->s = var.s;
5095         desc->dpl = var.dpl;
5096         desc->p = var.present;
5097         desc->avl = var.avl;
5098         desc->l = var.l;
5099         desc->d = var.db;
5100         desc->g = var.g;
5101
5102         return true;
5103 }
5104
5105 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5106                                  struct desc_struct *desc, u32 base3,
5107                                  int seg)
5108 {
5109         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5110         struct kvm_segment var;
5111
5112         var.selector = selector;
5113         var.base = get_desc_base(desc);
5114 #ifdef CONFIG_X86_64
5115         var.base |= ((u64)base3) << 32;
5116 #endif
5117         var.limit = get_desc_limit(desc);
5118         if (desc->g)
5119                 var.limit = (var.limit << 12) | 0xfff;
5120         var.type = desc->type;
5121         var.dpl = desc->dpl;
5122         var.db = desc->d;
5123         var.s = desc->s;
5124         var.l = desc->l;
5125         var.g = desc->g;
5126         var.avl = desc->avl;
5127         var.present = desc->p;
5128         var.unusable = !var.present;
5129         var.padding = 0;
5130
5131         kvm_set_segment(vcpu, &var, seg);
5132         return;
5133 }
5134
5135 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5136                             u32 msr_index, u64 *pdata)
5137 {
5138         struct msr_data msr;
5139         int r;
5140
5141         msr.index = msr_index;
5142         msr.host_initiated = false;
5143         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5144         if (r)
5145                 return r;
5146
5147         *pdata = msr.data;
5148         return 0;
5149 }
5150
5151 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5152                             u32 msr_index, u64 data)
5153 {
5154         struct msr_data msr;
5155
5156         msr.data = data;
5157         msr.index = msr_index;
5158         msr.host_initiated = false;
5159         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5160 }
5161
5162 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5163 {
5164         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5165
5166         return vcpu->arch.smbase;
5167 }
5168
5169 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5170 {
5171         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5172
5173         vcpu->arch.smbase = smbase;
5174 }
5175
5176 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5177                               u32 pmc)
5178 {
5179         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5180 }
5181
5182 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5183                              u32 pmc, u64 *pdata)
5184 {
5185         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5186 }
5187
5188 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5189 {
5190         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5191 }
5192
5193 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5194 {
5195         preempt_disable();
5196         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5197 }
5198
5199 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5200 {
5201         preempt_enable();
5202 }
5203
5204 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5205                               struct x86_instruction_info *info,
5206                               enum x86_intercept_stage stage)
5207 {
5208         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5209 }
5210
5211 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5212                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5213 {
5214         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5215 }
5216
5217 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5218 {
5219         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5220 }
5221
5222 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5223 {
5224         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5225 }
5226
5227 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5228 {
5229         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5230 }
5231
5232 static const struct x86_emulate_ops emulate_ops = {
5233         .read_gpr            = emulator_read_gpr,
5234         .write_gpr           = emulator_write_gpr,
5235         .read_std            = kvm_read_guest_virt_system,
5236         .write_std           = kvm_write_guest_virt_system,
5237         .read_phys           = kvm_read_guest_phys_system,
5238         .fetch               = kvm_fetch_guest_virt,
5239         .read_emulated       = emulator_read_emulated,
5240         .write_emulated      = emulator_write_emulated,
5241         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5242         .invlpg              = emulator_invlpg,
5243         .pio_in_emulated     = emulator_pio_in_emulated,
5244         .pio_out_emulated    = emulator_pio_out_emulated,
5245         .get_segment         = emulator_get_segment,
5246         .set_segment         = emulator_set_segment,
5247         .get_cached_segment_base = emulator_get_cached_segment_base,
5248         .get_gdt             = emulator_get_gdt,
5249         .get_idt             = emulator_get_idt,
5250         .set_gdt             = emulator_set_gdt,
5251         .set_idt             = emulator_set_idt,
5252         .get_cr              = emulator_get_cr,
5253         .set_cr              = emulator_set_cr,
5254         .cpl                 = emulator_get_cpl,
5255         .get_dr              = emulator_get_dr,
5256         .set_dr              = emulator_set_dr,
5257         .get_smbase          = emulator_get_smbase,
5258         .set_smbase          = emulator_set_smbase,
5259         .set_msr             = emulator_set_msr,
5260         .get_msr             = emulator_get_msr,
5261         .check_pmc           = emulator_check_pmc,
5262         .read_pmc            = emulator_read_pmc,
5263         .halt                = emulator_halt,
5264         .wbinvd              = emulator_wbinvd,
5265         .fix_hypercall       = emulator_fix_hypercall,
5266         .get_fpu             = emulator_get_fpu,
5267         .put_fpu             = emulator_put_fpu,
5268         .intercept           = emulator_intercept,
5269         .get_cpuid           = emulator_get_cpuid,
5270         .set_nmi_mask        = emulator_set_nmi_mask,
5271 };
5272
5273 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5274 {
5275         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5276         /*
5277          * an sti; sti; sequence only disable interrupts for the first
5278          * instruction. So, if the last instruction, be it emulated or
5279          * not, left the system with the INT_STI flag enabled, it
5280          * means that the last instruction is an sti. We should not
5281          * leave the flag on in this case. The same goes for mov ss
5282          */
5283         if (int_shadow & mask)
5284                 mask = 0;
5285         if (unlikely(int_shadow || mask)) {
5286                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5287                 if (!mask)
5288                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5289         }
5290 }
5291
5292 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5293 {
5294         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5295         if (ctxt->exception.vector == PF_VECTOR)
5296                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5297
5298         if (ctxt->exception.error_code_valid)
5299                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5300                                       ctxt->exception.error_code);
5301         else
5302                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5303         return false;
5304 }
5305
5306 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5307 {
5308         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5309         int cs_db, cs_l;
5310
5311         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5312
5313         ctxt->eflags = kvm_get_rflags(vcpu);
5314         ctxt->eip = kvm_rip_read(vcpu);
5315         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5316                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5317                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5318                      cs_db                              ? X86EMUL_MODE_PROT32 :
5319                                                           X86EMUL_MODE_PROT16;
5320         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5321         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5322         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5323         ctxt->emul_flags = vcpu->arch.hflags;
5324
5325         init_decode_cache(ctxt);
5326         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5327 }
5328
5329 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5330 {
5331         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5332         int ret;
5333
5334         init_emulate_ctxt(vcpu);
5335
5336         ctxt->op_bytes = 2;
5337         ctxt->ad_bytes = 2;
5338         ctxt->_eip = ctxt->eip + inc_eip;
5339         ret = emulate_int_real(ctxt, irq);
5340
5341         if (ret != X86EMUL_CONTINUE)
5342                 return EMULATE_FAIL;
5343
5344         ctxt->eip = ctxt->_eip;
5345         kvm_rip_write(vcpu, ctxt->eip);
5346         kvm_set_rflags(vcpu, ctxt->eflags);
5347
5348         if (irq == NMI_VECTOR)
5349                 vcpu->arch.nmi_pending = 0;
5350         else
5351                 vcpu->arch.interrupt.pending = false;
5352
5353         return EMULATE_DONE;
5354 }
5355 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5356
5357 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5358 {
5359         int r = EMULATE_DONE;
5360
5361         ++vcpu->stat.insn_emulation_fail;
5362         trace_kvm_emulate_insn_failed(vcpu);
5363         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5364                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5365                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5366                 vcpu->run->internal.ndata = 0;
5367                 r = EMULATE_FAIL;
5368         }
5369         kvm_queue_exception(vcpu, UD_VECTOR);
5370
5371         return r;
5372 }
5373
5374 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5375                                   bool write_fault_to_shadow_pgtable,
5376                                   int emulation_type)
5377 {
5378         gpa_t gpa = cr2;
5379         kvm_pfn_t pfn;
5380
5381         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5382                 return false;
5383
5384         if (!vcpu->arch.mmu.direct_map) {
5385                 /*
5386                  * Write permission should be allowed since only
5387                  * write access need to be emulated.
5388                  */
5389                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5390
5391                 /*
5392                  * If the mapping is invalid in guest, let cpu retry
5393                  * it to generate fault.
5394                  */
5395                 if (gpa == UNMAPPED_GVA)
5396                         return true;
5397         }
5398
5399         /*
5400          * Do not retry the unhandleable instruction if it faults on the
5401          * readonly host memory, otherwise it will goto a infinite loop:
5402          * retry instruction -> write #PF -> emulation fail -> retry
5403          * instruction -> ...
5404          */
5405         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5406
5407         /*
5408          * If the instruction failed on the error pfn, it can not be fixed,
5409          * report the error to userspace.
5410          */
5411         if (is_error_noslot_pfn(pfn))
5412                 return false;
5413
5414         kvm_release_pfn_clean(pfn);
5415
5416         /* The instructions are well-emulated on direct mmu. */
5417         if (vcpu->arch.mmu.direct_map) {
5418                 unsigned int indirect_shadow_pages;
5419
5420                 spin_lock(&vcpu->kvm->mmu_lock);
5421                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5422                 spin_unlock(&vcpu->kvm->mmu_lock);
5423
5424                 if (indirect_shadow_pages)
5425                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5426
5427                 return true;
5428         }
5429
5430         /*
5431          * if emulation was due to access to shadowed page table
5432          * and it failed try to unshadow page and re-enter the
5433          * guest to let CPU execute the instruction.
5434          */
5435         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5436
5437         /*
5438          * If the access faults on its page table, it can not
5439          * be fixed by unprotecting shadow page and it should
5440          * be reported to userspace.
5441          */
5442         return !write_fault_to_shadow_pgtable;
5443 }
5444
5445 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5446                               unsigned long cr2,  int emulation_type)
5447 {
5448         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5449         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5450
5451         last_retry_eip = vcpu->arch.last_retry_eip;
5452         last_retry_addr = vcpu->arch.last_retry_addr;
5453
5454         /*
5455          * If the emulation is caused by #PF and it is non-page_table
5456          * writing instruction, it means the VM-EXIT is caused by shadow
5457          * page protected, we can zap the shadow page and retry this
5458          * instruction directly.
5459          *
5460          * Note: if the guest uses a non-page-table modifying instruction
5461          * on the PDE that points to the instruction, then we will unmap
5462          * the instruction and go to an infinite loop. So, we cache the
5463          * last retried eip and the last fault address, if we meet the eip
5464          * and the address again, we can break out of the potential infinite
5465          * loop.
5466          */
5467         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5468
5469         if (!(emulation_type & EMULTYPE_RETRY))
5470                 return false;
5471
5472         if (x86_page_table_writing_insn(ctxt))
5473                 return false;
5474
5475         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5476                 return false;
5477
5478         vcpu->arch.last_retry_eip = ctxt->eip;
5479         vcpu->arch.last_retry_addr = cr2;
5480
5481         if (!vcpu->arch.mmu.direct_map)
5482                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5483
5484         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5485
5486         return true;
5487 }
5488
5489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5490 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5491
5492 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5493 {
5494         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5495                 /* This is a good place to trace that we are exiting SMM.  */
5496                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5497
5498                 /* Process a latched INIT or SMI, if any.  */
5499                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5500         }
5501
5502         kvm_mmu_reset_context(vcpu);
5503 }
5504
5505 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5506 {
5507         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5508
5509         vcpu->arch.hflags = emul_flags;
5510
5511         if (changed & HF_SMM_MASK)
5512                 kvm_smm_changed(vcpu);
5513 }
5514
5515 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5516                                 unsigned long *db)
5517 {
5518         u32 dr6 = 0;
5519         int i;
5520         u32 enable, rwlen;
5521
5522         enable = dr7;
5523         rwlen = dr7 >> 16;
5524         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5525                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5526                         dr6 |= (1 << i);
5527         return dr6;
5528 }
5529
5530 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5531 {
5532         struct kvm_run *kvm_run = vcpu->run;
5533
5534         /*
5535          * rflags is the old, "raw" value of the flags.  The new value has
5536          * not been saved yet.
5537          *
5538          * This is correct even for TF set by the guest, because "the
5539          * processor will not generate this exception after the instruction
5540          * that sets the TF flag".
5541          */
5542         if (unlikely(rflags & X86_EFLAGS_TF)) {
5543                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5544                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5545                                                   DR6_RTM;
5546                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5547                         kvm_run->debug.arch.exception = DB_VECTOR;
5548                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5549                         *r = EMULATE_USER_EXIT;
5550                 } else {
5551                         /*
5552                          * "Certain debug exceptions may clear bit 0-3.  The
5553                          * remaining contents of the DR6 register are never
5554                          * cleared by the processor".
