2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits) },
95 { "irq_exits", VCPU_STAT(irq_exits) },
96 { "host_state_reload", VCPU_STAT(host_state_reload) },
97 { "efer_reload", VCPU_STAT(efer_reload) },
98 { "fpu_reload", VCPU_STAT(fpu_reload) },
99 { "insn_emulation", VCPU_STAT(insn_emulation) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101 { "irq_injections", VCPU_STAT(irq_injections) },
102 { "nmi_injections", VCPU_STAT(nmi_injections) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107 { "mmu_flooded", VM_STAT(mmu_flooded) },
108 { "mmu_recycled", VM_STAT(mmu_recycled) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110 { "mmu_unsync", VM_STAT(mmu_unsync) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113 { "largepages", VM_STAT(lpages) },
117 unsigned long segment_base(u16 selector)
119 struct descriptor_table gdt;
120 struct desc_struct *d;
121 unsigned long table_base;
127 asm("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
130 if (selector & 4) { /* from ldt */
133 asm("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
136 d = (struct desc_struct *)(table_base + (selector & ~7));
137 v = d->base0 | ((unsigned long)d->base1 << 16) |
138 ((unsigned long)d->base2 << 24);
140 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
145 EXPORT_SYMBOL_GPL(segment_base);
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
149 if (irqchip_in_kernel(vcpu->kvm))
150 return vcpu->arch.apic_base;
152 return vcpu->arch.apic_base;
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu->kvm))
160 kvm_lapic_set_base(vcpu, data);
162 vcpu->arch.apic_base = data;
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
168 WARN_ON(vcpu->arch.exception.pending);
169 vcpu->arch.exception.pending = true;
170 vcpu->arch.exception.has_error_code = false;
171 vcpu->arch.exception.nr = nr;
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
178 ++vcpu->stat.pf_guest;
180 if (vcpu->arch.exception.pending) {
181 if (vcpu->arch.exception.nr == PF_VECTOR) {
182 printk(KERN_DEBUG "kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr);
184 vcpu->arch.exception.nr = DF_VECTOR;
185 vcpu->arch.exception.error_code = 0;
186 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192 vcpu->arch.cr2 = addr;
193 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
198 vcpu->arch.nmi_pending = 1;
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
204 WARN_ON(vcpu->arch.exception.pending);
205 vcpu->arch.exception.pending = true;
206 vcpu->arch.exception.has_error_code = true;
207 vcpu->arch.exception.nr = nr;
208 vcpu->arch.exception.error_code = error_code;
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
212 static void __queue_exception(struct kvm_vcpu *vcpu)
214 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215 vcpu->arch.exception.has_error_code,
216 vcpu->arch.exception.error_code);
220 * Load the pae pdptrs. Return true is they are all valid.
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
224 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
230 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231 offset * sizeof(u64), sizeof(pdpte));
236 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
244 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
249 EXPORT_SYMBOL_GPL(load_pdptrs);
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
253 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
257 if (is_long_mode(vcpu) || !is_pae(vcpu))
260 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
263 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
271 if (cr0 & CR0_RESERVED_BITS) {
272 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0, vcpu->arch.cr0);
274 kvm_inject_gp(vcpu, 0);
278 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu, 0);
284 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu, 0);
291 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
293 if ((vcpu->arch.shadow_efer & EFER_LME)) {
297 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu, 0);
302 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
304 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu, 0);
312 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
315 kvm_inject_gp(vcpu, 0);
321 kvm_x86_ops->set_cr0(vcpu, cr0);
322 vcpu->arch.cr0 = cr0;
324 kvm_mmu_sync_global(vcpu);
325 kvm_mmu_reset_context(vcpu);
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
332 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333 KVMTRACE_1D(LMSW, vcpu,
334 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
341 unsigned long old_cr4 = vcpu->arch.cr4;
342 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
344 if (cr4 & CR4_RESERVED_BITS) {
345 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu, 0);
350 if (is_long_mode(vcpu)) {
351 if (!(cr4 & X86_CR4_PAE)) {
352 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
354 kvm_inject_gp(vcpu, 0);
357 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
358 && ((cr4 ^ old_cr4) & pdptr_bits)
359 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
360 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
361 kvm_inject_gp(vcpu, 0);
365 if (cr4 & X86_CR4_VMXE) {
366 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
367 kvm_inject_gp(vcpu, 0);
370 kvm_x86_ops->set_cr4(vcpu, cr4);
371 vcpu->arch.cr4 = cr4;
372 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
373 kvm_mmu_sync_global(vcpu);
374 kvm_mmu_reset_context(vcpu);
376 EXPORT_SYMBOL_GPL(kvm_set_cr4);
378 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
380 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
381 kvm_mmu_sync_roots(vcpu);
382 kvm_mmu_flush_tlb(vcpu);
386 if (is_long_mode(vcpu)) {
387 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
388 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu, 0);
394 if (cr3 & CR3_PAE_RESERVED_BITS) {
396 "set_cr3: #GP, reserved bits\n");
397 kvm_inject_gp(vcpu, 0);
400 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
401 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
403 kvm_inject_gp(vcpu, 0);
408 * We don't check reserved bits in nonpae mode, because
409 * this isn't enforced, and VMware depends on this.
414 * Does the new cr3 value map to physical memory? (Note, we
415 * catch an invalid cr3 even in real-mode, because it would
416 * cause trouble later on when we turn on paging anyway.)
418 * A real CPU would silently accept an invalid cr3 and would
419 * attempt to use it - with largely undefined (and often hard
420 * to debug) behavior on the guest side.
422 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
423 kvm_inject_gp(vcpu, 0);
425 vcpu->arch.cr3 = cr3;
426 vcpu->arch.mmu.new_cr3(vcpu);
429 EXPORT_SYMBOL_GPL(kvm_set_cr3);
431 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
433 if (cr8 & CR8_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
435 kvm_inject_gp(vcpu, 0);
438 if (irqchip_in_kernel(vcpu->kvm))
439 kvm_lapic_set_tpr(vcpu, cr8);
441 vcpu->arch.cr8 = cr8;
443 EXPORT_SYMBOL_GPL(kvm_set_cr8);
445 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
447 if (irqchip_in_kernel(vcpu->kvm))
448 return kvm_lapic_get_cr8(vcpu);
450 return vcpu->arch.cr8;
452 EXPORT_SYMBOL_GPL(kvm_get_cr8);
454 static inline u32 bit(int bitno)
456 return 1 << (bitno & 31);
460 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
463 * This list is modified at module load time to reflect the
464 * capabilities of the host cpu.
466 static u32 msrs_to_save[] = {
467 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
470 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
472 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
473 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
476 static unsigned num_msrs_to_save;
478 static u32 emulated_msrs[] = {
479 MSR_IA32_MISC_ENABLE,
482 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
484 if (efer & efer_reserved_bits) {
485 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
487 kvm_inject_gp(vcpu, 0);
492 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
493 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
494 kvm_inject_gp(vcpu, 0);
498 if (efer & EFER_FFXSR) {
499 struct kvm_cpuid_entry2 *feat;
501 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
502 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
503 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504 kvm_inject_gp(vcpu, 0);
509 if (efer & EFER_SVME) {
510 struct kvm_cpuid_entry2 *feat;
512 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
513 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
514 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
515 kvm_inject_gp(vcpu, 0);
520 kvm_x86_ops->set_efer(vcpu, efer);
523 efer |= vcpu->arch.shadow_efer & EFER_LMA;
525 vcpu->arch.shadow_efer = efer;
528 void kvm_enable_efer_bits(u64 mask)
530 efer_reserved_bits &= ~mask;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
550 return kvm_set_msr(vcpu, index, *data);
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now = current_kernel_time();
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
588 uint32_t quotient, remainder;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
600 uint64_t nsecs = 1000000000LL;
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
631 struct kvm_vcpu_arch *vcpu = &v->arch;
634 if ((!vcpu->time_page))
638 if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
639 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
640 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
644 /* Keep irq disabled to prevent changes to the clock */
645 local_irq_save(flags);
646 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
647 &vcpu->hv_clock.tsc_timestamp);
649 local_irq_restore(flags);
651 /* With all the info we got, fill in the values */
653 vcpu->hv_clock.system_time = ts.tv_nsec +
654 (NSEC_PER_SEC * (u64)ts.tv_sec);
656 * The interface expects us to write an even number signaling that the
657 * update is finished. Since the guest won't see the intermediate
658 * state, we just increase by 2 at the end.
