]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
b6102c1eb3b1f6da8f3c218dc89a9ceff7ff5aa2
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131         int nr;
132         u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136         struct user_return_notifier urn;
137         bool registered;
138         struct kvm_shared_msr_values {
139                 u64 host;
140                 u64 curr;
141         } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148         { "pf_fixed", VCPU_STAT(pf_fixed) },
149         { "pf_guest", VCPU_STAT(pf_guest) },
150         { "tlb_flush", VCPU_STAT(tlb_flush) },
151         { "invlpg", VCPU_STAT(invlpg) },
152         { "exits", VCPU_STAT(exits) },
153         { "io_exits", VCPU_STAT(io_exits) },
154         { "mmio_exits", VCPU_STAT(mmio_exits) },
155         { "signal_exits", VCPU_STAT(signal_exits) },
156         { "irq_window", VCPU_STAT(irq_window_exits) },
157         { "nmi_window", VCPU_STAT(nmi_window_exits) },
158         { "halt_exits", VCPU_STAT(halt_exits) },
159         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162         { "hypercalls", VCPU_STAT(hypercalls) },
163         { "request_irq", VCPU_STAT(request_irq_exits) },
164         { "irq_exits", VCPU_STAT(irq_exits) },
165         { "host_state_reload", VCPU_STAT(host_state_reload) },
166         { "efer_reload", VCPU_STAT(efer_reload) },
167         { "fpu_reload", VCPU_STAT(fpu_reload) },
168         { "insn_emulation", VCPU_STAT(insn_emulation) },
169         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170         { "irq_injections", VCPU_STAT(irq_injections) },
171         { "nmi_injections", VCPU_STAT(nmi_injections) },
172         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176         { "mmu_flooded", VM_STAT(mmu_flooded) },
177         { "mmu_recycled", VM_STAT(mmu_recycled) },
178         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179         { "mmu_unsync", VM_STAT(mmu_unsync) },
180         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181         { "largepages", VM_STAT(lpages) },
182         { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191         int i;
192         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193                 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198         unsigned slot;
199         struct kvm_shared_msrs *locals
200                 = container_of(urn, struct kvm_shared_msrs, urn);
201         struct kvm_shared_msr_values *values;
202
203         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204                 values = &locals->values[slot];
205                 if (values->host != values->curr) {
206                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
207                         values->curr = values->host;
208                 }
209         }
210         locals->registered = false;
211         user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216         u64 value;
217         unsigned int cpu = smp_processor_id();
218         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220         /* only read, and nobody should modify it at this time,
221          * so don't need lock */
222         if (slot >= shared_msrs_global.nr) {
223                 printk(KERN_ERR "kvm: invalid MSR slot!");
224                 return;
225         }
226         rdmsrl_safe(msr, &value);
227         smsr->values[slot].host = value;
228         smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234         shared_msrs_global.msrs[slot] = msr;
235         if (slot >= shared_msrs_global.nr)
236                 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242         unsigned i;
243
244         for (i = 0; i < shared_msrs_global.nr; ++i)
245                 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250         unsigned int cpu = smp_processor_id();
251         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252         int err;
253
254         if (((value ^ smsr->values[slot].curr) & mask) == 0)
255                 return 0;
256         smsr->values[slot].curr = value;
257         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258         if (err)
259                 return 1;
260
261         if (!smsr->registered) {
262                 smsr->urn.on_user_return = kvm_on_user_return;
263                 user_return_notifier_register(&smsr->urn);
264                 smsr->registered = true;
265         }
266         return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275         if (smsr->registered)
276                 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281         return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287         u64 old_state = vcpu->arch.apic_base &
288                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289         u64 new_state = msr_info->data &
290                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294         if (!msr_info->host_initiated &&
295             ((msr_info->data & reserved_bits) != 0 ||
296              new_state == X2APIC_ENABLE ||
297              (new_state == MSR_IA32_APICBASE_ENABLE &&
298               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300               old_state == 0)))
301                 return 1;
302
303         kvm_lapic_set_base(vcpu, msr_info->data);
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310         /* Fault while not rebooting.  We want the trace. */
311         BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN            0
316 #define EXCPT_CONTRIBUTORY      1
317 #define EXCPT_PF                2
318
319 static int exception_class(int vector)
320 {
321         switch (vector) {
322         case PF_VECTOR:
323                 return EXCPT_PF;
324         case DE_VECTOR:
325         case TS_VECTOR:
326         case NP_VECTOR:
327         case SS_VECTOR:
328         case GP_VECTOR:
329                 return EXCPT_CONTRIBUTORY;
330         default:
331                 break;
332         }
333         return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT             0
337 #define EXCPT_TRAP              1
338 #define EXCPT_ABORT             2
339 #define EXCPT_INTERRUPT         3
340
341 static int exception_type(int vector)
342 {
343         unsigned int mask;
344
345         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346                 return EXCPT_INTERRUPT;
347
348         mask = 1 << vector;
349
350         /* #DB is trap, as instruction watchpoints are handled elsewhere */
351         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352                 return EXCPT_TRAP;
353
354         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355                 return EXCPT_ABORT;
356
357         /* Reserved exceptions will result in fault */
358         return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362                 unsigned nr, bool has_error, u32 error_code,
363                 bool reinject)
364 {
365         u32 prev_nr;
366         int class1, class2;
367
368         kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370         if (!vcpu->arch.exception.pending) {
371         queue:
372                 if (has_error && !is_protmode(vcpu))
373                         has_error = false;
374                 vcpu->arch.exception.pending = true;
375                 vcpu->arch.exception.has_error_code = has_error;
376                 vcpu->arch.exception.nr = nr;
377                 vcpu->arch.exception.error_code = error_code;
378                 vcpu->arch.exception.reinject = reinject;
379                 return;
380         }
381
382         /* to check exception */
383         prev_nr = vcpu->arch.exception.nr;
384         if (prev_nr == DF_VECTOR) {
385                 /* triple fault -> shutdown */
386                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387                 return;
388         }
389         class1 = exception_class(prev_nr);
390         class2 = exception_class(nr);
391         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393                 /* generate double fault per SDM Table 5-5 */
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = true;
396                 vcpu->arch.exception.nr = DF_VECTOR;
397                 vcpu->arch.exception.error_code = 0;
398         } else
399                 /* replace previous exception with a new one in a hope
400                    that instruction re-execution will regenerate lost
401                    exception */
402                 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407         kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413         kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419         if (err)
420                 kvm_inject_gp(vcpu, 0);
421         else
422                 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         ++vcpu->stat.pf_guest;
429         vcpu->arch.cr2 = fault->address;
430         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438         else
439                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441         return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446         atomic_inc(&vcpu->arch.nmi_queued);
447         kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453         kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459         kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470                 return true;
471         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479                 return true;
480
481         kvm_queue_exception(vcpu, UD_VECTOR);
482         return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492                             gfn_t ngfn, void *data, int offset, int len,
493                             u32 access)
494 {
495         struct x86_exception exception;
496         gfn_t real_gfn;
497         gpa_t ngpa;
498
499         ngpa     = gfn_to_gpa(ngfn);
500         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501         if (real_gfn == UNMAPPED_GVA)
502                 return -EFAULT;
503
504         real_gfn = gpa_to_gfn(real_gfn);
505
506         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511                                void *data, int offset, int len, u32 access)
512 {
513         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514                                        data, offset, len, access);
515 }
516
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524         int i;
525         int ret;
526         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529                                       offset * sizeof(u64), sizeof(pdpte),
530                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
531         if (ret < 0) {
532                 ret = 0;
533                 goto out;
534         }
535         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536                 if (is_present_gpte(pdpte[i]) &&
537                     (pdpte[i] &
538                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539                         ret = 0;
540                         goto out;
541                 }
542         }
543         ret = 1;
544
545         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546         __set_bit(VCPU_EXREG_PDPTR,
547                   (unsigned long *)&vcpu->arch.regs_avail);
548         __set_bit(VCPU_EXREG_PDPTR,
549                   (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559         bool changed = true;
560         int offset;
561         gfn_t gfn;
562         int r;
563
564         if (is_long_mode(vcpu) || !is_pae(vcpu))
565                 return false;
566
567         if (!test_bit(VCPU_EXREG_PDPTR,
568                       (unsigned long *)&vcpu->arch.regs_avail))
569                 return true;
570
571         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
575         if (r < 0)
576                 goto out;
577         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580         return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585         unsigned long old_cr0 = kvm_read_cr0(vcpu);
586         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588         cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591         if (cr0 & 0xffffffff00000000UL)
592                 return 1;
593 #endif
594
595         cr0 &= ~CR0_RESERVED_BITS;
596
597         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598                 return 1;
599
600         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601                 return 1;
602
603         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605                 if ((vcpu->arch.efer & EFER_LME)) {
606                         int cs_db, cs_l;
607
608                         if (!is_pae(vcpu))
609                                 return 1;
610                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611                         if (cs_l)
612                                 return 1;
613                 } else
614 #endif
615                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616                                                  kvm_read_cr3(vcpu)))
617                         return 1;
618         }
619
620         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621                 return 1;
622
623         kvm_x86_ops->set_cr0(vcpu, cr0);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626                 kvm_clear_async_pf_completion_queue(vcpu);
627                 kvm_async_pf_hash_reset(vcpu);
628         }
629
630         if ((cr0 ^ old_cr0) & update_bits)
631                 kvm_mmu_reset_context(vcpu);
632
633         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638         return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651                         !vcpu->guest_xcr0_loaded) {
652                 /* kvm_set_xcr() also depends on this */
653                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654                 vcpu->guest_xcr0_loaded = 1;
655         }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660         if (vcpu->guest_xcr0_loaded) {
661                 if (vcpu->arch.xcr0 != host_xcr0)
662                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663                 vcpu->guest_xcr0_loaded = 0;
664         }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669         u64 xcr0 = xcr;
670         u64 old_xcr0 = vcpu->arch.xcr0;
671         u64 valid_bits;
672
673         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674         if (index != XCR_XFEATURE_ENABLED_MASK)
675                 return 1;
676         if (!(xcr0 & XFEATURE_MASK_FP))
677                 return 1;
678         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679                 return 1;
680
681         /*
682          * Do not allow the guest to set bits that we do not support
683          * saving.  However, xcr0 bit 0 is always set, even if the
684          * emulated CPU does not support XSAVE (see fx_init).
685          */
686         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687         if (xcr0 & ~valid_bits)
688                 return 1;
689
690         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692                 return 1;
693
694         if (xcr0 & XFEATURE_MASK_AVX512) {
695                 if (!(xcr0 & XFEATURE_MASK_YMM))
696                         return 1;
697                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698                         return 1;
699         }
700         kvm_put_guest_xcr0(vcpu);
701         vcpu->arch.xcr0 = xcr0;
702
703         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704                 kvm_update_cpuid(vcpu);
705         return 0;
706 }
707
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711             __kvm_set_xcr(vcpu, index, xcr)) {
712                 kvm_inject_gp(vcpu, 0);
713                 return 1;
714         }
715         return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721         unsigned long old_cr4 = kvm_read_cr4(vcpu);
722         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723                                    X86_CR4_SMEP | X86_CR4_SMAP;
724
725         if (cr4 & CR4_RESERVED_BITS)
726                 return 1;
727
728         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729                 return 1;
730
731         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732                 return 1;
733
734         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735                 return 1;
736
737         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738                 return 1;
739
740         if (is_long_mode(vcpu)) {
741                 if (!(cr4 & X86_CR4_PAE))
742                         return 1;
743         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744                    && ((cr4 ^ old_cr4) & pdptr_bits)
745                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746                                    kvm_read_cr3(vcpu)))
747                 return 1;
748
749         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750                 if (!guest_cpuid_has_pcid(vcpu))
751                         return 1;
752
753                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755                         return 1;
756         }
757
758         if (kvm_x86_ops->set_cr4(vcpu, cr4))
759                 return 1;
760
761         if (((cr4 ^ old_cr4) & pdptr_bits) ||
762             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763                 kvm_mmu_reset_context(vcpu);
764
765         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766                 kvm_update_cpuid(vcpu);
767
768         return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775         cr3 &= ~CR3_PCID_INVD;
776 #endif
777
778         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779                 kvm_mmu_sync_roots(vcpu);
780                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781                 return 0;
782         }
783
784         if (is_long_mode(vcpu)) {
785                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
786                         return 1;
787         } else if (is_pae(vcpu) && is_paging(vcpu) &&
788                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789                 return 1;
790
791         vcpu->arch.cr3 = cr3;
792         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793         kvm_mmu_new_cr3(vcpu);
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800         if (cr8 & CR8_RESERVED_BITS)
801                 return 1;
802         if (lapic_in_kernel(vcpu))
803                 kvm_lapic_set_tpr(vcpu, cr8);
804         else
805                 vcpu->arch.cr8 = cr8;
806         return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812         if (lapic_in_kernel(vcpu))
813                 return kvm_lapic_get_cr8(vcpu);
814         else
815                 return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821         int i;
822
823         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824                 for (i = 0; i < KVM_NR_DB_REGS; i++)
825                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827         }
828 }
829
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838         unsigned long dr7;
839
840         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841                 dr7 = vcpu->arch.guest_debug_dr7;
842         else
843                 dr7 = vcpu->arch.dr7;
844         kvm_x86_ops->set_dr7(vcpu, dr7);
845         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846         if (dr7 & DR7_BP_EN_MASK)
847                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852         u64 fixed = DR6_FIXED_1;
853
854         if (!guest_cpuid_has_rtm(vcpu))
855                 fixed |= DR6_RTM;
856         return fixed;
857 }
858
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861         switch (dr) {
862         case 0 ... 3:
863                 vcpu->arch.db[dr] = val;
864                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                         vcpu->arch.eff_db[dr] = val;
866                 break;
867         case 4:
868                 /* fall through */
869         case 6:
870                 if (val & 0xffffffff00000000ULL)
871                         return -1; /* #GP */
872                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873                 kvm_update_dr6(vcpu);
874                 break;
875         case 5:
876                 /* fall through */
877         default: /* 7 */
878                 if (val & 0xffffffff00000000ULL)
879                         return -1; /* #GP */
880                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881                 kvm_update_dr7(vcpu);
882                 break;
883         }
884
885         return 0;
886 }
887
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         if (__kvm_set_dr(vcpu, dr, val)) {
891                 kvm_inject_gp(vcpu, 0);
892                 return 1;
893         }
894         return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900         switch (dr) {
901         case 0 ... 3:
902                 *val = vcpu->arch.db[dr];
903                 break;
904         case 4:
905                 /* fall through */
906         case 6:
907                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908                         *val = vcpu->arch.dr6;
909                 else
910                         *val = kvm_x86_ops->get_dr6(vcpu);
911                 break;
912         case 5:
913                 /* fall through */
914         default: /* 7 */
915                 *val = vcpu->arch.dr7;
916                 break;
917         }
918         return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925         u64 data;
926         int err;
927
928         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929         if (err)
930                 return err;
931         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933         return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946
947 static u32 msrs_to_save[] = {
948         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949         MSR_STAR,
950 #ifdef CONFIG_X86_64
951         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
955 };
956
957 static unsigned num_msrs_to_save;
958
959 static u32 emulated_msrs[] = {
960         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966         HV_X64_MSR_RESET,
967         HV_X64_MSR_VP_INDEX,
968         HV_X64_MSR_VP_RUNTIME,
969         HV_X64_MSR_SCONTROL,
970         HV_X64_MSR_STIMER0_CONFIG,
971         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
972         MSR_KVM_PV_EOI_EN,
973
974         MSR_IA32_TSC_ADJUST,
975         MSR_IA32_TSCDEADLINE,
976         MSR_IA32_MISC_ENABLE,
977         MSR_IA32_MCG_STATUS,
978         MSR_IA32_MCG_CTL,
979         MSR_IA32_SMBASE,
980 };
981
982 static unsigned num_emulated_msrs;
983
984 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
985 {
986         if (efer & efer_reserved_bits)
987                 return false;
988
989         if (efer & EFER_FFXSR) {
990                 struct kvm_cpuid_entry2 *feat;
991
992                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
993                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
994                         return false;
995         }
996
997         if (efer & EFER_SVME) {
998                 struct kvm_cpuid_entry2 *feat;
999
1000                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1001                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1002                         return false;
1003         }
1004
1005         return true;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1008
1009 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1010 {
1011         u64 old_efer = vcpu->arch.efer;
1012
1013         if (!kvm_valid_efer(vcpu, efer))
1014                 return 1;
1015
1016         if (is_paging(vcpu)
1017             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1018                 return 1;
1019
1020         efer &= ~EFER_LMA;
1021         efer |= vcpu->arch.efer & EFER_LMA;
1022
1023         kvm_x86_ops->set_efer(vcpu, efer);
1024
1025         /* Update reserved bits */
1026         if ((efer ^ old_efer) & EFER_NX)
1027                 kvm_mmu_reset_context(vcpu);
1028
1029         return 0;
1030 }
1031
1032 void kvm_enable_efer_bits(u64 mask)
1033 {
1034        efer_reserved_bits &= ~mask;
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1037
1038 /*
1039  * Writes msr value into into the appropriate "register".
1040  * Returns 0 on success, non-0 otherwise.
1041  * Assumes vcpu_load() was already called.
1042  */
1043 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1044 {
1045         switch (msr->index) {
1046         case MSR_FS_BASE:
1047         case MSR_GS_BASE:
1048         case MSR_KERNEL_GS_BASE:
1049         case MSR_CSTAR:
1050         case MSR_LSTAR:
1051                 if (is_noncanonical_address(msr->data))
1052                         return 1;
1053                 break;
1054         case MSR_IA32_SYSENTER_EIP:
1055         case MSR_IA32_SYSENTER_ESP:
1056                 /*
1057                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1058                  * non-canonical address is written on Intel but not on
1059                  * AMD (which ignores the top 32-bits, because it does
1060                  * not implement 64-bit SYSENTER).
1061                  *
1062                  * 64-bit code should hence be able to write a non-canonical
1063                  * value on AMD.  Making the address canonical ensures that
1064                  * vmentry does not fail on Intel after writing a non-canonical
1065                  * value, and that something deterministic happens if the guest
1066                  * invokes 64-bit SYSENTER.
1067                  */
1068                 msr->data = get_canonical(msr->data);
1069         }
1070         return kvm_x86_ops->set_msr(vcpu, msr);
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_msr);
1073
1074 /*
1075  * Adapt set_msr() to msr_io()'s calling convention
1076  */
1077 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1078 {
1079         struct msr_data msr;
1080         int r;
1081
1082         msr.index = index;
1083         msr.host_initiated = true;
1084         r = kvm_get_msr(vcpu, &msr);
1085         if (r)
1086                 return r;
1087
1088         *data = msr.data;
1089         return 0;
1090 }
1091
1092 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1093 {
1094         struct msr_data msr;
1095
1096         msr.data = *data;
1097         msr.index = index;
1098         msr.host_initiated = true;
1099         return kvm_set_msr(vcpu, &msr);
1100 }
1101
1102 #ifdef CONFIG_X86_64
1103 struct pvclock_gtod_data {
1104         seqcount_t      seq;
1105
1106         struct { /* extract of a clocksource struct */
1107                 int vclock_mode;
1108                 cycle_t cycle_last;
1109                 cycle_t mask;
1110                 u32     mult;
1111                 u32     shift;
1112         } clock;
1113
1114         u64             boot_ns;
1115         u64             nsec_base;
1116 };
1117
1118 static struct pvclock_gtod_data pvclock_gtod_data;
1119
1120 static void update_pvclock_gtod(struct timekeeper *tk)
1121 {
1122         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1123         u64 boot_ns;
1124
1125         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1126
1127         write_seqcount_begin(&vdata->seq);
1128
1129         /* copy pvclock gtod data */
1130         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1131         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1132         vdata->clock.mask               = tk->tkr_mono.mask;
1133         vdata->clock.mult               = tk->tkr_mono.mult;
1134         vdata->clock.shift              = tk->tkr_mono.shift;
1135
1136         vdata->boot_ns                  = boot_ns;
1137         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1138
1139         write_seqcount_end(&vdata->seq);
1140 }
1141 #endif
1142
1143 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1144 {
1145         /*
1146          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1147          * vcpu_enter_guest.  This function is only called from
1148          * the physical CPU that is running vcpu.
1149          */
1150         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1151 }
1152
1153 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1154 {
1155         int version;
1156         int r;
1157         struct pvclock_wall_clock wc;
1158         struct timespec boot;
1159
1160         if (!wall_clock)
1161                 return;
1162
1163         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1164         if (r)
1165                 return;
1166
1167         if (version & 1)
1168                 ++version;  /* first time write, random junk */
1169
1170         ++version;
1171
1172         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1173
1174         /*
1175          * The guest calculates current wall clock time by adding
1176          * system time (updated by kvm_guest_time_update below) to the
1177          * wall clock specified here.  guest system time equals host
1178          * system time for us, thus we must fill in host boot time here.
1179          */
1180         getboottime(&boot);
1181
1182         if (kvm->arch.kvmclock_offset) {
1183                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1184                 boot = timespec_sub(boot, ts);
1185         }
1186         wc.sec = boot.tv_sec;
1187         wc.nsec = boot.tv_nsec;
1188         wc.version = version;
1189
1190         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1191
1192         version++;
1193         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1194 }
1195
1196 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1197 {
1198         uint32_t quotient, remainder;
1199
1200         /* Don't try to replace with do_div(), this one calculates
1201          * "(dividend << 32) / divisor" */
1202         __asm__ ( "divl %4"
1203                   : "=a" (quotient), "=d" (remainder)
1204                   : "0" (0), "1" (dividend), "r" (divisor) );
1205         return quotient;
1206 }
1207
1208 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1209                                s8 *pshift, u32 *pmultiplier)
1210 {
1211         uint64_t scaled64;
1212         int32_t  shift = 0;
1213         uint64_t tps64;
1214         uint32_t tps32;
1215
1216         tps64 = base_khz * 1000LL;
1217         scaled64 = scaled_khz * 1000LL;
1218         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1219                 tps64 >>= 1;
1220                 shift--;
1221         }
1222
1223         tps32 = (uint32_t)tps64;
1224         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1225                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1226                         scaled64 >>= 1;
1227                 else
1228                         tps32 <<= 1;
1229                 shift++;
1230         }
1231
1232         *pshift = shift;
1233         *pmultiplier = div_frac(scaled64, tps32);
1234
1235         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1236                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1237 }
1238
1239 #ifdef CONFIG_X86_64
1240 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1241 #endif
1242
1243 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1244 static unsigned long max_tsc_khz;
1245
1246 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1247 {
1248         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1249                                    vcpu->arch.virtual_tsc_shift);
1250 }
1251
1252 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1253 {
1254         u64 v = (u64)khz * (1000000 + ppm);
1255         do_div(v, 1000000);
1256         return v;
1257 }
1258
1259 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1260 {
1261         u64 ratio;
1262
1263         /* Guest TSC same frequency as host TSC? */
1264         if (!scale) {
1265                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1266                 return 0;
1267         }
1268
1269         /* TSC scaling supported? */
1270         if (!kvm_has_tsc_control) {
1271                 if (user_tsc_khz > tsc_khz) {
1272                         vcpu->arch.tsc_catchup = 1;
1273                         vcpu->arch.tsc_always_catchup = 1;
1274                         return 0;
1275                 } else {
1276                         WARN(1, "user requested TSC rate below hardware speed\n");
1277                         return -1;
1278                 }
1279         }
1280
1281         /* TSC scaling required  - calculate ratio */
1282         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1283                                 user_tsc_khz, tsc_khz);
1284
1285         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1286                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1287                           user_tsc_khz);
1288                 return -1;
1289         }
1290
1291         vcpu->arch.tsc_scaling_ratio = ratio;
1292         return 0;
1293 }
1294
1295 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1296 {
1297         u32 thresh_lo, thresh_hi;
1298         int use_scaling = 0;
1299
1300         /* tsc_khz can be zero if TSC calibration fails */
1301         if (this_tsc_khz == 0) {
1302                 /* set tsc_scaling_ratio to a safe value */
1303                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1304                 return -1;
1305         }
1306
1307         /* Compute a scale to convert nanoseconds in TSC cycles */
1308         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1309                            &vcpu->arch.virtual_tsc_shift,
1310                            &vcpu->arch.virtual_tsc_mult);
1311         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1312
1313         /*
1314          * Compute the variation in TSC rate which is acceptable
1315          * within the range of tolerance and decide if the
1316          * rate being applied is within that bounds of the hardware
1317          * rate.  If so, no scaling or compensation need be done.
1318          */
1319         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1320         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1321         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1322                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1323                 use_scaling = 1;
1324         }
1325         return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1326 }
1327
1328 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1329 {
1330         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1331                                       vcpu->arch.virtual_tsc_mult,
1332                                       vcpu->arch.virtual_tsc_shift);
1333         tsc += vcpu->arch.this_tsc_write;
1334         return tsc;
1335 }
1336
1337 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1338 {
1339 #ifdef CONFIG_X86_64
1340         bool vcpus_matched;
1341         struct kvm_arch *ka = &vcpu->kvm->arch;
1342         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343
1344         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1345                          atomic_read(&vcpu->kvm->online_vcpus));
1346
1347         /*
1348          * Once the masterclock is enabled, always perform request in
1349          * order to update it.
1350          *
1351          * In order to enable masterclock, the host clocksource must be TSC
1352          * and the vcpus need to have matched TSCs.  When that happens,
1353          * perform request to enable masterclock.
1354          */
1355         if (ka->use_master_clock ||
1356             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1357                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1358
1359         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1360                             atomic_read(&vcpu->kvm->online_vcpus),
1361                             ka->use_master_clock, gtod->clock.vclock_mode);
1362 #endif
1363 }
1364
1365 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1366 {
1367         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1368         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1369 }
1370
1371 /*
1372  * Multiply tsc by a fixed point number represented by ratio.
1373  *
1374  * The most significant 64-N bits (mult) of ratio represent the
1375  * integral part of the fixed point number; the remaining N bits
1376  * (frac) represent the fractional part, ie. ratio represents a fixed
1377  * point number (mult + frac * 2^(-N)).
1378  *
1379  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1380  */
1381 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1382 {
1383         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1384 }
1385
1386 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1387 {
1388         u64 _tsc = tsc;
1389         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1390
1391         if (ratio != kvm_default_tsc_scaling_ratio)
1392                 _tsc = __scale_tsc(ratio, tsc);
1393
1394         return _tsc;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1397
1398 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1399 {
1400         u64 tsc;
1401
1402         tsc = kvm_scale_tsc(vcpu, rdtsc());
1403
1404         return target_tsc - tsc;
1405 }
1406
1407 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1408 {
1409         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1412
1413 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1414 {
1415         struct kvm *kvm = vcpu->kvm;
1416         u64 offset, ns, elapsed;
1417         unsigned long flags;
1418         s64 usdiff;
1419         bool matched;
1420         bool already_matched;
1421         u64 data = msr->data;
1422
1423         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1424         offset = kvm_compute_tsc_offset(vcpu, data);
1425         ns = get_kernel_ns();
1426         elapsed = ns - kvm->arch.last_tsc_nsec;
1427
1428         if (vcpu->arch.virtual_tsc_khz) {
1429                 int faulted = 0;
1430
1431                 /* n.b - signed multiplication and division required */
1432                 usdiff = data - kvm->arch.last_tsc_write;
1433 #ifdef CONFIG_X86_64
1434                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1435 #else
1436                 /* do_div() only does unsigned */
1437                 asm("1: idivl %[divisor]\n"
1438                     "2: xor %%edx, %%edx\n"
1439                     "   movl $0, %[faulted]\n"
1440                     "3:\n"
1441                     ".section .fixup,\"ax\"\n"
1442                     "4: movl $1, %[faulted]\n"
1443                     "   jmp  3b\n"
1444                     ".previous\n"
1445
1446                 _ASM_EXTABLE(1b, 4b)
1447
1448                 : "=A"(usdiff), [faulted] "=r" (faulted)
1449                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1450
1451 #endif
1452                 do_div(elapsed, 1000);
1453                 usdiff -= elapsed;
1454                 if (usdiff < 0)
1455                         usdiff = -usdiff;
1456
1457                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1458                 if (faulted)
1459                         usdiff = USEC_PER_SEC;
1460         } else
1461                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1462
1463         /*
1464          * Special case: TSC write with a small delta (1 second) of virtual
1465          * cycle time against real time is interpreted as an attempt to
1466          * synchronize the CPU.