5555                          */
5556                         vcpu->arch.dr6 &= ~15;
5557                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5558                         kvm_queue_exception(vcpu, DB_VECTOR);
5559                 }
5560         }
5561 }
5562
5563 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5564 {
5565         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5566         int r = EMULATE_DONE;
5567
5568         kvm_x86_ops->skip_emulated_instruction(vcpu);
5569         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5570         return r == EMULATE_DONE;
5571 }
5572 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5573
5574 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5575 {
5576         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5577             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5578                 struct kvm_run *kvm_run = vcpu->run;
5579                 unsigned long eip = kvm_get_linear_rip(vcpu);
5580                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5581                                            vcpu->arch.guest_debug_dr7,
5582                                            vcpu->arch.eff_db);
5583
5584                 if (dr6 != 0) {
5585                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5586                         kvm_run->debug.arch.pc = eip;
5587                         kvm_run->debug.arch.exception = DB_VECTOR;
5588                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5589                         *r = EMULATE_USER_EXIT;
5590                         return true;
5591                 }
5592         }
5593
5594         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5595             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5596                 unsigned long eip = kvm_get_linear_rip(vcpu);
5597                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5598                                            vcpu->arch.dr7,
5599                                            vcpu->arch.db);
5600
5601                 if (dr6 != 0) {
5602                         vcpu->arch.dr6 &= ~15;
5603                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5604                         kvm_queue_exception(vcpu, DB_VECTOR);
5605                         *r = EMULATE_DONE;
5606                         return true;
5607                 }
5608         }
5609
5610         return false;
5611 }
5612
5613 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5614                             unsigned long cr2,
5615                             int emulation_type,
5616                             void *insn,
5617                             int insn_len)
5618 {
5619         int r;
5620         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5621         bool writeback = true;
5622         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5623
5624         /*
5625          * Clear write_fault_to_shadow_pgtable here to ensure it is
5626          * never reused.
5627          */
5628         vcpu->arch.write_fault_to_shadow_pgtable = false;
5629         kvm_clear_exception_queue(vcpu);
5630
5631         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5632                 init_emulate_ctxt(vcpu);
5633
5634                 /*
5635                  * We will reenter on the same instruction since
5636                  * we do not set complete_userspace_io.  This does not
5637                  * handle watchpoints yet, those would be handled in
5638                  * the emulate_ops.
5639                  */
5640                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5641                         return r;
5642
5643                 ctxt->interruptibility = 0;
5644                 ctxt->have_exception = false;
5645                 ctxt->exception.vector = -1;
5646                 ctxt->perm_ok = false;
5647
5648                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5649
5650                 r = x86_decode_insn(ctxt, insn, insn_len);
5651
5652                 trace_kvm_emulate_insn_start(vcpu);
5653                 ++vcpu->stat.insn_emulation;
5654                 if (r != EMULATION_OK)  {
5655                         if (emulation_type & EMULTYPE_TRAP_UD)
5656                                 return EMULATE_FAIL;
5657                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5658                                                 emulation_type))
5659                                 return EMULATE_DONE;
5660                         if (emulation_type & EMULTYPE_SKIP)
5661                                 return EMULATE_FAIL;
5662                         return handle_emulation_failure(vcpu);
5663                 }
5664         }
5665
5666         if (emulation_type & EMULTYPE_SKIP) {
5667                 kvm_rip_write(vcpu, ctxt->_eip);
5668                 if (ctxt->eflags & X86_EFLAGS_RF)
5669                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5670                 return EMULATE_DONE;
5671         }
5672
5673         if (retry_instruction(ctxt, cr2, emulation_type))
5674                 return EMULATE_DONE;
5675
5676         /* this is needed for vmware backdoor interface to work since it
5677            changes registers values  during IO operation */
5678         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5679                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5680                 emulator_invalidate_register_cache(ctxt);
5681         }
5682
5683 restart:
5684         /* Save the faulting GPA (cr2) in the address field */
5685         ctxt->exception.address = cr2;
5686
5687         r = x86_emulate_insn(ctxt);
5688
5689         if (r == EMULATION_INTERCEPTED)
5690                 return EMULATE_DONE;
5691
5692         if (r == EMULATION_FAILED) {
5693                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5694                                         emulation_type))
5695                         return EMULATE_DONE;
5696
5697                 return handle_emulation_failure(vcpu);
5698         }
5699
5700         if (ctxt->have_exception) {
5701                 r = EMULATE_DONE;
5702                 if (inject_emulated_exception(vcpu))
5703                         return r;
5704         } else if (vcpu->arch.pio.count) {
5705                 if (!vcpu->arch.pio.in) {
5706                         /* FIXME: return into emulator if single-stepping.  */
5707                         vcpu->arch.pio.count = 0;
5708                 } else {
5709                         writeback = false;
5710                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5711                 }
5712                 r = EMULATE_USER_EXIT;
5713         } else if (vcpu->mmio_needed) {
5714                 if (!vcpu->mmio_is_write)
5715                         writeback = false;
5716                 r = EMULATE_USER_EXIT;
5717                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5718         } else if (r == EMULATION_RESTART)
5719                 goto restart;
5720         else
5721                 r = EMULATE_DONE;
5722
5723         if (writeback) {
5724                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5725                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5726                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5727                 if (vcpu->arch.hflags != ctxt->emul_flags)
5728                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5729                 kvm_rip_write(vcpu, ctxt->eip);
5730                 if (r == EMULATE_DONE)
5731                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5732                 if (!ctxt->have_exception ||
5733                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5734                         __kvm_set_rflags(vcpu, ctxt->eflags);
5735
5736                 /*
5737                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5738                  * do nothing, and it will be requested again as soon as
5739                  * the shadow expires.  But we still need to check here,
5740                  * because POPF has no interrupt shadow.
5741                  */
5742                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5743                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5744         } else
5745                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5746
5747         return r;
5748 }
5749 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5750
5751 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5752 {
5753         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5754         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5755                                             size, port, &val, 1);
5756         /* do not return to emulator after return from userspace */
5757         vcpu->arch.pio.count = 0;
5758         return ret;
5759 }
5760 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5761
5762 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5763 {
5764         unsigned long val;
5765
5766         /* We should only ever be called with arch.pio.count equal to 1 */
5767         BUG_ON(vcpu->arch.pio.count != 1);
5768
5769         /* For size less than 4 we merge, else we zero extend */
5770         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5771                                         : 0;
5772
5773         /*
5774          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5775          * the copy and tracing
5776          */
5777         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5778                                  vcpu->arch.pio.port, &val, 1);
5779         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5780
5781         return 1;
5782 }
5783
5784 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5785 {
5786         unsigned long val;
5787         int ret;
5788
5789         /* For size less than 4 we merge, else we zero extend */
5790         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5791
5792         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5793                                        &val, 1);
5794         if (ret) {
5795                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5796                 return ret;
5797         }
5798
5799         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5800
5801         return 0;
5802 }
5803 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5804
5805 static int kvmclock_cpu_down_prep(unsigned int cpu)
5806 {
5807         __this_cpu_write(cpu_tsc_khz, 0);
5808         return 0;
5809 }
5810
5811 static void tsc_khz_changed(void *data)
5812 {
5813         struct cpufreq_freqs *freq = data;
5814         unsigned long khz = 0;
5815
5816         if (data)
5817                 khz = freq->new;
5818         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5819                 khz = cpufreq_quick_get(raw_smp_processor_id());
5820         if (!khz)
5821                 khz = tsc_khz;
5822         __this_cpu_write(cpu_tsc_khz, khz);
5823 }
5824
5825 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5826                                      void *data)
5827 {
5828         struct cpufreq_freqs *freq = data;
5829         struct kvm *kvm;
5830         struct kvm_vcpu *vcpu;
5831         int i, send_ipi = 0;
5832
5833         /*
5834          * We allow guests to temporarily run on slowing clocks,
5835          * provided we notify them after, or to run on accelerating
5836          * clocks, provided we notify them before.  Thus time never
5837          * goes backwards.
5838          *
5839          * However, we have a problem.  We can't atomically update
5840          * the frequency of a given CPU from this function; it is
5841          * merely a notifier, which can be called from any CPU.
5842          * Changing the TSC frequency at arbitrary points in time
5843          * requires a recomputation of local variables related to
5844          * the TSC for each VCPU.  We must flag these local variables
5845          * to be updated and be sure the update takes place with the
5846          * new frequency before any guests proceed.
5847          *
5848          * Unfortunately, the combination of hotplug CPU and frequency
5849          * change creates an intractable locking scenario; the order
5850          * of when these callouts happen is undefined with respect to
5851          * CPU hotplug, and they can race with each other.  As such,
5852          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5853          * undefined; you can actually have a CPU frequency change take
5854          * place in between the computation of X and the setting of the
5855          * variable.  To protect against this problem, all updates of
5856          * the per_cpu tsc_khz variable are done in an interrupt
5857          * protected IPI, and all callers wishing to update the value
5858          * must wait for a synchronous IPI to complete (which is trivial
5859          * if the caller is on the CPU already).  This establishes the
5860          * necessary total order on variable updates.
5861          *
5862          * Note that because a guest time update may take place
5863          * anytime after the setting of the VCPU's request bit, the
5864          * correct TSC value must be set before the request.  However,
5865          * to ensure the update actually makes it to any guest which
5866          * starts running in hardware virtualization between the set
5867          * and the acquisition of the spinlock, we must also ping the
5868          * CPU after setting the request bit.
5869          *
5870          */
5871
5872         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5873                 return 0;
5874         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5875                 return 0;
5876
5877         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5878
5879         spin_lock(&kvm_lock);
5880         list_for_each_entry(kvm, &vm_list, vm_list) {
5881                 kvm_for_each_vcpu(i, vcpu, kvm) {
5882                         if (vcpu->cpu != freq->cpu)
5883                                 continue;
5884                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5885                         if (vcpu->cpu != smp_processor_id())
5886                                 send_ipi = 1;
5887                 }
5888         }
5889         spin_unlock(&kvm_lock);
5890
5891         if (freq->old < freq->new && send_ipi) {
5892                 /*
5893                  * We upscale the frequency.  Must make the guest
5894                  * doesn't see old kvmclock values while running with
5895                  * the new frequency, otherwise we risk the guest sees
5896                  * time go backwards.
5897                  *
5898                  * In case we update the frequency for another cpu
5899                  * (which might be in guest context) send an interrupt
5900                  * to kick the cpu out of guest context.  Next time
5901                  * guest context is entered kvmclock will be updated,
5902                  * so the guest will not see stale values.
5903                  */
5904                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5905         }
5906         return 0;
5907 }
5908
5909 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5910         .notifier_call  = kvmclock_cpufreq_notifier
5911 };
5912
5913 static int kvmclock_cpu_online(unsigned int cpu)
5914 {
5915         tsc_khz_changed(NULL);
5916         return 0;
5917 }
5918
5919 static void kvm_timer_init(void)
5920 {
5921         max_tsc_khz = tsc_khz;
5922
5923         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5924 #ifdef CONFIG_CPU_FREQ
5925                 struct cpufreq_policy policy;
5926                 int cpu;
5927
5928                 memset(&policy, 0, sizeof(policy));
5929                 cpu = get_cpu();
5930                 cpufreq_get_policy(&policy, cpu);
5931                 if (policy.cpuinfo.max_freq)
5932                         max_tsc_khz = policy.cpuinfo.max_freq;
5933                 put_cpu();
5934 #endif
5935                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5936                                           CPUFREQ_TRANSITION_NOTIFIER);
5937         }
5938         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5939
5940         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5941                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5942 }
5943
5944 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5945
5946 int kvm_is_in_guest(void)
5947 {
5948         return __this_cpu_read(current_vcpu) != NULL;
5949 }
5950
5951 static int kvm_is_user_mode(void)
5952 {
5953         int user_mode = 3;
5954
5955         if (__this_cpu_read(current_vcpu))
5956                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5957
5958         return user_mode != 0;
5959 }
5960
5961 static unsigned long kvm_get_guest_ip(void)
5962 {
5963         unsigned long ip = 0;
5964
5965         if (__this_cpu_read(current_vcpu))
5966                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5967
5968         return ip;
5969 }
5970
5971 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5972         .is_in_guest            = kvm_is_in_guest,
5973         .is_user_mode           = kvm_is_user_mode,
5974         .get_guest_ip           = kvm_get_guest_ip,
5975 };
5976
5977 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5978 {
5979         __this_cpu_write(current_vcpu, vcpu);
5980 }
5981 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5982
5983 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5984 {
5985         __this_cpu_write(current_vcpu, NULL);
5986 }
5987 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5988
5989 static void kvm_set_mmio_spte_mask(void)
5990 {
5991         u64 mask;
5992         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5993
5994         /*
5995          * Set the reserved bits and the present bit of an paging-structure
5996          * entry to generate page fault with PFER.RSV = 1.