660 vcpu->hv_clock.version += 2;
662 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
664 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
665 sizeof(vcpu->hv_clock));
667 kunmap_atomic(shared_kaddr, KM_USER0);
669 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
672 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
674 struct kvm_vcpu_arch *vcpu = &v->arch;
676 if (!vcpu->time_page)
678 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
682 static bool msr_mtrr_valid(unsigned msr)
685 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
686 case MSR_MTRRfix64K_00000:
687 case MSR_MTRRfix16K_80000:
688 case MSR_MTRRfix16K_A0000:
689 case MSR_MTRRfix4K_C0000:
690 case MSR_MTRRfix4K_C8000:
691 case MSR_MTRRfix4K_D0000:
692 case MSR_MTRRfix4K_D8000:
693 case MSR_MTRRfix4K_E0000:
694 case MSR_MTRRfix4K_E8000:
695 case MSR_MTRRfix4K_F0000:
696 case MSR_MTRRfix4K_F8000:
697 case MSR_MTRRdefType:
698 case MSR_IA32_CR_PAT:
706 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
708 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
710 if (!msr_mtrr_valid(msr))
713 if (msr == MSR_MTRRdefType) {
714 vcpu->arch.mtrr_state.def_type = data;
715 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
716 } else if (msr == MSR_MTRRfix64K_00000)
718 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
719 p[1 + msr - MSR_MTRRfix16K_80000] = data;
720 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
721 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
722 else if (msr == MSR_IA32_CR_PAT)
723 vcpu->arch.pat = data;
724 else { /* Variable MTRRs */
725 int idx, is_mtrr_mask;
728 idx = (msr - 0x200) / 2;
729 is_mtrr_mask = msr - 0x200 - 2 * idx;
732 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
735 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
739 kvm_mmu_reset_context(vcpu);
743 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
747 set_efer(vcpu, data);
749 case MSR_IA32_MC0_STATUS:
750 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
753 case MSR_IA32_MCG_STATUS:
754 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
757 case MSR_IA32_MCG_CTL:
758 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
761 case MSR_IA32_DEBUGCTLMSR:
763 /* We support the non-activated case already */
765 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
766 /* Values other than LBR and BTF are vendor-specific,
767 thus reserved and should throw a #GP */
770 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
773 case MSR_IA32_UCODE_REV:
774 case MSR_IA32_UCODE_WRITE:
775 case MSR_VM_HSAVE_PA:
777 case 0x200 ... 0x2ff:
778 return set_msr_mtrr(vcpu, msr, data);
779 case MSR_IA32_APICBASE:
780 kvm_set_apic_base(vcpu, data);
782 case MSR_IA32_MISC_ENABLE:
783 vcpu->arch.ia32_misc_enable_msr = data;
785 case MSR_KVM_WALL_CLOCK:
786 vcpu->kvm->arch.wall_clock = data;
787 kvm_write_wall_clock(vcpu->kvm, data);
789 case MSR_KVM_SYSTEM_TIME: {
790 if (vcpu->arch.time_page) {
791 kvm_release_page_dirty(vcpu->arch.time_page);
792 vcpu->arch.time_page = NULL;
795 vcpu->arch.time = data;
797 /* we verify if the enable bit is set... */
801 /* ...but clean it before doing the actual write */
802 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
804 vcpu->arch.time_page =
805 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
807 if (is_error_page(vcpu->arch.time_page)) {
808 kvm_release_page_clean(vcpu->arch.time_page);
809 vcpu->arch.time_page = NULL;
812 kvm_request_guest_time_update(vcpu);
816 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
821 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
825 * Reads an msr value (of 'msr_index') into 'pdata'.
826 * Returns 0 on success, non-0 otherwise.
827 * Assumes vcpu_load() was already called.
829 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
831 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
834 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
836 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
838 if (!msr_mtrr_valid(msr))
841 if (msr == MSR_MTRRdefType)
842 *pdata = vcpu->arch.mtrr_state.def_type +
843 (vcpu->arch.mtrr_state.enabled << 10);
844 else if (msr == MSR_MTRRfix64K_00000)
846 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
847 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
848 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
849 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
850 else if (msr == MSR_IA32_CR_PAT)
851 *pdata = vcpu->arch.pat;
852 else { /* Variable MTRRs */
853 int idx, is_mtrr_mask;
856 idx = (msr - 0x200) / 2;
857 is_mtrr_mask = msr - 0x200 - 2 * idx;
860 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
863 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
870 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
875 case 0xc0010010: /* SYSCFG */
876 case 0xc0010015: /* HWCR */
877 case MSR_IA32_PLATFORM_ID:
878 case MSR_IA32_P5_MC_ADDR:
879 case MSR_IA32_P5_MC_TYPE:
880 case MSR_IA32_MC0_CTL:
881 case MSR_IA32_MCG_STATUS:
882 case MSR_IA32_MCG_CAP:
883 case MSR_IA32_MCG_CTL:
884 case MSR_IA32_MC0_MISC:
885 case MSR_IA32_MC0_MISC+4:
886 case MSR_IA32_MC0_MISC+8:
887 case MSR_IA32_MC0_MISC+12:
888 case MSR_IA32_MC0_MISC+16:
889 case MSR_IA32_MC0_MISC+20:
890 case MSR_IA32_UCODE_REV:
891 case MSR_IA32_EBL_CR_POWERON:
892 case MSR_IA32_DEBUGCTLMSR:
893 case MSR_IA32_LASTBRANCHFROMIP:
894 case MSR_IA32_LASTBRANCHTOIP:
895 case MSR_IA32_LASTINTFROMIP:
896 case MSR_IA32_LASTINTTOIP:
897 case MSR_VM_HSAVE_PA:
901 data = 0x500 | KVM_NR_VAR_MTRR;
903 case 0x200 ... 0x2ff:
904 return get_msr_mtrr(vcpu, msr, pdata);
905 case 0xcd: /* fsb frequency */
908 case MSR_IA32_APICBASE:
909 data = kvm_get_apic_base(vcpu);
911 case MSR_IA32_MISC_ENABLE:
912 data = vcpu->arch.ia32_misc_enable_msr;
914 case MSR_IA32_PERF_STATUS:
915 /* TSC increment by tick */
918 data |= (((uint64_t)4ULL) << 40);
921 data = vcpu->arch.shadow_efer;
923 case MSR_KVM_WALL_CLOCK:
924 data = vcpu->kvm->arch.wall_clock;
926 case MSR_KVM_SYSTEM_TIME:
927 data = vcpu->arch.time;
930 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
936 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
939 * Read or write a bunch of msrs. All parameters are kernel addresses.
941 * @return number of msrs set successfully.
943 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
944 struct kvm_msr_entry *entries,
945 int (*do_msr)(struct kvm_vcpu *vcpu,
946 unsigned index, u64 *data))
952 down_read(&vcpu->kvm->slots_lock);
953 for (i = 0; i < msrs->nmsrs; ++i)
954 if (do_msr(vcpu, entries[i].index, &entries[i].data))
956 up_read(&vcpu->kvm->slots_lock);
964 * Read or write a bunch of msrs. Parameters are user addresses.
966 * @return number of msrs set successfully.
968 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
969 int (*do_msr)(struct kvm_vcpu *vcpu,
970 unsigned index, u64 *data),
973 struct kvm_msrs msrs;
974 struct kvm_msr_entry *entries;
979 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
983 if (msrs.nmsrs >= MAX_IO_MSRS)
987 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
988 entries = vmalloc(size);
993 if (copy_from_user(entries, user_msrs->entries, size))
996 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1001 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1012 int kvm_dev_ioctl_check_extension(long ext)
1017 case KVM_CAP_IRQCHIP:
1019 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1020 case KVM_CAP_SET_TSS_ADDR:
1021 case KVM_CAP_EXT_CPUID:
1022 case KVM_CAP_CLOCKSOURCE:
1024 case KVM_CAP_NOP_IO_DELAY:
1025 case KVM_CAP_MP_STATE:
1026 case KVM_CAP_SYNC_MMU:
1027 case KVM_CAP_REINJECT_CONTROL:
1028 case KVM_CAP_IRQ_INJECT_STATUS:
1031 case KVM_CAP_COALESCED_MMIO:
1032 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1035 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1037 case KVM_CAP_NR_VCPUS:
1040 case KVM_CAP_NR_MEMSLOTS:
1041 r = KVM_MEMORY_SLOTS;
1043 case KVM_CAP_PV_MMU:
1057 long kvm_arch_dev_ioctl(struct file *filp,
1058 unsigned int ioctl, unsigned long arg)
1060 void __user *argp = (void __user *)arg;
1064 case KVM_GET_MSR_INDEX_LIST: {
1065 struct kvm_msr_list __user *user_msr_list = argp;
1066 struct kvm_msr_list msr_list;
1070 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1073 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1074 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1077 if (n < num_msrs_to_save)
1080 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1081 num_msrs_to_save * sizeof(u32)))
1083 if (copy_to_user(user_msr_list->indices
1084 + num_msrs_to_save * sizeof(u32),
1086 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1091 case KVM_GET_SUPPORTED_CPUID: {
1092 struct kvm_cpuid2 __user *cpuid_arg = argp;
1093 struct kvm_cpuid2 cpuid;
1096 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1098 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1099 cpuid_arg->entries);
1104 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1116 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1118 kvm_x86_ops->vcpu_load(vcpu, cpu);
1119 kvm_request_guest_time_update(vcpu);
1122 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1124 kvm_x86_ops->vcpu_put(vcpu);
1125 kvm_put_guest_fpu(vcpu);
1128 static int is_efer_nx(void)
1130 unsigned long long efer = 0;
1132 rdmsrl_safe(MSR_EFER, &efer);
1133 return efer & EFER_NX;
1136 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1139 struct kvm_cpuid_entry2 *e, *entry;
1142 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1143 e = &vcpu->arch.cpuid_entries[i];
1144 if (e->function == 0x80000001) {
1149 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1150 entry->edx &= ~(1 << 20);
1151 printk(KERN_INFO "kvm: guest NX capability removed\n");
1155 /* when an old userspace process fills a new kernel module */
1156 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1157 struct kvm_cpuid *cpuid,
1158 struct kvm_cpuid_entry __user *entries)
1161 struct kvm_cpuid_entry *cpuid_entries;
1164 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1167 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1171 if (copy_from_user(cpuid_entries, entries,
1172 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1174 for (i = 0; i < cpuid->nent; i++) {
1175 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1176 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1177 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1178 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1179 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1180 vcpu->arch.cpuid_entries[i].index = 0;
1181 vcpu->arch.cpuid_entries[i].flags = 0;
1182 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1183 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1184 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1186 vcpu->arch.cpuid_nent = cpuid->nent;
1187 cpuid_fix_nx_cap(vcpu);
1191 vfree(cpuid_entries);
1196 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1197 struct kvm_cpuid2 *cpuid,
1198 struct kvm_cpuid_entry2 __user *entries)
1203 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1206 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1207 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1209 vcpu->arch.cpuid_nent = cpuid->nent;
1216 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1217 struct kvm_cpuid2 *cpuid,
1218 struct kvm_cpuid_entry2 __user *entries)
1223 if (cpuid->nent < vcpu->arch.cpuid_nent)
1226 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1227 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1232 cpuid->nent = vcpu->arch.cpuid_nent;
1236 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1239 entry->function = function;
1240 entry->index = index;
1241 cpuid_count(entry->function, entry->index,
