]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
KVM: x86: Fix CR3 reserved bits
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112         int nr;
113         u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117         struct user_return_notifier urn;
118         bool registered;
119         struct kvm_shared_msr_values {
120                 u64 host;
121                 u64 curr;
122         } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129         { "pf_fixed", VCPU_STAT(pf_fixed) },
130         { "pf_guest", VCPU_STAT(pf_guest) },
131         { "tlb_flush", VCPU_STAT(tlb_flush) },
132         { "invlpg", VCPU_STAT(invlpg) },
133         { "exits", VCPU_STAT(exits) },
134         { "io_exits", VCPU_STAT(io_exits) },
135         { "mmio_exits", VCPU_STAT(mmio_exits) },
136         { "signal_exits", VCPU_STAT(signal_exits) },
137         { "irq_window", VCPU_STAT(irq_window_exits) },
138         { "nmi_window", VCPU_STAT(nmi_window_exits) },
139         { "halt_exits", VCPU_STAT(halt_exits) },
140         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141         { "hypercalls", VCPU_STAT(hypercalls) },
142         { "request_irq", VCPU_STAT(request_irq_exits) },
143         { "irq_exits", VCPU_STAT(irq_exits) },
144         { "host_state_reload", VCPU_STAT(host_state_reload) },
145         { "efer_reload", VCPU_STAT(efer_reload) },
146         { "fpu_reload", VCPU_STAT(fpu_reload) },
147         { "insn_emulation", VCPU_STAT(insn_emulation) },
148         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149         { "irq_injections", VCPU_STAT(irq_injections) },
150         { "nmi_injections", VCPU_STAT(nmi_injections) },
151         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155         { "mmu_flooded", VM_STAT(mmu_flooded) },
156         { "mmu_recycled", VM_STAT(mmu_recycled) },
157         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158         { "mmu_unsync", VM_STAT(mmu_unsync) },
159         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160         { "largepages", VM_STAT(lpages) },
161         { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170         int i;
171         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172                 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177         unsigned slot;
178         struct kvm_shared_msrs *locals
179                 = container_of(urn, struct kvm_shared_msrs, urn);
180         struct kvm_shared_msr_values *values;
181
182         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183                 values = &locals->values[slot];
184                 if (values->host != values->curr) {
185                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
186                         values->curr = values->host;
187                 }
188         }
189         locals->registered = false;
190         user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195         u64 value;
196         unsigned int cpu = smp_processor_id();
197         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199         /* only read, and nobody should modify it at this time,
200          * so don't need lock */
201         if (slot >= shared_msrs_global.nr) {
202                 printk(KERN_ERR "kvm: invalid MSR slot!");
203                 return;
204         }
205         rdmsrl_safe(msr, &value);
206         smsr->values[slot].host = value;
207         smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212         if (slot >= shared_msrs_global.nr)
213                 shared_msrs_global.nr = slot + 1;
214         shared_msrs_global.msrs[slot] = msr;
215         /* we need ensured the shared_msr_global have been updated */
216         smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222         unsigned i;
223
224         for (i = 0; i < shared_msrs_global.nr; ++i)
225                 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230         unsigned int cpu = smp_processor_id();
231         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233         if (((value ^ smsr->values[slot].curr) & mask) == 0)
234                 return;
235         smsr->values[slot].curr = value;
236         wrmsrl(shared_msrs_global.msrs[slot], value);
237         if (!smsr->registered) {
238                 smsr->urn.on_user_return = kvm_on_user_return;
239                 user_return_notifier_register(&smsr->urn);
240                 smsr->registered = true;
241         }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247         unsigned int cpu = smp_processor_id();
248         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250         if (smsr->registered)
251                 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
261 {
262         u64 old_state = vcpu->arch.apic_base &
263                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
264         u64 new_state = msr_info->data &
265                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
267                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
268
269         if (!msr_info->host_initiated &&
270             ((msr_info->data & reserved_bits) != 0 ||
271              new_state == X2APIC_ENABLE ||
272              (new_state == MSR_IA32_APICBASE_ENABLE &&
273               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
274              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
275               old_state == 0)))
276                 return 1;
277
278         kvm_lapic_set_base(vcpu, msr_info->data);
279         return 0;
280 }
281 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
282
283 asmlinkage void kvm_spurious_fault(void)
284 {
285         /* Fault while not rebooting.  We want the trace. */
286         BUG();
287 }
288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
289
290 #define EXCPT_BENIGN            0
291 #define EXCPT_CONTRIBUTORY      1
292 #define EXCPT_PF                2
293
294 static int exception_class(int vector)
295 {
296         switch (vector) {
297         case PF_VECTOR:
298                 return EXCPT_PF;
299         case DE_VECTOR:
300         case TS_VECTOR:
301         case NP_VECTOR:
302         case SS_VECTOR:
303         case GP_VECTOR:
304                 return EXCPT_CONTRIBUTORY;
305         default:
306                 break;
307         }
308         return EXCPT_BENIGN;
309 }
310
311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
312                 unsigned nr, bool has_error, u32 error_code,
313                 bool reinject)
314 {
315         u32 prev_nr;
316         int class1, class2;
317
318         kvm_make_request(KVM_REQ_EVENT, vcpu);
319
320         if (!vcpu->arch.exception.pending) {
321         queue:
322                 vcpu->arch.exception.pending = true;
323                 vcpu->arch.exception.has_error_code = has_error;
324                 vcpu->arch.exception.nr = nr;
325                 vcpu->arch.exception.error_code = error_code;
326                 vcpu->arch.exception.reinject = reinject;
327                 return;
328         }
329
330         /* to check exception */
331         prev_nr = vcpu->arch.exception.nr;
332         if (prev_nr == DF_VECTOR) {
333                 /* triple fault -> shutdown */
334                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
335                 return;
336         }
337         class1 = exception_class(prev_nr);
338         class2 = exception_class(nr);
339         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
340                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
341                 /* generate double fault per SDM Table 5-5 */
342                 vcpu->arch.exception.pending = true;
343                 vcpu->arch.exception.has_error_code = true;
344                 vcpu->arch.exception.nr = DF_VECTOR;
345                 vcpu->arch.exception.error_code = 0;
346         } else
347                 /* replace previous exception with a new one in a hope
348                    that instruction re-execution will regenerate lost
349                    exception */
350                 goto queue;
351 }
352
353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
354 {
355         kvm_multiple_exception(vcpu, nr, false, 0, false);
356 }
357 EXPORT_SYMBOL_GPL(kvm_queue_exception);
358
359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
360 {
361         kvm_multiple_exception(vcpu, nr, false, 0, true);
362 }
363 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
364
365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
366 {
367         if (err)
368                 kvm_inject_gp(vcpu, 0);
369         else
370                 kvm_x86_ops->skip_emulated_instruction(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
373
374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
375 {
376         ++vcpu->stat.pf_guest;
377         vcpu->arch.cr2 = fault->address;
378         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
379 }
380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
381
382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
383 {
384         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
385                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
386         else
387                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
388 }
389
390 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
391 {
392         atomic_inc(&vcpu->arch.nmi_queued);
393         kvm_make_request(KVM_REQ_NMI, vcpu);
394 }
395 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
396
397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
398 {
399         kvm_multiple_exception(vcpu, nr, true, error_code, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
402
403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
404 {
405         kvm_multiple_exception(vcpu, nr, true, error_code, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
408
409 /*
410  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
411  * a #GP and return false.
412  */
413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
414 {
415         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
416                 return true;
417         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
418         return false;
419 }
420 EXPORT_SYMBOL_GPL(kvm_require_cpl);
421
422 /*
423  * This function will be used to read from the physical memory of the currently
424  * running guest. The difference to kvm_read_guest_page is that this function
425  * can read from guest physical or from the guest's guest physical memory.
426  */
427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
428                             gfn_t ngfn, void *data, int offset, int len,
429                             u32 access)
430 {
431         gfn_t real_gfn;
432         gpa_t ngpa;
433
434         ngpa     = gfn_to_gpa(ngfn);
435         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
436         if (real_gfn == UNMAPPED_GVA)
437                 return -EFAULT;
438
439         real_gfn = gpa_to_gfn(real_gfn);
440
441         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
442 }
443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
444
445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
446                                void *data, int offset, int len, u32 access)
447 {
448         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
449                                        data, offset, len, access);
450 }
451
452 /*
453  * Load the pae pdptrs.  Return true is they are all valid.
454  */
455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
456 {
457         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
458         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
459         int i;
460         int ret;
461         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
462
463         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
464                                       offset * sizeof(u64), sizeof(pdpte),
465                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
466         if (ret < 0) {
467                 ret = 0;
468                 goto out;
469         }
470         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
471                 if (is_present_gpte(pdpte[i]) &&
472                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
473                         ret = 0;
474                         goto out;
475                 }
476         }
477         ret = 1;
478
479         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
480         __set_bit(VCPU_EXREG_PDPTR,
481                   (unsigned long *)&vcpu->arch.regs_avail);
482         __set_bit(VCPU_EXREG_PDPTR,
483                   (unsigned long *)&vcpu->arch.regs_dirty);
484 out:
485
486         return ret;
487 }
488 EXPORT_SYMBOL_GPL(load_pdptrs);
489
490 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
491 {
492         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
493         bool changed = true;
494         int offset;
495         gfn_t gfn;
496         int r;
497
498         if (is_long_mode(vcpu) || !is_pae(vcpu))
499                 return false;
500
501         if (!test_bit(VCPU_EXREG_PDPTR,
502                       (unsigned long *)&vcpu->arch.regs_avail))
503                 return true;
504
505         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
506         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
507         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
508                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
509         if (r < 0)
510                 goto out;
511         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
512 out:
513
514         return changed;
515 }
516
517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
518 {
519         unsigned long old_cr0 = kvm_read_cr0(vcpu);
520         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
521                                     X86_CR0_CD | X86_CR0_NW;
522
523         cr0 |= X86_CR0_ET;
524
525 #ifdef CONFIG_X86_64
526         if (cr0 & 0xffffffff00000000UL)
527                 return 1;
528 #endif
529
530         cr0 &= ~CR0_RESERVED_BITS;
531
532         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
533                 return 1;
534
535         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
536                 return 1;
537
538         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
539 #ifdef CONFIG_X86_64
540                 if ((vcpu->arch.efer & EFER_LME)) {
541                         int cs_db, cs_l;
542
543                         if (!is_pae(vcpu))
544                                 return 1;
545                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
546                         if (cs_l)
547                                 return 1;
548                 } else
549 #endif
550                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
551                                                  kvm_read_cr3(vcpu)))
552                         return 1;
553         }
554
555         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
556                 return 1;
557
558         kvm_x86_ops->set_cr0(vcpu, cr0);
559
560         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
561                 kvm_clear_async_pf_completion_queue(vcpu);
562                 kvm_async_pf_hash_reset(vcpu);
563         }
564
565         if ((cr0 ^ old_cr0) & update_bits)
566                 kvm_mmu_reset_context(vcpu);
567         return 0;
568 }
569 EXPORT_SYMBOL_GPL(kvm_set_cr0);
570
571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 {
573         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
574 }
575 EXPORT_SYMBOL_GPL(kvm_lmsw);
576
577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
578 {
579         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
580                         !vcpu->guest_xcr0_loaded) {
581                 /* kvm_set_xcr() also depends on this */
582                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
583                 vcpu->guest_xcr0_loaded = 1;
584         }
585 }
586
587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
588 {
589         if (vcpu->guest_xcr0_loaded) {
590                 if (vcpu->arch.xcr0 != host_xcr0)
591                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
592                 vcpu->guest_xcr0_loaded = 0;
593         }
594 }
595
596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         u64 xcr0 = xcr;
599         u64 old_xcr0 = vcpu->arch.xcr0;
600         u64 valid_bits;
601
602         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
603         if (index != XCR_XFEATURE_ENABLED_MASK)
604                 return 1;
605         if (!(xcr0 & XSTATE_FP))
606                 return 1;
607         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
608                 return 1;
609
610         /*
611          * Do not allow the guest to set bits that we do not support
612          * saving.  However, xcr0 bit 0 is always set, even if the
613          * emulated CPU does not support XSAVE (see fx_init).
614          */
615         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
616         if (xcr0 & ~valid_bits)
617                 return 1;
618
619         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
620                 return 1;
621
622         kvm_put_guest_xcr0(vcpu);
623         vcpu->arch.xcr0 = xcr0;
624
625         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
626                 kvm_update_cpuid(vcpu);
627         return 0;
628 }
629
630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
631 {
632         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
633             __kvm_set_xcr(vcpu, index, xcr)) {
634                 kvm_inject_gp(vcpu, 0);
635                 return 1;
636         }
637         return 0;
638 }
639 EXPORT_SYMBOL_GPL(kvm_set_xcr);
640
641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
642 {
643         unsigned long old_cr4 = kvm_read_cr4(vcpu);
644         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
645                                    X86_CR4_PAE | X86_CR4_SMEP;
646         if (cr4 & CR4_RESERVED_BITS)
647                 return 1;
648
649         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
650                 return 1;
651
652         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
653                 return 1;
654
655         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
656                 return 1;
657
658         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
659                 return 1;
660
661         if (is_long_mode(vcpu)) {
662                 if (!(cr4 & X86_CR4_PAE))
663                         return 1;
664         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
665                    && ((cr4 ^ old_cr4) & pdptr_bits)
666                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
667                                    kvm_read_cr3(vcpu)))
668                 return 1;
669
670         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
671                 if (!guest_cpuid_has_pcid(vcpu))
672                         return 1;
673
674                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
675                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
676                         return 1;
677         }
678
679         if (kvm_x86_ops->set_cr4(vcpu, cr4))
680                 return 1;
681
682         if (((cr4 ^ old_cr4) & pdptr_bits) ||
683             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
684                 kvm_mmu_reset_context(vcpu);
685
686         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
687                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
688
689         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
690                 kvm_update_cpuid(vcpu);
691
692         return 0;
693 }
694 EXPORT_SYMBOL_GPL(kvm_set_cr4);
695
696 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
697 {
698         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
699                 kvm_mmu_sync_roots(vcpu);
700                 kvm_mmu_flush_tlb(vcpu);
701                 return 0;
702         }
703
704         if (is_long_mode(vcpu) && (cr3 & CR3_L_MODE_RESERVED_BITS))
705                 return 1;
706         if (is_pae(vcpu) && is_paging(vcpu) &&
707             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
708                 return 1;
709
710         vcpu->arch.cr3 = cr3;
711         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
712         kvm_mmu_new_cr3(vcpu);
713         return 0;
714 }
715 EXPORT_SYMBOL_GPL(kvm_set_cr3);
716
717 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
718 {
719         if (cr8 & CR8_RESERVED_BITS)
720                 return 1;
721         if (irqchip_in_kernel(vcpu->kvm))
722                 kvm_lapic_set_tpr(vcpu, cr8);
723         else
724                 vcpu->arch.cr8 = cr8;
725         return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_cr8);
728
729 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
730 {
731         if (irqchip_in_kernel(vcpu->kvm))
732                 return kvm_lapic_get_cr8(vcpu);
733         else
734                 return vcpu->arch.cr8;
735 }
736 EXPORT_SYMBOL_GPL(kvm_get_cr8);
737
738 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
739 {
740         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
741                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
742 }
743
744 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
745 {
746         unsigned long dr7;
747
748         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
749                 dr7 = vcpu->arch.guest_debug_dr7;
750         else
751                 dr7 = vcpu->arch.dr7;
752         kvm_x86_ops->set_dr7(vcpu, dr7);
753         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
754         if (dr7 & DR7_BP_EN_MASK)
755                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
756 }
757
758 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
759 {
760         switch (dr) {
761         case 0 ... 3:
762                 vcpu->arch.db[dr] = val;
763                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
764                         vcpu->arch.eff_db[dr] = val;
765                 break;
766         case 4:
767                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
768                         return 1; /* #UD */
769                 /* fall through */
770         case 6:
771                 if (val & 0xffffffff00000000ULL)
772                         return -1; /* #GP */
773                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
774                 kvm_update_dr6(vcpu);
775                 break;
776         case 5:
777                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
778                         return 1; /* #UD */
779                 /* fall through */
780         default: /* 7 */
781                 if (val & 0xffffffff00000000ULL)
782                         return -1; /* #GP */
783                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
784                 kvm_update_dr7(vcpu);
785                 break;
786         }
787
788         return 0;
789 }
790
791 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
792 {
793         int res;
794
795         res = __kvm_set_dr(vcpu, dr, val);
796         if (res > 0)
797                 kvm_queue_exception(vcpu, UD_VECTOR);
798         else if (res < 0)
799                 kvm_inject_gp(vcpu, 0);
800
801         return res;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_dr);
804
805 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
806 {
807         switch (dr) {
808         case 0 ... 3:
809                 *val = vcpu->arch.db[dr];
810                 break;
811         case 4:
812                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
813                         return 1;
814                 /* fall through */
815         case 6:
816                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
817                         *val = vcpu->arch.dr6;
818                 else
819                         *val = kvm_x86_ops->get_dr6(vcpu);
820                 break;
821         case 5:
822                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
823                         return 1;
824                 /* fall through */
825         default: /* 7 */
826                 *val = vcpu->arch.dr7;
827                 break;
828         }
829
830         return 0;
831 }
832
833 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
834 {
835         if (_kvm_get_dr(vcpu, dr, val)) {
836                 kvm_queue_exception(vcpu, UD_VECTOR);
837                 return 1;
838         }
839         return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_get_dr);
842
843 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
844 {
845         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
846         u64 data;
847         int err;
848
849         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
850         if (err)
851                 return err;
852         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
853         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
854         return err;
855 }
856 EXPORT_SYMBOL_GPL(kvm_rdpmc);
857
858 /*
859  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
860  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
861  *
862  * This list is modified at module load time to reflect the
863  * capabilities of the host cpu. This capabilities test skips MSRs that are
864  * kvm-specific. Those are put in the beginning of the list.
865  */
866
867 #define KVM_SAVE_MSRS_BEGIN     12
868 static u32 msrs_to_save[] = {
869         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
870         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
871         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
872         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
873         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
874         MSR_KVM_PV_EOI_EN,
875         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
876         MSR_STAR,
877 #ifdef CONFIG_X86_64
878         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
879 #endif
880         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
881         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
882 };
883
884 static unsigned num_msrs_to_save;
885
886 static const u32 emulated_msrs[] = {
887         MSR_IA32_TSC_ADJUST,
888         MSR_IA32_TSCDEADLINE,
889         MSR_IA32_MISC_ENABLE,
890         MSR_IA32_MCG_STATUS,
891         MSR_IA32_MCG_CTL,
892 };
893
894 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
895 {
896         if (efer & efer_reserved_bits)
897                 return false;
898
899         if (efer & EFER_FFXSR) {
900                 struct kvm_cpuid_entry2 *feat;
901
902                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
903                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
904                         return false;
905         }
906
907         if (efer & EFER_SVME) {
908                 struct kvm_cpuid_entry2 *feat;
909
910                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
911                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
912                         return false;
913         }
914
915         return true;
916 }
917 EXPORT_SYMBOL_GPL(kvm_valid_efer);
918
919 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
920 {
921         u64 old_efer = vcpu->arch.efer;
922
923         if (!kvm_valid_efer(vcpu, efer))
924                 return 1;
925
926         if (is_paging(vcpu)
927             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
928                 return 1;
929
930         efer &= ~EFER_LMA;
931         efer |= vcpu->arch.efer & EFER_LMA;
932
933         kvm_x86_ops->set_efer(vcpu, efer);
934
935         /* Update reserved bits */
936         if ((efer ^ old_efer) & EFER_NX)
937                 kvm_mmu_reset_context(vcpu);
938
939         return 0;
940 }
941
942 void kvm_enable_efer_bits(u64 mask)
943 {
944        efer_reserved_bits &= ~mask;
945 }
946 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
947
948
949 /*
950  * Writes msr value into into the appropriate "register".
