]> git.karo-electronics.de Git - linux-beck.git/blob - arch/x86/kvm/x86.c
9a2cc696702a18d63e3c53cfedd4365b6f4f7c51
[linux-beck.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213
214         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
215                 values = &locals->values[slot];
216                 if (values->host != values->curr) {
217                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
218                         values->curr = values->host;
219                 }
220         }
221         locals->registered = false;
222         user_return_notifier_unregister(urn);
223 }
224
225 static void shared_msr_update(unsigned slot, u32 msr)
226 {
227         u64 value;
228         unsigned int cpu = smp_processor_id();
229         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230
231         /* only read, and nobody should modify it at this time,
232          * so don't need lock */
233         if (slot >= shared_msrs_global.nr) {
234                 printk(KERN_ERR "kvm: invalid MSR slot!");
235                 return;
236         }
237         rdmsrl_safe(msr, &value);
238         smsr->values[slot].host = value;
239         smsr->values[slot].curr = value;
240 }
241
242 void kvm_define_shared_msr(unsigned slot, u32 msr)
243 {
244         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
245         shared_msrs_global.msrs[slot] = msr;
246         if (slot >= shared_msrs_global.nr)
247                 shared_msrs_global.nr = slot + 1;
248 }
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
250
251 static void kvm_shared_msr_cpu_online(void)
252 {
253         unsigned i;
254
255         for (i = 0; i < shared_msrs_global.nr; ++i)
256                 shared_msr_update(i, shared_msrs_global.msrs[i]);
257 }
258
259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
260 {
261         unsigned int cpu = smp_processor_id();
262         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263         int err;
264
265         if (((value ^ smsr->values[slot].curr) & mask) == 0)
266                 return 0;
267         smsr->values[slot].curr = value;
268         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
269         if (err)
270                 return 1;
271
272         if (!smsr->registered) {
273                 smsr->urn.on_user_return = kvm_on_user_return;
274                 user_return_notifier_register(&smsr->urn);
275                 smsr->registered = true;
276         }
277         return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280
281 static void drop_user_return_notifiers(void)
282 {
283         unsigned int cpu = smp_processor_id();
284         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285
286         if (smsr->registered)
287                 kvm_on_user_return(&smsr->urn);
288 }
289
290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292         return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295
296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298         u64 old_state = vcpu->arch.apic_base &
299                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300         u64 new_state = msr_info->data &
301                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304
305         if (!msr_info->host_initiated &&
306             ((msr_info->data & reserved_bits) != 0 ||
307              new_state == X2APIC_ENABLE ||
308              (new_state == MSR_IA32_APICBASE_ENABLE &&
309               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311               old_state == 0)))
312                 return 1;
313
314         kvm_lapic_set_base(vcpu, msr_info->data);
315         return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318
319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321         /* Fault while not rebooting.  We want the trace. */
322         BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325
326 #define EXCPT_BENIGN            0
327 #define EXCPT_CONTRIBUTORY      1
328 #define EXCPT_PF                2
329
330 static int exception_class(int vector)
331 {
332         switch (vector) {
333         case PF_VECTOR:
334                 return EXCPT_PF;
335         case DE_VECTOR:
336         case TS_VECTOR:
337         case NP_VECTOR:
338         case SS_VECTOR:
339         case GP_VECTOR:
340                 return EXCPT_CONTRIBUTORY;
341         default:
342                 break;
343         }
344         return EXCPT_BENIGN;
345 }
346
347 #define EXCPT_FAULT             0
348 #define EXCPT_TRAP              1
349 #define EXCPT_ABORT             2
350 #define EXCPT_INTERRUPT         3
351
352 static int exception_type(int vector)
353 {
354         unsigned int mask;
355
356         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357                 return EXCPT_INTERRUPT;
358
359         mask = 1 << vector;
360
361         /* #DB is trap, as instruction watchpoints are handled elsewhere */
362         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363                 return EXCPT_TRAP;
364
365         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366                 return EXCPT_ABORT;
367
368         /* Reserved exceptions will result in fault */
369         return EXCPT_FAULT;
370 }
371
372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373                 unsigned nr, bool has_error, u32 error_code,
374                 bool reinject)
375 {
376         u32 prev_nr;
377         int class1, class2;
378
379         kvm_make_request(KVM_REQ_EVENT, vcpu);
380
381         if (!vcpu->arch.exception.pending) {
382         queue:
383                 if (has_error && !is_protmode(vcpu))
384                         has_error = false;
385                 vcpu->arch.exception.pending = true;
386                 vcpu->arch.exception.has_error_code = has_error;
387                 vcpu->arch.exception.nr = nr;
388                 vcpu->arch.exception.error_code = error_code;
389                 vcpu->arch.exception.reinject = reinject;
390                 return;
391         }
392
393         /* to check exception */
394         prev_nr = vcpu->arch.exception.nr;
395         if (prev_nr == DF_VECTOR) {
396                 /* triple fault -> shutdown */
397                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398                 return;
399         }
400         class1 = exception_class(prev_nr);
401         class2 = exception_class(nr);
402         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404                 /* generate double fault per SDM Table 5-5 */
405                 vcpu->arch.exception.pending = true;
406                 vcpu->arch.exception.has_error_code = true;
407                 vcpu->arch.exception.nr = DF_VECTOR;
408                 vcpu->arch.exception.error_code = 0;
409         } else
410                 /* replace previous exception with a new one in a hope
411                    that instruction re-execution will regenerate lost
412                    exception */
413                 goto queue;
414 }
415
416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418         kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421
422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424         kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427
428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430         if (err)
431                 kvm_inject_gp(vcpu, 0);
432         else
433                 kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436
437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         ++vcpu->stat.pf_guest;
440         vcpu->arch.cr2 = fault->address;
441         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444
445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449         else
450                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451
452         return fault->nested_page_fault;
453 }
454
455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457         atomic_inc(&vcpu->arch.nmi_queued);
458         kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461
462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464         kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467
468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470         kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481                 return true;
482         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483         return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486
487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490                 return true;
491
492         kvm_queue_exception(vcpu, UD_VECTOR);
493         return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503                             gfn_t ngfn, void *data, int offset, int len,
504                             u32 access)
505 {
506         struct x86_exception exception;
507         gfn_t real_gfn;
508         gpa_t ngpa;
509
510         ngpa     = gfn_to_gpa(ngfn);
511         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512         if (real_gfn == UNMAPPED_GVA)
513                 return -EFAULT;
514
515         real_gfn = gpa_to_gfn(real_gfn);
516
517         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520
521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522                                void *data, int offset, int len, u32 access)
523 {
524         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525                                        data, offset, len, access);
526 }
527
528 /*
529  * Load the pae pdptrs.  Return true is they are all valid.
530  */
531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
532 {
533         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
534         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
535         int i;
536         int ret;
537         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
538
539         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
540                                       offset * sizeof(u64), sizeof(pdpte),
541                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
542         if (ret < 0) {
543                 ret = 0;
544                 goto out;
545         }
546         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
547                 if ((pdpte[i] & PT_PRESENT_MASK) &&
548                     (pdpte[i] &
549                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
550                         ret = 0;
551                         goto out;
552                 }
553         }
554         ret = 1;
555
556         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
557         __set_bit(VCPU_EXREG_PDPTR,
558                   (unsigned long *)&vcpu->arch.regs_avail);
559         __set_bit(VCPU_EXREG_PDPTR,
560                   (unsigned long *)&vcpu->arch.regs_dirty);
561 out:
562
563         return ret;
564 }
565 EXPORT_SYMBOL_GPL(load_pdptrs);
566
567 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
568 {
569         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
570         bool changed = true;
571         int offset;
572         gfn_t gfn;
573         int r;
574
575         if (is_long_mode(vcpu) || !is_pae(vcpu))
576                 return false;
577
578         if (!test_bit(VCPU_EXREG_PDPTR,
579                       (unsigned long *)&vcpu->arch.regs_avail))
580                 return true;
581
582         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
583         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
584         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
585                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
586         if (r < 0)
587                 goto out;
588         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
589 out:
590
591         return changed;
592 }
593
594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
595 {
596         unsigned long old_cr0 = kvm_read_cr0(vcpu);
597         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
598
599         cr0 |= X86_CR0_ET;
600
601 #ifdef CONFIG_X86_64
602         if (cr0 & 0xffffffff00000000UL)
603                 return 1;
604 #endif
605
606         cr0 &= ~CR0_RESERVED_BITS;
607
608         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
609                 return 1;
610
611         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
612                 return 1;
613
614         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
615 #ifdef CONFIG_X86_64
616                 if ((vcpu->arch.efer & EFER_LME)) {
617                         int cs_db, cs_l;
618
619                         if (!is_pae(vcpu))
620                                 return 1;
621                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
622                         if (cs_l)
623                                 return 1;
624                 } else
625 #endif
626                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
627                                                  kvm_read_cr3(vcpu)))
628                         return 1;
629         }
630
631         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
632                 return 1;
633
634         kvm_x86_ops->set_cr0(vcpu, cr0);
635
636         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
637                 kvm_clear_async_pf_completion_queue(vcpu);
638                 kvm_async_pf_hash_reset(vcpu);
639         }
640
641         if ((cr0 ^ old_cr0) & update_bits)
642                 kvm_mmu_reset_context(vcpu);
643
644         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
645             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
646             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
647                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_set_cr0);
652
653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
654 {
655         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
656 }
657 EXPORT_SYMBOL_GPL(kvm_lmsw);
658
659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
660 {
661         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
662                         !vcpu->guest_xcr0_loaded) {
663                 /* kvm_set_xcr() also depends on this */
664                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
665                 vcpu->guest_xcr0_loaded = 1;
666         }
667 }
668
669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
670 {
671         if (vcpu->guest_xcr0_loaded) {
672                 if (vcpu->arch.xcr0 != host_xcr0)
673                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
674                 vcpu->guest_xcr0_loaded = 0;
675         }
676 }
677
678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
679 {
680         u64 xcr0 = xcr;
681         u64 old_xcr0 = vcpu->arch.xcr0;
682         u64 valid_bits;
683
684         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
685         if (index != XCR_XFEATURE_ENABLED_MASK)
686                 return 1;
687         if (!(xcr0 & XFEATURE_MASK_FP))
688                 return 1;
689         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
690                 return 1;
691
692         /*
693          * Do not allow the guest to set bits that we do not support
694          * saving.  However, xcr0 bit 0 is always set, even if the
695          * emulated CPU does not support XSAVE (see fx_init).
696          */
697         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
698         if (xcr0 & ~valid_bits)
699                 return 1;
700
701         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
702             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
703                 return 1;
704
705         if (xcr0 & XFEATURE_MASK_AVX512) {
706                 if (!(xcr0 & XFEATURE_MASK_YMM))
707                         return 1;
708                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
709                         return 1;
710         }
711         vcpu->arch.xcr0 = xcr0;
712
713         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
714                 kvm_update_cpuid(vcpu);
715         return 0;
716 }
717
718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
719 {
720         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
721             __kvm_set_xcr(vcpu, index, xcr)) {
722                 kvm_inject_gp(vcpu, 0);
723                 return 1;
724         }
725         return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_xcr);
728
729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
730 {
731         unsigned long old_cr4 = kvm_read_cr4(vcpu);
732         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
733                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
734
735         if (cr4 & CR4_RESERVED_BITS)
736                 return 1;
737
738         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
739                 return 1;
740
741         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
742                 return 1;
743
744         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
745                 return 1;
746
747         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
748                 return 1;
749
750         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
751                 return 1;
752
753         if (is_long_mode(vcpu)) {
754                 if (!(cr4 & X86_CR4_PAE))
755                         return 1;
756         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
757                    && ((cr4 ^ old_cr4) & pdptr_bits)
758                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
759                                    kvm_read_cr3(vcpu)))
760                 return 1;
761
762         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
763                 if (!guest_cpuid_has_pcid(vcpu))
764                         return 1;
765
766                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
768                         return 1;
769         }
770
771         if (kvm_x86_ops->set_cr4(vcpu, cr4))
772                 return 1;
773
774         if (((cr4 ^ old_cr4) & pdptr_bits) ||
775             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
776                 kvm_mmu_reset_context(vcpu);
777
778         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
779                 kvm_update_cpuid(vcpu);
780
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr4);
784
785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 #ifdef CONFIG_X86_64
788         cr3 &= ~CR3_PCID_INVD;
789 #endif
790
791         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
792                 kvm_mmu_sync_roots(vcpu);
793                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
794                 return 0;
795         }
796
797         if (is_long_mode(vcpu)) {
798                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
799                         return 1;
800         } else if (is_pae(vcpu) && is_paging(vcpu) &&
801                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
802                 return 1;
803
804         vcpu->arch.cr3 = cr3;
805         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
806         kvm_mmu_new_cr3(vcpu);
807         return 0;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cr3);
810
811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
812 {
813         if (cr8 & CR8_RESERVED_BITS)
814                 return 1;
815         if (lapic_in_kernel(vcpu))
816                 kvm_lapic_set_tpr(vcpu, cr8);
817         else
818                 vcpu->arch.cr8 = cr8;
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr8);
822
823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
824 {
825         if (lapic_in_kernel(vcpu))
826                 return kvm_lapic_get_cr8(vcpu);
827         else
828                 return vcpu->arch.cr8;
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_cr8);
831
832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
833 {
834         int i;
835
836         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
837                 for (i = 0; i < KVM_NR_DB_REGS; i++)
838                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
839                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
840         }
841 }
842
843 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
844 {
845         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
846                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
847 }
848
849 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
850 {
851         unsigned long dr7;
852
853         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
854                 dr7 = vcpu->arch.guest_debug_dr7;
855         else
856                 dr7 = vcpu->arch.dr7;
857         kvm_x86_ops->set_dr7(vcpu, dr7);
858         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
859         if (dr7 & DR7_BP_EN_MASK)
860                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
861 }
862
863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
864 {
865         u64 fixed = DR6_FIXED_1;
866
867         if (!guest_cpuid_has_rtm(vcpu))
868                 fixed |= DR6_RTM;
869         return fixed;
870 }
871
872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
873 {
874         switch (dr) {
875         case 0 ... 3:
876                 vcpu->arch.db[dr] = val;
877                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
878                         vcpu->arch.eff_db[dr] = val;
879                 break;
880         case 4:
881                 /* fall through */
882         case 6:
883                 if (val & 0xffffffff00000000ULL)
884                         return -1; /* #GP */
885                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
886                 kvm_update_dr6(vcpu);
887                 break;
888         case 5:
889                 /* fall through */
890         default: /* 7 */
891                 if (val & 0xffffffff00000000ULL)
892                         return -1; /* #GP */
893                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
894                 kvm_update_dr7(vcpu);
895                 break;
896         }
897
898         return 0;
899 }
900
901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
902 {
903         if (__kvm_set_dr(vcpu, dr, val)) {
904                 kvm_inject_gp(vcpu, 0);
905                 return 1;
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_set_dr);
910
911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
912 {
913         switch (dr) {
914         case 0 ... 3:
915                 *val = vcpu->arch.db[dr];
916                 break;
917         case 4:
918                 /* fall through */
919         case 6:
920                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921                         *val = vcpu->arch.dr6;
922                 else
923                         *val = kvm_x86_ops->get_dr6(vcpu);
924                 break;
925         case 5:
926                 /* fall through */
927         default: /* 7 */
928                 *val = vcpu->arch.dr7;
929                 break;
930         }
931         return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_get_dr);
934
935 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
936 {
937         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938         u64 data;
939         int err;
940
941         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
942         if (err)
943                 return err;
944         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
945         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
946         return err;
947 }
948 EXPORT_SYMBOL_GPL(kvm_rdpmc);
949
950 /*
951  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
953  *
954  * This list is modified at module load time to reflect the
955  * capabilities of the host cpu. This capabilities test skips MSRs that are
956  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957  * may depend on host virtualization features rather than host cpu features.
958  */
959
960 static u32 msrs_to_save[] = {
961         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
962         MSR_STAR,
963 #ifdef CONFIG_X86_64
964         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
965 #endif
966         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
967         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
968 };
969
970 static unsigned num_msrs_to_save;
971
972 static u32 emulated_msrs[] = {
973         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
974         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
975         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
976         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
977         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
978         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
979         HV_X64_MSR_RESET,
980         HV_X64_MSR_VP_INDEX,
981         HV_X64_MSR_VP_RUNTIME,
982         HV_X64_MSR_SCONTROL,
983         HV_X64_MSR_STIMER0_CONFIG,
984         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
985         MSR_KVM_PV_EOI_EN,
986
987         MSR_IA32_TSC_ADJUST,
988         MSR_IA32_TSCDEADLINE,
989         MSR_IA32_MISC_ENABLE,
990         MSR_IA32_MCG_STATUS,
991         MSR_IA32_MCG_CTL,
992         MSR_IA32_MCG_EXT_CTL,
993         MSR_IA32_SMBASE,
994 };
995
996 static unsigned num_emulated_msrs;
997
998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
999 {
1000         if (efer & efer_reserved_bits)
1001                 return false;
1002
1003         if (efer & EFER_FFXSR) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008                         return false;
1009         }
1010
1011         if (efer & EFER_SVME) {
1012                 struct kvm_cpuid_entry2 *feat;
1013
1014                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016                         return false;
1017         }
1018
1019         return true;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022
1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024 {
1025         u64 old_efer = vcpu->arch.efer;
1026
1027         if (!kvm_valid_efer(vcpu, efer))
1028                 return 1;
1029
1030         if (is_paging(vcpu)
1031             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032                 return 1;
1033
1034         efer &= ~EFER_LMA;
1035         efer |= vcpu->arch.efer & EFER_LMA;
1036
1037         kvm_x86_ops->set_efer(vcpu, efer);
1038
1039         /* Update reserved bits */
1040         if ((efer ^ old_efer) & EFER_NX)
1041                 kvm_mmu_reset_context(vcpu);
1042
1043         return 0;
1044 }
1045
1046 void kvm_enable_efer_bits(u64 mask)
1047 {
1048        efer_reserved_bits &= ~mask;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051
1052 /*
1053  * Writes msr value into into the appropriate "register".
1054  * Returns 0 on success, non-0 otherwise.
1055  * Assumes vcpu_load() was already called.
1056  */
1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058 {
1059         switch (msr->index) {
1060         case MSR_FS_BASE:
1061         case MSR_GS_BASE:
1062         case MSR_KERNEL_GS_BASE:
1063         case MSR_CSTAR:
1064         case MSR_LSTAR:
1065                 if (is_noncanonical_address(msr->data))
1066                         return 1;
1067                 break;
1068         case MSR_IA32_SYSENTER_EIP:
1069         case MSR_IA32_SYSENTER_ESP:
1070                 /*
1071                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072                  * non-canonical address is written on Intel but not on
1073                  * AMD (which ignores the top 32-bits, because it does
1074                  * not implement 64-bit SYSENTER).
1075                  *
1076                  * 64-bit code should hence be able to write a non-canonical
1077                  * value on AMD.  Making the address canonical ensures that
1078                  * vmentry does not fail on Intel after writing a non-canonical
1079                  * value, and that something deterministic happens if the guest
1080                  * invokes 64-bit SYSENTER.
1081                  */
1082                 msr->data = get_canonical(msr->data);
1083         }
1084         return kvm_x86_ops->set_msr(vcpu, msr);
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_msr);
1087
1088 /*
1089  * Adapt set_msr() to msr_io()'s calling convention
1090  */
1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093         struct msr_data msr;
1094         int r;
1095
1096         msr.index = index;
1097         msr.host_initiated = true;
1098         r = kvm_get_msr(vcpu, &msr);
1099         if (r)
1100                 return r;
1101
1102         *data = msr.data;
1103         return 0;
1104 }
1105
1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108         struct msr_data msr;
1109
1110         msr.data = *data;
1111         msr.index = index;
1112         msr.host_initiated = true;
1113         return kvm_set_msr(vcpu, &msr);
1114 }
1115
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data {
1118         seqcount_t      seq;
1119
1120         struct { /* extract of a clocksource struct */
1121                 int vclock_mode;
1122                 cycle_t cycle_last;
1123                 cycle_t mask;
1124                 u32     mult;
1125                 u32     shift;
1126         } clock;
1127
1128         u64             boot_ns;
1129         u64             nsec_base;
1130 };
1131
1132 static struct pvclock_gtod_data pvclock_gtod_data;
1133
1134 static void update_pvclock_gtod(struct timekeeper *tk)
1135 {
1136         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137         u64 boot_ns;
1138
1139         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140
1141         write_seqcount_begin(&vdata->seq);
1142
1143         /* copy pvclock gtod data */
1144         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1145         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1146         vdata->clock.mask               = tk->tkr_mono.mask;
1147         vdata->clock.mult               = tk->tkr_mono.mult;
1148         vdata->clock.shift              = tk->tkr_mono.shift;
1149
1150         vdata->boot_ns                  = boot_ns;
1151         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1152
1153         write_seqcount_end(&vdata->seq);
1154 }
1155 #endif
1156
1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159         /*
1160          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161          * vcpu_enter_guest.  This function is only called from
1162          * the physical CPU that is running vcpu.
1163          */
1164         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165 }
1166
1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168 {
1169         int version;
1170         int r;
1171         struct pvclock_wall_clock wc;
1172         struct timespec64 boot;
1173
1174         if (!wall_clock)
1175                 return;
1176
1177         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178         if (r)
1179                 return;
1180
1181         if (version & 1)
1182                 ++version;  /* first time write, random junk */
1183
1184         ++version;
1185
1186         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187                 return;
1188
1189         /*
1190          * The guest calculates current wall clock time by adding
1191          * system time (updated by kvm_guest_time_update below) to the
1192          * wall clock specified here.  guest system time equals host
1193          * system time for us, thus we must fill in host boot time here.
1194          */
1195         getboottime64(&boot);
1196
1197         if (kvm->arch.kvmclock_offset) {
1198                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199                 boot = timespec64_sub(boot, ts);
1200         }
1201         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202         wc.nsec = boot.tv_nsec;
1203         wc.version = version;
1204
1205         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206
1207         version++;
1208         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209 }
1210
1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212 {
1213         do_shl32_div32(dividend, divisor);
1214         return dividend;
1215 }
1216
1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218                                s8 *pshift, u32 *pmultiplier)
1219 {
1220         uint64_t scaled64;
1221         int32_t  shift = 0;
1222         uint64_t tps64;
1223         uint32_t tps32;
1224
1225         tps64 = base_hz;
1226         scaled64 = scaled_hz;
1227         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228                 tps64 >>= 1;
1229                 shift--;
1230         }
1231
1232         tps32 = (uint32_t)tps64;
1233         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235                         scaled64 >>= 1;
1236                 else
1237                         tps32 <<= 1;
1238                 shift++;
1239         }
1240
1241         *pshift = shift;
1242         *pmultiplier = div_frac(scaled64, tps32);
1243
1244         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246 }
1247
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250 #endif
1251
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253 static unsigned long max_tsc_khz;
1254
1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256 {
1257         u64 v = (u64)khz * (1000000 + ppm);
1258         do_div(v, 1000000);
1259         return v;
1260 }
1261
1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263 {
1264         u64 ratio;
1265
1266         /* Guest TSC same frequency as host TSC? */
1267         if (!scale) {
1268                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269                 return 0;
1270         }
1271
1272         /* TSC scaling supported? */
1273         if (!kvm_has_tsc_control) {
1274                 if (user_tsc_khz > tsc_khz) {
1275                         vcpu->arch.tsc_catchup = 1;
1276                         vcpu->arch.tsc_always_catchup = 1;
1277                         return 0;
1278                 } else {
1279                         WARN(1, "user requested TSC rate below hardware speed\n");
1280                         return -1;
1281                 }
1282         }
1283
1284         /* TSC scaling required  - calculate ratio */
1285         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286                                 user_tsc_khz, tsc_khz);
1287
1288         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290                           user_tsc_khz);
1291                 return -1;
1292         }
1293
1294         vcpu->arch.tsc_scaling_ratio = ratio;
1295         return 0;
1296 }
1297
1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299 {
1300         u32 thresh_lo, thresh_hi;
1301         int use_scaling = 0;
1302
1303         /* tsc_khz can be zero if TSC calibration fails */
1304         if (user_tsc_khz == 0) {
1305                 /* set tsc_scaling_ratio to a safe value */
1306                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307                 return -1;
1308         }
1309
1310         /* Compute a scale to convert nanoseconds in TSC cycles */
1311         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312                            &vcpu->arch.virtual_tsc_shift,
1313                            &vcpu->arch.virtual_tsc_mult);
1314         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315
1316         /*
1317          * Compute the variation in TSC rate which is acceptable
1318          * within the range of tolerance and decide if the
1319          * rate being applied is within that bounds of the hardware
1320          * rate.  If so, no scaling or compensation need be done.
1321          */
1322         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326                 use_scaling = 1;
1327         }
1328         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329 }
1330
1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332 {
1333         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334                                       vcpu->arch.virtual_tsc_mult,
1335                                       vcpu->arch.virtual_tsc_shift);
1336         tsc += vcpu->arch.this_tsc_write;
1337         return tsc;
1338 }
1339
1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343         bool vcpus_matched;
1344         struct kvm_arch *ka = &vcpu->kvm->arch;
1345         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348                          atomic_read(&vcpu->kvm->online_vcpus));
1349
1350         /*
1351          * Once the masterclock is enabled, always perform request in
1352          * order to update it.
1353          *
1354          * In order to enable masterclock, the host clocksource must be TSC
1355          * and the vcpus need to have matched TSCs.  When that happens,
1356          * perform request to enable masterclock.
1357          */
1358         if (ka->use_master_clock ||
1359             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361
1362         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363                             atomic_read(&vcpu->kvm->online_vcpus),
1364                             ka->use_master_clock, gtod->clock.vclock_mode);
1365 #endif
1366 }
1367
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369 {
1370         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1371         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372 }
1373
1374 /*
1375  * Multiply tsc by a fixed point number represented by ratio.
1376  *
1377  * The most significant 64-N bits (mult) of ratio represent the
1378  * integral part of the fixed point number; the remaining N bits
1379  * (frac) represent the fractional part, ie. ratio represents a fixed
1380  * point number (mult + frac * 2^(-N)).
1381  *
1382  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383  */
1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385 {
1386         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387 }
1388
1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390 {
1391         u64 _tsc = tsc;
1392         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393
1394         if (ratio != kvm_default_tsc_scaling_ratio)
1395                 _tsc = __scale_tsc(ratio, tsc);
1396
1397         return _tsc;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400
1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402 {
1403         u64 tsc;
1404
1405         tsc = kvm_scale_tsc(vcpu, rdtsc());
1406
1407         return target_tsc - tsc;
1408 }
1409
1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411 {
1412         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415
1416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1417 {
1418         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1419         vcpu->arch.tsc_offset = offset;
1420 }
1421
1422 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1423 {
1424         struct kvm *kvm = vcpu->kvm;
1425         u64 offset, ns, elapsed;
1426         unsigned long flags;
1427         s64 usdiff;
1428         bool matched;
1429         bool already_matched;
1430         u64 data = msr->data;
1431
1432         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1433         offset = kvm_compute_tsc_offset(vcpu, data);
1434         ns = get_kernel_ns();
1435         elapsed = ns - kvm->arch.last_tsc_nsec;
1436
1437         if (vcpu->arch.virtual_tsc_khz) {
1438                 int faulted = 0;
1439
1440                 /* n.b - signed multiplication and division required */
1441                 usdiff = data - kvm->arch.last_tsc_write;
1442 #ifdef CONFIG_X86_64
1443                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1444 #else
1445                 /* do_div() only does unsigned */
1446                 asm("1: idivl %[divisor]\n"
1447                     "2: xor %%edx, %%edx\n"
1448                     "   movl $0, %[faulted]\n"
1449                     "3:\n"
1450                     ".section .fixup,\"ax\"\n"
1451                     "4: movl $1, %[faulted]\n"
1452                     "   jmp  3b\n"
1453                     ".previous\n"
1454
1455                 _ASM_EXTABLE(1b, 4b)
1456
1457                 : "=A"(usdiff), [faulted] "=r" (faulted)
1458                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1459
1460 #endif
1461                 do_div(elapsed, 1000);
1462                 usdiff -= elapsed;
1463                 if (usdiff < 0)
1464                         usdiff = -usdiff;
1465
1466                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1467                 if (faulted)
1468                         usdiff = USEC_PER_SEC;
1469         } else
1470                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1471
1472         /*
1473          * Special case: TSC write with a small delta (1 second) of virtual
1474          * cycle time against real time is interpreted as an attempt to
1475          * synchronize the CPU.