1467          *
1468          * For a reliable TSC, we can match TSC offsets, and for an unstable
1469          * TSC, we add elapsed time in this computation.  We could let the
1470          * compensation code attempt to catch up if we fall behind, but
1471          * it's better to try to match offsets from the beginning.
1472          */
1473         if (usdiff < USEC_PER_SEC &&
1474             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1475                 if (!check_tsc_unstable()) {
1476                         offset = kvm->arch.cur_tsc_offset;
1477                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1478                 } else {
1479                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1480                         data += delta;
1481                         offset = kvm_compute_tsc_offset(vcpu, data);
1482                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1483                 }
1484                 matched = true;
1485                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1486         } else {
1487                 /*
1488                  * We split periods of matched TSC writes into generations.
1489                  * For each generation, we track the original measured
1490                  * nanosecond time, offset, and write, so if TSCs are in
1491                  * sync, we can match exact offset, and if not, we can match
1492                  * exact software computation in compute_guest_tsc()
1493                  *
1494                  * These values are tracked in kvm->arch.cur_xxx variables.
1495                  */
1496                 kvm->arch.cur_tsc_generation++;
1497                 kvm->arch.cur_tsc_nsec = ns;
1498                 kvm->arch.cur_tsc_write = data;
1499                 kvm->arch.cur_tsc_offset = offset;
1500                 matched = false;
1501                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1502                          kvm->arch.cur_tsc_generation, data);
1503         }
1504
1505         /*
1506          * We also track th most recent recorded KHZ, write and time to
1507          * allow the matching interval to be extended at each write.
1508          */
1509         kvm->arch.last_tsc_nsec = ns;
1510         kvm->arch.last_tsc_write = data;
1511         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1512
1513         vcpu->arch.last_guest_tsc = data;
1514
1515         /* Keep track of which generation this VCPU has synchronized to */
1516         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1517         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1518         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1519
1520         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1521                 update_ia32_tsc_adjust_msr(vcpu, offset);
1522         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1523         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1524
1525         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1526         if (!matched) {
1527                 kvm->arch.nr_vcpus_matched_tsc = 0;
1528         } else if (!already_matched) {
1529                 kvm->arch.nr_vcpus_matched_tsc++;
1530         }
1531
1532         kvm_track_tsc_matching(vcpu);
1533         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1534 }
1535
1536 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1537
1538 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1539                                            s64 adjustment)
1540 {
1541         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1542 }
1543
1544 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1545 {
1546         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1547                 WARN_ON(adjustment < 0);
1548         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1549         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1550 }
1551
1552 #ifdef CONFIG_X86_64
1553
1554 static cycle_t read_tsc(void)
1555 {
1556         cycle_t ret = (cycle_t)rdtsc_ordered();
1557         u64 last = pvclock_gtod_data.clock.cycle_last;
1558
1559         if (likely(ret >= last))
1560                 return ret;
1561
1562         /*
1563          * GCC likes to generate cmov here, but this branch is extremely
1564          * predictable (it's just a funciton of time and the likely is
1565          * very likely) and there's a data dependence, so force GCC
1566          * to generate a branch instead.  I don't barrier() because
1567          * we don't actually need a barrier, and if this function
1568          * ever gets inlined it will generate worse code.
1569          */
1570         asm volatile ("");
1571         return last;
1572 }
1573
1574 static inline u64 vgettsc(cycle_t *cycle_now)
1575 {
1576         long v;
1577         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1578
1579         *cycle_now = read_tsc();
1580
1581         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1582         return v * gtod->clock.mult;
1583 }
1584
1585 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1586 {
1587         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1588         unsigned long seq;
1589         int mode;
1590         u64 ns;
1591
1592         do {
1593                 seq = read_seqcount_begin(&gtod->seq);
1594                 mode = gtod->clock.vclock_mode;
1595                 ns = gtod->nsec_base;
1596                 ns += vgettsc(cycle_now);
1597                 ns >>= gtod->clock.shift;
1598                 ns += gtod->boot_ns;
1599         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1600         *t = ns;
1601
1602         return mode;
1603 }
1604
1605 /* returns true if host is using tsc clocksource */
1606 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1607 {
1608         /* checked again under seqlock below */
1609         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1610                 return false;
1611
1612         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1613 }
1614 #endif
1615
1616 /*
1617  *
1618  * Assuming a stable TSC across physical CPUS, and a stable TSC
1619  * across virtual CPUs, the following condition is possible.
1620  * Each numbered line represents an event visible to both
1621  * CPUs at the next numbered event.
1622  *
1623  * "timespecX" represents host monotonic time. "tscX" represents
1624  * RDTSC value.
1625  *
1626  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1627  *
1628  * 1.  read timespec0,tsc0
1629  * 2.                                   | timespec1 = timespec0 + N
1630  *                                      | tsc1 = tsc0 + M
1631  * 3. transition to guest               | transition to guest
1632  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1633  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1634  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1635  *
1636  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1637  *
1638  *      - ret0 < ret1
1639  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1640  *              ...
1641  *      - 0 < N - M => M < N
1642  *
1643  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1644  * always the case (the difference between two distinct xtime instances
1645  * might be smaller then the difference between corresponding TSC reads,
1646  * when updating guest vcpus pvclock areas).
1647  *
1648  * To avoid that problem, do not allow visibility of distinct
1649  * system_timestamp/tsc_timestamp values simultaneously: use a master
1650  * copy of host monotonic time values. Update that master copy
1651  * in lockstep.
1652  *
1653  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1654  *
1655  */
1656
1657 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1658 {
1659 #ifdef CONFIG_X86_64
1660         struct kvm_arch *ka = &kvm->arch;
1661         int vclock_mode;
1662         bool host_tsc_clocksource, vcpus_matched;
1663
1664         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1665                         atomic_read(&kvm->online_vcpus));
1666
1667         /*
1668          * If the host uses TSC clock, then passthrough TSC as stable
1669          * to the guest.
1670          */
1671         host_tsc_clocksource = kvm_get_time_and_clockread(
1672                                         &ka->master_kernel_ns,
1673                                         &ka->master_cycle_now);
1674
1675         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1676                                 && !backwards_tsc_observed
1677                                 && !ka->boot_vcpu_runs_old_kvmclock;
1678
1679         if (ka->use_master_clock)
1680                 atomic_set(&kvm_guest_has_master_clock, 1);
1681
1682         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1683         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1684                                         vcpus_matched);
1685 #endif
1686 }
1687
1688 static void kvm_gen_update_masterclock(struct kvm *kvm)
1689 {
1690 #ifdef CONFIG_X86_64
1691         int i;
1692         struct kvm_vcpu *vcpu;
1693         struct kvm_arch *ka = &kvm->arch;
1694
1695         spin_lock(&ka->pvclock_gtod_sync_lock);
1696         kvm_make_mclock_inprogress_request(kvm);
1697         /* no guest entries from this point */
1698         pvclock_update_vm_gtod_copy(kvm);
1699
1700         kvm_for_each_vcpu(i, vcpu, kvm)
1701                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702
1703         /* guest entries allowed */
1704         kvm_for_each_vcpu(i, vcpu, kvm)
1705                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1706
1707         spin_unlock(&ka->pvclock_gtod_sync_lock);
1708 #endif
1709 }
1710
1711 static int kvm_guest_time_update(struct kvm_vcpu *v)
1712 {
1713         unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1714         struct kvm_vcpu_arch *vcpu = &v->arch;
1715         struct kvm_arch *ka = &v->kvm->arch;
1716         s64 kernel_ns;
1717         u64 tsc_timestamp, host_tsc;
1718         struct pvclock_vcpu_time_info guest_hv_clock;
1719         u8 pvclock_flags;
1720         bool use_master_clock;
1721
1722         kernel_ns = 0;
1723         host_tsc = 0;
1724
1725         /*
1726          * If the host uses TSC clock, then passthrough TSC as stable
1727          * to the guest.
1728          */
1729         spin_lock(&ka->pvclock_gtod_sync_lock);
1730         use_master_clock = ka->use_master_clock;
1731         if (use_master_clock) {
1732                 host_tsc = ka->master_cycle_now;
1733                 kernel_ns = ka->master_kernel_ns;
1734         }
1735         spin_unlock(&ka->pvclock_gtod_sync_lock);
1736
1737         /* Keep irq disabled to prevent changes to the clock */
1738         local_irq_save(flags);
1739         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1740         if (unlikely(this_tsc_khz == 0)) {
1741                 local_irq_restore(flags);
1742                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1743                 return 1;
1744         }
1745         if (!use_master_clock) {
1746                 host_tsc = rdtsc();
1747                 kernel_ns = get_kernel_ns();
1748         }
1749
1750         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1751
1752         /*
1753          * We may have to catch up the TSC to match elapsed wall clock
1754          * time for two reasons, even if kvmclock is used.
1755          *   1) CPU could have been running below the maximum TSC rate
1756          *   2) Broken TSC compensation resets the base at each VCPU
1757          *      entry to avoid unknown leaps of TSC even when running
1758          *      again on the same CPU.  This may cause apparent elapsed
1759          *      time to disappear, and the guest to stand still or run
1760          *      very slowly.
1761          */
1762         if (vcpu->tsc_catchup) {
1763                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1764                 if (tsc > tsc_timestamp) {
1765                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1766                         tsc_timestamp = tsc;
1767                 }
1768         }
1769
1770         local_irq_restore(flags);
1771
1772         if (!vcpu->pv_time_enabled)
1773                 return 0;
1774
1775         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1776                 tgt_tsc_khz = kvm_has_tsc_control ?
1777                         vcpu->virtual_tsc_khz : this_tsc_khz;
1778                 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1779                                    &vcpu->hv_clock.tsc_shift,
1780                                    &vcpu->hv_clock.tsc_to_system_mul);
1781                 vcpu->hw_tsc_khz = this_tsc_khz;
1782         }
1783
1784         /* With all the info we got, fill in the values */
1785         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1786         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1787         vcpu->last_guest_tsc = tsc_timestamp;
1788
1789         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1790                 &guest_hv_clock, sizeof(guest_hv_clock))))
1791                 return 0;
1792
1793         /* This VCPU is paused, but it's legal for a guest to read another
1794          * VCPU's kvmclock, so we really have to follow the specification where
1795          * it says that version is odd if data is being modified, and even after
1796          * it is consistent.
1797          *
1798          * Version field updates must be kept separate.  This is because
1799          * kvm_write_guest_cached might use a "rep movs" instruction, and
1800          * writes within a string instruction are weakly ordered.  So there
1801          * are three writes overall.
1802          *
1803          * As a small optimization, only write the version field in the first
1804          * and third write.  The vcpu->pv_time cache is still valid, because the
1805          * version field is the first in the struct.
1806          */
1807         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1808
1809         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1810         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1811                                 &vcpu->hv_clock,
1812                                 sizeof(vcpu->hv_clock.version));
1813
1814         smp_wmb();
1815
1816         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1817         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1818
1819         if (vcpu->pvclock_set_guest_stopped_request) {
1820                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1821                 vcpu->pvclock_set_guest_stopped_request = false;
1822         }
1823
1824         /* If the host uses TSC clocksource, then it is stable */
1825         if (use_master_clock)
1826                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1827
1828         vcpu->hv_clock.flags = pvclock_flags;
1829
1830         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1831
1832         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1833                                 &vcpu->hv_clock,
1834                                 sizeof(vcpu->hv_clock));
1835
1836         smp_wmb();
1837
1838         vcpu->hv_clock.version++;
1839         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840                                 &vcpu->hv_clock,
1841                                 sizeof(vcpu->hv_clock.version));
1842         return 0;
1843 }
1844
1845 /*
1846  * kvmclock updates which are isolated to a given vcpu, such as
1847  * vcpu->cpu migration, should not allow system_timestamp from
1848  * the rest of the vcpus to remain static. Otherwise ntp frequency
1849  * correction applies to one vcpu's system_timestamp but not
1850  * the others.
1851  *
1852  * So in those cases, request a kvmclock update for all vcpus.
1853  * We need to rate-limit these requests though, as they can
1854  * considerably slow guests that have a large number of vcpus.
1855  * The time for a remote vcpu to update its kvmclock is bound
1856  * by the delay we use to rate-limit the updates.
1857  */
1858
1859 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1860
1861 static void kvmclock_update_fn(struct work_struct *work)
1862 {
1863         int i;
1864         struct delayed_work *dwork = to_delayed_work(work);
1865         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1866                                            kvmclock_update_work);
1867         struct kvm *kvm = container_of(ka, struct kvm, arch);
1868         struct kvm_vcpu *vcpu;
1869
1870         kvm_for_each_vcpu(i, vcpu, kvm) {
1871                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1872                 kvm_vcpu_kick(vcpu);
1873         }
1874 }
1875
1876 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1877 {
1878         struct kvm *kvm = v->kvm;
1879
1880         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1881         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1882                                         KVMCLOCK_UPDATE_DELAY);
1883 }
1884
1885 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1886
1887 static void kvmclock_sync_fn(struct work_struct *work)
1888 {
1889         struct delayed_work *dwork = to_delayed_work(work);
1890         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1891                                            kvmclock_sync_work);
1892         struct kvm *kvm = container_of(ka, struct kvm, arch);
1893
1894         if (!kvmclock_periodic_sync)
1895                 return;
1896
1897         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1898         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1899                                         KVMCLOCK_SYNC_PERIOD);
1900 }
1901
1902 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1903 {
1904         u64 mcg_cap = vcpu->arch.mcg_cap;
1905         unsigned bank_num = mcg_cap & 0xff;
1906
1907         switch (msr) {
1908         case MSR_IA32_MCG_STATUS:
1909                 vcpu->arch.mcg_status = data;
1910                 break;
1911         case MSR_IA32_MCG_CTL:
1912                 if (!(mcg_cap & MCG_CTL_P))
1913                         return 1;
1914                 if (data != 0 && data != ~(u64)0)
1915                         return -1;
1916                 vcpu->arch.mcg_ctl = data;
1917                 break;
1918         default:
1919                 if (msr >= MSR_IA32_MC0_CTL &&
1920                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1921                         u32 offset = msr - MSR_IA32_MC0_CTL;
1922                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1923                          * some Linux kernels though clear bit 10 in bank 4 to
1924                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1925                          * this to avoid an uncatched #GP in the guest
1926                          */
1927                         if ((offset & 0x3) == 0 &&
1928                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1929                                 return -1;
1930                         vcpu->arch.mce_banks[offset] = data;
1931                         break;
1932                 }
1933                 return 1;
1934         }
1935         return 0;
1936 }
1937
1938 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1939 {
1940         struct kvm *kvm = vcpu->kvm;
1941         int lm = is_long_mode(vcpu);
1942         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1943                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1944         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1945                 : kvm->arch.xen_hvm_config.blob_size_32;
1946         u32 page_num = data & ~PAGE_MASK;
1947         u64 page_addr = data & PAGE_MASK;
1948         u8 *page;
1949         int r;
1950
1951         r = -E2BIG;
1952         if (page_num >= blob_size)
1953                 goto out;
1954         r = -ENOMEM;
1955         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1956         if (IS_ERR(page)) {
1957                 r = PTR_ERR(page);
1958                 goto out;
1959         }
1960         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1961                 goto out_free;
1962         r = 0;
1963 out_free:
1964         kfree(page);
1965 out:
1966         return r;
1967 }
1968
1969 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1970 {
1971         gpa_t gpa = data & ~0x3f;
1972
1973         /* Bits 2:5 are reserved, Should be zero */
1974         if (data & 0x3c)
1975                 return 1;
1976
1977         vcpu->arch.apf.msr_val = data;
1978
1979         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1980                 kvm_clear_async_pf_completion_queue(vcpu);
1981                 kvm_async_pf_hash_reset(vcpu);
1982                 return 0;
1983         }
1984
1985         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1986                                         sizeof(u32)))
1987                 return 1;
1988
1989         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1990         kvm_async_pf_wakeup_all(vcpu);
1991         return 0;
1992 }
1993
1994 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1995 {
1996         vcpu->arch.pv_time_enabled = false;
1997 }
1998
1999 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2000 {
2001         u64 delta;
2002
2003         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2004                 return;
2005
2006         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2007         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2008         vcpu->arch.st.accum_steal = delta;
2009 }
2010
2011 static void record_steal_time(struct kvm_vcpu *vcpu)
2012 {
2013         accumulate_steal_time(vcpu);
2014
2015         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2016                 return;
2017
2018         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2019                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2020                 return;
2021
2022         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2023         vcpu->arch.st.steal.version += 2;
2024         vcpu->arch.st.accum_steal = 0;
2025
2026         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2027                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2028 }
2029
2030 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2031 {
2032         bool pr = false;
2033         u32 msr = msr_info->index;
2034         u64 data = msr_info->data;
2035
2036         switch (msr) {
2037         case MSR_AMD64_NB_CFG:
2038         case MSR_IA32_UCODE_REV:
2039         case MSR_IA32_UCODE_WRITE:
2040         case MSR_VM_HSAVE_PA:
2041         case MSR_AMD64_PATCH_LOADER:
2042         case MSR_AMD64_BU_CFG2:
2043                 break;
2044
2045         case MSR_EFER:
2046                 return set_efer(vcpu, data);
2047         case MSR_K7_HWCR:
2048                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2049                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2050                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2051                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2052                 if (data != 0) {
2053                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2054                                     data);
2055                         return 1;
2056                 }
2057                 break;
2058         case MSR_FAM10H_MMIO_CONF_BASE:
2059                 if (data != 0) {
2060                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2061                                     "0x%llx\n", data);
2062                         return 1;
2063                 }
2064                 break;
2065         case MSR_IA32_DEBUGCTLMSR:
2066                 if (!data) {
2067                         /* We support the non-activated case already */
2068                         break;
2069                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2070                         /* Values other than LBR and BTF are vendor-specific,
2071                            thus reserved and should throw a #GP */
2072                         return 1;
2073                 }
2074                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2075                             __func__, data);
2076                 break;
2077         case 0x200 ... 0x2ff:
2078                 return kvm_mtrr_set_msr(vcpu, msr, data);
2079         case MSR_IA32_APICBASE:
2080                 return kvm_set_apic_base(vcpu, msr_info);
2081         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2082                 return kvm_x2apic_msr_write(vcpu, msr, data);
2083         case MSR_IA32_TSCDEADLINE:
2084                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2085                 break;
2086         case MSR_IA32_TSC_ADJUST:
2087                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2088                         if (!msr_info->host_initiated) {
2089                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2090                                 adjust_tsc_offset_guest(vcpu, adj);
2091                         }
2092                         vcpu->arch.ia32_tsc_adjust_msr = data;
2093                 }
2094                 break;
2095         case MSR_IA32_MISC_ENABLE:
2096                 vcpu->arch.ia32_misc_enable_msr = data;
2097                 break;
2098         case MSR_IA32_SMBASE:
2099                 if (!msr_info->host_initiated)
2100                         return 1;
2101                 vcpu->arch.smbase = data;
2102                 break;
2103         case MSR_KVM_WALL_CLOCK_NEW:
2104         case MSR_KVM_WALL_CLOCK:
2105                 vcpu->kvm->arch.wall_clock = data;
2106                 kvm_write_wall_clock(vcpu->kvm, data);
2107                 break;
2108         case MSR_KVM_SYSTEM_TIME_NEW:
2109         case MSR_KVM_SYSTEM_TIME: {
2110                 u64 gpa_offset;
2111                 struct kvm_arch *ka = &vcpu->kvm->arch;
2112
2113                 kvmclock_reset(vcpu);
2114
2115                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2116                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2117
2118                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2119                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2120                                         &vcpu->requests);
2121
2122                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2123                 }
2124
2125                 vcpu->arch.time = data;
2126                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2127
2128                 /* we verify if the enable bit is set... */
2129                 if (!(data & 1))
2130                         break;
2131
2132                 gpa_offset = data & ~(PAGE_MASK | 1);
2133
2134                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2135                      &vcpu->arch.pv_time, data & ~1ULL,
2136                      sizeof(struct pvclock_vcpu_time_info)))
2137                         vcpu->arch.pv_time_enabled = false;
2138                 else
2139                         vcpu->arch.pv_time_enabled = true;
2140
2141                 break;
2142         }
2143         case MSR_KVM_ASYNC_PF_EN:
2144                 if (kvm_pv_enable_async_pf(vcpu, data))
2145                         return 1;
2146                 break;
2147         case MSR_KVM_STEAL_TIME:
2148
2149                 if (unlikely(!sched_info_on()))
2150                         return 1;
2151
2152                 if (data & KVM_STEAL_RESERVED_MASK)
2153                         return 1;
2154
2155                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2156                                                 data & KVM_STEAL_VALID_BITS,
2157                                                 sizeof(struct kvm_steal_time)))
2158                         return 1;
2159
2160                 vcpu->arch.st.msr_val = data;
2161
2162                 if (!(data & KVM_MSR_ENABLED))
2163                         break;
2164
2165                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2166
2167                 break;
2168         case MSR_KVM_PV_EOI_EN:
2169                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2170                         return 1;
2171                 break;
2172
2173         case MSR_IA32_MCG_CTL:
2174         case MSR_IA32_MCG_STATUS:
2175         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2176                 return set_msr_mce(vcpu, msr, data);
2177
2178         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2179         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2180                 pr = true; /* fall through */
2181         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2182         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2183                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2184                         return kvm_pmu_set_msr(vcpu, msr_info);
2185
2186                 if (pr || data != 0)
2187                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2188                                     "0x%x data 0x%llx\n", msr, data);
2189                 break;
2190         case MSR_K7_CLK_CTL:
2191                 /*
2192                  * Ignore all writes to this no longer documented MSR.
2193                  * Writes are only relevant for old K7 processors,
2194                  * all pre-dating SVM, but a recommended workaround from
2195                  * AMD for these chips. It is possible to specify the
2196                  * affected processor models on the command line, hence
2197                  * the need to ignore the workaround.
2198                  */
2199                 break;
2200         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2201         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2202         case HV_X64_MSR_CRASH_CTL:
2203         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2204                 return kvm_hv_set_msr_common(vcpu, msr, data,
2205                                              msr_info->host_initiated);
2206         case MSR_IA32_BBL_CR_CTL3:
2207                 /* Drop writes to this legacy MSR -- see rdmsr
2208                  * counterpart for further detail.
2209                  */
2210                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2211                 break;
2212         case MSR_AMD64_OSVW_ID_LENGTH:
2213                 if (!guest_cpuid_has_osvw(vcpu))
2214                         return 1;
2215                 vcpu->arch.osvw.length = data;
2216                 break;
2217         case MSR_AMD64_OSVW_STATUS:
2218                 if (!guest_cpuid_has_osvw(vcpu))
2219                         return 1;
2220                 vcpu->arch.osvw.status = data;
2221                 break;
2222         default:
2223                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2224                         return xen_hvm_config(vcpu, data);
2225                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2226                         return kvm_pmu_set_msr(vcpu, msr_info);
2227                 if (!ignore_msrs) {
2228                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2229                                     msr, data);
2230                         return 1;
2231                 } else {
2232                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2233                                     msr, data);
2234                         break;
2235                 }
2236         }
2237         return 0;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2240
2241
2242 /*
2243  * Reads an msr value (of 'msr_index') into 'pdata'.
2244  * Returns 0 on success, non-0 otherwise.
2245  * Assumes vcpu_load() was already called.
2246  */
2247 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2248 {
2249         return kvm_x86_ops->get_msr(vcpu, msr);
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_get_msr);
2252
2253 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2254 {
2255         u64 data;
2256         u64 mcg_cap = vcpu->arch.mcg_cap;
2257         unsigned bank_num = mcg_cap & 0xff;
2258
2259         switch (msr) {
2260         case MSR_IA32_P5_MC_ADDR:
2261         case MSR_IA32_P5_MC_TYPE:
2262                 data = 0;
2263                 break;
2264         case MSR_IA32_MCG_CAP:
2265                 data = vcpu->arch.mcg_cap;
2266                 break;
2267         case MSR_IA32_MCG_CTL:
2268                 if (!(mcg_cap & MCG_CTL_P))
2269                         return 1;
2270                 data = vcpu->arch.mcg_ctl;
2271                 break;
2272         case MSR_IA32_MCG_STATUS:
2273                 data = vcpu->arch.mcg_status;
2274                 break;
2275         default:
2276                 if (msr >= MSR_IA32_MC0_CTL &&
2277                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2278                         u32 offset = msr - MSR_IA32_MC0_CTL;
2279                         data = vcpu->arch.mce_banks[offset];
2280                         break;
2281                 }
2282                 return 1;
2283         }
2284         *pdata = data;
2285         return 0;
2286 }
2287
2288 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2289 {
2290         switch (msr_info->index) {
2291         case MSR_IA32_PLATFORM_ID:
2292         case MSR_IA32_EBL_CR_POWERON:
2293         case MSR_IA32_DEBUGCTLMSR:
2294         case MSR_IA32_LASTBRANCHFROMIP:
2295         case MSR_IA32_LASTBRANCHTOIP:
2296         case MSR_IA32_LASTINTFROMIP:
2297         case MSR_IA32_LASTINTTOIP:
2298         case MSR_K8_SYSCFG:
2299         case MSR_K8_TSEG_ADDR:
2300         case MSR_K8_TSEG_MASK:
2301         case MSR_K7_HWCR:
2302         case MSR_VM_HSAVE_PA:
2303         case MSR_K8_INT_PENDING_MSG:
2304         case MSR_AMD64_NB_CFG:
2305         case MSR_FAM10H_MMIO_CONF_BASE:
2306         case MSR_AMD64_BU_CFG2:
2307                 msr_info->data = 0;
2308                 break;
2309         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2310         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2311         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2312         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2313                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2314                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2315                 msr_info->data = 0;
2316                 break;
2317         case MSR_IA32_UCODE_REV:
2318                 msr_info->data = 0x100000000ULL;
2319                 break;
2320         case MSR_MTRRcap:
2321         case 0x200 ... 0x2ff:
2322                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2323         case 0xcd: /* fsb frequency */
2324                 msr_info->data = 3;
2325                 break;
2326                 /*
2327                  * MSR_EBC_FREQUENCY_ID
2328                  * Conservative value valid for even the basic CPU models.
2329                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2330                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2331                  * and 266MHz for model 3, or 4. Set Core Clock
2332                  * Frequency to System Bus Frequency Ratio to 1 (bits
2333                  * 31:24) even though these are only valid for CPU
2334                  * models > 2, however guests may end up dividing or
2335                  * multiplying by zero otherwise.