951  * Returns 0 on success, non-0 otherwise.
952  * Assumes vcpu_load() was already called.
953  */
954 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
955 {
956         return kvm_x86_ops->set_msr(vcpu, msr);
957 }
958
959 /*
960  * Adapt set_msr() to msr_io()'s calling convention
961  */
962 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
963 {
964         struct msr_data msr;
965
966         msr.data = *data;
967         msr.index = index;
968         msr.host_initiated = true;
969         return kvm_set_msr(vcpu, &msr);
970 }
971
972 #ifdef CONFIG_X86_64
973 struct pvclock_gtod_data {
974         seqcount_t      seq;
975
976         struct { /* extract of a clocksource struct */
977                 int vclock_mode;
978                 cycle_t cycle_last;
979                 cycle_t mask;
980                 u32     mult;
981                 u32     shift;
982         } clock;
983
984         /* open coded 'struct timespec' */
985         u64             monotonic_time_snsec;
986         time_t          monotonic_time_sec;
987 };
988
989 static struct pvclock_gtod_data pvclock_gtod_data;
990
991 static void update_pvclock_gtod(struct timekeeper *tk)
992 {
993         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
994
995         write_seqcount_begin(&vdata->seq);
996
997         /* copy pvclock gtod data */
998         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
999         vdata->clock.cycle_last         = tk->clock->cycle_last;
1000         vdata->clock.mask               = tk->clock->mask;
1001         vdata->clock.mult               = tk->mult;
1002         vdata->clock.shift              = tk->shift;
1003
1004         vdata->monotonic_time_sec       = tk->xtime_sec
1005                                         + tk->wall_to_monotonic.tv_sec;
1006         vdata->monotonic_time_snsec     = tk->xtime_nsec
1007                                         + (tk->wall_to_monotonic.tv_nsec
1008                                                 << tk->shift);
1009         while (vdata->monotonic_time_snsec >=
1010                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
1011                 vdata->monotonic_time_snsec -=
1012                                         ((u64)NSEC_PER_SEC) << tk->shift;
1013                 vdata->monotonic_time_sec++;
1014         }
1015
1016         write_seqcount_end(&vdata->seq);
1017 }
1018 #endif
1019
1020
1021 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1022 {
1023         int version;
1024         int r;
1025         struct pvclock_wall_clock wc;
1026         struct timespec boot;
1027
1028         if (!wall_clock)
1029                 return;
1030
1031         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1032         if (r)
1033                 return;
1034
1035         if (version & 1)
1036                 ++version;  /* first time write, random junk */
1037
1038         ++version;
1039
1040         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1041
1042         /*
1043          * The guest calculates current wall clock time by adding
1044          * system time (updated by kvm_guest_time_update below) to the
1045          * wall clock specified here.  guest system time equals host
1046          * system time for us, thus we must fill in host boot time here.
1047          */
1048         getboottime(&boot);
1049
1050         if (kvm->arch.kvmclock_offset) {
1051                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1052                 boot = timespec_sub(boot, ts);
1053         }
1054         wc.sec = boot.tv_sec;
1055         wc.nsec = boot.tv_nsec;
1056         wc.version = version;
1057
1058         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1059
1060         version++;
1061         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1062 }
1063
1064 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1065 {
1066         uint32_t quotient, remainder;
1067
1068         /* Don't try to replace with do_div(), this one calculates
1069          * "(dividend << 32) / divisor" */
1070         __asm__ ( "divl %4"
1071                   : "=a" (quotient), "=d" (remainder)
1072                   : "0" (0), "1" (dividend), "r" (divisor) );
1073         return quotient;
1074 }
1075
1076 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1077                                s8 *pshift, u32 *pmultiplier)
1078 {
1079         uint64_t scaled64;
1080         int32_t  shift = 0;
1081         uint64_t tps64;
1082         uint32_t tps32;
1083
1084         tps64 = base_khz * 1000LL;
1085         scaled64 = scaled_khz * 1000LL;
1086         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1087                 tps64 >>= 1;
1088                 shift--;
1089         }
1090
1091         tps32 = (uint32_t)tps64;
1092         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1093                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1094                         scaled64 >>= 1;
1095                 else
1096                         tps32 <<= 1;
1097                 shift++;
1098         }
1099
1100         *pshift = shift;
1101         *pmultiplier = div_frac(scaled64, tps32);
1102
1103         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1104                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1105 }
1106
1107 static inline u64 get_kernel_ns(void)
1108 {
1109         struct timespec ts;
1110
1111         ktime_get_ts(&ts);
1112         monotonic_to_bootbased(&ts);
1113         return timespec_to_ns(&ts);
1114 }
1115
1116 #ifdef CONFIG_X86_64
1117 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1118 #endif
1119
1120 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1121 unsigned long max_tsc_khz;
1122
1123 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1124 {
1125         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1126                                    vcpu->arch.virtual_tsc_shift);
1127 }
1128
1129 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1130 {
1131         u64 v = (u64)khz * (1000000 + ppm);
1132         do_div(v, 1000000);
1133         return v;
1134 }
1135
1136 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1137 {
1138         u32 thresh_lo, thresh_hi;
1139         int use_scaling = 0;
1140
1141         /* tsc_khz can be zero if TSC calibration fails */
1142         if (this_tsc_khz == 0)
1143                 return;
1144
1145         /* Compute a scale to convert nanoseconds in TSC cycles */
1146         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1147                            &vcpu->arch.virtual_tsc_shift,
1148                            &vcpu->arch.virtual_tsc_mult);
1149         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1150
1151         /*
1152          * Compute the variation in TSC rate which is acceptable
1153          * within the range of tolerance and decide if the
1154          * rate being applied is within that bounds of the hardware
1155          * rate.  If so, no scaling or compensation need be done.
1156          */
1157         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1158         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1159         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1160                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1161                 use_scaling = 1;
1162         }
1163         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1164 }
1165
1166 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1167 {
1168         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1169                                       vcpu->arch.virtual_tsc_mult,
1170                                       vcpu->arch.virtual_tsc_shift);
1171         tsc += vcpu->arch.this_tsc_write;
1172         return tsc;
1173 }
1174
1175 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1176 {
1177 #ifdef CONFIG_X86_64
1178         bool vcpus_matched;
1179         bool do_request = false;
1180         struct kvm_arch *ka = &vcpu->kvm->arch;
1181         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1182
1183         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1184                          atomic_read(&vcpu->kvm->online_vcpus));
1185
1186         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1187                 if (!ka->use_master_clock)
1188                         do_request = 1;
1189
1190         if (!vcpus_matched && ka->use_master_clock)
1191                         do_request = 1;
1192
1193         if (do_request)
1194                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1195
1196         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1197                             atomic_read(&vcpu->kvm->online_vcpus),
1198                             ka->use_master_clock, gtod->clock.vclock_mode);
1199 #endif
1200 }
1201
1202 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1203 {
1204         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1205         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1206 }
1207
1208 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1209 {
1210         struct kvm *kvm = vcpu->kvm;
1211         u64 offset, ns, elapsed;
1212         unsigned long flags;
1213         s64 usdiff;
1214         bool matched;
1215         u64 data = msr->data;
1216
1217         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1218         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1219         ns = get_kernel_ns();
1220         elapsed = ns - kvm->arch.last_tsc_nsec;
1221
1222         if (vcpu->arch.virtual_tsc_khz) {
1223                 int faulted = 0;
1224
1225                 /* n.b - signed multiplication and division required */
1226                 usdiff = data - kvm->arch.last_tsc_write;
1227 #ifdef CONFIG_X86_64
1228                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1229 #else
1230                 /* do_div() only does unsigned */
1231                 asm("1: idivl %[divisor]\n"
1232                     "2: xor %%edx, %%edx\n"
1233                     "   movl $0, %[faulted]\n"
1234                     "3:\n"
1235                     ".section .fixup,\"ax\"\n"
1236                     "4: movl $1, %[faulted]\n"
1237                     "   jmp  3b\n"
1238                     ".previous\n"
1239
1240                 _ASM_EXTABLE(1b, 4b)
1241
1242                 : "=A"(usdiff), [faulted] "=r" (faulted)
1243                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1244
1245 #endif
1246                 do_div(elapsed, 1000);
1247                 usdiff -= elapsed;
1248                 if (usdiff < 0)
1249                         usdiff = -usdiff;
1250
1251                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1252                 if (faulted)
1253                         usdiff = USEC_PER_SEC;
1254         } else
1255                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1256
1257         /*
1258          * Special case: TSC write with a small delta (1 second) of virtual
1259          * cycle time against real time is interpreted as an attempt to
1260          * synchronize the CPU.
1261          *
1262          * For a reliable TSC, we can match TSC offsets, and for an unstable
1263          * TSC, we add elapsed time in this computation.  We could let the
1264          * compensation code attempt to catch up if we fall behind, but
1265          * it's better to try to match offsets from the beginning.
1266          */
1267         if (usdiff < USEC_PER_SEC &&
1268             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1269                 if (!check_tsc_unstable()) {
1270                         offset = kvm->arch.cur_tsc_offset;
1271                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1272                 } else {
1273                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1274                         data += delta;
1275                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1276                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1277                 }
1278                 matched = true;
1279         } else {
1280                 /*
1281                  * We split periods of matched TSC writes into generations.
1282                  * For each generation, we track the original measured
1283                  * nanosecond time, offset, and write, so if TSCs are in
1284                  * sync, we can match exact offset, and if not, we can match
1285                  * exact software computation in compute_guest_tsc()
1286                  *
1287                  * These values are tracked in kvm->arch.cur_xxx variables.
1288                  */
1289                 kvm->arch.cur_tsc_generation++;
1290                 kvm->arch.cur_tsc_nsec = ns;
1291                 kvm->arch.cur_tsc_write = data;
1292                 kvm->arch.cur_tsc_offset = offset;
1293                 matched = false;
1294                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1295                          kvm->arch.cur_tsc_generation, data);
1296         }
1297
1298         /*
1299          * We also track th most recent recorded KHZ, write and time to
1300          * allow the matching interval to be extended at each write.
1301          */
1302         kvm->arch.last_tsc_nsec = ns;
1303         kvm->arch.last_tsc_write = data;
1304         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1305
1306         vcpu->arch.last_guest_tsc = data;
1307
1308         /* Keep track of which generation this VCPU has synchronized to */
1309         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1310         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1311         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1312
1313         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1314                 update_ia32_tsc_adjust_msr(vcpu, offset);
1315         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1316         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1317
1318         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1319         if (matched)
1320                 kvm->arch.nr_vcpus_matched_tsc++;
1321         else
1322                 kvm->arch.nr_vcpus_matched_tsc = 0;
1323
1324         kvm_track_tsc_matching(vcpu);
1325         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1326 }
1327
1328 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1329
1330 #ifdef CONFIG_X86_64
1331
1332 static cycle_t read_tsc(void)
1333 {
1334         cycle_t ret;
1335         u64 last;
1336
1337         /*
1338          * Empirically, a fence (of type that depends on the CPU)
1339          * before rdtsc is enough to ensure that rdtsc is ordered
1340          * with respect to loads.  The various CPU manuals are unclear
1341          * as to whether rdtsc can be reordered with later loads,
1342          * but no one has ever seen it happen.
1343          */
1344         rdtsc_barrier();
1345         ret = (cycle_t)vget_cycles();
1346
1347         last = pvclock_gtod_data.clock.cycle_last;
1348
1349         if (likely(ret >= last))
1350                 return ret;
1351
1352         /*
1353          * GCC likes to generate cmov here, but this branch is extremely
1354          * predictable (it's just a funciton of time and the likely is
1355          * very likely) and there's a data dependence, so force GCC
1356          * to generate a branch instead.  I don't barrier() because
1357          * we don't actually need a barrier, and if this function
1358          * ever gets inlined it will generate worse code.
1359          */
1360         asm volatile ("");
1361         return last;
1362 }
1363
1364 static inline u64 vgettsc(cycle_t *cycle_now)
1365 {
1366         long v;
1367         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1368
1369         *cycle_now = read_tsc();
1370
1371         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1372         return v * gtod->clock.mult;
1373 }
1374
1375 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1376 {
1377         unsigned long seq;
1378         u64 ns;
1379         int mode;
1380         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1381
1382         ts->tv_nsec = 0;
1383         do {
1384                 seq = read_seqcount_begin(&gtod->seq);
1385                 mode = gtod->clock.vclock_mode;
1386                 ts->tv_sec = gtod->monotonic_time_sec;
1387                 ns = gtod->monotonic_time_snsec;
1388                 ns += vgettsc(cycle_now);
1389                 ns >>= gtod->clock.shift;
1390         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1391         timespec_add_ns(ts, ns);
1392
1393         return mode;
1394 }
1395
1396 /* returns true if host is using tsc clocksource */
1397 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1398 {
1399         struct timespec ts;
1400
1401         /* checked again under seqlock below */
1402         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1403                 return false;
1404
1405         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1406                 return false;
1407
1408         monotonic_to_bootbased(&ts);
1409         *kernel_ns = timespec_to_ns(&ts);
1410
1411         return true;
1412 }
1413 #endif
1414
1415 /*
1416  *
1417  * Assuming a stable TSC across physical CPUS, and a stable TSC
1418  * across virtual CPUs, the following condition is possible.
1419  * Each numbered line represents an event visible to both
1420  * CPUs at the next numbered event.
1421  *
1422  * "timespecX" represents host monotonic time. "tscX" represents
1423  * RDTSC value.
1424  *
1425  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1426  *
1427  * 1.  read timespec0,tsc0
1428  * 2.                                   | timespec1 = timespec0 + N
1429  *                                      | tsc1 = tsc0 + M
1430  * 3. transition to guest               | transition to guest
1431  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1432  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1433  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1434  *
1435  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1436  *
1437  *      - ret0 < ret1
1438  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1439  *              ...
1440  *      - 0 < N - M => M < N
1441  *
1442  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1443  * always the case (the difference between two distinct xtime instances
1444  * might be smaller then the difference between corresponding TSC reads,
1445  * when updating guest vcpus pvclock areas).
1446  *
1447  * To avoid that problem, do not allow visibility of distinct
1448  * system_timestamp/tsc_timestamp values simultaneously: use a master
1449  * copy of host monotonic time values. Update that master copy
1450  * in lockstep.
1451  *
1452  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1453  *
1454  */
1455
1456 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1457 {
1458 #ifdef CONFIG_X86_64
1459         struct kvm_arch *ka = &kvm->arch;
1460         int vclock_mode;
1461         bool host_tsc_clocksource, vcpus_matched;
1462
1463         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1464                         atomic_read(&kvm->online_vcpus));
1465
1466         /*
1467          * If the host uses TSC clock, then passthrough TSC as stable
1468          * to the guest.
1469          */
1470         host_tsc_clocksource = kvm_get_time_and_clockread(
1471                                         &ka->master_kernel_ns,
1472                                         &ka->master_cycle_now);
1473
1474         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1475
1476         if (ka->use_master_clock)
1477                 atomic_set(&kvm_guest_has_master_clock, 1);
1478
1479         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1480         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1481                                         vcpus_matched);
1482 #endif
1483 }
1484
1485 static void kvm_gen_update_masterclock(struct kvm *kvm)
1486 {
1487 #ifdef CONFIG_X86_64
1488         int i;
1489         struct kvm_vcpu *vcpu;
1490         struct kvm_arch *ka = &kvm->arch;
1491
1492         spin_lock(&ka->pvclock_gtod_sync_lock);
1493         kvm_make_mclock_inprogress_request(kvm);
1494         /* no guest entries from this point */
1495         pvclock_update_vm_gtod_copy(kvm);
1496
1497         kvm_for_each_vcpu(i, vcpu, kvm)
1498                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1499
1500         /* guest entries allowed */
1501         kvm_for_each_vcpu(i, vcpu, kvm)
1502                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1503
1504         spin_unlock(&ka->pvclock_gtod_sync_lock);
1505 #endif
1506 }
1507
1508 static int kvm_guest_time_update(struct kvm_vcpu *v)
1509 {
1510         unsigned long flags, this_tsc_khz;
1511         struct kvm_vcpu_arch *vcpu = &v->arch;
1512         struct kvm_arch *ka = &v->kvm->arch;
1513         s64 kernel_ns;
1514         u64 tsc_timestamp, host_tsc;
1515         struct pvclock_vcpu_time_info guest_hv_clock;
1516         u8 pvclock_flags;
1517         bool use_master_clock;
1518
1519         kernel_ns = 0;
1520         host_tsc = 0;
1521
1522         /*
1523          * If the host uses TSC clock, then passthrough TSC as stable
1524          * to the guest.
1525          */
1526         spin_lock(&ka->pvclock_gtod_sync_lock);
1527         use_master_clock = ka->use_master_clock;
1528         if (use_master_clock) {
1529                 host_tsc = ka->master_cycle_now;
1530                 kernel_ns = ka->master_kernel_ns;
1531         }
1532         spin_unlock(&ka->pvclock_gtod_sync_lock);
1533
1534         /* Keep irq disabled to prevent changes to the clock */
1535         local_irq_save(flags);
1536         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1537         if (unlikely(this_tsc_khz == 0)) {
1538                 local_irq_restore(flags);
1539                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1540                 return 1;
1541         }
1542         if (!use_master_clock) {
1543                 host_tsc = native_read_tsc();
1544                 kernel_ns = get_kernel_ns();
1545         }
1546
1547         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1548
1549         /*
1550          * We may have to catch up the TSC to match elapsed wall clock
1551          * time for two reasons, even if kvmclock is used.
1552          *   1) CPU could have been running below the maximum TSC rate
1553          *   2) Broken TSC compensation resets the base at each VCPU
1554          *      entry to avoid unknown leaps of TSC even when running
1555          *      again on the same CPU.  This may cause apparent elapsed
1556          *      time to disappear, and the guest to stand still or run
1557          *      very slowly.
1558          */
1559         if (vcpu->tsc_catchup) {
1560                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1561                 if (tsc > tsc_timestamp) {
1562                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1563                         tsc_timestamp = tsc;
1564                 }
1565         }
1566
1567         local_irq_restore(flags);
1568
1569         if (!vcpu->pv_time_enabled)
1570                 return 0;
1571
1572         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1573                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1574                                    &vcpu->hv_clock.tsc_shift,
1575                                    &vcpu->hv_clock.tsc_to_system_mul);
1576                 vcpu->hw_tsc_khz = this_tsc_khz;
1577         }
1578
1579         /* With all the info we got, fill in the values */
1580         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1581         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1582         vcpu->last_guest_tsc = tsc_timestamp;
1583
1584         /*
1585          * The interface expects us to write an even number signaling that the
1586          * update is finished. Since the guest won't see the intermediate
1587          * state, we just increase by 2 at the end.