1242 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1246 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1247 u32 index, int *nent, int maxnent)
1249 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1250 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1251 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1252 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1253 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1254 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1255 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1256 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1257 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1258 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1259 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1260 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1261 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1262 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1263 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1264 bit(X86_FEATURE_PGE) |
1265 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1266 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1267 bit(X86_FEATURE_SYSCALL) |
1268 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1269 #ifdef CONFIG_X86_64
1270 bit(X86_FEATURE_LM) |
1272 bit(X86_FEATURE_FXSR_OPT) |
1273 bit(X86_FEATURE_MMXEXT) |
1274 bit(X86_FEATURE_3DNOWEXT) |
1275 bit(X86_FEATURE_3DNOW);
1276 const u32 kvm_supported_word3_x86_features =
1277 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1278 const u32 kvm_supported_word6_x86_features =
1279 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1280 bit(X86_FEATURE_SVM);
1282 /* all calls to cpuid_count() should be made on the same cpu */
1284 do_cpuid_1_ent(entry, function, index);
1289 entry->eax = min(entry->eax, (u32)0xb);
1292 entry->edx &= kvm_supported_word0_x86_features;
1293 entry->ecx &= kvm_supported_word3_x86_features;
1295 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1296 * may return different values. This forces us to get_cpu() before
1297 * issuing the first command, and also to emulate this annoying behavior
1298 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1300 int t, times = entry->eax & 0xff;
1302 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1303 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1304 for (t = 1; t < times && *nent < maxnent; ++t) {
1305 do_cpuid_1_ent(&entry[t], function, 0);
1306 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1311 /* function 4 and 0xb have additional index. */
1315 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1316 /* read more entries until cache_type is zero */
1317 for (i = 1; *nent < maxnent; ++i) {
1318 cache_type = entry[i - 1].eax & 0x1f;
1321 do_cpuid_1_ent(&entry[i], function, i);
1323 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1331 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1332 /* read more entries until level_type is zero */
1333 for (i = 1; *nent < maxnent; ++i) {
1334 level_type = entry[i - 1].ecx & 0xff00;
1337 do_cpuid_1_ent(&entry[i], function, i);
1339 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1345 entry->eax = min(entry->eax, 0x8000001a);
1348 entry->edx &= kvm_supported_word1_x86_features;
1349 entry->ecx &= kvm_supported_word6_x86_features;
1355 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1356 struct kvm_cpuid_entry2 __user *entries)
1358 struct kvm_cpuid_entry2 *cpuid_entries;
1359 int limit, nent = 0, r = -E2BIG;
1362 if (cpuid->nent < 1)
1365 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1369 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1370 limit = cpuid_entries[0].eax;
1371 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1372 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1373 &nent, cpuid->nent);
1375 if (nent >= cpuid->nent)
1378 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1379 limit = cpuid_entries[nent - 1].eax;
1380 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1381 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1382 &nent, cpuid->nent);
1384 if (copy_to_user(entries, cpuid_entries,
1385 nent * sizeof(struct kvm_cpuid_entry2)))
1391 vfree(cpuid_entries);
1396 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1397 struct kvm_lapic_state *s)
1400 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1407 struct kvm_lapic_state *s)
1410 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1411 kvm_apic_post_state_restore(vcpu);
1417 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1418 struct kvm_interrupt *irq)
1420 if (irq->irq < 0 || irq->irq >= 256)
1422 if (irqchip_in_kernel(vcpu->kvm))
1426 set_bit(irq->irq, vcpu->arch.irq_pending);
1427 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1434 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1437 kvm_inject_nmi(vcpu);
1443 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1444 struct kvm_tpr_access_ctl *tac)
1448 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1452 long kvm_arch_vcpu_ioctl(struct file *filp,
1453 unsigned int ioctl, unsigned long arg)
1455 struct kvm_vcpu *vcpu = filp->private_data;
1456 void __user *argp = (void __user *)arg;
1458 struct kvm_lapic_state *lapic = NULL;
1461 case KVM_GET_LAPIC: {
1462 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1467 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1471 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1476 case KVM_SET_LAPIC: {
1477 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1482 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1484 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1490 case KVM_INTERRUPT: {
1491 struct kvm_interrupt irq;
1494 if (copy_from_user(&irq, argp, sizeof irq))
1496 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1503 r = kvm_vcpu_ioctl_nmi(vcpu);
1509 case KVM_SET_CPUID: {
1510 struct kvm_cpuid __user *cpuid_arg = argp;
1511 struct kvm_cpuid cpuid;
1514 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1516 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1521 case KVM_SET_CPUID2: {
1522 struct kvm_cpuid2 __user *cpuid_arg = argp;
1523 struct kvm_cpuid2 cpuid;
1526 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1528 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1529 cpuid_arg->entries);
1534 case KVM_GET_CPUID2: {
1535 struct kvm_cpuid2 __user *cpuid_arg = argp;
1536 struct kvm_cpuid2 cpuid;
1539 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1541 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1542 cpuid_arg->entries);
1546 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1552 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1555 r = msr_io(vcpu, argp, do_set_msr, 0);
1557 case KVM_TPR_ACCESS_REPORTING: {
1558 struct kvm_tpr_access_ctl tac;
1561 if (copy_from_user(&tac, argp, sizeof tac))
1563 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1567 if (copy_to_user(argp, &tac, sizeof tac))
1572 case KVM_SET_VAPIC_ADDR: {
1573 struct kvm_vapic_addr va;
1576 if (!irqchip_in_kernel(vcpu->kvm))
1579 if (copy_from_user(&va, argp, sizeof va))
1582 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1594 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1598 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1600 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1604 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1605 u32 kvm_nr_mmu_pages)
1607 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1610 down_write(&kvm->slots_lock);
1611 spin_lock(&kvm->mmu_lock);
1613 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1614 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1616 spin_unlock(&kvm->mmu_lock);
1617 up_write(&kvm->slots_lock);
1621 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1623 return kvm->arch.n_alloc_mmu_pages;
1626 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1629 struct kvm_mem_alias *alias;
1631 for (i = 0; i < kvm->arch.naliases; ++i) {
1632 alias = &kvm->arch.aliases[i];
1633 if (gfn >= alias->base_gfn
1634 && gfn < alias->base_gfn + alias->npages)
1635 return alias->target_gfn + gfn - alias->base_gfn;
1641 * Set a new alias region. Aliases map a portion of physical memory into
1642 * another portion. This is useful for memory windows, for example the PC
1645 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1646 struct kvm_memory_alias *alias)
1649 struct kvm_mem_alias *p;
1652 /* General sanity checks */
1653 if (alias->memory_size & (PAGE_SIZE - 1))
1655 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1657 if (alias->slot >= KVM_ALIAS_SLOTS)
1659 if (alias->guest_phys_addr + alias->memory_size
1660 < alias->guest_phys_addr)
1662 if (alias->target_phys_addr + alias->memory_size
1663 < alias->target_phys_addr)
1666 down_write(&kvm->slots_lock);
1667 spin_lock(&kvm->mmu_lock);
1669 p = &kvm->arch.aliases[alias->slot];
1670 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1671 p->npages = alias->memory_size >> PAGE_SHIFT;
1672 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1674 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1675 if (kvm->arch.aliases[n - 1].npages)
1677 kvm->arch.naliases = n;
1679 spin_unlock(&kvm->mmu_lock);
1680 kvm_mmu_zap_all(kvm);
1682 up_write(&kvm->slots_lock);
1690 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1695 switch (chip->chip_id) {
1696 case KVM_IRQCHIP_PIC_MASTER:
1697 memcpy(&chip->chip.pic,
1698 &pic_irqchip(kvm)->pics[0],
1699 sizeof(struct kvm_pic_state));
1701 case KVM_IRQCHIP_PIC_SLAVE:
1702 memcpy(&chip->chip.pic,
1703 &pic_irqchip(kvm)->pics[1],
1704 sizeof(struct kvm_pic_state));
1706 case KVM_IRQCHIP_IOAPIC:
1707 memcpy(&chip->chip.ioapic,
1708 ioapic_irqchip(kvm),
1709 sizeof(struct kvm_ioapic_state));
1718 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1723 switch (chip->chip_id) {
1724 case KVM_IRQCHIP_PIC_MASTER:
1725 memcpy(&pic_irqchip(kvm)->pics[0],
1727 sizeof(struct kvm_pic_state));
1729 case KVM_IRQCHIP_PIC_SLAVE:
1730 memcpy(&pic_irqchip(kvm)->pics[1],
1732 sizeof(struct kvm_pic_state));
1734 case KVM_IRQCHIP_IOAPIC:
1735 memcpy(ioapic_irqchip(kvm),
1737 sizeof(struct kvm_ioapic_state));
1743 kvm_pic_update_irq(pic_irqchip(kvm));
1747 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1751 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1755 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1759 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1760 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1764 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1765 struct kvm_reinject_control *control)
1767 if (!kvm->arch.vpit)
1769 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1774 * Get (and clear) the dirty memory log for a memory slot.
1776 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1777 struct kvm_dirty_log *log)
1781 struct kvm_memory_slot *memslot;
1784 down_write(&kvm->slots_lock);
1786 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1790 /* If nothing is dirty, don't bother messing with page tables. */
1792 spin_lock(&kvm->mmu_lock);
1793 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1794 spin_unlock(&kvm->mmu_lock);
1795 kvm_flush_remote_tlbs(kvm);
1796 memslot = &kvm->memslots[log->slot];
1797 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1798 memset(memslot->dirty_bitmap, 0, n);
1802 up_write(&kvm->slots_lock);
1806 long kvm_arch_vm_ioctl(struct file *filp,
1807 unsigned int ioctl, unsigned long arg)
1809 struct kvm *kvm = filp->private_data;
1810 void __user *argp = (void __user *)arg;
1813 * This union makes it completely explicit to gcc-3.x
1814 * that these two variables' stack usage should be
1815 * combined, not added together.