5997          */
5998          /* Mask the reserved physical address bits. */
5999         mask = rsvd_bits(maxphyaddr, 51);
6000
6001         /* Set the present bit. */
6002         mask |= 1ull;
6003
6004 #ifdef CONFIG_X86_64
6005         /*
6006          * If reserved bit is not supported, clear the present bit to disable
6007          * mmio page fault.
6008          */
6009         if (maxphyaddr == 52)
6010                 mask &= ~1ull;
6011 #endif
6012
6013         kvm_mmu_set_mmio_spte_mask(mask);
6014 }
6015
6016 #ifdef CONFIG_X86_64
6017 static void pvclock_gtod_update_fn(struct work_struct *work)
6018 {
6019         struct kvm *kvm;
6020
6021         struct kvm_vcpu *vcpu;
6022         int i;
6023
6024         spin_lock(&kvm_lock);
6025         list_for_each_entry(kvm, &vm_list, vm_list)
6026                 kvm_for_each_vcpu(i, vcpu, kvm)
6027                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6028         atomic_set(&kvm_guest_has_master_clock, 0);
6029         spin_unlock(&kvm_lock);
6030 }
6031
6032 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6033
6034 /*
6035  * Notification about pvclock gtod data update.
6036  */
6037 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6038                                void *priv)
6039 {
6040         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6041         struct timekeeper *tk = priv;
6042
6043         update_pvclock_gtod(tk);
6044
6045         /* disable master clock if host does not trust, or does not
6046          * use, TSC clocksource
6047          */
6048         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6049             atomic_read(&kvm_guest_has_master_clock) != 0)
6050                 queue_work(system_long_wq, &pvclock_gtod_work);
6051
6052         return 0;
6053 }
6054
6055 static struct notifier_block pvclock_gtod_notifier = {
6056         .notifier_call = pvclock_gtod_notify,
6057 };
6058 #endif
6059
6060 int kvm_arch_init(void *opaque)
6061 {
6062         int r;
6063         struct kvm_x86_ops *ops = opaque;
6064
6065         if (kvm_x86_ops) {
6066                 printk(KERN_ERR "kvm: already loaded the other module\n");
6067                 r = -EEXIST;
6068                 goto out;
6069         }
6070
6071         if (!ops->cpu_has_kvm_support()) {
6072                 printk(KERN_ERR "kvm: no hardware support\n");
6073                 r = -EOPNOTSUPP;
6074                 goto out;
6075         }
6076         if (ops->disabled_by_bios()) {
6077                 printk(KERN_ERR "kvm: disabled by bios\n");
6078                 r = -EOPNOTSUPP;
6079                 goto out;
6080         }
6081
6082         r = -ENOMEM;
6083         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6084         if (!shared_msrs) {
6085                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6086                 goto out;
6087         }
6088
6089         r = kvm_mmu_module_init();
6090         if (r)
6091                 goto out_free_percpu;
6092
6093         kvm_set_mmio_spte_mask();
6094
6095         kvm_x86_ops = ops;
6096
6097         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6098                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6099                         PT_PRESENT_MASK, 0);
6100         kvm_timer_init();
6101
6102         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6103
6104         if (boot_cpu_has(X86_FEATURE_XSAVE))
6105                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6106
6107         kvm_lapic_init();
6108 #ifdef CONFIG_X86_64
6109         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6110 #endif
6111
6112         return 0;
6113
6114 out_free_percpu:
6115         free_percpu(shared_msrs);
6116 out:
6117         return r;
6118 }
6119
6120 void kvm_arch_exit(void)
6121 {
6122         kvm_lapic_exit();
6123         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6124
6125         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6126                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6127                                             CPUFREQ_TRANSITION_NOTIFIER);
6128         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6129 #ifdef CONFIG_X86_64
6130         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6131 #endif
6132         kvm_x86_ops = NULL;
6133         kvm_mmu_module_exit();
6134         free_percpu(shared_msrs);
6135 }
6136
6137 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6138 {
6139         ++vcpu->stat.halt_exits;
6140         if (lapic_in_kernel(vcpu)) {
6141                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6142                 return 1;
6143         } else {
6144                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6145                 return 0;
6146         }
6147 }
6148 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6149
6150 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6151 {
6152         int ret = kvm_skip_emulated_instruction(vcpu);
6153         /*
6154          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6155          * KVM_EXIT_DEBUG here.
6156          */
6157         return kvm_vcpu_halt(vcpu) && ret;
6158 }
6159 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6160
6161 #ifdef CONFIG_X86_64
6162 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6163                                 unsigned long clock_type)
6164 {
6165         struct kvm_clock_pairing clock_pairing;
6166         struct timespec ts;
6167         u64 cycle;
6168         int ret;
6169
6170         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6171                 return -KVM_EOPNOTSUPP;
6172
6173         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6174                 return -KVM_EOPNOTSUPP;
6175
6176         clock_pairing.sec = ts.tv_sec;
6177         clock_pairing.nsec = ts.tv_nsec;
6178         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6179         clock_pairing.flags = 0;
6180
6181         ret = 0;
6182         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6183                             sizeof(struct kvm_clock_pairing)))
6184                 ret = -KVM_EFAULT;
6185
6186         return ret;
6187 }
6188 #endif
6189
6190 /*
6191  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6192  *
6193  * @apicid - apicid of vcpu to be kicked.
6194  */
6195 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6196 {
6197         struct kvm_lapic_irq lapic_irq;
6198
6199         lapic_irq.shorthand = 0;
6200         lapic_irq.dest_mode = 0;
6201         lapic_irq.dest_id = apicid;
6202         lapic_irq.msi_redir_hint = false;
6203
6204         lapic_irq.delivery_mode = APIC_DM_REMRD;
6205         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6206 }
6207
6208 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6209 {
6210         vcpu->arch.apicv_active = false;
6211         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6212 }
6213
6214 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6215 {
6216         unsigned long nr, a0, a1, a2, a3, ret;
6217         int op_64_bit, r;
6218
6219         r = kvm_skip_emulated_instruction(vcpu);
6220
6221         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6222                 return kvm_hv_hypercall(vcpu);
6223
6224         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6225         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6226         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6227         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6228         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6229
6230         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6231
6232         op_64_bit = is_64_bit_mode(vcpu);
6233         if (!op_64_bit) {
6234                 nr &= 0xFFFFFFFF;
6235                 a0 &= 0xFFFFFFFF;
6236                 a1 &= 0xFFFFFFFF;
6237                 a2 &= 0xFFFFFFFF;
6238                 a3 &= 0xFFFFFFFF;
6239         }
6240
6241         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6242                 ret = -KVM_EPERM;
6243                 goto out;
6244         }
6245
6246         switch (nr) {
6247         case KVM_HC_VAPIC_POLL_IRQ:
6248                 ret = 0;
6249                 break;
6250         case KVM_HC_KICK_CPU:
6251                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6252                 ret = 0;
6253                 break;
6254 #ifdef CONFIG_X86_64
6255         case KVM_HC_CLOCK_PAIRING:
6256                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6257                 break;
6258 #endif
6259         default:
6260                 ret = -KVM_ENOSYS;
6261                 break;
6262         }
6263 out:
6264         if (!op_64_bit)
6265                 ret = (u32)ret;
6266         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6267         ++vcpu->stat.hypercalls;
6268         return r;
6269 }
6270 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6271
6272 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6273 {
6274         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6275         char instruction[3];
6276         unsigned long rip = kvm_rip_read(vcpu);
6277
6278         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6279
6280         return emulator_write_emulated(ctxt, rip, instruction, 3,
6281                 &ctxt->exception);
6282 }
6283
6284 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6285 {
6286         return vcpu->run->request_interrupt_window &&
6287                 likely(!pic_in_kernel(vcpu->kvm));
6288 }
6289
6290 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6291 {
6292         struct kvm_run *kvm_run = vcpu->run;
6293
6294         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6295         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6296         kvm_run->cr8 = kvm_get_cr8(vcpu);
6297         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6298         kvm_run->ready_for_interrupt_injection =
6299                 pic_in_kernel(vcpu->kvm) ||
6300                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6301 }
6302
6303 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6304 {
6305         int max_irr, tpr;
6306
6307         if (!kvm_x86_ops->update_cr8_intercept)
6308                 return;
6309
6310         if (!lapic_in_kernel(vcpu))
6311                 return;
6312
6313         if (vcpu->arch.apicv_active)
6314                 return;
6315
6316         if (!vcpu->arch.apic->vapic_addr)
6317                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6318         else
6319                 max_irr = -1;
6320
6321         if (max_irr != -1)
6322                 max_irr >>= 4;
6323
6324         tpr = kvm_lapic_get_cr8(vcpu);
6325
6326         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6327 }
6328
6329 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6330 {
6331         int r;
6332
6333         /* try to reinject previous events if any */
6334         if (vcpu->arch.exception.pending) {
6335                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6336                                         vcpu->arch.exception.has_error_code,
6337                                         vcpu->arch.exception.error_code);
6338
6339                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6340                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6341                                              X86_EFLAGS_RF);
6342
6343                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6344                     (vcpu->arch.dr7 & DR7_GD)) {
6345                         vcpu->arch.dr7 &= ~DR7_GD;
6346                         kvm_update_dr7(vcpu);
6347                 }
6348
6349                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6350                                           vcpu->arch.exception.has_error_code,
6351                                           vcpu->arch.exception.error_code,
6352                                           vcpu->arch.exception.reinject);
6353                 return 0;
6354         }
6355
6356         if (vcpu->arch.nmi_injected) {
6357                 kvm_x86_ops->set_nmi(vcpu);
6358                 return 0;
6359         }
6360
6361         if (vcpu->arch.interrupt.pending) {
6362                 kvm_x86_ops->set_irq(vcpu);
6363                 return 0;
6364         }
6365
6366         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6367                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6368                 if (r != 0)
6369                         return r;
6370         }
6371
6372         /* try to inject new event if pending */
6373         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6374                 vcpu->arch.smi_pending = false;
6375                 enter_smm(vcpu);
6376         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6377                 --vcpu->arch.nmi_pending;
6378                 vcpu->arch.nmi_injected = true;
6379                 kvm_x86_ops->set_nmi(vcpu);
6380         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6381                 /*
6382                  * Because interrupts can be injected asynchronously, we are
6383                  * calling check_nested_events again here to avoid a race condition.
6384                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6385                  * proposal and current concerns.  Perhaps we should be setting
6386                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6387                  */
6388                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6389                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6390                         if (r != 0)
6391                                 return r;
6392                 }
6393                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6394                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6395                                             false);
6396                         kvm_x86_ops->set_irq(vcpu);
6397                 }
6398         }
6399
6400         return 0;
6401 }
6402
6403 static void process_nmi(struct kvm_vcpu *vcpu)
6404 {
6405         unsigned limit = 2;
6406
6407         /*
6408          * x86 is limited to one NMI running, and one NMI pending after it.
6409          * If an NMI is already in progress, limit further NMIs to just one.
6410          * Otherwise, allow two (and we'll inject the first one immediately).