1476          *
1477          * For a reliable TSC, we can match TSC offsets, and for an unstable
1478          * TSC, we add elapsed time in this computation.  We could let the
1479          * compensation code attempt to catch up if we fall behind, but
1480          * it's better to try to match offsets from the beginning.
1481          */
1482         if (usdiff < USEC_PER_SEC &&
1483             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1484                 if (!check_tsc_unstable()) {
1485                         offset = kvm->arch.cur_tsc_offset;
1486                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1487                 } else {
1488                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1489                         data += delta;
1490                         offset = kvm_compute_tsc_offset(vcpu, data);
1491                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1492                 }
1493                 matched = true;
1494                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1495         } else {
1496                 /*
1497                  * We split periods of matched TSC writes into generations.
1498                  * For each generation, we track the original measured
1499                  * nanosecond time, offset, and write, so if TSCs are in
1500                  * sync, we can match exact offset, and if not, we can match
1501                  * exact software computation in compute_guest_tsc()
1502                  *
1503                  * These values are tracked in kvm->arch.cur_xxx variables.
1504                  */
1505                 kvm->arch.cur_tsc_generation++;
1506                 kvm->arch.cur_tsc_nsec = ns;
1507                 kvm->arch.cur_tsc_write = data;
1508                 kvm->arch.cur_tsc_offset = offset;
1509                 matched = false;
1510                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1511                          kvm->arch.cur_tsc_generation, data);
1512         }
1513
1514         /*
1515          * We also track th most recent recorded KHZ, write and time to
1516          * allow the matching interval to be extended at each write.
1517          */
1518         kvm->arch.last_tsc_nsec = ns;
1519         kvm->arch.last_tsc_write = data;
1520         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1521
1522         vcpu->arch.last_guest_tsc = data;
1523
1524         /* Keep track of which generation this VCPU has synchronized to */
1525         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1526         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1527         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1528
1529         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1530                 update_ia32_tsc_adjust_msr(vcpu, offset);
1531         kvm_vcpu_write_tsc_offset(vcpu, offset);
1532         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1533
1534         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1535         if (!matched) {
1536                 kvm->arch.nr_vcpus_matched_tsc = 0;
1537         } else if (!already_matched) {
1538                 kvm->arch.nr_vcpus_matched_tsc++;
1539         }
1540
1541         kvm_track_tsc_matching(vcpu);
1542         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1543 }
1544
1545 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1546
1547 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1548                                            s64 adjustment)
1549 {
1550         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552
1553 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1554 {
1555         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1556                 WARN_ON(adjustment < 0);
1557         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1558         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1559 }
1560
1561 #ifdef CONFIG_X86_64
1562
1563 static cycle_t read_tsc(void)
1564 {
1565         cycle_t ret = (cycle_t)rdtsc_ordered();
1566         u64 last = pvclock_gtod_data.clock.cycle_last;
1567
1568         if (likely(ret >= last))
1569                 return ret;
1570
1571         /*
1572          * GCC likes to generate cmov here, but this branch is extremely
1573          * predictable (it's just a function of time and the likely is
1574          * very likely) and there's a data dependence, so force GCC
1575          * to generate a branch instead.  I don't barrier() because
1576          * we don't actually need a barrier, and if this function
1577          * ever gets inlined it will generate worse code.
1578          */
1579         asm volatile ("");
1580         return last;
1581 }
1582
1583 static inline u64 vgettsc(cycle_t *cycle_now)
1584 {
1585         long v;
1586         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1587
1588         *cycle_now = read_tsc();
1589
1590         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1591         return v * gtod->clock.mult;
1592 }
1593
1594 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1595 {
1596         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1597         unsigned long seq;
1598         int mode;
1599         u64 ns;
1600
1601         do {
1602                 seq = read_seqcount_begin(&gtod->seq);
1603                 mode = gtod->clock.vclock_mode;
1604                 ns = gtod->nsec_base;
1605                 ns += vgettsc(cycle_now);
1606                 ns >>= gtod->clock.shift;
1607                 ns += gtod->boot_ns;
1608         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1609         *t = ns;
1610
1611         return mode;
1612 }
1613
1614 /* returns true if host is using tsc clocksource */
1615 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1616 {
1617         /* checked again under seqlock below */
1618         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1619                 return false;
1620
1621         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1622 }
1623 #endif
1624
1625 /*
1626  *
1627  * Assuming a stable TSC across physical CPUS, and a stable TSC
1628  * across virtual CPUs, the following condition is possible.
1629  * Each numbered line represents an event visible to both
1630  * CPUs at the next numbered event.
1631  *
1632  * "timespecX" represents host monotonic time. "tscX" represents
1633  * RDTSC value.
1634  *
1635  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1636  *
1637  * 1.  read timespec0,tsc0
1638  * 2.                                   | timespec1 = timespec0 + N
1639  *                                      | tsc1 = tsc0 + M
1640  * 3. transition to guest               | transition to guest
1641  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1642  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1643  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1644  *
1645  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1646  *
1647  *      - ret0 < ret1
1648  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1649  *              ...
1650  *      - 0 < N - M => M < N
1651  *
1652  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1653  * always the case (the difference between two distinct xtime instances
1654  * might be smaller then the difference between corresponding TSC reads,
1655  * when updating guest vcpus pvclock areas).
1656  *
1657  * To avoid that problem, do not allow visibility of distinct
1658  * system_timestamp/tsc_timestamp values simultaneously: use a master
1659  * copy of host monotonic time values. Update that master copy
1660  * in lockstep.
1661  *
1662  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1663  *
1664  */
1665
1666 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1667 {
1668 #ifdef CONFIG_X86_64
1669         struct kvm_arch *ka = &kvm->arch;
1670         int vclock_mode;
1671         bool host_tsc_clocksource, vcpus_matched;
1672
1673         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1674                         atomic_read(&kvm->online_vcpus));
1675
1676         /*
1677          * If the host uses TSC clock, then passthrough TSC as stable
1678          * to the guest.
1679          */
1680         host_tsc_clocksource = kvm_get_time_and_clockread(
1681                                         &ka->master_kernel_ns,
1682                                         &ka->master_cycle_now);
1683
1684         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1685                                 && !backwards_tsc_observed
1686                                 && !ka->boot_vcpu_runs_old_kvmclock;
1687
1688         if (ka->use_master_clock)
1689                 atomic_set(&kvm_guest_has_master_clock, 1);
1690
1691         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1692         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1693                                         vcpus_matched);
1694 #endif
1695 }
1696
1697 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1698 {
1699         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1700 }
1701
1702 static void kvm_gen_update_masterclock(struct kvm *kvm)
1703 {
1704 #ifdef CONFIG_X86_64
1705         int i;
1706         struct kvm_vcpu *vcpu;
1707         struct kvm_arch *ka = &kvm->arch;
1708
1709         spin_lock(&ka->pvclock_gtod_sync_lock);
1710         kvm_make_mclock_inprogress_request(kvm);
1711         /* no guest entries from this point */
1712         pvclock_update_vm_gtod_copy(kvm);
1713
1714         kvm_for_each_vcpu(i, vcpu, kvm)
1715                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1716
1717         /* guest entries allowed */
1718         kvm_for_each_vcpu(i, vcpu, kvm)
1719                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1720
1721         spin_unlock(&ka->pvclock_gtod_sync_lock);
1722 #endif
1723 }
1724
1725 static int kvm_guest_time_update(struct kvm_vcpu *v)
1726 {
1727         unsigned long flags, tgt_tsc_khz;
1728         struct kvm_vcpu_arch *vcpu = &v->arch;
1729         struct kvm_arch *ka = &v->kvm->arch;
1730         s64 kernel_ns;
1731         u64 tsc_timestamp, host_tsc;
1732         struct pvclock_vcpu_time_info guest_hv_clock;
1733         u8 pvclock_flags;
1734         bool use_master_clock;
1735
1736         kernel_ns = 0;
1737         host_tsc = 0;
1738
1739         /*
1740          * If the host uses TSC clock, then passthrough TSC as stable
1741          * to the guest.
1742          */
1743         spin_lock(&ka->pvclock_gtod_sync_lock);
1744         use_master_clock = ka->use_master_clock;
1745         if (use_master_clock) {
1746                 host_tsc = ka->master_cycle_now;
1747                 kernel_ns = ka->master_kernel_ns;
1748         }
1749         spin_unlock(&ka->pvclock_gtod_sync_lock);
1750
1751         /* Keep irq disabled to prevent changes to the clock */
1752         local_irq_save(flags);
1753         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1754         if (unlikely(tgt_tsc_khz == 0)) {
1755                 local_irq_restore(flags);
1756                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1757                 return 1;
1758         }
1759         if (!use_master_clock) {
1760                 host_tsc = rdtsc();
1761                 kernel_ns = get_kernel_ns();
1762         }
1763
1764         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1765
1766         /*
1767          * We may have to catch up the TSC to match elapsed wall clock
1768          * time for two reasons, even if kvmclock is used.
1769          *   1) CPU could have been running below the maximum TSC rate
1770          *   2) Broken TSC compensation resets the base at each VCPU
1771          *      entry to avoid unknown leaps of TSC even when running
1772          *      again on the same CPU.  This may cause apparent elapsed
1773          *      time to disappear, and the guest to stand still or run
1774          *      very slowly.
1775          */
1776         if (vcpu->tsc_catchup) {
1777                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1778                 if (tsc > tsc_timestamp) {
1779                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1780                         tsc_timestamp = tsc;
1781                 }
1782         }
1783
1784         local_irq_restore(flags);
1785
1786         if (!vcpu->pv_time_enabled)
1787                 return 0;
1788
1789         if (kvm_has_tsc_control)
1790                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1791
1792         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1793                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1794                                    &vcpu->hv_clock.tsc_shift,
1795                                    &vcpu->hv_clock.tsc_to_system_mul);
1796                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1797         }
1798
1799         /* With all the info we got, fill in the values */
1800         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1801         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1802         vcpu->last_guest_tsc = tsc_timestamp;
1803
1804         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1805                 &guest_hv_clock, sizeof(guest_hv_clock))))
1806                 return 0;
1807
1808         /* This VCPU is paused, but it's legal for a guest to read another
1809          * VCPU's kvmclock, so we really have to follow the specification where
1810          * it says that version is odd if data is being modified, and even after
1811          * it is consistent.
1812          *
1813          * Version field updates must be kept separate.  This is because
1814          * kvm_write_guest_cached might use a "rep movs" instruction, and
1815          * writes within a string instruction are weakly ordered.  So there
1816          * are three writes overall.
1817          *
1818          * As a small optimization, only write the version field in the first
1819          * and third write.  The vcpu->pv_time cache is still valid, because the
1820          * version field is the first in the struct.
1821          */
1822         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1823
1824         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1825         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1826                                 &vcpu->hv_clock,
1827                                 sizeof(vcpu->hv_clock.version));
1828
1829         smp_wmb();
1830
1831         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1832         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1833
1834         if (vcpu->pvclock_set_guest_stopped_request) {
1835                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1836                 vcpu->pvclock_set_guest_stopped_request = false;
1837         }
1838
1839         /* If the host uses TSC clocksource, then it is stable */
1840         if (use_master_clock)
1841                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1842
1843         vcpu->hv_clock.flags = pvclock_flags;
1844
1845         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1846
1847         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1848                                 &vcpu->hv_clock,
1849                                 sizeof(vcpu->hv_clock));
1850
1851         smp_wmb();
1852
1853         vcpu->hv_clock.version++;
1854         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1855                                 &vcpu->hv_clock,
1856                                 sizeof(vcpu->hv_clock.version));
1857         return 0;
1858 }
1859
1860 /*
1861  * kvmclock updates which are isolated to a given vcpu, such as
1862  * vcpu->cpu migration, should not allow system_timestamp from
1863  * the rest of the vcpus to remain static. Otherwise ntp frequency
1864  * correction applies to one vcpu's system_timestamp but not
1865  * the others.
1866  *
1867  * So in those cases, request a kvmclock update for all vcpus.
1868  * We need to rate-limit these requests though, as they can
1869  * considerably slow guests that have a large number of vcpus.
1870  * The time for a remote vcpu to update its kvmclock is bound
1871  * by the delay we use to rate-limit the updates.
1872  */
1873
1874 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1875
1876 static void kvmclock_update_fn(struct work_struct *work)
1877 {
1878         int i;
1879         struct delayed_work *dwork = to_delayed_work(work);
1880         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1881                                            kvmclock_update_work);
1882         struct kvm *kvm = container_of(ka, struct kvm, arch);
1883         struct kvm_vcpu *vcpu;
1884
1885         kvm_for_each_vcpu(i, vcpu, kvm) {
1886                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1887                 kvm_vcpu_kick(vcpu);
1888         }
1889 }
1890
1891 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1892 {
1893         struct kvm *kvm = v->kvm;
1894
1895         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1896         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1897                                         KVMCLOCK_UPDATE_DELAY);
1898 }
1899
1900 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1901
1902 static void kvmclock_sync_fn(struct work_struct *work)
1903 {
1904         struct delayed_work *dwork = to_delayed_work(work);
1905         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1906                                            kvmclock_sync_work);
1907         struct kvm *kvm = container_of(ka, struct kvm, arch);
1908
1909         if (!kvmclock_periodic_sync)
1910                 return;
1911
1912         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1913         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1914                                         KVMCLOCK_SYNC_PERIOD);
1915 }
1916
1917 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1918 {
1919         u64 mcg_cap = vcpu->arch.mcg_cap;
1920         unsigned bank_num = mcg_cap & 0xff;
1921
1922         switch (msr) {
1923         case MSR_IA32_MCG_STATUS:
1924                 vcpu->arch.mcg_status = data;
1925                 break;
1926         case MSR_IA32_MCG_CTL:
1927                 if (!(mcg_cap & MCG_CTL_P))
1928                         return 1;
1929                 if (data != 0 && data != ~(u64)0)
1930                         return -1;
1931                 vcpu->arch.mcg_ctl = data;
1932                 break;
1933         default:
1934                 if (msr >= MSR_IA32_MC0_CTL &&
1935                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1936                         u32 offset = msr - MSR_IA32_MC0_CTL;
1937                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1938                          * some Linux kernels though clear bit 10 in bank 4 to
1939                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1940                          * this to avoid an uncatched #GP in the guest
1941                          */
1942                         if ((offset & 0x3) == 0 &&
1943                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1944                                 return -1;
1945                         vcpu->arch.mce_banks[offset] = data;
1946                         break;
1947                 }
1948                 return 1;
1949         }
1950         return 0;
1951 }
1952
1953 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1954 {
1955         struct kvm *kvm = vcpu->kvm;
1956         int lm = is_long_mode(vcpu);
1957         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1958                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1959         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1960                 : kvm->arch.xen_hvm_config.blob_size_32;
1961         u32 page_num = data & ~PAGE_MASK;
1962         u64 page_addr = data & PAGE_MASK;
1963         u8 *page;
1964         int r;
1965
1966         r = -E2BIG;
1967         if (page_num >= blob_size)
1968                 goto out;
1969         r = -ENOMEM;
1970         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1971         if (IS_ERR(page)) {
1972                 r = PTR_ERR(page);
1973                 goto out;
1974         }
1975         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1976                 goto out_free;
1977         r = 0;
1978 out_free:
1979         kfree(page);
1980 out:
1981         return r;
1982 }
1983
1984 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1985 {
1986         gpa_t gpa = data & ~0x3f;
1987
1988         /* Bits 2:5 are reserved, Should be zero */
1989         if (data & 0x3c)
1990                 return 1;
1991
1992         vcpu->arch.apf.msr_val = data;
1993
1994         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1995                 kvm_clear_async_pf_completion_queue(vcpu);
1996                 kvm_async_pf_hash_reset(vcpu);
1997                 return 0;
1998         }
1999
2000         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2001                                         sizeof(u32)))
2002                 return 1;
2003
2004         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2005         kvm_async_pf_wakeup_all(vcpu);
2006         return 0;
2007 }
2008
2009 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2010 {
2011         vcpu->arch.pv_time_enabled = false;
2012 }
2013
2014 static void record_steal_time(struct kvm_vcpu *vcpu)
2015 {
2016         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2017                 return;
2018
2019         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2020                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2021                 return;
2022
2023         if (vcpu->arch.st.steal.version & 1)
2024                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2025
2026         vcpu->arch.st.steal.version += 1;
2027
2028         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2029                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2030
2031         smp_wmb();
2032
2033         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2034                 vcpu->arch.st.last_steal;
2035         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2036
2037         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2038                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2039
2040         smp_wmb();
2041
2042         vcpu->arch.st.steal.version += 1;
2043
2044         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050         bool pr = false;
2051         u32 msr = msr_info->index;
2052         u64 data = msr_info->data;
2053
2054         switch (msr) {
2055         case MSR_AMD64_NB_CFG:
2056         case MSR_IA32_UCODE_REV:
2057         case MSR_IA32_UCODE_WRITE:
2058         case MSR_VM_HSAVE_PA:
2059         case MSR_AMD64_PATCH_LOADER:
2060         case MSR_AMD64_BU_CFG2:
2061                 break;
2062
2063         case MSR_EFER:
2064                 return set_efer(vcpu, data);
2065         case MSR_K7_HWCR:
2066                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2067                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2068                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2069                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2070                 if (data != 0) {
2071                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072                                     data);
2073                         return 1;
2074                 }
2075                 break;
2076         case MSR_FAM10H_MMIO_CONF_BASE:
2077                 if (data != 0) {
2078                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079                                     "0x%llx\n", data);
2080                         return 1;
2081                 }
2082                 break;
2083         case MSR_IA32_DEBUGCTLMSR:
2084                 if (!data) {
2085                         /* We support the non-activated case already */
2086                         break;
2087                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088                         /* Values other than LBR and BTF are vendor-specific,
2089                            thus reserved and should throw a #GP */
2090                         return 1;
2091                 }
2092                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093                             __func__, data);
2094                 break;
2095         case 0x200 ... 0x2ff:
2096                 return kvm_mtrr_set_msr(vcpu, msr, data);
2097         case MSR_IA32_APICBASE:
2098                 return kvm_set_apic_base(vcpu, msr_info);
2099         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100                 return kvm_x2apic_msr_write(vcpu, msr, data);
2101         case MSR_IA32_TSCDEADLINE:
2102                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103                 break;
2104         case MSR_IA32_TSC_ADJUST:
2105                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106                         if (!msr_info->host_initiated) {
2107                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108                                 adjust_tsc_offset_guest(vcpu, adj);
2109                         }
2110                         vcpu->arch.ia32_tsc_adjust_msr = data;
2111                 }
2112                 break;
2113         case MSR_IA32_MISC_ENABLE:
2114                 vcpu->arch.ia32_misc_enable_msr = data;
2115                 break;
2116         case MSR_IA32_SMBASE:
2117                 if (!msr_info->host_initiated)
2118                         return 1;
2119                 vcpu->arch.smbase = data;
2120                 break;
2121         case MSR_KVM_WALL_CLOCK_NEW:
2122         case MSR_KVM_WALL_CLOCK:
2123                 vcpu->kvm->arch.wall_clock = data;
2124                 kvm_write_wall_clock(vcpu->kvm, data);
2125                 break;
2126         case MSR_KVM_SYSTEM_TIME_NEW:
2127         case MSR_KVM_SYSTEM_TIME: {
2128                 u64 gpa_offset;
2129                 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131                 kvmclock_reset(vcpu);
2132
2133                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138                                         &vcpu->requests);
2139
2140                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2141                 }
2142
2143                 vcpu->arch.time = data;
2144                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2145
2146                 /* we verify if the enable bit is set... */
2147                 if (!(data & 1))
2148                         break;
2149
2150                 gpa_offset = data & ~(PAGE_MASK | 1);
2151
2152                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2153                      &vcpu->arch.pv_time, data & ~1ULL,
2154                      sizeof(struct pvclock_vcpu_time_info)))
2155                         vcpu->arch.pv_time_enabled = false;
2156                 else
2157                         vcpu->arch.pv_time_enabled = true;
2158
2159                 break;
2160         }
2161         case MSR_KVM_ASYNC_PF_EN:
2162                 if (kvm_pv_enable_async_pf(vcpu, data))
2163                         return 1;
2164                 break;
2165         case MSR_KVM_STEAL_TIME:
2166
2167                 if (unlikely(!sched_info_on()))
2168                         return 1;
2169
2170                 if (data & KVM_STEAL_RESERVED_MASK)
2171                         return 1;
2172
2173                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2174                                                 data & KVM_STEAL_VALID_BITS,
2175                                                 sizeof(struct kvm_steal_time)))
2176                         return 1;
2177
2178                 vcpu->arch.st.msr_val = data;
2179
2180                 if (!(data & KVM_MSR_ENABLED))
2181                         break;
2182
2183                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2184
2185                 break;
2186         case MSR_KVM_PV_EOI_EN:
2187                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2188                         return 1;
2189                 break;
2190
2191         case MSR_IA32_MCG_CTL:
2192         case MSR_IA32_MCG_STATUS:
2193         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2194                 return set_msr_mce(vcpu, msr, data);
2195
2196         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2197         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2198                 pr = true; /* fall through */
2199         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2200         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2201                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2202                         return kvm_pmu_set_msr(vcpu, msr_info);
2203
2204                 if (pr || data != 0)
2205                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2206                                     "0x%x data 0x%llx\n", msr, data);
2207                 break;
2208         case MSR_K7_CLK_CTL:
2209                 /*
2210                  * Ignore all writes to this no longer documented MSR.
2211                  * Writes are only relevant for old K7 processors,
2212                  * all pre-dating SVM, but a recommended workaround from
2213                  * AMD for these chips. It is possible to specify the
2214                  * affected processor models on the command line, hence
2215                  * the need to ignore the workaround.
2216                  */
2217                 break;
2218         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2219         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2220         case HV_X64_MSR_CRASH_CTL:
2221         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2222                 return kvm_hv_set_msr_common(vcpu, msr, data,
2223                                              msr_info->host_initiated);
2224         case MSR_IA32_BBL_CR_CTL3:
2225                 /* Drop writes to this legacy MSR -- see rdmsr
2226                  * counterpart for further detail.
2227                  */
2228                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2229                 break;
2230         case MSR_AMD64_OSVW_ID_LENGTH:
2231                 if (!guest_cpuid_has_osvw(vcpu))
2232                         return 1;
2233                 vcpu->arch.osvw.length = data;
2234                 break;
2235         case MSR_AMD64_OSVW_STATUS:
2236                 if (!guest_cpuid_has_osvw(vcpu))
2237                         return 1;
2238                 vcpu->arch.osvw.status = data;
2239                 break;
2240         default:
2241                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2242                         return xen_hvm_config(vcpu, data);
2243                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2244                         return kvm_pmu_set_msr(vcpu, msr_info);
2245                 if (!ignore_msrs) {
2246                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2247                                     msr, data);
2248                         return 1;
2249                 } else {
2250                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2251                                     msr, data);
2252                         break;
2253                 }
2254         }
2255         return 0;
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2258
2259
2260 /*
2261  * Reads an msr value (of 'msr_index') into 'pdata'.
2262  * Returns 0 on success, non-0 otherwise.
2263  * Assumes vcpu_load() was already called.
2264  */
2265 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2266 {
2267         return kvm_x86_ops->get_msr(vcpu, msr);
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_get_msr);
2270
2271 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2272 {
2273         u64 data;
2274         u64 mcg_cap = vcpu->arch.mcg_cap;
2275         unsigned bank_num = mcg_cap & 0xff;
2276
2277         switch (msr) {
2278         case MSR_IA32_P5_MC_ADDR:
2279         case MSR_IA32_P5_MC_TYPE:
2280                 data = 0;
2281                 break;
2282         case MSR_IA32_MCG_CAP:
2283                 data = vcpu->arch.mcg_cap;
2284                 break;
2285         case MSR_IA32_MCG_CTL:
2286                 if (!(mcg_cap & MCG_CTL_P))
2287                         return 1;
2288                 data = vcpu->arch.mcg_ctl;
2289                 break;
2290         case MSR_IA32_MCG_STATUS:
2291                 data = vcpu->arch.mcg_status;
2292                 break;
2293         default:
2294                 if (msr >= MSR_IA32_MC0_CTL &&
2295                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2296                         u32 offset = msr - MSR_IA32_MC0_CTL;
2297                         data = vcpu->arch.mce_banks[offset];
2298                         break;
2299                 }
2300                 return 1;
2301         }
2302         *pdata = data;
2303         return 0;
2304 }
2305
2306 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2307 {
2308         switch (msr_info->index) {
2309         case MSR_IA32_PLATFORM_ID:
2310         case MSR_IA32_EBL_CR_POWERON:
2311         case MSR_IA32_DEBUGCTLMSR:
2312         case MSR_IA32_LASTBRANCHFROMIP:
2313         case MSR_IA32_LASTBRANCHTOIP:
2314         case MSR_IA32_LASTINTFROMIP:
2315         case MSR_IA32_LASTINTTOIP:
2316         case MSR_K8_SYSCFG:
2317         case MSR_K8_TSEG_ADDR:
2318         case MSR_K8_TSEG_MASK:
2319         case MSR_K7_HWCR:
2320         case MSR_VM_HSAVE_PA:
2321         case MSR_K8_INT_PENDING_MSG:
2322         case MSR_AMD64_NB_CFG:
2323         case MSR_FAM10H_MMIO_CONF_BASE:
2324         case MSR_AMD64_BU_CFG2:
2325         case MSR_IA32_PERF_CTL:
2326                 msr_info->data = 0;
2327                 break;
2328         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2329         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2330         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2331         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2332                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2333                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2334                 msr_info->data = 0;
2335                 break;
2336         case MSR_IA32_UCODE_REV:
2337                 msr_info->data = 0x100000000ULL;
2338                 break;
2339         case MSR_MTRRcap:
2340         case 0x200 ... 0x2ff:
2341                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2342         case 0xcd: /* fsb frequency */
2343                 msr_info->data = 3;
2344                 break;
2345                 /*
2346                  * MSR_EBC_FREQUENCY_ID
2347                  * Conservative value valid for even the basic CPU models.
2348                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2349                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2350                  * and 266MHz for model 3, or 4. Set Core Clock
2351                  * Frequency to System Bus Frequency Ratio to 1 (bits
2352                  * 31:24) even though these are only valid for CPU
2353                  * models > 2, however guests may end up dividing or
2354                  * multiplying by zero otherwise.