1818 struct kvm_pit_state ps;
1819 struct kvm_memory_alias alias;
1823 case KVM_SET_TSS_ADDR:
1824 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1828 case KVM_SET_MEMORY_REGION: {
1829 struct kvm_memory_region kvm_mem;
1830 struct kvm_userspace_memory_region kvm_userspace_mem;
1833 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1835 kvm_userspace_mem.slot = kvm_mem.slot;
1836 kvm_userspace_mem.flags = kvm_mem.flags;
1837 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1838 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1839 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1844 case KVM_SET_NR_MMU_PAGES:
1845 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1849 case KVM_GET_NR_MMU_PAGES:
1850 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1852 case KVM_SET_MEMORY_ALIAS:
1854 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1856 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1860 case KVM_CREATE_IRQCHIP:
1862 kvm->arch.vpic = kvm_create_pic(kvm);
1863 if (kvm->arch.vpic) {
1864 r = kvm_ioapic_init(kvm);
1866 kfree(kvm->arch.vpic);
1867 kvm->arch.vpic = NULL;
1872 r = kvm_setup_default_irq_routing(kvm);
1874 kfree(kvm->arch.vpic);
1875 kfree(kvm->arch.vioapic);
1879 case KVM_CREATE_PIT:
1880 mutex_lock(&kvm->lock);
1883 goto create_pit_unlock;
1885 kvm->arch.vpit = kvm_create_pit(kvm);
1889 mutex_unlock(&kvm->lock);
1891 case KVM_IRQ_LINE_STATUS:
1892 case KVM_IRQ_LINE: {
1893 struct kvm_irq_level irq_event;
1896 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1898 if (irqchip_in_kernel(kvm)) {
1900 mutex_lock(&kvm->lock);
1901 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1902 irq_event.irq, irq_event.level);
1903 mutex_unlock(&kvm->lock);
1904 if (ioctl == KVM_IRQ_LINE_STATUS) {
1905 irq_event.status = status;
1906 if (copy_to_user(argp, &irq_event,
1914 case KVM_GET_IRQCHIP: {
1915 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1916 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1922 if (copy_from_user(chip, argp, sizeof *chip))
1923 goto get_irqchip_out;
1925 if (!irqchip_in_kernel(kvm))
1926 goto get_irqchip_out;
1927 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1929 goto get_irqchip_out;
1931 if (copy_to_user(argp, chip, sizeof *chip))
1932 goto get_irqchip_out;
1940 case KVM_SET_IRQCHIP: {
1941 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1942 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1948 if (copy_from_user(chip, argp, sizeof *chip))
1949 goto set_irqchip_out;
1951 if (!irqchip_in_kernel(kvm))
1952 goto set_irqchip_out;
1953 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1955 goto set_irqchip_out;
1965 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1968 if (!kvm->arch.vpit)
1970 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1974 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1981 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1984 if (!kvm->arch.vpit)
1986 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1992 case KVM_REINJECT_CONTROL: {
1993 struct kvm_reinject_control control;
1995 if (copy_from_user(&control, argp, sizeof(control)))
1997 r = kvm_vm_ioctl_reinject(kvm, &control);
2010 static void kvm_init_msr_list(void)
2015 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2016 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2019 msrs_to_save[j] = msrs_to_save[i];
2022 num_msrs_to_save = j;
2026 * Only apic need an MMIO device hook, so shortcut now..
2028 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2029 gpa_t addr, int len,
2032 struct kvm_io_device *dev;
2034 if (vcpu->arch.apic) {
2035 dev = &vcpu->arch.apic->dev;
2036 if (dev->in_range(dev, addr, len, is_write))
2043 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2044 gpa_t addr, int len,
2047 struct kvm_io_device *dev;
2049 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2051 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2056 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2057 struct kvm_vcpu *vcpu)
2060 int r = X86EMUL_CONTINUE;
2063 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2064 unsigned offset = addr & (PAGE_SIZE-1);
2065 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2068 if (gpa == UNMAPPED_GVA) {
2069 r = X86EMUL_PROPAGATE_FAULT;
2072 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2074 r = X86EMUL_UNHANDLEABLE;
2086 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2087 struct kvm_vcpu *vcpu)
2090 int r = X86EMUL_CONTINUE;
2093 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2094 unsigned offset = addr & (PAGE_SIZE-1);
2095 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2098 if (gpa == UNMAPPED_GVA) {
2099 r = X86EMUL_PROPAGATE_FAULT;
2102 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2104 r = X86EMUL_UNHANDLEABLE;
2117 static int emulator_read_emulated(unsigned long addr,
2120 struct kvm_vcpu *vcpu)
2122 struct kvm_io_device *mmio_dev;
2125 if (vcpu->mmio_read_completed) {
2126 memcpy(val, vcpu->mmio_data, bytes);
2127 vcpu->mmio_read_completed = 0;
2128 return X86EMUL_CONTINUE;
2131 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2133 /* For APIC access vmexit */
2134 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2137 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2138 == X86EMUL_CONTINUE)
2139 return X86EMUL_CONTINUE;
2140 if (gpa == UNMAPPED_GVA)
2141 return X86EMUL_PROPAGATE_FAULT;
2145 * Is this MMIO handled locally?
2147 mutex_lock(&vcpu->kvm->lock);
2148 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2150 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2151 mutex_unlock(&vcpu->kvm->lock);
2152 return X86EMUL_CONTINUE;
2154 mutex_unlock(&vcpu->kvm->lock);
2156 vcpu->mmio_needed = 1;
2157 vcpu->mmio_phys_addr = gpa;
2158 vcpu->mmio_size = bytes;
2159 vcpu->mmio_is_write = 0;
2161 return X86EMUL_UNHANDLEABLE;
2164 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2165 const void *val, int bytes)
2169 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2172 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2176 static int emulator_write_emulated_onepage(unsigned long addr,
2179 struct kvm_vcpu *vcpu)
2181 struct kvm_io_device *mmio_dev;
2184 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2186 if (gpa == UNMAPPED_GVA) {
2187 kvm_inject_page_fault(vcpu, addr, 2);
2188 return X86EMUL_PROPAGATE_FAULT;
2191 /* For APIC access vmexit */
2192 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2195 if (emulator_write_phys(vcpu, gpa, val, bytes))
2196 return X86EMUL_CONTINUE;
2200 * Is this MMIO handled locally?
2202 mutex_lock(&vcpu->kvm->lock);
2203 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2205 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2206 mutex_unlock(&vcpu->kvm->lock);
2207 return X86EMUL_CONTINUE;
2209 mutex_unlock(&vcpu->kvm->lock);
2211 vcpu->mmio_needed = 1;
2212 vcpu->mmio_phys_addr = gpa;
2213 vcpu->mmio_size = bytes;
2214 vcpu->mmio_is_write = 1;
2215 memcpy(vcpu->mmio_data, val, bytes);
2217 return X86EMUL_CONTINUE;
2220 int emulator_write_emulated(unsigned long addr,
2223 struct kvm_vcpu *vcpu)
2225 /* Crossing a page boundary? */
2226 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2229 now = -addr & ~PAGE_MASK;
2230 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2231 if (rc != X86EMUL_CONTINUE)
2237 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2239 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2241 static int emulator_cmpxchg_emulated(unsigned long addr,
2245 struct kvm_vcpu *vcpu)
2247 static int reported;
2251 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2253 #ifndef CONFIG_X86_64
2254 /* guests cmpxchg8b have to be emulated atomically */
2261 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2263 if (gpa == UNMAPPED_GVA ||
2264 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2267 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2272 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2274 kaddr = kmap_atomic(page, KM_USER0);
2275 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2276 kunmap_atomic(kaddr, KM_USER0);
2277 kvm_release_page_dirty(page);
2282 return emulator_write_emulated(addr, new, bytes, vcpu);
2285 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2287 return kvm_x86_ops->get_segment_base(vcpu, seg);
2290 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2292 kvm_mmu_invlpg(vcpu, address);
2293 return X86EMUL_CONTINUE;
2296 int emulate_clts(struct kvm_vcpu *vcpu)
2298 KVMTRACE_0D(CLTS, vcpu, handler);
2299 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2300 return X86EMUL_CONTINUE;
2303 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2305 struct kvm_vcpu *vcpu = ctxt->vcpu;
2309 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2310 return X86EMUL_CONTINUE;
2312 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2313 return X86EMUL_UNHANDLEABLE;
2317 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2319 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2322 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2324 /* FIXME: better handling */
2325 return X86EMUL_UNHANDLEABLE;
2327 return X86EMUL_CONTINUE;
2330 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2333 unsigned long rip = kvm_rip_read(vcpu);
2334 unsigned long rip_linear;
2336 if (!printk_ratelimit())
2339 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2341 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2343 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2344 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2346 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2348 static struct x86_emulate_ops emulate_ops = {
2349 .read_std = kvm_read_guest_virt,
2350 .read_emulated = emulator_read_emulated,
2351 .write_emulated = emulator_write_emulated,
2352 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2355 static void cache_all_regs(struct kvm_vcpu *vcpu)
2357 kvm_register_read(vcpu, VCPU_REGS_RAX);
2358 kvm_register_read(vcpu, VCPU_REGS_RSP);
2359 kvm_register_read(vcpu, VCPU_REGS_RIP);
2360 vcpu->arch.regs_dirty = ~0;
2363 int emulate_instruction(struct kvm_vcpu *vcpu,
2364 struct kvm_run *run,
2370 struct decode_cache *c;
2372 kvm_clear_exception_queue(vcpu);
2373 vcpu->arch.mmio_fault_cr2 = cr2;
2375 * TODO: fix x86_emulate.c to use guest_read/write_register
2376 * instead of direct ->regs accesses, can save hundred cycles
2377 * on Intel for instructions that don't read/change RSP, for
2380 cache_all_regs(vcpu);
2382 vcpu->mmio_is_write = 0;
2383 vcpu->arch.pio.string = 0;
2385 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2387 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2389 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2390 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2391 vcpu->arch.emulate_ctxt.mode =
2392 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2393 ? X86EMUL_MODE_REAL : cs_l
2394 ? X86EMUL_MODE_PROT64 : cs_db
2395 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2397 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2399 /* Reject the instructions other than VMCALL/VMMCALL when
2400 * try to emulate invalid opcode */
2401 c = &vcpu->arch.emulate_ctxt.decode;
2402 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2403 (!(c->twobyte && c->b == 0x01 &&
2404 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2405 c->modrm_mod == 3 && c->modrm_rm == 1)))
2406 return EMULATE_FAIL;
2408 ++vcpu->stat.insn_emulation;
2410 ++vcpu->stat.insn_emulation_fail;
2411 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2412 return EMULATE_DONE;
2413 return EMULATE_FAIL;
2417 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2419 if (vcpu->arch.pio.string)
2420 return EMULATE_DO_MMIO;
2422 if ((r || vcpu->mmio_is_write) && run) {
2423 run->exit_reason = KVM_EXIT_MMIO;
2424 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2425 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2426 run->mmio.len = vcpu->mmio_size;
2427 run->mmio.is_write = vcpu->mmio_is_write;
2431 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2432 return EMULATE_DONE;
2433 if (!vcpu->mmio_needed) {
2434 kvm_report_emulation_failure(vcpu, "mmio");
2435 return EMULATE_FAIL;
2437 return EMULATE_DO_MMIO;
2440 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2442 if (vcpu->mmio_is_write) {
2443 vcpu->mmio_needed = 0;
2444 return EMULATE_DO_MMIO;
2447 return EMULATE_DONE;
2449 EXPORT_SYMBOL_GPL(emulate_instruction);
2451 static int pio_copy_data(struct kvm_vcpu *vcpu)
2453 void *p = vcpu->arch.pio_data;
2454 gva_t q = vcpu->arch.pio.guest_gva;
2458 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2459 if (vcpu->arch.pio.in)
2460 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2462 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2466 int complete_pio(struct kvm_vcpu *vcpu)
2468 struct kvm_pio_request *io = &vcpu->arch.pio;
2475 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2476 memcpy(&val, vcpu->arch.pio_data, io->size);
2477 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2481 r = pio_copy_data(vcpu);
2488 delta *= io->cur_count;
2490 * The size of the register should really depend on
2491 * current address size.