2336                  */
2337         case MSR_EBC_FREQUENCY_ID:
2338                 msr_info->data = 1 << 24;
2339                 break;
2340         case MSR_IA32_APICBASE:
2341                 msr_info->data = kvm_get_apic_base(vcpu);
2342                 break;
2343         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2344                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2345                 break;
2346         case MSR_IA32_TSCDEADLINE:
2347                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2348                 break;
2349         case MSR_IA32_TSC_ADJUST:
2350                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2351                 break;
2352         case MSR_IA32_MISC_ENABLE:
2353                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2354                 break;
2355         case MSR_IA32_SMBASE:
2356                 if (!msr_info->host_initiated)
2357                         return 1;
2358                 msr_info->data = vcpu->arch.smbase;
2359                 break;
2360         case MSR_IA32_PERF_STATUS:
2361                 /* TSC increment by tick */
2362                 msr_info->data = 1000ULL;
2363                 /* CPU multiplier */
2364                 msr_info->data |= (((uint64_t)4ULL) << 40);
2365                 break;
2366         case MSR_EFER:
2367                 msr_info->data = vcpu->arch.efer;
2368                 break;
2369         case MSR_KVM_WALL_CLOCK:
2370         case MSR_KVM_WALL_CLOCK_NEW:
2371                 msr_info->data = vcpu->kvm->arch.wall_clock;
2372                 break;
2373         case MSR_KVM_SYSTEM_TIME:
2374         case MSR_KVM_SYSTEM_TIME_NEW:
2375                 msr_info->data = vcpu->arch.time;
2376                 break;
2377         case MSR_KVM_ASYNC_PF_EN:
2378                 msr_info->data = vcpu->arch.apf.msr_val;
2379                 break;
2380         case MSR_KVM_STEAL_TIME:
2381                 msr_info->data = vcpu->arch.st.msr_val;
2382                 break;
2383         case MSR_KVM_PV_EOI_EN:
2384                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2385                 break;
2386         case MSR_IA32_P5_MC_ADDR:
2387         case MSR_IA32_P5_MC_TYPE:
2388         case MSR_IA32_MCG_CAP:
2389         case MSR_IA32_MCG_CTL:
2390         case MSR_IA32_MCG_STATUS:
2391         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2392                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2393         case MSR_K7_CLK_CTL:
2394                 /*
2395                  * Provide expected ramp-up count for K7. All other
2396                  * are set to zero, indicating minimum divisors for
2397                  * every field.
2398                  *
2399                  * This prevents guest kernels on AMD host with CPU
2400                  * type 6, model 8 and higher from exploding due to
2401                  * the rdmsr failing.
2402                  */
2403                 msr_info->data = 0x20000000;
2404                 break;
2405         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2406         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2407         case HV_X64_MSR_CRASH_CTL:
2408         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2409                 return kvm_hv_get_msr_common(vcpu,
2410                                              msr_info->index, &msr_info->data);
2411                 break;
2412         case MSR_IA32_BBL_CR_CTL3:
2413                 /* This legacy MSR exists but isn't fully documented in current
2414                  * silicon.  It is however accessed by winxp in very narrow
2415                  * scenarios where it sets bit #19, itself documented as
2416                  * a "reserved" bit.  Best effort attempt to source coherent
2417                  * read data here should the balance of the register be
2418                  * interpreted by the guest:
2419                  *
2420                  * L2 cache control register 3: 64GB range, 256KB size,
2421                  * enabled, latency 0x1, configured
2422                  */
2423                 msr_info->data = 0xbe702111;
2424                 break;
2425         case MSR_AMD64_OSVW_ID_LENGTH:
2426                 if (!guest_cpuid_has_osvw(vcpu))
2427                         return 1;
2428                 msr_info->data = vcpu->arch.osvw.length;
2429                 break;
2430         case MSR_AMD64_OSVW_STATUS:
2431                 if (!guest_cpuid_has_osvw(vcpu))
2432                         return 1;
2433                 msr_info->data = vcpu->arch.osvw.status;
2434                 break;
2435         default:
2436                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2437                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2438                 if (!ignore_msrs) {
2439                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2440                         return 1;
2441                 } else {
2442                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2443                         msr_info->data = 0;
2444                 }
2445                 break;
2446         }
2447         return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2450
2451 /*
2452  * Read or write a bunch of msrs. All parameters are kernel addresses.
2453  *
2454  * @return number of msrs set successfully.
2455  */
2456 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2457                     struct kvm_msr_entry *entries,
2458                     int (*do_msr)(struct kvm_vcpu *vcpu,
2459                                   unsigned index, u64 *data))
2460 {
2461         int i, idx;
2462
2463         idx = srcu_read_lock(&vcpu->kvm->srcu);
2464         for (i = 0; i < msrs->nmsrs; ++i)
2465                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2466                         break;
2467         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2468
2469         return i;
2470 }
2471
2472 /*
2473  * Read or write a bunch of msrs. Parameters are user addresses.
2474  *
2475  * @return number of msrs set successfully.
2476  */
2477 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2478                   int (*do_msr)(struct kvm_vcpu *vcpu,
2479                                 unsigned index, u64 *data),
2480                   int writeback)
2481 {
2482         struct kvm_msrs msrs;
2483         struct kvm_msr_entry *entries;
2484         int r, n;
2485         unsigned size;
2486
2487         r = -EFAULT;
2488         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2489                 goto out;
2490
2491         r = -E2BIG;
2492         if (msrs.nmsrs >= MAX_IO_MSRS)
2493                 goto out;
2494
2495         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2496         entries = memdup_user(user_msrs->entries, size);
2497         if (IS_ERR(entries)) {
2498                 r = PTR_ERR(entries);
2499                 goto out;
2500         }
2501
2502         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2503         if (r < 0)
2504                 goto out_free;
2505
2506         r = -EFAULT;
2507         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2508                 goto out_free;
2509
2510         r = n;
2511
2512 out_free:
2513         kfree(entries);
2514 out:
2515         return r;
2516 }
2517
2518 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2519 {
2520         int r;
2521
2522         switch (ext) {
2523         case KVM_CAP_IRQCHIP:
2524         case KVM_CAP_HLT:
2525         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2526         case KVM_CAP_SET_TSS_ADDR:
2527         case KVM_CAP_EXT_CPUID:
2528         case KVM_CAP_EXT_EMUL_CPUID:
2529         case KVM_CAP_CLOCKSOURCE:
2530         case KVM_CAP_PIT:
2531         case KVM_CAP_NOP_IO_DELAY:
2532         case KVM_CAP_MP_STATE:
2533         case KVM_CAP_SYNC_MMU:
2534         case KVM_CAP_USER_NMI:
2535         case KVM_CAP_REINJECT_CONTROL:
2536         case KVM_CAP_IRQ_INJECT_STATUS:
2537         case KVM_CAP_IOEVENTFD:
2538         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2539         case KVM_CAP_PIT2:
2540         case KVM_CAP_PIT_STATE2:
2541         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2542         case KVM_CAP_XEN_HVM:
2543         case KVM_CAP_ADJUST_CLOCK:
2544         case KVM_CAP_VCPU_EVENTS:
2545         case KVM_CAP_HYPERV:
2546         case KVM_CAP_HYPERV_VAPIC:
2547         case KVM_CAP_HYPERV_SPIN:
2548         case KVM_CAP_HYPERV_SYNIC:
2549         case KVM_CAP_PCI_SEGMENT:
2550         case KVM_CAP_DEBUGREGS:
2551         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2552         case KVM_CAP_XSAVE:
2553         case KVM_CAP_ASYNC_PF:
2554         case KVM_CAP_GET_TSC_KHZ:
2555         case KVM_CAP_KVMCLOCK_CTRL:
2556         case KVM_CAP_READONLY_MEM:
2557         case KVM_CAP_HYPERV_TIME:
2558         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2559         case KVM_CAP_TSC_DEADLINE_TIMER:
2560         case KVM_CAP_ENABLE_CAP_VM:
2561         case KVM_CAP_DISABLE_QUIRKS:
2562         case KVM_CAP_SET_BOOT_CPU_ID:
2563         case KVM_CAP_SPLIT_IRQCHIP:
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565         case KVM_CAP_ASSIGN_DEV_IRQ:
2566         case KVM_CAP_PCI_2_3:
2567 #endif
2568                 r = 1;
2569                 break;
2570         case KVM_CAP_X86_SMM:
2571                 /* SMBASE is usually relocated above 1M on modern chipsets,
2572                  * and SMM handlers might indeed rely on 4G segment limits,
2573                  * so do not report SMM to be available if real mode is
2574                  * emulated via vm86 mode.  Still, do not go to great lengths
2575                  * to avoid userspace's usage of the feature, because it is a
2576                  * fringe case that is not enabled except via specific settings
2577                  * of the module parameters.
2578                  */
2579                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2580                 break;
2581         case KVM_CAP_COALESCED_MMIO:
2582                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2583                 break;
2584         case KVM_CAP_VAPIC:
2585                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2586                 break;
2587         case KVM_CAP_NR_VCPUS:
2588                 r = KVM_SOFT_MAX_VCPUS;
2589                 break;
2590         case KVM_CAP_MAX_VCPUS:
2591                 r = KVM_MAX_VCPUS;
2592                 break;
2593         case KVM_CAP_NR_MEMSLOTS:
2594                 r = KVM_USER_MEM_SLOTS;
2595                 break;
2596         case KVM_CAP_PV_MMU:    /* obsolete */
2597                 r = 0;
2598                 break;
2599 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2600         case KVM_CAP_IOMMU:
2601                 r = iommu_present(&pci_bus_type);
2602                 break;
2603 #endif
2604         case KVM_CAP_MCE:
2605                 r = KVM_MAX_MCE_BANKS;
2606                 break;
2607         case KVM_CAP_XCRS:
2608                 r = cpu_has_xsave;
2609                 break;
2610         case KVM_CAP_TSC_CONTROL:
2611                 r = kvm_has_tsc_control;
2612                 break;
2613         default:
2614                 r = 0;
2615                 break;
2616         }
2617         return r;
2618
2619 }
2620
2621 long kvm_arch_dev_ioctl(struct file *filp,
2622                         unsigned int ioctl, unsigned long arg)
2623 {
2624         void __user *argp = (void __user *)arg;
2625         long r;
2626
2627         switch (ioctl) {
2628         case KVM_GET_MSR_INDEX_LIST: {
2629                 struct kvm_msr_list __user *user_msr_list = argp;
2630                 struct kvm_msr_list msr_list;
2631                 unsigned n;
2632
2633                 r = -EFAULT;
2634                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2635                         goto out;
2636                 n = msr_list.nmsrs;
2637                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2638                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2639                         goto out;
2640                 r = -E2BIG;
2641                 if (n < msr_list.nmsrs)
2642                         goto out;
2643                 r = -EFAULT;
2644                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2645                                  num_msrs_to_save * sizeof(u32)))
2646                         goto out;
2647                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2648                                  &emulated_msrs,
2649                                  num_emulated_msrs * sizeof(u32)))
2650                         goto out;
2651                 r = 0;
2652                 break;
2653         }
2654         case KVM_GET_SUPPORTED_CPUID:
2655         case KVM_GET_EMULATED_CPUID: {
2656                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2657                 struct kvm_cpuid2 cpuid;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2661                         goto out;
2662
2663                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2664                                             ioctl);
2665                 if (r)
2666                         goto out;
2667
2668                 r = -EFAULT;
2669                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2670                         goto out;
2671                 r = 0;
2672                 break;
2673         }
2674         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2675                 u64 mce_cap;
2676
2677                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2678                 r = -EFAULT;
2679                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2680                         goto out;
2681                 r = 0;
2682                 break;
2683         }
2684         default:
2685                 r = -EINVAL;
2686         }
2687 out:
2688         return r;
2689 }
2690
2691 static void wbinvd_ipi(void *garbage)
2692 {
2693         wbinvd();
2694 }
2695
2696 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2697 {
2698         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2699 }
2700
2701 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2702 {
2703         /* Address WBINVD may be executed by guest */
2704         if (need_emulate_wbinvd(vcpu)) {
2705                 if (kvm_x86_ops->has_wbinvd_exit())
2706                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2707                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2708                         smp_call_function_single(vcpu->cpu,
2709                                         wbinvd_ipi, NULL, 1);
2710         }
2711
2712         kvm_x86_ops->vcpu_load(vcpu, cpu);
2713
2714         /* Apply any externally detected TSC adjustments (due to suspend) */
2715         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2716                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2717                 vcpu->arch.tsc_offset_adjustment = 0;
2718                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2719         }
2720
2721         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2722                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2723                                 rdtsc() - vcpu->arch.last_host_tsc;
2724                 if (tsc_delta < 0)
2725                         mark_tsc_unstable("KVM discovered backwards TSC");
2726                 if (check_tsc_unstable()) {
2727                         u64 offset = kvm_compute_tsc_offset(vcpu,
2728                                                 vcpu->arch.last_guest_tsc);
2729                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2730                         vcpu->arch.tsc_catchup = 1;
2731                 }
2732                 /*
2733                  * On a host with synchronized TSC, there is no need to update
2734                  * kvmclock on vcpu->cpu migration
2735                  */
2736                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2737                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2738                 if (vcpu->cpu != cpu)
2739                         kvm_migrate_timers(vcpu);
2740                 vcpu->cpu = cpu;
2741         }
2742
2743         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2744 }
2745
2746 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2747 {
2748         kvm_x86_ops->vcpu_put(vcpu);
2749         kvm_put_guest_fpu(vcpu);
2750         vcpu->arch.last_host_tsc = rdtsc();
2751 }
2752
2753 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2754                                     struct kvm_lapic_state *s)
2755 {
2756         if (vcpu->arch.apicv_active)
2757                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2758
2759         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2760
2761         return 0;
2762 }
2763
2764 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2765                                     struct kvm_lapic_state *s)
2766 {
2767         kvm_apic_post_state_restore(vcpu, s);
2768         update_cr8_intercept(vcpu);
2769
2770         return 0;
2771 }
2772
2773 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2774 {
2775         return (!lapic_in_kernel(vcpu) ||
2776                 kvm_apic_accept_pic_intr(vcpu));
2777 }
2778
2779 /*
2780  * if userspace requested an interrupt window, check that the
2781  * interrupt window is open.
2782  *
2783  * No need to exit to userspace if we already have an interrupt queued.
2784  */
2785 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2786 {
2787         return kvm_arch_interrupt_allowed(vcpu) &&
2788                 !kvm_cpu_has_interrupt(vcpu) &&
2789                 !kvm_event_needs_reinjection(vcpu) &&
2790                 kvm_cpu_accept_dm_intr(vcpu);
2791 }
2792
2793 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2794                                     struct kvm_interrupt *irq)
2795 {
2796         if (irq->irq >= KVM_NR_INTERRUPTS)
2797                 return -EINVAL;
2798
2799         if (!irqchip_in_kernel(vcpu->kvm)) {
2800                 kvm_queue_interrupt(vcpu, irq->irq, false);
2801                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2802                 return 0;
2803         }
2804
2805         /*
2806          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2807          * fail for in-kernel 8259.
2808          */
2809         if (pic_in_kernel(vcpu->kvm))
2810                 return -ENXIO;
2811
2812         if (vcpu->arch.pending_external_vector != -1)
2813                 return -EEXIST;
2814
2815         vcpu->arch.pending_external_vector = irq->irq;
2816         kvm_make_request(KVM_REQ_EVENT, vcpu);
2817         return 0;
2818 }
2819
2820 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2821 {
2822         kvm_inject_nmi(vcpu);
2823
2824         return 0;
2825 }
2826
2827 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2828 {
2829         kvm_make_request(KVM_REQ_SMI, vcpu);
2830
2831         return 0;
2832 }
2833
2834 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2835                                            struct kvm_tpr_access_ctl *tac)
2836 {
2837         if (tac->flags)
2838                 return -EINVAL;
2839         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2840         return 0;
2841 }
2842
2843 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2844                                         u64 mcg_cap)
2845 {
2846         int r;
2847         unsigned bank_num = mcg_cap & 0xff, bank;
2848
2849         r = -EINVAL;
2850         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2851                 goto out;
2852         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2853                 goto out;
2854         r = 0;
2855         vcpu->arch.mcg_cap = mcg_cap;
2856         /* Init IA32_MCG_CTL to all 1s */
2857         if (mcg_cap & MCG_CTL_P)
2858                 vcpu->arch.mcg_ctl = ~(u64)0;
2859         /* Init IA32_MCi_CTL to all 1s */
2860         for (bank = 0; bank < bank_num; bank++)
2861                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2862 out:
2863         return r;
2864 }
2865
2866 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2867                                       struct kvm_x86_mce *mce)
2868 {
2869         u64 mcg_cap = vcpu->arch.mcg_cap;
2870         unsigned bank_num = mcg_cap & 0xff;
2871         u64 *banks = vcpu->arch.mce_banks;
2872
2873         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2874                 return -EINVAL;
2875         /*
2876          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2877          * reporting is disabled
2878          */
2879         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2880             vcpu->arch.mcg_ctl != ~(u64)0)
2881                 return 0;
2882         banks += 4 * mce->bank;
2883         /*
2884          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2885          * reporting is disabled for the bank
2886          */
2887         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2888                 return 0;
2889         if (mce->status & MCI_STATUS_UC) {
2890                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2891                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2892                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2893                         return 0;
2894                 }
2895                 if (banks[1] & MCI_STATUS_VAL)
2896                         mce->status |= MCI_STATUS_OVER;
2897                 banks[2] = mce->addr;
2898                 banks[3] = mce->misc;
2899                 vcpu->arch.mcg_status = mce->mcg_status;
2900                 banks[1] = mce->status;
2901                 kvm_queue_exception(vcpu, MC_VECTOR);
2902         } else if (!(banks[1] & MCI_STATUS_VAL)
2903                    || !(banks[1] & MCI_STATUS_UC)) {
2904                 if (banks[1] & MCI_STATUS_VAL)
2905                         mce->status |= MCI_STATUS_OVER;
2906                 banks[2] = mce->addr;
2907                 banks[3] = mce->misc;
2908                 banks[1] = mce->status;
2909         } else
2910                 banks[1] |= MCI_STATUS_OVER;
2911         return 0;
2912 }
2913
2914 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2915                                                struct kvm_vcpu_events *events)
2916 {
2917         process_nmi(vcpu);
2918         events->exception.injected =
2919                 vcpu->arch.exception.pending &&
2920                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2921         events->exception.nr = vcpu->arch.exception.nr;
2922         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2923         events->exception.pad = 0;
2924         events->exception.error_code = vcpu->arch.exception.error_code;
2925
2926         events->interrupt.injected =
2927                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2928         events->interrupt.nr = vcpu->arch.interrupt.nr;
2929         events->interrupt.soft = 0;
2930         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2931
2932         events->nmi.injected = vcpu->arch.nmi_injected;
2933         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2934         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2935         events->nmi.pad = 0;
2936
2937         events->sipi_vector = 0; /* never valid when reporting to user space */
2938
2939         events->smi.smm = is_smm(vcpu);
2940         events->smi.pending = vcpu->arch.smi_pending;
2941         events->smi.smm_inside_nmi =
2942                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2943         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2944
2945         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2946                          | KVM_VCPUEVENT_VALID_SHADOW
2947                          | KVM_VCPUEVENT_VALID_SMM);
2948         memset(&events->reserved, 0, sizeof(events->reserved));
2949 }
2950
2951 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2952                                               struct kvm_vcpu_events *events)
2953 {
2954         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2955                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2956                               | KVM_VCPUEVENT_VALID_SHADOW
2957                               | KVM_VCPUEVENT_VALID_SMM))
2958                 return -EINVAL;
2959
2960         process_nmi(vcpu);
2961         vcpu->arch.exception.pending = events->exception.injected;
2962         vcpu->arch.exception.nr = events->exception.nr;
2963         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2964         vcpu->arch.exception.error_code = events->exception.error_code;
2965
2966         vcpu->arch.interrupt.pending = events->interrupt.injected;
2967         vcpu->arch.interrupt.nr = events->interrupt.nr;
2968         vcpu->arch.interrupt.soft = events->interrupt.soft;
2969         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2970                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2971                                                   events->interrupt.shadow);
2972
2973         vcpu->arch.nmi_injected = events->nmi.injected;
2974         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2975                 vcpu->arch.nmi_pending = events->nmi.pending;
2976         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2977
2978         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2979             kvm_vcpu_has_lapic(vcpu))
2980                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2981
2982         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2983                 if (events->smi.smm)
2984                         vcpu->arch.hflags |= HF_SMM_MASK;
2985                 else
2986                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2987                 vcpu->arch.smi_pending = events->smi.pending;
2988                 if (events->smi.smm_inside_nmi)
2989                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2990                 else
2991                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2992                 if (kvm_vcpu_has_lapic(vcpu)) {
2993                         if (events->smi.latched_init)
2994                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2995                         else
2996                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2997                 }
2998         }
2999
3000         kvm_make_request(KVM_REQ_EVENT, vcpu);
3001
3002         return 0;
3003 }
3004
3005 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3006                                              struct kvm_debugregs *dbgregs)
3007 {
3008         unsigned long val;
3009
3010         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3011         kvm_get_dr(vcpu, 6, &val);
3012         dbgregs->dr6 = val;
3013         dbgregs->dr7 = vcpu->arch.dr7;
3014         dbgregs->flags = 0;
3015         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3019                                             struct kvm_debugregs *dbgregs)
3020 {
3021         if (dbgregs->flags)
3022                 return -EINVAL;
3023
3024         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3025         kvm_update_dr0123(vcpu);
3026         vcpu->arch.dr6 = dbgregs->dr6;
3027         kvm_update_dr6(vcpu);
3028         vcpu->arch.dr7 = dbgregs->dr7;
3029         kvm_update_dr7(vcpu);
3030
3031         return 0;
3032 }
3033
3034 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3035
3036 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3037 {
3038         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3039         u64 xstate_bv = xsave->header.xfeatures;
3040         u64 valid;
3041
3042         /*
3043          * Copy legacy XSAVE area, to avoid complications with CPUID
3044          * leaves 0 and 1 in the loop below.
3045          */
3046         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3047
3048         /* Set XSTATE_BV */
3049         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3050
3051         /*
3052          * Copy each region from the possibly compacted offset to the
3053          * non-compacted offset.
3054          */
3055         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3056         while (valid) {
3057                 u64 feature = valid & -valid;
3058                 int index = fls64(feature) - 1;
3059                 void *src = get_xsave_addr(xsave, feature);
3060
3061                 if (src) {
3062                         u32 size, offset, ecx, edx;
3063                         cpuid_count(XSTATE_CPUID, index,
3064                                     &size, &offset, &ecx, &edx);
3065                         memcpy(dest + offset, src, size);
3066                 }
3067
3068                 valid -= feature;
3069         }
3070 }
3071
3072 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3073 {
3074         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3075         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3076         u64 valid;
3077
3078         /*
3079          * Copy legacy XSAVE area, to avoid complications with CPUID
3080          * leaves 0 and 1 in the loop below.
3081          */
3082         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3083
3084         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3085         xsave->header.xfeatures = xstate_bv;
3086         if (cpu_has_xsaves)
3087                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3088
3089         /*
3090          * Copy each region from the non-compacted offset to the
3091          * possibly compacted offset.
3092          */
3093         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3094         while (valid) {
3095                 u64 feature = valid & -valid;
3096                 int index = fls64(feature) - 1;
3097                 void *dest = get_xsave_addr(xsave, feature);
3098
3099                 if (dest) {
3100                         u32 size, offset, ecx, edx;
3101                         cpuid_count(XSTATE_CPUID, index,
3102                                     &size, &offset, &ecx, &edx);
3103                         memcpy(dest, src + offset, size);
3104                 }
3105
3106                 valid -= feature;
3107         }
3108 }
3109
3110 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3111                                          struct kvm_xsave *guest_xsave)
3112 {
3113         if (cpu_has_xsave) {
3114                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3115                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3116         } else {
3117                 memcpy(guest_xsave->region,
3118                         &vcpu->arch.guest_fpu.state.fxsave,
3119                         sizeof(struct fxregs_state));
3120                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3121                         XFEATURE_MASK_FPSSE;
3122         }
3123 }
3124
3125 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3126                                         struct kvm_xsave *guest_xsave)
3127 {
3128         u64 xstate_bv =
3129                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3130
3131         if (cpu_has_xsave) {
3132                 /*
3133                  * Here we allow setting states that are not present in
3134                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3135                  * with old userspace.
3136                  */
3137                 if (xstate_bv & ~kvm_supported_xcr0())
3138                         return -EINVAL;
3139                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3140         } else {
3141                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3142                         return -EINVAL;
3143                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3144                         guest_xsave->region, sizeof(struct fxregs_state));
3145         }
3146         return 0;
3147 }
3148
3149 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3150                                         struct kvm_xcrs *guest_xcrs)
3151 {
3152         if (!cpu_has_xsave) {
3153                 guest_xcrs->nr_xcrs = 0;
3154                 return;
3155         }
3156
3157         guest_xcrs->nr_xcrs = 1;
3158         guest_xcrs->flags = 0;
3159         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3160         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3161 }
3162
3163 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3164                                        struct kvm_xcrs *guest_xcrs)
3165 {
3166         int i, r = 0;
3167
3168         if (!cpu_has_xsave)
3169                 return -EINVAL;
3170
3171         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3172                 return -EINVAL;
3173
3174         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3175                 /* Only support XCR0 currently */
3176                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3177                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3178                                 guest_xcrs->xcrs[i].value);
3179                         break;
3180                 }
3181         if (r)
3182                 r = -EINVAL;
3183         return r;
3184 }
3185
3186 /*
3187  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3188  * stopped by the hypervisor.  This function will be called from the host only.
3189  * EINVAL is returned when the host attempts to set the flag for a guest that
3190  * does not support pv clocks.