2355                  */
2356         case MSR_EBC_FREQUENCY_ID:
2357                 msr_info->data = 1 << 24;
2358                 break;
2359         case MSR_IA32_APICBASE:
2360                 msr_info->data = kvm_get_apic_base(vcpu);
2361                 break;
2362         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2363                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2364                 break;
2365         case MSR_IA32_TSCDEADLINE:
2366                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2367                 break;
2368         case MSR_IA32_TSC_ADJUST:
2369                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2370                 break;
2371         case MSR_IA32_MISC_ENABLE:
2372                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2373                 break;
2374         case MSR_IA32_SMBASE:
2375                 if (!msr_info->host_initiated)
2376                         return 1;
2377                 msr_info->data = vcpu->arch.smbase;
2378                 break;
2379         case MSR_IA32_PERF_STATUS:
2380                 /* TSC increment by tick */
2381                 msr_info->data = 1000ULL;
2382                 /* CPU multiplier */
2383                 msr_info->data |= (((uint64_t)4ULL) << 40);
2384                 break;
2385         case MSR_EFER:
2386                 msr_info->data = vcpu->arch.efer;
2387                 break;
2388         case MSR_KVM_WALL_CLOCK:
2389         case MSR_KVM_WALL_CLOCK_NEW:
2390                 msr_info->data = vcpu->kvm->arch.wall_clock;
2391                 break;
2392         case MSR_KVM_SYSTEM_TIME:
2393         case MSR_KVM_SYSTEM_TIME_NEW:
2394                 msr_info->data = vcpu->arch.time;
2395                 break;
2396         case MSR_KVM_ASYNC_PF_EN:
2397                 msr_info->data = vcpu->arch.apf.msr_val;
2398                 break;
2399         case MSR_KVM_STEAL_TIME:
2400                 msr_info->data = vcpu->arch.st.msr_val;
2401                 break;
2402         case MSR_KVM_PV_EOI_EN:
2403                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2404                 break;
2405         case MSR_IA32_P5_MC_ADDR:
2406         case MSR_IA32_P5_MC_TYPE:
2407         case MSR_IA32_MCG_CAP:
2408         case MSR_IA32_MCG_CTL:
2409         case MSR_IA32_MCG_STATUS:
2410         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2411                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2412         case MSR_K7_CLK_CTL:
2413                 /*
2414                  * Provide expected ramp-up count for K7. All other
2415                  * are set to zero, indicating minimum divisors for
2416                  * every field.
2417                  *
2418                  * This prevents guest kernels on AMD host with CPU
2419                  * type 6, model 8 and higher from exploding due to
2420                  * the rdmsr failing.
2421                  */
2422                 msr_info->data = 0x20000000;
2423                 break;
2424         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2425         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2426         case HV_X64_MSR_CRASH_CTL:
2427         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2428                 return kvm_hv_get_msr_common(vcpu,
2429                                              msr_info->index, &msr_info->data);
2430                 break;
2431         case MSR_IA32_BBL_CR_CTL3:
2432                 /* This legacy MSR exists but isn't fully documented in current
2433                  * silicon.  It is however accessed by winxp in very narrow
2434                  * scenarios where it sets bit #19, itself documented as
2435                  * a "reserved" bit.  Best effort attempt to source coherent
2436                  * read data here should the balance of the register be
2437                  * interpreted by the guest:
2438                  *
2439                  * L2 cache control register 3: 64GB range, 256KB size,
2440                  * enabled, latency 0x1, configured
2441                  */
2442                 msr_info->data = 0xbe702111;
2443                 break;
2444         case MSR_AMD64_OSVW_ID_LENGTH:
2445                 if (!guest_cpuid_has_osvw(vcpu))
2446                         return 1;
2447                 msr_info->data = vcpu->arch.osvw.length;
2448                 break;
2449         case MSR_AMD64_OSVW_STATUS:
2450                 if (!guest_cpuid_has_osvw(vcpu))
2451                         return 1;
2452                 msr_info->data = vcpu->arch.osvw.status;
2453                 break;
2454         default:
2455                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2456                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2457                 if (!ignore_msrs) {
2458                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2459                         return 1;
2460                 } else {
2461                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2462                         msr_info->data = 0;
2463                 }
2464                 break;
2465         }
2466         return 0;
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2469
2470 /*
2471  * Read or write a bunch of msrs. All parameters are kernel addresses.
2472  *
2473  * @return number of msrs set successfully.
2474  */
2475 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2476                     struct kvm_msr_entry *entries,
2477                     int (*do_msr)(struct kvm_vcpu *vcpu,
2478                                   unsigned index, u64 *data))
2479 {
2480         int i, idx;
2481
2482         idx = srcu_read_lock(&vcpu->kvm->srcu);
2483         for (i = 0; i < msrs->nmsrs; ++i)
2484                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2485                         break;
2486         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2487
2488         return i;
2489 }
2490
2491 /*
2492  * Read or write a bunch of msrs. Parameters are user addresses.
2493  *
2494  * @return number of msrs set successfully.
2495  */
2496 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2497                   int (*do_msr)(struct kvm_vcpu *vcpu,
2498                                 unsigned index, u64 *data),
2499                   int writeback)
2500 {
2501         struct kvm_msrs msrs;
2502         struct kvm_msr_entry *entries;
2503         int r, n;
2504         unsigned size;
2505
2506         r = -EFAULT;
2507         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2508                 goto out;
2509
2510         r = -E2BIG;
2511         if (msrs.nmsrs >= MAX_IO_MSRS)
2512                 goto out;
2513
2514         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2515         entries = memdup_user(user_msrs->entries, size);
2516         if (IS_ERR(entries)) {
2517                 r = PTR_ERR(entries);
2518                 goto out;
2519         }
2520
2521         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2522         if (r < 0)
2523                 goto out_free;
2524
2525         r = -EFAULT;
2526         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2527                 goto out_free;
2528
2529         r = n;
2530
2531 out_free:
2532         kfree(entries);
2533 out:
2534         return r;
2535 }
2536
2537 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2538 {
2539         int r;
2540
2541         switch (ext) {
2542         case KVM_CAP_IRQCHIP:
2543         case KVM_CAP_HLT:
2544         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2545         case KVM_CAP_SET_TSS_ADDR:
2546         case KVM_CAP_EXT_CPUID:
2547         case KVM_CAP_EXT_EMUL_CPUID:
2548         case KVM_CAP_CLOCKSOURCE:
2549         case KVM_CAP_PIT:
2550         case KVM_CAP_NOP_IO_DELAY:
2551         case KVM_CAP_MP_STATE:
2552         case KVM_CAP_SYNC_MMU:
2553         case KVM_CAP_USER_NMI:
2554         case KVM_CAP_REINJECT_CONTROL:
2555         case KVM_CAP_IRQ_INJECT_STATUS:
2556         case KVM_CAP_IOEVENTFD:
2557         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2558         case KVM_CAP_PIT2:
2559         case KVM_CAP_PIT_STATE2:
2560         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2561         case KVM_CAP_XEN_HVM:
2562         case KVM_CAP_ADJUST_CLOCK:
2563         case KVM_CAP_VCPU_EVENTS:
2564         case KVM_CAP_HYPERV:
2565         case KVM_CAP_HYPERV_VAPIC:
2566         case KVM_CAP_HYPERV_SPIN:
2567         case KVM_CAP_HYPERV_SYNIC:
2568         case KVM_CAP_PCI_SEGMENT:
2569         case KVM_CAP_DEBUGREGS:
2570         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2571         case KVM_CAP_XSAVE:
2572         case KVM_CAP_ASYNC_PF:
2573         case KVM_CAP_GET_TSC_KHZ:
2574         case KVM_CAP_KVMCLOCK_CTRL:
2575         case KVM_CAP_READONLY_MEM:
2576         case KVM_CAP_HYPERV_TIME:
2577         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2578         case KVM_CAP_TSC_DEADLINE_TIMER:
2579         case KVM_CAP_ENABLE_CAP_VM:
2580         case KVM_CAP_DISABLE_QUIRKS:
2581         case KVM_CAP_SET_BOOT_CPU_ID:
2582         case KVM_CAP_SPLIT_IRQCHIP:
2583 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2584         case KVM_CAP_ASSIGN_DEV_IRQ:
2585         case KVM_CAP_PCI_2_3:
2586 #endif
2587                 r = 1;
2588                 break;
2589         case KVM_CAP_X86_SMM:
2590                 /* SMBASE is usually relocated above 1M on modern chipsets,
2591                  * and SMM handlers might indeed rely on 4G segment limits,
2592                  * so do not report SMM to be available if real mode is
2593                  * emulated via vm86 mode.  Still, do not go to great lengths
2594                  * to avoid userspace's usage of the feature, because it is a
2595                  * fringe case that is not enabled except via specific settings
2596                  * of the module parameters.
2597                  */
2598                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2599                 break;
2600         case KVM_CAP_COALESCED_MMIO:
2601                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2602                 break;
2603         case KVM_CAP_VAPIC:
2604                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2605                 break;
2606         case KVM_CAP_NR_VCPUS:
2607                 r = KVM_SOFT_MAX_VCPUS;
2608                 break;
2609         case KVM_CAP_MAX_VCPUS:
2610                 r = KVM_MAX_VCPUS;
2611                 break;
2612         case KVM_CAP_NR_MEMSLOTS:
2613                 r = KVM_USER_MEM_SLOTS;
2614                 break;
2615         case KVM_CAP_PV_MMU:    /* obsolete */
2616                 r = 0;
2617                 break;
2618 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2619         case KVM_CAP_IOMMU:
2620                 r = iommu_present(&pci_bus_type);
2621                 break;
2622 #endif
2623         case KVM_CAP_MCE:
2624                 r = KVM_MAX_MCE_BANKS;
2625                 break;
2626         case KVM_CAP_XCRS:
2627                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2628                 break;
2629         case KVM_CAP_TSC_CONTROL:
2630                 r = kvm_has_tsc_control;
2631                 break;
2632         case KVM_CAP_X2APIC_API:
2633                 r = KVM_X2APIC_API_VALID_FLAGS;
2634                 break;
2635         default:
2636                 r = 0;
2637                 break;
2638         }
2639         return r;
2640
2641 }
2642
2643 long kvm_arch_dev_ioctl(struct file *filp,
2644                         unsigned int ioctl, unsigned long arg)
2645 {
2646         void __user *argp = (void __user *)arg;
2647         long r;
2648
2649         switch (ioctl) {
2650         case KVM_GET_MSR_INDEX_LIST: {
2651                 struct kvm_msr_list __user *user_msr_list = argp;
2652                 struct kvm_msr_list msr_list;
2653                 unsigned n;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2657                         goto out;
2658                 n = msr_list.nmsrs;
2659                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2660                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2661                         goto out;
2662                 r = -E2BIG;
2663                 if (n < msr_list.nmsrs)
2664                         goto out;
2665                 r = -EFAULT;
2666                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2667                                  num_msrs_to_save * sizeof(u32)))
2668                         goto out;
2669                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2670                                  &emulated_msrs,
2671                                  num_emulated_msrs * sizeof(u32)))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_GET_SUPPORTED_CPUID:
2677         case KVM_GET_EMULATED_CPUID: {
2678                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2679                 struct kvm_cpuid2 cpuid;
2680
2681                 r = -EFAULT;
2682                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2683                         goto out;
2684
2685                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2686                                             ioctl);
2687                 if (r)
2688                         goto out;
2689
2690                 r = -EFAULT;
2691                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2692                         goto out;
2693                 r = 0;
2694                 break;
2695         }
2696         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2697                 r = -EFAULT;
2698                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2699                                  sizeof(kvm_mce_cap_supported)))
2700                         goto out;
2701                 r = 0;
2702                 break;
2703         }
2704         default:
2705                 r = -EINVAL;
2706         }
2707 out:
2708         return r;
2709 }
2710
2711 static void wbinvd_ipi(void *garbage)
2712 {
2713         wbinvd();
2714 }
2715
2716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2717 {
2718         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2719 }
2720
2721 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2722 {
2723         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2724 }
2725
2726 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2727 {
2728         /* Address WBINVD may be executed by guest */
2729         if (need_emulate_wbinvd(vcpu)) {
2730                 if (kvm_x86_ops->has_wbinvd_exit())
2731                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2732                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2733                         smp_call_function_single(vcpu->cpu,
2734                                         wbinvd_ipi, NULL, 1);
2735         }
2736
2737         kvm_x86_ops->vcpu_load(vcpu, cpu);
2738
2739         /* Apply any externally detected TSC adjustments (due to suspend) */
2740         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2741                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2742                 vcpu->arch.tsc_offset_adjustment = 0;
2743                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2744         }
2745
2746         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2747                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2748                                 rdtsc() - vcpu->arch.last_host_tsc;
2749                 if (tsc_delta < 0)
2750                         mark_tsc_unstable("KVM discovered backwards TSC");
2751
2752                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2753                                 kvm_x86_ops->set_hv_timer(vcpu,
2754                                         kvm_get_lapic_tscdeadline_msr(vcpu)))
2755                         kvm_lapic_switch_to_sw_timer(vcpu);
2756                 if (check_tsc_unstable()) {
2757                         u64 offset = kvm_compute_tsc_offset(vcpu,
2758                                                 vcpu->arch.last_guest_tsc);
2759                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2760                         vcpu->arch.tsc_catchup = 1;
2761                 }
2762                 /*
2763                  * On a host with synchronized TSC, there is no need to update
2764                  * kvmclock on vcpu->cpu migration
2765                  */
2766                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2767                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2768                 if (vcpu->cpu != cpu)
2769                         kvm_migrate_timers(vcpu);
2770                 vcpu->cpu = cpu;
2771         }
2772
2773         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2774 }
2775
2776 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2777 {
2778         kvm_x86_ops->vcpu_put(vcpu);
2779         kvm_put_guest_fpu(vcpu);
2780         vcpu->arch.last_host_tsc = rdtsc();
2781 }
2782
2783 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2784                                     struct kvm_lapic_state *s)
2785 {
2786         if (vcpu->arch.apicv_active)
2787                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2788
2789         return kvm_apic_get_state(vcpu, s);
2790 }
2791
2792 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2793                                     struct kvm_lapic_state *s)
2794 {
2795         int r;
2796
2797         r = kvm_apic_set_state(vcpu, s);
2798         if (r)
2799                 return r;
2800         update_cr8_intercept(vcpu);
2801
2802         return 0;
2803 }
2804
2805 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2806 {
2807         return (!lapic_in_kernel(vcpu) ||
2808                 kvm_apic_accept_pic_intr(vcpu));
2809 }
2810
2811 /*
2812  * if userspace requested an interrupt window, check that the
2813  * interrupt window is open.
2814  *
2815  * No need to exit to userspace if we already have an interrupt queued.
2816  */
2817 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2818 {
2819         return kvm_arch_interrupt_allowed(vcpu) &&
2820                 !kvm_cpu_has_interrupt(vcpu) &&
2821                 !kvm_event_needs_reinjection(vcpu) &&
2822                 kvm_cpu_accept_dm_intr(vcpu);
2823 }
2824
2825 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2826                                     struct kvm_interrupt *irq)
2827 {
2828         if (irq->irq >= KVM_NR_INTERRUPTS)
2829                 return -EINVAL;
2830
2831         if (!irqchip_in_kernel(vcpu->kvm)) {
2832                 kvm_queue_interrupt(vcpu, irq->irq, false);
2833                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2834                 return 0;
2835         }
2836
2837         /*
2838          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2839          * fail for in-kernel 8259.
2840          */
2841         if (pic_in_kernel(vcpu->kvm))
2842                 return -ENXIO;
2843
2844         if (vcpu->arch.pending_external_vector != -1)
2845                 return -EEXIST;
2846
2847         vcpu->arch.pending_external_vector = irq->irq;
2848         kvm_make_request(KVM_REQ_EVENT, vcpu);
2849         return 0;
2850 }
2851
2852 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2853 {
2854         kvm_inject_nmi(vcpu);
2855
2856         return 0;
2857 }
2858
2859 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2860 {
2861         kvm_make_request(KVM_REQ_SMI, vcpu);
2862
2863         return 0;
2864 }
2865
2866 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2867                                            struct kvm_tpr_access_ctl *tac)
2868 {
2869         if (tac->flags)
2870                 return -EINVAL;
2871         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2872         return 0;
2873 }
2874
2875 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2876                                         u64 mcg_cap)
2877 {
2878         int r;
2879         unsigned bank_num = mcg_cap & 0xff, bank;
2880
2881         r = -EINVAL;
2882         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2883                 goto out;
2884         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2885                 goto out;
2886         r = 0;
2887         vcpu->arch.mcg_cap = mcg_cap;
2888         /* Init IA32_MCG_CTL to all 1s */
2889         if (mcg_cap & MCG_CTL_P)
2890                 vcpu->arch.mcg_ctl = ~(u64)0;
2891         /* Init IA32_MCi_CTL to all 1s */
2892         for (bank = 0; bank < bank_num; bank++)
2893                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2894
2895         if (kvm_x86_ops->setup_mce)
2896                 kvm_x86_ops->setup_mce(vcpu);
2897 out:
2898         return r;
2899 }
2900
2901 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2902                                       struct kvm_x86_mce *mce)
2903 {
2904         u64 mcg_cap = vcpu->arch.mcg_cap;
2905         unsigned bank_num = mcg_cap & 0xff;
2906         u64 *banks = vcpu->arch.mce_banks;
2907
2908         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2909                 return -EINVAL;
2910         /*
2911          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2912          * reporting is disabled
2913          */
2914         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2915             vcpu->arch.mcg_ctl != ~(u64)0)
2916                 return 0;
2917         banks += 4 * mce->bank;
2918         /*
2919          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2920          * reporting is disabled for the bank
2921          */
2922         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2923                 return 0;
2924         if (mce->status & MCI_STATUS_UC) {
2925                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2926                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2927                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2928                         return 0;
2929                 }
2930                 if (banks[1] & MCI_STATUS_VAL)
2931                         mce->status |= MCI_STATUS_OVER;
2932                 banks[2] = mce->addr;
2933                 banks[3] = mce->misc;
2934                 vcpu->arch.mcg_status = mce->mcg_status;
2935                 banks[1] = mce->status;
2936                 kvm_queue_exception(vcpu, MC_VECTOR);
2937         } else if (!(banks[1] & MCI_STATUS_VAL)
2938                    || !(banks[1] & MCI_STATUS_UC)) {
2939                 if (banks[1] & MCI_STATUS_VAL)
2940                         mce->status |= MCI_STATUS_OVER;
2941                 banks[2] = mce->addr;
2942                 banks[3] = mce->misc;
2943                 banks[1] = mce->status;
2944         } else
2945                 banks[1] |= MCI_STATUS_OVER;
2946         return 0;
2947 }
2948
2949 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2950                                                struct kvm_vcpu_events *events)
2951 {
2952         process_nmi(vcpu);
2953         events->exception.injected =
2954                 vcpu->arch.exception.pending &&
2955                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2956         events->exception.nr = vcpu->arch.exception.nr;
2957         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2958         events->exception.pad = 0;
2959         events->exception.error_code = vcpu->arch.exception.error_code;
2960
2961         events->interrupt.injected =
2962                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2963         events->interrupt.nr = vcpu->arch.interrupt.nr;
2964         events->interrupt.soft = 0;
2965         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2966
2967         events->nmi.injected = vcpu->arch.nmi_injected;
2968         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2969         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2970         events->nmi.pad = 0;
2971
2972         events->sipi_vector = 0; /* never valid when reporting to user space */
2973
2974         events->smi.smm = is_smm(vcpu);
2975         events->smi.pending = vcpu->arch.smi_pending;
2976         events->smi.smm_inside_nmi =
2977                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2978         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2979
2980         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2981                          | KVM_VCPUEVENT_VALID_SHADOW
2982                          | KVM_VCPUEVENT_VALID_SMM);
2983         memset(&events->reserved, 0, sizeof(events->reserved));
2984 }
2985
2986 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2987                                               struct kvm_vcpu_events *events)
2988 {
2989         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2990                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2991                               | KVM_VCPUEVENT_VALID_SHADOW
2992                               | KVM_VCPUEVENT_VALID_SMM))
2993                 return -EINVAL;
2994
2995         if (events->exception.injected &&
2996             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2997                 return -EINVAL;
2998
2999         process_nmi(vcpu);
3000         vcpu->arch.exception.pending = events->exception.injected;
3001         vcpu->arch.exception.nr = events->exception.nr;
3002         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3003         vcpu->arch.exception.error_code = events->exception.error_code;
3004
3005         vcpu->arch.interrupt.pending = events->interrupt.injected;
3006         vcpu->arch.interrupt.nr = events->interrupt.nr;
3007         vcpu->arch.interrupt.soft = events->interrupt.soft;
3008         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3009                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3010                                                   events->interrupt.shadow);
3011
3012         vcpu->arch.nmi_injected = events->nmi.injected;
3013         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3014                 vcpu->arch.nmi_pending = events->nmi.pending;
3015         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3016
3017         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3018             lapic_in_kernel(vcpu))
3019                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3020
3021         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3022                 if (events->smi.smm)
3023                         vcpu->arch.hflags |= HF_SMM_MASK;
3024                 else
3025                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3026                 vcpu->arch.smi_pending = events->smi.pending;
3027                 if (events->smi.smm_inside_nmi)
3028                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3029                 else
3030                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3031                 if (lapic_in_kernel(vcpu)) {
3032                         if (events->smi.latched_init)
3033                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3034                         else
3035                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3036                 }
3037         }
3038
3039         kvm_make_request(KVM_REQ_EVENT, vcpu);
3040
3041         return 0;
3042 }
3043
3044 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3045                                              struct kvm_debugregs *dbgregs)
3046 {
3047         unsigned long val;
3048
3049         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3050         kvm_get_dr(vcpu, 6, &val);
3051         dbgregs->dr6 = val;
3052         dbgregs->dr7 = vcpu->arch.dr7;
3053         dbgregs->flags = 0;
3054         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3055 }
3056
3057 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3058                                             struct kvm_debugregs *dbgregs)
3059 {
3060         if (dbgregs->flags)
3061                 return -EINVAL;
3062
3063         if (dbgregs->dr6 & ~0xffffffffull)
3064                 return -EINVAL;
3065         if (dbgregs->dr7 & ~0xffffffffull)
3066                 return -EINVAL;
3067
3068         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3069         kvm_update_dr0123(vcpu);
3070         vcpu->arch.dr6 = dbgregs->dr6;
3071         kvm_update_dr6(vcpu);
3072         vcpu->arch.dr7 = dbgregs->dr7;
3073         kvm_update_dr7(vcpu);
3074
3075         return 0;
3076 }
3077
3078 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3079
3080 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3081 {
3082         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3083         u64 xstate_bv = xsave->header.xfeatures;
3084         u64 valid;
3085
3086         /*
3087          * Copy legacy XSAVE area, to avoid complications with CPUID
3088          * leaves 0 and 1 in the loop below.
3089          */
3090         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3091
3092         /* Set XSTATE_BV */
3093         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3094
3095         /*
3096          * Copy each region from the possibly compacted offset to the
3097          * non-compacted offset.
3098          */
3099         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3100         while (valid) {
3101                 u64 feature = valid & -valid;
3102                 int index = fls64(feature) - 1;
3103                 void *src = get_xsave_addr(xsave, feature);
3104
3105                 if (src) {
3106                         u32 size, offset, ecx, edx;
3107                         cpuid_count(XSTATE_CPUID, index,
3108                                     &size, &offset, &ecx, &edx);
3109                         memcpy(dest + offset, src, size);
3110                 }
3111
3112                 valid -= feature;
3113         }
3114 }
3115
3116 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3117 {
3118         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3119         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3120         u64 valid;
3121
3122         /*
3123          * Copy legacy XSAVE area, to avoid complications with CPUID
3124          * leaves 0 and 1 in the loop below.
3125          */
3126         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3127
3128         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3129         xsave->header.xfeatures = xstate_bv;
3130         if (boot_cpu_has(X86_FEATURE_XSAVES))
3131                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3132
3133         /*
3134          * Copy each region from the non-compacted offset to the
3135          * possibly compacted offset.
3136          */
3137         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3138         while (valid) {
3139                 u64 feature = valid & -valid;
3140                 int index = fls64(feature) - 1;
3141                 void *dest = get_xsave_addr(xsave, feature);
3142
3143                 if (dest) {
3144                         u32 size, offset, ecx, edx;
3145                         cpuid_count(XSTATE_CPUID, index,
3146                                     &size, &offset, &ecx, &edx);
3147                         memcpy(dest, src + offset, size);
3148                 }
3149
3150                 valid -= feature;
3151         }
3152 }
3153
3154 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3155                                          struct kvm_xsave *guest_xsave)
3156 {
3157         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3158                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3159                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3160         } else {
3161                 memcpy(guest_xsave->region,
3162                         &vcpu->arch.guest_fpu.state.fxsave,
3163                         sizeof(struct fxregs_state));
3164                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3165                         XFEATURE_MASK_FPSSE;
3166         }
3167 }
3168
3169 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3170                                         struct kvm_xsave *guest_xsave)
3171 {
3172         u64 xstate_bv =
3173                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3174
3175         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3176                 /*
3177                  * Here we allow setting states that are not present in
3178                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3179                  * with old userspace.
3180                  */
3181                 if (xstate_bv & ~kvm_supported_xcr0())
3182                         return -EINVAL;
3183                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3184         } else {
3185                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3186                         return -EINVAL;
3187                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3188                         guest_xsave->region, sizeof(struct fxregs_state));
3189         }
3190         return 0;
3191 }
3192
3193 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3194                                         struct kvm_xcrs *guest_xcrs)
3195 {
3196         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3197                 guest_xcrs->nr_xcrs = 0;
3198                 return;
3199         }
3200
3201         guest_xcrs->nr_xcrs = 1;
3202         guest_xcrs->flags = 0;
3203         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3204         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3205 }
3206
3207 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3208                                        struct kvm_xcrs *guest_xcrs)
3209 {
3210         int i, r = 0;
3211
3212         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3213                 return -EINVAL;
3214
3215         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3216                 return -EINVAL;
3217
3218         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3219                 /* Only support XCR0 currently */
3220                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3221                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3222                                 guest_xcrs->xcrs[i].value);
3223                         break;
3224                 }
3225         if (r)
3226                 r = -EINVAL;
3227         return r;
3228 }
3229
3230 /*
3231  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3232  * stopped by the hypervisor.  This function will be called from the host only.
3233  * EINVAL is returned when the host attempts to set the flag for a guest that
3234  * does not support pv clocks.