2493 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2495 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2501 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2503 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2505 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2507 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2511 io->count -= io->cur_count;
2517 static void kernel_pio(struct kvm_io_device *pio_dev,
2518 struct kvm_vcpu *vcpu,
2521 /* TODO: String I/O for in kernel device */
2523 mutex_lock(&vcpu->kvm->lock);
2524 if (vcpu->arch.pio.in)
2525 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2526 vcpu->arch.pio.size,
2529 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2530 vcpu->arch.pio.size,
2532 mutex_unlock(&vcpu->kvm->lock);
2535 static void pio_string_write(struct kvm_io_device *pio_dev,
2536 struct kvm_vcpu *vcpu)
2538 struct kvm_pio_request *io = &vcpu->arch.pio;
2539 void *pd = vcpu->arch.pio_data;
2542 mutex_lock(&vcpu->kvm->lock);
2543 for (i = 0; i < io->cur_count; i++) {
2544 kvm_iodevice_write(pio_dev, io->port,
2549 mutex_unlock(&vcpu->kvm->lock);
2552 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2553 gpa_t addr, int len,
2556 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2559 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2560 int size, unsigned port)
2562 struct kvm_io_device *pio_dev;
2565 vcpu->run->exit_reason = KVM_EXIT_IO;
2566 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2567 vcpu->run->io.size = vcpu->arch.pio.size = size;
2568 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2569 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2570 vcpu->run->io.port = vcpu->arch.pio.port = port;
2571 vcpu->arch.pio.in = in;
2572 vcpu->arch.pio.string = 0;
2573 vcpu->arch.pio.down = 0;
2574 vcpu->arch.pio.rep = 0;
2576 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2577 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2580 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2583 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2584 memcpy(vcpu->arch.pio_data, &val, 4);
2586 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2588 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2594 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2596 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2597 int size, unsigned long count, int down,
2598 gva_t address, int rep, unsigned port)
2600 unsigned now, in_page;
2602 struct kvm_io_device *pio_dev;
2604 vcpu->run->exit_reason = KVM_EXIT_IO;
2605 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2606 vcpu->run->io.size = vcpu->arch.pio.size = size;
2607 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2608 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2609 vcpu->run->io.port = vcpu->arch.pio.port = port;
2610 vcpu->arch.pio.in = in;
2611 vcpu->arch.pio.string = 1;
2612 vcpu->arch.pio.down = down;
2613 vcpu->arch.pio.rep = rep;
2615 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2616 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2619 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2623 kvm_x86_ops->skip_emulated_instruction(vcpu);
2628 in_page = PAGE_SIZE - offset_in_page(address);
2630 in_page = offset_in_page(address) + size;
2631 now = min(count, (unsigned long)in_page / size);
2636 * String I/O in reverse. Yuck. Kill the guest, fix later.
2638 pr_unimpl(vcpu, "guest string pio down\n");
2639 kvm_inject_gp(vcpu, 0);
2642 vcpu->run->io.count = now;
2643 vcpu->arch.pio.cur_count = now;
2645 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2646 kvm_x86_ops->skip_emulated_instruction(vcpu);
2648 vcpu->arch.pio.guest_gva = address;
2650 pio_dev = vcpu_find_pio_dev(vcpu, port,
2651 vcpu->arch.pio.cur_count,
2652 !vcpu->arch.pio.in);
2653 if (!vcpu->arch.pio.in) {
2654 /* string PIO write */
2655 ret = pio_copy_data(vcpu);
2656 if (ret == X86EMUL_PROPAGATE_FAULT) {
2657 kvm_inject_gp(vcpu, 0);
2660 if (ret == 0 && pio_dev) {
2661 pio_string_write(pio_dev, vcpu);
2663 if (vcpu->arch.pio.count == 0)
2667 pr_unimpl(vcpu, "no string pio read support yet, "
2668 "port %x size %d count %ld\n",
2673 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2675 static void bounce_off(void *info)
2680 static unsigned int ref_freq;
2681 static unsigned long tsc_khz_ref;
2683 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2686 struct cpufreq_freqs *freq = data;
2688 struct kvm_vcpu *vcpu;
2689 int i, send_ipi = 0;
2692 ref_freq = freq->old;
2694 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2696 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2698 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2700 spin_lock(&kvm_lock);
2701 list_for_each_entry(kvm, &vm_list, vm_list) {
2702 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2703 vcpu = kvm->vcpus[i];
2706 if (vcpu->cpu != freq->cpu)
2708 if (!kvm_request_guest_time_update(vcpu))
2710 if (vcpu->cpu != smp_processor_id())
2714 spin_unlock(&kvm_lock);
2716 if (freq->old < freq->new && send_ipi) {
2718 * We upscale the frequency. Must make the guest
2719 * doesn't see old kvmclock values while running with
2720 * the new frequency, otherwise we risk the guest sees
2721 * time go backwards.
2723 * In case we update the frequency for another cpu
2724 * (which might be in guest context) send an interrupt
2725 * to kick the cpu out of guest context. Next time
2726 * guest context is entered kvmclock will be updated,
2727 * so the guest will not see stale values.
2729 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2734 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2735 .notifier_call = kvmclock_cpufreq_notifier
2738 int kvm_arch_init(void *opaque)
2741 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2744 printk(KERN_ERR "kvm: already loaded the other module\n");
2749 if (!ops->cpu_has_kvm_support()) {
2750 printk(KERN_ERR "kvm: no hardware support\n");
2754 if (ops->disabled_by_bios()) {
2755 printk(KERN_ERR "kvm: disabled by bios\n");
2760 r = kvm_mmu_module_init();
2764 kvm_init_msr_list();
2767 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2768 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2769 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2770 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2772 for_each_possible_cpu(cpu)
2773 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2774 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2775 tsc_khz_ref = tsc_khz;
2776 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2777 CPUFREQ_TRANSITION_NOTIFIER);
2786 void kvm_arch_exit(void)
2788 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2789 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2790 CPUFREQ_TRANSITION_NOTIFIER);
2792 kvm_mmu_module_exit();
2795 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2797 ++vcpu->stat.halt_exits;
2798 KVMTRACE_0D(HLT, vcpu, handler);
2799 if (irqchip_in_kernel(vcpu->kvm)) {
2800 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2803 vcpu->run->exit_reason = KVM_EXIT_HLT;
2807 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2809 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2812 if (is_long_mode(vcpu))
2815 return a0 | ((gpa_t)a1 << 32);
2818 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2820 unsigned long nr, a0, a1, a2, a3, ret;
2823 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2824 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2825 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2826 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2827 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2829 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2831 if (!is_long_mode(vcpu)) {
2840 case KVM_HC_VAPIC_POLL_IRQ:
2844 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2850 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2851 ++vcpu->stat.hypercalls;
2854 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2856 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2858 char instruction[3];
2860 unsigned long rip = kvm_rip_read(vcpu);
2864 * Blow out the MMU to ensure that no other VCPU has an active mapping
2865 * to ensure that the updated hypercall appears atomically across all
2868 kvm_mmu_zap_all(vcpu->kvm);
2870 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2871 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2872 != X86EMUL_CONTINUE)
2878 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2880 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2883 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2885 struct descriptor_table dt = { limit, base };
2887 kvm_x86_ops->set_gdt(vcpu, &dt);
2890 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2892 struct descriptor_table dt = { limit, base };
2894 kvm_x86_ops->set_idt(vcpu, &dt);
2897 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2898 unsigned long *rflags)
2900 kvm_lmsw(vcpu, msw);
2901 *rflags = kvm_x86_ops->get_rflags(vcpu);
2904 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2906 unsigned long value;
2908 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2911 value = vcpu->arch.cr0;
2914 value = vcpu->arch.cr2;
2917 value = vcpu->arch.cr3;
2920 value = vcpu->arch.cr4;
2923 value = kvm_get_cr8(vcpu);
2926 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2929 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2930 (u32)((u64)value >> 32), handler);
2935 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2936 unsigned long *rflags)
2938 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2939 (u32)((u64)val >> 32), handler);
2943 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2944 *rflags = kvm_x86_ops->get_rflags(vcpu);
2947 vcpu->arch.cr2 = val;
2950 kvm_set_cr3(vcpu, val);
2953 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2956 kvm_set_cr8(vcpu, val & 0xfUL);
2959 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2963 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2965 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2966 int j, nent = vcpu->arch.cpuid_nent;
2968 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2969 /* when no next entry is found, the current entry[i] is reselected */
2970 for (j = i + 1; ; j = (j + 1) % nent) {
2971 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2972 if (ej->function == e->function) {
2973 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2977 return 0; /* silence gcc, even though control never reaches here */
2980 /* find an entry with matching function, matching index (if needed), and that
2981 * should be read next (if it's stateful) */
2982 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2983 u32 function, u32 index)
2985 if (e->function != function)
2987 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2989 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2990 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2995 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2996 u32 function, u32 index)
2999 struct kvm_cpuid_entry2 *best = NULL;
3001 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3002 struct kvm_cpuid_entry2 *e;
3004 e = &vcpu->arch.cpuid_entries[i];
3005 if (is_matching_cpuid_entry(e, function, index)) {
3006 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3007 move_to_next_stateful_cpuid_entry(vcpu, i);
3012 * Both basic or both extended?