3191  */
3192 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3193 {
3194         if (!vcpu->arch.pv_time_enabled)
3195                 return -EINVAL;
3196         vcpu->arch.pvclock_set_guest_stopped_request = true;
3197         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3198         return 0;
3199 }
3200
3201 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3202                                      struct kvm_enable_cap *cap)
3203 {
3204         if (cap->flags)
3205                 return -EINVAL;
3206
3207         switch (cap->cap) {
3208         case KVM_CAP_HYPERV_SYNIC:
3209                 return kvm_hv_activate_synic(vcpu);
3210         default:
3211                 return -EINVAL;
3212         }
3213 }
3214
3215 long kvm_arch_vcpu_ioctl(struct file *filp,
3216                          unsigned int ioctl, unsigned long arg)
3217 {
3218         struct kvm_vcpu *vcpu = filp->private_data;
3219         void __user *argp = (void __user *)arg;
3220         int r;
3221         union {
3222                 struct kvm_lapic_state *lapic;
3223                 struct kvm_xsave *xsave;
3224                 struct kvm_xcrs *xcrs;
3225                 void *buffer;
3226         } u;
3227
3228         u.buffer = NULL;
3229         switch (ioctl) {
3230         case KVM_GET_LAPIC: {
3231                 r = -EINVAL;
3232                 if (!vcpu->arch.apic)
3233                         goto out;
3234                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3235
3236                 r = -ENOMEM;
3237                 if (!u.lapic)
3238                         goto out;
3239                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3240                 if (r)
3241                         goto out;
3242                 r = -EFAULT;
3243                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3244                         goto out;
3245                 r = 0;
3246                 break;
3247         }
3248         case KVM_SET_LAPIC: {
3249                 r = -EINVAL;
3250                 if (!vcpu->arch.apic)
3251                         goto out;
3252                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3253                 if (IS_ERR(u.lapic))
3254                         return PTR_ERR(u.lapic);
3255
3256                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3257                 break;
3258         }
3259         case KVM_INTERRUPT: {
3260                 struct kvm_interrupt irq;
3261
3262                 r = -EFAULT;
3263                 if (copy_from_user(&irq, argp, sizeof irq))
3264                         goto out;
3265                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3266                 break;
3267         }
3268         case KVM_NMI: {
3269                 r = kvm_vcpu_ioctl_nmi(vcpu);
3270                 break;
3271         }
3272         case KVM_SMI: {
3273                 r = kvm_vcpu_ioctl_smi(vcpu);
3274                 break;
3275         }
3276         case KVM_SET_CPUID: {
3277                 struct kvm_cpuid __user *cpuid_arg = argp;
3278                 struct kvm_cpuid cpuid;
3279
3280                 r = -EFAULT;
3281                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3282                         goto out;
3283                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3284                 break;
3285         }
3286         case KVM_SET_CPUID2: {
3287                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3288                 struct kvm_cpuid2 cpuid;
3289
3290                 r = -EFAULT;
3291                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3292                         goto out;
3293                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3294                                               cpuid_arg->entries);
3295                 break;
3296         }
3297         case KVM_GET_CPUID2: {
3298                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3299                 struct kvm_cpuid2 cpuid;
3300
3301                 r = -EFAULT;
3302                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3303                         goto out;
3304                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3305                                               cpuid_arg->entries);
3306                 if (r)
3307                         goto out;
3308                 r = -EFAULT;
3309                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3310                         goto out;
3311                 r = 0;
3312                 break;
3313         }
3314         case KVM_GET_MSRS:
3315                 r = msr_io(vcpu, argp, do_get_msr, 1);
3316                 break;
3317         case KVM_SET_MSRS:
3318                 r = msr_io(vcpu, argp, do_set_msr, 0);
3319                 break;
3320         case KVM_TPR_ACCESS_REPORTING: {
3321                 struct kvm_tpr_access_ctl tac;
3322
3323                 r = -EFAULT;
3324                 if (copy_from_user(&tac, argp, sizeof tac))
3325                         goto out;
3326                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3327                 if (r)
3328                         goto out;
3329                 r = -EFAULT;
3330                 if (copy_to_user(argp, &tac, sizeof tac))
3331                         goto out;
3332                 r = 0;
3333                 break;
3334         };
3335         case KVM_SET_VAPIC_ADDR: {
3336                 struct kvm_vapic_addr va;
3337
3338                 r = -EINVAL;
3339                 if (!lapic_in_kernel(vcpu))
3340                         goto out;
3341                 r = -EFAULT;
3342                 if (copy_from_user(&va, argp, sizeof va))
3343                         goto out;
3344                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3345                 break;
3346         }
3347         case KVM_X86_SETUP_MCE: {
3348                 u64 mcg_cap;
3349
3350                 r = -EFAULT;
3351                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3352                         goto out;
3353                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3354                 break;
3355         }
3356         case KVM_X86_SET_MCE: {
3357                 struct kvm_x86_mce mce;
3358
3359                 r = -EFAULT;
3360                 if (copy_from_user(&mce, argp, sizeof mce))
3361                         goto out;
3362                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3363                 break;
3364         }
3365         case KVM_GET_VCPU_EVENTS: {
3366                 struct kvm_vcpu_events events;
3367
3368                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3369
3370                 r = -EFAULT;
3371                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3372                         break;
3373                 r = 0;
3374                 break;
3375         }
3376         case KVM_SET_VCPU_EVENTS: {
3377                 struct kvm_vcpu_events events;
3378
3379                 r = -EFAULT;
3380                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3381                         break;
3382
3383                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3384                 break;
3385         }
3386         case KVM_GET_DEBUGREGS: {
3387                 struct kvm_debugregs dbgregs;
3388
3389                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3390
3391                 r = -EFAULT;
3392                 if (copy_to_user(argp, &dbgregs,
3393                                  sizeof(struct kvm_debugregs)))
3394                         break;
3395                 r = 0;
3396                 break;
3397         }
3398         case KVM_SET_DEBUGREGS: {
3399                 struct kvm_debugregs dbgregs;
3400
3401                 r = -EFAULT;
3402                 if (copy_from_user(&dbgregs, argp,
3403                                    sizeof(struct kvm_debugregs)))
3404                         break;
3405
3406                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3407                 break;
3408         }
3409         case KVM_GET_XSAVE: {
3410                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3411                 r = -ENOMEM;
3412                 if (!u.xsave)
3413                         break;
3414
3415                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3416
3417                 r = -EFAULT;
3418                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3419                         break;
3420                 r = 0;
3421                 break;
3422         }
3423         case KVM_SET_XSAVE: {
3424                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3425                 if (IS_ERR(u.xsave))
3426                         return PTR_ERR(u.xsave);
3427
3428                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3429                 break;
3430         }
3431         case KVM_GET_XCRS: {
3432                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3433                 r = -ENOMEM;
3434                 if (!u.xcrs)
3435                         break;
3436
3437                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3438
3439                 r = -EFAULT;
3440                 if (copy_to_user(argp, u.xcrs,
3441                                  sizeof(struct kvm_xcrs)))
3442                         break;
3443                 r = 0;
3444                 break;
3445         }
3446         case KVM_SET_XCRS: {
3447                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3448                 if (IS_ERR(u.xcrs))
3449                         return PTR_ERR(u.xcrs);
3450
3451                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3452                 break;
3453         }
3454         case KVM_SET_TSC_KHZ: {
3455                 u32 user_tsc_khz;
3456
3457                 r = -EINVAL;
3458                 user_tsc_khz = (u32)arg;
3459
3460                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3461                         goto out;
3462
3463                 if (user_tsc_khz == 0)
3464                         user_tsc_khz = tsc_khz;
3465
3466                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3467                         r = 0;
3468
3469                 goto out;
3470         }
3471         case KVM_GET_TSC_KHZ: {
3472                 r = vcpu->arch.virtual_tsc_khz;
3473                 goto out;
3474         }
3475         case KVM_KVMCLOCK_CTRL: {
3476                 r = kvm_set_guest_paused(vcpu);
3477                 goto out;
3478         }
3479         case KVM_ENABLE_CAP: {
3480                 struct kvm_enable_cap cap;
3481
3482                 r = -EFAULT;
3483                 if (copy_from_user(&cap, argp, sizeof(cap)))
3484                         goto out;
3485                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3486                 break;
3487         }
3488         default:
3489                 r = -EINVAL;
3490         }
3491 out:
3492         kfree(u.buffer);
3493         return r;
3494 }
3495
3496 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3497 {
3498         return VM_FAULT_SIGBUS;
3499 }
3500
3501 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3502 {
3503         int ret;
3504
3505         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3506                 return -EINVAL;
3507         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3508         return ret;
3509 }
3510
3511 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3512                                               u64 ident_addr)
3513 {
3514         kvm->arch.ept_identity_map_addr = ident_addr;
3515         return 0;
3516 }
3517
3518 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3519                                           u32 kvm_nr_mmu_pages)
3520 {
3521         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3522                 return -EINVAL;
3523
3524         mutex_lock(&kvm->slots_lock);
3525
3526         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3527         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3528
3529         mutex_unlock(&kvm->slots_lock);
3530         return 0;
3531 }
3532
3533 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3534 {
3535         return kvm->arch.n_max_mmu_pages;
3536 }
3537
3538 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3539 {
3540         int r;
3541
3542         r = 0;
3543         switch (chip->chip_id) {
3544         case KVM_IRQCHIP_PIC_MASTER:
3545                 memcpy(&chip->chip.pic,
3546                         &pic_irqchip(kvm)->pics[0],
3547                         sizeof(struct kvm_pic_state));
3548                 break;
3549         case KVM_IRQCHIP_PIC_SLAVE:
3550                 memcpy(&chip->chip.pic,
3551                         &pic_irqchip(kvm)->pics[1],
3552                         sizeof(struct kvm_pic_state));
3553                 break;
3554         case KVM_IRQCHIP_IOAPIC:
3555                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3556                 break;
3557         default:
3558                 r = -EINVAL;
3559                 break;
3560         }
3561         return r;
3562 }
3563
3564 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3565 {
3566         int r;
3567
3568         r = 0;
3569         switch (chip->chip_id) {
3570         case KVM_IRQCHIP_PIC_MASTER:
3571                 spin_lock(&pic_irqchip(kvm)->lock);
3572                 memcpy(&pic_irqchip(kvm)->pics[0],
3573                         &chip->chip.pic,
3574                         sizeof(struct kvm_pic_state));
3575                 spin_unlock(&pic_irqchip(kvm)->lock);
3576                 break;
3577         case KVM_IRQCHIP_PIC_SLAVE:
3578                 spin_lock(&pic_irqchip(kvm)->lock);
3579                 memcpy(&pic_irqchip(kvm)->pics[1],
3580                         &chip->chip.pic,
3581                         sizeof(struct kvm_pic_state));
3582                 spin_unlock(&pic_irqchip(kvm)->lock);
3583                 break;
3584         case KVM_IRQCHIP_IOAPIC:
3585                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3586                 break;
3587         default:
3588                 r = -EINVAL;
3589                 break;
3590         }
3591         kvm_pic_update_irq(pic_irqchip(kvm));
3592         return r;
3593 }
3594
3595 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3596 {
3597         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3598         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3599         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3600         return 0;
3601 }
3602
3603 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3604 {
3605         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3606         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3607         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3608         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3609         return 0;
3610 }
3611
3612 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3613 {
3614         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3615         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3616                 sizeof(ps->channels));
3617         ps->flags = kvm->arch.vpit->pit_state.flags;
3618         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3619         memset(&ps->reserved, 0, sizeof(ps->reserved));
3620         return 0;
3621 }
3622
3623 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3624 {
3625         int start = 0;
3626         u32 prev_legacy, cur_legacy;
3627         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3628         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3629         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3630         if (!prev_legacy && cur_legacy)
3631                 start = 1;
3632         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3633                sizeof(kvm->arch.vpit->pit_state.channels));
3634         kvm->arch.vpit->pit_state.flags = ps->flags;
3635         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3636         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3637         return 0;
3638 }
3639
3640 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3641                                  struct kvm_reinject_control *control)
3642 {
3643         if (!kvm->arch.vpit)
3644                 return -ENXIO;
3645         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3646         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3647         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3648         return 0;
3649 }
3650
3651 /**
3652  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3653  * @kvm: kvm instance
3654  * @log: slot id and address to which we copy the log
3655  *
3656  * Steps 1-4 below provide general overview of dirty page logging. See
3657  * kvm_get_dirty_log_protect() function description for additional details.
3658  *
3659  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3660  * always flush the TLB (step 4) even if previous step failed  and the dirty
3661  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3662  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3663  * writes will be marked dirty for next log read.
3664  *
3665  *   1. Take a snapshot of the bit and clear it if needed.
3666  *   2. Write protect the corresponding page.
3667  *   3. Copy the snapshot to the userspace.
3668  *   4. Flush TLB's if needed.
3669  */
3670 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3671 {
3672         bool is_dirty = false;
3673         int r;
3674
3675         mutex_lock(&kvm->slots_lock);
3676
3677         /*
3678          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3679          */
3680         if (kvm_x86_ops->flush_log_dirty)
3681                 kvm_x86_ops->flush_log_dirty(kvm);
3682
3683         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3684
3685         /*
3686          * All the TLBs can be flushed out of mmu lock, see the comments in
3687          * kvm_mmu_slot_remove_write_access().
3688          */
3689         lockdep_assert_held(&kvm->slots_lock);
3690         if (is_dirty)
3691                 kvm_flush_remote_tlbs(kvm);
3692
3693         mutex_unlock(&kvm->slots_lock);
3694         return r;
3695 }
3696
3697 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3698                         bool line_status)
3699 {
3700         if (!irqchip_in_kernel(kvm))
3701                 return -ENXIO;
3702
3703         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3704                                         irq_event->irq, irq_event->level,
3705                                         line_status);
3706         return 0;
3707 }
3708
3709 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3710                                    struct kvm_enable_cap *cap)
3711 {
3712         int r;
3713
3714         if (cap->flags)
3715                 return -EINVAL;
3716
3717         switch (cap->cap) {
3718         case KVM_CAP_DISABLE_QUIRKS:
3719                 kvm->arch.disabled_quirks = cap->args[0];
3720                 r = 0;
3721                 break;
3722         case KVM_CAP_SPLIT_IRQCHIP: {
3723                 mutex_lock(&kvm->lock);
3724                 r = -EINVAL;
3725                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3726                         goto split_irqchip_unlock;
3727                 r = -EEXIST;
3728                 if (irqchip_in_kernel(kvm))
3729                         goto split_irqchip_unlock;
3730                 if (atomic_read(&kvm->online_vcpus))
3731                         goto split_irqchip_unlock;
3732                 r = kvm_setup_empty_irq_routing(kvm);
3733                 if (r)
3734                         goto split_irqchip_unlock;
3735                 /* Pairs with irqchip_in_kernel. */
3736                 smp_wmb();
3737                 kvm->arch.irqchip_split = true;
3738                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3739                 r = 0;
3740 split_irqchip_unlock:
3741                 mutex_unlock(&kvm->lock);
3742                 break;
3743         }
3744         default:
3745                 r = -EINVAL;
3746                 break;
3747         }
3748         return r;
3749 }
3750
3751 long kvm_arch_vm_ioctl(struct file *filp,
3752                        unsigned int ioctl, unsigned long arg)
3753 {
3754         struct kvm *kvm = filp->private_data;
3755         void __user *argp = (void __user *)arg;
3756         int r = -ENOTTY;
3757         /*
3758          * This union makes it completely explicit to gcc-3.x
3759          * that these two variables' stack usage should be
3760          * combined, not added together.
3761          */
3762         union {
3763                 struct kvm_pit_state ps;
3764                 struct kvm_pit_state2 ps2;
3765                 struct kvm_pit_config pit_config;
3766         } u;
3767
3768         switch (ioctl) {
3769         case KVM_SET_TSS_ADDR:
3770                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3771                 break;
3772         case KVM_SET_IDENTITY_MAP_ADDR: {
3773                 u64 ident_addr;
3774
3775                 r = -EFAULT;
3776                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3777                         goto out;
3778                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3779                 break;
3780         }
3781         case KVM_SET_NR_MMU_PAGES:
3782                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3783                 break;
3784         case KVM_GET_NR_MMU_PAGES:
3785                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3786                 break;
3787         case KVM_CREATE_IRQCHIP: {
3788                 struct kvm_pic *vpic;
3789
3790                 mutex_lock(&kvm->lock);
3791                 r = -EEXIST;
3792                 if (kvm->arch.vpic)
3793                         goto create_irqchip_unlock;
3794                 r = -EINVAL;
3795                 if (atomic_read(&kvm->online_vcpus))
3796                         goto create_irqchip_unlock;
3797                 r = -ENOMEM;
3798                 vpic = kvm_create_pic(kvm);
3799                 if (vpic) {
3800                         r = kvm_ioapic_init(kvm);
3801                         if (r) {
3802                                 mutex_lock(&kvm->slots_lock);
3803                                 kvm_destroy_pic(vpic);
3804                                 mutex_unlock(&kvm->slots_lock);
3805                                 goto create_irqchip_unlock;
3806                         }
3807                 } else
3808                         goto create_irqchip_unlock;
3809                 r = kvm_setup_default_irq_routing(kvm);
3810                 if (r) {
3811                         mutex_lock(&kvm->slots_lock);
3812                         mutex_lock(&kvm->irq_lock);
3813                         kvm_ioapic_destroy(kvm);
3814                         kvm_destroy_pic(vpic);
3815                         mutex_unlock(&kvm->irq_lock);
3816                         mutex_unlock(&kvm->slots_lock);
3817                         goto create_irqchip_unlock;
3818                 }
3819                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3820                 smp_wmb();
3821                 kvm->arch.vpic = vpic;
3822         create_irqchip_unlock:
3823                 mutex_unlock(&kvm->lock);
3824                 break;
3825         }
3826         case KVM_CREATE_PIT:
3827                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3828                 goto create_pit;
3829         case KVM_CREATE_PIT2:
3830                 r = -EFAULT;
3831                 if (copy_from_user(&u.pit_config, argp,
3832                                    sizeof(struct kvm_pit_config)))
3833                         goto out;
3834         create_pit:
3835                 mutex_lock(&kvm->slots_lock);
3836                 r = -EEXIST;
3837                 if (kvm->arch.vpit)
3838                         goto create_pit_unlock;
3839                 r = -ENOMEM;
3840                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3841                 if (kvm->arch.vpit)
3842                         r = 0;
3843         create_pit_unlock:
3844                 mutex_unlock(&kvm->slots_lock);
3845                 break;
3846         case KVM_GET_IRQCHIP: {
3847                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3848                 struct kvm_irqchip *chip;
3849
3850                 chip = memdup_user(argp, sizeof(*chip));
3851                 if (IS_ERR(chip)) {
3852                         r = PTR_ERR(chip);
3853                         goto out;
3854                 }
3855
3856                 r = -ENXIO;
3857                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3858                         goto get_irqchip_out;
3859                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3860                 if (r)
3861                         goto get_irqchip_out;
3862                 r = -EFAULT;
3863                 if (copy_to_user(argp, chip, sizeof *chip))
3864                         goto get_irqchip_out;
3865                 r = 0;
3866         get_irqchip_out:
3867                 kfree(chip);
3868                 break;
3869         }
3870         case KVM_SET_IRQCHIP: {
3871                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3872                 struct kvm_irqchip *chip;
3873
3874                 chip = memdup_user(argp, sizeof(*chip));
3875                 if (IS_ERR(chip)) {
3876                         r = PTR_ERR(chip);
3877                         goto out;
3878                 }
3879
3880                 r = -ENXIO;
3881                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3882                         goto set_irqchip_out;
3883                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3884                 if (r)
3885                         goto set_irqchip_out;
3886                 r = 0;
3887         set_irqchip_out:
3888                 kfree(chip);
3889                 break;
3890         }
3891         case KVM_GET_PIT: {
3892                 r = -EFAULT;
3893                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3894                         goto out;
3895                 r = -ENXIO;
3896                 if (!kvm->arch.vpit)
3897                         goto out;
3898                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3899                 if (r)
3900                         goto out;
3901                 r = -EFAULT;
3902                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3903                         goto out;
3904                 r = 0;
3905                 break;
3906         }
3907         case KVM_SET_PIT: {
3908                 r = -EFAULT;
3909                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3910                         goto out;
3911                 r = -ENXIO;
3912                 if (!kvm->arch.vpit)
3913                         goto out;
3914                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3915                 break;
3916         }
3917         case KVM_GET_PIT2: {
3918                 r = -ENXIO;
3919                 if (!kvm->arch.vpit)
3920                         goto out;
3921                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3922                 if (r)
3923                         goto out;
3924                 r = -EFAULT;
3925                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3926                         goto out;
3927                 r = 0;
3928                 break;
3929         }
3930         case KVM_SET_PIT2: {
3931                 r = -EFAULT;
3932                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3933                         goto out;
3934                 r = -ENXIO;
3935                 if (!kvm->arch.vpit)
3936                         goto out;
3937                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3938                 break;
3939         }
3940         case KVM_REINJECT_CONTROL: {
3941                 struct kvm_reinject_control control;
3942                 r =  -EFAULT;
3943                 if (copy_from_user(&control, argp, sizeof(control)))
3944                         goto out;
3945                 r = kvm_vm_ioctl_reinject(kvm, &control);
3946                 break;
3947         }
3948         case KVM_SET_BOOT_CPU_ID:
3949                 r = 0;
3950                 mutex_lock(&kvm->lock);
3951                 if (atomic_read(&kvm->online_vcpus) != 0)
3952                         r = -EBUSY;
3953                 else
3954                         kvm->arch.bsp_vcpu_id = arg;
3955                 mutex_unlock(&kvm->lock);
3956                 break;
3957         case KVM_XEN_HVM_CONFIG: {
3958                 r = -EFAULT;
3959                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3960                                    sizeof(struct kvm_xen_hvm_config)))
3961                         goto out;
3962                 r = -EINVAL;
3963                 if (kvm->arch.xen_hvm_config.flags)
3964                         goto out;
3965                 r = 0;
3966                 break;
3967         }
3968         case KVM_SET_CLOCK: {
3969                 struct kvm_clock_data user_ns;
3970                 u64 now_ns;
3971                 s64 delta;
3972
3973                 r = -EFAULT;
3974                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3975                         goto out;
3976
3977                 r = -EINVAL;
3978                 if (user_ns.flags)
3979                         goto out;
3980
3981                 r = 0;
3982                 local_irq_disable();
3983                 now_ns = get_kernel_ns();
3984                 delta = user_ns.clock - now_ns;
3985                 local_irq_enable();
3986                 kvm->arch.kvmclock_offset = delta;
3987                 kvm_gen_update_masterclock(kvm);
3988                 break;
3989         }
3990         case KVM_GET_CLOCK: {
3991                 struct kvm_clock_data user_ns;
3992                 u64 now_ns;
3993
3994                 local_irq_disable();
3995                 now_ns = get_kernel_ns();
3996                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3997                 local_irq_enable();
3998                 user_ns.flags = 0;
3999                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4000
4001                 r = -EFAULT;
4002                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4003                         goto out;
4004                 r = 0;
4005                 break;
4006         }
4007         case KVM_ENABLE_CAP: {
4008                 struct kvm_enable_cap cap;
4009
4010                 r = -EFAULT;
4011                 if (copy_from_user(&cap, argp, sizeof(cap)))
4012                         goto out;
4013                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4014                 break;
4015         }
4016         default:
4017                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4018         }
4019 out:
4020         return r;
4021 }
4022
4023 static void kvm_init_msr_list(void)
4024 {
4025         u32 dummy[2];
4026         unsigned i, j;
4027
4028         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4029                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4030                         continue;
4031
4032                 /*
4033                  * Even MSRs that are valid in the host may not be exposed
4034                  * to the guests in some cases.
4035                  */
4036                 switch (msrs_to_save[i]) {
4037                 case MSR_IA32_BNDCFGS:
4038                         if (!kvm_x86_ops->mpx_supported())
4039                                 continue;
4040                         break;
4041                 case MSR_TSC_AUX:
4042                         if (!kvm_x86_ops->rdtscp_supported())
4043                                 continue;
4044                         break;
4045                 default:
4046                         break;
4047                 }
4048
4049                 if (j < i)
4050                         msrs_to_save[j] = msrs_to_save[i];
4051                 j++;
4052         }
4053         num_msrs_to_save = j;
4054
4055         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4056                 switch (emulated_msrs[i]) {
4057                 case MSR_IA32_SMBASE:
4058                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4059                                 continue;
4060                         break;
4061                 default:
4062                         break;
4063                 }
4064
4065                 if (j < i)
4066                         emulated_msrs[j] = emulated_msrs[i];
4067                 j++;
4068         }
4069         num_emulated_msrs = j;
4070 }
4071
4072 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4073                            const void *v)
4074 {
4075         int handled = 0;
4076         int n;
4077
4078         do {
4079                 n = min(len, 8);
4080                 if (!(vcpu->arch.apic &&
4081                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4082                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4083                         break;
4084                 handled += n;
4085                 addr += n;
4086                 len -= n;
4087                 v += n;
4088         } while (len);
4089
4090         return handled;
4091 }
4092
4093 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4094 {
4095         int handled = 0;
4096         int n;
4097
4098         do {
4099                 n = min(len, 8);
4100                 if (!(vcpu->arch.apic &&
4101                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4102                                          addr, n, v))
4103                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4104                         break;
4105                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4106                 handled += n;
4107                 addr += n;
4108                 len -= n;
4109                 v += n;
4110         } while (len);
4111
4112         return handled;
4113 }
4114
4115 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4116                         struct kvm_segment *var, int seg)
4117 {
4118         kvm_x86_ops->set_segment(vcpu, var, seg);
4119 }
4120
4121 void kvm_get_segment(struct kvm_vcpu *vcpu,
4122                      struct kvm_segment *var, int seg)
4123 {
4124         kvm_x86_ops->get_segment(vcpu, var, seg);
4125 }
4126
4127 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4128                            struct x86_exception *exception)
4129 {
4130         gpa_t t_gpa;
4131
4132         BUG_ON(!mmu_is_nested(vcpu));
4133
4134         /* NPT walks are always user-walks */
4135         access |= PFERR_USER_MASK;
4136         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4137
4138         return t_gpa;
4139 }
4140
4141 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4142                               struct x86_exception *exception)
4143 {
4144         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4145         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4146 }
4147
4148  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4149                                 struct x86_exception *exception)
4150 {
4151         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4152         access |= PFERR_FETCH_MASK;
4153         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4154 }
4155
4156 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4157                                struct x86_exception *exception)
4158 {
4159         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4160         access |= PFERR_WRITE_MASK;
4161         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4162 }
4163
4164 /* uses this to access any guest's mapped memory without checking CPL */
4165 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4166                                 struct x86_exception *exception)
4167 {
4168         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4169 }
4170
4171 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4172                                       struct kvm_vcpu *vcpu, u32 access,
4173                                       struct x86_exception *exception)
4174 {
4175         void *data = val;
4176         int r = X86EMUL_CONTINUE;
4177
4178         while (bytes) {
4179                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4180                                                             exception);
4181                 unsigned offset = addr & (PAGE_SIZE-1);
4182                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4183                 int ret;
4184
4185                 if (gpa == UNMAPPED_GVA)
4186                         return X86EMUL_PROPAGATE_FAULT;
4187                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4188                                                offset, toread);
4189                 if (ret < 0) {
4190                         r = X86EMUL_IO_NEEDED;
4191                         goto out;
4192                 }
4193
4194                 bytes -= toread;
4195                 data += toread;
4196                 addr += toread;
4197         }
4198 out:
4199         return r;
4200 }
4201
4202 /* used for instruction fetching */
4203 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4204                                 gva_t addr, void *val, unsigned int bytes,
4205                                 struct x86_exception *exception)
4206 {
4207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4208         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4209         unsigned offset;
4210         int ret;
4211
4212         /* Inline kvm_read_guest_virt_helper for speed.  */
4213         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4214                                                     exception);
4215         if (unlikely(gpa == UNMAPPED_GVA))
4216                 return X86EMUL_PROPAGATE_FAULT;
4217
4218         offset = addr & (PAGE_SIZE-1);
4219         if (WARN_ON(offset + bytes > PAGE_SIZE))
4220                 bytes = (unsigned)PAGE_SIZE - offset;
4221         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4222                                        offset, bytes);
4223         if (unlikely(ret < 0))
4224                 return X86EMUL_IO_NEEDED;
4225
4226         return X86EMUL_CONTINUE;
4227 }
4228
4229 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4230                                gva_t addr, void *val, unsigned int bytes,
4231                                struct x86_exception *exception)
4232 {
4233         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4234         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4235
4236         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4237                                           exception);
4238 }
4239 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4240
4241 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4242                                       gva_t addr, void *val, unsigned int bytes,
4243                                       struct x86_exception *exception)
4244 {
4245         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4246         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4247 }
4248
4249 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4250                 unsigned long addr, void *val, unsigned int bytes)
4251 {
4252         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4253         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4254
4255         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4256 }
4257
4258 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4259                                        gva_t addr, void *val,
4260                                        unsigned int bytes,
4261                                        struct x86_exception *exception)
4262 {
4263         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4264         void *data = val;
4265         int r = X86EMUL_CONTINUE;
4266
4267         while (bytes) {
4268                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4269                                                              PFERR_WRITE_MASK,
4270                                                              exception);
4271                 unsigned offset = addr & (PAGE_SIZE-1);
4272                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4273                 int ret;
4274
4275                 if (gpa == UNMAPPED_GVA)
4276                         return X86EMUL_PROPAGATE_FAULT;
4277                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4278                 if (ret < 0) {
4279                         r = X86EMUL_IO_NEEDED;
4280                         goto out;
4281                 }
4282
4283                 bytes -= towrite;
4284                 data += towrite;
4285                 addr += towrite;
4286         }
4287 out:
4288         return r;
4289 }
4290 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4291
4292 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4293                                 gpa_t *gpa, struct x86_exception *exception,
4294                                 bool write)
4295 {
4296         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4297                 | (write ? PFERR_WRITE_MASK : 0);
4298
4299         if (vcpu_match_mmio_gva(vcpu, gva)
4300             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4301                                  vcpu->arch.access, access)) {
4302                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4303                                         (gva & (PAGE_SIZE - 1));
4304                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4305                 return 1;
4306         }
4307
4308         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4309
4310         if (*gpa == UNMAPPED_GVA)
4311                 return -1;
4312
4313         /* For APIC access vmexit */
4314         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4315                 return 1;
4316
4317         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4318                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4319                 return 1;
4320         }
4321
4322         return 0;
4323 }
4324
4325 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4326                         const void *val, int bytes)
4327 {
4328         int ret;
4329
4330         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4331         if (ret < 0)
4332                 return 0;
4333         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4334         return 1;
4335 }
4336
4337 struct read_write_emulator_ops {
4338         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4339                                   int bytes);
4340         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4341                                   void *val, int bytes);
4342         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4343                                int bytes, void *val);
4344         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4345                                     void *val, int bytes);
4346         bool write;
4347 };
4348
4349 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4350 {
4351         if (vcpu->mmio_read_completed) {
4352                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4353                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4354                 vcpu->mmio_read_completed = 0;
4355                 return 1;
4356         }
4357
4358         return 0;
4359 }
4360
4361 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4362                         void *val, int bytes)
4363 {
4364         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4365 }
4366
4367 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4368                          void *val, int bytes)
4369 {
4370         return emulator_write_phys(vcpu, gpa, val, bytes);
4371 }
4372
4373 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4374 {
4375         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4376         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4377 }
4378
4379 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4380                           void *val, int bytes)
4381 {
4382         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4383         return X86EMUL_IO_NEEDED;
4384 }
4385
4386 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4387                            void *val, int bytes)
4388 {
4389         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4390
4391         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4392         return X86EMUL_CONTINUE;
4393 }
4394
4395 static const struct read_write_emulator_ops read_emultor = {
4396         .read_write_prepare = read_prepare,
4397         .read_write_emulate = read_emulate,
4398         .read_write_mmio = vcpu_mmio_read,
4399         .read_write_exit_mmio = read_exit_mmio,
4400 };
4401
4402 static const struct read_write_emulator_ops write_emultor = {
4403         .read_write_emulate = write_emulate,
4404         .read_write_mmio = write_mmio,
4405         .read_write_exit_mmio = write_exit_mmio,
4406         .write = true,
4407 };
4408
4409 static int emulator_read_write_onepage(unsigned long addr, void *val,
4410                                        unsigned int bytes,
4411                                        struct x86_exception *exception,
4412                                        struct kvm_vcpu *vcpu,
4413                                        const struct read_write_emulator_ops *ops)
4414 {
4415         gpa_t gpa;
4416         int handled, ret;
4417         bool write = ops->write;
4418         struct kvm_mmio_fragment *frag;
4419
4420         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4421
4422         if (ret < 0)
4423                 return X86EMUL_PROPAGATE_FAULT;
4424
4425         /* For APIC access vmexit */
4426         if (ret)
4427                 goto mmio;
4428
4429         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4430                 return X86EMUL_CONTINUE;
4431
4432 mmio:
4433         /*
4434          * Is this MMIO handled locally?