6411          */
6412         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6413                 limit = 1;
6414
6415         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6416         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6417         kvm_make_request(KVM_REQ_EVENT, vcpu);
6418 }
6419
6420 #define put_smstate(type, buf, offset, val)                       \
6421         *(type *)((buf) + (offset) - 0x7e00) = val
6422
6423 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6424 {
6425         u32 flags = 0;
6426         flags |= seg->g       << 23;
6427         flags |= seg->db      << 22;
6428         flags |= seg->l       << 21;
6429         flags |= seg->avl     << 20;
6430         flags |= seg->present << 15;
6431         flags |= seg->dpl     << 13;
6432         flags |= seg->s       << 12;
6433         flags |= seg->type    << 8;
6434         return flags;
6435 }
6436
6437 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6438 {
6439         struct kvm_segment seg;
6440         int offset;
6441
6442         kvm_get_segment(vcpu, &seg, n);
6443         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6444
6445         if (n < 3)
6446                 offset = 0x7f84 + n * 12;
6447         else
6448                 offset = 0x7f2c + (n - 3) * 12;
6449
6450         put_smstate(u32, buf, offset + 8, seg.base);
6451         put_smstate(u32, buf, offset + 4, seg.limit);
6452         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6453 }
6454
6455 #ifdef CONFIG_X86_64
6456 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6457 {
6458         struct kvm_segment seg;
6459         int offset;
6460         u16 flags;
6461
6462         kvm_get_segment(vcpu, &seg, n);
6463         offset = 0x7e00 + n * 16;
6464
6465         flags = enter_smm_get_segment_flags(&seg) >> 8;
6466         put_smstate(u16, buf, offset, seg.selector);
6467         put_smstate(u16, buf, offset + 2, flags);
6468         put_smstate(u32, buf, offset + 4, seg.limit);
6469         put_smstate(u64, buf, offset + 8, seg.base);
6470 }
6471 #endif
6472
6473 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6474 {
6475         struct desc_ptr dt;
6476         struct kvm_segment seg;
6477         unsigned long val;
6478         int i;
6479
6480         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6481         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6482         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6483         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6484
6485         for (i = 0; i < 8; i++)
6486                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6487
6488         kvm_get_dr(vcpu, 6, &val);
6489         put_smstate(u32, buf, 0x7fcc, (u32)val);
6490         kvm_get_dr(vcpu, 7, &val);
6491         put_smstate(u32, buf, 0x7fc8, (u32)val);
6492
6493         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6494         put_smstate(u32, buf, 0x7fc4, seg.selector);
6495         put_smstate(u32, buf, 0x7f64, seg.base);
6496         put_smstate(u32, buf, 0x7f60, seg.limit);
6497         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6498
6499         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6500         put_smstate(u32, buf, 0x7fc0, seg.selector);
6501         put_smstate(u32, buf, 0x7f80, seg.base);
6502         put_smstate(u32, buf, 0x7f7c, seg.limit);
6503         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6504
6505         kvm_x86_ops->get_gdt(vcpu, &dt);
6506         put_smstate(u32, buf, 0x7f74, dt.address);
6507         put_smstate(u32, buf, 0x7f70, dt.size);
6508
6509         kvm_x86_ops->get_idt(vcpu, &dt);
6510         put_smstate(u32, buf, 0x7f58, dt.address);
6511         put_smstate(u32, buf, 0x7f54, dt.size);
6512
6513         for (i = 0; i < 6; i++)
6514                 enter_smm_save_seg_32(vcpu, buf, i);
6515
6516         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6517
6518         /* revision id */
6519         put_smstate(u32, buf, 0x7efc, 0x00020000);
6520         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6521 }
6522
6523 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6524 {
6525 #ifdef CONFIG_X86_64
6526         struct desc_ptr dt;
6527         struct kvm_segment seg;
6528         unsigned long val;
6529         int i;
6530
6531         for (i = 0; i < 16; i++)
6532                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6533
6534         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6535         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6536
6537         kvm_get_dr(vcpu, 6, &val);
6538         put_smstate(u64, buf, 0x7f68, val);
6539         kvm_get_dr(vcpu, 7, &val);
6540         put_smstate(u64, buf, 0x7f60, val);
6541
6542         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6543         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6544         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6545
6546         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6547
6548         /* revision id */
6549         put_smstate(u32, buf, 0x7efc, 0x00020064);
6550
6551         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6552
6553         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6554         put_smstate(u16, buf, 0x7e90, seg.selector);
6555         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6556         put_smstate(u32, buf, 0x7e94, seg.limit);
6557         put_smstate(u64, buf, 0x7e98, seg.base);
6558
6559         kvm_x86_ops->get_idt(vcpu, &dt);
6560         put_smstate(u32, buf, 0x7e84, dt.size);
6561         put_smstate(u64, buf, 0x7e88, dt.address);
6562
6563         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6564         put_smstate(u16, buf, 0x7e70, seg.selector);
6565         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6566         put_smstate(u32, buf, 0x7e74, seg.limit);
6567         put_smstate(u64, buf, 0x7e78, seg.base);
6568
6569         kvm_x86_ops->get_gdt(vcpu, &dt);
6570         put_smstate(u32, buf, 0x7e64, dt.size);
6571         put_smstate(u64, buf, 0x7e68, dt.address);
6572
6573         for (i = 0; i < 6; i++)
6574                 enter_smm_save_seg_64(vcpu, buf, i);
6575 #else
6576         WARN_ON_ONCE(1);
6577 #endif
6578 }
6579
6580 static void enter_smm(struct kvm_vcpu *vcpu)
6581 {
6582         struct kvm_segment cs, ds;
6583         struct desc_ptr dt;
6584         char buf[512];
6585         u32 cr0;
6586
6587         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6588         vcpu->arch.hflags |= HF_SMM_MASK;
6589         memset(buf, 0, 512);
6590         if (guest_cpuid_has_longmode(vcpu))
6591                 enter_smm_save_state_64(vcpu, buf);
6592         else
6593                 enter_smm_save_state_32(vcpu, buf);
6594
6595         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6596
6597         if (kvm_x86_ops->get_nmi_mask(vcpu))
6598                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6599         else
6600                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6601
6602         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6603         kvm_rip_write(vcpu, 0x8000);
6604
6605         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6606         kvm_x86_ops->set_cr0(vcpu, cr0);
6607         vcpu->arch.cr0 = cr0;
6608
6609         kvm_x86_ops->set_cr4(vcpu, 0);
6610
6611         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6612         dt.address = dt.size = 0;
6613         kvm_x86_ops->set_idt(vcpu, &dt);
6614
6615         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6616
6617         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6618         cs.base = vcpu->arch.smbase;
6619
6620         ds.selector = 0;
6621         ds.base = 0;
6622
6623         cs.limit    = ds.limit = 0xffffffff;
6624         cs.type     = ds.type = 0x3;
6625         cs.dpl      = ds.dpl = 0;
6626         cs.db       = ds.db = 0;
6627         cs.s        = ds.s = 1;
6628         cs.l        = ds.l = 0;
6629         cs.g        = ds.g = 1;
6630         cs.avl      = ds.avl = 0;
6631         cs.present  = ds.present = 1;
6632         cs.unusable = ds.unusable = 0;
6633         cs.padding  = ds.padding = 0;
6634
6635         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6636         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6637         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6638         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6639         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6640         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6641
6642         if (guest_cpuid_has_longmode(vcpu))
6643                 kvm_x86_ops->set_efer(vcpu, 0);
6644
6645         kvm_update_cpuid(vcpu);
6646         kvm_mmu_reset_context(vcpu);
6647 }
6648
6649 static void process_smi(struct kvm_vcpu *vcpu)
6650 {
6651         vcpu->arch.smi_pending = true;
6652         kvm_make_request(KVM_REQ_EVENT, vcpu);
6653 }
6654
6655 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6656 {
6657         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6658 }
6659
6660 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6661 {
6662         u64 eoi_exit_bitmap[4];
6663
6664         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6665                 return;
6666
6667         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6668
6669         if (irqchip_split(vcpu->kvm))
6670                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6671         else {
6672                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6673                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6674                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6675         }
6676         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6677                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6678         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6679 }
6680
6681 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6682 {
6683         ++vcpu->stat.tlb_flush;
6684         kvm_x86_ops->tlb_flush(vcpu);
6685 }
6686
6687 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6688 {
6689         struct page *page = NULL;
6690
6691         if (!lapic_in_kernel(vcpu))
6692                 return;
6693
6694         if (!kvm_x86_ops->set_apic_access_page_addr)
6695                 return;
6696
6697         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6698         if (is_error_page(page))
6699                 return;
6700         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6701
6702         /*
6703          * Do not pin apic access page in memory, the MMU notifier
6704          * will call us again if it is migrated or swapped out.
6705          */
6706         put_page(page);
6707 }
6708 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6709
6710 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6711                                            unsigned long address)
6712 {
6713         /*
6714          * The physical address of apic access page is stored in the VMCS.
6715          * Update it when it becomes invalid.
6716          */
6717         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6718                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6719 }
6720
6721 /*
6722  * Returns 1 to let vcpu_run() continue the guest execution loop without
6723  * exiting to the userspace.  Otherwise, the value will be returned to the
6724  * userspace.
6725  */
6726 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6727 {
6728         int r;
6729         bool req_int_win =
6730                 dm_request_for_irq_injection(vcpu) &&
6731                 kvm_cpu_accept_dm_intr(vcpu);
6732
6733         bool req_immediate_exit = false;
6734
6735         if (vcpu->requests) {
6736                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6737                         kvm_mmu_unload(vcpu);
6738                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6739                         __kvm_migrate_timers(vcpu);
6740                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6741                         kvm_gen_update_masterclock(vcpu->kvm);
6742                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6743                         kvm_gen_kvmclock_update(vcpu);
6744                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6745                         r = kvm_guest_time_update(vcpu);
6746                         if (unlikely(r))
6747                                 goto out;
6748                 }
6749                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6750                         kvm_mmu_sync_roots(vcpu);
6751                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6752                         kvm_vcpu_flush_tlb(vcpu);
6753                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6754                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6755                         r = 0;
6756                         goto out;
6757                 }
6758                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6759                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6760                         r = 0;
6761                         goto out;
6762                 }
6763                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6764                         /* Page is swapped out. Do synthetic halt */
6765                         vcpu->arch.apf.halted = true;
6766                         r = 1;
6767                         goto out;
6768                 }
6769                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6770                         record_steal_time(vcpu);
6771                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6772                         process_smi(vcpu);
6773                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6774                         process_nmi(vcpu);
6775                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6776                         kvm_pmu_handle_event(vcpu);
6777                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6778                         kvm_pmu_deliver_pmi(vcpu);
6779                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6780                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6781                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6782                                      vcpu->arch.ioapic_handled_vectors)) {
6783                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6784                                 vcpu->run->eoi.vector =
6785                                                 vcpu->arch.pending_ioapic_eoi;
6786                                 r = 0;
6787                                 goto out;
6788                         }
6789                 }
6790                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6791                         vcpu_scan_ioapic(vcpu);
6792                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6793                         kvm_vcpu_reload_apic_access_page(vcpu);
6794                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6795                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6796                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6797                         r = 0;
6798                         goto out;
6799                 }
6800                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6801                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6802                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6803                         r = 0;
6804                         goto out;
6805                 }
6806                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6807                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6808                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6809                         r = 0;
6810                         goto out;
6811                 }
6812
6813                 /*
6814                  * KVM_REQ_HV_STIMER has to be processed after
6815                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6816                  * depend on the guest clock being up-to-date
6817                  */
6818                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6819                         kvm_hv_process_stimers(vcpu);
6820         }
6821
6822         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6823                 ++vcpu->stat.req_event;
6824                 kvm_apic_accept_events(vcpu);
6825                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6826                         r = 1;
6827                         goto out;
6828                 }
6829
6830                 if (inject_pending_event(vcpu, req_int_win) != 0)
6831                         req_immediate_exit = true;
6832                 else {
6833                         /* Enable NMI/IRQ window open exits if needed.
6834                          *
6835                          * SMIs have two cases: 1) they can be nested, and
6836                          * then there is nothing to do here because RSM will
6837                          * cause a vmexit anyway; 2) or the SMI can be pending
6838                          * because inject_pending_event has completed the
6839                          * injection of an IRQ or NMI from the previous vmexit,
6840                          * and then we request an immediate exit to inject the SMI.
6841                          */
6842                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6843                                 req_immediate_exit = true;
6844                         if (vcpu->arch.nmi_pending)
6845                                 kvm_x86_ops->enable_nmi_window(vcpu);
6846                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6847                                 kvm_x86_ops->enable_irq_window(vcpu);
6848                 }
6849
6850                 if (kvm_lapic_enabled(vcpu)) {
6851                         update_cr8_intercept(vcpu);
6852                         kvm_lapic_sync_to_vapic(vcpu);
6853                 }
6854         }
6855
6856         r = kvm_mmu_reload(vcpu);
6857         if (unlikely(r)) {
6858                 goto cancel_injection;
6859         }
6860
6861         preempt_disable();
6862
6863         kvm_x86_ops->prepare_guest_switch(vcpu);
6864         kvm_load_guest_fpu(vcpu);
6865
6866         /*
6867          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6868          * IPI are then delayed after guest entry, which ensures that they
6869          * result in virtual interrupt delivery.
6870          */
6871         local_irq_disable();
6872         vcpu->mode = IN_GUEST_MODE;
6873
6874         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6875
6876         /*
6877          * 1) We should set ->mode before checking ->requests.  Please see
6878          * the comment in kvm_make_all_cpus_request.
6879          *
6880          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6881          * pairs with the memory barrier implicit in pi_test_and_set_on
6882          * (see vmx_deliver_posted_interrupt).
6883          *
6884          * 3) This also orders the write to mode from any reads to the page
6885          * tables done while the VCPU is running.  Please see the comment
6886          * in kvm_flush_remote_tlbs.