1588          */
1589         vcpu->hv_clock.version += 2;
1590
1591         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1592                 &guest_hv_clock, sizeof(guest_hv_clock))))
1593                 return 0;
1594
1595         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1596         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1597
1598         if (vcpu->pvclock_set_guest_stopped_request) {
1599                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1600                 vcpu->pvclock_set_guest_stopped_request = false;
1601         }
1602
1603         /* If the host uses TSC clocksource, then it is stable */
1604         if (use_master_clock)
1605                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1606
1607         vcpu->hv_clock.flags = pvclock_flags;
1608
1609         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1610                                 &vcpu->hv_clock,
1611                                 sizeof(vcpu->hv_clock));
1612         return 0;
1613 }
1614
1615 /*
1616  * kvmclock updates which are isolated to a given vcpu, such as
1617  * vcpu->cpu migration, should not allow system_timestamp from
1618  * the rest of the vcpus to remain static. Otherwise ntp frequency
1619  * correction applies to one vcpu's system_timestamp but not
1620  * the others.
1621  *
1622  * So in those cases, request a kvmclock update for all vcpus.
1623  * We need to rate-limit these requests though, as they can
1624  * considerably slow guests that have a large number of vcpus.
1625  * The time for a remote vcpu to update its kvmclock is bound
1626  * by the delay we use to rate-limit the updates.
1627  */
1628
1629 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1630
1631 static void kvmclock_update_fn(struct work_struct *work)
1632 {
1633         int i;
1634         struct delayed_work *dwork = to_delayed_work(work);
1635         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1636                                            kvmclock_update_work);
1637         struct kvm *kvm = container_of(ka, struct kvm, arch);
1638         struct kvm_vcpu *vcpu;
1639
1640         kvm_for_each_vcpu(i, vcpu, kvm) {
1641                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1642                 kvm_vcpu_kick(vcpu);
1643         }
1644 }
1645
1646 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1647 {
1648         struct kvm *kvm = v->kvm;
1649
1650         set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1651         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1652                                         KVMCLOCK_UPDATE_DELAY);
1653 }
1654
1655 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1656
1657 static void kvmclock_sync_fn(struct work_struct *work)
1658 {
1659         struct delayed_work *dwork = to_delayed_work(work);
1660         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1661                                            kvmclock_sync_work);
1662         struct kvm *kvm = container_of(ka, struct kvm, arch);
1663
1664         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1665         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1666                                         KVMCLOCK_SYNC_PERIOD);
1667 }
1668
1669 static bool msr_mtrr_valid(unsigned msr)
1670 {
1671         switch (msr) {
1672         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1673         case MSR_MTRRfix64K_00000:
1674         case MSR_MTRRfix16K_80000:
1675         case MSR_MTRRfix16K_A0000:
1676         case MSR_MTRRfix4K_C0000:
1677         case MSR_MTRRfix4K_C8000:
1678         case MSR_MTRRfix4K_D0000:
1679         case MSR_MTRRfix4K_D8000:
1680         case MSR_MTRRfix4K_E0000:
1681         case MSR_MTRRfix4K_E8000:
1682         case MSR_MTRRfix4K_F0000:
1683         case MSR_MTRRfix4K_F8000:
1684         case MSR_MTRRdefType:
1685         case MSR_IA32_CR_PAT:
1686                 return true;
1687         case 0x2f8:
1688                 return true;
1689         }
1690         return false;
1691 }
1692
1693 static bool valid_pat_type(unsigned t)
1694 {
1695         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1696 }
1697
1698 static bool valid_mtrr_type(unsigned t)
1699 {
1700         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1701 }
1702
1703 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1704 {
1705         int i;
1706
1707         if (!msr_mtrr_valid(msr))
1708                 return false;
1709
1710         if (msr == MSR_IA32_CR_PAT) {
1711                 for (i = 0; i < 8; i++)
1712                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1713                                 return false;
1714                 return true;
1715         } else if (msr == MSR_MTRRdefType) {
1716                 if (data & ~0xcff)
1717                         return false;
1718                 return valid_mtrr_type(data & 0xff);
1719         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1720                 for (i = 0; i < 8 ; i++)
1721                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1722                                 return false;
1723                 return true;
1724         }
1725
1726         /* variable MTRRs */
1727         return valid_mtrr_type(data & 0xff);
1728 }
1729
1730 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1731 {
1732         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1733
1734         if (!mtrr_valid(vcpu, msr, data))
1735                 return 1;
1736
1737         if (msr == MSR_MTRRdefType) {
1738                 vcpu->arch.mtrr_state.def_type = data;
1739                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1740         } else if (msr == MSR_MTRRfix64K_00000)
1741                 p[0] = data;
1742         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1743                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1744         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1745                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1746         else if (msr == MSR_IA32_CR_PAT)
1747                 vcpu->arch.pat = data;
1748         else {  /* Variable MTRRs */
1749                 int idx, is_mtrr_mask;
1750                 u64 *pt;
1751
1752                 idx = (msr - 0x200) / 2;
1753                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1754                 if (!is_mtrr_mask)
1755                         pt =
1756                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1757                 else
1758                         pt =
1759                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1760                 *pt = data;
1761         }
1762
1763         kvm_mmu_reset_context(vcpu);
1764         return 0;
1765 }
1766
1767 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1768 {
1769         u64 mcg_cap = vcpu->arch.mcg_cap;
1770         unsigned bank_num = mcg_cap & 0xff;
1771
1772         switch (msr) {
1773         case MSR_IA32_MCG_STATUS:
1774                 vcpu->arch.mcg_status = data;
1775                 break;
1776         case MSR_IA32_MCG_CTL:
1777                 if (!(mcg_cap & MCG_CTL_P))
1778                         return 1;
1779                 if (data != 0 && data != ~(u64)0)
1780                         return -1;
1781                 vcpu->arch.mcg_ctl = data;
1782                 break;
1783         default:
1784                 if (msr >= MSR_IA32_MC0_CTL &&
1785                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1786                         u32 offset = msr - MSR_IA32_MC0_CTL;
1787                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1788                          * some Linux kernels though clear bit 10 in bank 4 to
1789                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1790                          * this to avoid an uncatched #GP in the guest
1791                          */
1792                         if ((offset & 0x3) == 0 &&
1793                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1794                                 return -1;
1795                         vcpu->arch.mce_banks[offset] = data;
1796                         break;
1797                 }
1798                 return 1;
1799         }
1800         return 0;
1801 }
1802
1803 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1804 {
1805         struct kvm *kvm = vcpu->kvm;
1806         int lm = is_long_mode(vcpu);
1807         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1808                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1809         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1810                 : kvm->arch.xen_hvm_config.blob_size_32;
1811         u32 page_num = data & ~PAGE_MASK;
1812         u64 page_addr = data & PAGE_MASK;
1813         u8 *page;
1814         int r;
1815
1816         r = -E2BIG;
1817         if (page_num >= blob_size)
1818                 goto out;
1819         r = -ENOMEM;
1820         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1821         if (IS_ERR(page)) {
1822                 r = PTR_ERR(page);
1823                 goto out;
1824         }
1825         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1826                 goto out_free;
1827         r = 0;
1828 out_free:
1829         kfree(page);
1830 out:
1831         return r;
1832 }
1833
1834 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1835 {
1836         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1837 }
1838
1839 static bool kvm_hv_msr_partition_wide(u32 msr)
1840 {
1841         bool r = false;
1842         switch (msr) {
1843         case HV_X64_MSR_GUEST_OS_ID:
1844         case HV_X64_MSR_HYPERCALL:
1845         case HV_X64_MSR_REFERENCE_TSC:
1846         case HV_X64_MSR_TIME_REF_COUNT:
1847                 r = true;
1848                 break;
1849         }
1850
1851         return r;
1852 }
1853
1854 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1855 {
1856         struct kvm *kvm = vcpu->kvm;
1857
1858         switch (msr) {
1859         case HV_X64_MSR_GUEST_OS_ID:
1860                 kvm->arch.hv_guest_os_id = data;
1861                 /* setting guest os id to zero disables hypercall page */
1862                 if (!kvm->arch.hv_guest_os_id)
1863                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1864                 break;
1865         case HV_X64_MSR_HYPERCALL: {
1866                 u64 gfn;
1867                 unsigned long addr;
1868                 u8 instructions[4];
1869
1870                 /* if guest os id is not set hypercall should remain disabled */
1871                 if (!kvm->arch.hv_guest_os_id)
1872                         break;
1873                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1874                         kvm->arch.hv_hypercall = data;
1875                         break;
1876                 }
1877                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1878                 addr = gfn_to_hva(kvm, gfn);
1879                 if (kvm_is_error_hva(addr))
1880                         return 1;
1881                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1882                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1883                 if (__copy_to_user((void __user *)addr, instructions, 4))
1884                         return 1;
1885                 kvm->arch.hv_hypercall = data;
1886                 mark_page_dirty(kvm, gfn);
1887                 break;
1888         }
1889         case HV_X64_MSR_REFERENCE_TSC: {
1890                 u64 gfn;
1891                 HV_REFERENCE_TSC_PAGE tsc_ref;
1892                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1893                 kvm->arch.hv_tsc_page = data;
1894                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1895                         break;
1896                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1897                 if (kvm_write_guest(kvm, data,
1898                         &tsc_ref, sizeof(tsc_ref)))
1899                         return 1;
1900                 mark_page_dirty(kvm, gfn);
1901                 break;
1902         }
1903         default:
1904                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1905                             "data 0x%llx\n", msr, data);
1906                 return 1;
1907         }
1908         return 0;
1909 }
1910
1911 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1912 {
1913         switch (msr) {
1914         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1915                 u64 gfn;
1916                 unsigned long addr;
1917
1918                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1919                         vcpu->arch.hv_vapic = data;
1920                         break;
1921                 }
1922                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1923                 addr = gfn_to_hva(vcpu->kvm, gfn);
1924                 if (kvm_is_error_hva(addr))
1925                         return 1;
1926                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1927                         return 1;
1928                 vcpu->arch.hv_vapic = data;
1929                 mark_page_dirty(vcpu->kvm, gfn);
1930                 break;
1931         }
1932         case HV_X64_MSR_EOI:
1933                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1934         case HV_X64_MSR_ICR:
1935                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1936         case HV_X64_MSR_TPR:
1937                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1938         default:
1939                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1940                             "data 0x%llx\n", msr, data);
1941                 return 1;
1942         }
1943
1944         return 0;
1945 }
1946
1947 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1948 {
1949         gpa_t gpa = data & ~0x3f;
1950
1951         /* Bits 2:5 are reserved, Should be zero */
1952         if (data & 0x3c)
1953                 return 1;
1954
1955         vcpu->arch.apf.msr_val = data;
1956
1957         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1958                 kvm_clear_async_pf_completion_queue(vcpu);
1959                 kvm_async_pf_hash_reset(vcpu);
1960                 return 0;
1961         }
1962
1963         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1964                                         sizeof(u32)))
1965                 return 1;
1966
1967         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1968         kvm_async_pf_wakeup_all(vcpu);
1969         return 0;
1970 }
1971
1972 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1973 {
1974         vcpu->arch.pv_time_enabled = false;
1975 }
1976
1977 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1978 {
1979         u64 delta;
1980
1981         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1982                 return;
1983
1984         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1985         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1986         vcpu->arch.st.accum_steal = delta;
1987 }
1988
1989 static void record_steal_time(struct kvm_vcpu *vcpu)
1990 {
1991         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1992                 return;
1993
1994         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1995                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1996                 return;
1997
1998         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1999         vcpu->arch.st.steal.version += 2;
2000         vcpu->arch.st.accum_steal = 0;
2001
2002         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2003                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2004 }
2005
2006 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2007 {
2008         bool pr = false;
2009         u32 msr = msr_info->index;
2010         u64 data = msr_info->data;
2011
2012         switch (msr) {
2013         case MSR_AMD64_NB_CFG:
2014         case MSR_IA32_UCODE_REV:
2015         case MSR_IA32_UCODE_WRITE:
2016         case MSR_VM_HSAVE_PA:
2017         case MSR_AMD64_PATCH_LOADER:
2018         case MSR_AMD64_BU_CFG2:
2019                 break;
2020
2021         case MSR_EFER:
2022                 return set_efer(vcpu, data);
2023         case MSR_K7_HWCR:
2024                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2025                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2026                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2027                 if (data != 0) {
2028                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2029                                     data);
2030                         return 1;
2031                 }
2032                 break;
2033         case MSR_FAM10H_MMIO_CONF_BASE:
2034                 if (data != 0) {
2035                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2036                                     "0x%llx\n", data);
2037                         return 1;
2038                 }
2039                 break;
2040         case MSR_IA32_DEBUGCTLMSR:
2041                 if (!data) {
2042                         /* We support the non-activated case already */
2043                         break;
2044                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2045                         /* Values other than LBR and BTF are vendor-specific,
2046                            thus reserved and should throw a #GP */
2047                         return 1;
2048                 }
2049                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2050                             __func__, data);
2051                 break;
2052         case 0x200 ... 0x2ff:
2053                 return set_msr_mtrr(vcpu, msr, data);
2054         case MSR_IA32_APICBASE:
2055                 return kvm_set_apic_base(vcpu, msr_info);
2056         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2057                 return kvm_x2apic_msr_write(vcpu, msr, data);
2058         case MSR_IA32_TSCDEADLINE:
2059                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2060                 break;
2061         case MSR_IA32_TSC_ADJUST:
2062                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2063                         if (!msr_info->host_initiated) {
2064                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2065                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2066                         }
2067                         vcpu->arch.ia32_tsc_adjust_msr = data;
2068                 }
2069                 break;
2070         case MSR_IA32_MISC_ENABLE:
2071                 vcpu->arch.ia32_misc_enable_msr = data;
2072                 break;
2073         case MSR_KVM_WALL_CLOCK_NEW:
2074         case MSR_KVM_WALL_CLOCK:
2075                 vcpu->kvm->arch.wall_clock = data;
2076                 kvm_write_wall_clock(vcpu->kvm, data);
2077                 break;
2078         case MSR_KVM_SYSTEM_TIME_NEW:
2079         case MSR_KVM_SYSTEM_TIME: {
2080                 u64 gpa_offset;
2081                 kvmclock_reset(vcpu);
2082
2083                 vcpu->arch.time = data;
2084                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2085
2086                 /* we verify if the enable bit is set... */
2087                 if (!(data & 1))
2088                         break;
2089
2090                 gpa_offset = data & ~(PAGE_MASK | 1);
2091
2092                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2093                      &vcpu->arch.pv_time, data & ~1ULL,
2094                      sizeof(struct pvclock_vcpu_time_info)))
2095                         vcpu->arch.pv_time_enabled = false;
2096                 else
2097                         vcpu->arch.pv_time_enabled = true;
2098
2099                 break;
2100         }
2101         case MSR_KVM_ASYNC_PF_EN:
2102                 if (kvm_pv_enable_async_pf(vcpu, data))
2103                         return 1;
2104                 break;
2105         case MSR_KVM_STEAL_TIME:
2106
2107                 if (unlikely(!sched_info_on()))
2108                         return 1;
2109
2110                 if (data & KVM_STEAL_RESERVED_MASK)
2111                         return 1;
2112
2113                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2114                                                 data & KVM_STEAL_VALID_BITS,
2115                                                 sizeof(struct kvm_steal_time)))
2116                         return 1;
2117
2118                 vcpu->arch.st.msr_val = data;
2119
2120                 if (!(data & KVM_MSR_ENABLED))
2121                         break;
2122
2123                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2124
2125                 preempt_disable();
2126                 accumulate_steal_time(vcpu);
2127                 preempt_enable();
2128
2129                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2130
2131                 break;
2132         case MSR_KVM_PV_EOI_EN:
2133                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2134                         return 1;
2135                 break;
2136
2137         case MSR_IA32_MCG_CTL:
2138         case MSR_IA32_MCG_STATUS:
2139         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2140                 return set_msr_mce(vcpu, msr, data);
2141
2142         /* Performance counters are not protected by a CPUID bit,
2143          * so we should check all of them in the generic path for the sake of
2144          * cross vendor migration.
2145          * Writing a zero into the event select MSRs disables them,
2146          * which we perfectly emulate ;-). Any other value should be at least
2147          * reported, some guests depend on them.
2148          */
2149         case MSR_K7_EVNTSEL0:
2150         case MSR_K7_EVNTSEL1:
2151         case MSR_K7_EVNTSEL2:
2152         case MSR_K7_EVNTSEL3:
2153                 if (data != 0)
2154                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2155                                     "0x%x data 0x%llx\n", msr, data);
2156                 break;
2157         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2158          * so we ignore writes to make it happy.
2159          */
2160         case MSR_K7_PERFCTR0:
2161         case MSR_K7_PERFCTR1:
2162         case MSR_K7_PERFCTR2:
2163         case MSR_K7_PERFCTR3:
2164                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2165                             "0x%x data 0x%llx\n", msr, data);
2166                 break;
2167         case MSR_P6_PERFCTR0:
2168         case MSR_P6_PERFCTR1:
2169                 pr = true;
2170         case MSR_P6_EVNTSEL0:
2171         case MSR_P6_EVNTSEL1:
2172                 if (kvm_pmu_msr(vcpu, msr))
2173                         return kvm_pmu_set_msr(vcpu, msr_info);
2174
2175                 if (pr || data != 0)
2176                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2177                                     "0x%x data 0x%llx\n", msr, data);
2178                 break;
2179         case MSR_K7_CLK_CTL:
2180                 /*
2181                  * Ignore all writes to this no longer documented MSR.
2182                  * Writes are only relevant for old K7 processors,
2183                  * all pre-dating SVM, but a recommended workaround from
2184                  * AMD for these chips. It is possible to specify the
2185                  * affected processor models on the command line, hence
2186                  * the need to ignore the workaround.
2187                  */
2188                 break;
2189         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2190                 if (kvm_hv_msr_partition_wide(msr)) {
2191                         int r;
2192                         mutex_lock(&vcpu->kvm->lock);
2193                         r = set_msr_hyperv_pw(vcpu, msr, data);
2194                         mutex_unlock(&vcpu->kvm->lock);
2195                         return r;
2196                 } else
2197                         return set_msr_hyperv(vcpu, msr, data);
2198                 break;
2199         case MSR_IA32_BBL_CR_CTL3:
2200                 /* Drop writes to this legacy MSR -- see rdmsr
2201                  * counterpart for further detail.
2202                  */
2203                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2204                 break;
2205         case MSR_AMD64_OSVW_ID_LENGTH:
2206                 if (!guest_cpuid_has_osvw(vcpu))
2207                         return 1;
2208                 vcpu->arch.osvw.length = data;
2209                 break;
2210         case MSR_AMD64_OSVW_STATUS:
2211                 if (!guest_cpuid_has_osvw(vcpu))
2212                         return 1;
2213                 vcpu->arch.osvw.status = data;
2214                 break;
2215         default:
2216                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2217                         return xen_hvm_config(vcpu, data);
2218                 if (kvm_pmu_msr(vcpu, msr))
2219                         return kvm_pmu_set_msr(vcpu, msr_info);
2220                 if (!ignore_msrs) {
2221                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2222                                     msr, data);
2223                         return 1;
2224                 } else {
2225                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2226                                     msr, data);
2227                         break;
2228                 }
2229         }
2230         return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2233
2234
2235 /*
2236  * Reads an msr value (of 'msr_index') into 'pdata'.
2237  * Returns 0 on success, non-0 otherwise.
2238  * Assumes vcpu_load() was already called.