4435          */
4436         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4437         if (handled == bytes)
4438                 return X86EMUL_CONTINUE;
4439
4440         gpa += handled;
4441         bytes -= handled;
4442         val += handled;
4443
4444         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4445         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4446         frag->gpa = gpa;
4447         frag->data = val;
4448         frag->len = bytes;
4449         return X86EMUL_CONTINUE;
4450 }
4451
4452 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4453                         unsigned long addr,
4454                         void *val, unsigned int bytes,
4455                         struct x86_exception *exception,
4456                         const struct read_write_emulator_ops *ops)
4457 {
4458         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4459         gpa_t gpa;
4460         int rc;
4461
4462         if (ops->read_write_prepare &&
4463                   ops->read_write_prepare(vcpu, val, bytes))
4464                 return X86EMUL_CONTINUE;
4465
4466         vcpu->mmio_nr_fragments = 0;
4467
4468         /* Crossing a page boundary? */
4469         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4470                 int now;
4471
4472                 now = -addr & ~PAGE_MASK;
4473                 rc = emulator_read_write_onepage(addr, val, now, exception,
4474                                                  vcpu, ops);
4475
4476                 if (rc != X86EMUL_CONTINUE)
4477                         return rc;
4478                 addr += now;
4479                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4480                         addr = (u32)addr;
4481                 val += now;
4482                 bytes -= now;
4483         }
4484
4485         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4486                                          vcpu, ops);
4487         if (rc != X86EMUL_CONTINUE)
4488                 return rc;
4489
4490         if (!vcpu->mmio_nr_fragments)
4491                 return rc;
4492
4493         gpa = vcpu->mmio_fragments[0].gpa;
4494
4495         vcpu->mmio_needed = 1;
4496         vcpu->mmio_cur_fragment = 0;
4497
4498         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4499         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4500         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4501         vcpu->run->mmio.phys_addr = gpa;
4502
4503         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4504 }
4505
4506 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4507                                   unsigned long addr,
4508                                   void *val,
4509                                   unsigned int bytes,
4510                                   struct x86_exception *exception)
4511 {
4512         return emulator_read_write(ctxt, addr, val, bytes,
4513                                    exception, &read_emultor);
4514 }
4515
4516 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4517                             unsigned long addr,
4518                             const void *val,
4519                             unsigned int bytes,
4520                             struct x86_exception *exception)
4521 {
4522         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4523                                    exception, &write_emultor);
4524 }
4525
4526 #define CMPXCHG_TYPE(t, ptr, old, new) \
4527         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4528
4529 #ifdef CONFIG_X86_64
4530 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4531 #else
4532 #  define CMPXCHG64(ptr, old, new) \
4533         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4534 #endif
4535
4536 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4537                                      unsigned long addr,
4538                                      const void *old,
4539                                      const void *new,
4540                                      unsigned int bytes,
4541                                      struct x86_exception *exception)
4542 {
4543         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4544         gpa_t gpa;
4545         struct page *page;
4546         char *kaddr;
4547         bool exchanged;
4548
4549         /* guests cmpxchg8b have to be emulated atomically */
4550         if (bytes > 8 || (bytes & (bytes - 1)))
4551                 goto emul_write;
4552
4553         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4554
4555         if (gpa == UNMAPPED_GVA ||
4556             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4557                 goto emul_write;
4558
4559         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4560                 goto emul_write;
4561
4562         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4563         if (is_error_page(page))
4564                 goto emul_write;
4565
4566         kaddr = kmap_atomic(page);
4567         kaddr += offset_in_page(gpa);
4568         switch (bytes) {
4569         case 1:
4570                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4571                 break;
4572         case 2:
4573                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4574                 break;
4575         case 4:
4576                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4577                 break;
4578         case 8:
4579                 exchanged = CMPXCHG64(kaddr, old, new);
4580                 break;
4581         default:
4582                 BUG();
4583         }
4584         kunmap_atomic(kaddr);
4585         kvm_release_page_dirty(page);
4586
4587         if (!exchanged)
4588                 return X86EMUL_CMPXCHG_FAILED;
4589
4590         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4591         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4592
4593         return X86EMUL_CONTINUE;
4594
4595 emul_write:
4596         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4597
4598         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4599 }
4600
4601 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4602 {
4603         /* TODO: String I/O for in kernel device */
4604         int r;
4605
4606         if (vcpu->arch.pio.in)
4607                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4608                                     vcpu->arch.pio.size, pd);
4609         else
4610                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4611                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4612                                      pd);
4613         return r;
4614 }
4615
4616 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4617                                unsigned short port, void *val,
4618                                unsigned int count, bool in)
4619 {
4620         vcpu->arch.pio.port = port;
4621         vcpu->arch.pio.in = in;
4622         vcpu->arch.pio.count  = count;
4623         vcpu->arch.pio.size = size;
4624
4625         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4626                 vcpu->arch.pio.count = 0;
4627                 return 1;
4628         }
4629
4630         vcpu->run->exit_reason = KVM_EXIT_IO;
4631         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4632         vcpu->run->io.size = size;
4633         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4634         vcpu->run->io.count = count;
4635         vcpu->run->io.port = port;
4636
4637         return 0;
4638 }
4639
4640 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4641                                     int size, unsigned short port, void *val,
4642                                     unsigned int count)
4643 {
4644         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4645         int ret;
4646
4647         if (vcpu->arch.pio.count)
4648                 goto data_avail;
4649
4650         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4651         if (ret) {
4652 data_avail:
4653                 memcpy(val, vcpu->arch.pio_data, size * count);
4654                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4655                 vcpu->arch.pio.count = 0;
4656                 return 1;
4657         }
4658
4659         return 0;
4660 }
4661
4662 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4663                                      int size, unsigned short port,
4664                                      const void *val, unsigned int count)
4665 {
4666         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4667
4668         memcpy(vcpu->arch.pio_data, val, size * count);
4669         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4670         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4671 }
4672
4673 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4674 {
4675         return kvm_x86_ops->get_segment_base(vcpu, seg);
4676 }
4677
4678 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4679 {
4680         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4681 }
4682
4683 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4684 {
4685         if (!need_emulate_wbinvd(vcpu))
4686                 return X86EMUL_CONTINUE;
4687
4688         if (kvm_x86_ops->has_wbinvd_exit()) {
4689                 int cpu = get_cpu();
4690
4691                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4692                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4693                                 wbinvd_ipi, NULL, 1);
4694                 put_cpu();
4695                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4696         } else
4697                 wbinvd();
4698         return X86EMUL_CONTINUE;
4699 }
4700
4701 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4702 {
4703         kvm_x86_ops->skip_emulated_instruction(vcpu);
4704         return kvm_emulate_wbinvd_noskip(vcpu);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4707
4708
4709
4710 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4711 {
4712         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4713 }
4714
4715 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4716                            unsigned long *dest)
4717 {
4718         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4719 }
4720
4721 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4722                            unsigned long value)
4723 {
4724
4725         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4726 }
4727
4728 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4729 {
4730         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4731 }
4732
4733 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4734 {
4735         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4736         unsigned long value;
4737
4738         switch (cr) {
4739         case 0:
4740                 value = kvm_read_cr0(vcpu);
4741                 break;
4742         case 2:
4743                 value = vcpu->arch.cr2;
4744                 break;
4745         case 3:
4746                 value = kvm_read_cr3(vcpu);
4747                 break;
4748         case 4:
4749                 value = kvm_read_cr4(vcpu);
4750                 break;
4751         case 8:
4752                 value = kvm_get_cr8(vcpu);
4753                 break;
4754         default:
4755                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4756                 return 0;
4757         }
4758
4759         return value;
4760 }
4761
4762 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4763 {
4764         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4765         int res = 0;
4766
4767         switch (cr) {
4768         case 0:
4769                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4770                 break;
4771         case 2:
4772                 vcpu->arch.cr2 = val;
4773                 break;
4774         case 3:
4775                 res = kvm_set_cr3(vcpu, val);
4776                 break;
4777         case 4:
4778                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4779                 break;
4780         case 8:
4781                 res = kvm_set_cr8(vcpu, val);
4782                 break;
4783         default:
4784                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4785                 res = -1;
4786         }
4787
4788         return res;
4789 }
4790
4791 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4792 {
4793         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4794 }
4795
4796 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4797 {
4798         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4799 }
4800
4801 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4802 {
4803         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4804 }
4805
4806 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4807 {
4808         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4809 }
4810
4811 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4812 {
4813         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4814 }
4815
4816 static unsigned long emulator_get_cached_segment_base(
4817         struct x86_emulate_ctxt *ctxt, int seg)
4818 {
4819         return get_segment_base(emul_to_vcpu(ctxt), seg);
4820 }
4821
4822 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4823                                  struct desc_struct *desc, u32 *base3,
4824                                  int seg)
4825 {
4826         struct kvm_segment var;
4827
4828         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4829         *selector = var.selector;
4830
4831         if (var.unusable) {
4832                 memset(desc, 0, sizeof(*desc));
4833                 return false;
4834         }
4835
4836         if (var.g)
4837                 var.limit >>= 12;
4838         set_desc_limit(desc, var.limit);
4839         set_desc_base(desc, (unsigned long)var.base);
4840 #ifdef CONFIG_X86_64
4841         if (base3)
4842                 *base3 = var.base >> 32;
4843 #endif
4844         desc->type = var.type;
4845         desc->s = var.s;
4846         desc->dpl = var.dpl;
4847         desc->p = var.present;
4848         desc->avl = var.avl;
4849         desc->l = var.l;
4850         desc->d = var.db;
4851         desc->g = var.g;
4852
4853         return true;
4854 }
4855
4856 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4857                                  struct desc_struct *desc, u32 base3,
4858                                  int seg)
4859 {
4860         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4861         struct kvm_segment var;
4862
4863         var.selector = selector;
4864         var.base = get_desc_base(desc);
4865 #ifdef CONFIG_X86_64
4866         var.base |= ((u64)base3) << 32;
4867 #endif
4868         var.limit = get_desc_limit(desc);
4869         if (desc->g)
4870                 var.limit = (var.limit << 12) | 0xfff;
4871         var.type = desc->type;
4872         var.dpl = desc->dpl;
4873         var.db = desc->d;
4874         var.s = desc->s;
4875         var.l = desc->l;
4876         var.g = desc->g;
4877         var.avl = desc->avl;
4878         var.present = desc->p;
4879         var.unusable = !var.present;
4880         var.padding = 0;
4881
4882         kvm_set_segment(vcpu, &var, seg);
4883         return;
4884 }
4885
4886 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4887                             u32 msr_index, u64 *pdata)
4888 {
4889         struct msr_data msr;
4890         int r;
4891
4892         msr.index = msr_index;
4893         msr.host_initiated = false;
4894         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4895         if (r)
4896                 return r;
4897
4898         *pdata = msr.data;
4899         return 0;
4900 }
4901
4902 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4903                             u32 msr_index, u64 data)
4904 {
4905         struct msr_data msr;
4906
4907         msr.data = data;
4908         msr.index = msr_index;
4909         msr.host_initiated = false;
4910         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4911 }
4912
4913 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4914 {
4915         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4916
4917         return vcpu->arch.smbase;
4918 }
4919
4920 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4921 {
4922         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923
4924         vcpu->arch.smbase = smbase;
4925 }
4926
4927 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4928                               u32 pmc)
4929 {
4930         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4931 }
4932
4933 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4934                              u32 pmc, u64 *pdata)
4935 {
4936         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4937 }
4938
4939 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4940 {
4941         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4942 }
4943
4944 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4945 {
4946         preempt_disable();
4947         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4948         /*
4949          * CR0.TS may reference the host fpu state, not the guest fpu state,
4950          * so it may be clear at this point.
4951          */
4952         clts();
4953 }
4954
4955 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4956 {
4957         preempt_enable();
4958 }
4959
4960 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4961                               struct x86_instruction_info *info,
4962                               enum x86_intercept_stage stage)
4963 {
4964         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4965 }
4966
4967 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4968                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4969 {
4970         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4971 }
4972
4973 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4974 {
4975         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4976 }
4977
4978 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4979 {
4980         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4981 }
4982
4983 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4984 {
4985         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4986 }
4987
4988 static const struct x86_emulate_ops emulate_ops = {
4989         .read_gpr            = emulator_read_gpr,
4990         .write_gpr           = emulator_write_gpr,
4991         .read_std            = kvm_read_guest_virt_system,
4992         .write_std           = kvm_write_guest_virt_system,
4993         .read_phys           = kvm_read_guest_phys_system,
4994         .fetch               = kvm_fetch_guest_virt,
4995         .read_emulated       = emulator_read_emulated,
4996         .write_emulated      = emulator_write_emulated,
4997         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4998         .invlpg              = emulator_invlpg,
4999         .pio_in_emulated     = emulator_pio_in_emulated,
5000         .pio_out_emulated    = emulator_pio_out_emulated,
5001         .get_segment         = emulator_get_segment,
5002         .set_segment         = emulator_set_segment,
5003         .get_cached_segment_base = emulator_get_cached_segment_base,
5004         .get_gdt             = emulator_get_gdt,
5005         .get_idt             = emulator_get_idt,
5006         .set_gdt             = emulator_set_gdt,
5007         .set_idt             = emulator_set_idt,
5008         .get_cr              = emulator_get_cr,
5009         .set_cr              = emulator_set_cr,
5010         .cpl                 = emulator_get_cpl,
5011         .get_dr              = emulator_get_dr,
5012         .set_dr              = emulator_set_dr,
5013         .get_smbase          = emulator_get_smbase,
5014         .set_smbase          = emulator_set_smbase,
5015         .set_msr             = emulator_set_msr,
5016         .get_msr             = emulator_get_msr,
5017         .check_pmc           = emulator_check_pmc,
5018         .read_pmc            = emulator_read_pmc,
5019         .halt                = emulator_halt,
5020         .wbinvd              = emulator_wbinvd,
5021         .fix_hypercall       = emulator_fix_hypercall,
5022         .get_fpu             = emulator_get_fpu,
5023         .put_fpu             = emulator_put_fpu,
5024         .intercept           = emulator_intercept,
5025         .get_cpuid           = emulator_get_cpuid,
5026         .set_nmi_mask        = emulator_set_nmi_mask,
5027 };
5028
5029 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5030 {
5031         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5032         /*
5033          * an sti; sti; sequence only disable interrupts for the first
5034          * instruction. So, if the last instruction, be it emulated or
5035          * not, left the system with the INT_STI flag enabled, it
5036          * means that the last instruction is an sti. We should not
5037          * leave the flag on in this case. The same goes for mov ss
5038          */
5039         if (int_shadow & mask)
5040                 mask = 0;
5041         if (unlikely(int_shadow || mask)) {
5042                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5043                 if (!mask)
5044                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5045         }
5046 }
5047
5048 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5049 {
5050         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5051         if (ctxt->exception.vector == PF_VECTOR)
5052                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5053
5054         if (ctxt->exception.error_code_valid)
5055                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5056                                       ctxt->exception.error_code);
5057         else
5058                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5059         return false;
5060 }
5061
5062 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5063 {
5064         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5065         int cs_db, cs_l;
5066
5067         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5068
5069         ctxt->eflags = kvm_get_rflags(vcpu);
5070         ctxt->eip = kvm_rip_read(vcpu);
5071         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5072                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5073                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5074                      cs_db                              ? X86EMUL_MODE_PROT32 :
5075                                                           X86EMUL_MODE_PROT16;
5076         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5077         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5078         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5079         ctxt->emul_flags = vcpu->arch.hflags;
5080
5081         init_decode_cache(ctxt);
5082         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5083 }
5084
5085 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5086 {
5087         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5088         int ret;
5089
5090         init_emulate_ctxt(vcpu);
5091
5092         ctxt->op_bytes = 2;
5093         ctxt->ad_bytes = 2;
5094         ctxt->_eip = ctxt->eip + inc_eip;
5095         ret = emulate_int_real(ctxt, irq);
5096
5097         if (ret != X86EMUL_CONTINUE)
5098                 return EMULATE_FAIL;
5099
5100         ctxt->eip = ctxt->_eip;
5101         kvm_rip_write(vcpu, ctxt->eip);
5102         kvm_set_rflags(vcpu, ctxt->eflags);
5103
5104         if (irq == NMI_VECTOR)
5105                 vcpu->arch.nmi_pending = 0;
5106         else
5107                 vcpu->arch.interrupt.pending = false;
5108
5109         return EMULATE_DONE;
5110 }
5111 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5112
5113 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5114 {
5115         int r = EMULATE_DONE;
5116
5117         ++vcpu->stat.insn_emulation_fail;
5118         trace_kvm_emulate_insn_failed(vcpu);
5119         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5120                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5121                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5122                 vcpu->run->internal.ndata = 0;
5123                 r = EMULATE_FAIL;
5124         }
5125         kvm_queue_exception(vcpu, UD_VECTOR);
5126
5127         return r;
5128 }
5129
5130 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5131                                   bool write_fault_to_shadow_pgtable,
5132                                   int emulation_type)
5133 {
5134         gpa_t gpa = cr2;
5135         pfn_t pfn;
5136
5137         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5138                 return false;
5139
5140         if (!vcpu->arch.mmu.direct_map) {
5141                 /*
5142                  * Write permission should be allowed since only
5143                  * write access need to be emulated.
5144                  */
5145                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5146
5147                 /*
5148                  * If the mapping is invalid in guest, let cpu retry
5149                  * it to generate fault.
5150                  */
5151                 if (gpa == UNMAPPED_GVA)
5152                         return true;
5153         }
5154
5155         /*
5156          * Do not retry the unhandleable instruction if it faults on the
5157          * readonly host memory, otherwise it will goto a infinite loop:
5158          * retry instruction -> write #PF -> emulation fail -> retry
5159          * instruction -> ...
5160          */
5161         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5162
5163         /*
5164          * If the instruction failed on the error pfn, it can not be fixed,
5165          * report the error to userspace.
5166          */
5167         if (is_error_noslot_pfn(pfn))
5168                 return false;
5169
5170         kvm_release_pfn_clean(pfn);
5171
5172         /* The instructions are well-emulated on direct mmu. */
5173         if (vcpu->arch.mmu.direct_map) {
5174                 unsigned int indirect_shadow_pages;
5175
5176                 spin_lock(&vcpu->kvm->mmu_lock);
5177                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5178                 spin_unlock(&vcpu->kvm->mmu_lock);
5179
5180                 if (indirect_shadow_pages)
5181                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5182
5183                 return true;
5184         }
5185
5186         /*
5187          * if emulation was due to access to shadowed page table
5188          * and it failed try to unshadow page and re-enter the
5189          * guest to let CPU execute the instruction.
5190          */
5191         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5192
5193         /*
5194          * If the access faults on its page table, it can not
5195          * be fixed by unprotecting shadow page and it should
5196          * be reported to userspace.
5197          */
5198         return !write_fault_to_shadow_pgtable;
5199 }
5200
5201 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5202                               unsigned long cr2,  int emulation_type)
5203 {
5204         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5205         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5206
5207         last_retry_eip = vcpu->arch.last_retry_eip;
5208         last_retry_addr = vcpu->arch.last_retry_addr;
5209
5210         /*
5211          * If the emulation is caused by #PF and it is non-page_table
5212          * writing instruction, it means the VM-EXIT is caused by shadow
5213          * page protected, we can zap the shadow page and retry this
5214          * instruction directly.
5215          *
5216          * Note: if the guest uses a non-page-table modifying instruction
5217          * on the PDE that points to the instruction, then we will unmap
5218          * the instruction and go to an infinite loop. So, we cache the
5219          * last retried eip and the last fault address, if we meet the eip
5220          * and the address again, we can break out of the potential infinite
5221          * loop.
5222          */
5223         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5224
5225         if (!(emulation_type & EMULTYPE_RETRY))
5226                 return false;
5227
5228         if (x86_page_table_writing_insn(ctxt))
5229                 return false;
5230
5231         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5232                 return false;
5233
5234         vcpu->arch.last_retry_eip = ctxt->eip;
5235         vcpu->arch.last_retry_addr = cr2;
5236
5237         if (!vcpu->arch.mmu.direct_map)
5238                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5239
5240         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5241
5242         return true;
5243 }
5244
5245 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5246 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5247
5248 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5249 {
5250         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5251                 /* This is a good place to trace that we are exiting SMM.  */
5252                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5253
5254                 if (unlikely(vcpu->arch.smi_pending)) {
5255                         kvm_make_request(KVM_REQ_SMI, vcpu);
5256                         vcpu->arch.smi_pending = 0;
5257                 } else {
5258                         /* Process a latched INIT, if any.  */
5259                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5260                 }
5261         }
5262
5263         kvm_mmu_reset_context(vcpu);
5264 }
5265
5266 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5267 {
5268         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5269
5270         vcpu->arch.hflags = emul_flags;
5271
5272         if (changed & HF_SMM_MASK)
5273                 kvm_smm_changed(vcpu);
5274 }
5275
5276 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5277                                 unsigned long *db)
5278 {
5279         u32 dr6 = 0;
5280         int i;
5281         u32 enable, rwlen;
5282
5283         enable = dr7;
5284         rwlen = dr7 >> 16;
5285         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5286                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5287                         dr6 |= (1 << i);
5288         return dr6;
5289 }
5290
5291 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5292 {
5293         struct kvm_run *kvm_run = vcpu->run;
5294
5295         /*
5296          * rflags is the old, "raw" value of the flags.  The new value has
5297          * not been saved yet.
5298          *
5299          * This is correct even for TF set by the guest, because "the
5300          * processor will not generate this exception after the instruction
5301          * that sets the TF flag".
5302          */
5303         if (unlikely(rflags & X86_EFLAGS_TF)) {
5304                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5305                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5306                                                   DR6_RTM;
5307                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5308                         kvm_run->debug.arch.exception = DB_VECTOR;
5309                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5310                         *r = EMULATE_USER_EXIT;
5311                 } else {
5312                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5313                         /*
5314                          * "Certain debug exceptions may clear bit 0-3.  The
5315                          * remaining contents of the DR6 register are never
5316                          * cleared by the processor".
5317                          */
5318                         vcpu->arch.dr6 &= ~15;
5319                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5320                         kvm_queue_exception(vcpu, DB_VECTOR);
5321                 }
5322         }
5323 }
5324
5325 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5326 {
5327         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5328             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5329                 struct kvm_run *kvm_run = vcpu->run;
5330                 unsigned long eip = kvm_get_linear_rip(vcpu);
5331                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5332                                            vcpu->arch.guest_debug_dr7,
5333                                            vcpu->arch.eff_db);
5334
5335                 if (dr6 != 0) {
5336                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5337                         kvm_run->debug.arch.pc = eip;
5338                         kvm_run->debug.arch.exception = DB_VECTOR;
5339                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5340                         *r = EMULATE_USER_EXIT;
5341                         return true;
5342                 }
5343         }
5344
5345         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5346             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5347                 unsigned long eip = kvm_get_linear_rip(vcpu);
5348                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5349                                            vcpu->arch.dr7,
5350                                            vcpu->arch.db);
5351
5352                 if (dr6 != 0) {
5353                         vcpu->arch.dr6 &= ~15;
5354                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5355                         kvm_queue_exception(vcpu, DB_VECTOR);
5356                         *r = EMULATE_DONE;
5357                         return true;
5358                 }
5359         }
5360
5361         return false;
5362 }
5363
5364 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5365                             unsigned long cr2,
5366                             int emulation_type,
5367                             void *insn,
5368                             int insn_len)
5369 {
5370         int r;
5371         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5372         bool writeback = true;
5373         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5374
5375         /*
5376          * Clear write_fault_to_shadow_pgtable here to ensure it is
5377          * never reused.