6887          */
6888         smp_mb__after_srcu_read_unlock();
6889
6890         /*
6891          * This handles the case where a posted interrupt was
6892          * notified with kvm_vcpu_kick.
6893          */
6894         if (kvm_lapic_enabled(vcpu)) {
6895                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6896                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6897         }
6898
6899         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6900             || need_resched() || signal_pending(current)) {
6901                 vcpu->mode = OUTSIDE_GUEST_MODE;
6902                 smp_wmb();
6903                 local_irq_enable();
6904                 preempt_enable();
6905                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6906                 r = 1;
6907                 goto cancel_injection;
6908         }
6909
6910         kvm_load_guest_xcr0(vcpu);
6911
6912         if (req_immediate_exit) {
6913                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6914                 smp_send_reschedule(vcpu->cpu);
6915         }
6916
6917         trace_kvm_entry(vcpu->vcpu_id);
6918         wait_lapic_expire(vcpu);
6919         guest_enter_irqoff();
6920
6921         if (unlikely(vcpu->arch.switch_db_regs)) {
6922                 set_debugreg(0, 7);
6923                 set_debugreg(vcpu->arch.eff_db[0], 0);
6924                 set_debugreg(vcpu->arch.eff_db[1], 1);
6925                 set_debugreg(vcpu->arch.eff_db[2], 2);
6926                 set_debugreg(vcpu->arch.eff_db[3], 3);
6927                 set_debugreg(vcpu->arch.dr6, 6);
6928                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6929         }
6930
6931         kvm_x86_ops->run(vcpu);
6932
6933         /*
6934          * Do this here before restoring debug registers on the host.  And
6935          * since we do this before handling the vmexit, a DR access vmexit
6936          * can (a) read the correct value of the debug registers, (b) set
6937          * KVM_DEBUGREG_WONT_EXIT again.
6938          */
6939         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6940                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6941                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6942                 kvm_update_dr0123(vcpu);
6943                 kvm_update_dr6(vcpu);
6944                 kvm_update_dr7(vcpu);
6945                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6946         }
6947
6948         /*
6949          * If the guest has used debug registers, at least dr7
6950          * will be disabled while returning to the host.
6951          * If we don't have active breakpoints in the host, we don't
6952          * care about the messed up debug address registers. But if
6953          * we have some of them active, restore the old state.
6954          */
6955         if (hw_breakpoint_active())
6956                 hw_breakpoint_restore();
6957
6958         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6959
6960         vcpu->mode = OUTSIDE_GUEST_MODE;
6961         smp_wmb();
6962
6963         kvm_put_guest_xcr0(vcpu);
6964
6965         kvm_x86_ops->handle_external_intr(vcpu);
6966
6967         ++vcpu->stat.exits;
6968
6969         guest_exit_irqoff();
6970
6971         local_irq_enable();
6972         preempt_enable();
6973
6974         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6975
6976         /*
6977          * Profile KVM exit RIPs:
6978          */
6979         if (unlikely(prof_on == KVM_PROFILING)) {
6980                 unsigned long rip = kvm_rip_read(vcpu);
6981                 profile_hit(KVM_PROFILING, (void *)rip);
6982         }
6983
6984         if (unlikely(vcpu->arch.tsc_always_catchup))
6985                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6986
6987         if (vcpu->arch.apic_attention)
6988                 kvm_lapic_sync_from_vapic(vcpu);
6989
6990         r = kvm_x86_ops->handle_exit(vcpu);
6991         return r;
6992
6993 cancel_injection:
6994         kvm_x86_ops->cancel_injection(vcpu);
6995         if (unlikely(vcpu->arch.apic_attention))
6996                 kvm_lapic_sync_from_vapic(vcpu);
6997 out:
6998         return r;
6999 }
7000
7001 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7002 {
7003         if (!kvm_arch_vcpu_runnable(vcpu) &&
7004             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7005                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7006                 kvm_vcpu_block(vcpu);
7007                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7008
7009                 if (kvm_x86_ops->post_block)
7010                         kvm_x86_ops->post_block(vcpu);
7011
7012                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7013                         return 1;
7014         }
7015
7016         kvm_apic_accept_events(vcpu);
7017         switch(vcpu->arch.mp_state) {
7018         case KVM_MP_STATE_HALTED:
7019                 vcpu->arch.pv.pv_unhalted = false;
7020                 vcpu->arch.mp_state =
7021                         KVM_MP_STATE_RUNNABLE;
7022         case KVM_MP_STATE_RUNNABLE:
7023                 vcpu->arch.apf.halted = false;
7024                 break;
7025         case KVM_MP_STATE_INIT_RECEIVED:
7026                 break;
7027         default:
7028                 return -EINTR;
7029                 break;
7030         }
7031         return 1;
7032 }
7033
7034 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7035 {
7036         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7037                 kvm_x86_ops->check_nested_events(vcpu, false);
7038
7039         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7040                 !vcpu->arch.apf.halted);
7041 }
7042
7043 static int vcpu_run(struct kvm_vcpu *vcpu)
7044 {
7045         int r;
7046         struct kvm *kvm = vcpu->kvm;
7047
7048         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7049
7050         for (;;) {
7051                 if (kvm_vcpu_running(vcpu)) {
7052                         r = vcpu_enter_guest(vcpu);
7053                 } else {
7054                         r = vcpu_block(kvm, vcpu);
7055                 }
7056
7057                 if (r <= 0)
7058                         break;
7059
7060                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7061                 if (kvm_cpu_has_pending_timer(vcpu))
7062                         kvm_inject_pending_timer_irqs(vcpu);
7063
7064                 if (dm_request_for_irq_injection(vcpu) &&
7065                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7066                         r = 0;
7067                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7068                         ++vcpu->stat.request_irq_exits;
7069                         break;
7070                 }
7071
7072                 kvm_check_async_pf_completion(vcpu);
7073
7074                 if (signal_pending(current)) {
7075                         r = -EINTR;
7076                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7077                         ++vcpu->stat.signal_exits;
7078                         break;
7079                 }
7080                 if (need_resched()) {
7081                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7082                         cond_resched();
7083                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7084                 }
7085         }
7086
7087         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7088
7089         return r;
7090 }
7091
7092 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7093 {
7094         int r;
7095         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7096         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7097         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7098         if (r != EMULATE_DONE)
7099                 return 0;
7100         return 1;
7101 }
7102
7103 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7104 {
7105         BUG_ON(!vcpu->arch.pio.count);
7106
7107         return complete_emulated_io(vcpu);
7108 }
7109
7110 /*
7111  * Implements the following, as a state machine:
7112  *
7113  * read:
7114  *   for each fragment
7115  *     for each mmio piece in the fragment
7116  *       write gpa, len
7117  *       exit
7118  *       copy data
7119  *   execute insn
7120  *
7121  * write:
7122  *   for each fragment
7123  *     for each mmio piece in the fragment
7124  *       write gpa, len
7125  *       copy data
7126  *       exit
7127  */
7128 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7129 {
7130         struct kvm_run *run = vcpu->run;
7131         struct kvm_mmio_fragment *frag;
7132         unsigned len;
7133
7134         BUG_ON(!vcpu->mmio_needed);
7135
7136         /* Complete previous fragment */
7137         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7138         len = min(8u, frag->len);
7139         if (!vcpu->mmio_is_write)
7140                 memcpy(frag->data, run->mmio.data, len);
7141
7142         if (frag->len <= 8) {
7143                 /* Switch to the next fragment. */
7144                 frag++;
7145                 vcpu->mmio_cur_fragment++;
7146         } else {
7147                 /* Go forward to the next mmio piece. */
7148                 frag->data += len;
7149                 frag->gpa += len;
7150                 frag->len -= len;
7151         }
7152
7153         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7154                 vcpu->mmio_needed = 0;
7155
7156                 /* FIXME: return into emulator if single-stepping.  */
7157                 if (vcpu->mmio_is_write)
7158                         return 1;
7159                 vcpu->mmio_read_completed = 1;
7160                 return complete_emulated_io(vcpu);
7161         }
7162
7163         run->exit_reason = KVM_EXIT_MMIO;
7164         run->mmio.phys_addr = frag->gpa;
7165         if (vcpu->mmio_is_write)
7166                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7167         run->mmio.len = min(8u, frag->len);
7168         run->mmio.is_write = vcpu->mmio_is_write;
7169         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7170         return 0;
7171 }
7172
7173
7174 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7175 {
7176         struct fpu *fpu = &current->thread.fpu;
7177         int r;
7178         sigset_t sigsaved;
7179
7180         fpu__activate_curr(fpu);
7181
7182         if (vcpu->sigset_active)
7183                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7184
7185         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7186                 kvm_vcpu_block(vcpu);
7187                 kvm_apic_accept_events(vcpu);
7188                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7189                 r = -EAGAIN;
7190                 goto out;
7191         }
7192
7193         /* re-sync apic's tpr */
7194         if (!lapic_in_kernel(vcpu)) {
7195                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7196                         r = -EINVAL;
7197                         goto out;
7198                 }
7199         }
7200
7201         if (unlikely(vcpu->arch.complete_userspace_io)) {
7202                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7203                 vcpu->arch.complete_userspace_io = NULL;
7204                 r = cui(vcpu);
7205                 if (r <= 0)
7206                         goto out;
7207         } else
7208                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7209
7210         if (kvm_run->immediate_exit)
7211                 r = -EINTR;
7212         else
7213                 r = vcpu_run(vcpu);
7214
7215 out:
7216         post_kvm_run_save(vcpu);
7217         if (vcpu->sigset_active)
7218                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7219
7220         return r;
7221 }
7222
7223 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7224 {
7225         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7226                 /*
7227                  * We are here if userspace calls get_regs() in the middle of
7228                  * instruction emulation. Registers state needs to be copied
7229                  * back from emulation context to vcpu. Userspace shouldn't do
7230                  * that usually, but some bad designed PV devices (vmware
7231                  * backdoor interface) need this to work
7232                  */
7233                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7234                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7235         }
7236         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7237         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7238         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7239         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7240         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7241         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7242         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7243         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7244 #ifdef CONFIG_X86_64
7245         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7246         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7247         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7248         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7249         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7250         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7251         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7252         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7253 #endif
7254
7255         regs->rip = kvm_rip_read(vcpu);
7256         regs->rflags = kvm_get_rflags(vcpu);
7257
7258         return 0;
7259 }
7260
7261 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7262 {
7263         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7264         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7265
7266         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7267         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7268         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7269         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7270         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7271         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7272         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7273         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7274 #ifdef CONFIG_X86_64
7275         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7276         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7277         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7278         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7279         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7280         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7281         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7282         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7283 #endif
7284
7285         kvm_rip_write(vcpu, regs->rip);
7286         kvm_set_rflags(vcpu, regs->rflags);
7287
7288         vcpu->arch.exception.pending = false;
7289
7290         kvm_make_request(KVM_REQ_EVENT, vcpu);
7291
7292         return 0;
7293 }
7294
7295 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7296 {
7297         struct kvm_segment cs;
7298
7299         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7300         *db = cs.db;
7301         *l = cs.l;
7302 }
7303 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7304
7305 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7306                                   struct kvm_sregs *sregs)
7307 {
7308         struct desc_ptr dt;
7309
7310         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7311         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7312         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7313         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7314         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7315         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7316
7317         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7318         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7319
7320         kvm_x86_ops->get_idt(vcpu, &dt);
7321         sregs->idt.limit = dt.size;
7322         sregs->idt.base = dt.address;
7323         kvm_x86_ops->get_gdt(vcpu, &dt);
7324         sregs->gdt.limit = dt.size;
7325         sregs->gdt.base = dt.address;
7326
7327         sregs->cr0 = kvm_read_cr0(vcpu);
7328         sregs->cr2 = vcpu->arch.cr2;
7329         sregs->cr3 = kvm_read_cr3(vcpu);
7330         sregs->cr4 = kvm_read_cr4(vcpu);
7331         sregs->cr8 = kvm_get_cr8(vcpu);
7332         sregs->efer = vcpu->arch.efer;
7333         sregs->apic_base = kvm_get_apic_base(vcpu);