3014 if (((e->function ^ function) & 0x80000000) == 0)
3015 if (!best || e->function > best->function)
3021 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3023 u32 function, index;
3024 struct kvm_cpuid_entry2 *best;
3026 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3027 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3028 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3029 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3030 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3031 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3032 best = kvm_find_cpuid_entry(vcpu, function, index);
3034 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3035 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3036 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3037 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3039 kvm_x86_ops->skip_emulated_instruction(vcpu);
3040 KVMTRACE_5D(CPUID, vcpu, function,
3041 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3042 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3043 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3044 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3046 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3049 * Check if userspace requested an interrupt window, and that the
3050 * interrupt window is open.
3052 * No need to exit to userspace if we already have an interrupt queued.
3054 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3055 struct kvm_run *kvm_run)
3057 return (!vcpu->arch.irq_summary &&
3058 kvm_run->request_interrupt_window &&
3059 vcpu->arch.interrupt_window_open &&
3060 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3063 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3064 struct kvm_run *kvm_run)
3066 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3067 kvm_run->cr8 = kvm_get_cr8(vcpu);
3068 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3069 if (irqchip_in_kernel(vcpu->kvm))
3070 kvm_run->ready_for_interrupt_injection = 1;
3072 kvm_run->ready_for_interrupt_injection =
3073 (vcpu->arch.interrupt_window_open &&
3074 vcpu->arch.irq_summary == 0);
3077 static void vapic_enter(struct kvm_vcpu *vcpu)
3079 struct kvm_lapic *apic = vcpu->arch.apic;
3082 if (!apic || !apic->vapic_addr)
3085 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3087 vcpu->arch.apic->vapic_page = page;
3090 static void vapic_exit(struct kvm_vcpu *vcpu)
3092 struct kvm_lapic *apic = vcpu->arch.apic;
3094 if (!apic || !apic->vapic_addr)
3097 down_read(&vcpu->kvm->slots_lock);
3098 kvm_release_page_dirty(apic->vapic_page);
3099 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3100 up_read(&vcpu->kvm->slots_lock);
3103 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3108 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3109 kvm_mmu_unload(vcpu);
3111 r = kvm_mmu_reload(vcpu);
3115 if (vcpu->requests) {
3116 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3117 __kvm_migrate_timers(vcpu);
3118 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3119 kvm_write_guest_time(vcpu);
3120 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3121 kvm_mmu_sync_roots(vcpu);
3122 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3123 kvm_x86_ops->tlb_flush(vcpu);
3124 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3126 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3130 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3131 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3137 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3138 kvm_inject_pending_timer_irqs(vcpu);
3142 kvm_x86_ops->prepare_guest_switch(vcpu);
3143 kvm_load_guest_fpu(vcpu);
3145 local_irq_disable();
3147 if (vcpu->requests || need_resched() || signal_pending(current)) {
3154 vcpu->guest_mode = 1;
3156 * Make sure that guest_mode assignment won't happen after
3157 * testing the pending IRQ vector bitmap.
3161 if (vcpu->arch.exception.pending)
3162 __queue_exception(vcpu);
3163 else if (irqchip_in_kernel(vcpu->kvm))
3164 kvm_x86_ops->inject_pending_irq(vcpu);
3166 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3168 kvm_lapic_sync_to_vapic(vcpu);
3170 up_read(&vcpu->kvm->slots_lock);
3174 get_debugreg(vcpu->arch.host_dr6, 6);
3175 get_debugreg(vcpu->arch.host_dr7, 7);
3176 if (unlikely(vcpu->arch.switch_db_regs)) {
3177 get_debugreg(vcpu->arch.host_db[0], 0);
3178 get_debugreg(vcpu->arch.host_db[1], 1);
3179 get_debugreg(vcpu->arch.host_db[2], 2);
3180 get_debugreg(vcpu->arch.host_db[3], 3);
3183 set_debugreg(vcpu->arch.eff_db[0], 0);
3184 set_debugreg(vcpu->arch.eff_db[1], 1);
3185 set_debugreg(vcpu->arch.eff_db[2], 2);
3186 set_debugreg(vcpu->arch.eff_db[3], 3);
3189 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3190 kvm_x86_ops->run(vcpu, kvm_run);
3192 if (unlikely(vcpu->arch.switch_db_regs)) {
3194 set_debugreg(vcpu->arch.host_db[0], 0);
3195 set_debugreg(vcpu->arch.host_db[1], 1);
3196 set_debugreg(vcpu->arch.host_db[2], 2);
3197 set_debugreg(vcpu->arch.host_db[3], 3);
3199 set_debugreg(vcpu->arch.host_dr6, 6);
3200 set_debugreg(vcpu->arch.host_dr7, 7);
3202 vcpu->guest_mode = 0;
3208 * We must have an instruction between local_irq_enable() and
3209 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3210 * the interrupt shadow. The stat.exits increment will do nicely.
3211 * But we need to prevent reordering, hence this barrier():
3219 down_read(&vcpu->kvm->slots_lock);
3222 * Profile KVM exit RIPs:
3224 if (unlikely(prof_on == KVM_PROFILING)) {
3225 unsigned long rip = kvm_rip_read(vcpu);
3226 profile_hit(KVM_PROFILING, (void *)rip);
3229 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3230 vcpu->arch.exception.pending = false;
3232 kvm_lapic_sync_from_vapic(vcpu);
3234 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3239 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3243 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3244 pr_debug("vcpu %d received sipi with vector # %x\n",
3245 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3246 kvm_lapic_reset(vcpu);
3247 r = kvm_arch_vcpu_reset(vcpu);
3250 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3253 down_read(&vcpu->kvm->slots_lock);
3258 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3259 r = vcpu_enter_guest(vcpu, kvm_run);
3261 up_read(&vcpu->kvm->slots_lock);
3262 kvm_vcpu_block(vcpu);
3263 down_read(&vcpu->kvm->slots_lock);
3264 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3265 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3266 vcpu->arch.mp_state =
3267 KVM_MP_STATE_RUNNABLE;
3268 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3273 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3275 kvm_run->exit_reason = KVM_EXIT_INTR;
3276 ++vcpu->stat.request_irq_exits;
3278 if (signal_pending(current)) {
3280 kvm_run->exit_reason = KVM_EXIT_INTR;
3281 ++vcpu->stat.signal_exits;
3283 if (need_resched()) {
3284 up_read(&vcpu->kvm->slots_lock);
3286 down_read(&vcpu->kvm->slots_lock);
3291 up_read(&vcpu->kvm->slots_lock);
3292 post_kvm_run_save(vcpu, kvm_run);
3299 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3306 if (vcpu->sigset_active)
3307 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3309 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3310 kvm_vcpu_block(vcpu);
3311 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3316 /* re-sync apic's tpr */
3317 if (!irqchip_in_kernel(vcpu->kvm))
3318 kvm_set_cr8(vcpu, kvm_run->cr8);
3320 if (vcpu->arch.pio.cur_count) {
3321 r = complete_pio(vcpu);
3325 #if CONFIG_HAS_IOMEM
3326 if (vcpu->mmio_needed) {
3327 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3328 vcpu->mmio_read_completed = 1;
3329 vcpu->mmio_needed = 0;
3331 down_read(&vcpu->kvm->slots_lock);
3332 r = emulate_instruction(vcpu, kvm_run,
3333 vcpu->arch.mmio_fault_cr2, 0,
3334 EMULTYPE_NO_DECODE);
3335 up_read(&vcpu->kvm->slots_lock);
3336 if (r == EMULATE_DO_MMIO) {
3338 * Read-modify-write. Back to userspace.