5378          */
5379         vcpu->arch.write_fault_to_shadow_pgtable = false;
5380         kvm_clear_exception_queue(vcpu);
5381
5382         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5383                 init_emulate_ctxt(vcpu);
5384
5385                 /*
5386                  * We will reenter on the same instruction since
5387                  * we do not set complete_userspace_io.  This does not
5388                  * handle watchpoints yet, those would be handled in
5389                  * the emulate_ops.
5390                  */
5391                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5392                         return r;
5393
5394                 ctxt->interruptibility = 0;
5395                 ctxt->have_exception = false;
5396                 ctxt->exception.vector = -1;
5397                 ctxt->perm_ok = false;
5398
5399                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5400
5401                 r = x86_decode_insn(ctxt, insn, insn_len);
5402
5403                 trace_kvm_emulate_insn_start(vcpu);
5404                 ++vcpu->stat.insn_emulation;
5405                 if (r != EMULATION_OK)  {
5406                         if (emulation_type & EMULTYPE_TRAP_UD)
5407                                 return EMULATE_FAIL;
5408                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5409                                                 emulation_type))
5410                                 return EMULATE_DONE;
5411                         if (emulation_type & EMULTYPE_SKIP)
5412                                 return EMULATE_FAIL;
5413                         return handle_emulation_failure(vcpu);
5414                 }
5415         }
5416
5417         if (emulation_type & EMULTYPE_SKIP) {
5418                 kvm_rip_write(vcpu, ctxt->_eip);
5419                 if (ctxt->eflags & X86_EFLAGS_RF)
5420                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5421                 return EMULATE_DONE;
5422         }
5423
5424         if (retry_instruction(ctxt, cr2, emulation_type))
5425                 return EMULATE_DONE;
5426
5427         /* this is needed for vmware backdoor interface to work since it
5428            changes registers values  during IO operation */
5429         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5430                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5431                 emulator_invalidate_register_cache(ctxt);
5432         }
5433
5434 restart:
5435         r = x86_emulate_insn(ctxt);
5436
5437         if (r == EMULATION_INTERCEPTED)
5438                 return EMULATE_DONE;
5439
5440         if (r == EMULATION_FAILED) {
5441                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5442                                         emulation_type))
5443                         return EMULATE_DONE;
5444
5445                 return handle_emulation_failure(vcpu);
5446         }
5447
5448         if (ctxt->have_exception) {
5449                 r = EMULATE_DONE;
5450                 if (inject_emulated_exception(vcpu))
5451                         return r;
5452         } else if (vcpu->arch.pio.count) {
5453                 if (!vcpu->arch.pio.in) {
5454                         /* FIXME: return into emulator if single-stepping.  */
5455                         vcpu->arch.pio.count = 0;
5456                 } else {
5457                         writeback = false;
5458                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5459                 }
5460                 r = EMULATE_USER_EXIT;
5461         } else if (vcpu->mmio_needed) {
5462                 if (!vcpu->mmio_is_write)
5463                         writeback = false;
5464                 r = EMULATE_USER_EXIT;
5465                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5466         } else if (r == EMULATION_RESTART)
5467                 goto restart;
5468         else
5469                 r = EMULATE_DONE;
5470
5471         if (writeback) {
5472                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5473                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5474                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5475                 if (vcpu->arch.hflags != ctxt->emul_flags)
5476                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5477                 kvm_rip_write(vcpu, ctxt->eip);
5478                 if (r == EMULATE_DONE)
5479                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5480                 if (!ctxt->have_exception ||
5481                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5482                         __kvm_set_rflags(vcpu, ctxt->eflags);
5483
5484                 /*
5485                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5486                  * do nothing, and it will be requested again as soon as
5487                  * the shadow expires.  But we still need to check here,
5488                  * because POPF has no interrupt shadow.
5489                  */
5490                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5491                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5492         } else
5493                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5494
5495         return r;
5496 }
5497 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5498
5499 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5500 {
5501         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5502         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5503                                             size, port, &val, 1);
5504         /* do not return to emulator after return from userspace */
5505         vcpu->arch.pio.count = 0;
5506         return ret;
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5509
5510 static void tsc_bad(void *info)
5511 {
5512         __this_cpu_write(cpu_tsc_khz, 0);
5513 }
5514
5515 static void tsc_khz_changed(void *data)
5516 {
5517         struct cpufreq_freqs *freq = data;
5518         unsigned long khz = 0;
5519
5520         if (data)
5521                 khz = freq->new;
5522         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5523                 khz = cpufreq_quick_get(raw_smp_processor_id());
5524         if (!khz)
5525                 khz = tsc_khz;
5526         __this_cpu_write(cpu_tsc_khz, khz);
5527 }
5528
5529 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5530                                      void *data)
5531 {
5532         struct cpufreq_freqs *freq = data;
5533         struct kvm *kvm;
5534         struct kvm_vcpu *vcpu;
5535         int i, send_ipi = 0;
5536
5537         /*
5538          * We allow guests to temporarily run on slowing clocks,
5539          * provided we notify them after, or to run on accelerating
5540          * clocks, provided we notify them before.  Thus time never
5541          * goes backwards.
5542          *
5543          * However, we have a problem.  We can't atomically update
5544          * the frequency of a given CPU from this function; it is
5545          * merely a notifier, which can be called from any CPU.
5546          * Changing the TSC frequency at arbitrary points in time
5547          * requires a recomputation of local variables related to
5548          * the TSC for each VCPU.  We must flag these local variables
5549          * to be updated and be sure the update takes place with the
5550          * new frequency before any guests proceed.
5551          *
5552          * Unfortunately, the combination of hotplug CPU and frequency
5553          * change creates an intractable locking scenario; the order
5554          * of when these callouts happen is undefined with respect to
5555          * CPU hotplug, and they can race with each other.  As such,
5556          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5557          * undefined; you can actually have a CPU frequency change take
5558          * place in between the computation of X and the setting of the
5559          * variable.  To protect against this problem, all updates of
5560          * the per_cpu tsc_khz variable are done in an interrupt
5561          * protected IPI, and all callers wishing to update the value
5562          * must wait for a synchronous IPI to complete (which is trivial
5563          * if the caller is on the CPU already).  This establishes the
5564          * necessary total order on variable updates.
5565          *
5566          * Note that because a guest time update may take place
5567          * anytime after the setting of the VCPU's request bit, the
5568          * correct TSC value must be set before the request.  However,
5569          * to ensure the update actually makes it to any guest which
5570          * starts running in hardware virtualization between the set
5571          * and the acquisition of the spinlock, we must also ping the
5572          * CPU after setting the request bit.
5573          *
5574          */
5575
5576         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5577                 return 0;
5578         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5579                 return 0;
5580
5581         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5582
5583         spin_lock(&kvm_lock);
5584         list_for_each_entry(kvm, &vm_list, vm_list) {
5585                 kvm_for_each_vcpu(i, vcpu, kvm) {
5586                         if (vcpu->cpu != freq->cpu)
5587                                 continue;
5588                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5589                         if (vcpu->cpu != smp_processor_id())
5590                                 send_ipi = 1;
5591                 }
5592         }
5593         spin_unlock(&kvm_lock);
5594
5595         if (freq->old < freq->new && send_ipi) {
5596                 /*
5597                  * We upscale the frequency.  Must make the guest
5598                  * doesn't see old kvmclock values while running with
5599                  * the new frequency, otherwise we risk the guest sees
5600                  * time go backwards.
5601                  *
5602                  * In case we update the frequency for another cpu
5603                  * (which might be in guest context) send an interrupt
5604                  * to kick the cpu out of guest context.  Next time
5605                  * guest context is entered kvmclock will be updated,
5606                  * so the guest will not see stale values.
5607                  */
5608                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5609         }
5610         return 0;
5611 }
5612
5613 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5614         .notifier_call  = kvmclock_cpufreq_notifier
5615 };
5616
5617 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5618                                         unsigned long action, void *hcpu)
5619 {
5620         unsigned int cpu = (unsigned long)hcpu;
5621
5622         switch (action) {
5623                 case CPU_ONLINE:
5624                 case CPU_DOWN_FAILED:
5625                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5626                         break;
5627                 case CPU_DOWN_PREPARE:
5628                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5629                         break;
5630         }
5631         return NOTIFY_OK;
5632 }
5633
5634 static struct notifier_block kvmclock_cpu_notifier_block = {
5635         .notifier_call  = kvmclock_cpu_notifier,
5636         .priority = -INT_MAX
5637 };
5638
5639 static void kvm_timer_init(void)
5640 {
5641         int cpu;
5642
5643         max_tsc_khz = tsc_khz;
5644
5645         cpu_notifier_register_begin();
5646         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5647 #ifdef CONFIG_CPU_FREQ
5648                 struct cpufreq_policy policy;
5649                 memset(&policy, 0, sizeof(policy));
5650                 cpu = get_cpu();
5651                 cpufreq_get_policy(&policy, cpu);
5652                 if (policy.cpuinfo.max_freq)
5653                         max_tsc_khz = policy.cpuinfo.max_freq;
5654                 put_cpu();
5655 #endif
5656                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5657                                           CPUFREQ_TRANSITION_NOTIFIER);
5658         }
5659         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5660         for_each_online_cpu(cpu)
5661                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5662
5663         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5664         cpu_notifier_register_done();
5665
5666 }
5667
5668 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5669
5670 int kvm_is_in_guest(void)
5671 {
5672         return __this_cpu_read(current_vcpu) != NULL;
5673 }
5674
5675 static int kvm_is_user_mode(void)
5676 {
5677         int user_mode = 3;
5678
5679         if (__this_cpu_read(current_vcpu))
5680                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5681
5682         return user_mode != 0;
5683 }
5684
5685 static unsigned long kvm_get_guest_ip(void)
5686 {
5687         unsigned long ip = 0;
5688
5689         if (__this_cpu_read(current_vcpu))
5690                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5691
5692         return ip;
5693 }
5694
5695 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5696         .is_in_guest            = kvm_is_in_guest,
5697         .is_user_mode           = kvm_is_user_mode,
5698         .get_guest_ip           = kvm_get_guest_ip,
5699 };
5700
5701 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5702 {
5703         __this_cpu_write(current_vcpu, vcpu);
5704 }
5705 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5706
5707 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5708 {
5709         __this_cpu_write(current_vcpu, NULL);
5710 }
5711 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5712
5713 static void kvm_set_mmio_spte_mask(void)
5714 {
5715         u64 mask;
5716         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5717
5718         /*
5719          * Set the reserved bits and the present bit of an paging-structure
5720          * entry to generate page fault with PFER.RSV = 1.
5721          */
5722          /* Mask the reserved physical address bits. */
5723         mask = rsvd_bits(maxphyaddr, 51);
5724
5725         /* Bit 62 is always reserved for 32bit host. */
5726         mask |= 0x3ull << 62;
5727
5728         /* Set the present bit. */
5729         mask |= 1ull;
5730
5731 #ifdef CONFIG_X86_64
5732         /*
5733          * If reserved bit is not supported, clear the present bit to disable
5734          * mmio page fault.
5735          */
5736         if (maxphyaddr == 52)
5737                 mask &= ~1ull;
5738 #endif
5739
5740         kvm_mmu_set_mmio_spte_mask(mask);
5741 }
5742
5743 #ifdef CONFIG_X86_64
5744 static void pvclock_gtod_update_fn(struct work_struct *work)
5745 {
5746         struct kvm *kvm;
5747
5748         struct kvm_vcpu *vcpu;
5749         int i;
5750
5751         spin_lock(&kvm_lock);
5752         list_for_each_entry(kvm, &vm_list, vm_list)
5753                 kvm_for_each_vcpu(i, vcpu, kvm)
5754                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5755         atomic_set(&kvm_guest_has_master_clock, 0);
5756         spin_unlock(&kvm_lock);
5757 }
5758
5759 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5760
5761 /*
5762  * Notification about pvclock gtod data update.
5763  */
5764 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5765                                void *priv)
5766 {
5767         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5768         struct timekeeper *tk = priv;
5769
5770         update_pvclock_gtod(tk);
5771
5772         /* disable master clock if host does not trust, or does not
5773          * use, TSC clocksource
5774          */
5775         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5776             atomic_read(&kvm_guest_has_master_clock) != 0)
5777                 queue_work(system_long_wq, &pvclock_gtod_work);
5778
5779         return 0;
5780 }
5781
5782 static struct notifier_block pvclock_gtod_notifier = {
5783         .notifier_call = pvclock_gtod_notify,
5784 };
5785 #endif
5786
5787 int kvm_arch_init(void *opaque)
5788 {
5789         int r;
5790         struct kvm_x86_ops *ops = opaque;
5791
5792         if (kvm_x86_ops) {
5793                 printk(KERN_ERR "kvm: already loaded the other module\n");
5794                 r = -EEXIST;
5795                 goto out;
5796         }
5797
5798         if (!ops->cpu_has_kvm_support()) {
5799                 printk(KERN_ERR "kvm: no hardware support\n");
5800                 r = -EOPNOTSUPP;
5801                 goto out;
5802         }
5803         if (ops->disabled_by_bios()) {
5804                 printk(KERN_ERR "kvm: disabled by bios\n");
5805                 r = -EOPNOTSUPP;
5806                 goto out;
5807         }
5808
5809         r = -ENOMEM;
5810         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5811         if (!shared_msrs) {
5812                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5813                 goto out;
5814         }
5815
5816         r = kvm_mmu_module_init();
5817         if (r)
5818                 goto out_free_percpu;
5819
5820         kvm_set_mmio_spte_mask();
5821
5822         kvm_x86_ops = ops;
5823
5824         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5825                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5826
5827         kvm_timer_init();
5828
5829         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5830
5831         if (cpu_has_xsave)
5832                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5833
5834         kvm_lapic_init();
5835 #ifdef CONFIG_X86_64
5836         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5837 #endif
5838
5839         return 0;
5840
5841 out_free_percpu:
5842         free_percpu(shared_msrs);
5843 out:
5844         return r;
5845 }
5846
5847 void kvm_arch_exit(void)
5848 {
5849         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5850
5851         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5852                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5853                                             CPUFREQ_TRANSITION_NOTIFIER);
5854         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5855 #ifdef CONFIG_X86_64
5856         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5857 #endif
5858         kvm_x86_ops = NULL;
5859         kvm_mmu_module_exit();
5860         free_percpu(shared_msrs);
5861 }
5862
5863 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5864 {
5865         ++vcpu->stat.halt_exits;
5866         if (lapic_in_kernel(vcpu)) {
5867                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5868                 return 1;
5869         } else {
5870                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5871                 return 0;
5872         }
5873 }
5874 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5875
5876 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5877 {
5878         kvm_x86_ops->skip_emulated_instruction(vcpu);
5879         return kvm_vcpu_halt(vcpu);
5880 }
5881 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5882
5883 /*
5884  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5885  *
5886  * @apicid - apicid of vcpu to be kicked.
5887  */
5888 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5889 {
5890         struct kvm_lapic_irq lapic_irq;
5891
5892         lapic_irq.shorthand = 0;
5893         lapic_irq.dest_mode = 0;
5894         lapic_irq.dest_id = apicid;
5895         lapic_irq.msi_redir_hint = false;
5896
5897         lapic_irq.delivery_mode = APIC_DM_REMRD;
5898         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5899 }
5900
5901 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5902 {
5903         vcpu->arch.apicv_active = false;
5904         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5905 }
5906
5907 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5908 {
5909         unsigned long nr, a0, a1, a2, a3, ret;
5910         int op_64_bit, r = 1;
5911
5912         kvm_x86_ops->skip_emulated_instruction(vcpu);
5913
5914         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5915                 return kvm_hv_hypercall(vcpu);
5916
5917         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5918         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5919         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5920         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5921         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5922
5923         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5924
5925         op_64_bit = is_64_bit_mode(vcpu);
5926         if (!op_64_bit) {
5927                 nr &= 0xFFFFFFFF;
5928                 a0 &= 0xFFFFFFFF;
5929                 a1 &= 0xFFFFFFFF;
5930                 a2 &= 0xFFFFFFFF;
5931                 a3 &= 0xFFFFFFFF;
5932         }
5933
5934         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5935                 ret = -KVM_EPERM;
5936                 goto out;
5937         }
5938
5939         switch (nr) {
5940         case KVM_HC_VAPIC_POLL_IRQ:
5941                 ret = 0;
5942                 break;
5943         case KVM_HC_KICK_CPU:
5944                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5945                 ret = 0;
5946                 break;
5947         default:
5948                 ret = -KVM_ENOSYS;
5949                 break;
5950         }
5951 out:
5952         if (!op_64_bit)
5953                 ret = (u32)ret;
5954         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5955         ++vcpu->stat.hypercalls;
5956         return r;
5957 }
5958 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5959
5960 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5961 {
5962         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5963         char instruction[3];
5964         unsigned long rip = kvm_rip_read(vcpu);
5965
5966         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5967
5968         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5969 }
5970
5971 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5972 {
5973         return vcpu->run->request_interrupt_window &&
5974                 likely(!pic_in_kernel(vcpu->kvm));
5975 }
5976
5977 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5978 {
5979         struct kvm_run *kvm_run = vcpu->run;
5980
5981         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5982         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5983         kvm_run->cr8 = kvm_get_cr8(vcpu);
5984         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5985         kvm_run->ready_for_interrupt_injection =
5986                 pic_in_kernel(vcpu->kvm) ||
5987                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
5988 }
5989
5990 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5991 {
5992         int max_irr, tpr;
5993
5994         if (!kvm_x86_ops->update_cr8_intercept)
5995                 return;
5996
5997         if (!vcpu->arch.apic)
5998                 return;
5999
6000         if (vcpu->arch.apicv_active)
6001                 return;
6002
6003         if (!vcpu->arch.apic->vapic_addr)
6004                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6005         else
6006                 max_irr = -1;
6007
6008         if (max_irr != -1)
6009                 max_irr >>= 4;
6010
6011         tpr = kvm_lapic_get_cr8(vcpu);
6012
6013         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6014 }
6015
6016 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6017 {
6018         int r;
6019
6020         /* try to reinject previous events if any */
6021         if (vcpu->arch.exception.pending) {
6022                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6023                                         vcpu->arch.exception.has_error_code,
6024                                         vcpu->arch.exception.error_code);
6025
6026                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6027                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6028                                              X86_EFLAGS_RF);
6029
6030                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6031                     (vcpu->arch.dr7 & DR7_GD)) {
6032                         vcpu->arch.dr7 &= ~DR7_GD;
6033                         kvm_update_dr7(vcpu);
6034                 }
6035
6036                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6037                                           vcpu->arch.exception.has_error_code,
6038                                           vcpu->arch.exception.error_code,
6039                                           vcpu->arch.exception.reinject);
6040                 return 0;
6041         }
6042
6043         if (vcpu->arch.nmi_injected) {
6044                 kvm_x86_ops->set_nmi(vcpu);
6045                 return 0;
6046         }
6047
6048         if (vcpu->arch.interrupt.pending) {
6049                 kvm_x86_ops->set_irq(vcpu);
6050                 return 0;
6051         }
6052
6053         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6054                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6055                 if (r != 0)
6056                         return r;
6057         }
6058
6059         /* try to inject new event if pending */
6060         if (vcpu->arch.nmi_pending) {
6061                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6062                         --vcpu->arch.nmi_pending;
6063                         vcpu->arch.nmi_injected = true;
6064                         kvm_x86_ops->set_nmi(vcpu);
6065                 }
6066         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6067                 /*
6068                  * Because interrupts can be injected asynchronously, we are
6069                  * calling check_nested_events again here to avoid a race condition.
6070                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6071                  * proposal and current concerns.  Perhaps we should be setting
6072                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6073                  */
6074                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6075                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6076                         if (r != 0)
6077                                 return r;
6078                 }
6079                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6080                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6081                                             false);
6082                         kvm_x86_ops->set_irq(vcpu);
6083                 }
6084         }
6085         return 0;
6086 }
6087
6088 static void process_nmi(struct kvm_vcpu *vcpu)
6089 {
6090         unsigned limit = 2;
6091
6092         /*
6093          * x86 is limited to one NMI running, and one NMI pending after it.
6094          * If an NMI is already in progress, limit further NMIs to just one.
6095          * Otherwise, allow two (and we'll inject the first one immediately).
6096          */
6097         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6098                 limit = 1;
6099
6100         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6101         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6102         kvm_make_request(KVM_REQ_EVENT, vcpu);
6103 }
6104
6105 #define put_smstate(type, buf, offset, val)                       \
6106         *(type *)((buf) + (offset) - 0x7e00) = val
6107
6108 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6109 {
6110         u32 flags = 0;
6111         flags |= seg->g       << 23;
6112         flags |= seg->db      << 22;
6113         flags |= seg->l       << 21;
6114         flags |= seg->avl     << 20;
6115         flags |= seg->present << 15;
6116         flags |= seg->dpl     << 13;
6117         flags |= seg->s       << 12;
6118         flags |= seg->type    << 8;
6119         return flags;
6120 }
6121
6122 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6123 {
6124         struct kvm_segment seg;
6125         int offset;
6126
6127         kvm_get_segment(vcpu, &seg, n);
6128         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6129
6130         if (n < 3)
6131                 offset = 0x7f84 + n * 12;
6132         else
6133                 offset = 0x7f2c + (n - 3) * 12;
6134
6135         put_smstate(u32, buf, offset + 8, seg.base);
6136         put_smstate(u32, buf, offset + 4, seg.limit);
6137         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6138 }
6139
6140 #ifdef CONFIG_X86_64
6141 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6142 {
6143         struct kvm_segment seg;
6144         int offset;
6145         u16 flags;
6146
6147         kvm_get_segment(vcpu, &seg, n);
6148         offset = 0x7e00 + n * 16;
6149
6150         flags = process_smi_get_segment_flags(&seg) >> 8;
6151         put_smstate(u16, buf, offset, seg.selector);
6152         put_smstate(u16, buf, offset + 2, flags);
6153         put_smstate(u32, buf, offset + 4, seg.limit);
6154         put_smstate(u64, buf, offset + 8, seg.base);
6155 }
6156 #endif
6157
6158 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6159 {
6160         struct desc_ptr dt;
6161         struct kvm_segment seg;
6162         unsigned long val;
6163         int i;
6164
6165         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6166         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6167         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6168         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6169
6170         for (i = 0; i < 8; i++)
6171                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6172
6173         kvm_get_dr(vcpu, 6, &val);
6174         put_smstate(u32, buf, 0x7fcc, (u32)val);
6175         kvm_get_dr(vcpu, 7, &val);
6176         put_smstate(u32, buf, 0x7fc8, (u32)val);
6177
6178         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6179         put_smstate(u32, buf, 0x7fc4, seg.selector);
6180         put_smstate(u32, buf, 0x7f64, seg.base);
6181         put_smstate(u32, buf, 0x7f60, seg.limit);
6182         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6183
6184         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6185         put_smstate(u32, buf, 0x7fc0, seg.selector);
6186         put_smstate(u32, buf, 0x7f80, seg.base);
6187         put_smstate(u32, buf, 0x7f7c, seg.limit);
6188         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6189
6190         kvm_x86_ops->get_gdt(vcpu, &dt);
6191         put_smstate(u32, buf, 0x7f74, dt.address);
6192         put_smstate(u32, buf, 0x7f70, dt.size);
6193
6194         kvm_x86_ops->get_idt(vcpu, &dt);
6195         put_smstate(u32, buf, 0x7f58, dt.address);
6196         put_smstate(u32, buf, 0x7f54, dt.size);
6197
6198         for (i = 0; i < 6; i++)
6199                 process_smi_save_seg_32(vcpu, buf, i);
6200
6201         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6202
6203         /* revision id */
6204         put_smstate(u32, buf, 0x7efc, 0x00020000);
6205         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6206 }
6207
6208 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6209 {
6210 #ifdef CONFIG_X86_64
6211         struct desc_ptr dt;
6212         struct kvm_segment seg;
6213         unsigned long val;
6214         int i;
6215
6216         for (i = 0; i < 16; i++)
6217                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6218
6219         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6220         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6221
6222         kvm_get_dr(vcpu, 6, &val);
6223         put_smstate(u64, buf, 0x7f68, val);
6224         kvm_get_dr(vcpu, 7, &val);
6225         put_smstate(u64, buf, 0x7f60, val);
6226
6227         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6228         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6229         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6230
6231         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6232
6233         /* revision id */
6234         put_smstate(u32, buf, 0x7efc, 0x00020064);
6235
6236         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6237
6238         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6239         put_smstate(u16, buf, 0x7e90, seg.selector);
6240         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6241         put_smstate(u32, buf, 0x7e94, seg.limit);
6242         put_smstate(u64, buf, 0x7e98, seg.base);
6243
6244         kvm_x86_ops->get_idt(vcpu, &dt);
6245         put_smstate(u32, buf, 0x7e84, dt.size);
6246         put_smstate(u64, buf, 0x7e88, dt.address);
6247
6248         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6249         put_smstate(u16, buf, 0x7e70, seg.selector);
6250         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6251         put_smstate(u32, buf, 0x7e74, seg.limit);
6252         put_smstate(u64, buf, 0x7e78, seg.base);
6253
6254         kvm_x86_ops->get_gdt(vcpu, &dt);
6255         put_smstate(u32, buf, 0x7e64, dt.size);
6256         put_smstate(u64, buf, 0x7e68, dt.address);
6257
6258         for (i = 0; i < 6; i++)
6259                 process_smi_save_seg_64(vcpu, buf, i);
6260 #else
6261         WARN_ON_ONCE(1);
6262 #endif
6263 }
6264
6265 static void process_smi(struct kvm_vcpu *vcpu)
6266 {
6267         struct kvm_segment cs, ds;
6268         struct desc_ptr dt;
6269         char buf[512];
6270         u32 cr0;
6271
6272         if (is_smm(vcpu)) {
6273                 vcpu->arch.smi_pending = true;
6274                 return;
6275         }
6276
6277         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6278         vcpu->arch.hflags |= HF_SMM_MASK;
6279         memset(buf, 0, 512);
6280         if (guest_cpuid_has_longmode(vcpu))
6281                 process_smi_save_state_64(vcpu, buf);
6282         else
6283                 process_smi_save_state_32(vcpu, buf);
6284
6285         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6286
6287         if (kvm_x86_ops->get_nmi_mask(vcpu))
6288                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6289         else
6290                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6291
6292         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6293         kvm_rip_write(vcpu, 0x8000);
6294
6295         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6296         kvm_x86_ops->set_cr0(vcpu, cr0);
6297         vcpu->arch.cr0 = cr0;
6298
6299         kvm_x86_ops->set_cr4(vcpu, 0);
6300
6301         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6302         dt.address = dt.size = 0;
6303         kvm_x86_ops->set_idt(vcpu, &dt);
6304
6305         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6306
6307         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6308         cs.base = vcpu->arch.smbase;
6309
6310         ds.selector = 0;
6311         ds.base = 0;
6312
6313         cs.limit    = ds.limit = 0xffffffff;
6314         cs.type     = ds.type = 0x3;
6315         cs.dpl      = ds.dpl = 0;
6316         cs.db       = ds.db = 0;
6317         cs.s        = ds.s = 1;
6318         cs.l        = ds.l = 0;
6319         cs.g        = ds.g = 1;
6320         cs.avl      = ds.avl = 0;
6321         cs.present  = ds.present = 1;
6322         cs.unusable = ds.unusable = 0;
6323         cs.padding  = ds.padding = 0;
6324
6325         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6326         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6327         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6328         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6329         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6330         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6331
6332         if (guest_cpuid_has_longmode(vcpu))
6333                 kvm_x86_ops->set_efer(vcpu, 0);
6334
6335         kvm_update_cpuid(vcpu);
6336         kvm_mmu_reset_context(vcpu);
6337 }
6338
6339 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6340 {
6341         u64 eoi_exit_bitmap[4];
6342
6343         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6344                 return;
6345
6346         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6347
6348         if (irqchip_split(vcpu->kvm))
6349                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6350         else {
6351                 if (vcpu->arch.apicv_active)
6352                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6353                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6354         }
6355         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6356                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6357         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6358 }
6359
6360 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6361 {
6362         ++vcpu->stat.tlb_flush;
6363         kvm_x86_ops->tlb_flush(vcpu);
6364 }
6365
6366 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6367 {
6368         struct page *page = NULL;
6369
6370         if (!lapic_in_kernel(vcpu))
6371                 return;
6372
6373         if (!kvm_x86_ops->set_apic_access_page_addr)
6374                 return;
6375
6376         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6377         if (is_error_page(page))
6378                 return;
6379         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6380
6381         /*
6382          * Do not pin apic access page in memory, the MMU notifier
6383          * will call us again if it is migrated or swapped out.