7334
7335         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7336
7337         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7338                 set_bit(vcpu->arch.interrupt.nr,
7339                         (unsigned long *)sregs->interrupt_bitmap);
7340
7341         return 0;
7342 }
7343
7344 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7345                                     struct kvm_mp_state *mp_state)
7346 {
7347         kvm_apic_accept_events(vcpu);
7348         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7349                                         vcpu->arch.pv.pv_unhalted)
7350                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7351         else
7352                 mp_state->mp_state = vcpu->arch.mp_state;
7353
7354         return 0;
7355 }
7356
7357 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7358                                     struct kvm_mp_state *mp_state)
7359 {
7360         if (!lapic_in_kernel(vcpu) &&
7361             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7362                 return -EINVAL;
7363
7364         /* INITs are latched while in SMM */
7365         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7366             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7367              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7368                 return -EINVAL;
7369
7370         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7371                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7372                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7373         } else
7374                 vcpu->arch.mp_state = mp_state->mp_state;
7375         kvm_make_request(KVM_REQ_EVENT, vcpu);
7376         return 0;
7377 }
7378
7379 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7380                     int reason, bool has_error_code, u32 error_code)
7381 {
7382         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7383         int ret;
7384
7385         init_emulate_ctxt(vcpu);
7386
7387         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7388                                    has_error_code, error_code);
7389
7390         if (ret)
7391                 return EMULATE_FAIL;
7392
7393         kvm_rip_write(vcpu, ctxt->eip);
7394         kvm_set_rflags(vcpu, ctxt->eflags);
7395         kvm_make_request(KVM_REQ_EVENT, vcpu);
7396         return EMULATE_DONE;
7397 }
7398 EXPORT_SYMBOL_GPL(kvm_task_switch);
7399
7400 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7401                                   struct kvm_sregs *sregs)
7402 {
7403         struct msr_data apic_base_msr;
7404         int mmu_reset_needed = 0;
7405         int pending_vec, max_bits, idx;
7406         struct desc_ptr dt;
7407
7408         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7409                 return -EINVAL;
7410
7411         dt.size = sregs->idt.limit;
7412         dt.address = sregs->idt.base;
7413         kvm_x86_ops->set_idt(vcpu, &dt);
7414         dt.size = sregs->gdt.limit;
7415         dt.address = sregs->gdt.base;
7416         kvm_x86_ops->set_gdt(vcpu, &dt);
7417
7418         vcpu->arch.cr2 = sregs->cr2;
7419         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7420         vcpu->arch.cr3 = sregs->cr3;
7421         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7422
7423         kvm_set_cr8(vcpu, sregs->cr8);
7424
7425         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7426         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7427         apic_base_msr.data = sregs->apic_base;
7428         apic_base_msr.host_initiated = true;
7429         kvm_set_apic_base(vcpu, &apic_base_msr);
7430
7431         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7432         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7433         vcpu->arch.cr0 = sregs->cr0;
7434
7435         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7436         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7437         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7438                 kvm_update_cpuid(vcpu);
7439
7440         idx = srcu_read_lock(&vcpu->kvm->srcu);
7441         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7442                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7443                 mmu_reset_needed = 1;
7444         }
7445         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7446
7447         if (mmu_reset_needed)
7448                 kvm_mmu_reset_context(vcpu);
7449
7450         max_bits = KVM_NR_INTERRUPTS;
7451         pending_vec = find_first_bit(
7452                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7453         if (pending_vec < max_bits) {
7454                 kvm_queue_interrupt(vcpu, pending_vec, false);
7455                 pr_debug("Set back pending irq %d\n", pending_vec);
7456         }
7457
7458         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7459         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7460         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7461         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7462         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7463         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7464
7465         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7466         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7467
7468         update_cr8_intercept(vcpu);
7469
7470         /* Older userspace won't unhalt the vcpu on reset. */
7471         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7472             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7473             !is_protmode(vcpu))
7474                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7475
7476         kvm_make_request(KVM_REQ_EVENT, vcpu);
7477
7478         return 0;
7479 }
7480
7481 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7482                                         struct kvm_guest_debug *dbg)
7483 {
7484         unsigned long rflags;
7485         int i, r;
7486
7487         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7488                 r = -EBUSY;
7489                 if (vcpu->arch.exception.pending)
7490                         goto out;
7491                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7492                         kvm_queue_exception(vcpu, DB_VECTOR);
7493                 else
7494                         kvm_queue_exception(vcpu, BP_VECTOR);
7495         }
7496
7497         /*
7498          * Read rflags as long as potentially injected trace flags are still
7499          * filtered out.
7500          */
7501         rflags = kvm_get_rflags(vcpu);
7502
7503         vcpu->guest_debug = dbg->control;
7504         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7505                 vcpu->guest_debug = 0;
7506
7507         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7508                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7509                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7510                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7511         } else {
7512                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7513                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7514         }
7515         kvm_update_dr7(vcpu);
7516
7517         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7518                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7519                         get_segment_base(vcpu, VCPU_SREG_CS);
7520
7521         /*
7522          * Trigger an rflags update that will inject or remove the trace
7523          * flags.
7524          */
7525         kvm_set_rflags(vcpu, rflags);
7526
7527         kvm_x86_ops->update_bp_intercept(vcpu);
7528
7529         r = 0;
7530
7531 out:
7532
7533         return r;
7534 }
7535
7536 /*
7537  * Translate a guest virtual address to a guest physical address.
7538  */
7539 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7540                                     struct kvm_translation *tr)
7541 {
7542         unsigned long vaddr = tr->linear_address;
7543         gpa_t gpa;
7544         int idx;
7545
7546         idx = srcu_read_lock(&vcpu->kvm->srcu);
7547         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7548         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7549         tr->physical_address = gpa;
7550         tr->valid = gpa != UNMAPPED_GVA;
7551         tr->writeable = 1;
7552         tr->usermode = 0;
7553
7554         return 0;
7555 }
7556
7557 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7558 {
7559         struct fxregs_state *fxsave =
7560                         &vcpu->arch.guest_fpu.state.fxsave;
7561
7562         memcpy(fpu->fpr, fxsave->st_space, 128);
7563         fpu->fcw = fxsave->cwd;
7564         fpu->fsw = fxsave->swd;
7565         fpu->ftwx = fxsave->twd;
7566         fpu->last_opcode = fxsave->fop;
7567         fpu->last_ip = fxsave->rip;
7568         fpu->last_dp = fxsave->rdp;
7569         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7570
7571         return 0;
7572 }
7573
7574 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7575 {
7576         struct fxregs_state *fxsave =
7577                         &vcpu->arch.guest_fpu.state.fxsave;
7578
7579         memcpy(fxsave->st_space, fpu->fpr, 128);
7580         fxsave->cwd = fpu->fcw;
7581         fxsave->swd = fpu->fsw;
7582         fxsave->twd = fpu->ftwx;
7583         fxsave->fop = fpu->last_opcode;
7584         fxsave->rip = fpu->last_ip;
7585         fxsave->rdp = fpu->last_dp;
7586         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7587
7588         return 0;
7589 }
7590
7591 static void fx_init(struct kvm_vcpu *vcpu)
7592 {
7593         fpstate_init(&vcpu->arch.guest_fpu.state);
7594         if (boot_cpu_has(X86_FEATURE_XSAVES))
7595                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7596                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7597
7598         /*
7599          * Ensure guest xcr0 is valid for loading
7600          */
7601         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7602
7603         vcpu->arch.cr0 |= X86_CR0_ET;
7604 }
7605
7606 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7607 {
7608         if (vcpu->guest_fpu_loaded)
7609                 return;
7610
7611         /*
7612          * Restore all possible states in the guest,
7613          * and assume host would use all available bits.
7614          * Guest xcr0 would be loaded later.
7615          */
7616         vcpu->guest_fpu_loaded = 1;
7617         __kernel_fpu_begin();
7618         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7619         trace_kvm_fpu(1);
7620 }
7621
7622 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7623 {
7624         if (!vcpu->guest_fpu_loaded)
7625                 return;
7626
7627         vcpu->guest_fpu_loaded = 0;
7628         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7629         __kernel_fpu_end();
7630         ++vcpu->stat.fpu_reload;
7631         trace_kvm_fpu(0);
7632 }
7633
7634 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7635 {
7636         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7637
7638         kvmclock_reset(vcpu);
7639
7640         kvm_x86_ops->vcpu_free(vcpu);
7641         free_cpumask_var(wbinvd_dirty_mask);
7642 }
7643
7644 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7645                                                 unsigned int id)
7646 {
7647         struct kvm_vcpu *vcpu;
7648
7649         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7650                 printk_once(KERN_WARNING
7651                 "kvm: SMP vm created on host with unstable TSC; "
7652                 "guest TSC will not be reliable\n");
7653
7654         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7655
7656         return vcpu;
7657 }
7658
7659 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7660 {
7661         int r;
7662
7663         kvm_vcpu_mtrr_init(vcpu);
7664         r = vcpu_load(vcpu);
7665         if (r)
7666                 return r;
7667         kvm_vcpu_reset(vcpu, false);
7668         kvm_mmu_setup(vcpu);
7669         vcpu_put(vcpu);
7670         return r;
7671 }
7672
7673 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7674 {
7675         struct msr_data msr;
7676         struct kvm *kvm = vcpu->kvm;
7677
7678         if (vcpu_load(vcpu))
7679                 return;
7680         msr.data = 0x0;
7681         msr.index = MSR_IA32_TSC;
7682         msr.host_initiated = true;
7683         kvm_write_tsc(vcpu, &msr);
7684         vcpu_put(vcpu);
7685
7686         if (!kvmclock_periodic_sync)
7687                 return;
7688
7689         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7690                                         KVMCLOCK_SYNC_PERIOD);
7691 }
7692
7693 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7694 {
7695         int r;
7696         vcpu->arch.apf.msr_val = 0;
7697
7698         r = vcpu_load(vcpu);
7699         BUG_ON(r);
7700         kvm_mmu_unload(vcpu);
7701         vcpu_put(vcpu);
7702
7703         kvm_x86_ops->vcpu_free(vcpu);
7704 }
7705
7706 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7707 {
7708         vcpu->arch.hflags = 0;
7709
7710         vcpu->arch.smi_pending = 0;
7711         atomic_set(&vcpu->arch.nmi_queued, 0);
7712         vcpu->arch.nmi_pending = 0;
7713         vcpu->arch.nmi_injected = false;
7714         kvm_clear_interrupt_queue(vcpu);
7715         kvm_clear_exception_queue(vcpu);
7716
7717         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7718         kvm_update_dr0123(vcpu);
7719         vcpu->arch.dr6 = DR6_INIT;
7720         kvm_update_dr6(vcpu);
7721         vcpu->arch.dr7 = DR7_FIXED_1;
7722         kvm_update_dr7(vcpu);
7723
7724         vcpu->arch.cr2 = 0;
7725
7726         kvm_make_request(KVM_REQ_EVENT, vcpu);
7727         vcpu->arch.apf.msr_val = 0;
7728         vcpu->arch.st.msr_val = 0;
7729
7730         kvmclock_reset(vcpu);
7731
7732         kvm_clear_async_pf_completion_queue(vcpu);
7733         kvm_async_pf_hash_reset(vcpu);
7734         vcpu->arch.apf.halted = false;
7735
7736         if (!init_event) {
7737                 kvm_pmu_reset(vcpu);
7738                 vcpu->arch.smbase = 0x30000;
7739
7740                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7741                 vcpu->arch.msr_misc_features_enables = 0;
7742         }
7743
7744         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7745         vcpu->arch.regs_avail = ~0;
7746         vcpu->arch.regs_dirty = ~0;
7747
7748         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7749 }
7750
7751 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7752 {
7753         struct kvm_segment cs;
7754
7755         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7756         cs.selector = vector << 8;
7757         cs.base = vector << 12;
7758         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7759         kvm_rip_write(vcpu, 0);
7760 }
7761
7762 int kvm_arch_hardware_enable(void)
7763 {
7764         struct kvm *kvm;
7765         struct kvm_vcpu *vcpu;
7766         int i;
7767         int ret;
7768         u64 local_tsc;
7769         u64 max_tsc = 0;
7770         bool stable, backwards_tsc = false;
7771
7772         kvm_shared_msr_cpu_online();
7773         ret = kvm_x86_ops->hardware_enable();
7774         if (ret != 0)
7775                 return ret;
7776
7777         local_tsc = rdtsc();
7778         stable = !check_tsc_unstable();
7779         list_for_each_entry(kvm, &vm_list, vm_list) {
7780                 kvm_for_each_vcpu(i, vcpu, kvm) {
7781                         if (!stable && vcpu->cpu == smp_processor_id())
7782                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7783                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7784                                 backwards_tsc = true;
7785                                 if (vcpu->arch.last_host_tsc > max_tsc)
7786                                         max_tsc = vcpu->arch.last_host_tsc;
7787                         }
7788                 }
7789         }
7790
7791         /*
7792          * Sometimes, even reliable TSCs go backwards.  This happens on
7793          * platforms that reset TSC during suspend or hibernate actions, but
7794          * maintain synchronization.  We must compensate.  Fortunately, we can
7795          * detect that condition here, which happens early in CPU bringup,
7796          * before any KVM threads can be running.  Unfortunately, we can't
7797          * bring the TSCs fully up to date with real time, as we aren't yet far
7798          * enough into CPU bringup that we know how much real time has actually
7799          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7800          * variables that haven't been updated yet.