2239  */
2240 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2241 {
2242         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2243 }
2244
2245 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2246 {
2247         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2248
2249         if (!msr_mtrr_valid(msr))
2250                 return 1;
2251
2252         if (msr == MSR_MTRRdefType)
2253                 *pdata = vcpu->arch.mtrr_state.def_type +
2254                          (vcpu->arch.mtrr_state.enabled << 10);
2255         else if (msr == MSR_MTRRfix64K_00000)
2256                 *pdata = p[0];
2257         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2258                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2259         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2260                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2261         else if (msr == MSR_IA32_CR_PAT)
2262                 *pdata = vcpu->arch.pat;
2263         else {  /* Variable MTRRs */
2264                 int idx, is_mtrr_mask;
2265                 u64 *pt;
2266
2267                 idx = (msr - 0x200) / 2;
2268                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2269                 if (!is_mtrr_mask)
2270                         pt =
2271                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2272                 else
2273                         pt =
2274                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2275                 *pdata = *pt;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2282 {
2283         u64 data;
2284         u64 mcg_cap = vcpu->arch.mcg_cap;
2285         unsigned bank_num = mcg_cap & 0xff;
2286
2287         switch (msr) {
2288         case MSR_IA32_P5_MC_ADDR:
2289         case MSR_IA32_P5_MC_TYPE:
2290                 data = 0;
2291                 break;
2292         case MSR_IA32_MCG_CAP:
2293                 data = vcpu->arch.mcg_cap;
2294                 break;
2295         case MSR_IA32_MCG_CTL:
2296                 if (!(mcg_cap & MCG_CTL_P))
2297                         return 1;
2298                 data = vcpu->arch.mcg_ctl;
2299                 break;
2300         case MSR_IA32_MCG_STATUS:
2301                 data = vcpu->arch.mcg_status;
2302                 break;
2303         default:
2304                 if (msr >= MSR_IA32_MC0_CTL &&
2305                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2306                         u32 offset = msr - MSR_IA32_MC0_CTL;
2307                         data = vcpu->arch.mce_banks[offset];
2308                         break;
2309                 }
2310                 return 1;
2311         }
2312         *pdata = data;
2313         return 0;
2314 }
2315
2316 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2317 {
2318         u64 data = 0;
2319         struct kvm *kvm = vcpu->kvm;
2320
2321         switch (msr) {
2322         case HV_X64_MSR_GUEST_OS_ID:
2323                 data = kvm->arch.hv_guest_os_id;
2324                 break;
2325         case HV_X64_MSR_HYPERCALL:
2326                 data = kvm->arch.hv_hypercall;
2327                 break;
2328         case HV_X64_MSR_TIME_REF_COUNT: {
2329                 data =
2330                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2331                 break;
2332         }
2333         case HV_X64_MSR_REFERENCE_TSC:
2334                 data = kvm->arch.hv_tsc_page;
2335                 break;
2336         default:
2337                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2338                 return 1;
2339         }
2340
2341         *pdata = data;
2342         return 0;
2343 }
2344
2345 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2346 {
2347         u64 data = 0;
2348
2349         switch (msr) {
2350         case HV_X64_MSR_VP_INDEX: {
2351                 int r;
2352                 struct kvm_vcpu *v;
2353                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2354                         if (v == vcpu) {
2355                                 data = r;
2356                                 break;
2357                         }
2358                 }
2359                 break;
2360         }
2361         case HV_X64_MSR_EOI:
2362                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2363         case HV_X64_MSR_ICR:
2364                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2365         case HV_X64_MSR_TPR:
2366                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2367         case HV_X64_MSR_APIC_ASSIST_PAGE:
2368                 data = vcpu->arch.hv_vapic;
2369                 break;
2370         default:
2371                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2372                 return 1;
2373         }
2374         *pdata = data;
2375         return 0;
2376 }
2377
2378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2379 {
2380         u64 data;
2381
2382         switch (msr) {
2383         case MSR_IA32_PLATFORM_ID:
2384         case MSR_IA32_EBL_CR_POWERON:
2385         case MSR_IA32_DEBUGCTLMSR:
2386         case MSR_IA32_LASTBRANCHFROMIP:
2387         case MSR_IA32_LASTBRANCHTOIP:
2388         case MSR_IA32_LASTINTFROMIP:
2389         case MSR_IA32_LASTINTTOIP:
2390         case MSR_K8_SYSCFG:
2391         case MSR_K7_HWCR:
2392         case MSR_VM_HSAVE_PA:
2393         case MSR_K7_EVNTSEL0:
2394         case MSR_K7_PERFCTR0:
2395         case MSR_K8_INT_PENDING_MSG:
2396         case MSR_AMD64_NB_CFG:
2397         case MSR_FAM10H_MMIO_CONF_BASE:
2398         case MSR_AMD64_BU_CFG2:
2399                 data = 0;
2400                 break;
2401         case MSR_P6_PERFCTR0:
2402         case MSR_P6_PERFCTR1:
2403         case MSR_P6_EVNTSEL0:
2404         case MSR_P6_EVNTSEL1:
2405                 if (kvm_pmu_msr(vcpu, msr))
2406                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2407                 data = 0;
2408                 break;
2409         case MSR_IA32_UCODE_REV:
2410                 data = 0x100000000ULL;
2411                 break;
2412         case MSR_MTRRcap:
2413                 data = 0x500 | KVM_NR_VAR_MTRR;
2414                 break;
2415         case 0x200 ... 0x2ff:
2416                 return get_msr_mtrr(vcpu, msr, pdata);
2417         case 0xcd: /* fsb frequency */
2418                 data = 3;
2419                 break;
2420                 /*
2421                  * MSR_EBC_FREQUENCY_ID
2422                  * Conservative value valid for even the basic CPU models.
2423                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2424                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2425                  * and 266MHz for model 3, or 4. Set Core Clock
2426                  * Frequency to System Bus Frequency Ratio to 1 (bits
2427                  * 31:24) even though these are only valid for CPU
2428                  * models > 2, however guests may end up dividing or
2429                  * multiplying by zero otherwise.
2430                  */
2431         case MSR_EBC_FREQUENCY_ID:
2432                 data = 1 << 24;
2433                 break;
2434         case MSR_IA32_APICBASE:
2435                 data = kvm_get_apic_base(vcpu);
2436                 break;
2437         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2438                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2439                 break;
2440         case MSR_IA32_TSCDEADLINE:
2441                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2442                 break;
2443         case MSR_IA32_TSC_ADJUST:
2444                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2445                 break;
2446         case MSR_IA32_MISC_ENABLE:
2447                 data = vcpu->arch.ia32_misc_enable_msr;
2448                 break;
2449         case MSR_IA32_PERF_STATUS:
2450                 /* TSC increment by tick */
2451                 data = 1000ULL;
2452                 /* CPU multiplier */
2453                 data |= (((uint64_t)4ULL) << 40);
2454                 break;
2455         case MSR_EFER:
2456                 data = vcpu->arch.efer;
2457                 break;
2458         case MSR_KVM_WALL_CLOCK:
2459         case MSR_KVM_WALL_CLOCK_NEW:
2460                 data = vcpu->kvm->arch.wall_clock;
2461                 break;
2462         case MSR_KVM_SYSTEM_TIME:
2463         case MSR_KVM_SYSTEM_TIME_NEW:
2464                 data = vcpu->arch.time;
2465                 break;
2466         case MSR_KVM_ASYNC_PF_EN:
2467                 data = vcpu->arch.apf.msr_val;
2468                 break;
2469         case MSR_KVM_STEAL_TIME:
2470                 data = vcpu->arch.st.msr_val;
2471                 break;
2472         case MSR_KVM_PV_EOI_EN:
2473                 data = vcpu->arch.pv_eoi.msr_val;
2474                 break;
2475         case MSR_IA32_P5_MC_ADDR:
2476         case MSR_IA32_P5_MC_TYPE:
2477         case MSR_IA32_MCG_CAP:
2478         case MSR_IA32_MCG_CTL:
2479         case MSR_IA32_MCG_STATUS:
2480         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2481                 return get_msr_mce(vcpu, msr, pdata);
2482         case MSR_K7_CLK_CTL:
2483                 /*
2484                  * Provide expected ramp-up count for K7. All other
2485                  * are set to zero, indicating minimum divisors for
2486                  * every field.
2487                  *
2488                  * This prevents guest kernels on AMD host with CPU
2489                  * type 6, model 8 and higher from exploding due to
2490                  * the rdmsr failing.
2491                  */
2492                 data = 0x20000000;
2493                 break;
2494         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2495                 if (kvm_hv_msr_partition_wide(msr)) {
2496                         int r;
2497                         mutex_lock(&vcpu->kvm->lock);
2498                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2499                         mutex_unlock(&vcpu->kvm->lock);
2500                         return r;
2501                 } else
2502                         return get_msr_hyperv(vcpu, msr, pdata);
2503                 break;
2504         case MSR_IA32_BBL_CR_CTL3:
2505                 /* This legacy MSR exists but isn't fully documented in current
2506                  * silicon.  It is however accessed by winxp in very narrow
2507                  * scenarios where it sets bit #19, itself documented as
2508                  * a "reserved" bit.  Best effort attempt to source coherent
2509                  * read data here should the balance of the register be
2510                  * interpreted by the guest:
2511                  *
2512                  * L2 cache control register 3: 64GB range, 256KB size,
2513                  * enabled, latency 0x1, configured
2514                  */
2515                 data = 0xbe702111;
2516                 break;
2517         case MSR_AMD64_OSVW_ID_LENGTH:
2518                 if (!guest_cpuid_has_osvw(vcpu))
2519                         return 1;
2520                 data = vcpu->arch.osvw.length;
2521                 break;
2522         case MSR_AMD64_OSVW_STATUS:
2523                 if (!guest_cpuid_has_osvw(vcpu))
2524                         return 1;
2525                 data = vcpu->arch.osvw.status;
2526                 break;
2527         default:
2528                 if (kvm_pmu_msr(vcpu, msr))
2529                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2530                 if (!ignore_msrs) {
2531                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2532                         return 1;
2533                 } else {
2534                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2535                         data = 0;
2536                 }
2537                 break;
2538         }
2539         *pdata = data;
2540         return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2543
2544 /*
2545  * Read or write a bunch of msrs. All parameters are kernel addresses.
2546  *
2547  * @return number of msrs set successfully.
2548  */
2549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2550                     struct kvm_msr_entry *entries,
2551                     int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                   unsigned index, u64 *data))
2553 {
2554         int i, idx;
2555
2556         idx = srcu_read_lock(&vcpu->kvm->srcu);
2557         for (i = 0; i < msrs->nmsrs; ++i)
2558                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2559                         break;
2560         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2561
2562         return i;
2563 }
2564
2565 /*
2566  * Read or write a bunch of msrs. Parameters are user addresses.
2567  *
2568  * @return number of msrs set successfully.
2569  */
2570 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2571                   int (*do_msr)(struct kvm_vcpu *vcpu,
2572                                 unsigned index, u64 *data),
2573                   int writeback)
2574 {
2575         struct kvm_msrs msrs;
2576         struct kvm_msr_entry *entries;
2577         int r, n;
2578         unsigned size;
2579
2580         r = -EFAULT;
2581         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2582                 goto out;
2583
2584         r = -E2BIG;
2585         if (msrs.nmsrs >= MAX_IO_MSRS)
2586                 goto out;
2587
2588         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2589         entries = memdup_user(user_msrs->entries, size);
2590         if (IS_ERR(entries)) {
2591                 r = PTR_ERR(entries);
2592                 goto out;
2593         }
2594
2595         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2596         if (r < 0)
2597                 goto out_free;
2598
2599         r = -EFAULT;
2600         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2601                 goto out_free;
2602
2603         r = n;
2604
2605 out_free:
2606         kfree(entries);
2607 out:
2608         return r;
2609 }
2610
2611 int kvm_dev_ioctl_check_extension(long ext)
2612 {
2613         int r;
2614
2615         switch (ext) {
2616         case KVM_CAP_IRQCHIP:
2617         case KVM_CAP_HLT:
2618         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2619         case KVM_CAP_SET_TSS_ADDR:
2620         case KVM_CAP_EXT_CPUID:
2621         case KVM_CAP_EXT_EMUL_CPUID:
2622         case KVM_CAP_CLOCKSOURCE:
2623         case KVM_CAP_PIT:
2624         case KVM_CAP_NOP_IO_DELAY:
2625         case KVM_CAP_MP_STATE:
2626         case KVM_CAP_SYNC_MMU:
2627         case KVM_CAP_USER_NMI:
2628         case KVM_CAP_REINJECT_CONTROL:
2629         case KVM_CAP_IRQ_INJECT_STATUS:
2630         case KVM_CAP_IRQFD:
2631         case KVM_CAP_IOEVENTFD:
2632         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2633         case KVM_CAP_PIT2:
2634         case KVM_CAP_PIT_STATE2:
2635         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2636         case KVM_CAP_XEN_HVM:
2637         case KVM_CAP_ADJUST_CLOCK:
2638         case KVM_CAP_VCPU_EVENTS:
2639         case KVM_CAP_HYPERV:
2640         case KVM_CAP_HYPERV_VAPIC:
2641         case KVM_CAP_HYPERV_SPIN:
2642         case KVM_CAP_PCI_SEGMENT:
2643         case KVM_CAP_DEBUGREGS:
2644         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2645         case KVM_CAP_XSAVE:
2646         case KVM_CAP_ASYNC_PF:
2647         case KVM_CAP_GET_TSC_KHZ:
2648         case KVM_CAP_KVMCLOCK_CTRL:
2649         case KVM_CAP_READONLY_MEM:
2650         case KVM_CAP_HYPERV_TIME:
2651         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2652 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2653         case KVM_CAP_ASSIGN_DEV_IRQ:
2654         case KVM_CAP_PCI_2_3:
2655 #endif
2656                 r = 1;
2657                 break;
2658         case KVM_CAP_COALESCED_MMIO:
2659                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2660                 break;
2661         case KVM_CAP_VAPIC:
2662                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2663                 break;
2664         case KVM_CAP_NR_VCPUS:
2665                 r = KVM_SOFT_MAX_VCPUS;
2666                 break;
2667         case KVM_CAP_MAX_VCPUS:
2668                 r = KVM_MAX_VCPUS;
2669                 break;
2670         case KVM_CAP_NR_MEMSLOTS:
2671                 r = KVM_USER_MEM_SLOTS;
2672                 break;
2673         case KVM_CAP_PV_MMU:    /* obsolete */
2674                 r = 0;
2675                 break;
2676 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2677         case KVM_CAP_IOMMU:
2678                 r = iommu_present(&pci_bus_type);
2679                 break;
2680 #endif
2681         case KVM_CAP_MCE:
2682                 r = KVM_MAX_MCE_BANKS;
2683                 break;
2684         case KVM_CAP_XCRS:
2685                 r = cpu_has_xsave;
2686                 break;
2687         case KVM_CAP_TSC_CONTROL:
2688                 r = kvm_has_tsc_control;
2689                 break;
2690         case KVM_CAP_TSC_DEADLINE_TIMER:
2691                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2692                 break;
2693         default:
2694                 r = 0;
2695                 break;
2696         }
2697         return r;
2698
2699 }
2700
2701 long kvm_arch_dev_ioctl(struct file *filp,
2702                         unsigned int ioctl, unsigned long arg)
2703 {
2704         void __user *argp = (void __user *)arg;
2705         long r;
2706
2707         switch (ioctl) {
2708         case KVM_GET_MSR_INDEX_LIST: {
2709                 struct kvm_msr_list __user *user_msr_list = argp;
2710                 struct kvm_msr_list msr_list;
2711                 unsigned n;
2712
2713                 r = -EFAULT;
2714                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2715                         goto out;
2716                 n = msr_list.nmsrs;
2717                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2718                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2719                         goto out;
2720                 r = -E2BIG;
2721                 if (n < msr_list.nmsrs)
2722                         goto out;
2723                 r = -EFAULT;
2724                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2725                                  num_msrs_to_save * sizeof(u32)))
2726                         goto out;
2727                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2728                                  &emulated_msrs,
2729                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2730                         goto out;
2731                 r = 0;
2732                 break;
2733         }
2734         case KVM_GET_SUPPORTED_CPUID:
2735         case KVM_GET_EMULATED_CPUID: {
2736                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2737                 struct kvm_cpuid2 cpuid;
2738
2739                 r = -EFAULT;
2740                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2741                         goto out;
2742
2743                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2744                                             ioctl);
2745                 if (r)
2746                         goto out;
2747
2748                 r = -EFAULT;
2749                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2750                         goto out;
2751                 r = 0;
2752                 break;
2753         }
2754         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2755                 u64 mce_cap;
2756
2757                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2758                 r = -EFAULT;
2759                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2760                         goto out;
2761                 r = 0;
2762                 break;
2763         }
2764         default:
2765                 r = -EINVAL;
2766         }
2767 out:
2768         return r;
2769 }
2770
2771 static void wbinvd_ipi(void *garbage)
2772 {
2773         wbinvd();
2774 }
2775
2776 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2777 {
2778         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2779 }
2780
2781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2782 {
2783         /* Address WBINVD may be executed by guest */
2784         if (need_emulate_wbinvd(vcpu)) {
2785                 if (kvm_x86_ops->has_wbinvd_exit())
2786                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2787                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2788                         smp_call_function_single(vcpu->cpu,
2789                                         wbinvd_ipi, NULL, 1);
2790         }
2791
2792         kvm_x86_ops->vcpu_load(vcpu, cpu);
2793
2794         /* Apply any externally detected TSC adjustments (due to suspend) */
2795         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2796                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2797                 vcpu->arch.tsc_offset_adjustment = 0;
2798                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2799         }
2800
2801         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2802                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2803                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2804                 if (tsc_delta < 0)
2805                         mark_tsc_unstable("KVM discovered backwards TSC");
2806                 if (check_tsc_unstable()) {
2807                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2808                                                 vcpu->arch.last_guest_tsc);
2809                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2810                         vcpu->arch.tsc_catchup = 1;
2811                 }
2812                 /*
2813                  * On a host with synchronized TSC, there is no need to update
2814                  * kvmclock on vcpu->cpu migration
2815                  */
2816                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2817                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2818                 if (vcpu->cpu != cpu)
2819                         kvm_migrate_timers(vcpu);
2820                 vcpu->cpu = cpu;
2821         }
2822
2823         accumulate_steal_time(vcpu);
2824         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2825 }
2826
2827 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2828 {
2829         kvm_x86_ops->vcpu_put(vcpu);
2830         kvm_put_guest_fpu(vcpu);
2831         vcpu->arch.last_host_tsc = native_read_tsc();
2832 }
2833
2834 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2835                                     struct kvm_lapic_state *s)
2836 {
2837         kvm_x86_ops->sync_pir_to_irr(vcpu);
2838         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2839
2840         return 0;
2841 }
2842
2843 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2844                                     struct kvm_lapic_state *s)
2845 {
2846         kvm_apic_post_state_restore(vcpu, s);
2847         update_cr8_intercept(vcpu);
2848
2849         return 0;
2850 }
2851
2852 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2853                                     struct kvm_interrupt *irq)
2854 {
2855         if (irq->irq >= KVM_NR_INTERRUPTS)
2856                 return -EINVAL;
2857         if (irqchip_in_kernel(vcpu->kvm))
2858                 return -ENXIO;
2859
2860         kvm_queue_interrupt(vcpu, irq->irq, false);
2861         kvm_make_request(KVM_REQ_EVENT, vcpu);
2862
2863         return 0;
2864 }
2865
2866 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2867 {
2868         kvm_inject_nmi(vcpu);
2869
2870         return 0;
2871 }
2872
2873 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2874                                            struct kvm_tpr_access_ctl *tac)
2875 {
2876         if (tac->flags)
2877                 return -EINVAL;
2878         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2879         return 0;
2880 }
2881
2882 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2883                                         u64 mcg_cap)
2884 {
2885         int r;
2886         unsigned bank_num = mcg_cap & 0xff, bank;
2887
2888         r = -EINVAL;
2889         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2890                 goto out;
2891         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2892                 goto out;
2893         r = 0;
2894         vcpu->arch.mcg_cap = mcg_cap;
2895         /* Init IA32_MCG_CTL to all 1s */
2896         if (mcg_cap & MCG_CTL_P)
2897                 vcpu->arch.mcg_ctl = ~(u64)0;
2898         /* Init IA32_MCi_CTL to all 1s */
2899         for (bank = 0; bank < bank_num; bank++)
2900                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2901 out:
2902         return r;
2903 }
2904
2905 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2906                                       struct kvm_x86_mce *mce)
2907 {
2908         u64 mcg_cap = vcpu->arch.mcg_cap;
2909         unsigned bank_num = mcg_cap & 0xff;
2910         u64 *banks = vcpu->arch.mce_banks;
2911
2912         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2913                 return -EINVAL;
2914         /*
2915          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2916          * reporting is disabled
2917          */
2918         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2919             vcpu->arch.mcg_ctl != ~(u64)0)
2920                 return 0;
2921         banks += 4 * mce->bank;