6384          */
6385         put_page(page);
6386 }
6387 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6388
6389 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6390                                            unsigned long address)
6391 {
6392         /*
6393          * The physical address of apic access page is stored in the VMCS.
6394          * Update it when it becomes invalid.
6395          */
6396         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6397                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6398 }
6399
6400 /*
6401  * Returns 1 to let vcpu_run() continue the guest execution loop without
6402  * exiting to the userspace.  Otherwise, the value will be returned to the
6403  * userspace.
6404  */
6405 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6406 {
6407         int r;
6408         bool req_int_win =
6409                 dm_request_for_irq_injection(vcpu) &&
6410                 kvm_cpu_accept_dm_intr(vcpu);
6411
6412         bool req_immediate_exit = false;
6413
6414         if (vcpu->requests) {
6415                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6416                         kvm_mmu_unload(vcpu);
6417                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6418                         __kvm_migrate_timers(vcpu);
6419                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6420                         kvm_gen_update_masterclock(vcpu->kvm);
6421                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6422                         kvm_gen_kvmclock_update(vcpu);
6423                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6424                         r = kvm_guest_time_update(vcpu);
6425                         if (unlikely(r))
6426                                 goto out;
6427                 }
6428                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6429                         kvm_mmu_sync_roots(vcpu);
6430                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6431                         kvm_vcpu_flush_tlb(vcpu);
6432                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6433                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6434                         r = 0;
6435                         goto out;
6436                 }
6437                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6438                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6439                         r = 0;
6440                         goto out;
6441                 }
6442                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6443                         vcpu->fpu_active = 0;
6444                         kvm_x86_ops->fpu_deactivate(vcpu);
6445                 }
6446                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6447                         /* Page is swapped out. Do synthetic halt */
6448                         vcpu->arch.apf.halted = true;
6449                         r = 1;
6450                         goto out;
6451                 }
6452                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6453                         record_steal_time(vcpu);
6454                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6455                         process_smi(vcpu);
6456                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6457                         process_nmi(vcpu);
6458                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6459                         kvm_pmu_handle_event(vcpu);
6460                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6461                         kvm_pmu_deliver_pmi(vcpu);
6462                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6463                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6464                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6465                                      vcpu->arch.ioapic_handled_vectors)) {
6466                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6467                                 vcpu->run->eoi.vector =
6468                                                 vcpu->arch.pending_ioapic_eoi;
6469                                 r = 0;
6470                                 goto out;
6471                         }
6472                 }
6473                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6474                         vcpu_scan_ioapic(vcpu);
6475                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6476                         kvm_vcpu_reload_apic_access_page(vcpu);
6477                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6478                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6479                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6480                         r = 0;
6481                         goto out;
6482                 }
6483                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6484                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6485                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6486                         r = 0;
6487                         goto out;
6488                 }
6489                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6490                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6491                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6492                         r = 0;
6493                         goto out;
6494                 }
6495                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6496                         kvm_hv_process_stimers(vcpu);
6497         }
6498
6499         /*
6500          * KVM_REQ_EVENT is not set when posted interrupts are set by
6501          * VT-d hardware, so we have to update RVI unconditionally.
6502          */
6503         if (kvm_lapic_enabled(vcpu)) {
6504                 /*
6505                  * Update architecture specific hints for APIC
6506                  * virtual interrupt delivery.
6507                  */
6508                 if (vcpu->arch.apicv_active)
6509                         kvm_x86_ops->hwapic_irr_update(vcpu,
6510                                 kvm_lapic_find_highest_irr(vcpu));
6511         }
6512
6513         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6514                 kvm_apic_accept_events(vcpu);
6515                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6516                         r = 1;
6517                         goto out;
6518                 }
6519
6520                 if (inject_pending_event(vcpu, req_int_win) != 0)
6521                         req_immediate_exit = true;
6522                 /* enable NMI/IRQ window open exits if needed */
6523                 else if (vcpu->arch.nmi_pending)
6524                         kvm_x86_ops->enable_nmi_window(vcpu);
6525                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6526                         kvm_x86_ops->enable_irq_window(vcpu);
6527
6528                 if (kvm_lapic_enabled(vcpu)) {
6529                         update_cr8_intercept(vcpu);
6530                         kvm_lapic_sync_to_vapic(vcpu);
6531                 }
6532         }
6533
6534         r = kvm_mmu_reload(vcpu);
6535         if (unlikely(r)) {
6536                 goto cancel_injection;
6537         }
6538
6539         preempt_disable();
6540
6541         kvm_x86_ops->prepare_guest_switch(vcpu);
6542         if (vcpu->fpu_active)
6543                 kvm_load_guest_fpu(vcpu);
6544         kvm_load_guest_xcr0(vcpu);
6545
6546         vcpu->mode = IN_GUEST_MODE;
6547
6548         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6549
6550         /* We should set ->mode before check ->requests,
6551          * see the comment in make_all_cpus_request.
6552          */
6553         smp_mb__after_srcu_read_unlock();
6554
6555         local_irq_disable();
6556
6557         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6558             || need_resched() || signal_pending(current)) {
6559                 vcpu->mode = OUTSIDE_GUEST_MODE;
6560                 smp_wmb();
6561                 local_irq_enable();
6562                 preempt_enable();
6563                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6564                 r = 1;
6565                 goto cancel_injection;
6566         }
6567
6568         if (req_immediate_exit)
6569                 smp_send_reschedule(vcpu->cpu);
6570
6571         __kvm_guest_enter();
6572
6573         if (unlikely(vcpu->arch.switch_db_regs)) {
6574                 set_debugreg(0, 7);
6575                 set_debugreg(vcpu->arch.eff_db[0], 0);
6576                 set_debugreg(vcpu->arch.eff_db[1], 1);
6577                 set_debugreg(vcpu->arch.eff_db[2], 2);
6578                 set_debugreg(vcpu->arch.eff_db[3], 3);
6579                 set_debugreg(vcpu->arch.dr6, 6);
6580                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6581         }
6582
6583         trace_kvm_entry(vcpu->vcpu_id);
6584         wait_lapic_expire(vcpu);
6585         kvm_x86_ops->run(vcpu);
6586
6587         /*
6588          * Do this here before restoring debug registers on the host.  And
6589          * since we do this before handling the vmexit, a DR access vmexit
6590          * can (a) read the correct value of the debug registers, (b) set
6591          * KVM_DEBUGREG_WONT_EXIT again.
6592          */
6593         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6594                 int i;
6595
6596                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6597                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6598                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6599                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6600         }
6601
6602         /*
6603          * If the guest has used debug registers, at least dr7
6604          * will be disabled while returning to the host.
6605          * If we don't have active breakpoints in the host, we don't
6606          * care about the messed up debug address registers. But if
6607          * we have some of them active, restore the old state.
6608          */
6609         if (hw_breakpoint_active())
6610                 hw_breakpoint_restore();
6611
6612         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6613
6614         vcpu->mode = OUTSIDE_GUEST_MODE;
6615         smp_wmb();
6616
6617         /* Interrupt is enabled by handle_external_intr() */
6618         kvm_x86_ops->handle_external_intr(vcpu);
6619
6620         ++vcpu->stat.exits;
6621
6622         /*
6623          * We must have an instruction between local_irq_enable() and
6624          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6625          * the interrupt shadow.  The stat.exits increment will do nicely.
6626          * But we need to prevent reordering, hence this barrier():
6627          */
6628         barrier();
6629
6630         kvm_guest_exit();
6631
6632         preempt_enable();
6633
6634         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6635
6636         /*
6637          * Profile KVM exit RIPs:
6638          */
6639         if (unlikely(prof_on == KVM_PROFILING)) {
6640                 unsigned long rip = kvm_rip_read(vcpu);
6641                 profile_hit(KVM_PROFILING, (void *)rip);
6642         }
6643
6644         if (unlikely(vcpu->arch.tsc_always_catchup))
6645                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6646
6647         if (vcpu->arch.apic_attention)
6648                 kvm_lapic_sync_from_vapic(vcpu);
6649
6650         r = kvm_x86_ops->handle_exit(vcpu);
6651         return r;
6652
6653 cancel_injection:
6654         kvm_x86_ops->cancel_injection(vcpu);
6655         if (unlikely(vcpu->arch.apic_attention))
6656                 kvm_lapic_sync_from_vapic(vcpu);
6657 out:
6658         return r;
6659 }
6660
6661 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6662 {
6663         if (!kvm_arch_vcpu_runnable(vcpu) &&
6664             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6665                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6666                 kvm_vcpu_block(vcpu);
6667                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6668
6669                 if (kvm_x86_ops->post_block)
6670                         kvm_x86_ops->post_block(vcpu);
6671
6672                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6673                         return 1;
6674         }
6675
6676         kvm_apic_accept_events(vcpu);
6677         switch(vcpu->arch.mp_state) {
6678         case KVM_MP_STATE_HALTED:
6679                 vcpu->arch.pv.pv_unhalted = false;
6680                 vcpu->arch.mp_state =
6681                         KVM_MP_STATE_RUNNABLE;
6682         case KVM_MP_STATE_RUNNABLE:
6683                 vcpu->arch.apf.halted = false;
6684                 break;
6685         case KVM_MP_STATE_INIT_RECEIVED:
6686                 break;
6687         default:
6688                 return -EINTR;
6689                 break;
6690         }
6691         return 1;
6692 }
6693
6694 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6695 {
6696         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6697                 !vcpu->arch.apf.halted);
6698 }
6699
6700 static int vcpu_run(struct kvm_vcpu *vcpu)
6701 {
6702         int r;
6703         struct kvm *kvm = vcpu->kvm;
6704
6705         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6706
6707         for (;;) {
6708                 if (kvm_vcpu_running(vcpu)) {
6709                         r = vcpu_enter_guest(vcpu);
6710                 } else {
6711                         r = vcpu_block(kvm, vcpu);
6712                 }
6713
6714                 if (r <= 0)
6715                         break;
6716
6717                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6718                 if (kvm_cpu_has_pending_timer(vcpu))
6719                         kvm_inject_pending_timer_irqs(vcpu);
6720
6721                 if (dm_request_for_irq_injection(vcpu) &&
6722                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6723                         r = 0;
6724                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6725                         ++vcpu->stat.request_irq_exits;
6726                         break;
6727                 }
6728
6729                 kvm_check_async_pf_completion(vcpu);
6730
6731                 if (signal_pending(current)) {
6732                         r = -EINTR;
6733                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6734                         ++vcpu->stat.signal_exits;
6735                         break;
6736                 }
6737                 if (need_resched()) {
6738                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6739                         cond_resched();
6740                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6741                 }
6742         }
6743
6744         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6745
6746         return r;
6747 }
6748
6749 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6750 {
6751         int r;
6752         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6753         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6754         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6755         if (r != EMULATE_DONE)
6756                 return 0;
6757         return 1;
6758 }
6759
6760 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6761 {
6762         BUG_ON(!vcpu->arch.pio.count);
6763
6764         return complete_emulated_io(vcpu);
6765 }
6766
6767 /*
6768  * Implements the following, as a state machine:
6769  *
6770  * read:
6771  *   for each fragment
6772  *     for each mmio piece in the fragment
6773  *       write gpa, len
6774  *       exit
6775  *       copy data
6776  *   execute insn
6777  *
6778  * write:
6779  *   for each fragment
6780  *     for each mmio piece in the fragment
6781  *       write gpa, len
6782  *       copy data
6783  *       exit
6784  */
6785 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6786 {
6787         struct kvm_run *run = vcpu->run;
6788         struct kvm_mmio_fragment *frag;
6789         unsigned len;
6790
6791         BUG_ON(!vcpu->mmio_needed);
6792
6793         /* Complete previous fragment */
6794         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6795         len = min(8u, frag->len);
6796         if (!vcpu->mmio_is_write)
6797                 memcpy(frag->data, run->mmio.data, len);
6798
6799         if (frag->len <= 8) {
6800                 /* Switch to the next fragment. */
6801                 frag++;
6802                 vcpu->mmio_cur_fragment++;
6803         } else {
6804                 /* Go forward to the next mmio piece. */
6805                 frag->data += len;
6806                 frag->gpa += len;
6807                 frag->len -= len;
6808         }
6809
6810         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6811                 vcpu->mmio_needed = 0;
6812
6813                 /* FIXME: return into emulator if single-stepping.  */
6814                 if (vcpu->mmio_is_write)
6815                         return 1;
6816                 vcpu->mmio_read_completed = 1;
6817                 return complete_emulated_io(vcpu);
6818         }
6819
6820         run->exit_reason = KVM_EXIT_MMIO;
6821         run->mmio.phys_addr = frag->gpa;
6822         if (vcpu->mmio_is_write)
6823                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6824         run->mmio.len = min(8u, frag->len);
6825         run->mmio.is_write = vcpu->mmio_is_write;
6826         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6827         return 0;
6828 }
6829
6830
6831 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6832 {
6833         struct fpu *fpu = &current->thread.fpu;
6834         int r;
6835         sigset_t sigsaved;
6836
6837         fpu__activate_curr(fpu);
6838
6839         if (vcpu->sigset_active)
6840                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6841
6842         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6843                 kvm_vcpu_block(vcpu);
6844                 kvm_apic_accept_events(vcpu);
6845                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6846                 r = -EAGAIN;
6847                 goto out;
6848         }
6849
6850         /* re-sync apic's tpr */
6851         if (!lapic_in_kernel(vcpu)) {
6852                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6853                         r = -EINVAL;
6854                         goto out;
6855                 }
6856         }
6857
6858         if (unlikely(vcpu->arch.complete_userspace_io)) {
6859                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6860                 vcpu->arch.complete_userspace_io = NULL;
6861                 r = cui(vcpu);
6862                 if (r <= 0)
6863                         goto out;
6864         } else
6865                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6866
6867         r = vcpu_run(vcpu);
6868
6869 out:
6870         post_kvm_run_save(vcpu);
6871         if (vcpu->sigset_active)
6872                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6873
6874         return r;
6875 }
6876
6877 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6878 {
6879         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6880                 /*
6881                  * We are here if userspace calls get_regs() in the middle of
6882                  * instruction emulation. Registers state needs to be copied
6883                  * back from emulation context to vcpu. Userspace shouldn't do
6884                  * that usually, but some bad designed PV devices (vmware
6885                  * backdoor interface) need this to work
6886                  */
6887                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6888                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6889         }
6890         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6891         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6892         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6893         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6894         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6895         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6896         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6897         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6898 #ifdef CONFIG_X86_64
6899         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6900         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6901         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6902         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6903         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6904         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6905         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6906         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6907 #endif
6908
6909         regs->rip = kvm_rip_read(vcpu);
6910         regs->rflags = kvm_get_rflags(vcpu);
6911
6912         return 0;
6913 }
6914
6915 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6916 {
6917         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6918         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6919
6920         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6921         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6922         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6923         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6924         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6925         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6926         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6927         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6928 #ifdef CONFIG_X86_64
6929         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6930         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6931         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6932         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6933         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6934         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6935         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6936         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6937 #endif
6938
6939         kvm_rip_write(vcpu, regs->rip);
6940         kvm_set_rflags(vcpu, regs->rflags);
6941
6942         vcpu->arch.exception.pending = false;
6943
6944         kvm_make_request(KVM_REQ_EVENT, vcpu);
6945
6946         return 0;
6947 }
6948
6949 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6950 {
6951         struct kvm_segment cs;
6952
6953         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6954         *db = cs.db;
6955         *l = cs.l;
6956 }
6957 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6958
6959 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6960                                   struct kvm_sregs *sregs)
6961 {
6962         struct desc_ptr dt;
6963
6964         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6965         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6966         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6967         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6968         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6969         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6970
6971         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6972         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6973
6974         kvm_x86_ops->get_idt(vcpu, &dt);
6975         sregs->idt.limit = dt.size;
6976         sregs->idt.base = dt.address;
6977         kvm_x86_ops->get_gdt(vcpu, &dt);
6978         sregs->gdt.limit = dt.size;
6979         sregs->gdt.base = dt.address;
6980
6981         sregs->cr0 = kvm_read_cr0(vcpu);
6982         sregs->cr2 = vcpu->arch.cr2;
6983         sregs->cr3 = kvm_read_cr3(vcpu);
6984         sregs->cr4 = kvm_read_cr4(vcpu);
6985         sregs->cr8 = kvm_get_cr8(vcpu);
6986         sregs->efer = vcpu->arch.efer;
6987         sregs->apic_base = kvm_get_apic_base(vcpu);
6988
6989         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6990
6991         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6992                 set_bit(vcpu->arch.interrupt.nr,
6993                         (unsigned long *)sregs->interrupt_bitmap);
6994
6995         return 0;
6996 }
6997
6998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6999                                     struct kvm_mp_state *mp_state)
7000 {
7001         kvm_apic_accept_events(vcpu);
7002         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7003                                         vcpu->arch.pv.pv_unhalted)
7004                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7005         else
7006                 mp_state->mp_state = vcpu->arch.mp_state;
7007
7008         return 0;
7009 }
7010
7011 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7012                                     struct kvm_mp_state *mp_state)
7013 {
7014         if (!kvm_vcpu_has_lapic(vcpu) &&
7015             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7016                 return -EINVAL;
7017
7018         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7019                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7020                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7021         } else
7022                 vcpu->arch.mp_state = mp_state->mp_state;
7023         kvm_make_request(KVM_REQ_EVENT, vcpu);
7024         return 0;
7025 }
7026
7027 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7028                     int reason, bool has_error_code, u32 error_code)
7029 {
7030         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7031         int ret;
7032
7033         init_emulate_ctxt(vcpu);
7034
7035         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7036                                    has_error_code, error_code);
7037
7038         if (ret)
7039                 return EMULATE_FAIL;
7040
7041         kvm_rip_write(vcpu, ctxt->eip);
7042         kvm_set_rflags(vcpu, ctxt->eflags);
7043         kvm_make_request(KVM_REQ_EVENT, vcpu);
7044         return EMULATE_DONE;
7045 }
7046 EXPORT_SYMBOL_GPL(kvm_task_switch);
7047
7048 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7049                                   struct kvm_sregs *sregs)
7050 {
7051         struct msr_data apic_base_msr;
7052         int mmu_reset_needed = 0;
7053         int pending_vec, max_bits, idx;
7054         struct desc_ptr dt;
7055
7056         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7057                 return -EINVAL;
7058
7059         dt.size = sregs->idt.limit;
7060         dt.address = sregs->idt.base;
7061         kvm_x86_ops->set_idt(vcpu, &dt);
7062         dt.size = sregs->gdt.limit;
7063         dt.address = sregs->gdt.base;
7064         kvm_x86_ops->set_gdt(vcpu, &dt);
7065
7066         vcpu->arch.cr2 = sregs->cr2;
7067         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7068         vcpu->arch.cr3 = sregs->cr3;
7069         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7070
7071         kvm_set_cr8(vcpu, sregs->cr8);
7072
7073         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7074         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7075         apic_base_msr.data = sregs->apic_base;
7076         apic_base_msr.host_initiated = true;
7077         kvm_set_apic_base(vcpu, &apic_base_msr);
7078
7079         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7080         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7081         vcpu->arch.cr0 = sregs->cr0;
7082
7083         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7084         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7085         if (sregs->cr4 & X86_CR4_OSXSAVE)
7086                 kvm_update_cpuid(vcpu);
7087
7088         idx = srcu_read_lock(&vcpu->kvm->srcu);
7089         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7090                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7091                 mmu_reset_needed = 1;
7092         }
7093         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7094
7095         if (mmu_reset_needed)
7096                 kvm_mmu_reset_context(vcpu);
7097
7098         max_bits = KVM_NR_INTERRUPTS;
7099         pending_vec = find_first_bit(
7100                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7101         if (pending_vec < max_bits) {
7102                 kvm_queue_interrupt(vcpu, pending_vec, false);
7103                 pr_debug("Set back pending irq %d\n", pending_vec);
7104         }
7105
7106         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7107         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7108         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7109         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7110         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7111         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7112
7113         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7114         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7115
7116         update_cr8_intercept(vcpu);
7117
7118         /* Older userspace won't unhalt the vcpu on reset. */
7119         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7120             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7121             !is_protmode(vcpu))
7122                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7123
7124         kvm_make_request(KVM_REQ_EVENT, vcpu);
7125
7126         return 0;
7127 }
7128
7129 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7130                                         struct kvm_guest_debug *dbg)
7131 {
7132         unsigned long rflags;
7133         int i, r;
7134
7135         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7136                 r = -EBUSY;
7137                 if (vcpu->arch.exception.pending)
7138                         goto out;
7139                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7140                         kvm_queue_exception(vcpu, DB_VECTOR);
7141                 else
7142                         kvm_queue_exception(vcpu, BP_VECTOR);
7143         }
7144
7145         /*
7146          * Read rflags as long as potentially injected trace flags are still
7147          * filtered out.
7148          */
7149         rflags = kvm_get_rflags(vcpu);
7150
7151         vcpu->guest_debug = dbg->control;
7152         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7153                 vcpu->guest_debug = 0;
7154
7155         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7156                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7157                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7158                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7159         } else {
7160                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7161                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7162         }
7163         kvm_update_dr7(vcpu);
7164
7165         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7166                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7167                         get_segment_base(vcpu, VCPU_SREG_CS);
7168
7169         /*
7170          * Trigger an rflags update that will inject or remove the trace
7171          * flags.
7172          */
7173         kvm_set_rflags(vcpu, rflags);
7174
7175         kvm_x86_ops->update_bp_intercept(vcpu);
7176
7177         r = 0;
7178
7179 out:
7180
7181         return r;
7182 }
7183
7184 /*
7185  * Translate a guest virtual address to a guest physical address.
7186  */
7187 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7188                                     struct kvm_translation *tr)
7189 {
7190         unsigned long vaddr = tr->linear_address;
7191         gpa_t gpa;
7192         int idx;
7193
7194         idx = srcu_read_lock(&vcpu->kvm->srcu);
7195         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7196         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7197         tr->physical_address = gpa;
7198         tr->valid = gpa != UNMAPPED_GVA;
7199         tr->writeable = 1;
7200         tr->usermode = 0;
7201
7202         return 0;
7203 }
7204
7205 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7206 {
7207         struct fxregs_state *fxsave =
7208                         &vcpu->arch.guest_fpu.state.fxsave;
7209
7210         memcpy(fpu->fpr, fxsave->st_space, 128);
7211         fpu->fcw = fxsave->cwd;
7212         fpu->fsw = fxsave->swd;
7213         fpu->ftwx = fxsave->twd;
7214         fpu->last_opcode = fxsave->fop;
7215         fpu->last_ip = fxsave->rip;
7216         fpu->last_dp = fxsave->rdp;
7217         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7218
7219         return 0;
7220 }
7221
7222 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7223 {
7224         struct fxregs_state *fxsave =
7225                         &vcpu->arch.guest_fpu.state.fxsave;
7226
7227         memcpy(fxsave->st_space, fpu->fpr, 128);
7228         fxsave->cwd = fpu->fcw;
7229         fxsave->swd = fpu->fsw;
7230         fxsave->twd = fpu->ftwx;
7231         fxsave->fop = fpu->last_opcode;
7232         fxsave->rip = fpu->last_ip;
7233         fxsave->rdp = fpu->last_dp;
7234         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7235
7236         return 0;
7237 }
7238
7239 static void fx_init(struct kvm_vcpu *vcpu)
7240 {
7241         fpstate_init(&vcpu->arch.guest_fpu.state);
7242         if (cpu_has_xsaves)
7243                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7244                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7245
7246         /*
7247          * Ensure guest xcr0 is valid for loading
7248          */
7249         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7250
7251         vcpu->arch.cr0 |= X86_CR0_ET;
7252 }
7253
7254 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7255 {
7256         if (vcpu->guest_fpu_loaded)
7257                 return;
7258
7259         /*
7260          * Restore all possible states in the guest,
7261          * and assume host would use all available bits.
7262          * Guest xcr0 would be loaded later.
7263          */
7264         kvm_put_guest_xcr0(vcpu);
7265         vcpu->guest_fpu_loaded = 1;
7266         __kernel_fpu_begin();
7267         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7268         trace_kvm_fpu(1);
7269 }
7270
7271 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7272 {
7273         kvm_put_guest_xcr0(vcpu);
7274
7275         if (!vcpu->guest_fpu_loaded) {
7276                 vcpu->fpu_counter = 0;
7277                 return;
7278         }
7279
7280         vcpu->guest_fpu_loaded = 0;
7281         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7282         __kernel_fpu_end();
7283         ++vcpu->stat.fpu_reload;
7284         /*
7285          * If using eager FPU mode, or if the guest is a frequent user
7286          * of the FPU, just leave the FPU active for next time.
7287          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7288          * the FPU in bursts will revert to loading it on demand.