7801          *
7802          * So we simply find the maximum observed TSC above, then record the
7803          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7804          * the adjustment will be applied.  Note that we accumulate
7805          * adjustments, in case multiple suspend cycles happen before some VCPU
7806          * gets a chance to run again.  In the event that no KVM threads get a
7807          * chance to run, we will miss the entire elapsed period, as we'll have
7808          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7809          * loose cycle time.  This isn't too big a deal, since the loss will be
7810          * uniform across all VCPUs (not to mention the scenario is extremely
7811          * unlikely). It is possible that a second hibernate recovery happens
7812          * much faster than a first, causing the observed TSC here to be
7813          * smaller; this would require additional padding adjustment, which is
7814          * why we set last_host_tsc to the local tsc observed here.
7815          *
7816          * N.B. - this code below runs only on platforms with reliable TSC,
7817          * as that is the only way backwards_tsc is set above.  Also note
7818          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7819          * have the same delta_cyc adjustment applied if backwards_tsc
7820          * is detected.  Note further, this adjustment is only done once,
7821          * as we reset last_host_tsc on all VCPUs to stop this from being
7822          * called multiple times (one for each physical CPU bringup).
7823          *
7824          * Platforms with unreliable TSCs don't have to deal with this, they
7825          * will be compensated by the logic in vcpu_load, which sets the TSC to
7826          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7827          * guarantee that they stay in perfect synchronization.
7828          */
7829         if (backwards_tsc) {
7830                 u64 delta_cyc = max_tsc - local_tsc;
7831                 backwards_tsc_observed = true;
7832                 list_for_each_entry(kvm, &vm_list, vm_list) {
7833                         kvm_for_each_vcpu(i, vcpu, kvm) {
7834                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7835                                 vcpu->arch.last_host_tsc = local_tsc;
7836                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7837                         }
7838
7839                         /*
7840                          * We have to disable TSC offset matching.. if you were
7841                          * booting a VM while issuing an S4 host suspend....
7842                          * you may have some problem.  Solving this issue is
7843                          * left as an exercise to the reader.
7844                          */
7845                         kvm->arch.last_tsc_nsec = 0;
7846                         kvm->arch.last_tsc_write = 0;
7847                 }
7848
7849         }
7850         return 0;
7851 }
7852
7853 void kvm_arch_hardware_disable(void)
7854 {
7855         kvm_x86_ops->hardware_disable();
7856         drop_user_return_notifiers();
7857 }
7858
7859 int kvm_arch_hardware_setup(void)
7860 {
7861         int r;
7862
7863         r = kvm_x86_ops->hardware_setup();
7864         if (r != 0)
7865                 return r;
7866
7867         if (kvm_has_tsc_control) {
7868                 /*
7869                  * Make sure the user can only configure tsc_khz values that
7870                  * fit into a signed integer.
7871                  * A min value is not calculated needed because it will always
7872                  * be 1 on all machines.
7873                  */
7874                 u64 max = min(0x7fffffffULL,
7875                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7876                 kvm_max_guest_tsc_khz = max;
7877
7878                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7879         }
7880
7881         kvm_init_msr_list();
7882         return 0;
7883 }
7884
7885 void kvm_arch_hardware_unsetup(void)
7886 {
7887         kvm_x86_ops->hardware_unsetup();
7888 }
7889
7890 void kvm_arch_check_processor_compat(void *rtn)
7891 {
7892         kvm_x86_ops->check_processor_compatibility(rtn);
7893 }
7894
7895 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7896 {
7897         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7898 }
7899 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7900
7901 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7902 {
7903         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7904 }
7905
7906 struct static_key kvm_no_apic_vcpu __read_mostly;
7907 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7908
7909 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7910 {
7911         struct page *page;
7912         struct kvm *kvm;
7913         int r;
7914
7915         BUG_ON(vcpu->kvm == NULL);
7916         kvm = vcpu->kvm;
7917
7918         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7919         vcpu->arch.pv.pv_unhalted = false;
7920         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7921         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7922                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7923         else
7924                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7925
7926         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7927         if (!page) {
7928                 r = -ENOMEM;
7929                 goto fail;
7930         }
7931         vcpu->arch.pio_data = page_address(page);
7932
7933         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7934
7935         r = kvm_mmu_create(vcpu);
7936         if (r < 0)
7937                 goto fail_free_pio_data;
7938
7939         if (irqchip_in_kernel(kvm)) {
7940                 r = kvm_create_lapic(vcpu);
7941                 if (r < 0)
7942                         goto fail_mmu_destroy;
7943         } else
7944                 static_key_slow_inc(&kvm_no_apic_vcpu);
7945
7946         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7947                                        GFP_KERNEL);
7948         if (!vcpu->arch.mce_banks) {
7949                 r = -ENOMEM;
7950                 goto fail_free_lapic;
7951         }
7952         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7953
7954         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7955                 r = -ENOMEM;
7956                 goto fail_free_mce_banks;
7957         }
7958
7959         fx_init(vcpu);
7960
7961         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7962         vcpu->arch.pv_time_enabled = false;
7963
7964         vcpu->arch.guest_supported_xcr0 = 0;
7965         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7966
7967         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7968
7969         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7970
7971         kvm_async_pf_hash_reset(vcpu);
7972         kvm_pmu_init(vcpu);
7973
7974         vcpu->arch.pending_external_vector = -1;
7975
7976         kvm_hv_vcpu_init(vcpu);
7977
7978         return 0;
7979
7980 fail_free_mce_banks:
7981         kfree(vcpu->arch.mce_banks);
7982 fail_free_lapic:
7983         kvm_free_lapic(vcpu);
7984 fail_mmu_destroy:
7985         kvm_mmu_destroy(vcpu);
7986 fail_free_pio_data:
7987         free_page((unsigned long)vcpu->arch.pio_data);
7988 fail:
7989         return r;
7990 }
7991
7992 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7993 {
7994         int idx;
7995
7996         kvm_hv_vcpu_uninit(vcpu);
7997         kvm_pmu_destroy(vcpu);
7998         kfree(vcpu->arch.mce_banks);
7999         kvm_free_lapic(vcpu);
8000         idx = srcu_read_lock(&vcpu->kvm->srcu);
8001         kvm_mmu_destroy(vcpu);
8002         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8003         free_page((unsigned long)vcpu->arch.pio_data);
8004         if (!lapic_in_kernel(vcpu))
8005                 static_key_slow_dec(&kvm_no_apic_vcpu);
8006 }
8007
8008 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8009 {
8010         kvm_x86_ops->sched_in(vcpu, cpu);
8011 }
8012
8013 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8014 {
8015         if (type)
8016                 return -EINVAL;
8017
8018         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8019         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8020         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8021         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8022         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8023
8024         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8025         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8026         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8027         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8028                 &kvm->arch.irq_sources_bitmap);
8029
8030         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8031         mutex_init(&kvm->arch.apic_map_lock);
8032         mutex_init(&kvm->arch.hyperv.hv_lock);
8033         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8034
8035         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8036         pvclock_update_vm_gtod_copy(kvm);
8037
8038         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8039         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8040
8041         kvm_page_track_init(kvm);
8042         kvm_mmu_init_vm(kvm);
8043
8044         if (kvm_x86_ops->vm_init)
8045                 return kvm_x86_ops->vm_init(kvm);
8046
8047         return 0;
8048 }
8049
8050 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8051 {
8052         int r;
8053         r = vcpu_load(vcpu);
8054         BUG_ON(r);
8055         kvm_mmu_unload(vcpu);
8056         vcpu_put(vcpu);
8057 }
8058
8059 static void kvm_free_vcpus(struct kvm *kvm)
8060 {
8061         unsigned int i;
8062         struct kvm_vcpu *vcpu;
8063
8064         /*
8065          * Unpin any mmu pages first.
8066          */
8067         kvm_for_each_vcpu(i, vcpu, kvm) {
8068                 kvm_clear_async_pf_completion_queue(vcpu);
8069                 kvm_unload_vcpu_mmu(vcpu);
8070         }
8071         kvm_for_each_vcpu(i, vcpu, kvm)
8072                 kvm_arch_vcpu_free(vcpu);
8073
8074         mutex_lock(&kvm->lock);
8075         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8076                 kvm->vcpus[i] = NULL;
8077
8078         atomic_set(&kvm->online_vcpus, 0);
8079         mutex_unlock(&kvm->lock);
8080 }
8081
8082 void kvm_arch_sync_events(struct kvm *kvm)
8083 {
8084         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8085         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8086         kvm_free_pit(kvm);
8087 }
8088
8089 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8090 {
8091         int i, r;
8092         unsigned long hva;
8093         struct kvm_memslots *slots = kvm_memslots(kvm);
8094         struct kvm_memory_slot *slot, old;
8095
8096         /* Called with kvm->slots_lock held.  */
8097         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8098                 return -EINVAL;
8099
8100         slot = id_to_memslot(slots, id);
8101         if (size) {
8102                 if (slot->npages)
8103                         return -EEXIST;
8104
8105                 /*
8106                  * MAP_SHARED to prevent internal slot pages from being moved
8107                  * by fork()/COW.
8108                  */
8109                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8110                               MAP_SHARED | MAP_ANONYMOUS, 0);
8111                 if (IS_ERR((void *)hva))
8112                         return PTR_ERR((void *)hva);
8113         } else {
8114                 if (!slot->npages)
8115                         return 0;
8116
8117                 hva = 0;
8118         }
8119
8120         old = *slot;
8121         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8122                 struct kvm_userspace_memory_region m;
8123
8124                 m.slot = id | (i << 16);
8125                 m.flags = 0;
8126                 m.guest_phys_addr = gpa;
8127                 m.userspace_addr = hva;
8128                 m.memory_size = size;
8129                 r = __kvm_set_memory_region(kvm, &m);
8130                 if (r < 0)
8131                         return r;
8132         }
8133
8134         if (!size) {
8135                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8136                 WARN_ON(r < 0);
8137         }
8138
8139         return 0;
8140 }
8141 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8142
8143 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8144 {
8145         int r;
8146
8147         mutex_lock(&kvm->slots_lock);
8148         r = __x86_set_memory_region(kvm, id, gpa, size);
8149         mutex_unlock(&kvm->slots_lock);
8150
8151         return r;
8152 }
8153 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8154
8155 void kvm_arch_destroy_vm(struct kvm *kvm)
8156 {
8157         if (current->mm == kvm->mm) {
8158                 /*
8159                  * Free memory regions allocated on behalf of userspace,
8160                  * unless the the memory map has changed due to process exit
8161                  * or fd copying.
8162                  */
8163                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8164                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8165                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8166         }
8167         if (kvm_x86_ops->vm_destroy)
8168                 kvm_x86_ops->vm_destroy(kvm);
8169         kvm_pic_destroy(kvm);
8170         kvm_ioapic_destroy(kvm);
8171         kvm_free_vcpus(kvm);
8172         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8173         kvm_mmu_uninit_vm(kvm);
8174         kvm_page_track_cleanup(kvm);
8175 }
8176
8177 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8178                            struct kvm_memory_slot *dont)
8179 {
8180         int i;
8181
8182         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8183                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8184                         kvfree(free->arch.rmap[i]);
8185                         free->arch.rmap[i] = NULL;
8186                 }
8187                 if (i == 0)
8188                         continue;
8189
8190                 if (!dont || free->arch.lpage_info[i - 1] !=
8191                              dont->arch.lpage_info[i - 1]) {
8192                         kvfree(free->arch.lpage_info[i - 1]);
8193                         free->arch.lpage_info[i - 1] = NULL;
8194                 }
8195         }
8196
8197         kvm_page_track_free_memslot(free, dont);
8198 }
8199
8200 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8201                             unsigned long npages)
8202 {
8203         int i;
8204
8205         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8206                 struct kvm_lpage_info *linfo;
8207                 unsigned long ugfn;
8208                 int lpages;
8209                 int level = i + 1;
8210
8211                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8212                                       slot->base_gfn, level) + 1;
8213
8214                 slot->arch.rmap[i] =
8215                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8216                 if (!slot->arch.rmap[i])
8217                         goto out_free;
8218                 if (i == 0)
8219                         continue;
8220
8221                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8222                 if (!linfo)
8223                         goto out_free;
8224
8225                 slot->arch.lpage_info[i - 1] = linfo;
8226
8227                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8228                         linfo[0].disallow_lpage = 1;
8229                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8230                         linfo[lpages - 1].disallow_lpage = 1;
8231                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8232                 /*
8233                  * If the gfn and userspace address are not aligned wrt each
8234                  * other, or if explicitly asked to, disable large page
8235                  * support for this slot
8236                  */
8237                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8238                     !kvm_largepages_enabled()) {
8239                         unsigned long j;
8240
8241                         for (j = 0; j < lpages; ++j)
8242                                 linfo[j].disallow_lpage = 1;
8243                 }
8244         }
8245
8246         if (kvm_page_track_create_memslot(slot, npages))
8247                 goto out_free;
8248
8249         return 0;
8250
8251 out_free:
8252         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8253                 kvfree(slot->arch.rmap[i]);
8254                 slot->arch.rmap[i] = NULL;
8255                 if (i == 0)
8256                         continue;
8257
8258                 kvfree(slot->arch.lpage_info[i - 1]);
8259                 slot->arch.lpage_info[i - 1] = NULL;
8260         }
8261         return -ENOMEM;
8262 }
8263
8264 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8265 {
8266         /*
8267          * memslots->generation has been incremented.