3235  */
3236 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3237 {
3238         if (!vcpu->arch.pv_time_enabled)
3239                 return -EINVAL;
3240         vcpu->arch.pvclock_set_guest_stopped_request = true;
3241         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3242         return 0;
3243 }
3244
3245 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3246                                      struct kvm_enable_cap *cap)
3247 {
3248         if (cap->flags)
3249                 return -EINVAL;
3250
3251         switch (cap->cap) {
3252         case KVM_CAP_HYPERV_SYNIC:
3253                 return kvm_hv_activate_synic(vcpu);
3254         default:
3255                 return -EINVAL;
3256         }
3257 }
3258
3259 long kvm_arch_vcpu_ioctl(struct file *filp,
3260                          unsigned int ioctl, unsigned long arg)
3261 {
3262         struct kvm_vcpu *vcpu = filp->private_data;
3263         void __user *argp = (void __user *)arg;
3264         int r;
3265         union {
3266                 struct kvm_lapic_state *lapic;
3267                 struct kvm_xsave *xsave;
3268                 struct kvm_xcrs *xcrs;
3269                 void *buffer;
3270         } u;
3271
3272         u.buffer = NULL;
3273         switch (ioctl) {
3274         case KVM_GET_LAPIC: {
3275                 r = -EINVAL;
3276                 if (!lapic_in_kernel(vcpu))
3277                         goto out;
3278                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3279
3280                 r = -ENOMEM;
3281                 if (!u.lapic)
3282                         goto out;
3283                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3284                 if (r)
3285                         goto out;
3286                 r = -EFAULT;
3287                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3288                         goto out;
3289                 r = 0;
3290                 break;
3291         }
3292         case KVM_SET_LAPIC: {
3293                 r = -EINVAL;
3294                 if (!lapic_in_kernel(vcpu))
3295                         goto out;
3296                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3297                 if (IS_ERR(u.lapic))
3298                         return PTR_ERR(u.lapic);
3299
3300                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3301                 break;
3302         }
3303         case KVM_INTERRUPT: {
3304                 struct kvm_interrupt irq;
3305
3306                 r = -EFAULT;
3307                 if (copy_from_user(&irq, argp, sizeof irq))
3308                         goto out;
3309                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3310                 break;
3311         }
3312         case KVM_NMI: {
3313                 r = kvm_vcpu_ioctl_nmi(vcpu);
3314                 break;
3315         }
3316         case KVM_SMI: {
3317                 r = kvm_vcpu_ioctl_smi(vcpu);
3318                 break;
3319         }
3320         case KVM_SET_CPUID: {
3321                 struct kvm_cpuid __user *cpuid_arg = argp;
3322                 struct kvm_cpuid cpuid;
3323
3324                 r = -EFAULT;
3325                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3326                         goto out;
3327                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3328                 break;
3329         }
3330         case KVM_SET_CPUID2: {
3331                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3332                 struct kvm_cpuid2 cpuid;
3333
3334                 r = -EFAULT;
3335                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3336                         goto out;
3337                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3338                                               cpuid_arg->entries);
3339                 break;
3340         }
3341         case KVM_GET_CPUID2: {
3342                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3343                 struct kvm_cpuid2 cpuid;
3344
3345                 r = -EFAULT;
3346                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3347                         goto out;
3348                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3349                                               cpuid_arg->entries);
3350                 if (r)
3351                         goto out;
3352                 r = -EFAULT;
3353                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3354                         goto out;
3355                 r = 0;
3356                 break;
3357         }
3358         case KVM_GET_MSRS:
3359                 r = msr_io(vcpu, argp, do_get_msr, 1);
3360                 break;
3361         case KVM_SET_MSRS:
3362                 r = msr_io(vcpu, argp, do_set_msr, 0);
3363                 break;
3364         case KVM_TPR_ACCESS_REPORTING: {
3365                 struct kvm_tpr_access_ctl tac;
3366
3367                 r = -EFAULT;
3368                 if (copy_from_user(&tac, argp, sizeof tac))
3369                         goto out;
3370                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3371                 if (r)
3372                         goto out;
3373                 r = -EFAULT;
3374                 if (copy_to_user(argp, &tac, sizeof tac))
3375                         goto out;
3376                 r = 0;
3377                 break;
3378         };
3379         case KVM_SET_VAPIC_ADDR: {
3380                 struct kvm_vapic_addr va;
3381
3382                 r = -EINVAL;
3383                 if (!lapic_in_kernel(vcpu))
3384                         goto out;
3385                 r = -EFAULT;
3386                 if (copy_from_user(&va, argp, sizeof va))
3387                         goto out;
3388                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3389                 break;
3390         }
3391         case KVM_X86_SETUP_MCE: {
3392                 u64 mcg_cap;
3393
3394                 r = -EFAULT;
3395                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3396                         goto out;
3397                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3398                 break;
3399         }
3400         case KVM_X86_SET_MCE: {
3401                 struct kvm_x86_mce mce;
3402
3403                 r = -EFAULT;
3404                 if (copy_from_user(&mce, argp, sizeof mce))
3405                         goto out;
3406                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3407                 break;
3408         }
3409         case KVM_GET_VCPU_EVENTS: {
3410                 struct kvm_vcpu_events events;
3411
3412                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3413
3414                 r = -EFAULT;
3415                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3416                         break;
3417                 r = 0;
3418                 break;
3419         }
3420         case KVM_SET_VCPU_EVENTS: {
3421                 struct kvm_vcpu_events events;
3422
3423                 r = -EFAULT;
3424                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3425                         break;
3426
3427                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3428                 break;
3429         }
3430         case KVM_GET_DEBUGREGS: {
3431                 struct kvm_debugregs dbgregs;
3432
3433                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3434
3435                 r = -EFAULT;
3436                 if (copy_to_user(argp, &dbgregs,
3437                                  sizeof(struct kvm_debugregs)))
3438                         break;
3439                 r = 0;
3440                 break;
3441         }
3442         case KVM_SET_DEBUGREGS: {
3443                 struct kvm_debugregs dbgregs;
3444
3445                 r = -EFAULT;
3446                 if (copy_from_user(&dbgregs, argp,
3447                                    sizeof(struct kvm_debugregs)))
3448                         break;
3449
3450                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3451                 break;
3452         }
3453         case KVM_GET_XSAVE: {
3454                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3455                 r = -ENOMEM;
3456                 if (!u.xsave)
3457                         break;
3458
3459                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3460
3461                 r = -EFAULT;
3462                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3463                         break;
3464                 r = 0;
3465                 break;
3466         }
3467         case KVM_SET_XSAVE: {
3468                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3469                 if (IS_ERR(u.xsave))
3470                         return PTR_ERR(u.xsave);
3471
3472                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3473                 break;
3474         }
3475         case KVM_GET_XCRS: {
3476                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3477                 r = -ENOMEM;
3478                 if (!u.xcrs)
3479                         break;
3480
3481                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3482
3483                 r = -EFAULT;
3484                 if (copy_to_user(argp, u.xcrs,
3485                                  sizeof(struct kvm_xcrs)))
3486                         break;
3487                 r = 0;
3488                 break;
3489         }
3490         case KVM_SET_XCRS: {
3491                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3492                 if (IS_ERR(u.xcrs))
3493                         return PTR_ERR(u.xcrs);
3494
3495                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3496                 break;
3497         }
3498         case KVM_SET_TSC_KHZ: {
3499                 u32 user_tsc_khz;
3500
3501                 r = -EINVAL;
3502                 user_tsc_khz = (u32)arg;
3503
3504                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3505                         goto out;
3506
3507                 if (user_tsc_khz == 0)
3508                         user_tsc_khz = tsc_khz;
3509
3510                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3511                         r = 0;
3512
3513                 goto out;
3514         }
3515         case KVM_GET_TSC_KHZ: {
3516                 r = vcpu->arch.virtual_tsc_khz;
3517                 goto out;
3518         }
3519         case KVM_KVMCLOCK_CTRL: {
3520                 r = kvm_set_guest_paused(vcpu);
3521                 goto out;
3522         }
3523         case KVM_ENABLE_CAP: {
3524                 struct kvm_enable_cap cap;
3525
3526                 r = -EFAULT;
3527                 if (copy_from_user(&cap, argp, sizeof(cap)))
3528                         goto out;
3529                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3530                 break;
3531         }
3532         default:
3533                 r = -EINVAL;
3534         }
3535 out:
3536         kfree(u.buffer);
3537         return r;
3538 }
3539
3540 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3541 {
3542         return VM_FAULT_SIGBUS;
3543 }
3544
3545 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3546 {
3547         int ret;
3548
3549         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3550                 return -EINVAL;
3551         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3552         return ret;
3553 }
3554
3555 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3556                                               u64 ident_addr)
3557 {
3558         kvm->arch.ept_identity_map_addr = ident_addr;
3559         return 0;
3560 }
3561
3562 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3563                                           u32 kvm_nr_mmu_pages)
3564 {
3565         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3566                 return -EINVAL;
3567
3568         mutex_lock(&kvm->slots_lock);
3569
3570         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3571         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3572
3573         mutex_unlock(&kvm->slots_lock);
3574         return 0;
3575 }
3576
3577 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3578 {
3579         return kvm->arch.n_max_mmu_pages;
3580 }
3581
3582 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3583 {
3584         int r;
3585
3586         r = 0;
3587         switch (chip->chip_id) {
3588         case KVM_IRQCHIP_PIC_MASTER:
3589                 memcpy(&chip->chip.pic,
3590                         &pic_irqchip(kvm)->pics[0],
3591                         sizeof(struct kvm_pic_state));
3592                 break;
3593         case KVM_IRQCHIP_PIC_SLAVE:
3594                 memcpy(&chip->chip.pic,
3595                         &pic_irqchip(kvm)->pics[1],
3596                         sizeof(struct kvm_pic_state));
3597                 break;
3598         case KVM_IRQCHIP_IOAPIC:
3599                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3600                 break;
3601         default:
3602                 r = -EINVAL;
3603                 break;
3604         }
3605         return r;
3606 }
3607
3608 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3609 {
3610         int r;
3611
3612         r = 0;
3613         switch (chip->chip_id) {
3614         case KVM_IRQCHIP_PIC_MASTER:
3615                 spin_lock(&pic_irqchip(kvm)->lock);
3616                 memcpy(&pic_irqchip(kvm)->pics[0],
3617                         &chip->chip.pic,
3618                         sizeof(struct kvm_pic_state));
3619                 spin_unlock(&pic_irqchip(kvm)->lock);
3620                 break;
3621         case KVM_IRQCHIP_PIC_SLAVE:
3622                 spin_lock(&pic_irqchip(kvm)->lock);
3623                 memcpy(&pic_irqchip(kvm)->pics[1],
3624                         &chip->chip.pic,
3625                         sizeof(struct kvm_pic_state));
3626                 spin_unlock(&pic_irqchip(kvm)->lock);
3627                 break;
3628         case KVM_IRQCHIP_IOAPIC:
3629                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3630                 break;
3631         default:
3632                 r = -EINVAL;
3633                 break;
3634         }
3635         kvm_pic_update_irq(pic_irqchip(kvm));
3636         return r;
3637 }
3638
3639 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3640 {
3641         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3642
3643         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3644
3645         mutex_lock(&kps->lock);
3646         memcpy(ps, &kps->channels, sizeof(*ps));
3647         mutex_unlock(&kps->lock);
3648         return 0;
3649 }
3650
3651 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3652 {
3653         int i;
3654         struct kvm_pit *pit = kvm->arch.vpit;
3655
3656         mutex_lock(&pit->pit_state.lock);
3657         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3658         for (i = 0; i < 3; i++)
3659                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3660         mutex_unlock(&pit->pit_state.lock);
3661         return 0;
3662 }
3663
3664 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3665 {
3666         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3667         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3668                 sizeof(ps->channels));
3669         ps->flags = kvm->arch.vpit->pit_state.flags;
3670         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3671         memset(&ps->reserved, 0, sizeof(ps->reserved));
3672         return 0;
3673 }
3674
3675 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3676 {
3677         int start = 0;
3678         int i;
3679         u32 prev_legacy, cur_legacy;
3680         struct kvm_pit *pit = kvm->arch.vpit;
3681
3682         mutex_lock(&pit->pit_state.lock);
3683         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3684         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3685         if (!prev_legacy && cur_legacy)
3686                 start = 1;
3687         memcpy(&pit->pit_state.channels, &ps->channels,
3688                sizeof(pit->pit_state.channels));
3689         pit->pit_state.flags = ps->flags;
3690         for (i = 0; i < 3; i++)
3691                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3692                                    start && i == 0);
3693         mutex_unlock(&pit->pit_state.lock);
3694         return 0;
3695 }
3696
3697 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3698                                  struct kvm_reinject_control *control)
3699 {
3700         struct kvm_pit *pit = kvm->arch.vpit;
3701
3702         if (!pit)
3703                 return -ENXIO;
3704
3705         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3706          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3707          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3708          */
3709         mutex_lock(&pit->pit_state.lock);
3710         kvm_pit_set_reinject(pit, control->pit_reinject);
3711         mutex_unlock(&pit->pit_state.lock);
3712
3713         return 0;
3714 }
3715
3716 /**
3717  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3718  * @kvm: kvm instance
3719  * @log: slot id and address to which we copy the log
3720  *
3721  * Steps 1-4 below provide general overview of dirty page logging. See
3722  * kvm_get_dirty_log_protect() function description for additional details.
3723  *
3724  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3725  * always flush the TLB (step 4) even if previous step failed  and the dirty
3726  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3727  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3728  * writes will be marked dirty for next log read.
3729  *
3730  *   1. Take a snapshot of the bit and clear it if needed.
3731  *   2. Write protect the corresponding page.
3732  *   3. Copy the snapshot to the userspace.
3733  *   4. Flush TLB's if needed.
3734  */
3735 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3736 {
3737         bool is_dirty = false;
3738         int r;
3739
3740         mutex_lock(&kvm->slots_lock);
3741
3742         /*
3743          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3744          */
3745         if (kvm_x86_ops->flush_log_dirty)
3746                 kvm_x86_ops->flush_log_dirty(kvm);
3747
3748         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3749
3750         /*
3751          * All the TLBs can be flushed out of mmu lock, see the comments in
3752          * kvm_mmu_slot_remove_write_access().
3753          */
3754         lockdep_assert_held(&kvm->slots_lock);
3755         if (is_dirty)
3756                 kvm_flush_remote_tlbs(kvm);
3757
3758         mutex_unlock(&kvm->slots_lock);
3759         return r;
3760 }
3761
3762 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3763                         bool line_status)
3764 {
3765         if (!irqchip_in_kernel(kvm))
3766                 return -ENXIO;
3767
3768         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3769                                         irq_event->irq, irq_event->level,
3770                                         line_status);
3771         return 0;
3772 }
3773
3774 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3775                                    struct kvm_enable_cap *cap)
3776 {
3777         int r;
3778
3779         if (cap->flags)
3780                 return -EINVAL;
3781
3782         switch (cap->cap) {
3783         case KVM_CAP_DISABLE_QUIRKS:
3784                 kvm->arch.disabled_quirks = cap->args[0];
3785                 r = 0;
3786                 break;
3787         case KVM_CAP_SPLIT_IRQCHIP: {
3788                 mutex_lock(&kvm->lock);
3789                 r = -EINVAL;
3790                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3791                         goto split_irqchip_unlock;
3792                 r = -EEXIST;
3793                 if (irqchip_in_kernel(kvm))
3794                         goto split_irqchip_unlock;
3795                 if (kvm->created_vcpus)
3796                         goto split_irqchip_unlock;
3797                 r = kvm_setup_empty_irq_routing(kvm);
3798                 if (r)
3799                         goto split_irqchip_unlock;
3800                 /* Pairs with irqchip_in_kernel. */
3801                 smp_wmb();
3802                 kvm->arch.irqchip_split = true;
3803                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3804                 r = 0;
3805 split_irqchip_unlock:
3806                 mutex_unlock(&kvm->lock);
3807                 break;
3808         }
3809         case KVM_CAP_X2APIC_API:
3810                 r = -EINVAL;
3811                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3812                         break;
3813
3814                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3815                         kvm->arch.x2apic_format = true;
3816                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3817                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3818
3819                 r = 0;
3820                 break;
3821         default:
3822                 r = -EINVAL;
3823                 break;
3824         }
3825         return r;
3826 }
3827
3828 long kvm_arch_vm_ioctl(struct file *filp,
3829                        unsigned int ioctl, unsigned long arg)
3830 {
3831         struct kvm *kvm = filp->private_data;
3832         void __user *argp = (void __user *)arg;
3833         int r = -ENOTTY;
3834         /*
3835          * This union makes it completely explicit to gcc-3.x
3836          * that these two variables' stack usage should be
3837          * combined, not added together.
3838          */
3839         union {
3840                 struct kvm_pit_state ps;
3841                 struct kvm_pit_state2 ps2;
3842                 struct kvm_pit_config pit_config;
3843         } u;
3844
3845         switch (ioctl) {
3846         case KVM_SET_TSS_ADDR:
3847                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3848                 break;
3849         case KVM_SET_IDENTITY_MAP_ADDR: {
3850                 u64 ident_addr;
3851
3852                 r = -EFAULT;
3853                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3854                         goto out;
3855                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3856                 break;
3857         }
3858         case KVM_SET_NR_MMU_PAGES:
3859                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3860                 break;
3861         case KVM_GET_NR_MMU_PAGES:
3862                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3863                 break;
3864         case KVM_CREATE_IRQCHIP: {
3865                 struct kvm_pic *vpic;
3866
3867                 mutex_lock(&kvm->lock);
3868                 r = -EEXIST;
3869                 if (kvm->arch.vpic)
3870                         goto create_irqchip_unlock;
3871                 r = -EINVAL;
3872                 if (kvm->created_vcpus)
3873                         goto create_irqchip_unlock;
3874                 r = -ENOMEM;
3875                 vpic = kvm_create_pic(kvm);
3876                 if (vpic) {
3877                         r = kvm_ioapic_init(kvm);
3878                         if (r) {
3879                                 mutex_lock(&kvm->slots_lock);
3880                                 kvm_destroy_pic(vpic);
3881                                 mutex_unlock(&kvm->slots_lock);
3882                                 goto create_irqchip_unlock;
3883                         }
3884                 } else
3885                         goto create_irqchip_unlock;
3886                 r = kvm_setup_default_irq_routing(kvm);
3887                 if (r) {
3888                         mutex_lock(&kvm->slots_lock);
3889                         mutex_lock(&kvm->irq_lock);
3890                         kvm_ioapic_destroy(kvm);
3891                         kvm_destroy_pic(vpic);
3892                         mutex_unlock(&kvm->irq_lock);
3893                         mutex_unlock(&kvm->slots_lock);
3894                         goto create_irqchip_unlock;
3895                 }
3896                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3897                 smp_wmb();
3898                 kvm->arch.vpic = vpic;
3899         create_irqchip_unlock:
3900                 mutex_unlock(&kvm->lock);
3901                 break;
3902         }
3903         case KVM_CREATE_PIT:
3904                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3905                 goto create_pit;
3906         case KVM_CREATE_PIT2:
3907                 r = -EFAULT;
3908                 if (copy_from_user(&u.pit_config, argp,
3909                                    sizeof(struct kvm_pit_config)))
3910                         goto out;
3911         create_pit:
3912                 mutex_lock(&kvm->lock);
3913                 r = -EEXIST;
3914                 if (kvm->arch.vpit)
3915                         goto create_pit_unlock;
3916                 r = -ENOMEM;
3917                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3918                 if (kvm->arch.vpit)
3919                         r = 0;
3920         create_pit_unlock:
3921                 mutex_unlock(&kvm->lock);
3922                 break;
3923         case KVM_GET_IRQCHIP: {
3924                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3925                 struct kvm_irqchip *chip;
3926
3927                 chip = memdup_user(argp, sizeof(*chip));
3928                 if (IS_ERR(chip)) {
3929                         r = PTR_ERR(chip);
3930                         goto out;
3931                 }
3932
3933                 r = -ENXIO;
3934                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3935                         goto get_irqchip_out;
3936                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3937                 if (r)
3938                         goto get_irqchip_out;
3939                 r = -EFAULT;
3940                 if (copy_to_user(argp, chip, sizeof *chip))
3941                         goto get_irqchip_out;
3942                 r = 0;
3943         get_irqchip_out:
3944                 kfree(chip);
3945                 break;
3946         }
3947         case KVM_SET_IRQCHIP: {
3948                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3949                 struct kvm_irqchip *chip;
3950
3951                 chip = memdup_user(argp, sizeof(*chip));
3952                 if (IS_ERR(chip)) {
3953                         r = PTR_ERR(chip);
3954                         goto out;
3955                 }
3956
3957                 r = -ENXIO;
3958                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3959                         goto set_irqchip_out;
3960                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3961                 if (r)
3962                         goto set_irqchip_out;
3963                 r = 0;
3964         set_irqchip_out:
3965                 kfree(chip);
3966                 break;
3967         }
3968         case KVM_GET_PIT: {
3969                 r = -EFAULT;
3970                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3971                         goto out;
3972                 r = -ENXIO;
3973                 if (!kvm->arch.vpit)
3974                         goto out;
3975                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3976                 if (r)
3977                         goto out;
3978                 r = -EFAULT;
3979                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3980                         goto out;
3981                 r = 0;
3982                 break;
3983         }
3984         case KVM_SET_PIT: {
3985                 r = -EFAULT;
3986                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3987                         goto out;
3988                 r = -ENXIO;
3989                 if (!kvm->arch.vpit)
3990                         goto out;
3991                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3992                 break;
3993         }
3994         case KVM_GET_PIT2: {
3995                 r = -ENXIO;
3996                 if (!kvm->arch.vpit)
3997                         goto out;
3998                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3999                 if (r)
4000                         goto out;
4001                 r = -EFAULT;
4002                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4003                         goto out;
4004                 r = 0;
4005                 break;
4006         }
4007         case KVM_SET_PIT2: {
4008                 r = -EFAULT;
4009                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4010                         goto out;
4011                 r = -ENXIO;
4012                 if (!kvm->arch.vpit)
4013                         goto out;
4014                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4015                 break;
4016         }
4017         case KVM_REINJECT_CONTROL: {
4018                 struct kvm_reinject_control control;
4019                 r =  -EFAULT;
4020                 if (copy_from_user(&control, argp, sizeof(control)))
4021                         goto out;
4022                 r = kvm_vm_ioctl_reinject(kvm, &control);
4023                 break;
4024         }
4025         case KVM_SET_BOOT_CPU_ID:
4026                 r = 0;
4027                 mutex_lock(&kvm->lock);
4028                 if (kvm->created_vcpus)
4029                         r = -EBUSY;
4030                 else
4031                         kvm->arch.bsp_vcpu_id = arg;
4032                 mutex_unlock(&kvm->lock);
4033                 break;
4034         case KVM_XEN_HVM_CONFIG: {
4035                 r = -EFAULT;
4036                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4037                                    sizeof(struct kvm_xen_hvm_config)))
4038                         goto out;
4039                 r = -EINVAL;
4040                 if (kvm->arch.xen_hvm_config.flags)
4041                         goto out;
4042                 r = 0;
4043                 break;
4044         }
4045         case KVM_SET_CLOCK: {
4046                 struct kvm_clock_data user_ns;
4047                 u64 now_ns;
4048                 s64 delta;
4049
4050                 r = -EFAULT;
4051                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4052                         goto out;
4053
4054                 r = -EINVAL;
4055                 if (user_ns.flags)
4056                         goto out;
4057
4058                 r = 0;
4059                 local_irq_disable();
4060                 now_ns = get_kernel_ns();
4061                 delta = user_ns.clock - now_ns;
4062                 local_irq_enable();
4063                 kvm->arch.kvmclock_offset = delta;
4064                 kvm_gen_update_masterclock(kvm);
4065                 break;
4066         }
4067         case KVM_GET_CLOCK: {
4068                 struct kvm_clock_data user_ns;
4069                 u64 now_ns;
4070
4071                 local_irq_disable();
4072                 now_ns = get_kernel_ns();
4073                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4074                 local_irq_enable();
4075                 user_ns.flags = 0;
4076                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4077
4078                 r = -EFAULT;
4079                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4080                         goto out;
4081                 r = 0;
4082                 break;
4083         }
4084         case KVM_ENABLE_CAP: {
4085                 struct kvm_enable_cap cap;
4086
4087                 r = -EFAULT;
4088                 if (copy_from_user(&cap, argp, sizeof(cap)))
4089                         goto out;
4090                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4091                 break;
4092         }
4093         default:
4094                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4095         }
4096 out:
4097         return r;
4098 }
4099
4100 static void kvm_init_msr_list(void)
4101 {
4102         u32 dummy[2];
4103         unsigned i, j;
4104
4105         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4106                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4107                         continue;
4108
4109                 /*
4110                  * Even MSRs that are valid in the host may not be exposed
4111                  * to the guests in some cases.
4112                  */
4113                 switch (msrs_to_save[i]) {
4114                 case MSR_IA32_BNDCFGS:
4115                         if (!kvm_x86_ops->mpx_supported())
4116                                 continue;
4117                         break;
4118                 case MSR_TSC_AUX:
4119                         if (!kvm_x86_ops->rdtscp_supported())
4120                                 continue;
4121                         break;
4122                 default:
4123                         break;
4124                 }
4125
4126                 if (j < i)
4127                         msrs_to_save[j] = msrs_to_save[i];
4128                 j++;
4129         }
4130         num_msrs_to_save = j;
4131
4132         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4133                 switch (emulated_msrs[i]) {
4134                 case MSR_IA32_SMBASE:
4135                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4136                                 continue;
4137                         break;
4138                 default:
4139                         break;
4140                 }
4141
4142                 if (j < i)
4143                         emulated_msrs[j] = emulated_msrs[i];
4144                 j++;
4145         }
4146         num_emulated_msrs = j;
4147 }
4148
4149 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4150                            const void *v)
4151 {
4152         int handled = 0;
4153         int n;
4154
4155         do {
4156                 n = min(len, 8);
4157                 if (!(lapic_in_kernel(vcpu) &&
4158                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4159                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4160                         break;
4161                 handled += n;
4162                 addr += n;
4163                 len -= n;
4164                 v += n;
4165         } while (len);
4166
4167         return handled;
4168 }
4169
4170 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4171 {
4172         int handled = 0;
4173         int n;
4174
4175         do {
4176                 n = min(len, 8);
4177                 if (!(lapic_in_kernel(vcpu) &&
4178                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4179                                          addr, n, v))
4180                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4181                         break;
4182                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4183                 handled += n;
4184                 addr += n;
4185                 len -= n;
4186                 v += n;
4187         } while (len);
4188
4189         return handled;
4190 }
4191
4192 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4193                         struct kvm_segment *var, int seg)
4194 {
4195         kvm_x86_ops->set_segment(vcpu, var, seg);
4196 }
4197
4198 void kvm_get_segment(struct kvm_vcpu *vcpu,
4199                      struct kvm_segment *var, int seg)
4200 {
4201         kvm_x86_ops->get_segment(vcpu, var, seg);
4202 }
4203
4204 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4205                            struct x86_exception *exception)
4206 {
4207         gpa_t t_gpa;
4208
4209         BUG_ON(!mmu_is_nested(vcpu));
4210
4211         /* NPT walks are always user-walks */
4212         access |= PFERR_USER_MASK;
4213         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4214
4215         return t_gpa;
4216 }
4217
4218 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4219                               struct x86_exception *exception)
4220 {
4221         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4222         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4223 }
4224
4225  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4226                                 struct x86_exception *exception)
4227 {
4228         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4229         access |= PFERR_FETCH_MASK;
4230         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4231 }
4232
4233 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4234                                struct x86_exception *exception)
4235 {
4236         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4237         access |= PFERR_WRITE_MASK;
4238         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4239 }
4240
4241 /* uses this to access any guest's mapped memory without checking CPL */
4242 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4243                                 struct x86_exception *exception)
4244 {
4245         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4246 }
4247
4248 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4249                                       struct kvm_vcpu *vcpu, u32 access,
4250                                       struct x86_exception *exception)
4251 {
4252         void *data = val;
4253         int r = X86EMUL_CONTINUE;
4254
4255         while (bytes) {
4256                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4257                                                             exception);
4258                 unsigned offset = addr & (PAGE_SIZE-1);
4259                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4260                 int ret;
4261
4262                 if (gpa == UNMAPPED_GVA)
4263                         return X86EMUL_PROPAGATE_FAULT;
4264                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4265                                                offset, toread);
4266                 if (ret < 0) {
4267                         r = X86EMUL_IO_NEEDED;
4268                         goto out;
4269                 }
4270
4271                 bytes -= toread;
4272                 data += toread;
4273                 addr += toread;
4274         }
4275 out:
4276         return r;
4277 }
4278
4279 /* used for instruction fetching */
4280 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4281                                 gva_t addr, void *val, unsigned int bytes,
4282                                 struct x86_exception *exception)
4283 {
4284         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4285         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4286         unsigned offset;
4287         int ret;
4288
4289         /* Inline kvm_read_guest_virt_helper for speed.  */
4290         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4291                                                     exception);
4292         if (unlikely(gpa == UNMAPPED_GVA))
4293                 return X86EMUL_PROPAGATE_FAULT;
4294
4295         offset = addr & (PAGE_SIZE-1);
4296         if (WARN_ON(offset + bytes > PAGE_SIZE))
4297                 bytes = (unsigned)PAGE_SIZE - offset;
4298         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4299                                        offset, bytes);
4300         if (unlikely(ret < 0))
4301                 return X86EMUL_IO_NEEDED;
4302
4303         return X86EMUL_CONTINUE;
4304 }
4305
4306 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4307                                gva_t addr, void *val, unsigned int bytes,
4308                                struct x86_exception *exception)
4309 {
4310         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4311         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4312
4313         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4314                                           exception);
4315 }
4316 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4317
4318 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4319                                       gva_t addr, void *val, unsigned int bytes,
4320                                       struct x86_exception *exception)
4321 {
4322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4323         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4324 }
4325
4326 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4327                 unsigned long addr, void *val, unsigned int bytes)
4328 {
4329         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4330         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4331
4332         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4333 }
4334
4335 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4336                                        gva_t addr, void *val,
4337                                        unsigned int bytes,
4338                                        struct x86_exception *exception)
4339 {
4340         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4341         void *data = val;
4342         int r = X86EMUL_CONTINUE;
4343
4344         while (bytes) {
4345                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4346                                                              PFERR_WRITE_MASK,
4347                                                              exception);
4348                 unsigned offset = addr & (PAGE_SIZE-1);
4349                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4350                 int ret;
4351
4352                 if (gpa == UNMAPPED_GVA)
4353                         return X86EMUL_PROPAGATE_FAULT;
4354                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4355                 if (ret < 0) {
4356                         r = X86EMUL_IO_NEEDED;
4357                         goto out;
4358                 }
4359
4360                 bytes -= towrite;
4361                 data += towrite;
4362                 addr += towrite;
4363         }
4364 out:
4365         return r;
4366 }
4367 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4368
4369 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4370                                 gpa_t *gpa, struct x86_exception *exception,
4371                                 bool write)
4372 {
4373         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4374                 | (write ? PFERR_WRITE_MASK : 0);
4375
4376         /*
4377          * currently PKRU is only applied to ept enabled guest so
4378          * there is no pkey in EPT page table for L1 guest or EPT
4379          * shadow page table for L2 guest.