7289          */
7290         if (!vcpu->arch.eager_fpu) {
7291                 if (++vcpu->fpu_counter < 5)
7292                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7293         }
7294         trace_kvm_fpu(0);
7295 }
7296
7297 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7298 {
7299         kvmclock_reset(vcpu);
7300
7301         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7302         kvm_x86_ops->vcpu_free(vcpu);
7303 }
7304
7305 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7306                                                 unsigned int id)
7307 {
7308         struct kvm_vcpu *vcpu;
7309
7310         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7311                 printk_once(KERN_WARNING
7312                 "kvm: SMP vm created on host with unstable TSC; "
7313                 "guest TSC will not be reliable\n");
7314
7315         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7316
7317         return vcpu;
7318 }
7319
7320 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7321 {
7322         int r;
7323
7324         kvm_vcpu_mtrr_init(vcpu);
7325         r = vcpu_load(vcpu);
7326         if (r)
7327                 return r;
7328         kvm_vcpu_reset(vcpu, false);
7329         kvm_mmu_setup(vcpu);
7330         vcpu_put(vcpu);
7331         return r;
7332 }
7333
7334 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7335 {
7336         struct msr_data msr;
7337         struct kvm *kvm = vcpu->kvm;
7338
7339         if (vcpu_load(vcpu))
7340                 return;
7341         msr.data = 0x0;
7342         msr.index = MSR_IA32_TSC;
7343         msr.host_initiated = true;
7344         kvm_write_tsc(vcpu, &msr);
7345         vcpu_put(vcpu);
7346
7347         if (!kvmclock_periodic_sync)
7348                 return;
7349
7350         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7351                                         KVMCLOCK_SYNC_PERIOD);
7352 }
7353
7354 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7355 {
7356         int r;
7357         vcpu->arch.apf.msr_val = 0;
7358
7359         r = vcpu_load(vcpu);
7360         BUG_ON(r);
7361         kvm_mmu_unload(vcpu);
7362         vcpu_put(vcpu);
7363
7364         kvm_x86_ops->vcpu_free(vcpu);
7365 }
7366
7367 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7368 {
7369         vcpu->arch.hflags = 0;
7370
7371         atomic_set(&vcpu->arch.nmi_queued, 0);
7372         vcpu->arch.nmi_pending = 0;
7373         vcpu->arch.nmi_injected = false;
7374         kvm_clear_interrupt_queue(vcpu);
7375         kvm_clear_exception_queue(vcpu);
7376
7377         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7378         kvm_update_dr0123(vcpu);
7379         vcpu->arch.dr6 = DR6_INIT;
7380         kvm_update_dr6(vcpu);
7381         vcpu->arch.dr7 = DR7_FIXED_1;
7382         kvm_update_dr7(vcpu);
7383
7384         vcpu->arch.cr2 = 0;
7385
7386         kvm_make_request(KVM_REQ_EVENT, vcpu);
7387         vcpu->arch.apf.msr_val = 0;
7388         vcpu->arch.st.msr_val = 0;
7389
7390         kvmclock_reset(vcpu);
7391
7392         kvm_clear_async_pf_completion_queue(vcpu);
7393         kvm_async_pf_hash_reset(vcpu);
7394         vcpu->arch.apf.halted = false;
7395
7396         if (!init_event) {
7397                 kvm_pmu_reset(vcpu);
7398                 vcpu->arch.smbase = 0x30000;
7399         }
7400
7401         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7402         vcpu->arch.regs_avail = ~0;
7403         vcpu->arch.regs_dirty = ~0;
7404
7405         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7406 }
7407
7408 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7409 {
7410         struct kvm_segment cs;
7411
7412         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7413         cs.selector = vector << 8;
7414         cs.base = vector << 12;
7415         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7416         kvm_rip_write(vcpu, 0);
7417 }
7418
7419 int kvm_arch_hardware_enable(void)
7420 {
7421         struct kvm *kvm;
7422         struct kvm_vcpu *vcpu;
7423         int i;
7424         int ret;
7425         u64 local_tsc;
7426         u64 max_tsc = 0;
7427         bool stable, backwards_tsc = false;
7428
7429         kvm_shared_msr_cpu_online();
7430         ret = kvm_x86_ops->hardware_enable();
7431         if (ret != 0)
7432                 return ret;
7433
7434         local_tsc = rdtsc();
7435         stable = !check_tsc_unstable();
7436         list_for_each_entry(kvm, &vm_list, vm_list) {
7437                 kvm_for_each_vcpu(i, vcpu, kvm) {
7438                         if (!stable && vcpu->cpu == smp_processor_id())
7439                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7440                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7441                                 backwards_tsc = true;
7442                                 if (vcpu->arch.last_host_tsc > max_tsc)
7443                                         max_tsc = vcpu->arch.last_host_tsc;
7444                         }
7445                 }
7446         }
7447
7448         /*
7449          * Sometimes, even reliable TSCs go backwards.  This happens on
7450          * platforms that reset TSC during suspend or hibernate actions, but
7451          * maintain synchronization.  We must compensate.  Fortunately, we can
7452          * detect that condition here, which happens early in CPU bringup,
7453          * before any KVM threads can be running.  Unfortunately, we can't
7454          * bring the TSCs fully up to date with real time, as we aren't yet far
7455          * enough into CPU bringup that we know how much real time has actually
7456          * elapsed; our helper function, get_kernel_ns() will be using boot
7457          * variables that haven't been updated yet.
7458          *
7459          * So we simply find the maximum observed TSC above, then record the
7460          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7461          * the adjustment will be applied.  Note that we accumulate
7462          * adjustments, in case multiple suspend cycles happen before some VCPU
7463          * gets a chance to run again.  In the event that no KVM threads get a
7464          * chance to run, we will miss the entire elapsed period, as we'll have
7465          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7466          * loose cycle time.  This isn't too big a deal, since the loss will be
7467          * uniform across all VCPUs (not to mention the scenario is extremely
7468          * unlikely). It is possible that a second hibernate recovery happens
7469          * much faster than a first, causing the observed TSC here to be
7470          * smaller; this would require additional padding adjustment, which is
7471          * why we set last_host_tsc to the local tsc observed here.
7472          *
7473          * N.B. - this code below runs only on platforms with reliable TSC,
7474          * as that is the only way backwards_tsc is set above.  Also note
7475          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7476          * have the same delta_cyc adjustment applied if backwards_tsc
7477          * is detected.  Note further, this adjustment is only done once,
7478          * as we reset last_host_tsc on all VCPUs to stop this from being
7479          * called multiple times (one for each physical CPU bringup).
7480          *
7481          * Platforms with unreliable TSCs don't have to deal with this, they
7482          * will be compensated by the logic in vcpu_load, which sets the TSC to
7483          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7484          * guarantee that they stay in perfect synchronization.
7485          */
7486         if (backwards_tsc) {
7487                 u64 delta_cyc = max_tsc - local_tsc;
7488                 backwards_tsc_observed = true;
7489                 list_for_each_entry(kvm, &vm_list, vm_list) {
7490                         kvm_for_each_vcpu(i, vcpu, kvm) {
7491                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7492                                 vcpu->arch.last_host_tsc = local_tsc;
7493                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7494                         }
7495
7496                         /*
7497                          * We have to disable TSC offset matching.. if you were
7498                          * booting a VM while issuing an S4 host suspend....
7499                          * you may have some problem.  Solving this issue is
7500                          * left as an exercise to the reader.
7501                          */
7502                         kvm->arch.last_tsc_nsec = 0;
7503                         kvm->arch.last_tsc_write = 0;
7504                 }
7505
7506         }
7507         return 0;
7508 }
7509
7510 void kvm_arch_hardware_disable(void)
7511 {
7512         kvm_x86_ops->hardware_disable();
7513         drop_user_return_notifiers();
7514 }
7515
7516 int kvm_arch_hardware_setup(void)
7517 {
7518         int r;
7519
7520         r = kvm_x86_ops->hardware_setup();
7521         if (r != 0)
7522                 return r;
7523
7524         if (kvm_has_tsc_control) {
7525                 /*
7526                  * Make sure the user can only configure tsc_khz values that
7527                  * fit into a signed integer.
7528                  * A min value is not calculated needed because it will always
7529                  * be 1 on all machines.
7530                  */
7531                 u64 max = min(0x7fffffffULL,
7532                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7533                 kvm_max_guest_tsc_khz = max;
7534
7535                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7536         }
7537
7538         kvm_init_msr_list();
7539         return 0;
7540 }
7541
7542 void kvm_arch_hardware_unsetup(void)
7543 {
7544         kvm_x86_ops->hardware_unsetup();
7545 }
7546
7547 void kvm_arch_check_processor_compat(void *rtn)
7548 {
7549         kvm_x86_ops->check_processor_compatibility(rtn);
7550 }
7551
7552 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7553 {
7554         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7555 }
7556 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7557
7558 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7559 {
7560         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7561 }
7562
7563 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7564 {
7565         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7566 }
7567
7568 struct static_key kvm_no_apic_vcpu __read_mostly;
7569
7570 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7571 {
7572         struct page *page;
7573         struct kvm *kvm;
7574         int r;
7575
7576         BUG_ON(vcpu->kvm == NULL);
7577         kvm = vcpu->kvm;
7578
7579         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7580         vcpu->arch.pv.pv_unhalted = false;
7581         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7582         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7583                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7584         else
7585                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7586
7587         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7588         if (!page) {
7589                 r = -ENOMEM;
7590                 goto fail;
7591         }
7592         vcpu->arch.pio_data = page_address(page);
7593
7594         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7595
7596         r = kvm_mmu_create(vcpu);
7597         if (r < 0)
7598                 goto fail_free_pio_data;
7599
7600         if (irqchip_in_kernel(kvm)) {
7601                 r = kvm_create_lapic(vcpu);
7602                 if (r < 0)
7603                         goto fail_mmu_destroy;
7604         } else
7605                 static_key_slow_inc(&kvm_no_apic_vcpu);
7606
7607         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7608                                        GFP_KERNEL);
7609         if (!vcpu->arch.mce_banks) {
7610                 r = -ENOMEM;
7611                 goto fail_free_lapic;
7612         }
7613         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7614
7615         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7616                 r = -ENOMEM;
7617                 goto fail_free_mce_banks;
7618         }
7619
7620         fx_init(vcpu);
7621
7622         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7623         vcpu->arch.pv_time_enabled = false;
7624
7625         vcpu->arch.guest_supported_xcr0 = 0;
7626         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7627
7628         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7629
7630         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7631
7632         kvm_async_pf_hash_reset(vcpu);
7633         kvm_pmu_init(vcpu);
7634
7635         vcpu->arch.pending_external_vector = -1;
7636
7637         kvm_hv_vcpu_init(vcpu);
7638
7639         return 0;
7640
7641 fail_free_mce_banks:
7642         kfree(vcpu->arch.mce_banks);
7643 fail_free_lapic:
7644         kvm_free_lapic(vcpu);
7645 fail_mmu_destroy:
7646         kvm_mmu_destroy(vcpu);
7647 fail_free_pio_data:
7648         free_page((unsigned long)vcpu->arch.pio_data);
7649 fail:
7650         return r;
7651 }
7652
7653 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7654 {
7655         int idx;
7656
7657         kvm_hv_vcpu_uninit(vcpu);
7658         kvm_pmu_destroy(vcpu);
7659         kfree(vcpu->arch.mce_banks);
7660         kvm_free_lapic(vcpu);
7661         idx = srcu_read_lock(&vcpu->kvm->srcu);
7662         kvm_mmu_destroy(vcpu);
7663         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7664         free_page((unsigned long)vcpu->arch.pio_data);
7665         if (!lapic_in_kernel(vcpu))
7666                 static_key_slow_dec(&kvm_no_apic_vcpu);
7667 }
7668
7669 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7670 {
7671         kvm_x86_ops->sched_in(vcpu, cpu);
7672 }
7673
7674 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7675 {
7676         if (type)
7677                 return -EINVAL;
7678
7679         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7680         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7681         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7682         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7683         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7684
7685         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7686         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7687         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7688         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7689                 &kvm->arch.irq_sources_bitmap);
7690
7691         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7692         mutex_init(&kvm->arch.apic_map_lock);
7693         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7694
7695         pvclock_update_vm_gtod_copy(kvm);
7696
7697         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7698         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7699
7700         return 0;
7701 }
7702
7703 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7704 {
7705         int r;
7706         r = vcpu_load(vcpu);
7707         BUG_ON(r);
7708         kvm_mmu_unload(vcpu);
7709         vcpu_put(vcpu);
7710 }
7711
7712 static void kvm_free_vcpus(struct kvm *kvm)
7713 {
7714         unsigned int i;
7715         struct kvm_vcpu *vcpu;
7716
7717         /*
7718          * Unpin any mmu pages first.
7719          */
7720         kvm_for_each_vcpu(i, vcpu, kvm) {
7721                 kvm_clear_async_pf_completion_queue(vcpu);
7722                 kvm_unload_vcpu_mmu(vcpu);
7723         }
7724         kvm_for_each_vcpu(i, vcpu, kvm)
7725                 kvm_arch_vcpu_free(vcpu);
7726
7727         mutex_lock(&kvm->lock);
7728         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7729                 kvm->vcpus[i] = NULL;
7730
7731         atomic_set(&kvm->online_vcpus, 0);
7732         mutex_unlock(&kvm->lock);
7733 }
7734
7735 void kvm_arch_sync_events(struct kvm *kvm)
7736 {
7737         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7738         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7739         kvm_free_all_assigned_devices(kvm);
7740         kvm_free_pit(kvm);
7741 }
7742
7743 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7744 {
7745         int i, r;
7746         unsigned long hva;
7747         struct kvm_memslots *slots = kvm_memslots(kvm);
7748         struct kvm_memory_slot *slot, old;
7749
7750         /* Called with kvm->slots_lock held.  */
7751         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7752                 return -EINVAL;
7753
7754         slot = id_to_memslot(slots, id);
7755         if (size) {
7756                 if (WARN_ON(slot->npages))
7757                         return -EEXIST;
7758
7759                 /*
7760                  * MAP_SHARED to prevent internal slot pages from being moved
7761                  * by fork()/COW.
7762                  */
7763                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7764                               MAP_SHARED | MAP_ANONYMOUS, 0);
7765                 if (IS_ERR((void *)hva))
7766                         return PTR_ERR((void *)hva);
7767         } else {
7768                 if (!slot->npages)
7769                         return 0;
7770
7771                 hva = 0;
7772         }
7773
7774         old = *slot;
7775         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7776                 struct kvm_userspace_memory_region m;
7777
7778                 m.slot = id | (i << 16);
7779                 m.flags = 0;
7780                 m.guest_phys_addr = gpa;
7781                 m.userspace_addr = hva;
7782                 m.memory_size = size;
7783                 r = __kvm_set_memory_region(kvm, &m);
7784                 if (r < 0)
7785                         return r;
7786         }
7787
7788         if (!size) {
7789                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7790                 WARN_ON(r < 0);
7791         }
7792
7793         return 0;
7794 }
7795 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7796
7797 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7798 {
7799         int r;
7800
7801         mutex_lock(&kvm->slots_lock);
7802         r = __x86_set_memory_region(kvm, id, gpa, size);
7803         mutex_unlock(&kvm->slots_lock);
7804
7805         return r;
7806 }
7807 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7808
7809 void kvm_arch_destroy_vm(struct kvm *kvm)
7810 {
7811         if (current->mm == kvm->mm) {
7812                 /*
7813                  * Free memory regions allocated on behalf of userspace,
7814                  * unless the the memory map has changed due to process exit
7815                  * or fd copying.
7816                  */
7817                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7818                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7819                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7820         }
7821         kvm_iommu_unmap_guest(kvm);
7822         kfree(kvm->arch.vpic);
7823         kfree(kvm->arch.vioapic);
7824         kvm_free_vcpus(kvm);
7825         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7826 }
7827
7828 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7829                            struct kvm_memory_slot *dont)
7830 {
7831         int i;
7832
7833         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7834                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7835                         kvfree(free->arch.rmap[i]);
7836                         free->arch.rmap[i] = NULL;
7837                 }
7838                 if (i == 0)
7839                         continue;
7840
7841                 if (!dont || free->arch.lpage_info[i - 1] !=
7842                              dont->arch.lpage_info[i - 1]) {
7843                         kvfree(free->arch.lpage_info[i - 1]);
7844                         free->arch.lpage_info[i - 1] = NULL;
7845                 }
7846         }
7847 }
7848
7849 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7850                             unsigned long npages)
7851 {
7852         int i;
7853
7854         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7855                 unsigned long ugfn;
7856                 int lpages;
7857                 int level = i + 1;
7858
7859                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7860                                       slot->base_gfn, level) + 1;
7861
7862                 slot->arch.rmap[i] =
7863                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7864                 if (!slot->arch.rmap[i])
7865                         goto out_free;
7866                 if (i == 0)
7867                         continue;
7868
7869                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7870                                         sizeof(*slot->arch.lpage_info[i - 1]));
7871                 if (!slot->arch.lpage_info[i - 1])
7872                         goto out_free;
7873
7874                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7875                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7876                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7877                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7878                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7879                 /*
7880                  * If the gfn and userspace address are not aligned wrt each
7881                  * other, or if explicitly asked to, disable large page
7882                  * support for this slot
7883                  */
7884                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7885                     !kvm_largepages_enabled()) {
7886                         unsigned long j;
7887
7888                         for (j = 0; j < lpages; ++j)
7889                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7890                 }
7891         }
7892
7893         return 0;
7894
7895 out_free:
7896         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7897                 kvfree(slot->arch.rmap[i]);
7898                 slot->arch.rmap[i] = NULL;
7899                 if (i == 0)
7900                         continue;
7901
7902                 kvfree(slot->arch.lpage_info[i - 1]);
7903                 slot->arch.lpage_info[i - 1] = NULL;
7904         }
7905         return -ENOMEM;
7906 }
7907
7908 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7909 {
7910         /*
7911          * memslots->generation has been incremented.
7912          * mmio generation may have reached its maximum value.
7913          */
7914         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7915 }
7916
7917 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7918                                 struct kvm_memory_slot *memslot,
7919                                 const struct kvm_userspace_memory_region *mem,
7920                                 enum kvm_mr_change change)
7921 {
7922         return 0;
7923 }
7924
7925 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7926                                      struct kvm_memory_slot *new)
7927 {
7928         /* Still write protect RO slot */
7929         if (new->flags & KVM_MEM_READONLY) {
7930                 kvm_mmu_slot_remove_write_access(kvm, new);
7931                 return;
7932         }
7933
7934         /*
7935          * Call kvm_x86_ops dirty logging hooks when they are valid.
7936          *
7937          * kvm_x86_ops->slot_disable_log_dirty is called when:
7938          *
7939          *  - KVM_MR_CREATE with dirty logging is disabled
7940          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7941          *
7942          * The reason is, in case of PML, we need to set D-bit for any slots
7943          * with dirty logging disabled in order to eliminate unnecessary GPA
7944          * logging in PML buffer (and potential PML buffer full VMEXT). This
7945          * guarantees leaving PML enabled during guest's lifetime won't have
7946          * any additonal overhead from PML when guest is running with dirty
7947          * logging disabled for memory slots.
7948          *
7949          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7950          * to dirty logging mode.
7951          *
7952          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7953          *
7954          * In case of write protect:
7955          *
7956          * Write protect all pages for dirty logging.
7957          *
7958          * All the sptes including the large sptes which point to this
7959          * slot are set to readonly. We can not create any new large
7960          * spte on this slot until the end of the logging.
7961          *
7962          * See the comments in fast_page_fault().
7963          */
7964         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7965                 if (kvm_x86_ops->slot_enable_log_dirty)
7966                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7967                 else
7968                         kvm_mmu_slot_remove_write_access(kvm, new);
7969         } else {
7970                 if (kvm_x86_ops->slot_disable_log_dirty)
7971                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7972         }
7973 }
7974
7975 void kvm_arch_commit_memory_region(struct kvm *kvm,
7976                                 const struct kvm_userspace_memory_region *mem,
7977                                 const struct kvm_memory_slot *old,
7978                                 const struct kvm_memory_slot *new,
7979                                 enum kvm_mr_change change)
7980 {
7981         int nr_mmu_pages = 0;
7982
7983         if (!kvm->arch.n_requested_mmu_pages)
7984                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7985
7986         if (nr_mmu_pages)
7987                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7988
7989         /*
7990          * Dirty logging tracks sptes in 4k granularity, meaning that large
7991          * sptes have to be split.  If live migration is successful, the guest
7992          * in the source machine will be destroyed and large sptes will be
7993          * created in the destination. However, if the guest continues to run
7994          * in the source machine (for example if live migration fails), small
7995          * sptes will remain around and cause bad performance.
7996          *
7997          * Scan sptes if dirty logging has been stopped, dropping those
7998          * which can be collapsed into a single large-page spte.  Later
7999          * page faults will create the large-page sptes.
8000          */
8001         if ((change != KVM_MR_DELETE) &&
8002                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8003                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8004                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8005
8006         /*
8007          * Set up write protection and/or dirty logging for the new slot.
8008          *
8009          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8010          * been zapped so no dirty logging staff is needed for old slot. For
8011          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8012          * new and it's also covered when dealing with the new slot.
8013          *
8014          * FIXME: const-ify all uses of struct kvm_memory_slot.
8015          */
8016         if (change != KVM_MR_DELETE)
8017                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8018 }
8019
8020 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8021 {
8022         kvm_mmu_invalidate_zap_all_pages(kvm);
8023 }
8024
8025 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8026                                    struct kvm_memory_slot *slot)
8027 {
8028         kvm_mmu_invalidate_zap_all_pages(kvm);
8029 }
8030
8031 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8032 {
8033         if (!list_empty_careful(&vcpu->async_pf.done))
8034                 return true;
8035
8036         if (kvm_apic_has_events(vcpu))
8037                 return true;
8038
8039         if (vcpu->arch.pv.pv_unhalted)
8040                 return true;
8041
8042         if (atomic_read(&vcpu->arch.nmi_queued))
8043                 return true;
8044
8045         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8046                 return true;
8047
8048         if (kvm_arch_interrupt_allowed(vcpu) &&
8049             kvm_cpu_has_interrupt(vcpu))
8050                 return true;
8051
8052         if (kvm_hv_has_stimer_pending(vcpu))
8053                 return true;
8054
8055         return false;
8056 }
8057
8058 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8059 {
8060         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8061                 kvm_x86_ops->check_nested_events(vcpu, false);
8062
8063         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8064 }
8065
8066 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8067 {
8068         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8069 }
8070
8071 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8072 {
8073         return kvm_x86_ops->interrupt_allowed(vcpu);
8074 }
8075
8076 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8077 {
8078         if (is_64_bit_mode(vcpu))
8079                 return kvm_rip_read(vcpu);
8080         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8081                      kvm_rip_read(vcpu));
8082 }
8083 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8084
8085 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8086 {
8087         return kvm_get_linear_rip(vcpu) == linear_rip;
8088 }
8089 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8090
8091 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8092 {
8093         unsigned long rflags;
8094
8095         rflags = kvm_x86_ops->get_rflags(vcpu);
8096         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8097                 rflags &= ~X86_EFLAGS_TF;
8098         return rflags;
8099 }
8100 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8101
8102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8103 {
8104         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8105             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8106                 rflags |= X86_EFLAGS_TF;
8107         kvm_x86_ops->set_rflags(vcpu, rflags);
8108 }
8109
8110 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8111 {
8112         __kvm_set_rflags(vcpu, rflags);
8113         kvm_make_request(KVM_REQ_EVENT, vcpu);
8114 }
8115 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8116
8117 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8118 {
8119         int r;
8120
8121         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8122               work->wakeup_all)
8123                 return;
8124
8125         r = kvm_mmu_reload(vcpu);
8126         if (unlikely(r))
8127                 return;
8128
8129         if (!vcpu->arch.mmu.direct_map &&
8130               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8131                 return;
8132
8133         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8134 }
8135
8136 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8137 {
8138         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8139 }
8140
8141 static inline u32 kvm_async_pf_next_probe(u32 key)
8142 {
8143         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8144 }
8145
8146 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8147 {
8148         u32 key = kvm_async_pf_hash_fn(gfn);
8149
8150         while (vcpu->arch.apf.gfns[key] != ~0)
8151                 key = kvm_async_pf_next_probe(key);
8152
8153         vcpu->arch.apf.gfns[key] = gfn;
8154 }
8155
8156 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8157 {
8158         int i;
8159         u32 key = kvm_async_pf_hash_fn(gfn);
8160
8161         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8162                      (vcpu->arch.apf.gfns[key] != gfn &&
8163                       vcpu->arch.apf.gfns[key] != ~0); i++)
8164                 key = kvm_async_pf_next_probe(key);
8165
8166         return key;
8167 }
8168
8169 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8170 {
8171         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8172 }
8173
8174 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8175 {
8176         u32 i, j, k;
8177
8178         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8179         while (true) {
8180                 vcpu->arch.apf.gfns[i] = ~0;
8181                 do {
8182                         j = kvm_async_pf_next_probe(j);
8183                         if (vcpu->arch.apf.gfns[j] == ~0)
8184                                 return;
8185                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8186                         /*
8187                          * k lies cyclically in ]i,j]
8188                          * |    i.k.j |
8189                          * |....j i.k.| or  |.k..j i...|
8190                          */
8191                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8192                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8193                 i = j;
8194         }
8195 }
8196
8197 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8198 {
8199
8200         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8201                                       sizeof(val));
8202 }
8203
8204 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8205                                      struct kvm_async_pf *work)
8206 {
8207         struct x86_exception fault;
8208
8209         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8210         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8211
8212         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8213             (vcpu->arch.apf.send_user_only &&
8214              kvm_x86_ops->get_cpl(vcpu) == 0))
8215                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8216         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8217                 fault.vector = PF_VECTOR;
8218                 fault.error_code_valid = true;
8219                 fault.error_code = 0;
8220                 fault.nested_page_fault = false;
8221                 fault.address = work->arch.token;
8222                 kvm_inject_page_fault(vcpu, &fault);
8223         }
8224 }
8225
8226 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8227                                  struct kvm_async_pf *work)
8228 {
8229         struct x86_exception fault;
8230
8231         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8232         if (work->wakeup_all)
8233                 work->arch.token = ~0; /* broadcast wakeup */
8234         else
8235                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8236
8237         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8238             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8239                 fault.vector = PF_VECTOR;
8240                 fault.error_code_valid = true;
8241                 fault.error_code = 0;
8242                 fault.nested_page_fault = false;
8243                 fault.address = work->arch.token;
8244                 kvm_inject_page_fault(vcpu, &fault);
8245         }
8246         vcpu->arch.apf.halted = false;
8247         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8248 }
8249
8250 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8251 {
8252         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8253                 return true;
8254         else
8255                 return !kvm_event_needs_reinjection(vcpu) &&
8256                         kvm_x86_ops->interrupt_allowed(vcpu);
8257 }
8258
8259 void kvm_arch_start_assignment(struct kvm *kvm)
8260 {
8261         atomic_inc(&kvm->arch.assigned_device_count);
8262 }
8263 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8264
8265 void kvm_arch_end_assignment(struct kvm *kvm)
8266 {
8267         atomic_dec(&kvm->arch.assigned_device_count);
8268 }
8269 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8270
8271 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8272 {
8273         return atomic_read(&kvm->arch.assigned_device_count);
8274 }
8275 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8276
8277 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8278 {
8279         atomic_inc(&kvm->arch.noncoherent_dma_count);
8280 }
8281 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8282
8283 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8284 {
8285         atomic_dec(&kvm->arch.noncoherent_dma_count);
8286 }
8287 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8288
8289 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8290 {
8291         return atomic_read(&kvm->arch.noncoherent_dma_count);
8292 }
8293 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8294
8295 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8296                                       struct irq_bypass_producer *prod)
8297 {
8298         struct kvm_kernel_irqfd *irqfd =
8299                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8300
8301         if (kvm_x86_ops->update_pi_irte) {
8302                 irqfd->producer = prod;
8303                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8304                                 prod->irq, irqfd->gsi, 1);
8305         }
8306
8307         return -EINVAL;
8308 }
8309
8310 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8311                                       struct irq_bypass_producer *prod)
8312 {
8313         int ret;
8314         struct kvm_kernel_irqfd *irqfd =
8315                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8316
8317         if (!kvm_x86_ops->update_pi_irte) {
8318                 WARN_ON(irqfd->producer != NULL);
8319                 return;
8320         }
8321
8322         WARN_ON(irqfd->producer != prod);
8323         irqfd->producer = NULL;
8324
8325         /*
8326          * When producer of consumer is unregistered, we change back to
8327          * remapped mode, so we can re-use the current implementation
8328          * when the irq is masked/disabed or the consumer side (KVM
8329          * int this case doesn't want to receive the interrupts.
8330         */
8331         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8332         if (ret)
8333                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8334                        " fails: %d\n", irqfd->consumer.token, ret);
8335 }
8336
8337 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8338                                    uint32_t guest_irq, bool set)
8339 {
8340         if (!kvm_x86_ops->update_pi_irte)
8341                 return -EINVAL;
8342
8343         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8344 }
8345
8346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);