2922         /*
2923          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2924          * reporting is disabled for the bank
2925          */
2926         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2927                 return 0;
2928         if (mce->status & MCI_STATUS_UC) {
2929                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2930                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2931                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932                         return 0;
2933                 }
2934                 if (banks[1] & MCI_STATUS_VAL)
2935                         mce->status |= MCI_STATUS_OVER;
2936                 banks[2] = mce->addr;
2937                 banks[3] = mce->misc;
2938                 vcpu->arch.mcg_status = mce->mcg_status;
2939                 banks[1] = mce->status;
2940                 kvm_queue_exception(vcpu, MC_VECTOR);
2941         } else if (!(banks[1] & MCI_STATUS_VAL)
2942                    || !(banks[1] & MCI_STATUS_UC)) {
2943                 if (banks[1] & MCI_STATUS_VAL)
2944                         mce->status |= MCI_STATUS_OVER;
2945                 banks[2] = mce->addr;
2946                 banks[3] = mce->misc;
2947                 banks[1] = mce->status;
2948         } else
2949                 banks[1] |= MCI_STATUS_OVER;
2950         return 0;
2951 }
2952
2953 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2954                                                struct kvm_vcpu_events *events)
2955 {
2956         process_nmi(vcpu);
2957         events->exception.injected =
2958                 vcpu->arch.exception.pending &&
2959                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2960         events->exception.nr = vcpu->arch.exception.nr;
2961         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2962         events->exception.pad = 0;
2963         events->exception.error_code = vcpu->arch.exception.error_code;
2964
2965         events->interrupt.injected =
2966                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2967         events->interrupt.nr = vcpu->arch.interrupt.nr;
2968         events->interrupt.soft = 0;
2969         events->interrupt.shadow =
2970                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2971                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2972
2973         events->nmi.injected = vcpu->arch.nmi_injected;
2974         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2975         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2976         events->nmi.pad = 0;
2977
2978         events->sipi_vector = 0; /* never valid when reporting to user space */
2979
2980         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2981                          | KVM_VCPUEVENT_VALID_SHADOW);
2982         memset(&events->reserved, 0, sizeof(events->reserved));
2983 }
2984
2985 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2986                                               struct kvm_vcpu_events *events)
2987 {
2988         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2989                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2990                               | KVM_VCPUEVENT_VALID_SHADOW))
2991                 return -EINVAL;
2992
2993         process_nmi(vcpu);
2994         vcpu->arch.exception.pending = events->exception.injected;
2995         vcpu->arch.exception.nr = events->exception.nr;
2996         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2997         vcpu->arch.exception.error_code = events->exception.error_code;
2998
2999         vcpu->arch.interrupt.pending = events->interrupt.injected;
3000         vcpu->arch.interrupt.nr = events->interrupt.nr;
3001         vcpu->arch.interrupt.soft = events->interrupt.soft;
3002         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3003                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3004                                                   events->interrupt.shadow);
3005
3006         vcpu->arch.nmi_injected = events->nmi.injected;
3007         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3008                 vcpu->arch.nmi_pending = events->nmi.pending;
3009         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3010
3011         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3012             kvm_vcpu_has_lapic(vcpu))
3013                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3014
3015         kvm_make_request(KVM_REQ_EVENT, vcpu);
3016
3017         return 0;
3018 }
3019
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021                                              struct kvm_debugregs *dbgregs)
3022 {
3023         unsigned long val;
3024
3025         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026         _kvm_get_dr(vcpu, 6, &val);
3027         dbgregs->dr6 = val;
3028         dbgregs->dr7 = vcpu->arch.dr7;
3029         dbgregs->flags = 0;
3030         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034                                             struct kvm_debugregs *dbgregs)
3035 {
3036         if (dbgregs->flags)
3037                 return -EINVAL;
3038
3039         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3040         vcpu->arch.dr6 = dbgregs->dr6;
3041         kvm_update_dr6(vcpu);
3042         vcpu->arch.dr7 = dbgregs->dr7;
3043         kvm_update_dr7(vcpu);
3044
3045         return 0;
3046 }
3047
3048 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3049                                          struct kvm_xsave *guest_xsave)
3050 {
3051         if (cpu_has_xsave) {
3052                 memcpy(guest_xsave->region,
3053                         &vcpu->arch.guest_fpu.state->xsave,
3054                         vcpu->arch.guest_xstate_size);
3055                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3056                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3057         } else {
3058                 memcpy(guest_xsave->region,
3059                         &vcpu->arch.guest_fpu.state->fxsave,
3060                         sizeof(struct i387_fxsave_struct));
3061                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3062                         XSTATE_FPSSE;
3063         }
3064 }
3065
3066 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3067                                         struct kvm_xsave *guest_xsave)
3068 {
3069         u64 xstate_bv =
3070                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3071
3072         if (cpu_has_xsave) {
3073                 /*
3074                  * Here we allow setting states that are not present in
3075                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3076                  * with old userspace.
3077                  */
3078                 if (xstate_bv & ~kvm_supported_xcr0())
3079                         return -EINVAL;
3080                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3081                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3082         } else {
3083                 if (xstate_bv & ~XSTATE_FPSSE)
3084                         return -EINVAL;
3085                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3086                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3087         }
3088         return 0;
3089 }
3090
3091 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3092                                         struct kvm_xcrs *guest_xcrs)
3093 {
3094         if (!cpu_has_xsave) {
3095                 guest_xcrs->nr_xcrs = 0;
3096                 return;
3097         }
3098
3099         guest_xcrs->nr_xcrs = 1;
3100         guest_xcrs->flags = 0;
3101         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3102         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3103 }
3104
3105 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3106                                        struct kvm_xcrs *guest_xcrs)
3107 {
3108         int i, r = 0;
3109
3110         if (!cpu_has_xsave)
3111                 return -EINVAL;
3112
3113         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3114                 return -EINVAL;
3115
3116         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3117                 /* Only support XCR0 currently */
3118                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3119                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3120                                 guest_xcrs->xcrs[i].value);
3121                         break;
3122                 }
3123         if (r)
3124                 r = -EINVAL;
3125         return r;
3126 }
3127
3128 /*
3129  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3130  * stopped by the hypervisor.  This function will be called from the host only.
3131  * EINVAL is returned when the host attempts to set the flag for a guest that
3132  * does not support pv clocks.
3133  */
3134 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3135 {
3136         if (!vcpu->arch.pv_time_enabled)
3137                 return -EINVAL;
3138         vcpu->arch.pvclock_set_guest_stopped_request = true;
3139         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3140         return 0;
3141 }
3142
3143 long kvm_arch_vcpu_ioctl(struct file *filp,
3144                          unsigned int ioctl, unsigned long arg)
3145 {
3146         struct kvm_vcpu *vcpu = filp->private_data;
3147         void __user *argp = (void __user *)arg;
3148         int r;
3149         union {
3150                 struct kvm_lapic_state *lapic;
3151                 struct kvm_xsave *xsave;
3152                 struct kvm_xcrs *xcrs;
3153                 void *buffer;
3154         } u;
3155
3156         u.buffer = NULL;
3157         switch (ioctl) {
3158         case KVM_GET_LAPIC: {
3159                 r = -EINVAL;
3160                 if (!vcpu->arch.apic)
3161                         goto out;
3162                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3163
3164                 r = -ENOMEM;
3165                 if (!u.lapic)
3166                         goto out;
3167                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3168                 if (r)
3169                         goto out;
3170                 r = -EFAULT;
3171                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3172                         goto out;
3173                 r = 0;
3174                 break;
3175         }
3176         case KVM_SET_LAPIC: {
3177                 r = -EINVAL;
3178                 if (!vcpu->arch.apic)
3179                         goto out;
3180                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3181                 if (IS_ERR(u.lapic))
3182                         return PTR_ERR(u.lapic);
3183
3184                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3185                 break;
3186         }
3187         case KVM_INTERRUPT: {
3188                 struct kvm_interrupt irq;
3189
3190                 r = -EFAULT;
3191                 if (copy_from_user(&irq, argp, sizeof irq))
3192                         goto out;
3193                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3194                 break;
3195         }
3196         case KVM_NMI: {
3197                 r = kvm_vcpu_ioctl_nmi(vcpu);
3198                 break;
3199         }
3200         case KVM_SET_CPUID: {
3201                 struct kvm_cpuid __user *cpuid_arg = argp;
3202                 struct kvm_cpuid cpuid;
3203
3204                 r = -EFAULT;
3205                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3206                         goto out;
3207                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3208                 break;
3209         }
3210         case KVM_SET_CPUID2: {
3211                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3212                 struct kvm_cpuid2 cpuid;
3213
3214                 r = -EFAULT;
3215                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3216                         goto out;
3217                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3218                                               cpuid_arg->entries);
3219                 break;
3220         }
3221         case KVM_GET_CPUID2: {
3222                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3223                 struct kvm_cpuid2 cpuid;
3224
3225                 r = -EFAULT;
3226                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3227                         goto out;
3228                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3229                                               cpuid_arg->entries);
3230                 if (r)
3231                         goto out;
3232                 r = -EFAULT;
3233                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3234                         goto out;
3235                 r = 0;
3236                 break;
3237         }
3238         case KVM_GET_MSRS:
3239                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3240                 break;
3241         case KVM_SET_MSRS:
3242                 r = msr_io(vcpu, argp, do_set_msr, 0);
3243                 break;
3244         case KVM_TPR_ACCESS_REPORTING: {
3245                 struct kvm_tpr_access_ctl tac;
3246
3247                 r = -EFAULT;
3248                 if (copy_from_user(&tac, argp, sizeof tac))
3249                         goto out;
3250                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3251                 if (r)
3252                         goto out;
3253                 r = -EFAULT;
3254                 if (copy_to_user(argp, &tac, sizeof tac))
3255                         goto out;
3256                 r = 0;
3257                 break;
3258         };
3259         case KVM_SET_VAPIC_ADDR: {
3260                 struct kvm_vapic_addr va;
3261
3262                 r = -EINVAL;
3263                 if (!irqchip_in_kernel(vcpu->kvm))
3264                         goto out;
3265                 r = -EFAULT;
3266                 if (copy_from_user(&va, argp, sizeof va))
3267                         goto out;
3268                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3269                 break;
3270         }
3271         case KVM_X86_SETUP_MCE: {
3272                 u64 mcg_cap;
3273
3274                 r = -EFAULT;
3275                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3276                         goto out;
3277                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3278                 break;
3279         }
3280         case KVM_X86_SET_MCE: {
3281                 struct kvm_x86_mce mce;
3282
3283                 r = -EFAULT;
3284                 if (copy_from_user(&mce, argp, sizeof mce))
3285                         goto out;
3286                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3287                 break;
3288         }
3289         case KVM_GET_VCPU_EVENTS: {
3290                 struct kvm_vcpu_events events;
3291
3292                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3293
3294                 r = -EFAULT;
3295                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3296                         break;
3297                 r = 0;
3298                 break;
3299         }
3300         case KVM_SET_VCPU_EVENTS: {
3301                 struct kvm_vcpu_events events;
3302
3303                 r = -EFAULT;
3304                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3305                         break;
3306
3307                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3308                 break;
3309         }
3310         case KVM_GET_DEBUGREGS: {
3311                 struct kvm_debugregs dbgregs;
3312
3313                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3314
3315                 r = -EFAULT;
3316                 if (copy_to_user(argp, &dbgregs,
3317                                  sizeof(struct kvm_debugregs)))
3318                         break;
3319                 r = 0;
3320                 break;
3321         }
3322         case KVM_SET_DEBUGREGS: {
3323                 struct kvm_debugregs dbgregs;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&dbgregs, argp,
3327                                    sizeof(struct kvm_debugregs)))
3328                         break;
3329
3330                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3331                 break;
3332         }
3333         case KVM_GET_XSAVE: {
3334                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3335                 r = -ENOMEM;
3336                 if (!u.xsave)
3337                         break;
3338
3339                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3340
3341                 r = -EFAULT;
3342                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3343                         break;
3344                 r = 0;
3345                 break;
3346         }
3347         case KVM_SET_XSAVE: {
3348                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3349                 if (IS_ERR(u.xsave))
3350                         return PTR_ERR(u.xsave);
3351
3352                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3353                 break;
3354         }
3355         case KVM_GET_XCRS: {
3356                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3357                 r = -ENOMEM;
3358                 if (!u.xcrs)
3359                         break;
3360
3361                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3362
3363                 r = -EFAULT;
3364                 if (copy_to_user(argp, u.xcrs,
3365                                  sizeof(struct kvm_xcrs)))
3366                         break;
3367                 r = 0;
3368                 break;
3369         }
3370         case KVM_SET_XCRS: {
3371                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3372                 if (IS_ERR(u.xcrs))
3373                         return PTR_ERR(u.xcrs);
3374
3375                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3376                 break;
3377         }
3378         case KVM_SET_TSC_KHZ: {
3379                 u32 user_tsc_khz;
3380
3381                 r = -EINVAL;
3382                 user_tsc_khz = (u32)arg;
3383
3384                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3385                         goto out;
3386
3387                 if (user_tsc_khz == 0)
3388                         user_tsc_khz = tsc_khz;
3389
3390                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3391
3392                 r = 0;
3393                 goto out;
3394         }
3395         case KVM_GET_TSC_KHZ: {
3396                 r = vcpu->arch.virtual_tsc_khz;
3397                 goto out;
3398         }
3399         case KVM_KVMCLOCK_CTRL: {
3400                 r = kvm_set_guest_paused(vcpu);
3401                 goto out;
3402         }
3403         default:
3404                 r = -EINVAL;
3405         }
3406 out:
3407         kfree(u.buffer);
3408         return r;
3409 }
3410
3411 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3412 {
3413         return VM_FAULT_SIGBUS;
3414 }
3415
3416 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3417 {
3418         int ret;
3419
3420         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3421                 return -EINVAL;
3422         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3423         return ret;
3424 }
3425
3426 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3427                                               u64 ident_addr)
3428 {
3429         kvm->arch.ept_identity_map_addr = ident_addr;
3430         return 0;
3431 }
3432
3433 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3434                                           u32 kvm_nr_mmu_pages)
3435 {
3436         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3437                 return -EINVAL;
3438
3439         mutex_lock(&kvm->slots_lock);
3440
3441         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3442         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3443
3444         mutex_unlock(&kvm->slots_lock);
3445         return 0;
3446 }
3447
3448 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3449 {
3450         return kvm->arch.n_max_mmu_pages;
3451 }
3452
3453 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3454 {
3455         int r;
3456
3457         r = 0;
3458         switch (chip->chip_id) {
3459         case KVM_IRQCHIP_PIC_MASTER:
3460                 memcpy(&chip->chip.pic,
3461                         &pic_irqchip(kvm)->pics[0],
3462                         sizeof(struct kvm_pic_state));
3463                 break;
3464         case KVM_IRQCHIP_PIC_SLAVE:
3465                 memcpy(&chip->chip.pic,
3466                         &pic_irqchip(kvm)->pics[1],
3467                         sizeof(struct kvm_pic_state));
3468                 break;
3469         case KVM_IRQCHIP_IOAPIC:
3470                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3471                 break;
3472         default:
3473                 r = -EINVAL;
3474                 break;
3475         }
3476         return r;
3477 }
3478
3479 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3480 {
3481         int r;
3482
3483         r = 0;
3484         switch (chip->chip_id) {
3485         case KVM_IRQCHIP_PIC_MASTER:
3486                 spin_lock(&pic_irqchip(kvm)->lock);
3487                 memcpy(&pic_irqchip(kvm)->pics[0],
3488                         &chip->chip.pic,
3489                         sizeof(struct kvm_pic_state));
3490                 spin_unlock(&pic_irqchip(kvm)->lock);
3491                 break;
3492         case KVM_IRQCHIP_PIC_SLAVE:
3493                 spin_lock(&pic_irqchip(kvm)->lock);
3494                 memcpy(&pic_irqchip(kvm)->pics[1],
3495                         &chip->chip.pic,
3496                         sizeof(struct kvm_pic_state));
3497                 spin_unlock(&pic_irqchip(kvm)->lock);
3498                 break;
3499         case KVM_IRQCHIP_IOAPIC:
3500                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3501                 break;
3502         default:
3503                 r = -EINVAL;
3504                 break;
3505         }
3506         kvm_pic_update_irq(pic_irqchip(kvm));
3507         return r;
3508 }
3509
3510 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3511 {
3512         int r = 0;
3513
3514         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3515         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3516         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3517         return r;
3518 }
3519
3520 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3521 {
3522         int r = 0;
3523
3524         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3525         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3526         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3527         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3528         return r;
3529 }
3530
3531 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3532 {
3533         int r = 0;
3534
3535         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3536         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3537                 sizeof(ps->channels));
3538         ps->flags = kvm->arch.vpit->pit_state.flags;
3539         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3540         memset(&ps->reserved, 0, sizeof(ps->reserved));
3541         return r;
3542 }
3543
3544 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3545 {
3546         int r = 0, start = 0;
3547         u32 prev_legacy, cur_legacy;
3548         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3549         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3550         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3551         if (!prev_legacy && cur_legacy)
3552                 start = 1;
3553         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3554                sizeof(kvm->arch.vpit->pit_state.channels));
3555         kvm->arch.vpit->pit_state.flags = ps->flags;
3556         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3557         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3558         return r;
3559 }
3560
3561 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3562                                  struct kvm_reinject_control *control)
3563 {
3564         if (!kvm->arch.vpit)
3565                 return -ENXIO;
3566         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3567         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3568         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3569         return 0;
3570 }
3571
3572 /**
3573  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3574  * @kvm: kvm instance
3575  * @log: slot id and address to which we copy the log
3576  *
3577  * We need to keep it in mind that VCPU threads can write to the bitmap
3578  * concurrently.  So, to avoid losing data, we keep the following order for
3579  * each bit:
3580  *
3581  *   1. Take a snapshot of the bit and clear it if needed.
3582  *   2. Write protect the corresponding page.
3583  *   3. Flush TLB's if needed.
3584  *   4. Copy the snapshot to the userspace.
3585  *
3586  * Between 2 and 3, the guest may write to the page using the remaining TLB
3587  * entry.  This is not a problem because the page will be reported dirty at
3588  * step 4 using the snapshot taken before and step 3 ensures that successive
3589  * writes will be logged for the next call.