4380          */
4381         if (vcpu_match_mmio_gva(vcpu, gva)
4382             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4383                                  vcpu->arch.access, 0, access)) {
4384                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4385                                         (gva & (PAGE_SIZE - 1));
4386                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4387                 return 1;
4388         }
4389
4390         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4391
4392         if (*gpa == UNMAPPED_GVA)
4393                 return -1;
4394
4395         /* For APIC access vmexit */
4396         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4397                 return 1;
4398
4399         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4400                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4401                 return 1;
4402         }
4403
4404         return 0;
4405 }
4406
4407 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4408                         const void *val, int bytes)
4409 {
4410         int ret;
4411
4412         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4413         if (ret < 0)
4414                 return 0;
4415         kvm_page_track_write(vcpu, gpa, val, bytes);
4416         return 1;
4417 }
4418
4419 struct read_write_emulator_ops {
4420         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4421                                   int bytes);
4422         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4423                                   void *val, int bytes);
4424         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4425                                int bytes, void *val);
4426         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4427                                     void *val, int bytes);
4428         bool write;
4429 };
4430
4431 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4432 {
4433         if (vcpu->mmio_read_completed) {
4434                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4435                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4436                 vcpu->mmio_read_completed = 0;
4437                 return 1;
4438         }
4439
4440         return 0;
4441 }
4442
4443 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4444                         void *val, int bytes)
4445 {
4446         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4447 }
4448
4449 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4450                          void *val, int bytes)
4451 {
4452         return emulator_write_phys(vcpu, gpa, val, bytes);
4453 }
4454
4455 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4456 {
4457         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4458         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4459 }
4460
4461 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4462                           void *val, int bytes)
4463 {
4464         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4465         return X86EMUL_IO_NEEDED;
4466 }
4467
4468 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4469                            void *val, int bytes)
4470 {
4471         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4472
4473         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4474         return X86EMUL_CONTINUE;
4475 }
4476
4477 static const struct read_write_emulator_ops read_emultor = {
4478         .read_write_prepare = read_prepare,
4479         .read_write_emulate = read_emulate,
4480         .read_write_mmio = vcpu_mmio_read,
4481         .read_write_exit_mmio = read_exit_mmio,
4482 };
4483
4484 static const struct read_write_emulator_ops write_emultor = {
4485         .read_write_emulate = write_emulate,
4486         .read_write_mmio = write_mmio,
4487         .read_write_exit_mmio = write_exit_mmio,
4488         .write = true,
4489 };
4490
4491 static int emulator_read_write_onepage(unsigned long addr, void *val,
4492                                        unsigned int bytes,
4493                                        struct x86_exception *exception,
4494                                        struct kvm_vcpu *vcpu,
4495                                        const struct read_write_emulator_ops *ops)
4496 {
4497         gpa_t gpa;
4498         int handled, ret;
4499         bool write = ops->write;
4500         struct kvm_mmio_fragment *frag;
4501
4502         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4503
4504         if (ret < 0)
4505                 return X86EMUL_PROPAGATE_FAULT;
4506
4507         /* For APIC access vmexit */
4508         if (ret)
4509                 goto mmio;
4510
4511         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4512                 return X86EMUL_CONTINUE;
4513
4514 mmio:
4515         /*
4516          * Is this MMIO handled locally?
4517          */
4518         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4519         if (handled == bytes)
4520                 return X86EMUL_CONTINUE;
4521
4522         gpa += handled;
4523         bytes -= handled;
4524         val += handled;
4525
4526         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4527         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4528         frag->gpa = gpa;
4529         frag->data = val;
4530         frag->len = bytes;
4531         return X86EMUL_CONTINUE;
4532 }
4533
4534 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4535                         unsigned long addr,
4536                         void *val, unsigned int bytes,
4537                         struct x86_exception *exception,
4538                         const struct read_write_emulator_ops *ops)
4539 {
4540         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4541         gpa_t gpa;
4542         int rc;
4543
4544         if (ops->read_write_prepare &&
4545                   ops->read_write_prepare(vcpu, val, bytes))
4546                 return X86EMUL_CONTINUE;
4547
4548         vcpu->mmio_nr_fragments = 0;
4549
4550         /* Crossing a page boundary? */
4551         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4552                 int now;
4553
4554                 now = -addr & ~PAGE_MASK;
4555                 rc = emulator_read_write_onepage(addr, val, now, exception,
4556                                                  vcpu, ops);
4557
4558                 if (rc != X86EMUL_CONTINUE)
4559                         return rc;
4560                 addr += now;
4561                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4562                         addr = (u32)addr;
4563                 val += now;
4564                 bytes -= now;
4565         }
4566
4567         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4568                                          vcpu, ops);
4569         if (rc != X86EMUL_CONTINUE)
4570                 return rc;
4571
4572         if (!vcpu->mmio_nr_fragments)
4573                 return rc;
4574
4575         gpa = vcpu->mmio_fragments[0].gpa;
4576
4577         vcpu->mmio_needed = 1;
4578         vcpu->mmio_cur_fragment = 0;
4579
4580         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4581         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4582         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4583         vcpu->run->mmio.phys_addr = gpa;
4584
4585         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4586 }
4587
4588 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4589                                   unsigned long addr,
4590                                   void *val,
4591                                   unsigned int bytes,
4592                                   struct x86_exception *exception)
4593 {
4594         return emulator_read_write(ctxt, addr, val, bytes,
4595                                    exception, &read_emultor);
4596 }
4597
4598 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4599                             unsigned long addr,
4600                             const void *val,
4601                             unsigned int bytes,
4602                             struct x86_exception *exception)
4603 {
4604         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4605                                    exception, &write_emultor);
4606 }
4607
4608 #define CMPXCHG_TYPE(t, ptr, old, new) \
4609         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4610
4611 #ifdef CONFIG_X86_64
4612 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4613 #else
4614 #  define CMPXCHG64(ptr, old, new) \
4615         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4616 #endif
4617
4618 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4619                                      unsigned long addr,
4620                                      const void *old,
4621                                      const void *new,
4622                                      unsigned int bytes,
4623                                      struct x86_exception *exception)
4624 {
4625         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4626         gpa_t gpa;
4627         struct page *page;
4628         char *kaddr;
4629         bool exchanged;
4630
4631         /* guests cmpxchg8b have to be emulated atomically */
4632         if (bytes > 8 || (bytes & (bytes - 1)))
4633                 goto emul_write;
4634
4635         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4636
4637         if (gpa == UNMAPPED_GVA ||
4638             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4639                 goto emul_write;
4640
4641         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4642                 goto emul_write;
4643
4644         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4645         if (is_error_page(page))
4646                 goto emul_write;
4647
4648         kaddr = kmap_atomic(page);
4649         kaddr += offset_in_page(gpa);
4650         switch (bytes) {
4651         case 1:
4652                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4653                 break;
4654         case 2:
4655                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4656                 break;
4657         case 4:
4658                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4659                 break;
4660         case 8:
4661                 exchanged = CMPXCHG64(kaddr, old, new);
4662                 break;
4663         default:
4664                 BUG();
4665         }
4666         kunmap_atomic(kaddr);
4667         kvm_release_page_dirty(page);
4668
4669         if (!exchanged)
4670                 return X86EMUL_CMPXCHG_FAILED;
4671
4672         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4673         kvm_page_track_write(vcpu, gpa, new, bytes);
4674
4675         return X86EMUL_CONTINUE;
4676
4677 emul_write:
4678         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4679
4680         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4681 }
4682
4683 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4684 {
4685         /* TODO: String I/O for in kernel device */
4686         int r;
4687
4688         if (vcpu->arch.pio.in)
4689                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4690                                     vcpu->arch.pio.size, pd);
4691         else
4692                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4693                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4694                                      pd);
4695         return r;
4696 }
4697
4698 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4699                                unsigned short port, void *val,
4700                                unsigned int count, bool in)
4701 {
4702         vcpu->arch.pio.port = port;
4703         vcpu->arch.pio.in = in;
4704         vcpu->arch.pio.count  = count;
4705         vcpu->arch.pio.size = size;
4706
4707         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4708                 vcpu->arch.pio.count = 0;
4709                 return 1;
4710         }
4711
4712         vcpu->run->exit_reason = KVM_EXIT_IO;
4713         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4714         vcpu->run->io.size = size;
4715         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4716         vcpu->run->io.count = count;
4717         vcpu->run->io.port = port;
4718
4719         return 0;
4720 }
4721
4722 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4723                                     int size, unsigned short port, void *val,
4724                                     unsigned int count)
4725 {
4726         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4727         int ret;
4728
4729         if (vcpu->arch.pio.count)
4730                 goto data_avail;
4731
4732         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4733         if (ret) {
4734 data_avail:
4735                 memcpy(val, vcpu->arch.pio_data, size * count);
4736                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4737                 vcpu->arch.pio.count = 0;
4738                 return 1;
4739         }
4740
4741         return 0;
4742 }
4743
4744 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4745                                      int size, unsigned short port,
4746                                      const void *val, unsigned int count)
4747 {
4748         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4749
4750         memcpy(vcpu->arch.pio_data, val, size * count);
4751         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4752         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4753 }
4754
4755 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4756 {
4757         return kvm_x86_ops->get_segment_base(vcpu, seg);
4758 }
4759
4760 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4761 {
4762         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4763 }
4764
4765 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4766 {
4767         if (!need_emulate_wbinvd(vcpu))
4768                 return X86EMUL_CONTINUE;
4769
4770         if (kvm_x86_ops->has_wbinvd_exit()) {
4771                 int cpu = get_cpu();
4772
4773                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4774                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4775                                 wbinvd_ipi, NULL, 1);
4776                 put_cpu();
4777                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4778         } else
4779                 wbinvd();
4780         return X86EMUL_CONTINUE;
4781 }
4782
4783 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4784 {
4785         kvm_x86_ops->skip_emulated_instruction(vcpu);
4786         return kvm_emulate_wbinvd_noskip(vcpu);
4787 }
4788 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4789
4790
4791
4792 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4793 {
4794         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4795 }
4796
4797 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4798                            unsigned long *dest)
4799 {
4800         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4801 }
4802
4803 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4804                            unsigned long value)
4805 {
4806
4807         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4808 }
4809
4810 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4811 {
4812         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4813 }
4814
4815 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4816 {
4817         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4818         unsigned long value;
4819
4820         switch (cr) {
4821         case 0:
4822                 value = kvm_read_cr0(vcpu);
4823                 break;
4824         case 2:
4825                 value = vcpu->arch.cr2;
4826                 break;
4827         case 3:
4828                 value = kvm_read_cr3(vcpu);
4829                 break;
4830         case 4:
4831                 value = kvm_read_cr4(vcpu);
4832                 break;
4833         case 8:
4834                 value = kvm_get_cr8(vcpu);
4835                 break;
4836         default:
4837                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4838                 return 0;
4839         }
4840
4841         return value;
4842 }
4843
4844 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4845 {
4846         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4847         int res = 0;
4848
4849         switch (cr) {
4850         case 0:
4851                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4852                 break;
4853         case 2:
4854                 vcpu->arch.cr2 = val;
4855                 break;
4856         case 3:
4857                 res = kvm_set_cr3(vcpu, val);
4858                 break;
4859         case 4:
4860                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4861                 break;
4862         case 8:
4863                 res = kvm_set_cr8(vcpu, val);
4864                 break;
4865         default:
4866                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4867                 res = -1;
4868         }
4869
4870         return res;
4871 }
4872
4873 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4874 {
4875         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4876 }
4877
4878 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4879 {
4880         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4881 }
4882
4883 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4884 {
4885         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4886 }
4887
4888 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4889 {
4890         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4891 }
4892
4893 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4894 {
4895         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4896 }
4897
4898 static unsigned long emulator_get_cached_segment_base(
4899         struct x86_emulate_ctxt *ctxt, int seg)
4900 {
4901         return get_segment_base(emul_to_vcpu(ctxt), seg);
4902 }
4903
4904 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4905                                  struct desc_struct *desc, u32 *base3,
4906                                  int seg)
4907 {
4908         struct kvm_segment var;
4909
4910         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4911         *selector = var.selector;
4912
4913         if (var.unusable) {
4914                 memset(desc, 0, sizeof(*desc));
4915                 return false;
4916         }
4917
4918         if (var.g)
4919                 var.limit >>= 12;
4920         set_desc_limit(desc, var.limit);
4921         set_desc_base(desc, (unsigned long)var.base);
4922 #ifdef CONFIG_X86_64
4923         if (base3)
4924                 *base3 = var.base >> 32;
4925 #endif
4926         desc->type = var.type;
4927         desc->s = var.s;
4928         desc->dpl = var.dpl;
4929         desc->p = var.present;
4930         desc->avl = var.avl;
4931         desc->l = var.l;
4932         desc->d = var.db;
4933         desc->g = var.g;
4934
4935         return true;
4936 }
4937
4938 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4939                                  struct desc_struct *desc, u32 base3,
4940                                  int seg)
4941 {
4942         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4943         struct kvm_segment var;
4944
4945         var.selector = selector;
4946         var.base = get_desc_base(desc);
4947 #ifdef CONFIG_X86_64
4948         var.base |= ((u64)base3) << 32;
4949 #endif
4950         var.limit = get_desc_limit(desc);
4951         if (desc->g)
4952                 var.limit = (var.limit << 12) | 0xfff;
4953         var.type = desc->type;
4954         var.dpl = desc->dpl;
4955         var.db = desc->d;
4956         var.s = desc->s;
4957         var.l = desc->l;
4958         var.g = desc->g;
4959         var.avl = desc->avl;
4960         var.present = desc->p;
4961         var.unusable = !var.present;
4962         var.padding = 0;
4963
4964         kvm_set_segment(vcpu, &var, seg);
4965         return;
4966 }
4967
4968 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4969                             u32 msr_index, u64 *pdata)
4970 {
4971         struct msr_data msr;
4972         int r;
4973
4974         msr.index = msr_index;
4975         msr.host_initiated = false;
4976         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4977         if (r)
4978                 return r;
4979
4980         *pdata = msr.data;
4981         return 0;
4982 }
4983
4984 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4985                             u32 msr_index, u64 data)
4986 {
4987         struct msr_data msr;
4988
4989         msr.data = data;
4990         msr.index = msr_index;
4991         msr.host_initiated = false;
4992         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4993 }
4994
4995 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4996 {
4997         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4998
4999         return vcpu->arch.smbase;
5000 }
5001
5002 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5003 {
5004         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5005
5006         vcpu->arch.smbase = smbase;
5007 }
5008
5009 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5010                               u32 pmc)
5011 {
5012         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5013 }
5014
5015 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5016                              u32 pmc, u64 *pdata)
5017 {
5018         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5019 }
5020
5021 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5022 {
5023         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5024 }
5025
5026 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5027 {
5028         preempt_disable();
5029         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5030         /*
5031          * CR0.TS may reference the host fpu state, not the guest fpu state,
5032          * so it may be clear at this point.
5033          */
5034         clts();
5035 }
5036
5037 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5038 {
5039         preempt_enable();
5040 }
5041
5042 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5043                               struct x86_instruction_info *info,
5044                               enum x86_intercept_stage stage)
5045 {
5046         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5047 }
5048
5049 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5050                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5051 {
5052         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5053 }
5054
5055 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5056 {
5057         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5058 }
5059
5060 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5061 {
5062         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5063 }
5064
5065 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5066 {
5067         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5068 }
5069
5070 static const struct x86_emulate_ops emulate_ops = {
5071         .read_gpr            = emulator_read_gpr,
5072         .write_gpr           = emulator_write_gpr,
5073         .read_std            = kvm_read_guest_virt_system,
5074         .write_std           = kvm_write_guest_virt_system,
5075         .read_phys           = kvm_read_guest_phys_system,
5076         .fetch               = kvm_fetch_guest_virt,
5077         .read_emulated       = emulator_read_emulated,
5078         .write_emulated      = emulator_write_emulated,
5079         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5080         .invlpg              = emulator_invlpg,
5081         .pio_in_emulated     = emulator_pio_in_emulated,
5082         .pio_out_emulated    = emulator_pio_out_emulated,
5083         .get_segment         = emulator_get_segment,
5084         .set_segment         = emulator_set_segment,
5085         .get_cached_segment_base = emulator_get_cached_segment_base,
5086         .get_gdt             = emulator_get_gdt,
5087         .get_idt             = emulator_get_idt,
5088         .set_gdt             = emulator_set_gdt,
5089         .set_idt             = emulator_set_idt,
5090         .get_cr              = emulator_get_cr,
5091         .set_cr              = emulator_set_cr,
5092         .cpl                 = emulator_get_cpl,
5093         .get_dr              = emulator_get_dr,
5094         .set_dr              = emulator_set_dr,
5095         .get_smbase          = emulator_get_smbase,
5096         .set_smbase          = emulator_set_smbase,
5097         .set_msr             = emulator_set_msr,
5098         .get_msr             = emulator_get_msr,
5099         .check_pmc           = emulator_check_pmc,
5100         .read_pmc            = emulator_read_pmc,
5101         .halt                = emulator_halt,
5102         .wbinvd              = emulator_wbinvd,
5103         .fix_hypercall       = emulator_fix_hypercall,
5104         .get_fpu             = emulator_get_fpu,
5105         .put_fpu             = emulator_put_fpu,
5106         .intercept           = emulator_intercept,
5107         .get_cpuid           = emulator_get_cpuid,
5108         .set_nmi_mask        = emulator_set_nmi_mask,
5109 };
5110
5111 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5112 {
5113         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5114         /*
5115          * an sti; sti; sequence only disable interrupts for the first
5116          * instruction. So, if the last instruction, be it emulated or
5117          * not, left the system with the INT_STI flag enabled, it
5118          * means that the last instruction is an sti. We should not
5119          * leave the flag on in this case. The same goes for mov ss
5120          */
5121         if (int_shadow & mask)
5122                 mask = 0;
5123         if (unlikely(int_shadow || mask)) {
5124                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5125                 if (!mask)
5126                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5127         }
5128 }
5129
5130 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5131 {
5132         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5133         if (ctxt->exception.vector == PF_VECTOR)
5134                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5135
5136         if (ctxt->exception.error_code_valid)
5137                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5138                                       ctxt->exception.error_code);
5139         else
5140                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5141         return false;
5142 }
5143
5144 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5145 {
5146         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5147         int cs_db, cs_l;
5148
5149         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5150
5151         ctxt->eflags = kvm_get_rflags(vcpu);
5152         ctxt->eip = kvm_rip_read(vcpu);
5153         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5154                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5155                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5156                      cs_db                              ? X86EMUL_MODE_PROT32 :
5157                                                           X86EMUL_MODE_PROT16;
5158         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5159         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5160         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5161         ctxt->emul_flags = vcpu->arch.hflags;
5162
5163         init_decode_cache(ctxt);
5164         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5165 }
5166
5167 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5168 {
5169         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5170         int ret;
5171
5172         init_emulate_ctxt(vcpu);
5173
5174         ctxt->op_bytes = 2;
5175         ctxt->ad_bytes = 2;
5176         ctxt->_eip = ctxt->eip + inc_eip;
5177         ret = emulate_int_real(ctxt, irq);
5178
5179         if (ret != X86EMUL_CONTINUE)
5180                 return EMULATE_FAIL;
5181
5182         ctxt->eip = ctxt->_eip;
5183         kvm_rip_write(vcpu, ctxt->eip);
5184         kvm_set_rflags(vcpu, ctxt->eflags);
5185
5186         if (irq == NMI_VECTOR)
5187                 vcpu->arch.nmi_pending = 0;
5188         else
5189                 vcpu->arch.interrupt.pending = false;
5190
5191         return EMULATE_DONE;
5192 }
5193 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5194
5195 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5196 {
5197         int r = EMULATE_DONE;
5198
5199         ++vcpu->stat.insn_emulation_fail;
5200         trace_kvm_emulate_insn_failed(vcpu);
5201         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5202                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5203                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5204                 vcpu->run->internal.ndata = 0;
5205                 r = EMULATE_FAIL;
5206         }
5207         kvm_queue_exception(vcpu, UD_VECTOR);
5208
5209         return r;
5210 }
5211
5212 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5213                                   bool write_fault_to_shadow_pgtable,
5214                                   int emulation_type)
5215 {
5216         gpa_t gpa = cr2;
5217         kvm_pfn_t pfn;
5218
5219         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5220                 return false;
5221
5222         if (!vcpu->arch.mmu.direct_map) {
5223                 /*
5224                  * Write permission should be allowed since only
5225                  * write access need to be emulated.
5226                  */
5227                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5228
5229                 /*
5230                  * If the mapping is invalid in guest, let cpu retry
5231                  * it to generate fault.
5232                  */
5233                 if (gpa == UNMAPPED_GVA)
5234                         return true;
5235         }
5236
5237         /*
5238          * Do not retry the unhandleable instruction if it faults on the
5239          * readonly host memory, otherwise it will goto a infinite loop:
5240          * retry instruction -> write #PF -> emulation fail -> retry
5241          * instruction -> ...
5242          */
5243         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5244
5245         /*
5246          * If the instruction failed on the error pfn, it can not be fixed,
5247          * report the error to userspace.
5248          */
5249         if (is_error_noslot_pfn(pfn))
5250                 return false;
5251
5252         kvm_release_pfn_clean(pfn);
5253
5254         /* The instructions are well-emulated on direct mmu. */
5255         if (vcpu->arch.mmu.direct_map) {
5256                 unsigned int indirect_shadow_pages;
5257
5258                 spin_lock(&vcpu->kvm->mmu_lock);
5259                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5260                 spin_unlock(&vcpu->kvm->mmu_lock);
5261
5262                 if (indirect_shadow_pages)
5263                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5264
5265                 return true;
5266         }
5267
5268         /*
5269          * if emulation was due to access to shadowed page table
5270          * and it failed try to unshadow page and re-enter the
5271          * guest to let CPU execute the instruction.
5272          */
5273         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5274
5275         /*
5276          * If the access faults on its page table, it can not
5277          * be fixed by unprotecting shadow page and it should
5278          * be reported to userspace.
5279          */
5280         return !write_fault_to_shadow_pgtable;
5281 }
5282
5283 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5284                               unsigned long cr2,  int emulation_type)
5285 {
5286         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5287         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5288
5289         last_retry_eip = vcpu->arch.last_retry_eip;
5290         last_retry_addr = vcpu->arch.last_retry_addr;
5291
5292         /*
5293          * If the emulation is caused by #PF and it is non-page_table
5294          * writing instruction, it means the VM-EXIT is caused by shadow
5295          * page protected, we can zap the shadow page and retry this
5296          * instruction directly.
5297          *
5298          * Note: if the guest uses a non-page-table modifying instruction
5299          * on the PDE that points to the instruction, then we will unmap
5300          * the instruction and go to an infinite loop. So, we cache the
5301          * last retried eip and the last fault address, if we meet the eip
5302          * and the address again, we can break out of the potential infinite
5303          * loop.
5304          */
5305         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5306
5307         if (!(emulation_type & EMULTYPE_RETRY))
5308                 return false;
5309
5310         if (x86_page_table_writing_insn(ctxt))
5311                 return false;
5312
5313         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5314                 return false;
5315
5316         vcpu->arch.last_retry_eip = ctxt->eip;
5317         vcpu->arch.last_retry_addr = cr2;
5318
5319         if (!vcpu->arch.mmu.direct_map)
5320                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5321
5322         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5323
5324         return true;
5325 }
5326
5327 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5328 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5329
5330 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5331 {
5332         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5333                 /* This is a good place to trace that we are exiting SMM.  */
5334                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5335
5336                 /* Process a latched INIT or SMI, if any.  */
5337                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5338         }
5339
5340         kvm_mmu_reset_context(vcpu);
5341 }
5342
5343 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5344 {
5345         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5346
5347         vcpu->arch.hflags = emul_flags;
5348
5349         if (changed & HF_SMM_MASK)
5350                 kvm_smm_changed(vcpu);
5351 }
5352
5353 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5354                                 unsigned long *db)
5355 {
5356         u32 dr6 = 0;
5357         int i;
5358         u32 enable, rwlen;
5359
5360         enable = dr7;
5361         rwlen = dr7 >> 16;
5362         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5363                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5364                         dr6 |= (1 << i);
5365         return dr6;
5366 }
5367
5368 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5369 {
5370         struct kvm_run *kvm_run = vcpu->run;
5371
5372         /*
5373          * rflags is the old, "raw" value of the flags.  The new value has
5374          * not been saved yet.
5375          *
5376          * This is correct even for TF set by the guest, because "the
5377          * processor will not generate this exception after the instruction
5378          * that sets the TF flag".
5379          */
5380         if (unlikely(rflags & X86_EFLAGS_TF)) {
5381                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5382                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5383                                                   DR6_RTM;
5384                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5385                         kvm_run->debug.arch.exception = DB_VECTOR;
5386                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5387                         *r = EMULATE_USER_EXIT;
5388                 } else {
5389                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5390                         /*
5391                          * "Certain debug exceptions may clear bit 0-3.  The
5392                          * remaining contents of the DR6 register are never
5393                          * cleared by the processor".
5394                          */
5395                         vcpu->arch.dr6 &= ~15;
5396                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5397                         kvm_queue_exception(vcpu, DB_VECTOR);
5398                 }
5399         }
5400 }
5401
5402 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5403 {
5404         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5405             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5406                 struct kvm_run *kvm_run = vcpu->run;
5407                 unsigned long eip = kvm_get_linear_rip(vcpu);
5408                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5409                                            vcpu->arch.guest_debug_dr7,
5410                                            vcpu->arch.eff_db);
5411
5412                 if (dr6 != 0) {
5413                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5414                         kvm_run->debug.arch.pc = eip;
5415                         kvm_run->debug.arch.exception = DB_VECTOR;
5416                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5417                         *r = EMULATE_USER_EXIT;
5418                         return true;
5419                 }
5420         }
5421
5422         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5423             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5424                 unsigned long eip = kvm_get_linear_rip(vcpu);
5425                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5426                                            vcpu->arch.dr7,
5427                                            vcpu->arch.db);
5428
5429                 if (dr6 != 0) {
5430                         vcpu->arch.dr6 &= ~15;
5431                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5432                         kvm_queue_exception(vcpu, DB_VECTOR);
5433                         *r = EMULATE_DONE;
5434                         return true;
5435                 }
5436         }
5437
5438         return false;
5439 }
5440
5441 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5442                             unsigned long cr2,
5443                             int emulation_type,
5444                             void *insn,
5445                             int insn_len)
5446 {
5447         int r;
5448         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5449         bool writeback = true;
5450         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5451
5452         /*
5453          * Clear write_fault_to_shadow_pgtable here to ensure it is
5454          * never reused.