3345 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3346 kvm_register_write(vcpu, VCPU_REGS_RAX,
3347 kvm_run->hypercall.ret);
3349 r = __vcpu_run(vcpu, kvm_run);
3352 if (vcpu->sigset_active)
3353 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3359 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3363 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3364 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3365 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3366 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3367 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3368 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3369 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3370 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3371 #ifdef CONFIG_X86_64
3372 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3373 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3374 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3375 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3376 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3377 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3378 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3379 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3382 regs->rip = kvm_rip_read(vcpu);
3383 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3386 * Don't leak debug flags in case they were set for guest debugging
3388 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3389 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3400 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3401 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3402 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3403 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3404 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3405 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3406 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3407 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3408 #ifdef CONFIG_X86_64
3409 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3410 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3411 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3412 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3413 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3414 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3415 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3416 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3420 kvm_rip_write(vcpu, regs->rip);
3421 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3424 vcpu->arch.exception.pending = false;
3431 void kvm_get_segment(struct kvm_vcpu *vcpu,
3432 struct kvm_segment *var, int seg)
3434 kvm_x86_ops->get_segment(vcpu, var, seg);
3437 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3439 struct kvm_segment cs;
3441 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3445 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3447 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3448 struct kvm_sregs *sregs)
3450 struct descriptor_table dt;
3455 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3456 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3457 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3458 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3459 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3460 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3462 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3463 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3465 kvm_x86_ops->get_idt(vcpu, &dt);
3466 sregs->idt.limit = dt.limit;
3467 sregs->idt.base = dt.base;
3468 kvm_x86_ops->get_gdt(vcpu, &dt);
3469 sregs->gdt.limit = dt.limit;
3470 sregs->gdt.base = dt.base;
3472 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3473 sregs->cr0 = vcpu->arch.cr0;
3474 sregs->cr2 = vcpu->arch.cr2;
3475 sregs->cr3 = vcpu->arch.cr3;
3476 sregs->cr4 = vcpu->arch.cr4;
3477 sregs->cr8 = kvm_get_cr8(vcpu);
3478 sregs->efer = vcpu->arch.shadow_efer;
3479 sregs->apic_base = kvm_get_apic_base(vcpu);
3481 if (irqchip_in_kernel(vcpu->kvm)) {
3482 memset(sregs->interrupt_bitmap, 0,
3483 sizeof sregs->interrupt_bitmap);
3484 pending_vec = kvm_x86_ops->get_irq(vcpu);
3485 if (pending_vec >= 0)
3486 set_bit(pending_vec,
3487 (unsigned long *)sregs->interrupt_bitmap);
3489 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3490 sizeof sregs->interrupt_bitmap);
3497 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3498 struct kvm_mp_state *mp_state)
3501 mp_state->mp_state = vcpu->arch.mp_state;
3506 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3507 struct kvm_mp_state *mp_state)
3510 vcpu->arch.mp_state = mp_state->mp_state;
3515 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3516 struct kvm_segment *var, int seg)
3518 kvm_x86_ops->set_segment(vcpu, var, seg);
3521 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3522 struct kvm_segment *kvm_desct)
3524 kvm_desct->base = seg_desc->base0;
3525 kvm_desct->base |= seg_desc->base1 << 16;
3526 kvm_desct->base |= seg_desc->base2 << 24;
3527 kvm_desct->limit = seg_desc->limit0;
3528 kvm_desct->limit |= seg_desc->limit << 16;
3530 kvm_desct->limit <<= 12;
3531 kvm_desct->limit |= 0xfff;
3533 kvm_desct->selector = selector;
3534 kvm_desct->type = seg_desc->type;
3535 kvm_desct->present = seg_desc->p;
3536 kvm_desct->dpl = seg_desc->dpl;
3537 kvm_desct->db = seg_desc->d;
3538 kvm_desct->s = seg_desc->s;
3539 kvm_desct->l = seg_desc->l;
3540 kvm_desct->g = seg_desc->g;
3541 kvm_desct->avl = seg_desc->avl;
3543 kvm_desct->unusable = 1;
3545 kvm_desct->unusable = 0;
3546 kvm_desct->padding = 0;
3549 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3551 struct descriptor_table *dtable)
3553 if (selector & 1 << 2) {
3554 struct kvm_segment kvm_seg;
3556 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3558 if (kvm_seg.unusable)
3561 dtable->limit = kvm_seg.limit;
3562 dtable->base = kvm_seg.base;
3565 kvm_x86_ops->get_gdt(vcpu, dtable);
3568 /* allowed just for 8 bytes segments */
3569 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3570 struct desc_struct *seg_desc)
3573 struct descriptor_table dtable;
3574 u16 index = selector >> 3;
3576 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3578 if (dtable.limit < index * 8 + 7) {
3579 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3582 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3584 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3587 /* allowed just for 8 bytes segments */
3588 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3589 struct desc_struct *seg_desc)
3592 struct descriptor_table dtable;
3593 u16 index = selector >> 3;
3595 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3597 if (dtable.limit < index * 8 + 7)
3599 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3601 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3604 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3605 struct desc_struct *seg_desc)
3609 base_addr = seg_desc->base0;
3610 base_addr |= (seg_desc->base1 << 16);
3611 base_addr |= (seg_desc->base2 << 24);
3613 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3616 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3618 struct kvm_segment kvm_seg;
3620 kvm_get_segment(vcpu, &kvm_seg, seg);
3621 return kvm_seg.selector;
3624 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3626 struct kvm_segment *kvm_seg)
3628 struct desc_struct seg_desc;
3630 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3632 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3636 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3638 struct kvm_segment segvar = {
3639 .base = selector << 4,
3641 .selector = selector,
3652 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3656 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3657 int type_bits, int seg)
3659 struct kvm_segment kvm_seg;
3661 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3662 return kvm_load_realmode_segment(vcpu, selector, seg);
3663 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3665 kvm_seg.type |= type_bits;
3667 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3668 seg != VCPU_SREG_LDTR)
3670 kvm_seg.unusable = 1;
3672 kvm_set_segment(vcpu, &kvm_seg, seg);
3676 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3677 struct tss_segment_32 *tss)
3679 tss->cr3 = vcpu->arch.cr3;
3680 tss->eip = kvm_rip_read(vcpu);
3681 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3682 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3683 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3684 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3685 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3686 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3687 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3688 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3689 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3690 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3691 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3692 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3693 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3694 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3695 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3696 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3697 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3700 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3701 struct tss_segment_32 *tss)
3703 kvm_set_cr3(vcpu, tss->cr3);
3705 kvm_rip_write(vcpu, tss->eip);
3706 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3708 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3709 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3710 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3711 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3712 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3713 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3714 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3715 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3717 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3720 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3723 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3726 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3729 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3732 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3735 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3740 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3741 struct tss_segment_16 *tss)
3743 tss->ip = kvm_rip_read(vcpu);
3744 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3745 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3746 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3747 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3748 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3749 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3750 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3751 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3752 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3754 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3755 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3756 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3757 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3758 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3759 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3762 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3763 struct tss_segment_16 *tss)
3765 kvm_rip_write(vcpu, tss->ip);
3766 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3767 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3768 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3769 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3770 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3771 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3772 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3773 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3774 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3776 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3779 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3782 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3785 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3788 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3793 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3795 struct desc_struct *nseg_desc)
3797 struct tss_segment_16 tss_segment_16;
3800 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3801 sizeof tss_segment_16))
3804 save_state_to_tss16(vcpu, &tss_segment_16);
3806 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3807 sizeof tss_segment_16))
3810 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3811 &tss_segment_16, sizeof tss_segment_16))
3814 if (load_state_from_tss16(vcpu, &tss_segment_16))
3822 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3824 struct desc_struct *nseg_desc)
3826 struct tss_segment_32 tss_segment_32;
3829 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3830 sizeof tss_segment_32))
3833 save_state_to_tss32(vcpu, &tss_segment_32);
3835 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3836 sizeof tss_segment_32))
3839 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3840 &tss_segment_32, sizeof tss_segment_32))
3843 if (load_state_from_tss32(vcpu, &tss_segment_32))
3851 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3853 struct kvm_segment tr_seg;
3854 struct desc_struct cseg_desc;
3855 struct desc_struct nseg_desc;
3857 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3858 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3860 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3862 /* FIXME: Handle errors. Failure to read either TSS or their
3863 * descriptors should generate a pagefault.
3865 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3868 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3871 if (reason != TASK_SWITCH_IRET) {
3874 cpl = kvm_x86_ops->get_cpl(vcpu);
3875 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3876 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3881 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3882 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3886 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3887 cseg_desc.type &= ~(1 << 1); //clear the B flag
3888 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3891 if (reason == TASK_SWITCH_IRET) {
3892 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3893 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3896 kvm_x86_ops->skip_emulated_instruction(vcpu);
3898 if (nseg_desc.type & 8)
3899 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3902 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3905 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3906 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3907 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3910 if (reason != TASK_SWITCH_IRET) {
3911 nseg_desc.type |= (1 << 1);
3912 save_guest_segment_descriptor(vcpu, tss_selector,
3916 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3917 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3919 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3923 EXPORT_SYMBOL_GPL(kvm_task_switch);
3925 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3926 struct kvm_sregs *sregs)
3928 int mmu_reset_needed = 0;
3929 int i, pending_vec, max_bits;
3930 struct descriptor_table dt;
3934 dt.limit = sregs->idt.limit;
3935 dt.base = sregs->idt.base;
3936 kvm_x86_ops->set_idt(vcpu, &dt);
3937 dt.limit = sregs->gdt.limit;
3938 dt.base = sregs->gdt.base;
3939 kvm_x86_ops->set_gdt(vcpu, &dt);
3941 vcpu->arch.cr2 = sregs->cr2;
3942 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3944 down_read(&vcpu->kvm->slots_lock);
3945 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
3946 vcpu->arch.cr3 = sregs->cr3;
3948 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
3949 up_read(&vcpu->kvm->slots_lock);
3951 kvm_set_cr8(vcpu, sregs->cr8);
3953 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3954 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3955 kvm_set_apic_base(vcpu, sregs->apic_base);
3957 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3959 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3960 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3961 vcpu->arch.cr0 = sregs->cr0;
3963 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3964 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3965 if (!is_long_mode(vcpu) && is_pae(vcpu))
3966 load_pdptrs(vcpu, vcpu->arch.cr3);
3968 if (mmu_reset_needed)
3969 kvm_mmu_reset_context(vcpu);
3971 if (!irqchip_in_kernel(vcpu->kvm)) {
3972 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3973 sizeof vcpu->arch.irq_pending);
3974 vcpu->arch.irq_summary = 0;
3975 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3976 if (vcpu->arch.irq_pending[i])
3977 __set_bit(i, &vcpu->arch.irq_summary);
3979 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3980 pending_vec = find_first_bit(
3981 (const unsigned long *)sregs->interrupt_bitmap,
3983 /* Only pending external irq is handled here */
3984 if (pending_vec < max_bits) {
3985 kvm_x86_ops->set_irq(vcpu, pending_vec);
3986 pr_debug("Set back pending irq %d\n",
3989 kvm_pic_clear_isr_ack(vcpu->kvm);
3992 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3993 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3994 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3995 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3996 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3997 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3999 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4000 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4002 /* Older userspace won't unhalt the vcpu on reset. */
4003 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4004 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4005 !(vcpu->arch.cr0 & X86_CR0_PE))
4006 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4013 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4014 struct kvm_guest_debug *dbg)
4020 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4021 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4022 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4023 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4024 vcpu->arch.switch_db_regs =
4025 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4027 for (i = 0; i < KVM_NR_DB_REGS; i++)
4028 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4029 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4032 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4034 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4035 kvm_queue_exception(vcpu, DB_VECTOR);
4036 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4037 kvm_queue_exception(vcpu, BP_VECTOR);
4045 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4046 * we have asm/x86/processor.h
4057 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4058 #ifdef CONFIG_X86_64
4059 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4061 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4066 * Translate a guest virtual address to a guest physical address.