3590  */
3591 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3592 {
3593         int r;
3594         struct kvm_memory_slot *memslot;
3595         unsigned long n, i;
3596         unsigned long *dirty_bitmap;
3597         unsigned long *dirty_bitmap_buffer;
3598         bool is_dirty = false;
3599
3600         mutex_lock(&kvm->slots_lock);
3601
3602         r = -EINVAL;
3603         if (log->slot >= KVM_USER_MEM_SLOTS)
3604                 goto out;
3605
3606         memslot = id_to_memslot(kvm->memslots, log->slot);
3607
3608         dirty_bitmap = memslot->dirty_bitmap;
3609         r = -ENOENT;
3610         if (!dirty_bitmap)
3611                 goto out;
3612
3613         n = kvm_dirty_bitmap_bytes(memslot);
3614
3615         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3616         memset(dirty_bitmap_buffer, 0, n);
3617
3618         spin_lock(&kvm->mmu_lock);
3619
3620         for (i = 0; i < n / sizeof(long); i++) {
3621                 unsigned long mask;
3622                 gfn_t offset;
3623
3624                 if (!dirty_bitmap[i])
3625                         continue;
3626
3627                 is_dirty = true;
3628
3629                 mask = xchg(&dirty_bitmap[i], 0);
3630                 dirty_bitmap_buffer[i] = mask;
3631
3632                 offset = i * BITS_PER_LONG;
3633                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3634         }
3635         if (is_dirty)
3636                 kvm_flush_remote_tlbs(kvm);
3637
3638         spin_unlock(&kvm->mmu_lock);
3639
3640         r = -EFAULT;
3641         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3642                 goto out;
3643
3644         r = 0;
3645 out:
3646         mutex_unlock(&kvm->slots_lock);
3647         return r;
3648 }
3649
3650 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3651                         bool line_status)
3652 {
3653         if (!irqchip_in_kernel(kvm))
3654                 return -ENXIO;
3655
3656         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3657                                         irq_event->irq, irq_event->level,
3658                                         line_status);
3659         return 0;
3660 }
3661
3662 long kvm_arch_vm_ioctl(struct file *filp,
3663                        unsigned int ioctl, unsigned long arg)
3664 {
3665         struct kvm *kvm = filp->private_data;
3666         void __user *argp = (void __user *)arg;
3667         int r = -ENOTTY;
3668         /*
3669          * This union makes it completely explicit to gcc-3.x
3670          * that these two variables' stack usage should be
3671          * combined, not added together.
3672          */
3673         union {
3674                 struct kvm_pit_state ps;
3675                 struct kvm_pit_state2 ps2;
3676                 struct kvm_pit_config pit_config;
3677         } u;
3678
3679         switch (ioctl) {
3680         case KVM_SET_TSS_ADDR:
3681                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3682                 break;
3683         case KVM_SET_IDENTITY_MAP_ADDR: {
3684                 u64 ident_addr;
3685
3686                 r = -EFAULT;
3687                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3688                         goto out;
3689                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3690                 break;
3691         }
3692         case KVM_SET_NR_MMU_PAGES:
3693                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3694                 break;
3695         case KVM_GET_NR_MMU_PAGES:
3696                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3697                 break;
3698         case KVM_CREATE_IRQCHIP: {
3699                 struct kvm_pic *vpic;
3700
3701                 mutex_lock(&kvm->lock);
3702                 r = -EEXIST;
3703                 if (kvm->arch.vpic)
3704                         goto create_irqchip_unlock;
3705                 r = -EINVAL;
3706                 if (atomic_read(&kvm->online_vcpus))
3707                         goto create_irqchip_unlock;
3708                 r = -ENOMEM;
3709                 vpic = kvm_create_pic(kvm);
3710                 if (vpic) {
3711                         r = kvm_ioapic_init(kvm);
3712                         if (r) {
3713                                 mutex_lock(&kvm->slots_lock);
3714                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3715                                                           &vpic->dev_master);
3716                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3717                                                           &vpic->dev_slave);
3718                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3719                                                           &vpic->dev_eclr);
3720                                 mutex_unlock(&kvm->slots_lock);
3721                                 kfree(vpic);
3722                                 goto create_irqchip_unlock;
3723                         }
3724                 } else
3725                         goto create_irqchip_unlock;
3726                 smp_wmb();
3727                 kvm->arch.vpic = vpic;
3728                 smp_wmb();
3729                 r = kvm_setup_default_irq_routing(kvm);
3730                 if (r) {
3731                         mutex_lock(&kvm->slots_lock);
3732                         mutex_lock(&kvm->irq_lock);
3733                         kvm_ioapic_destroy(kvm);
3734                         kvm_destroy_pic(kvm);
3735                         mutex_unlock(&kvm->irq_lock);
3736                         mutex_unlock(&kvm->slots_lock);
3737                 }
3738         create_irqchip_unlock:
3739                 mutex_unlock(&kvm->lock);
3740                 break;
3741         }
3742         case KVM_CREATE_PIT:
3743                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3744                 goto create_pit;
3745         case KVM_CREATE_PIT2:
3746                 r = -EFAULT;
3747                 if (copy_from_user(&u.pit_config, argp,
3748                                    sizeof(struct kvm_pit_config)))
3749                         goto out;
3750         create_pit:
3751                 mutex_lock(&kvm->slots_lock);
3752                 r = -EEXIST;
3753                 if (kvm->arch.vpit)
3754                         goto create_pit_unlock;
3755                 r = -ENOMEM;
3756                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3757                 if (kvm->arch.vpit)
3758                         r = 0;
3759         create_pit_unlock:
3760                 mutex_unlock(&kvm->slots_lock);
3761                 break;
3762         case KVM_GET_IRQCHIP: {
3763                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3764                 struct kvm_irqchip *chip;
3765
3766                 chip = memdup_user(argp, sizeof(*chip));
3767                 if (IS_ERR(chip)) {
3768                         r = PTR_ERR(chip);
3769                         goto out;
3770                 }
3771
3772                 r = -ENXIO;
3773                 if (!irqchip_in_kernel(kvm))
3774                         goto get_irqchip_out;
3775                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3776                 if (r)
3777                         goto get_irqchip_out;
3778                 r = -EFAULT;
3779                 if (copy_to_user(argp, chip, sizeof *chip))
3780                         goto get_irqchip_out;
3781                 r = 0;
3782         get_irqchip_out:
3783                 kfree(chip);
3784                 break;
3785         }
3786         case KVM_SET_IRQCHIP: {
3787                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3788                 struct kvm_irqchip *chip;
3789
3790                 chip = memdup_user(argp, sizeof(*chip));
3791                 if (IS_ERR(chip)) {
3792                         r = PTR_ERR(chip);
3793                         goto out;
3794                 }
3795
3796                 r = -ENXIO;
3797                 if (!irqchip_in_kernel(kvm))
3798                         goto set_irqchip_out;
3799                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3800                 if (r)
3801                         goto set_irqchip_out;
3802                 r = 0;
3803         set_irqchip_out:
3804                 kfree(chip);
3805                 break;
3806         }
3807         case KVM_GET_PIT: {
3808                 r = -EFAULT;
3809                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3810                         goto out;
3811                 r = -ENXIO;
3812                 if (!kvm->arch.vpit)
3813                         goto out;
3814                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3815                 if (r)
3816                         goto out;
3817                 r = -EFAULT;
3818                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3819                         goto out;
3820                 r = 0;
3821                 break;
3822         }
3823         case KVM_SET_PIT: {
3824                 r = -EFAULT;
3825                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3826                         goto out;
3827                 r = -ENXIO;
3828                 if (!kvm->arch.vpit)
3829                         goto out;
3830                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3831                 break;
3832         }
3833         case KVM_GET_PIT2: {
3834                 r = -ENXIO;
3835                 if (!kvm->arch.vpit)
3836                         goto out;
3837                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3838                 if (r)
3839                         goto out;
3840                 r = -EFAULT;
3841                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3842                         goto out;
3843                 r = 0;
3844                 break;
3845         }
3846         case KVM_SET_PIT2: {
3847                 r = -EFAULT;
3848                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3849                         goto out;
3850                 r = -ENXIO;
3851                 if (!kvm->arch.vpit)
3852                         goto out;
3853                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3854                 break;
3855         }
3856         case KVM_REINJECT_CONTROL: {
3857                 struct kvm_reinject_control control;
3858                 r =  -EFAULT;
3859                 if (copy_from_user(&control, argp, sizeof(control)))
3860                         goto out;
3861                 r = kvm_vm_ioctl_reinject(kvm, &control);
3862                 break;
3863         }
3864         case KVM_XEN_HVM_CONFIG: {
3865                 r = -EFAULT;
3866                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3867                                    sizeof(struct kvm_xen_hvm_config)))
3868                         goto out;
3869                 r = -EINVAL;
3870                 if (kvm->arch.xen_hvm_config.flags)
3871                         goto out;
3872                 r = 0;
3873                 break;
3874         }
3875         case KVM_SET_CLOCK: {
3876                 struct kvm_clock_data user_ns;
3877                 u64 now_ns;
3878                 s64 delta;
3879
3880                 r = -EFAULT;
3881                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3882                         goto out;
3883
3884                 r = -EINVAL;
3885                 if (user_ns.flags)
3886                         goto out;
3887
3888                 r = 0;
3889                 local_irq_disable();
3890                 now_ns = get_kernel_ns();
3891                 delta = user_ns.clock - now_ns;
3892                 local_irq_enable();
3893                 kvm->arch.kvmclock_offset = delta;
3894                 kvm_gen_update_masterclock(kvm);
3895                 break;
3896         }
3897         case KVM_GET_CLOCK: {
3898                 struct kvm_clock_data user_ns;
3899                 u64 now_ns;
3900
3901                 local_irq_disable();
3902                 now_ns = get_kernel_ns();
3903                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3904                 local_irq_enable();
3905                 user_ns.flags = 0;
3906                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3907
3908                 r = -EFAULT;
3909                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3910                         goto out;
3911                 r = 0;
3912                 break;
3913         }
3914
3915         default:
3916                 ;
3917         }
3918 out:
3919         return r;
3920 }
3921
3922 static void kvm_init_msr_list(void)
3923 {
3924         u32 dummy[2];
3925         unsigned i, j;
3926
3927         /* skip the first msrs in the list. KVM-specific */
3928         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3929                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3930                         continue;
3931
3932                 /*
3933                  * Even MSRs that are valid in the host may not be exposed
3934                  * to the guests in some cases.  We could work around this
3935                  * in VMX with the generic MSR save/load machinery, but it
3936                  * is not really worthwhile since it will really only
3937                  * happen with nested virtualization.
3938                  */
3939                 switch (msrs_to_save[i]) {
3940                 case MSR_IA32_BNDCFGS:
3941                         if (!kvm_x86_ops->mpx_supported())
3942                                 continue;
3943                         break;
3944                 default:
3945                         break;
3946                 }
3947
3948                 if (j < i)
3949                         msrs_to_save[j] = msrs_to_save[i];
3950                 j++;
3951         }
3952         num_msrs_to_save = j;
3953 }
3954
3955 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3956                            const void *v)
3957 {
3958         int handled = 0;
3959         int n;
3960
3961         do {
3962                 n = min(len, 8);
3963                 if (!(vcpu->arch.apic &&
3964                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3965                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3966                         break;
3967                 handled += n;
3968                 addr += n;
3969                 len -= n;
3970                 v += n;
3971         } while (len);
3972
3973         return handled;
3974 }
3975
3976 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3977 {
3978         int handled = 0;
3979         int n;
3980
3981         do {
3982                 n = min(len, 8);
3983                 if (!(vcpu->arch.apic &&
3984                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3985                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3986                         break;
3987                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3988                 handled += n;
3989                 addr += n;
3990                 len -= n;
3991                 v += n;
3992         } while (len);
3993
3994         return handled;
3995 }
3996
3997 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3998                         struct kvm_segment *var, int seg)
3999 {
4000         kvm_x86_ops->set_segment(vcpu, var, seg);
4001 }
4002
4003 void kvm_get_segment(struct kvm_vcpu *vcpu,
4004                      struct kvm_segment *var, int seg)
4005 {
4006         kvm_x86_ops->get_segment(vcpu, var, seg);
4007 }
4008
4009 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4010 {
4011         gpa_t t_gpa;
4012         struct x86_exception exception;
4013
4014         BUG_ON(!mmu_is_nested(vcpu));
4015
4016         /* NPT walks are always user-walks */
4017         access |= PFERR_USER_MASK;
4018         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4019
4020         return t_gpa;
4021 }
4022
4023 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4024                               struct x86_exception *exception)
4025 {
4026         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4027         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4028 }
4029
4030  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4031                                 struct x86_exception *exception)
4032 {
4033         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4034         access |= PFERR_FETCH_MASK;
4035         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4036 }
4037
4038 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4039                                struct x86_exception *exception)
4040 {
4041         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4042         access |= PFERR_WRITE_MASK;
4043         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4044 }
4045
4046 /* uses this to access any guest's mapped memory without checking CPL */
4047 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4048                                 struct x86_exception *exception)
4049 {
4050         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4051 }
4052
4053 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4054                                       struct kvm_vcpu *vcpu, u32 access,
4055                                       struct x86_exception *exception)
4056 {
4057         void *data = val;
4058         int r = X86EMUL_CONTINUE;
4059
4060         while (bytes) {
4061                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4062                                                             exception);
4063                 unsigned offset = addr & (PAGE_SIZE-1);
4064                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4065                 int ret;
4066
4067                 if (gpa == UNMAPPED_GVA)
4068                         return X86EMUL_PROPAGATE_FAULT;
4069                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4070                 if (ret < 0) {
4071                         r = X86EMUL_IO_NEEDED;
4072                         goto out;
4073                 }
4074
4075                 bytes -= toread;
4076                 data += toread;
4077                 addr += toread;
4078         }
4079 out:
4080         return r;
4081 }
4082
4083 /* used for instruction fetching */
4084 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4085                                 gva_t addr, void *val, unsigned int bytes,
4086                                 struct x86_exception *exception)
4087 {
4088         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4089         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4090
4091         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4092                                           access | PFERR_FETCH_MASK,
4093                                           exception);
4094 }
4095
4096 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4097                                gva_t addr, void *val, unsigned int bytes,
4098                                struct x86_exception *exception)
4099 {
4100         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4101         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4102
4103         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4104                                           exception);
4105 }
4106 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4107
4108 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4109                                       gva_t addr, void *val, unsigned int bytes,
4110                                       struct x86_exception *exception)
4111 {
4112         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4113         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4114 }
4115
4116 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4117                                        gva_t addr, void *val,
4118                                        unsigned int bytes,
4119                                        struct x86_exception *exception)
4120 {
4121         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4122         void *data = val;
4123         int r = X86EMUL_CONTINUE;
4124
4125         while (bytes) {
4126                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4127                                                              PFERR_WRITE_MASK,
4128                                                              exception);
4129                 unsigned offset = addr & (PAGE_SIZE-1);
4130                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4131                 int ret;
4132
4133                 if (gpa == UNMAPPED_GVA)
4134                         return X86EMUL_PROPAGATE_FAULT;
4135                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4136                 if (ret < 0) {
4137                         r = X86EMUL_IO_NEEDED;
4138                         goto out;
4139                 }
4140
4141                 bytes -= towrite;
4142                 data += towrite;
4143                 addr += towrite;
4144         }
4145 out:
4146         return r;
4147 }
4148 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4149
4150 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4151                                 gpa_t *gpa, struct x86_exception *exception,
4152                                 bool write)
4153 {
4154         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4155                 | (write ? PFERR_WRITE_MASK : 0);
4156
4157         if (vcpu_match_mmio_gva(vcpu, gva)
4158             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4159                                  vcpu->arch.access, access)) {
4160                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4161                                         (gva & (PAGE_SIZE - 1));
4162                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4163                 return 1;
4164         }
4165
4166         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4167
4168         if (*gpa == UNMAPPED_GVA)
4169                 return -1;
4170
4171         /* For APIC access vmexit */
4172         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4173                 return 1;
4174
4175         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4176                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4177                 return 1;
4178         }
4179
4180         return 0;
4181 }
4182
4183 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4184                         const void *val, int bytes)
4185 {
4186         int ret;
4187
4188         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4189         if (ret < 0)
4190                 return 0;
4191         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4192         return 1;
4193 }
4194
4195 struct read_write_emulator_ops {
4196         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4197                                   int bytes);
4198         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4199                                   void *val, int bytes);
4200         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4201                                int bytes, void *val);
4202         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4203                                     void *val, int bytes);
4204         bool write;
4205 };
4206
4207 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4208 {
4209         if (vcpu->mmio_read_completed) {
4210                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4211                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4212                 vcpu->mmio_read_completed = 0;
4213                 return 1;
4214         }
4215
4216         return 0;
4217 }
4218
4219 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4220                         void *val, int bytes)
4221 {
4222         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4223 }
4224
4225 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4226                          void *val, int bytes)
4227 {
4228         return emulator_write_phys(vcpu, gpa, val, bytes);
4229 }
4230
4231 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4232 {
4233         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4234         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4235 }
4236
4237 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4238                           void *val, int bytes)
4239 {
4240         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4241         return X86EMUL_IO_NEEDED;
4242 }
4243
4244 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4245                            void *val, int bytes)
4246 {
4247         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4248
4249         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4250         return X86EMUL_CONTINUE;
4251 }
4252
4253 static const struct read_write_emulator_ops read_emultor = {
4254         .read_write_prepare = read_prepare,
4255         .read_write_emulate = read_emulate,
4256         .read_write_mmio = vcpu_mmio_read,
4257         .read_write_exit_mmio = read_exit_mmio,
4258 };
4259
4260 static const struct read_write_emulator_ops write_emultor = {
4261         .read_write_emulate = write_emulate,
4262         .read_write_mmio = write_mmio,
4263         .read_write_exit_mmio = write_exit_mmio,
4264         .write = true,
4265 };
4266
4267 static int emulator_read_write_onepage(unsigned long addr, void *val,
4268                                        unsigned int bytes,
4269                                        struct x86_exception *exception,
4270                                        struct kvm_vcpu *vcpu,
4271                                        const struct read_write_emulator_ops *ops)
4272 {
4273         gpa_t gpa;
4274         int handled, ret;
4275         bool write = ops->write;
4276         struct kvm_mmio_fragment *frag;
4277
4278         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4279
4280         if (ret < 0)
4281                 return X86EMUL_PROPAGATE_FAULT;
4282
4283         /* For APIC access vmexit */
4284         if (ret)
4285                 goto mmio;
4286
4287         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4288                 return X86EMUL_CONTINUE;
4289
4290 mmio:
4291         /*
4292          * Is this MMIO handled locally?