5455          */
5456         vcpu->arch.write_fault_to_shadow_pgtable = false;
5457         kvm_clear_exception_queue(vcpu);
5458
5459         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5460                 init_emulate_ctxt(vcpu);
5461
5462                 /*
5463                  * We will reenter on the same instruction since
5464                  * we do not set complete_userspace_io.  This does not
5465                  * handle watchpoints yet, those would be handled in
5466                  * the emulate_ops.
5467                  */
5468                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5469                         return r;
5470
5471                 ctxt->interruptibility = 0;
5472                 ctxt->have_exception = false;
5473                 ctxt->exception.vector = -1;
5474                 ctxt->perm_ok = false;
5475
5476                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5477
5478                 r = x86_decode_insn(ctxt, insn, insn_len);
5479
5480                 trace_kvm_emulate_insn_start(vcpu);
5481                 ++vcpu->stat.insn_emulation;
5482                 if (r != EMULATION_OK)  {
5483                         if (emulation_type & EMULTYPE_TRAP_UD)
5484                                 return EMULATE_FAIL;
5485                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5486                                                 emulation_type))
5487                                 return EMULATE_DONE;
5488                         if (emulation_type & EMULTYPE_SKIP)
5489                                 return EMULATE_FAIL;
5490                         return handle_emulation_failure(vcpu);
5491                 }
5492         }
5493
5494         if (emulation_type & EMULTYPE_SKIP) {
5495                 kvm_rip_write(vcpu, ctxt->_eip);
5496                 if (ctxt->eflags & X86_EFLAGS_RF)
5497                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5498                 return EMULATE_DONE;
5499         }
5500
5501         if (retry_instruction(ctxt, cr2, emulation_type))
5502                 return EMULATE_DONE;
5503
5504         /* this is needed for vmware backdoor interface to work since it
5505            changes registers values  during IO operation */
5506         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5507                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5508                 emulator_invalidate_register_cache(ctxt);
5509         }
5510
5511 restart:
5512         r = x86_emulate_insn(ctxt);
5513
5514         if (r == EMULATION_INTERCEPTED)
5515                 return EMULATE_DONE;
5516
5517         if (r == EMULATION_FAILED) {
5518                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5519                                         emulation_type))
5520                         return EMULATE_DONE;
5521
5522                 return handle_emulation_failure(vcpu);
5523         }
5524
5525         if (ctxt->have_exception) {
5526                 r = EMULATE_DONE;
5527                 if (inject_emulated_exception(vcpu))
5528                         return r;
5529         } else if (vcpu->arch.pio.count) {
5530                 if (!vcpu->arch.pio.in) {
5531                         /* FIXME: return into emulator if single-stepping.  */
5532                         vcpu->arch.pio.count = 0;
5533                 } else {
5534                         writeback = false;
5535                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5536                 }
5537                 r = EMULATE_USER_EXIT;
5538         } else if (vcpu->mmio_needed) {
5539                 if (!vcpu->mmio_is_write)
5540                         writeback = false;
5541                 r = EMULATE_USER_EXIT;
5542                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5543         } else if (r == EMULATION_RESTART)
5544                 goto restart;
5545         else
5546                 r = EMULATE_DONE;
5547
5548         if (writeback) {
5549                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5550                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5551                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5552                 if (vcpu->arch.hflags != ctxt->emul_flags)
5553                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5554                 kvm_rip_write(vcpu, ctxt->eip);
5555                 if (r == EMULATE_DONE)
5556                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5557                 if (!ctxt->have_exception ||
5558                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5559                         __kvm_set_rflags(vcpu, ctxt->eflags);
5560
5561                 /*
5562                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5563                  * do nothing, and it will be requested again as soon as
5564                  * the shadow expires.  But we still need to check here,
5565                  * because POPF has no interrupt shadow.
5566                  */
5567                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5568                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5569         } else
5570                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5571
5572         return r;
5573 }
5574 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5575
5576 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5577 {
5578         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5579         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5580                                             size, port, &val, 1);
5581         /* do not return to emulator after return from userspace */
5582         vcpu->arch.pio.count = 0;
5583         return ret;
5584 }
5585 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5586
5587 static int kvmclock_cpu_down_prep(unsigned int cpu)
5588 {
5589         __this_cpu_write(cpu_tsc_khz, 0);
5590         return 0;
5591 }
5592
5593 static void tsc_khz_changed(void *data)
5594 {
5595         struct cpufreq_freqs *freq = data;
5596         unsigned long khz = 0;
5597
5598         if (data)
5599                 khz = freq->new;
5600         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5601                 khz = cpufreq_quick_get(raw_smp_processor_id());
5602         if (!khz)
5603                 khz = tsc_khz;
5604         __this_cpu_write(cpu_tsc_khz, khz);
5605 }
5606
5607 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5608                                      void *data)
5609 {
5610         struct cpufreq_freqs *freq = data;
5611         struct kvm *kvm;
5612         struct kvm_vcpu *vcpu;
5613         int i, send_ipi = 0;
5614
5615         /*
5616          * We allow guests to temporarily run on slowing clocks,
5617          * provided we notify them after, or to run on accelerating
5618          * clocks, provided we notify them before.  Thus time never
5619          * goes backwards.
5620          *
5621          * However, we have a problem.  We can't atomically update
5622          * the frequency of a given CPU from this function; it is
5623          * merely a notifier, which can be called from any CPU.
5624          * Changing the TSC frequency at arbitrary points in time
5625          * requires a recomputation of local variables related to
5626          * the TSC for each VCPU.  We must flag these local variables
5627          * to be updated and be sure the update takes place with the
5628          * new frequency before any guests proceed.
5629          *
5630          * Unfortunately, the combination of hotplug CPU and frequency
5631          * change creates an intractable locking scenario; the order
5632          * of when these callouts happen is undefined with respect to
5633          * CPU hotplug, and they can race with each other.  As such,
5634          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5635          * undefined; you can actually have a CPU frequency change take
5636          * place in between the computation of X and the setting of the
5637          * variable.  To protect against this problem, all updates of
5638          * the per_cpu tsc_khz variable are done in an interrupt
5639          * protected IPI, and all callers wishing to update the value
5640          * must wait for a synchronous IPI to complete (which is trivial
5641          * if the caller is on the CPU already).  This establishes the
5642          * necessary total order on variable updates.
5643          *
5644          * Note that because a guest time update may take place
5645          * anytime after the setting of the VCPU's request bit, the
5646          * correct TSC value must be set before the request.  However,
5647          * to ensure the update actually makes it to any guest which
5648          * starts running in hardware virtualization between the set
5649          * and the acquisition of the spinlock, we must also ping the
5650          * CPU after setting the request bit.
5651          *
5652          */
5653
5654         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5655                 return 0;
5656         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5657                 return 0;
5658
5659         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5660
5661         spin_lock(&kvm_lock);
5662         list_for_each_entry(kvm, &vm_list, vm_list) {
5663                 kvm_for_each_vcpu(i, vcpu, kvm) {
5664                         if (vcpu->cpu != freq->cpu)
5665                                 continue;
5666                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5667                         if (vcpu->cpu != smp_processor_id())
5668                                 send_ipi = 1;
5669                 }
5670         }
5671         spin_unlock(&kvm_lock);
5672
5673         if (freq->old < freq->new && send_ipi) {
5674                 /*
5675                  * We upscale the frequency.  Must make the guest
5676                  * doesn't see old kvmclock values while running with
5677                  * the new frequency, otherwise we risk the guest sees
5678                  * time go backwards.
5679                  *
5680                  * In case we update the frequency for another cpu
5681                  * (which might be in guest context) send an interrupt
5682                  * to kick the cpu out of guest context.  Next time
5683                  * guest context is entered kvmclock will be updated,
5684                  * so the guest will not see stale values.
5685                  */
5686                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5687         }
5688         return 0;
5689 }
5690
5691 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5692         .notifier_call  = kvmclock_cpufreq_notifier
5693 };
5694
5695 static int kvmclock_cpu_online(unsigned int cpu)
5696 {
5697         tsc_khz_changed(NULL);
5698         return 0;
5699 }
5700
5701 static void kvm_timer_init(void)
5702 {
5703         int cpu;
5704
5705         max_tsc_khz = tsc_khz;
5706
5707         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5708 #ifdef CONFIG_CPU_FREQ
5709                 struct cpufreq_policy policy;
5710                 memset(&policy, 0, sizeof(policy));
5711                 cpu = get_cpu();
5712                 cpufreq_get_policy(&policy, cpu);
5713                 if (policy.cpuinfo.max_freq)
5714                         max_tsc_khz = policy.cpuinfo.max_freq;
5715                 put_cpu();
5716 #endif
5717                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5718                                           CPUFREQ_TRANSITION_NOTIFIER);
5719         }
5720         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5721
5722         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5723                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5724 }
5725
5726 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5727
5728 int kvm_is_in_guest(void)
5729 {
5730         return __this_cpu_read(current_vcpu) != NULL;
5731 }
5732
5733 static int kvm_is_user_mode(void)
5734 {
5735         int user_mode = 3;
5736
5737         if (__this_cpu_read(current_vcpu))
5738                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5739
5740         return user_mode != 0;
5741 }
5742
5743 static unsigned long kvm_get_guest_ip(void)
5744 {
5745         unsigned long ip = 0;
5746
5747         if (__this_cpu_read(current_vcpu))
5748                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5749
5750         return ip;
5751 }
5752
5753 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5754         .is_in_guest            = kvm_is_in_guest,
5755         .is_user_mode           = kvm_is_user_mode,
5756         .get_guest_ip           = kvm_get_guest_ip,
5757 };
5758
5759 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5760 {
5761         __this_cpu_write(current_vcpu, vcpu);
5762 }
5763 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5764
5765 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5766 {
5767         __this_cpu_write(current_vcpu, NULL);
5768 }
5769 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5770
5771 static void kvm_set_mmio_spte_mask(void)
5772 {
5773         u64 mask;
5774         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5775
5776         /*
5777          * Set the reserved bits and the present bit of an paging-structure
5778          * entry to generate page fault with PFER.RSV = 1.
5779          */
5780          /* Mask the reserved physical address bits. */
5781         mask = rsvd_bits(maxphyaddr, 51);
5782
5783         /* Bit 62 is always reserved for 32bit host. */
5784         mask |= 0x3ull << 62;
5785
5786         /* Set the present bit. */
5787         mask |= 1ull;
5788
5789 #ifdef CONFIG_X86_64
5790         /*
5791          * If reserved bit is not supported, clear the present bit to disable
5792          * mmio page fault.
5793          */
5794         if (maxphyaddr == 52)
5795                 mask &= ~1ull;
5796 #endif
5797
5798         kvm_mmu_set_mmio_spte_mask(mask);
5799 }
5800
5801 #ifdef CONFIG_X86_64
5802 static void pvclock_gtod_update_fn(struct work_struct *work)
5803 {
5804         struct kvm *kvm;
5805
5806         struct kvm_vcpu *vcpu;
5807         int i;
5808
5809         spin_lock(&kvm_lock);
5810         list_for_each_entry(kvm, &vm_list, vm_list)
5811                 kvm_for_each_vcpu(i, vcpu, kvm)
5812                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5813         atomic_set(&kvm_guest_has_master_clock, 0);
5814         spin_unlock(&kvm_lock);
5815 }
5816
5817 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5818
5819 /*
5820  * Notification about pvclock gtod data update.
5821  */
5822 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5823                                void *priv)
5824 {
5825         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5826         struct timekeeper *tk = priv;
5827
5828         update_pvclock_gtod(tk);
5829
5830         /* disable master clock if host does not trust, or does not
5831          * use, TSC clocksource
5832          */
5833         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5834             atomic_read(&kvm_guest_has_master_clock) != 0)
5835                 queue_work(system_long_wq, &pvclock_gtod_work);
5836
5837         return 0;
5838 }
5839
5840 static struct notifier_block pvclock_gtod_notifier = {
5841         .notifier_call = pvclock_gtod_notify,
5842 };
5843 #endif
5844
5845 int kvm_arch_init(void *opaque)
5846 {
5847         int r;
5848         struct kvm_x86_ops *ops = opaque;
5849
5850         if (kvm_x86_ops) {
5851                 printk(KERN_ERR "kvm: already loaded the other module\n");
5852                 r = -EEXIST;
5853                 goto out;
5854         }
5855
5856         if (!ops->cpu_has_kvm_support()) {
5857                 printk(KERN_ERR "kvm: no hardware support\n");
5858                 r = -EOPNOTSUPP;
5859                 goto out;
5860         }
5861         if (ops->disabled_by_bios()) {
5862                 printk(KERN_ERR "kvm: disabled by bios\n");
5863                 r = -EOPNOTSUPP;
5864                 goto out;
5865         }
5866
5867         r = -ENOMEM;
5868         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5869         if (!shared_msrs) {
5870                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5871                 goto out;
5872         }
5873
5874         r = kvm_mmu_module_init();
5875         if (r)
5876                 goto out_free_percpu;
5877
5878         kvm_set_mmio_spte_mask();
5879
5880         kvm_x86_ops = ops;
5881
5882         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5883                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
5884                         PT_PRESENT_MASK);
5885         kvm_timer_init();
5886
5887         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5888
5889         if (boot_cpu_has(X86_FEATURE_XSAVE))
5890                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5891
5892         kvm_lapic_init();
5893 #ifdef CONFIG_X86_64
5894         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5895 #endif
5896
5897         return 0;
5898
5899 out_free_percpu:
5900         free_percpu(shared_msrs);
5901 out:
5902         return r;
5903 }
5904
5905 void kvm_arch_exit(void)
5906 {
5907         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5908
5909         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5910                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5911                                             CPUFREQ_TRANSITION_NOTIFIER);
5912         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5913 #ifdef CONFIG_X86_64
5914         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5915 #endif
5916         kvm_x86_ops = NULL;
5917         kvm_mmu_module_exit();
5918         free_percpu(shared_msrs);
5919 }
5920
5921 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5922 {
5923         ++vcpu->stat.halt_exits;
5924         if (lapic_in_kernel(vcpu)) {
5925                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5926                 return 1;
5927         } else {
5928                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5929                 return 0;
5930         }
5931 }
5932 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5933
5934 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5935 {
5936         kvm_x86_ops->skip_emulated_instruction(vcpu);
5937         return kvm_vcpu_halt(vcpu);
5938 }
5939 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5940
5941 /*
5942  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5943  *
5944  * @apicid - apicid of vcpu to be kicked.
5945  */
5946 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5947 {
5948         struct kvm_lapic_irq lapic_irq;
5949
5950         lapic_irq.shorthand = 0;
5951         lapic_irq.dest_mode = 0;
5952         lapic_irq.dest_id = apicid;
5953         lapic_irq.msi_redir_hint = false;
5954
5955         lapic_irq.delivery_mode = APIC_DM_REMRD;
5956         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5957 }
5958
5959 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5960 {
5961         vcpu->arch.apicv_active = false;
5962         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5963 }
5964
5965 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5966 {
5967         unsigned long nr, a0, a1, a2, a3, ret;
5968         int op_64_bit, r = 1;
5969
5970         kvm_x86_ops->skip_emulated_instruction(vcpu);
5971
5972         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5973                 return kvm_hv_hypercall(vcpu);
5974
5975         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5976         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5977         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5978         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5979         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5980
5981         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5982
5983         op_64_bit = is_64_bit_mode(vcpu);
5984         if (!op_64_bit) {
5985                 nr &= 0xFFFFFFFF;
5986                 a0 &= 0xFFFFFFFF;
5987                 a1 &= 0xFFFFFFFF;
5988                 a2 &= 0xFFFFFFFF;
5989                 a3 &= 0xFFFFFFFF;
5990         }
5991
5992         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5993                 ret = -KVM_EPERM;
5994                 goto out;
5995         }
5996
5997         switch (nr) {
5998         case KVM_HC_VAPIC_POLL_IRQ:
5999                 ret = 0;
6000                 break;
6001         case KVM_HC_KICK_CPU:
6002                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6003                 ret = 0;
6004                 break;
6005         default:
6006                 ret = -KVM_ENOSYS;
6007                 break;
6008         }
6009 out:
6010         if (!op_64_bit)
6011                 ret = (u32)ret;
6012         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6013         ++vcpu->stat.hypercalls;
6014         return r;
6015 }
6016 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6017
6018 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6019 {
6020         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6021         char instruction[3];
6022         unsigned long rip = kvm_rip_read(vcpu);
6023
6024         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6025
6026         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6027 }
6028
6029 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6030 {
6031         return vcpu->run->request_interrupt_window &&
6032                 likely(!pic_in_kernel(vcpu->kvm));
6033 }
6034
6035 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6036 {
6037         struct kvm_run *kvm_run = vcpu->run;
6038
6039         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6040         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6041         kvm_run->cr8 = kvm_get_cr8(vcpu);
6042         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6043         kvm_run->ready_for_interrupt_injection =
6044                 pic_in_kernel(vcpu->kvm) ||
6045                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6046 }
6047
6048 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6049 {
6050         int max_irr, tpr;
6051
6052         if (!kvm_x86_ops->update_cr8_intercept)
6053                 return;
6054
6055         if (!lapic_in_kernel(vcpu))
6056                 return;
6057
6058         if (vcpu->arch.apicv_active)
6059                 return;
6060
6061         if (!vcpu->arch.apic->vapic_addr)
6062                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6063         else
6064                 max_irr = -1;
6065
6066         if (max_irr != -1)
6067                 max_irr >>= 4;
6068
6069         tpr = kvm_lapic_get_cr8(vcpu);
6070
6071         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6072 }
6073
6074 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6075 {
6076         int r;
6077
6078         /* try to reinject previous events if any */
6079         if (vcpu->arch.exception.pending) {
6080                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6081                                         vcpu->arch.exception.has_error_code,
6082                                         vcpu->arch.exception.error_code);
6083
6084                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6085                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6086                                              X86_EFLAGS_RF);
6087
6088                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6089                     (vcpu->arch.dr7 & DR7_GD)) {
6090                         vcpu->arch.dr7 &= ~DR7_GD;
6091                         kvm_update_dr7(vcpu);
6092                 }
6093
6094                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6095                                           vcpu->arch.exception.has_error_code,
6096                                           vcpu->arch.exception.error_code,
6097                                           vcpu->arch.exception.reinject);
6098                 return 0;
6099         }
6100
6101         if (vcpu->arch.nmi_injected) {
6102                 kvm_x86_ops->set_nmi(vcpu);
6103                 return 0;
6104         }
6105
6106         if (vcpu->arch.interrupt.pending) {
6107                 kvm_x86_ops->set_irq(vcpu);
6108                 return 0;
6109         }
6110
6111         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6112                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6113                 if (r != 0)
6114                         return r;
6115         }
6116
6117         /* try to inject new event if pending */
6118         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6119                 vcpu->arch.smi_pending = false;
6120                 enter_smm(vcpu);
6121         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6122                 --vcpu->arch.nmi_pending;
6123                 vcpu->arch.nmi_injected = true;
6124                 kvm_x86_ops->set_nmi(vcpu);
6125         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6126                 /*
6127                  * Because interrupts can be injected asynchronously, we are
6128                  * calling check_nested_events again here to avoid a race condition.
6129                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6130                  * proposal and current concerns.  Perhaps we should be setting
6131                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6132                  */
6133                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6134                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6135                         if (r != 0)
6136                                 return r;
6137                 }
6138                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6139                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6140                                             false);
6141                         kvm_x86_ops->set_irq(vcpu);
6142                 }
6143         }
6144
6145         return 0;
6146 }
6147
6148 static void process_nmi(struct kvm_vcpu *vcpu)
6149 {
6150         unsigned limit = 2;
6151
6152         /*
6153          * x86 is limited to one NMI running, and one NMI pending after it.
6154          * If an NMI is already in progress, limit further NMIs to just one.
6155          * Otherwise, allow two (and we'll inject the first one immediately).
6156          */
6157         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6158                 limit = 1;
6159
6160         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6161         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6162         kvm_make_request(KVM_REQ_EVENT, vcpu);
6163 }
6164
6165 #define put_smstate(type, buf, offset, val)                       \
6166         *(type *)((buf) + (offset) - 0x7e00) = val
6167
6168 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6169 {
6170         u32 flags = 0;
6171         flags |= seg->g       << 23;
6172         flags |= seg->db      << 22;
6173         flags |= seg->l       << 21;
6174         flags |= seg->avl     << 20;
6175         flags |= seg->present << 15;
6176         flags |= seg->dpl     << 13;
6177         flags |= seg->s       << 12;
6178         flags |= seg->type    << 8;
6179         return flags;
6180 }
6181
6182 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6183 {
6184         struct kvm_segment seg;
6185         int offset;
6186
6187         kvm_get_segment(vcpu, &seg, n);
6188         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6189
6190         if (n < 3)
6191                 offset = 0x7f84 + n * 12;
6192         else
6193                 offset = 0x7f2c + (n - 3) * 12;
6194
6195         put_smstate(u32, buf, offset + 8, seg.base);
6196         put_smstate(u32, buf, offset + 4, seg.limit);
6197         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6198 }
6199
6200 #ifdef CONFIG_X86_64
6201 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6202 {
6203         struct kvm_segment seg;
6204         int offset;
6205         u16 flags;
6206
6207         kvm_get_segment(vcpu, &seg, n);
6208         offset = 0x7e00 + n * 16;
6209
6210         flags = enter_smm_get_segment_flags(&seg) >> 8;
6211         put_smstate(u16, buf, offset, seg.selector);
6212         put_smstate(u16, buf, offset + 2, flags);
6213         put_smstate(u32, buf, offset + 4, seg.limit);
6214         put_smstate(u64, buf, offset + 8, seg.base);
6215 }
6216 #endif
6217
6218 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6219 {
6220         struct desc_ptr dt;
6221         struct kvm_segment seg;
6222         unsigned long val;
6223         int i;
6224
6225         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6226         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6227         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6228         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6229
6230         for (i = 0; i < 8; i++)
6231                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6232
6233         kvm_get_dr(vcpu, 6, &val);
6234         put_smstate(u32, buf, 0x7fcc, (u32)val);
6235         kvm_get_dr(vcpu, 7, &val);
6236         put_smstate(u32, buf, 0x7fc8, (u32)val);
6237
6238         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6239         put_smstate(u32, buf, 0x7fc4, seg.selector);
6240         put_smstate(u32, buf, 0x7f64, seg.base);
6241         put_smstate(u32, buf, 0x7f60, seg.limit);
6242         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6243
6244         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6245         put_smstate(u32, buf, 0x7fc0, seg.selector);
6246         put_smstate(u32, buf, 0x7f80, seg.base);
6247         put_smstate(u32, buf, 0x7f7c, seg.limit);
6248         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6249
6250         kvm_x86_ops->get_gdt(vcpu, &dt);
6251         put_smstate(u32, buf, 0x7f74, dt.address);
6252         put_smstate(u32, buf, 0x7f70, dt.size);
6253
6254         kvm_x86_ops->get_idt(vcpu, &dt);
6255         put_smstate(u32, buf, 0x7f58, dt.address);
6256         put_smstate(u32, buf, 0x7f54, dt.size);
6257
6258         for (i = 0; i < 6; i++)
6259                 enter_smm_save_seg_32(vcpu, buf, i);
6260
6261         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6262
6263         /* revision id */
6264         put_smstate(u32, buf, 0x7efc, 0x00020000);
6265         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6266 }
6267
6268 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6269 {
6270 #ifdef CONFIG_X86_64
6271         struct desc_ptr dt;
6272         struct kvm_segment seg;
6273         unsigned long val;
6274         int i;
6275
6276         for (i = 0; i < 16; i++)
6277                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6278
6279         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6280         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6281
6282         kvm_get_dr(vcpu, 6, &val);
6283         put_smstate(u64, buf, 0x7f68, val);
6284         kvm_get_dr(vcpu, 7, &val);
6285         put_smstate(u64, buf, 0x7f60, val);
6286
6287         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6288         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6289         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6290
6291         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6292
6293         /* revision id */
6294         put_smstate(u32, buf, 0x7efc, 0x00020064);
6295
6296         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6297
6298         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6299         put_smstate(u16, buf, 0x7e90, seg.selector);
6300         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6301         put_smstate(u32, buf, 0x7e94, seg.limit);
6302         put_smstate(u64, buf, 0x7e98, seg.base);
6303
6304         kvm_x86_ops->get_idt(vcpu, &dt);
6305         put_smstate(u32, buf, 0x7e84, dt.size);
6306         put_smstate(u64, buf, 0x7e88, dt.address);
6307
6308         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6309         put_smstate(u16, buf, 0x7e70, seg.selector);
6310         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6311         put_smstate(u32, buf, 0x7e74, seg.limit);
6312         put_smstate(u64, buf, 0x7e78, seg.base);
6313
6314         kvm_x86_ops->get_gdt(vcpu, &dt);
6315         put_smstate(u32, buf, 0x7e64, dt.size);
6316         put_smstate(u64, buf, 0x7e68, dt.address);
6317
6318         for (i = 0; i < 6; i++)
6319                 enter_smm_save_seg_64(vcpu, buf, i);
6320 #else
6321         WARN_ON_ONCE(1);
6322 #endif
6323 }
6324
6325 static void enter_smm(struct kvm_vcpu *vcpu)
6326 {
6327         struct kvm_segment cs, ds;
6328         struct desc_ptr dt;
6329         char buf[512];
6330         u32 cr0;
6331
6332         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6333         vcpu->arch.hflags |= HF_SMM_MASK;
6334         memset(buf, 0, 512);
6335         if (guest_cpuid_has_longmode(vcpu))
6336                 enter_smm_save_state_64(vcpu, buf);
6337         else
6338                 enter_smm_save_state_32(vcpu, buf);
6339
6340         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6341
6342         if (kvm_x86_ops->get_nmi_mask(vcpu))
6343                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6344         else
6345                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6346
6347         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6348         kvm_rip_write(vcpu, 0x8000);
6349
6350         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6351         kvm_x86_ops->set_cr0(vcpu, cr0);
6352         vcpu->arch.cr0 = cr0;
6353
6354         kvm_x86_ops->set_cr4(vcpu, 0);
6355
6356         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6357         dt.address = dt.size = 0;
6358         kvm_x86_ops->set_idt(vcpu, &dt);
6359
6360         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6361
6362         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6363         cs.base = vcpu->arch.smbase;
6364
6365         ds.selector = 0;
6366         ds.base = 0;
6367
6368         cs.limit    = ds.limit = 0xffffffff;
6369         cs.type     = ds.type = 0x3;
6370         cs.dpl      = ds.dpl = 0;
6371         cs.db       = ds.db = 0;
6372         cs.s        = ds.s = 1;
6373         cs.l        = ds.l = 0;
6374         cs.g        = ds.g = 1;
6375         cs.avl      = ds.avl = 0;
6376         cs.present  = ds.present = 1;
6377         cs.unusable = ds.unusable = 0;
6378         cs.padding  = ds.padding = 0;
6379
6380         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6381         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6382         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6383         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6384         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6385         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6386
6387         if (guest_cpuid_has_longmode(vcpu))
6388                 kvm_x86_ops->set_efer(vcpu, 0);
6389
6390         kvm_update_cpuid(vcpu);
6391         kvm_mmu_reset_context(vcpu);
6392 }
6393
6394 static void process_smi(struct kvm_vcpu *vcpu)
6395 {
6396         vcpu->arch.smi_pending = true;
6397         kvm_make_request(KVM_REQ_EVENT, vcpu);
6398 }
6399
6400 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6401 {
6402         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6403 }
6404
6405 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6406 {
6407         u64 eoi_exit_bitmap[4];
6408
6409         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6410                 return;
6411
6412         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6413
6414         if (irqchip_split(vcpu->kvm))
6415                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6416         else {
6417                 if (vcpu->arch.apicv_active)
6418                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6419                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6420         }
6421         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6422                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6423         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6424 }
6425
6426 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6427 {
6428         ++vcpu->stat.tlb_flush;
6429         kvm_x86_ops->tlb_flush(vcpu);
6430 }
6431
6432 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6433 {
6434         struct page *page = NULL;
6435
6436         if (!lapic_in_kernel(vcpu))
6437                 return;
6438
6439         if (!kvm_x86_ops->set_apic_access_page_addr)
6440                 return;
6441
6442         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6443         if (is_error_page(page))
6444                 return;
6445         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6446
6447         /*
6448          * Do not pin apic access page in memory, the MMU notifier
6449          * will call us again if it is migrated or swapped out.