8268          * mmio generation may have reached its maximum value.
8269          */
8270         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8271 }
8272
8273 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8274                                 struct kvm_memory_slot *memslot,
8275                                 const struct kvm_userspace_memory_region *mem,
8276                                 enum kvm_mr_change change)
8277 {
8278         return 0;
8279 }
8280
8281 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8282                                      struct kvm_memory_slot *new)
8283 {
8284         /* Still write protect RO slot */
8285         if (new->flags & KVM_MEM_READONLY) {
8286                 kvm_mmu_slot_remove_write_access(kvm, new);
8287                 return;
8288         }
8289
8290         /*
8291          * Call kvm_x86_ops dirty logging hooks when they are valid.
8292          *
8293          * kvm_x86_ops->slot_disable_log_dirty is called when:
8294          *
8295          *  - KVM_MR_CREATE with dirty logging is disabled
8296          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8297          *
8298          * The reason is, in case of PML, we need to set D-bit for any slots
8299          * with dirty logging disabled in order to eliminate unnecessary GPA
8300          * logging in PML buffer (and potential PML buffer full VMEXT). This
8301          * guarantees leaving PML enabled during guest's lifetime won't have
8302          * any additonal overhead from PML when guest is running with dirty
8303          * logging disabled for memory slots.
8304          *
8305          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8306          * to dirty logging mode.
8307          *
8308          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8309          *
8310          * In case of write protect:
8311          *
8312          * Write protect all pages for dirty logging.
8313          *
8314          * All the sptes including the large sptes which point to this
8315          * slot are set to readonly. We can not create any new large
8316          * spte on this slot until the end of the logging.
8317          *
8318          * See the comments in fast_page_fault().
8319          */
8320         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8321                 if (kvm_x86_ops->slot_enable_log_dirty)
8322                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8323                 else
8324                         kvm_mmu_slot_remove_write_access(kvm, new);
8325         } else {
8326                 if (kvm_x86_ops->slot_disable_log_dirty)
8327                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8328         }
8329 }
8330
8331 void kvm_arch_commit_memory_region(struct kvm *kvm,
8332                                 const struct kvm_userspace_memory_region *mem,
8333                                 const struct kvm_memory_slot *old,
8334                                 const struct kvm_memory_slot *new,
8335                                 enum kvm_mr_change change)
8336 {
8337         int nr_mmu_pages = 0;
8338
8339         if (!kvm->arch.n_requested_mmu_pages)
8340                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8341
8342         if (nr_mmu_pages)
8343                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8344
8345         /*
8346          * Dirty logging tracks sptes in 4k granularity, meaning that large
8347          * sptes have to be split.  If live migration is successful, the guest
8348          * in the source machine will be destroyed and large sptes will be
8349          * created in the destination. However, if the guest continues to run
8350          * in the source machine (for example if live migration fails), small
8351          * sptes will remain around and cause bad performance.
8352          *
8353          * Scan sptes if dirty logging has been stopped, dropping those
8354          * which can be collapsed into a single large-page spte.  Later
8355          * page faults will create the large-page sptes.
8356          */
8357         if ((change != KVM_MR_DELETE) &&
8358                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8359                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8360                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8361
8362         /*
8363          * Set up write protection and/or dirty logging for the new slot.
8364          *
8365          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8366          * been zapped so no dirty logging staff is needed for old slot. For
8367          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8368          * new and it's also covered when dealing with the new slot.
8369          *
8370          * FIXME: const-ify all uses of struct kvm_memory_slot.
8371          */
8372         if (change != KVM_MR_DELETE)
8373                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8374 }
8375
8376 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8377 {
8378         kvm_mmu_invalidate_zap_all_pages(kvm);
8379 }
8380
8381 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8382                                    struct kvm_memory_slot *slot)
8383 {
8384         kvm_page_track_flush_slot(kvm, slot);
8385 }
8386
8387 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8388 {
8389         if (!list_empty_careful(&vcpu->async_pf.done))
8390                 return true;
8391
8392         if (kvm_apic_has_events(vcpu))
8393                 return true;
8394
8395         if (vcpu->arch.pv.pv_unhalted)
8396                 return true;
8397
8398         if (atomic_read(&vcpu->arch.nmi_queued))
8399                 return true;
8400
8401         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8402                 return true;
8403
8404         if (kvm_arch_interrupt_allowed(vcpu) &&
8405             kvm_cpu_has_interrupt(vcpu))
8406                 return true;
8407
8408         if (kvm_hv_has_stimer_pending(vcpu))
8409                 return true;
8410
8411         return false;
8412 }
8413
8414 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8415 {
8416         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8417 }
8418
8419 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8420 {
8421         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8422 }
8423
8424 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8425 {
8426         return kvm_x86_ops->interrupt_allowed(vcpu);
8427 }
8428
8429 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8430 {
8431         if (is_64_bit_mode(vcpu))
8432                 return kvm_rip_read(vcpu);
8433         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8434                      kvm_rip_read(vcpu));
8435 }
8436 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8437
8438 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8439 {
8440         return kvm_get_linear_rip(vcpu) == linear_rip;
8441 }
8442 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8443
8444 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8445 {
8446         unsigned long rflags;
8447
8448         rflags = kvm_x86_ops->get_rflags(vcpu);
8449         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8450                 rflags &= ~X86_EFLAGS_TF;
8451         return rflags;
8452 }
8453 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8454
8455 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8456 {
8457         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8458             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8459                 rflags |= X86_EFLAGS_TF;
8460         kvm_x86_ops->set_rflags(vcpu, rflags);
8461 }
8462
8463 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8464 {
8465         __kvm_set_rflags(vcpu, rflags);
8466         kvm_make_request(KVM_REQ_EVENT, vcpu);
8467 }
8468 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8469
8470 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8471 {
8472         int r;
8473
8474         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8475               work->wakeup_all)
8476                 return;
8477
8478         r = kvm_mmu_reload(vcpu);
8479         if (unlikely(r))
8480                 return;
8481
8482         if (!vcpu->arch.mmu.direct_map &&
8483               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8484                 return;
8485
8486         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8487 }
8488
8489 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8490 {
8491         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8492 }
8493
8494 static inline u32 kvm_async_pf_next_probe(u32 key)
8495 {
8496         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8497 }
8498
8499 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8500 {
8501         u32 key = kvm_async_pf_hash_fn(gfn);
8502
8503         while (vcpu->arch.apf.gfns[key] != ~0)
8504                 key = kvm_async_pf_next_probe(key);
8505
8506         vcpu->arch.apf.gfns[key] = gfn;
8507 }
8508
8509 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8510 {
8511         int i;
8512         u32 key = kvm_async_pf_hash_fn(gfn);
8513
8514         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8515                      (vcpu->arch.apf.gfns[key] != gfn &&
8516                       vcpu->arch.apf.gfns[key] != ~0); i++)
8517                 key = kvm_async_pf_next_probe(key);
8518
8519         return key;
8520 }
8521
8522 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 {
8524         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8525 }
8526
8527 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8528 {
8529         u32 i, j, k;
8530
8531         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8532         while (true) {
8533                 vcpu->arch.apf.gfns[i] = ~0;
8534                 do {
8535                         j = kvm_async_pf_next_probe(j);
8536                         if (vcpu->arch.apf.gfns[j] == ~0)
8537                                 return;
8538                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8539                         /*
8540                          * k lies cyclically in ]i,j]
8541                          * |    i.k.j |
8542                          * |....j i.k.| or  |.k..j i...|
8543                          */
8544                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8545                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8546                 i = j;
8547         }
8548 }
8549
8550 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8551 {
8552         return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8553                                            sizeof(val));
8554 }
8555
8556 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8557                                      struct kvm_async_pf *work)
8558 {
8559         struct x86_exception fault;
8560
8561         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8562         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8563
8564         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8565             (vcpu->arch.apf.send_user_only &&
8566              kvm_x86_ops->get_cpl(vcpu) == 0))
8567                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8568         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8569                 fault.vector = PF_VECTOR;
8570                 fault.error_code_valid = true;
8571                 fault.error_code = 0;
8572                 fault.nested_page_fault = false;
8573                 fault.address = work->arch.token;
8574                 kvm_inject_page_fault(vcpu, &fault);
8575         }
8576 }
8577
8578 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8579                                  struct kvm_async_pf *work)
8580 {
8581         struct x86_exception fault;
8582
8583         if (work->wakeup_all)
8584                 work->arch.token = ~0; /* broadcast wakeup */
8585         else
8586                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8587         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8588
8589         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8590             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8591                 fault.vector = PF_VECTOR;
8592                 fault.error_code_valid = true;
8593                 fault.error_code = 0;
8594                 fault.nested_page_fault = false;
8595                 fault.address = work->arch.token;
8596                 kvm_inject_page_fault(vcpu, &fault);
8597         }
8598         vcpu->arch.apf.halted = false;
8599         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8600 }
8601
8602 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8603 {
8604         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8605                 return true;
8606         else
8607                 return !kvm_event_needs_reinjection(vcpu) &&
8608                         kvm_x86_ops->interrupt_allowed(vcpu);
8609 }
8610
8611 void kvm_arch_start_assignment(struct kvm *kvm)
8612 {
8613         atomic_inc(&kvm->arch.assigned_device_count);
8614 }
8615 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8616
8617 void kvm_arch_end_assignment(struct kvm *kvm)
8618 {
8619         atomic_dec(&kvm->arch.assigned_device_count);
8620 }
8621 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8622
8623 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8624 {
8625         return atomic_read(&kvm->arch.assigned_device_count);
8626 }
8627 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8628
8629 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8630 {
8631         atomic_inc(&kvm->arch.noncoherent_dma_count);
8632 }
8633 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8634
8635 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8636 {
8637         atomic_dec(&kvm->arch.noncoherent_dma_count);
8638 }
8639 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8640
8641 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8642 {
8643         return atomic_read(&kvm->arch.noncoherent_dma_count);
8644 }
8645 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8646
8647 bool kvm_arch_has_irq_bypass(void)
8648 {
8649         return kvm_x86_ops->update_pi_irte != NULL;
8650 }
8651
8652 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8653                                       struct irq_bypass_producer *prod)
8654 {
8655         struct kvm_kernel_irqfd *irqfd =
8656                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8657
8658         irqfd->producer = prod;
8659
8660         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8661                                            prod->irq, irqfd->gsi, 1);
8662 }
8663
8664 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8665                                       struct irq_bypass_producer *prod)
8666 {
8667         int ret;
8668         struct kvm_kernel_irqfd *irqfd =
8669                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8670
8671         WARN_ON(irqfd->producer != prod);
8672         irqfd->producer = NULL;
8673
8674         /*
8675          * When producer of consumer is unregistered, we change back to
8676          * remapped mode, so we can re-use the current implementation
8677          * when the irq is masked/disabled or the consumer side (KVM
8678          * int this case doesn't want to receive the interrupts.
8679         */
8680         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8681         if (ret)
8682                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8683                        " fails: %d\n", irqfd->consumer.token, ret);
8684 }
8685
8686 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8687                                    uint32_t guest_irq, bool set)
8688 {
8689         if (!kvm_x86_ops->update_pi_irte)
8690                 return -EINVAL;
8691
8692         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8693 }
8694
8695 bool kvm_vector_hashing_enabled(void)
8696 {
8697         return vector_hashing;
8698 }
8699 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8700
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);