4293          */
4294         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4295         if (handled == bytes)
4296                 return X86EMUL_CONTINUE;
4297
4298         gpa += handled;
4299         bytes -= handled;
4300         val += handled;
4301
4302         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4303         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4304         frag->gpa = gpa;
4305         frag->data = val;
4306         frag->len = bytes;
4307         return X86EMUL_CONTINUE;
4308 }
4309
4310 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4311                         void *val, unsigned int bytes,
4312                         struct x86_exception *exception,
4313                         const struct read_write_emulator_ops *ops)
4314 {
4315         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4316         gpa_t gpa;
4317         int rc;
4318
4319         if (ops->read_write_prepare &&
4320                   ops->read_write_prepare(vcpu, val, bytes))
4321                 return X86EMUL_CONTINUE;
4322
4323         vcpu->mmio_nr_fragments = 0;
4324
4325         /* Crossing a page boundary? */
4326         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4327                 int now;
4328
4329                 now = -addr & ~PAGE_MASK;
4330                 rc = emulator_read_write_onepage(addr, val, now, exception,
4331                                                  vcpu, ops);
4332
4333                 if (rc != X86EMUL_CONTINUE)
4334                         return rc;
4335                 addr += now;
4336                 val += now;
4337                 bytes -= now;
4338         }
4339
4340         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4341                                          vcpu, ops);
4342         if (rc != X86EMUL_CONTINUE)
4343                 return rc;
4344
4345         if (!vcpu->mmio_nr_fragments)
4346                 return rc;
4347
4348         gpa = vcpu->mmio_fragments[0].gpa;
4349
4350         vcpu->mmio_needed = 1;
4351         vcpu->mmio_cur_fragment = 0;
4352
4353         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4354         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4355         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4356         vcpu->run->mmio.phys_addr = gpa;
4357
4358         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4359 }
4360
4361 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4362                                   unsigned long addr,
4363                                   void *val,
4364                                   unsigned int bytes,
4365                                   struct x86_exception *exception)
4366 {
4367         return emulator_read_write(ctxt, addr, val, bytes,
4368                                    exception, &read_emultor);
4369 }
4370
4371 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4372                             unsigned long addr,
4373                             const void *val,
4374                             unsigned int bytes,
4375                             struct x86_exception *exception)
4376 {
4377         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4378                                    exception, &write_emultor);
4379 }
4380
4381 #define CMPXCHG_TYPE(t, ptr, old, new) \
4382         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4383
4384 #ifdef CONFIG_X86_64
4385 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4386 #else
4387 #  define CMPXCHG64(ptr, old, new) \
4388         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4389 #endif
4390
4391 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4392                                      unsigned long addr,
4393                                      const void *old,
4394                                      const void *new,
4395                                      unsigned int bytes,
4396                                      struct x86_exception *exception)
4397 {
4398         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4399         gpa_t gpa;
4400         struct page *page;
4401         char *kaddr;
4402         bool exchanged;
4403
4404         /* guests cmpxchg8b have to be emulated atomically */
4405         if (bytes > 8 || (bytes & (bytes - 1)))
4406                 goto emul_write;
4407
4408         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4409
4410         if (gpa == UNMAPPED_GVA ||
4411             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4412                 goto emul_write;
4413
4414         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4415                 goto emul_write;
4416
4417         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4418         if (is_error_page(page))
4419                 goto emul_write;
4420
4421         kaddr = kmap_atomic(page);
4422         kaddr += offset_in_page(gpa);
4423         switch (bytes) {
4424         case 1:
4425                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4426                 break;
4427         case 2:
4428                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4429                 break;
4430         case 4:
4431                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4432                 break;
4433         case 8:
4434                 exchanged = CMPXCHG64(kaddr, old, new);
4435                 break;
4436         default:
4437                 BUG();
4438         }
4439         kunmap_atomic(kaddr);
4440         kvm_release_page_dirty(page);
4441
4442         if (!exchanged)
4443                 return X86EMUL_CMPXCHG_FAILED;
4444
4445         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4446         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4447
4448         return X86EMUL_CONTINUE;
4449
4450 emul_write:
4451         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4452
4453         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4454 }
4455
4456 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4457 {
4458         /* TODO: String I/O for in kernel device */
4459         int r;
4460
4461         if (vcpu->arch.pio.in)
4462                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4463                                     vcpu->arch.pio.size, pd);
4464         else
4465                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4466                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4467                                      pd);
4468         return r;
4469 }
4470
4471 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4472                                unsigned short port, void *val,
4473                                unsigned int count, bool in)
4474 {
4475         trace_kvm_pio(!in, port, size, count);
4476
4477         vcpu->arch.pio.port = port;
4478         vcpu->arch.pio.in = in;
4479         vcpu->arch.pio.count  = count;
4480         vcpu->arch.pio.size = size;
4481
4482         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4483                 vcpu->arch.pio.count = 0;
4484                 return 1;
4485         }
4486
4487         vcpu->run->exit_reason = KVM_EXIT_IO;
4488         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4489         vcpu->run->io.size = size;
4490         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4491         vcpu->run->io.count = count;
4492         vcpu->run->io.port = port;
4493
4494         return 0;
4495 }
4496
4497 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4498                                     int size, unsigned short port, void *val,
4499                                     unsigned int count)
4500 {
4501         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4502         int ret;
4503
4504         if (vcpu->arch.pio.count)
4505                 goto data_avail;
4506
4507         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4508         if (ret) {
4509 data_avail:
4510                 memcpy(val, vcpu->arch.pio_data, size * count);
4511                 vcpu->arch.pio.count = 0;
4512                 return 1;
4513         }
4514
4515         return 0;
4516 }
4517
4518 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4519                                      int size, unsigned short port,
4520                                      const void *val, unsigned int count)
4521 {
4522         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4523
4524         memcpy(vcpu->arch.pio_data, val, size * count);
4525         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4526 }
4527
4528 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4529 {
4530         return kvm_x86_ops->get_segment_base(vcpu, seg);
4531 }
4532
4533 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4534 {
4535         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4536 }
4537
4538 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4539 {
4540         if (!need_emulate_wbinvd(vcpu))
4541                 return X86EMUL_CONTINUE;
4542
4543         if (kvm_x86_ops->has_wbinvd_exit()) {
4544                 int cpu = get_cpu();
4545
4546                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4547                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4548                                 wbinvd_ipi, NULL, 1);
4549                 put_cpu();
4550                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4551         } else
4552                 wbinvd();
4553         return X86EMUL_CONTINUE;
4554 }
4555 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4556
4557 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4558 {
4559         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4560 }
4561
4562 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4563 {
4564         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4565 }
4566
4567 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4568 {
4569
4570         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4571 }
4572
4573 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4574 {
4575         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4576 }
4577
4578 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4579 {
4580         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4581         unsigned long value;
4582
4583         switch (cr) {
4584         case 0:
4585                 value = kvm_read_cr0(vcpu);
4586                 break;
4587         case 2:
4588                 value = vcpu->arch.cr2;
4589                 break;
4590         case 3:
4591                 value = kvm_read_cr3(vcpu);
4592                 break;
4593         case 4:
4594                 value = kvm_read_cr4(vcpu);
4595                 break;
4596         case 8:
4597                 value = kvm_get_cr8(vcpu);
4598                 break;
4599         default:
4600                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4601                 return 0;
4602         }
4603
4604         return value;
4605 }
4606
4607 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4608 {
4609         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4610         int res = 0;
4611
4612         switch (cr) {
4613         case 0:
4614                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4615                 break;
4616         case 2:
4617                 vcpu->arch.cr2 = val;
4618                 break;
4619         case 3:
4620                 res = kvm_set_cr3(vcpu, val);
4621                 break;
4622         case 4:
4623                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4624                 break;
4625         case 8:
4626                 res = kvm_set_cr8(vcpu, val);
4627                 break;
4628         default:
4629                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4630                 res = -1;
4631         }
4632
4633         return res;
4634 }
4635
4636 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4637 {
4638         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4639 }
4640
4641 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4642 {
4643         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4644 }
4645
4646 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4647 {
4648         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4649 }
4650
4651 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4652 {
4653         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4654 }
4655
4656 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4657 {
4658         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4659 }
4660
4661 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4662 {
4663         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4664 }
4665
4666 static unsigned long emulator_get_cached_segment_base(
4667         struct x86_emulate_ctxt *ctxt, int seg)
4668 {
4669         return get_segment_base(emul_to_vcpu(ctxt), seg);
4670 }
4671
4672 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4673                                  struct desc_struct *desc, u32 *base3,
4674                                  int seg)
4675 {
4676         struct kvm_segment var;
4677
4678         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4679         *selector = var.selector;
4680
4681         if (var.unusable) {
4682                 memset(desc, 0, sizeof(*desc));
4683                 return false;
4684         }
4685
4686         if (var.g)
4687                 var.limit >>= 12;
4688         set_desc_limit(desc, var.limit);
4689         set_desc_base(desc, (unsigned long)var.base);
4690 #ifdef CONFIG_X86_64
4691         if (base3)
4692                 *base3 = var.base >> 32;
4693 #endif
4694         desc->type = var.type;
4695         desc->s = var.s;
4696         desc->dpl = var.dpl;
4697         desc->p = var.present;
4698         desc->avl = var.avl;
4699         desc->l = var.l;
4700         desc->d = var.db;
4701         desc->g = var.g;
4702
4703         return true;
4704 }
4705
4706 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4707                                  struct desc_struct *desc, u32 base3,
4708                                  int seg)
4709 {
4710         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4711         struct kvm_segment var;
4712
4713         var.selector = selector;
4714         var.base = get_desc_base(desc);
4715 #ifdef CONFIG_X86_64
4716         var.base |= ((u64)base3) << 32;
4717 #endif
4718         var.limit = get_desc_limit(desc);
4719         if (desc->g)
4720                 var.limit = (var.limit << 12) | 0xfff;
4721         var.type = desc->type;
4722         var.present = desc->p;
4723         var.dpl = desc->dpl;
4724         var.db = desc->d;
4725         var.s = desc->s;
4726         var.l = desc->l;
4727         var.g = desc->g;
4728         var.avl = desc->avl;
4729         var.present = desc->p;
4730         var.unusable = !var.present;
4731         var.padding = 0;
4732
4733         kvm_set_segment(vcpu, &var, seg);
4734         return;
4735 }
4736
4737 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4738                             u32 msr_index, u64 *pdata)
4739 {
4740         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4741 }
4742
4743 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4744                             u32 msr_index, u64 data)
4745 {
4746         struct msr_data msr;
4747
4748         msr.data = data;
4749         msr.index = msr_index;
4750         msr.host_initiated = false;
4751         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4752 }
4753
4754 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4755                              u32 pmc, u64 *pdata)
4756 {
4757         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4758 }
4759
4760 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4761 {
4762         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4763 }
4764
4765 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4766 {
4767         preempt_disable();
4768         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4769         /*
4770          * CR0.TS may reference the host fpu state, not the guest fpu state,
4771          * so it may be clear at this point.
4772          */
4773         clts();
4774 }
4775
4776 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4777 {
4778         preempt_enable();
4779 }
4780
4781 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4782                               struct x86_instruction_info *info,
4783                               enum x86_intercept_stage stage)
4784 {
4785         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4786 }
4787
4788 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4789                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4790 {
4791         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4792 }
4793
4794 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4795 {
4796         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4797 }
4798
4799 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4800 {
4801         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4802 }
4803
4804 static const struct x86_emulate_ops emulate_ops = {
4805         .read_gpr            = emulator_read_gpr,
4806         .write_gpr           = emulator_write_gpr,
4807         .read_std            = kvm_read_guest_virt_system,
4808         .write_std           = kvm_write_guest_virt_system,
4809         .fetch               = kvm_fetch_guest_virt,
4810         .read_emulated       = emulator_read_emulated,
4811         .write_emulated      = emulator_write_emulated,
4812         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4813         .invlpg              = emulator_invlpg,
4814         .pio_in_emulated     = emulator_pio_in_emulated,
4815         .pio_out_emulated    = emulator_pio_out_emulated,
4816         .get_segment         = emulator_get_segment,
4817         .set_segment         = emulator_set_segment,
4818         .get_cached_segment_base = emulator_get_cached_segment_base,
4819         .get_gdt             = emulator_get_gdt,
4820         .get_idt             = emulator_get_idt,
4821         .set_gdt             = emulator_set_gdt,
4822         .set_idt             = emulator_set_idt,
4823         .get_cr              = emulator_get_cr,
4824         .set_cr              = emulator_set_cr,
4825         .set_rflags          = emulator_set_rflags,
4826         .cpl                 = emulator_get_cpl,
4827         .get_dr              = emulator_get_dr,
4828         .set_dr              = emulator_set_dr,
4829         .set_msr             = emulator_set_msr,
4830         .get_msr             = emulator_get_msr,
4831         .read_pmc            = emulator_read_pmc,
4832         .halt                = emulator_halt,
4833         .wbinvd              = emulator_wbinvd,
4834         .fix_hypercall       = emulator_fix_hypercall,
4835         .get_fpu             = emulator_get_fpu,
4836         .put_fpu             = emulator_put_fpu,
4837         .intercept           = emulator_intercept,
4838         .get_cpuid           = emulator_get_cpuid,
4839 };
4840
4841 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4842 {
4843         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4844         /*
4845          * an sti; sti; sequence only disable interrupts for the first
4846          * instruction. So, if the last instruction, be it emulated or
4847          * not, left the system with the INT_STI flag enabled, it
4848          * means that the last instruction is an sti. We should not
4849          * leave the flag on in this case. The same goes for mov ss
4850          */
4851         if (!(int_shadow & mask))
4852                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4853 }
4854
4855 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4856 {
4857         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4858         if (ctxt->exception.vector == PF_VECTOR)
4859                 kvm_propagate_fault(vcpu, &ctxt->exception);
4860         else if (ctxt->exception.error_code_valid)
4861                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4862                                       ctxt->exception.error_code);
4863         else
4864                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4865 }
4866
4867 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4868 {
4869         memset(&ctxt->opcode_len, 0,
4870                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4871
4872         ctxt->fetch.start = 0;
4873         ctxt->fetch.end = 0;
4874         ctxt->io_read.pos = 0;
4875         ctxt->io_read.end = 0;
4876         ctxt->mem_read.pos = 0;
4877         ctxt->mem_read.end = 0;
4878 }
4879
4880 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4881 {
4882         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4883         int cs_db, cs_l;
4884
4885         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4886
4887         ctxt->eflags = kvm_get_rflags(vcpu);
4888         ctxt->eip = kvm_rip_read(vcpu);
4889         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4890                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4891                      cs_l                               ? X86EMUL_MODE_PROT64 :
4892                      cs_db                              ? X86EMUL_MODE_PROT32 :
4893                                                           X86EMUL_MODE_PROT16;
4894         ctxt->guest_mode = is_guest_mode(vcpu);
4895
4896         init_decode_cache(ctxt);
4897         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4898 }
4899
4900 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4901 {
4902         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4903         int ret;
4904
4905         init_emulate_ctxt(vcpu);
4906
4907         ctxt->op_bytes = 2;
4908         ctxt->ad_bytes = 2;
4909         ctxt->_eip = ctxt->eip + inc_eip;
4910         ret = emulate_int_real(ctxt, irq);
4911
4912         if (ret != X86EMUL_CONTINUE)
4913                 return EMULATE_FAIL;
4914
4915         ctxt->eip = ctxt->_eip;
4916         kvm_rip_write(vcpu, ctxt->eip);
4917         kvm_set_rflags(vcpu, ctxt->eflags);
4918
4919         if (irq == NMI_VECTOR)
4920                 vcpu->arch.nmi_pending = 0;
4921         else
4922                 vcpu->arch.interrupt.pending = false;
4923
4924         return EMULATE_DONE;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4927
4928 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4929 {
4930         int r = EMULATE_DONE;
4931
4932         ++vcpu->stat.insn_emulation_fail;
4933         trace_kvm_emulate_insn_failed(vcpu);
4934         if (!is_guest_mode(vcpu)) {
4935                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4936                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4937                 vcpu->run->internal.ndata = 0;
4938                 r = EMULATE_FAIL;
4939         }
4940         kvm_queue_exception(vcpu, UD_VECTOR);
4941
4942         return r;
4943 }
4944
4945 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4946                                   bool write_fault_to_shadow_pgtable,
4947                                   int emulation_type)
4948 {
4949         gpa_t gpa = cr2;
4950         pfn_t pfn;
4951
4952         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4953                 return false;
4954
4955         if (!vcpu->arch.mmu.direct_map) {
4956                 /*
4957                  * Write permission should be allowed since only
4958                  * write access need to be emulated.
4959                  */
4960                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4961
4962                 /*
4963                  * If the mapping is invalid in guest, let cpu retry
4964                  * it to generate fault.
4965                  */
4966                 if (gpa == UNMAPPED_GVA)
4967                         return true;
4968         }
4969
4970         /*
4971          * Do not retry the unhandleable instruction if it faults on the
4972          * readonly host memory, otherwise it will goto a infinite loop:
4973          * retry instruction -> write #PF -> emulation fail -> retry
4974          * instruction -> ...
4975          */
4976         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4977
4978         /*
4979          * If the instruction failed on the error pfn, it can not be fixed,
4980          * report the error to userspace.
4981          */
4982         if (is_error_noslot_pfn(pfn))
4983                 return false;
4984
4985         kvm_release_pfn_clean(pfn);
4986
4987         /* The instructions are well-emulated on direct mmu. */
4988         if (vcpu->arch.mmu.direct_map) {
4989                 unsigned int indirect_shadow_pages;
4990
4991                 spin_lock(&vcpu->kvm->mmu_lock);
4992                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4993                 spin_unlock(&vcpu->kvm->mmu_lock);
4994
4995                 if (indirect_shadow_pages)
4996                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4997
4998                 return true;
4999         }
5000
5001         /*
5002          * if emulation was due to access to shadowed page table
5003          * and it failed try to unshadow page and re-enter the
5004          * guest to let CPU execute the instruction.
5005          */
5006         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5007
5008         /*
5009          * If the access faults on its page table, it can not
5010          * be fixed by unprotecting shadow page and it should
5011          * be reported to userspace.
5012          */
5013         return !write_fault_to_shadow_pgtable;
5014 }
5015
5016 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5017                               unsigned long cr2,  int emulation_type)
5018 {
5019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5020         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5021
5022         last_retry_eip = vcpu->arch.last_retry_eip;
5023         last_retry_addr = vcpu->arch.last_retry_addr;
5024
5025         /*
5026          * If the emulation is caused by #PF and it is non-page_table
5027          * writing instruction, it means the VM-EXIT is caused by shadow
5028          * page protected, we can zap the shadow page and retry this
5029          * instruction directly.
5030          *
5031          * Note: if the guest uses a non-page-table modifying instruction
5032          * on the PDE that points to the instruction, then we will unmap
5033          * the instruction and go to an infinite loop. So, we cache the
5034          * last retried eip and the last fault address, if we meet the eip
5035          * and the address again, we can break out of the potential infinite
5036          * loop.
5037          */
5038         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5039
5040         if (!(emulation_type & EMULTYPE_RETRY))
5041                 return false;
5042
5043         if (x86_page_table_writing_insn(ctxt))
5044                 return false;
5045
5046         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5047                 return false;
5048
5049         vcpu->arch.last_retry_eip = ctxt->eip;
5050         vcpu->arch.last_retry_addr = cr2;
5051
5052         if (!vcpu->arch.mmu.direct_map)
5053                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5054
5055         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5056
5057         return true;
5058 }
5059
5060 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5061 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5062
5063 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5064                                 unsigned long *db)
5065 {
5066         u32 dr6 = 0;
5067         int i;
5068         u32 enable, rwlen;
5069
5070         enable = dr7;
5071         rwlen = dr7 >> 16;
5072         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5073                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5074                         dr6 |= (1 << i);
5075         return dr6;
5076 }
5077
5078 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5079 {
5080         struct kvm_run *kvm_run = vcpu->run;
5081
5082         /*
5083          * Use the "raw" value to see if TF was passed to the processor.
5084          * Note that the new value of the flags has not been saved yet.
5085          *
5086          * This is correct even for TF set by the guest, because "the
5087          * processor will not generate this exception after the instruction
5088          * that sets the TF flag".