6450          */
6451         put_page(page);
6452 }
6453 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6454
6455 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6456                                            unsigned long address)
6457 {
6458         /*
6459          * The physical address of apic access page is stored in the VMCS.
6460          * Update it when it becomes invalid.
6461          */
6462         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6463                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6464 }
6465
6466 /*
6467  * Returns 1 to let vcpu_run() continue the guest execution loop without
6468  * exiting to the userspace.  Otherwise, the value will be returned to the
6469  * userspace.
6470  */
6471 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6472 {
6473         int r;
6474         bool req_int_win =
6475                 dm_request_for_irq_injection(vcpu) &&
6476                 kvm_cpu_accept_dm_intr(vcpu);
6477
6478         bool req_immediate_exit = false;
6479
6480         if (vcpu->requests) {
6481                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6482                         kvm_mmu_unload(vcpu);
6483                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6484                         __kvm_migrate_timers(vcpu);
6485                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6486                         kvm_gen_update_masterclock(vcpu->kvm);
6487                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6488                         kvm_gen_kvmclock_update(vcpu);
6489                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6490                         r = kvm_guest_time_update(vcpu);
6491                         if (unlikely(r))
6492                                 goto out;
6493                 }
6494                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6495                         kvm_mmu_sync_roots(vcpu);
6496                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6497                         kvm_vcpu_flush_tlb(vcpu);
6498                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6499                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6500                         r = 0;
6501                         goto out;
6502                 }
6503                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6504                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6505                         r = 0;
6506                         goto out;
6507                 }
6508                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6509                         vcpu->fpu_active = 0;
6510                         kvm_x86_ops->fpu_deactivate(vcpu);
6511                 }
6512                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6513                         /* Page is swapped out. Do synthetic halt */
6514                         vcpu->arch.apf.halted = true;
6515                         r = 1;
6516                         goto out;
6517                 }
6518                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6519                         record_steal_time(vcpu);
6520                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6521                         process_smi(vcpu);
6522                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6523                         process_nmi(vcpu);
6524                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6525                         kvm_pmu_handle_event(vcpu);
6526                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6527                         kvm_pmu_deliver_pmi(vcpu);
6528                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6529                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6530                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6531                                      vcpu->arch.ioapic_handled_vectors)) {
6532                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6533                                 vcpu->run->eoi.vector =
6534                                                 vcpu->arch.pending_ioapic_eoi;
6535                                 r = 0;
6536                                 goto out;
6537                         }
6538                 }
6539                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6540                         vcpu_scan_ioapic(vcpu);
6541                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6542                         kvm_vcpu_reload_apic_access_page(vcpu);
6543                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6544                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6545                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6546                         r = 0;
6547                         goto out;
6548                 }
6549                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6550                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6551                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6552                         r = 0;
6553                         goto out;
6554                 }
6555                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6556                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6557                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6558                         r = 0;
6559                         goto out;
6560                 }
6561
6562                 /*
6563                  * KVM_REQ_HV_STIMER has to be processed after
6564                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6565                  * depend on the guest clock being up-to-date
6566                  */
6567                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6568                         kvm_hv_process_stimers(vcpu);
6569         }
6570
6571         /*
6572          * KVM_REQ_EVENT is not set when posted interrupts are set by
6573          * VT-d hardware, so we have to update RVI unconditionally.
6574          */
6575         if (kvm_lapic_enabled(vcpu)) {
6576                 /*
6577                  * Update architecture specific hints for APIC
6578                  * virtual interrupt delivery.
6579                  */
6580                 if (vcpu->arch.apicv_active)
6581                         kvm_x86_ops->hwapic_irr_update(vcpu,
6582                                 kvm_lapic_find_highest_irr(vcpu));
6583         }
6584
6585         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6586                 kvm_apic_accept_events(vcpu);
6587                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6588                         r = 1;
6589                         goto out;
6590                 }
6591
6592                 if (inject_pending_event(vcpu, req_int_win) != 0)
6593                         req_immediate_exit = true;
6594                 else {
6595                         /* Enable NMI/IRQ window open exits if needed.
6596                          *
6597                          * SMIs have two cases: 1) they can be nested, and
6598                          * then there is nothing to do here because RSM will
6599                          * cause a vmexit anyway; 2) or the SMI can be pending
6600                          * because inject_pending_event has completed the
6601                          * injection of an IRQ or NMI from the previous vmexit,
6602                          * and then we request an immediate exit to inject the SMI.
6603                          */
6604                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6605                                 req_immediate_exit = true;
6606                         if (vcpu->arch.nmi_pending)
6607                                 kvm_x86_ops->enable_nmi_window(vcpu);
6608                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6609                                 kvm_x86_ops->enable_irq_window(vcpu);
6610                 }
6611
6612                 if (kvm_lapic_enabled(vcpu)) {
6613                         update_cr8_intercept(vcpu);
6614                         kvm_lapic_sync_to_vapic(vcpu);
6615                 }
6616         }
6617
6618         r = kvm_mmu_reload(vcpu);
6619         if (unlikely(r)) {
6620                 goto cancel_injection;
6621         }
6622
6623         preempt_disable();
6624
6625         kvm_x86_ops->prepare_guest_switch(vcpu);
6626         if (vcpu->fpu_active)
6627                 kvm_load_guest_fpu(vcpu);
6628         vcpu->mode = IN_GUEST_MODE;
6629
6630         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6631
6632         /*
6633          * We should set ->mode before check ->requests,
6634          * Please see the comment in kvm_make_all_cpus_request.
6635          * This also orders the write to mode from any reads
6636          * to the page tables done while the VCPU is running.
6637          * Please see the comment in kvm_flush_remote_tlbs.
6638          */
6639         smp_mb__after_srcu_read_unlock();
6640
6641         local_irq_disable();
6642
6643         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6644             || need_resched() || signal_pending(current)) {
6645                 vcpu->mode = OUTSIDE_GUEST_MODE;
6646                 smp_wmb();
6647                 local_irq_enable();
6648                 preempt_enable();
6649                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6650                 r = 1;
6651                 goto cancel_injection;
6652         }
6653
6654         kvm_load_guest_xcr0(vcpu);
6655
6656         if (req_immediate_exit) {
6657                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6658                 smp_send_reschedule(vcpu->cpu);
6659         }
6660
6661         trace_kvm_entry(vcpu->vcpu_id);
6662         wait_lapic_expire(vcpu);
6663         guest_enter_irqoff();
6664
6665         if (unlikely(vcpu->arch.switch_db_regs)) {
6666                 set_debugreg(0, 7);
6667                 set_debugreg(vcpu->arch.eff_db[0], 0);
6668                 set_debugreg(vcpu->arch.eff_db[1], 1);
6669                 set_debugreg(vcpu->arch.eff_db[2], 2);
6670                 set_debugreg(vcpu->arch.eff_db[3], 3);
6671                 set_debugreg(vcpu->arch.dr6, 6);
6672                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6673         }
6674
6675         kvm_x86_ops->run(vcpu);
6676
6677         /*
6678          * Do this here before restoring debug registers on the host.  And
6679          * since we do this before handling the vmexit, a DR access vmexit
6680          * can (a) read the correct value of the debug registers, (b) set
6681          * KVM_DEBUGREG_WONT_EXIT again.
6682          */
6683         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6684                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6685                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6686                 kvm_update_dr0123(vcpu);
6687                 kvm_update_dr6(vcpu);
6688                 kvm_update_dr7(vcpu);
6689                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6690         }
6691
6692         /*
6693          * If the guest has used debug registers, at least dr7
6694          * will be disabled while returning to the host.
6695          * If we don't have active breakpoints in the host, we don't
6696          * care about the messed up debug address registers. But if
6697          * we have some of them active, restore the old state.
6698          */
6699         if (hw_breakpoint_active())
6700                 hw_breakpoint_restore();
6701
6702         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6703
6704         vcpu->mode = OUTSIDE_GUEST_MODE;
6705         smp_wmb();
6706
6707         kvm_put_guest_xcr0(vcpu);
6708
6709         kvm_x86_ops->handle_external_intr(vcpu);
6710
6711         ++vcpu->stat.exits;
6712
6713         guest_exit_irqoff();
6714
6715         local_irq_enable();
6716         preempt_enable();
6717
6718         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6719
6720         /*
6721          * Profile KVM exit RIPs:
6722          */
6723         if (unlikely(prof_on == KVM_PROFILING)) {
6724                 unsigned long rip = kvm_rip_read(vcpu);
6725                 profile_hit(KVM_PROFILING, (void *)rip);
6726         }
6727
6728         if (unlikely(vcpu->arch.tsc_always_catchup))
6729                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6730
6731         if (vcpu->arch.apic_attention)
6732                 kvm_lapic_sync_from_vapic(vcpu);
6733
6734         r = kvm_x86_ops->handle_exit(vcpu);
6735         return r;
6736
6737 cancel_injection:
6738         kvm_x86_ops->cancel_injection(vcpu);
6739         if (unlikely(vcpu->arch.apic_attention))
6740                 kvm_lapic_sync_from_vapic(vcpu);
6741 out:
6742         return r;
6743 }
6744
6745 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6746 {
6747         if (!kvm_arch_vcpu_runnable(vcpu) &&
6748             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6749                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6750                 kvm_vcpu_block(vcpu);
6751                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6752
6753                 if (kvm_x86_ops->post_block)
6754                         kvm_x86_ops->post_block(vcpu);
6755
6756                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6757                         return 1;
6758         }
6759
6760         kvm_apic_accept_events(vcpu);
6761         switch(vcpu->arch.mp_state) {
6762         case KVM_MP_STATE_HALTED:
6763                 vcpu->arch.pv.pv_unhalted = false;
6764                 vcpu->arch.mp_state =
6765                         KVM_MP_STATE_RUNNABLE;
6766         case KVM_MP_STATE_RUNNABLE:
6767                 vcpu->arch.apf.halted = false;
6768                 break;
6769         case KVM_MP_STATE_INIT_RECEIVED:
6770                 break;
6771         default:
6772                 return -EINTR;
6773                 break;
6774         }
6775         return 1;
6776 }
6777
6778 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6779 {
6780         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6781                 !vcpu->arch.apf.halted);
6782 }
6783
6784 static int vcpu_run(struct kvm_vcpu *vcpu)
6785 {
6786         int r;
6787         struct kvm *kvm = vcpu->kvm;
6788
6789         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6790
6791         for (;;) {
6792                 if (kvm_vcpu_running(vcpu)) {
6793                         r = vcpu_enter_guest(vcpu);
6794                 } else {
6795                         r = vcpu_block(kvm, vcpu);
6796                 }
6797
6798                 if (r <= 0)
6799                         break;
6800
6801                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6802                 if (kvm_cpu_has_pending_timer(vcpu))
6803                         kvm_inject_pending_timer_irqs(vcpu);
6804
6805                 if (dm_request_for_irq_injection(vcpu) &&
6806                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6807                         r = 0;
6808                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6809                         ++vcpu->stat.request_irq_exits;
6810                         break;
6811                 }
6812
6813                 kvm_check_async_pf_completion(vcpu);
6814
6815                 if (signal_pending(current)) {
6816                         r = -EINTR;
6817                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6818                         ++vcpu->stat.signal_exits;
6819                         break;
6820                 }
6821                 if (need_resched()) {
6822                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6823                         cond_resched();
6824                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6825                 }
6826         }
6827
6828         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6829
6830         return r;
6831 }
6832
6833 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6834 {
6835         int r;
6836         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6837         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6838         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6839         if (r != EMULATE_DONE)
6840                 return 0;
6841         return 1;
6842 }
6843
6844 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6845 {
6846         BUG_ON(!vcpu->arch.pio.count);
6847
6848         return complete_emulated_io(vcpu);
6849 }
6850
6851 /*
6852  * Implements the following, as a state machine:
6853  *
6854  * read:
6855  *   for each fragment
6856  *     for each mmio piece in the fragment
6857  *       write gpa, len
6858  *       exit
6859  *       copy data
6860  *   execute insn
6861  *
6862  * write:
6863  *   for each fragment
6864  *     for each mmio piece in the fragment
6865  *       write gpa, len
6866  *       copy data
6867  *       exit
6868  */
6869 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6870 {
6871         struct kvm_run *run = vcpu->run;
6872         struct kvm_mmio_fragment *frag;
6873         unsigned len;
6874
6875         BUG_ON(!vcpu->mmio_needed);
6876
6877         /* Complete previous fragment */
6878         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6879         len = min(8u, frag->len);
6880         if (!vcpu->mmio_is_write)
6881                 memcpy(frag->data, run->mmio.data, len);
6882
6883         if (frag->len <= 8) {
6884                 /* Switch to the next fragment. */
6885                 frag++;
6886                 vcpu->mmio_cur_fragment++;
6887         } else {
6888                 /* Go forward to the next mmio piece. */
6889                 frag->data += len;
6890                 frag->gpa += len;
6891                 frag->len -= len;
6892         }
6893
6894         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6895                 vcpu->mmio_needed = 0;
6896
6897                 /* FIXME: return into emulator if single-stepping.  */
6898                 if (vcpu->mmio_is_write)
6899                         return 1;
6900                 vcpu->mmio_read_completed = 1;
6901                 return complete_emulated_io(vcpu);
6902         }
6903
6904         run->exit_reason = KVM_EXIT_MMIO;
6905         run->mmio.phys_addr = frag->gpa;
6906         if (vcpu->mmio_is_write)
6907                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6908         run->mmio.len = min(8u, frag->len);
6909         run->mmio.is_write = vcpu->mmio_is_write;
6910         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6911         return 0;
6912 }
6913
6914
6915 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6916 {
6917         struct fpu *fpu = &current->thread.fpu;
6918         int r;
6919         sigset_t sigsaved;
6920
6921         fpu__activate_curr(fpu);
6922
6923         if (vcpu->sigset_active)
6924                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6925
6926         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6927                 kvm_vcpu_block(vcpu);
6928                 kvm_apic_accept_events(vcpu);
6929                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6930                 r = -EAGAIN;
6931                 goto out;
6932         }
6933
6934         /* re-sync apic's tpr */
6935         if (!lapic_in_kernel(vcpu)) {
6936                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6937                         r = -EINVAL;
6938                         goto out;
6939                 }
6940         }
6941
6942         if (unlikely(vcpu->arch.complete_userspace_io)) {
6943                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6944                 vcpu->arch.complete_userspace_io = NULL;
6945                 r = cui(vcpu);
6946                 if (r <= 0)
6947                         goto out;
6948         } else
6949                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6950
6951         r = vcpu_run(vcpu);
6952
6953 out:
6954         post_kvm_run_save(vcpu);
6955         if (vcpu->sigset_active)
6956                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6957
6958         return r;
6959 }
6960
6961 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6962 {
6963         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6964                 /*
6965                  * We are here if userspace calls get_regs() in the middle of
6966                  * instruction emulation. Registers state needs to be copied
6967                  * back from emulation context to vcpu. Userspace shouldn't do
6968                  * that usually, but some bad designed PV devices (vmware
6969                  * backdoor interface) need this to work
6970                  */
6971                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6972                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6973         }
6974         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6975         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6976         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6977         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6978         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6979         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6980         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6981         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6982 #ifdef CONFIG_X86_64
6983         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6984         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6985         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6986         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6987         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6988         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6989         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6990         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6991 #endif
6992
6993         regs->rip = kvm_rip_read(vcpu);
6994         regs->rflags = kvm_get_rflags(vcpu);
6995
6996         return 0;
6997 }
6998
6999 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7000 {
7001         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7002         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7003
7004         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7005         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7006         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7007         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7008         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7009         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7010         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7011         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7012 #ifdef CONFIG_X86_64
7013         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7014         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7015         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7016         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7017         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7018         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7019         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7020         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7021 #endif
7022
7023         kvm_rip_write(vcpu, regs->rip);
7024         kvm_set_rflags(vcpu, regs->rflags);
7025
7026         vcpu->arch.exception.pending = false;
7027
7028         kvm_make_request(KVM_REQ_EVENT, vcpu);
7029
7030         return 0;
7031 }
7032
7033 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7034 {
7035         struct kvm_segment cs;
7036
7037         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7038         *db = cs.db;
7039         *l = cs.l;
7040 }
7041 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7042
7043 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7044                                   struct kvm_sregs *sregs)
7045 {
7046         struct desc_ptr dt;
7047
7048         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7049         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7050         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7051         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7052         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7053         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7054
7055         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7056         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7057
7058         kvm_x86_ops->get_idt(vcpu, &dt);
7059         sregs->idt.limit = dt.size;
7060         sregs->idt.base = dt.address;
7061         kvm_x86_ops->get_gdt(vcpu, &dt);
7062         sregs->gdt.limit = dt.size;
7063         sregs->gdt.base = dt.address;
7064
7065         sregs->cr0 = kvm_read_cr0(vcpu);
7066         sregs->cr2 = vcpu->arch.cr2;
7067         sregs->cr3 = kvm_read_cr3(vcpu);
7068         sregs->cr4 = kvm_read_cr4(vcpu);
7069         sregs->cr8 = kvm_get_cr8(vcpu);
7070         sregs->efer = vcpu->arch.efer;
7071         sregs->apic_base = kvm_get_apic_base(vcpu);
7072
7073         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7074
7075         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7076                 set_bit(vcpu->arch.interrupt.nr,
7077                         (unsigned long *)sregs->interrupt_bitmap);
7078
7079         return 0;
7080 }
7081
7082 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7083                                     struct kvm_mp_state *mp_state)
7084 {
7085         kvm_apic_accept_events(vcpu);
7086         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7087                                         vcpu->arch.pv.pv_unhalted)
7088                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7089         else
7090                 mp_state->mp_state = vcpu->arch.mp_state;
7091
7092         return 0;
7093 }
7094
7095 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7096                                     struct kvm_mp_state *mp_state)
7097 {
7098         if (!lapic_in_kernel(vcpu) &&
7099             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7100                 return -EINVAL;
7101
7102         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7103                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7104                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7105         } else
7106                 vcpu->arch.mp_state = mp_state->mp_state;
7107         kvm_make_request(KVM_REQ_EVENT, vcpu);
7108         return 0;
7109 }
7110
7111 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7112                     int reason, bool has_error_code, u32 error_code)
7113 {
7114         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7115         int ret;
7116
7117         init_emulate_ctxt(vcpu);
7118
7119         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7120                                    has_error_code, error_code);
7121
7122         if (ret)
7123                 return EMULATE_FAIL;
7124
7125         kvm_rip_write(vcpu, ctxt->eip);
7126         kvm_set_rflags(vcpu, ctxt->eflags);
7127         kvm_make_request(KVM_REQ_EVENT, vcpu);
7128         return EMULATE_DONE;
7129 }
7130 EXPORT_SYMBOL_GPL(kvm_task_switch);
7131
7132 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7133                                   struct kvm_sregs *sregs)
7134 {
7135         struct msr_data apic_base_msr;
7136         int mmu_reset_needed = 0;
7137         int pending_vec, max_bits, idx;
7138         struct desc_ptr dt;
7139
7140         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7141                 return -EINVAL;
7142
7143         dt.size = sregs->idt.limit;
7144         dt.address = sregs->idt.base;
7145         kvm_x86_ops->set_idt(vcpu, &dt);
7146         dt.size = sregs->gdt.limit;
7147         dt.address = sregs->gdt.base;
7148         kvm_x86_ops->set_gdt(vcpu, &dt);
7149
7150         vcpu->arch.cr2 = sregs->cr2;
7151         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7152         vcpu->arch.cr3 = sregs->cr3;
7153         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7154
7155         kvm_set_cr8(vcpu, sregs->cr8);
7156
7157         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7158         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7159         apic_base_msr.data = sregs->apic_base;
7160         apic_base_msr.host_initiated = true;
7161         kvm_set_apic_base(vcpu, &apic_base_msr);
7162
7163         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7164         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7165         vcpu->arch.cr0 = sregs->cr0;
7166
7167         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7168         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7169         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7170                 kvm_update_cpuid(vcpu);
7171
7172         idx = srcu_read_lock(&vcpu->kvm->srcu);
7173         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7174                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7175                 mmu_reset_needed = 1;
7176         }
7177         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7178
7179         if (mmu_reset_needed)
7180                 kvm_mmu_reset_context(vcpu);
7181
7182         max_bits = KVM_NR_INTERRUPTS;
7183         pending_vec = find_first_bit(
7184                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7185         if (pending_vec < max_bits) {
7186                 kvm_queue_interrupt(vcpu, pending_vec, false);
7187                 pr_debug("Set back pending irq %d\n", pending_vec);
7188         }
7189
7190         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7191         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7192         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7193         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7194         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7195         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7196
7197         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7198         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7199
7200         update_cr8_intercept(vcpu);
7201
7202         /* Older userspace won't unhalt the vcpu on reset. */
7203         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7204             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7205             !is_protmode(vcpu))
7206                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7207
7208         kvm_make_request(KVM_REQ_EVENT, vcpu);
7209
7210         return 0;
7211 }
7212
7213 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7214                                         struct kvm_guest_debug *dbg)
7215 {
7216         unsigned long rflags;
7217         int i, r;
7218
7219         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7220                 r = -EBUSY;
7221                 if (vcpu->arch.exception.pending)
7222                         goto out;
7223                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7224                         kvm_queue_exception(vcpu, DB_VECTOR);
7225                 else
7226                         kvm_queue_exception(vcpu, BP_VECTOR);
7227         }
7228
7229         /*
7230          * Read rflags as long as potentially injected trace flags are still
7231          * filtered out.
7232          */
7233         rflags = kvm_get_rflags(vcpu);
7234
7235         vcpu->guest_debug = dbg->control;
7236         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7237                 vcpu->guest_debug = 0;
7238
7239         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7240                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7241                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7242                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7243         } else {
7244                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7245                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7246         }
7247         kvm_update_dr7(vcpu);
7248
7249         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7250                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7251                         get_segment_base(vcpu, VCPU_SREG_CS);
7252
7253         /*
7254          * Trigger an rflags update that will inject or remove the trace
7255          * flags.
7256          */
7257         kvm_set_rflags(vcpu, rflags);
7258
7259         kvm_x86_ops->update_bp_intercept(vcpu);
7260
7261         r = 0;
7262
7263 out:
7264
7265         return r;
7266 }
7267
7268 /*
7269  * Translate a guest virtual address to a guest physical address.
7270  */
7271 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7272                                     struct kvm_translation *tr)
7273 {
7274         unsigned long vaddr = tr->linear_address;
7275         gpa_t gpa;
7276         int idx;
7277
7278         idx = srcu_read_lock(&vcpu->kvm->srcu);
7279         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7280         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7281         tr->physical_address = gpa;
7282         tr->valid = gpa != UNMAPPED_GVA;
7283         tr->writeable = 1;
7284         tr->usermode = 0;
7285
7286         return 0;
7287 }
7288
7289 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7290 {
7291         struct fxregs_state *fxsave =
7292                         &vcpu->arch.guest_fpu.state.fxsave;
7293
7294         memcpy(fpu->fpr, fxsave->st_space, 128);
7295         fpu->fcw = fxsave->cwd;
7296         fpu->fsw = fxsave->swd;
7297         fpu->ftwx = fxsave->twd;
7298         fpu->last_opcode = fxsave->fop;
7299         fpu->last_ip = fxsave->rip;
7300         fpu->last_dp = fxsave->rdp;
7301         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7302
7303         return 0;
7304 }
7305
7306 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7307 {
7308         struct fxregs_state *fxsave =
7309                         &vcpu->arch.guest_fpu.state.fxsave;
7310
7311         memcpy(fxsave->st_space, fpu->fpr, 128);
7312         fxsave->cwd = fpu->fcw;
7313         fxsave->swd = fpu->fsw;
7314         fxsave->twd = fpu->ftwx;
7315         fxsave->fop = fpu->last_opcode;
7316         fxsave->rip = fpu->last_ip;
7317         fxsave->rdp = fpu->last_dp;
7318         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7319
7320         return 0;
7321 }
7322
7323 static void fx_init(struct kvm_vcpu *vcpu)
7324 {
7325         fpstate_init(&vcpu->arch.guest_fpu.state);
7326         if (boot_cpu_has(X86_FEATURE_XSAVES))
7327                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7328                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7329
7330         /*
7331          * Ensure guest xcr0 is valid for loading
7332          */
7333         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7334
7335         vcpu->arch.cr0 |= X86_CR0_ET;
7336 }
7337
7338 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7339 {
7340         if (vcpu->guest_fpu_loaded)
7341                 return;
7342
7343         /*
7344          * Restore all possible states in the guest,
7345          * and assume host would use all available bits.
7346          * Guest xcr0 would be loaded later.
7347          */
7348         vcpu->guest_fpu_loaded = 1;
7349         __kernel_fpu_begin();
7350         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7351         trace_kvm_fpu(1);
7352 }
7353
7354 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7355 {
7356         if (!vcpu->guest_fpu_loaded) {
7357                 vcpu->fpu_counter = 0;
7358                 return;
7359         }
7360
7361         vcpu->guest_fpu_loaded = 0;
7362         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7363         __kernel_fpu_end();
7364         ++vcpu->stat.fpu_reload;
7365         /*
7366          * If using eager FPU mode, or if the guest is a frequent user
7367          * of the FPU, just leave the FPU active for next time.
7368          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7369          * the FPU in bursts will revert to loading it on demand.