4068 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4069 struct kvm_translation *tr)
4071 unsigned long vaddr = tr->linear_address;
4075 down_read(&vcpu->kvm->slots_lock);
4076 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4077 up_read(&vcpu->kvm->slots_lock);
4078 tr->physical_address = gpa;
4079 tr->valid = gpa != UNMAPPED_GVA;
4087 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4089 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4093 memcpy(fpu->fpr, fxsave->st_space, 128);
4094 fpu->fcw = fxsave->cwd;
4095 fpu->fsw = fxsave->swd;
4096 fpu->ftwx = fxsave->twd;
4097 fpu->last_opcode = fxsave->fop;
4098 fpu->last_ip = fxsave->rip;
4099 fpu->last_dp = fxsave->rdp;
4100 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4107 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4109 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4113 memcpy(fxsave->st_space, fpu->fpr, 128);
4114 fxsave->cwd = fpu->fcw;
4115 fxsave->swd = fpu->fsw;
4116 fxsave->twd = fpu->ftwx;
4117 fxsave->fop = fpu->last_opcode;
4118 fxsave->rip = fpu->last_ip;
4119 fxsave->rdp = fpu->last_dp;
4120 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4127 void fx_init(struct kvm_vcpu *vcpu)
4129 unsigned after_mxcsr_mask;
4132 * Touch the fpu the first time in non atomic context as if
4133 * this is the first fpu instruction the exception handler
4134 * will fire before the instruction returns and it'll have to
4135 * allocate ram with GFP_KERNEL.
4138 kvm_fx_save(&vcpu->arch.host_fx_image);
4140 /* Initialize guest FPU by resetting ours and saving into guest's */
4142 kvm_fx_save(&vcpu->arch.host_fx_image);
4144 kvm_fx_save(&vcpu->arch.guest_fx_image);
4145 kvm_fx_restore(&vcpu->arch.host_fx_image);
4148 vcpu->arch.cr0 |= X86_CR0_ET;
4149 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4150 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4151 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4152 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4154 EXPORT_SYMBOL_GPL(fx_init);
4156 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4158 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4161 vcpu->guest_fpu_loaded = 1;
4162 kvm_fx_save(&vcpu->arch.host_fx_image);
4163 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4165 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4167 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4169 if (!vcpu->guest_fpu_loaded)
4172 vcpu->guest_fpu_loaded = 0;
4173 kvm_fx_save(&vcpu->arch.guest_fx_image);
4174 kvm_fx_restore(&vcpu->arch.host_fx_image);
4175 ++vcpu->stat.fpu_reload;
4177 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4179 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4181 if (vcpu->arch.time_page) {
4182 kvm_release_page_dirty(vcpu->arch.time_page);
4183 vcpu->arch.time_page = NULL;
4186 kvm_x86_ops->vcpu_free(vcpu);
4189 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4192 return kvm_x86_ops->vcpu_create(kvm, id);
4195 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4199 /* We do fxsave: this must be aligned. */
4200 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4202 vcpu->arch.mtrr_state.have_fixed = 1;
4204 r = kvm_arch_vcpu_reset(vcpu);
4206 r = kvm_mmu_setup(vcpu);
4213 kvm_x86_ops->vcpu_free(vcpu);
4217 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4220 kvm_mmu_unload(vcpu);
4223 kvm_x86_ops->vcpu_free(vcpu);
4226 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4228 vcpu->arch.nmi_pending = false;
4229 vcpu->arch.nmi_injected = false;
4231 vcpu->arch.switch_db_regs = 0;
4232 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4233 vcpu->arch.dr6 = DR6_FIXED_1;
4234 vcpu->arch.dr7 = DR7_FIXED_1;
4236 return kvm_x86_ops->vcpu_reset(vcpu);
4239 void kvm_arch_hardware_enable(void *garbage)
4241 kvm_x86_ops->hardware_enable(garbage);
4244 void kvm_arch_hardware_disable(void *garbage)
4246 kvm_x86_ops->hardware_disable(garbage);
4249 int kvm_arch_hardware_setup(void)
4251 return kvm_x86_ops->hardware_setup();
4254 void kvm_arch_hardware_unsetup(void)
4256 kvm_x86_ops->hardware_unsetup();
4259 void kvm_arch_check_processor_compat(void *rtn)
4261 kvm_x86_ops->check_processor_compatibility(rtn);
4264 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4270 BUG_ON(vcpu->kvm == NULL);
4273 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4274 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4275 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4277 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4279 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4284 vcpu->arch.pio_data = page_address(page);
4286 r = kvm_mmu_create(vcpu);
4288 goto fail_free_pio_data;
4290 if (irqchip_in_kernel(kvm)) {
4291 r = kvm_create_lapic(vcpu);
4293 goto fail_mmu_destroy;
4299 kvm_mmu_destroy(vcpu);
4301 free_page((unsigned long)vcpu->arch.pio_data);
4306 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4308 kvm_free_lapic(vcpu);
4309 down_read(&vcpu->kvm->slots_lock);
4310 kvm_mmu_destroy(vcpu);
4311 up_read(&vcpu->kvm->slots_lock);
4312 free_page((unsigned long)vcpu->arch.pio_data);
4315 struct kvm *kvm_arch_create_vm(void)
4317 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4320 return ERR_PTR(-ENOMEM);
4322 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4323 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4324 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4326 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4327 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4329 rdtscll(kvm->arch.vm_init_tsc);
4334 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4337 kvm_mmu_unload(vcpu);
4341 static void kvm_free_vcpus(struct kvm *kvm)
4346 * Unpin any mmu pages first.
4348 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4350 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4351 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4352 if (kvm->vcpus[i]) {
4353 kvm_arch_vcpu_free(kvm->vcpus[i]);
4354 kvm->vcpus[i] = NULL;
4360 void kvm_arch_sync_events(struct kvm *kvm)
4362 kvm_free_all_assigned_devices(kvm);
4365 void kvm_arch_destroy_vm(struct kvm *kvm)
4367 kvm_iommu_unmap_guest(kvm);
4369 kfree(kvm->arch.vpic);
4370 kfree(kvm->arch.vioapic);
4371 kvm_free_vcpus(kvm);
4372 kvm_free_physmem(kvm);
4373 if (kvm->arch.apic_access_page)
4374 put_page(kvm->arch.apic_access_page);
4375 if (kvm->arch.ept_identity_pagetable)
4376 put_page(kvm->arch.ept_identity_pagetable);
4380 int kvm_arch_set_memory_region(struct kvm *kvm,
4381 struct kvm_userspace_memory_region *mem,
4382 struct kvm_memory_slot old,
4385 int npages = mem->memory_size >> PAGE_SHIFT;
4386 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4388 /*To keep backward compatibility with older userspace,
4389 *x86 needs to hanlde !user_alloc case.
4392 if (npages && !old.rmap) {
4393 unsigned long userspace_addr;
4395 down_write(¤t->mm->mmap_sem);
4396 userspace_addr = do_mmap(NULL, 0,
4398 PROT_READ | PROT_WRITE,
4399 MAP_PRIVATE | MAP_ANONYMOUS,
4401 up_write(¤t->mm->mmap_sem);
4403 if (IS_ERR((void *)userspace_addr))
4404 return PTR_ERR((void *)userspace_addr);
4406 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4407 spin_lock(&kvm->mmu_lock);
4408 memslot->userspace_addr = userspace_addr;
4409 spin_unlock(&kvm->mmu_lock);
4411 if (!old.user_alloc && old.rmap) {
4414 down_write(¤t->mm->mmap_sem);
4415 ret = do_munmap(current->mm, old.userspace_addr,
4416 old.npages * PAGE_SIZE);
4417 up_write(¤t->mm->mmap_sem);
4420 "kvm_vm_ioctl_set_memory_region: "
4421 "failed to munmap memory\n");
4426 spin_lock(&kvm->mmu_lock);
4427 if (!kvm->arch.n_requested_mmu_pages) {
4428 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4429 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4432 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4433 spin_unlock(&kvm->mmu_lock);
4434 kvm_flush_remote_tlbs(kvm);
4439 void kvm_arch_flush_shadow(struct kvm *kvm)
4441 kvm_mmu_zap_all(kvm);
4442 kvm_reload_remote_mmus(kvm);
4445 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4447 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4448 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4449 || vcpu->arch.nmi_pending;
4452 static void vcpu_kick_intr(void *info)
4455 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4456 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4460 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4462 int ipi_pcpu = vcpu->cpu;
4463 int cpu = get_cpu();
4465 if (waitqueue_active(&vcpu->wq)) {
4466 wake_up_interruptible(&vcpu->wq);
4467 ++vcpu->stat.halt_wakeup;
4470 * We may be called synchronously with irqs disabled in guest mode,
4471 * So need not to call smp_call_function_single() in that case.
4473 if (vcpu->guest_mode && vcpu->cpu != cpu)
4474 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);