7370          */
7371         if (!use_eager_fpu()) {
7372                 if (++vcpu->fpu_counter < 5)
7373                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7374         }
7375         trace_kvm_fpu(0);
7376 }
7377
7378 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7379 {
7380         kvmclock_reset(vcpu);
7381
7382         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7383         kvm_x86_ops->vcpu_free(vcpu);
7384 }
7385
7386 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7387                                                 unsigned int id)
7388 {
7389         struct kvm_vcpu *vcpu;
7390
7391         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7392                 printk_once(KERN_WARNING
7393                 "kvm: SMP vm created on host with unstable TSC; "
7394                 "guest TSC will not be reliable\n");
7395
7396         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7397
7398         return vcpu;
7399 }
7400
7401 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7402 {
7403         int r;
7404
7405         kvm_vcpu_mtrr_init(vcpu);
7406         r = vcpu_load(vcpu);
7407         if (r)
7408                 return r;
7409         kvm_vcpu_reset(vcpu, false);
7410         kvm_mmu_setup(vcpu);
7411         vcpu_put(vcpu);
7412         return r;
7413 }
7414
7415 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7416 {
7417         struct msr_data msr;
7418         struct kvm *kvm = vcpu->kvm;
7419
7420         if (vcpu_load(vcpu))
7421                 return;
7422         msr.data = 0x0;
7423         msr.index = MSR_IA32_TSC;
7424         msr.host_initiated = true;
7425         kvm_write_tsc(vcpu, &msr);
7426         vcpu_put(vcpu);
7427
7428         if (!kvmclock_periodic_sync)
7429                 return;
7430
7431         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7432                                         KVMCLOCK_SYNC_PERIOD);
7433 }
7434
7435 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7436 {
7437         int r;
7438         vcpu->arch.apf.msr_val = 0;
7439
7440         r = vcpu_load(vcpu);
7441         BUG_ON(r);
7442         kvm_mmu_unload(vcpu);
7443         vcpu_put(vcpu);
7444
7445         kvm_x86_ops->vcpu_free(vcpu);
7446 }
7447
7448 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7449 {
7450         vcpu->arch.hflags = 0;
7451
7452         vcpu->arch.smi_pending = 0;
7453         atomic_set(&vcpu->arch.nmi_queued, 0);
7454         vcpu->arch.nmi_pending = 0;
7455         vcpu->arch.nmi_injected = false;
7456         kvm_clear_interrupt_queue(vcpu);
7457         kvm_clear_exception_queue(vcpu);
7458
7459         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7460         kvm_update_dr0123(vcpu);
7461         vcpu->arch.dr6 = DR6_INIT;
7462         kvm_update_dr6(vcpu);
7463         vcpu->arch.dr7 = DR7_FIXED_1;
7464         kvm_update_dr7(vcpu);
7465
7466         vcpu->arch.cr2 = 0;
7467
7468         kvm_make_request(KVM_REQ_EVENT, vcpu);
7469         vcpu->arch.apf.msr_val = 0;
7470         vcpu->arch.st.msr_val = 0;
7471
7472         kvmclock_reset(vcpu);
7473
7474         kvm_clear_async_pf_completion_queue(vcpu);
7475         kvm_async_pf_hash_reset(vcpu);
7476         vcpu->arch.apf.halted = false;
7477
7478         if (!init_event) {
7479                 kvm_pmu_reset(vcpu);
7480                 vcpu->arch.smbase = 0x30000;
7481         }
7482
7483         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7484         vcpu->arch.regs_avail = ~0;
7485         vcpu->arch.regs_dirty = ~0;
7486
7487         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7488 }
7489
7490 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7491 {
7492         struct kvm_segment cs;
7493
7494         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7495         cs.selector = vector << 8;
7496         cs.base = vector << 12;
7497         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7498         kvm_rip_write(vcpu, 0);
7499 }
7500
7501 int kvm_arch_hardware_enable(void)
7502 {
7503         struct kvm *kvm;
7504         struct kvm_vcpu *vcpu;
7505         int i;
7506         int ret;
7507         u64 local_tsc;
7508         u64 max_tsc = 0;
7509         bool stable, backwards_tsc = false;
7510
7511         kvm_shared_msr_cpu_online();
7512         ret = kvm_x86_ops->hardware_enable();
7513         if (ret != 0)
7514                 return ret;
7515
7516         local_tsc = rdtsc();
7517         stable = !check_tsc_unstable();
7518         list_for_each_entry(kvm, &vm_list, vm_list) {
7519                 kvm_for_each_vcpu(i, vcpu, kvm) {
7520                         if (!stable && vcpu->cpu == smp_processor_id())
7521                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7522                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7523                                 backwards_tsc = true;
7524                                 if (vcpu->arch.last_host_tsc > max_tsc)
7525                                         max_tsc = vcpu->arch.last_host_tsc;
7526                         }
7527                 }
7528         }
7529
7530         /*
7531          * Sometimes, even reliable TSCs go backwards.  This happens on
7532          * platforms that reset TSC during suspend or hibernate actions, but
7533          * maintain synchronization.  We must compensate.  Fortunately, we can
7534          * detect that condition here, which happens early in CPU bringup,
7535          * before any KVM threads can be running.  Unfortunately, we can't
7536          * bring the TSCs fully up to date with real time, as we aren't yet far
7537          * enough into CPU bringup that we know how much real time has actually
7538          * elapsed; our helper function, get_kernel_ns() will be using boot
7539          * variables that haven't been updated yet.
7540          *
7541          * So we simply find the maximum observed TSC above, then record the
7542          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7543          * the adjustment will be applied.  Note that we accumulate
7544          * adjustments, in case multiple suspend cycles happen before some VCPU
7545          * gets a chance to run again.  In the event that no KVM threads get a
7546          * chance to run, we will miss the entire elapsed period, as we'll have
7547          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7548          * loose cycle time.  This isn't too big a deal, since the loss will be
7549          * uniform across all VCPUs (not to mention the scenario is extremely
7550          * unlikely). It is possible that a second hibernate recovery happens
7551          * much faster than a first, causing the observed TSC here to be
7552          * smaller; this would require additional padding adjustment, which is
7553          * why we set last_host_tsc to the local tsc observed here.
7554          *
7555          * N.B. - this code below runs only on platforms with reliable TSC,
7556          * as that is the only way backwards_tsc is set above.  Also note
7557          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7558          * have the same delta_cyc adjustment applied if backwards_tsc
7559          * is detected.  Note further, this adjustment is only done once,
7560          * as we reset last_host_tsc on all VCPUs to stop this from being
7561          * called multiple times (one for each physical CPU bringup).
7562          *
7563          * Platforms with unreliable TSCs don't have to deal with this, they
7564          * will be compensated by the logic in vcpu_load, which sets the TSC to
7565          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7566          * guarantee that they stay in perfect synchronization.
7567          */
7568         if (backwards_tsc) {
7569                 u64 delta_cyc = max_tsc - local_tsc;
7570                 backwards_tsc_observed = true;
7571                 list_for_each_entry(kvm, &vm_list, vm_list) {
7572                         kvm_for_each_vcpu(i, vcpu, kvm) {
7573                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7574                                 vcpu->arch.last_host_tsc = local_tsc;
7575                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7576                         }
7577
7578                         /*
7579                          * We have to disable TSC offset matching.. if you were
7580                          * booting a VM while issuing an S4 host suspend....
7581                          * you may have some problem.  Solving this issue is
7582                          * left as an exercise to the reader.
7583                          */
7584                         kvm->arch.last_tsc_nsec = 0;
7585                         kvm->arch.last_tsc_write = 0;
7586                 }
7587
7588         }
7589         return 0;
7590 }
7591
7592 void kvm_arch_hardware_disable(void)
7593 {
7594         kvm_x86_ops->hardware_disable();
7595         drop_user_return_notifiers();
7596 }
7597
7598 int kvm_arch_hardware_setup(void)
7599 {
7600         int r;
7601
7602         r = kvm_x86_ops->hardware_setup();
7603         if (r != 0)
7604                 return r;
7605
7606         if (kvm_has_tsc_control) {
7607                 /*
7608                  * Make sure the user can only configure tsc_khz values that
7609                  * fit into a signed integer.
7610                  * A min value is not calculated needed because it will always
7611                  * be 1 on all machines.
7612                  */
7613                 u64 max = min(0x7fffffffULL,
7614                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7615                 kvm_max_guest_tsc_khz = max;
7616
7617                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7618         }
7619
7620         kvm_init_msr_list();
7621         return 0;
7622 }
7623
7624 void kvm_arch_hardware_unsetup(void)
7625 {
7626         kvm_x86_ops->hardware_unsetup();
7627 }
7628
7629 void kvm_arch_check_processor_compat(void *rtn)
7630 {
7631         kvm_x86_ops->check_processor_compatibility(rtn);
7632 }
7633
7634 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7635 {
7636         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7637 }
7638 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7639
7640 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7641 {
7642         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7643 }
7644
7645 struct static_key kvm_no_apic_vcpu __read_mostly;
7646 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7647
7648 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7649 {
7650         struct page *page;
7651         struct kvm *kvm;
7652         int r;
7653
7654         BUG_ON(vcpu->kvm == NULL);
7655         kvm = vcpu->kvm;
7656
7657         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7658         vcpu->arch.pv.pv_unhalted = false;
7659         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7660         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7661                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7662         else
7663                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7664
7665         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7666         if (!page) {
7667                 r = -ENOMEM;
7668                 goto fail;
7669         }
7670         vcpu->arch.pio_data = page_address(page);
7671
7672         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7673
7674         r = kvm_mmu_create(vcpu);
7675         if (r < 0)
7676                 goto fail_free_pio_data;
7677
7678         if (irqchip_in_kernel(kvm)) {
7679                 r = kvm_create_lapic(vcpu);
7680                 if (r < 0)
7681                         goto fail_mmu_destroy;
7682         } else
7683                 static_key_slow_inc(&kvm_no_apic_vcpu);
7684
7685         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7686                                        GFP_KERNEL);
7687         if (!vcpu->arch.mce_banks) {
7688                 r = -ENOMEM;
7689                 goto fail_free_lapic;
7690         }
7691         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7692
7693         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7694                 r = -ENOMEM;
7695                 goto fail_free_mce_banks;
7696         }
7697
7698         fx_init(vcpu);
7699
7700         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7701         vcpu->arch.pv_time_enabled = false;
7702
7703         vcpu->arch.guest_supported_xcr0 = 0;
7704         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7705
7706         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7707
7708         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7709
7710         kvm_async_pf_hash_reset(vcpu);
7711         kvm_pmu_init(vcpu);
7712
7713         vcpu->arch.pending_external_vector = -1;
7714
7715         kvm_hv_vcpu_init(vcpu);
7716
7717         return 0;
7718
7719 fail_free_mce_banks:
7720         kfree(vcpu->arch.mce_banks);
7721 fail_free_lapic:
7722         kvm_free_lapic(vcpu);
7723 fail_mmu_destroy:
7724         kvm_mmu_destroy(vcpu);
7725 fail_free_pio_data:
7726         free_page((unsigned long)vcpu->arch.pio_data);
7727 fail:
7728         return r;
7729 }
7730
7731 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7732 {
7733         int idx;
7734
7735         kvm_hv_vcpu_uninit(vcpu);
7736         kvm_pmu_destroy(vcpu);
7737         kfree(vcpu->arch.mce_banks);
7738         kvm_free_lapic(vcpu);
7739         idx = srcu_read_lock(&vcpu->kvm->srcu);
7740         kvm_mmu_destroy(vcpu);
7741         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7742         free_page((unsigned long)vcpu->arch.pio_data);
7743         if (!lapic_in_kernel(vcpu))
7744                 static_key_slow_dec(&kvm_no_apic_vcpu);
7745 }
7746
7747 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7748 {
7749         kvm_x86_ops->sched_in(vcpu, cpu);
7750 }
7751
7752 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7753 {
7754         if (type)
7755                 return -EINVAL;
7756
7757         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7758         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7759         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7760         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7761         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7762
7763         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7764         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7765         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7766         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7767                 &kvm->arch.irq_sources_bitmap);
7768
7769         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7770         mutex_init(&kvm->arch.apic_map_lock);
7771         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7772
7773         pvclock_update_vm_gtod_copy(kvm);
7774
7775         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7776         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7777
7778         kvm_page_track_init(kvm);
7779         kvm_mmu_init_vm(kvm);
7780
7781         if (kvm_x86_ops->vm_init)
7782                 return kvm_x86_ops->vm_init(kvm);
7783
7784         return 0;
7785 }
7786
7787 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7788 {
7789         int r;
7790         r = vcpu_load(vcpu);
7791         BUG_ON(r);
7792         kvm_mmu_unload(vcpu);
7793         vcpu_put(vcpu);
7794 }
7795
7796 static void kvm_free_vcpus(struct kvm *kvm)
7797 {
7798         unsigned int i;
7799         struct kvm_vcpu *vcpu;
7800
7801         /*
7802          * Unpin any mmu pages first.
7803          */
7804         kvm_for_each_vcpu(i, vcpu, kvm) {
7805                 kvm_clear_async_pf_completion_queue(vcpu);
7806                 kvm_unload_vcpu_mmu(vcpu);
7807         }
7808         kvm_for_each_vcpu(i, vcpu, kvm)
7809                 kvm_arch_vcpu_free(vcpu);
7810
7811         mutex_lock(&kvm->lock);
7812         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7813                 kvm->vcpus[i] = NULL;
7814
7815         atomic_set(&kvm->online_vcpus, 0);
7816         mutex_unlock(&kvm->lock);
7817 }
7818
7819 void kvm_arch_sync_events(struct kvm *kvm)
7820 {
7821         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7822         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7823         kvm_free_all_assigned_devices(kvm);
7824         kvm_free_pit(kvm);
7825 }
7826
7827 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7828 {
7829         int i, r;
7830         unsigned long hva;
7831         struct kvm_memslots *slots = kvm_memslots(kvm);
7832         struct kvm_memory_slot *slot, old;
7833
7834         /* Called with kvm->slots_lock held.  */
7835         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7836                 return -EINVAL;
7837
7838         slot = id_to_memslot(slots, id);
7839         if (size) {
7840                 if (slot->npages)
7841                         return -EEXIST;
7842
7843                 /*
7844                  * MAP_SHARED to prevent internal slot pages from being moved
7845                  * by fork()/COW.
7846                  */
7847                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7848                               MAP_SHARED | MAP_ANONYMOUS, 0);
7849                 if (IS_ERR((void *)hva))
7850                         return PTR_ERR((void *)hva);
7851         } else {
7852                 if (!slot->npages)
7853                         return 0;
7854
7855                 hva = 0;
7856         }
7857
7858         old = *slot;
7859         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7860                 struct kvm_userspace_memory_region m;
7861
7862                 m.slot = id | (i << 16);
7863                 m.flags = 0;
7864                 m.guest_phys_addr = gpa;
7865                 m.userspace_addr = hva;
7866                 m.memory_size = size;
7867                 r = __kvm_set_memory_region(kvm, &m);
7868                 if (r < 0)
7869                         return r;
7870         }
7871
7872         if (!size) {
7873                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7874                 WARN_ON(r < 0);
7875         }
7876
7877         return 0;
7878 }
7879 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7880
7881 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7882 {
7883         int r;
7884
7885         mutex_lock(&kvm->slots_lock);
7886         r = __x86_set_memory_region(kvm, id, gpa, size);
7887         mutex_unlock(&kvm->slots_lock);
7888
7889         return r;
7890 }
7891 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7892
7893 void kvm_arch_destroy_vm(struct kvm *kvm)
7894 {
7895         if (current->mm == kvm->mm) {
7896                 /*
7897                  * Free memory regions allocated on behalf of userspace,
7898                  * unless the the memory map has changed due to process exit
7899                  * or fd copying.
7900                  */
7901                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7902                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7903                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7904         }
7905         if (kvm_x86_ops->vm_destroy)
7906                 kvm_x86_ops->vm_destroy(kvm);
7907         kvm_iommu_unmap_guest(kvm);
7908         kfree(kvm->arch.vpic);
7909         kfree(kvm->arch.vioapic);
7910         kvm_free_vcpus(kvm);
7911         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7912         kvm_mmu_uninit_vm(kvm);
7913 }
7914
7915 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7916                            struct kvm_memory_slot *dont)
7917 {
7918         int i;
7919
7920         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7921                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7922                         kvfree(free->arch.rmap[i]);
7923                         free->arch.rmap[i] = NULL;
7924                 }
7925                 if (i == 0)
7926                         continue;
7927
7928                 if (!dont || free->arch.lpage_info[i - 1] !=
7929                              dont->arch.lpage_info[i - 1]) {
7930                         kvfree(free->arch.lpage_info[i - 1]);
7931                         free->arch.lpage_info[i - 1] = NULL;
7932                 }
7933         }
7934
7935         kvm_page_track_free_memslot(free, dont);
7936 }
7937
7938 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7939                             unsigned long npages)
7940 {
7941         int i;
7942
7943         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7944                 struct kvm_lpage_info *linfo;
7945                 unsigned long ugfn;
7946                 int lpages;
7947                 int level = i + 1;
7948
7949                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7950                                       slot->base_gfn, level) + 1;
7951
7952                 slot->arch.rmap[i] =
7953                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7954                 if (!slot->arch.rmap[i])
7955                         goto out_free;
7956                 if (i == 0)
7957                         continue;
7958
7959                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7960                 if (!linfo)
7961                         goto out_free;
7962
7963                 slot->arch.lpage_info[i - 1] = linfo;
7964
7965                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7966                         linfo[0].disallow_lpage = 1;
7967                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7968                         linfo[lpages - 1].disallow_lpage = 1;
7969                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7970                 /*
7971                  * If the gfn and userspace address are not aligned wrt each
7972                  * other, or if explicitly asked to, disable large page
7973                  * support for this slot
7974                  */
7975                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7976                     !kvm_largepages_enabled()) {
7977                         unsigned long j;
7978
7979                         for (j = 0; j < lpages; ++j)
7980                                 linfo[j].disallow_lpage = 1;
7981                 }
7982         }
7983
7984         if (kvm_page_track_create_memslot(slot, npages))
7985                 goto out_free;
7986
7987         return 0;
7988
7989 out_free:
7990         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7991                 kvfree(slot->arch.rmap[i]);
7992                 slot->arch.rmap[i] = NULL;
7993                 if (i == 0)
7994                         continue;
7995
7996                 kvfree(slot->arch.lpage_info[i - 1]);
7997                 slot->arch.lpage_info[i - 1] = NULL;
7998         }
7999         return -ENOMEM;
8000 }
8001
8002 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8003 {
8004         /*
8005          * memslots->generation has been incremented.
8006          * mmio generation may have reached its maximum value.
8007          */
8008         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8009 }
8010
8011 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8012                                 struct kvm_memory_slot *memslot,
8013                                 const struct kvm_userspace_memory_region *mem,
8014                                 enum kvm_mr_change change)
8015 {
8016         return 0;
8017 }
8018
8019 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8020                                      struct kvm_memory_slot *new)
8021 {
8022         /* Still write protect RO slot */
8023         if (new->flags & KVM_MEM_READONLY) {
8024                 kvm_mmu_slot_remove_write_access(kvm, new);
8025                 return;
8026         }
8027
8028         /*
8029          * Call kvm_x86_ops dirty logging hooks when they are valid.
8030          *
8031          * kvm_x86_ops->slot_disable_log_dirty is called when:
8032          *
8033          *  - KVM_MR_CREATE with dirty logging is disabled
8034          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8035          *
8036          * The reason is, in case of PML, we need to set D-bit for any slots
8037          * with dirty logging disabled in order to eliminate unnecessary GPA
8038          * logging in PML buffer (and potential PML buffer full VMEXT). This
8039          * guarantees leaving PML enabled during guest's lifetime won't have
8040          * any additonal overhead from PML when guest is running with dirty
8041          * logging disabled for memory slots.
8042          *
8043          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8044          * to dirty logging mode.
8045          *
8046          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8047          *
8048          * In case of write protect:
8049          *
8050          * Write protect all pages for dirty logging.
8051          *
8052          * All the sptes including the large sptes which point to this
8053          * slot are set to readonly. We can not create any new large
8054          * spte on this slot until the end of the logging.
8055          *
8056          * See the comments in fast_page_fault().
8057          */
8058         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8059                 if (kvm_x86_ops->slot_enable_log_dirty)
8060                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8061                 else
8062                         kvm_mmu_slot_remove_write_access(kvm, new);
8063         } else {
8064                 if (kvm_x86_ops->slot_disable_log_dirty)
8065                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8066         }
8067 }
8068
8069 void kvm_arch_commit_memory_region(struct kvm *kvm,
8070                                 const struct kvm_userspace_memory_region *mem,
8071                                 const struct kvm_memory_slot *old,
8072                                 const struct kvm_memory_slot *new,
8073                                 enum kvm_mr_change change)
8074 {
8075         int nr_mmu_pages = 0;
8076
8077         if (!kvm->arch.n_requested_mmu_pages)
8078                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8079
8080         if (nr_mmu_pages)
8081                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8082
8083         /*
8084          * Dirty logging tracks sptes in 4k granularity, meaning that large
8085          * sptes have to be split.  If live migration is successful, the guest
8086          * in the source machine will be destroyed and large sptes will be
8087          * created in the destination. However, if the guest continues to run
8088          * in the source machine (for example if live migration fails), small
8089          * sptes will remain around and cause bad performance.
8090          *
8091          * Scan sptes if dirty logging has been stopped, dropping those
8092          * which can be collapsed into a single large-page spte.  Later
8093          * page faults will create the large-page sptes.
8094          */
8095         if ((change != KVM_MR_DELETE) &&
8096                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8097                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8098                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8099
8100         /*
8101          * Set up write protection and/or dirty logging for the new slot.
8102          *
8103          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8104          * been zapped so no dirty logging staff is needed for old slot. For
8105          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8106          * new and it's also covered when dealing with the new slot.
8107          *
8108          * FIXME: const-ify all uses of struct kvm_memory_slot.
8109          */
8110         if (change != KVM_MR_DELETE)
8111                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8112 }
8113
8114 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8115 {
8116         kvm_mmu_invalidate_zap_all_pages(kvm);
8117 }
8118
8119 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8120                                    struct kvm_memory_slot *slot)
8121 {
8122         kvm_mmu_invalidate_zap_all_pages(kvm);
8123 }
8124
8125 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8126 {
8127         if (!list_empty_careful(&vcpu->async_pf.done))
8128                 return true;
8129
8130         if (kvm_apic_has_events(vcpu))
8131                 return true;
8132
8133         if (vcpu->arch.pv.pv_unhalted)
8134                 return true;
8135
8136         if (atomic_read(&vcpu->arch.nmi_queued))
8137                 return true;
8138
8139         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8140                 return true;
8141
8142         if (kvm_arch_interrupt_allowed(vcpu) &&
8143             kvm_cpu_has_interrupt(vcpu))
8144                 return true;
8145
8146         if (kvm_hv_has_stimer_pending(vcpu))
8147                 return true;
8148
8149         return false;
8150 }
8151
8152 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8153 {
8154         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8155                 kvm_x86_ops->check_nested_events(vcpu, false);
8156
8157         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8158 }
8159
8160 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8161 {
8162         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8163 }
8164
8165 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8166 {
8167         return kvm_x86_ops->interrupt_allowed(vcpu);
8168 }
8169
8170 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8171 {
8172         if (is_64_bit_mode(vcpu))
8173                 return kvm_rip_read(vcpu);
8174         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8175                      kvm_rip_read(vcpu));
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8178
8179 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8180 {
8181         return kvm_get_linear_rip(vcpu) == linear_rip;
8182 }
8183 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8184
8185 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8186 {
8187         unsigned long rflags;
8188
8189         rflags = kvm_x86_ops->get_rflags(vcpu);
8190         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8191                 rflags &= ~X86_EFLAGS_TF;
8192         return rflags;
8193 }
8194 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8195
8196 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8197 {
8198         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8199             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8200                 rflags |= X86_EFLAGS_TF;
8201         kvm_x86_ops->set_rflags(vcpu, rflags);
8202 }
8203
8204 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8205 {
8206         __kvm_set_rflags(vcpu, rflags);
8207         kvm_make_request(KVM_REQ_EVENT, vcpu);
8208 }
8209 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8210
8211 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8212 {
8213         int r;
8214
8215         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8216               work->wakeup_all)
8217                 return;
8218
8219         r = kvm_mmu_reload(vcpu);
8220         if (unlikely(r))
8221                 return;
8222
8223         if (!vcpu->arch.mmu.direct_map &&
8224               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8225                 return;
8226
8227         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8228 }
8229
8230 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8231 {
8232         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8233 }
8234
8235 static inline u32 kvm_async_pf_next_probe(u32 key)
8236 {
8237         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8238 }
8239
8240 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8241 {
8242         u32 key = kvm_async_pf_hash_fn(gfn);
8243
8244         while (vcpu->arch.apf.gfns[key] != ~0)
8245                 key = kvm_async_pf_next_probe(key);
8246
8247         vcpu->arch.apf.gfns[key] = gfn;
8248 }
8249
8250 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8251 {
8252         int i;
8253         u32 key = kvm_async_pf_hash_fn(gfn);
8254
8255         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8256                      (vcpu->arch.apf.gfns[key] != gfn &&
8257                       vcpu->arch.apf.gfns[key] != ~0); i++)
8258                 key = kvm_async_pf_next_probe(key);
8259
8260         return key;
8261 }
8262
8263 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8264 {
8265         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8266 }
8267
8268 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8269 {
8270         u32 i, j, k;
8271
8272         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8273         while (true) {
8274                 vcpu->arch.apf.gfns[i] = ~0;
8275                 do {
8276                         j = kvm_async_pf_next_probe(j);
8277                         if (vcpu->arch.apf.gfns[j] == ~0)
8278                                 return;
8279                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8280                         /*
8281                          * k lies cyclically in ]i,j]
8282                          * |    i.k.j |
8283                          * |....j i.k.| or  |.k..j i...|
8284                          */
8285                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8286                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8287                 i = j;
8288         }
8289 }
8290
8291 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8292 {
8293
8294         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8295                                       sizeof(val));
8296 }
8297
8298 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8299                                      struct kvm_async_pf *work)
8300 {
8301         struct x86_exception fault;
8302
8303         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8304         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8305
8306         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8307             (vcpu->arch.apf.send_user_only &&
8308              kvm_x86_ops->get_cpl(vcpu) == 0))
8309                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8310         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8311                 fault.vector = PF_VECTOR;
8312                 fault.error_code_valid = true;
8313                 fault.error_code = 0;
8314                 fault.nested_page_fault = false;
8315                 fault.address = work->arch.token;
8316                 kvm_inject_page_fault(vcpu, &fault);
8317         }
8318 }
8319
8320 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8321                                  struct kvm_async_pf *work)
8322 {
8323         struct x86_exception fault;
8324
8325         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8326         if (work->wakeup_all)
8327                 work->arch.token = ~0; /* broadcast wakeup */
8328         else
8329                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8330
8331         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8332             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8333                 fault.vector = PF_VECTOR;
8334                 fault.error_code_valid = true;
8335                 fault.error_code = 0;
8336                 fault.nested_page_fault = false;
8337                 fault.address = work->arch.token;
8338                 kvm_inject_page_fault(vcpu, &fault);
8339         }
8340         vcpu->arch.apf.halted = false;
8341         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8342 }
8343
8344 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8345 {
8346         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8347                 return true;
8348         else
8349                 return !kvm_event_needs_reinjection(vcpu) &&
8350                         kvm_x86_ops->interrupt_allowed(vcpu);
8351 }
8352
8353 void kvm_arch_start_assignment(struct kvm *kvm)
8354 {
8355         atomic_inc(&kvm->arch.assigned_device_count);
8356 }
8357 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8358
8359 void kvm_arch_end_assignment(struct kvm *kvm)
8360 {
8361         atomic_dec(&kvm->arch.assigned_device_count);
8362 }
8363 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8364
8365 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8366 {
8367         return atomic_read(&kvm->arch.assigned_device_count);
8368 }
8369 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8370
8371 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8372 {
8373         atomic_inc(&kvm->arch.noncoherent_dma_count);
8374 }
8375 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8376
8377 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8378 {
8379         atomic_dec(&kvm->arch.noncoherent_dma_count);
8380 }
8381 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8382
8383 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8384 {
8385         return atomic_read(&kvm->arch.noncoherent_dma_count);
8386 }
8387 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8388
8389 bool kvm_arch_has_irq_bypass(void)
8390 {
8391         return kvm_x86_ops->update_pi_irte != NULL;
8392 }
8393
8394 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8395                                       struct irq_bypass_producer *prod)
8396 {
8397         struct kvm_kernel_irqfd *irqfd =
8398                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8399
8400         irqfd->producer = prod;
8401
8402         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8403                                            prod->irq, irqfd->gsi, 1);
8404 }
8405
8406 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8407                                       struct irq_bypass_producer *prod)
8408 {
8409         int ret;
8410         struct kvm_kernel_irqfd *irqfd =
8411                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8412
8413         WARN_ON(irqfd->producer != prod);
8414         irqfd->producer = NULL;
8415
8416         /*
8417          * When producer of consumer is unregistered, we change back to
8418          * remapped mode, so we can re-use the current implementation
8419          * when the irq is masked/disabled or the consumer side (KVM
8420          * int this case doesn't want to receive the interrupts.
8421         */
8422         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8423         if (ret)
8424                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8425                        " fails: %d\n", irqfd->consumer.token, ret);
8426 }
8427
8428 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8429                                    uint32_t guest_irq, bool set)
8430 {
8431         if (!kvm_x86_ops->update_pi_irte)
8432                 return -EINVAL;
8433
8434         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8435 }
8436
8437 bool kvm_vector_hashing_enabled(void)
8438 {
8439         return vector_hashing;
8440 }
8441 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8442
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);