5089          */
5090         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5091
5092         if (unlikely(rflags & X86_EFLAGS_TF)) {
5093                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5094                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5095                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5096                         kvm_run->debug.arch.exception = DB_VECTOR;
5097                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5098                         *r = EMULATE_USER_EXIT;
5099                 } else {
5100                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5101                         /*
5102                          * "Certain debug exceptions may clear bit 0-3.  The
5103                          * remaining contents of the DR6 register are never
5104                          * cleared by the processor".
5105                          */
5106                         vcpu->arch.dr6 &= ~15;
5107                         vcpu->arch.dr6 |= DR6_BS;
5108                         kvm_queue_exception(vcpu, DB_VECTOR);
5109                 }
5110         }
5111 }
5112
5113 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5114 {
5115         struct kvm_run *kvm_run = vcpu->run;
5116         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5117         u32 dr6 = 0;
5118
5119         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5120             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5121                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5122                                            vcpu->arch.guest_debug_dr7,
5123                                            vcpu->arch.eff_db);
5124
5125                 if (dr6 != 0) {
5126                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5127                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5128                                 get_segment_base(vcpu, VCPU_SREG_CS);
5129
5130                         kvm_run->debug.arch.exception = DB_VECTOR;
5131                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5132                         *r = EMULATE_USER_EXIT;
5133                         return true;
5134                 }
5135         }
5136
5137         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5138                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5139                                            vcpu->arch.dr7,
5140                                            vcpu->arch.db);
5141
5142                 if (dr6 != 0) {
5143                         vcpu->arch.dr6 &= ~15;
5144                         vcpu->arch.dr6 |= dr6;
5145                         kvm_queue_exception(vcpu, DB_VECTOR);
5146                         *r = EMULATE_DONE;
5147                         return true;
5148                 }
5149         }
5150
5151         return false;
5152 }
5153
5154 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5155                             unsigned long cr2,
5156                             int emulation_type,
5157                             void *insn,
5158                             int insn_len)
5159 {
5160         int r;
5161         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5162         bool writeback = true;
5163         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5164
5165         /*
5166          * Clear write_fault_to_shadow_pgtable here to ensure it is
5167          * never reused.
5168          */
5169         vcpu->arch.write_fault_to_shadow_pgtable = false;
5170         kvm_clear_exception_queue(vcpu);
5171
5172         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5173                 init_emulate_ctxt(vcpu);
5174
5175                 /*
5176                  * We will reenter on the same instruction since
5177                  * we do not set complete_userspace_io.  This does not
5178                  * handle watchpoints yet, those would be handled in
5179                  * the emulate_ops.
5180                  */
5181                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5182                         return r;
5183
5184                 ctxt->interruptibility = 0;
5185                 ctxt->have_exception = false;
5186                 ctxt->perm_ok = false;
5187
5188                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5189
5190                 r = x86_decode_insn(ctxt, insn, insn_len);
5191
5192                 trace_kvm_emulate_insn_start(vcpu);
5193                 ++vcpu->stat.insn_emulation;
5194                 if (r != EMULATION_OK)  {
5195                         if (emulation_type & EMULTYPE_TRAP_UD)
5196                                 return EMULATE_FAIL;
5197                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5198                                                 emulation_type))
5199                                 return EMULATE_DONE;
5200                         if (emulation_type & EMULTYPE_SKIP)
5201                                 return EMULATE_FAIL;
5202                         return handle_emulation_failure(vcpu);
5203                 }
5204         }
5205
5206         if (emulation_type & EMULTYPE_SKIP) {
5207                 kvm_rip_write(vcpu, ctxt->_eip);
5208                 return EMULATE_DONE;
5209         }
5210
5211         if (retry_instruction(ctxt, cr2, emulation_type))
5212                 return EMULATE_DONE;
5213
5214         /* this is needed for vmware backdoor interface to work since it
5215            changes registers values  during IO operation */
5216         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5217                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5218                 emulator_invalidate_register_cache(ctxt);
5219         }
5220
5221 restart:
5222         r = x86_emulate_insn(ctxt);
5223
5224         if (r == EMULATION_INTERCEPTED)
5225                 return EMULATE_DONE;
5226
5227         if (r == EMULATION_FAILED) {
5228                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5229                                         emulation_type))
5230                         return EMULATE_DONE;
5231
5232                 return handle_emulation_failure(vcpu);
5233         }
5234
5235         if (ctxt->have_exception) {
5236                 inject_emulated_exception(vcpu);
5237                 r = EMULATE_DONE;
5238         } else if (vcpu->arch.pio.count) {
5239                 if (!vcpu->arch.pio.in) {
5240                         /* FIXME: return into emulator if single-stepping.  */
5241                         vcpu->arch.pio.count = 0;
5242                 } else {
5243                         writeback = false;
5244                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5245                 }
5246                 r = EMULATE_USER_EXIT;
5247         } else if (vcpu->mmio_needed) {
5248                 if (!vcpu->mmio_is_write)
5249                         writeback = false;
5250                 r = EMULATE_USER_EXIT;
5251                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5252         } else if (r == EMULATION_RESTART)
5253                 goto restart;
5254         else
5255                 r = EMULATE_DONE;
5256
5257         if (writeback) {
5258                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5259                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5260                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5261                 kvm_rip_write(vcpu, ctxt->eip);
5262                 if (r == EMULATE_DONE)
5263                         kvm_vcpu_check_singlestep(vcpu, &r);
5264                 kvm_set_rflags(vcpu, ctxt->eflags);
5265         } else
5266                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5267
5268         return r;
5269 }
5270 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5271
5272 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5273 {
5274         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5275         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5276                                             size, port, &val, 1);
5277         /* do not return to emulator after return from userspace */
5278         vcpu->arch.pio.count = 0;
5279         return ret;
5280 }
5281 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5282
5283 static void tsc_bad(void *info)
5284 {
5285         __this_cpu_write(cpu_tsc_khz, 0);
5286 }
5287
5288 static void tsc_khz_changed(void *data)
5289 {
5290         struct cpufreq_freqs *freq = data;
5291         unsigned long khz = 0;
5292
5293         if (data)
5294                 khz = freq->new;
5295         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5296                 khz = cpufreq_quick_get(raw_smp_processor_id());
5297         if (!khz)
5298                 khz = tsc_khz;
5299         __this_cpu_write(cpu_tsc_khz, khz);
5300 }
5301
5302 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5303                                      void *data)
5304 {
5305         struct cpufreq_freqs *freq = data;
5306         struct kvm *kvm;
5307         struct kvm_vcpu *vcpu;
5308         int i, send_ipi = 0;
5309
5310         /*
5311          * We allow guests to temporarily run on slowing clocks,
5312          * provided we notify them after, or to run on accelerating
5313          * clocks, provided we notify them before.  Thus time never
5314          * goes backwards.
5315          *
5316          * However, we have a problem.  We can't atomically update
5317          * the frequency of a given CPU from this function; it is
5318          * merely a notifier, which can be called from any CPU.
5319          * Changing the TSC frequency at arbitrary points in time
5320          * requires a recomputation of local variables related to
5321          * the TSC for each VCPU.  We must flag these local variables
5322          * to be updated and be sure the update takes place with the
5323          * new frequency before any guests proceed.
5324          *
5325          * Unfortunately, the combination of hotplug CPU and frequency
5326          * change creates an intractable locking scenario; the order
5327          * of when these callouts happen is undefined with respect to
5328          * CPU hotplug, and they can race with each other.  As such,
5329          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5330          * undefined; you can actually have a CPU frequency change take
5331          * place in between the computation of X and the setting of the
5332          * variable.  To protect against this problem, all updates of
5333          * the per_cpu tsc_khz variable are done in an interrupt
5334          * protected IPI, and all callers wishing to update the value
5335          * must wait for a synchronous IPI to complete (which is trivial
5336          * if the caller is on the CPU already).  This establishes the
5337          * necessary total order on variable updates.
5338          *
5339          * Note that because a guest time update may take place
5340          * anytime after the setting of the VCPU's request bit, the
5341          * correct TSC value must be set before the request.  However,
5342          * to ensure the update actually makes it to any guest which
5343          * starts running in hardware virtualization between the set
5344          * and the acquisition of the spinlock, we must also ping the
5345          * CPU after setting the request bit.
5346          *
5347          */
5348
5349         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5350                 return 0;
5351         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5352                 return 0;
5353
5354         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5355
5356         spin_lock(&kvm_lock);
5357         list_for_each_entry(kvm, &vm_list, vm_list) {
5358                 kvm_for_each_vcpu(i, vcpu, kvm) {
5359                         if (vcpu->cpu != freq->cpu)
5360                                 continue;
5361                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5362                         if (vcpu->cpu != smp_processor_id())
5363                                 send_ipi = 1;
5364                 }
5365         }
5366         spin_unlock(&kvm_lock);
5367
5368         if (freq->old < freq->new && send_ipi) {
5369                 /*
5370                  * We upscale the frequency.  Must make the guest
5371                  * doesn't see old kvmclock values while running with
5372                  * the new frequency, otherwise we risk the guest sees
5373                  * time go backwards.
5374                  *
5375                  * In case we update the frequency for another cpu
5376                  * (which might be in guest context) send an interrupt
5377                  * to kick the cpu out of guest context.  Next time
5378                  * guest context is entered kvmclock will be updated,
5379                  * so the guest will not see stale values.
5380                  */
5381                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5382         }
5383         return 0;
5384 }
5385
5386 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5387         .notifier_call  = kvmclock_cpufreq_notifier
5388 };
5389
5390 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5391                                         unsigned long action, void *hcpu)
5392 {
5393         unsigned int cpu = (unsigned long)hcpu;
5394
5395         switch (action) {
5396                 case CPU_ONLINE:
5397                 case CPU_DOWN_FAILED:
5398                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5399                         break;
5400                 case CPU_DOWN_PREPARE:
5401                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5402                         break;
5403         }
5404         return NOTIFY_OK;
5405 }
5406
5407 static struct notifier_block kvmclock_cpu_notifier_block = {
5408         .notifier_call  = kvmclock_cpu_notifier,
5409         .priority = -INT_MAX
5410 };
5411
5412 static void kvm_timer_init(void)
5413 {
5414         int cpu;
5415
5416         max_tsc_khz = tsc_khz;
5417
5418         cpu_notifier_register_begin();
5419         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5420 #ifdef CONFIG_CPU_FREQ
5421                 struct cpufreq_policy policy;
5422                 memset(&policy, 0, sizeof(policy));
5423                 cpu = get_cpu();
5424                 cpufreq_get_policy(&policy, cpu);
5425                 if (policy.cpuinfo.max_freq)
5426                         max_tsc_khz = policy.cpuinfo.max_freq;
5427                 put_cpu();
5428 #endif
5429                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5430                                           CPUFREQ_TRANSITION_NOTIFIER);
5431         }
5432         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5433         for_each_online_cpu(cpu)
5434                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5435
5436         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5437         cpu_notifier_register_done();
5438
5439 }
5440
5441 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5442
5443 int kvm_is_in_guest(void)
5444 {
5445         return __this_cpu_read(current_vcpu) != NULL;
5446 }
5447
5448 static int kvm_is_user_mode(void)
5449 {
5450         int user_mode = 3;
5451
5452         if (__this_cpu_read(current_vcpu))
5453                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5454
5455         return user_mode != 0;
5456 }
5457
5458 static unsigned long kvm_get_guest_ip(void)
5459 {
5460         unsigned long ip = 0;
5461
5462         if (__this_cpu_read(current_vcpu))
5463                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5464
5465         return ip;
5466 }
5467
5468 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5469         .is_in_guest            = kvm_is_in_guest,
5470         .is_user_mode           = kvm_is_user_mode,
5471         .get_guest_ip           = kvm_get_guest_ip,
5472 };
5473
5474 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5475 {
5476         __this_cpu_write(current_vcpu, vcpu);
5477 }
5478 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5479
5480 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5481 {
5482         __this_cpu_write(current_vcpu, NULL);
5483 }
5484 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5485
5486 static void kvm_set_mmio_spte_mask(void)
5487 {
5488         u64 mask;
5489         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5490
5491         /*
5492          * Set the reserved bits and the present bit of an paging-structure
5493          * entry to generate page fault with PFER.RSV = 1.
5494          */
5495          /* Mask the reserved physical address bits. */
5496         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5497
5498         /* Bit 62 is always reserved for 32bit host. */
5499         mask |= 0x3ull << 62;
5500
5501         /* Set the present bit. */
5502         mask |= 1ull;
5503
5504 #ifdef CONFIG_X86_64
5505         /*
5506          * If reserved bit is not supported, clear the present bit to disable
5507          * mmio page fault.
5508          */
5509         if (maxphyaddr == 52)
5510                 mask &= ~1ull;
5511 #endif
5512
5513         kvm_mmu_set_mmio_spte_mask(mask);
5514 }
5515
5516 #ifdef CONFIG_X86_64
5517 static void pvclock_gtod_update_fn(struct work_struct *work)
5518 {
5519         struct kvm *kvm;
5520
5521         struct kvm_vcpu *vcpu;
5522         int i;
5523
5524         spin_lock(&kvm_lock);
5525         list_for_each_entry(kvm, &vm_list, vm_list)
5526                 kvm_for_each_vcpu(i, vcpu, kvm)
5527                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5528         atomic_set(&kvm_guest_has_master_clock, 0);
5529         spin_unlock(&kvm_lock);
5530 }
5531
5532 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5533
5534 /*
5535  * Notification about pvclock gtod data update.
5536  */
5537 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5538                                void *priv)
5539 {
5540         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5541         struct timekeeper *tk = priv;
5542
5543         update_pvclock_gtod(tk);
5544
5545         /* disable master clock if host does not trust, or does not
5546          * use, TSC clocksource
5547          */
5548         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5549             atomic_read(&kvm_guest_has_master_clock) != 0)
5550                 queue_work(system_long_wq, &pvclock_gtod_work);
5551
5552         return 0;
5553 }
5554
5555 static struct notifier_block pvclock_gtod_notifier = {
5556         .notifier_call = pvclock_gtod_notify,
5557 };
5558 #endif
5559
5560 int kvm_arch_init(void *opaque)
5561 {
5562         int r;
5563         struct kvm_x86_ops *ops = opaque;
5564
5565         if (kvm_x86_ops) {
5566                 printk(KERN_ERR "kvm: already loaded the other module\n");
5567                 r = -EEXIST;
5568                 goto out;
5569         }
5570
5571         if (!ops->cpu_has_kvm_support()) {
5572                 printk(KERN_ERR "kvm: no hardware support\n");
5573                 r = -EOPNOTSUPP;
5574                 goto out;
5575         }
5576         if (ops->disabled_by_bios()) {
5577                 printk(KERN_ERR "kvm: disabled by bios\n");
5578                 r = -EOPNOTSUPP;
5579                 goto out;
5580         }
5581
5582         r = -ENOMEM;
5583         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5584         if (!shared_msrs) {
5585                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5586                 goto out;
5587         }
5588
5589         r = kvm_mmu_module_init();
5590         if (r)
5591                 goto out_free_percpu;
5592
5593         kvm_set_mmio_spte_mask();
5594
5595         kvm_x86_ops = ops;
5596         kvm_init_msr_list();
5597
5598         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5599                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5600
5601         kvm_timer_init();
5602
5603         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5604
5605         if (cpu_has_xsave)
5606                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5607
5608         kvm_lapic_init();
5609 #ifdef CONFIG_X86_64
5610         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5611 #endif
5612
5613         return 0;
5614
5615 out_free_percpu:
5616         free_percpu(shared_msrs);
5617 out:
5618         return r;
5619 }
5620
5621 void kvm_arch_exit(void)
5622 {
5623         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5624
5625         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5626                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5627                                             CPUFREQ_TRANSITION_NOTIFIER);
5628         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5629 #ifdef CONFIG_X86_64
5630         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5631 #endif
5632         kvm_x86_ops = NULL;
5633         kvm_mmu_module_exit();
5634         free_percpu(shared_msrs);
5635 }
5636
5637 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5638 {
5639         ++vcpu->stat.halt_exits;
5640         if (irqchip_in_kernel(vcpu->kvm)) {
5641                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5642                 return 1;
5643         } else {
5644                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5645                 return 0;
5646         }
5647 }
5648 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5649
5650 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5651 {
5652         u64 param, ingpa, outgpa, ret;
5653         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5654         bool fast, longmode;
5655         int cs_db, cs_l;
5656
5657         /*
5658          * hypercall generates UD from non zero cpl and real mode
5659          * per HYPER-V spec
5660          */
5661         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5662                 kvm_queue_exception(vcpu, UD_VECTOR);
5663                 return 0;
5664         }
5665
5666         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5667         longmode = is_long_mode(vcpu) && cs_l == 1;
5668
5669         if (!longmode) {
5670                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5671                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5672                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5673                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5674                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5675                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5676         }
5677 #ifdef CONFIG_X86_64
5678         else {
5679                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5680                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5681                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5682         }
5683 #endif
5684
5685         code = param & 0xffff;
5686         fast = (param >> 16) & 0x1;
5687         rep_cnt = (param >> 32) & 0xfff;
5688         rep_idx = (param >> 48) & 0xfff;
5689
5690         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5691
5692         switch (code) {
5693         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5694                 kvm_vcpu_on_spin(vcpu);
5695                 break;
5696         default:
5697                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5698                 break;
5699         }
5700
5701         ret = res | (((u64)rep_done & 0xfff) << 32);
5702         if (longmode) {
5703                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5704         } else {
5705                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5706                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5707         }
5708
5709         return 1;
5710 }
5711
5712 /*
5713  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5714  *
5715  * @apicid - apicid of vcpu to be kicked.
5716  */
5717 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5718 {
5719         struct kvm_lapic_irq lapic_irq;
5720
5721         lapic_irq.shorthand = 0;
5722         lapic_irq.dest_mode = 0;
5723         lapic_irq.dest_id = apicid;
5724
5725         lapic_irq.delivery_mode = APIC_DM_REMRD;
5726         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5727 }
5728
5729 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5730 {
5731         unsigned long nr, a0, a1, a2, a3, ret;
5732         int r = 1;
5733
5734         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5735                 return kvm_hv_hypercall(vcpu);
5736
5737         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5738         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5739         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5740         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5741         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5742
5743         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5744
5745         if (!is_long_mode(vcpu)) {
5746                 nr &= 0xFFFFFFFF;
5747                 a0 &= 0xFFFFFFFF;
5748                 a1 &= 0xFFFFFFFF;
5749                 a2 &= 0xFFFFFFFF;
5750                 a3 &= 0xFFFFFFFF;
5751         }
5752
5753         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5754                 ret = -KVM_EPERM;
5755                 goto out;
5756         }
5757
5758         switch (nr) {
5759         case KVM_HC_VAPIC_POLL_IRQ:
5760                 ret = 0;
5761                 break;
5762         case KVM_HC_KICK_CPU:
5763                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5764                 ret = 0;
5765                 break;
5766         default:
5767                 ret = -KVM_ENOSYS;
5768                 break;
5769         }
5770 out:
5771         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5772         ++vcpu->stat.hypercalls;
5773         return r;
5774 }
5775 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5776
5777 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5778 {
5779         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5780         char instruction[3];
5781         unsigned long rip = kvm_rip_read(vcpu);
5782
5783         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5784
5785         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5786 }
5787
5788 /*
5789  * Check if userspace requested an interrupt window, and that the
5790  * interrupt window is open.
5791  *
5792  * No need to exit to userspace if we already have an interrupt queued.
5793  */
5794 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5795 {
5796         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5797                 vcpu->run->request_interrupt_window &&
5798                 kvm_arch_interrupt_allowed(vcpu));
5799 }
5800
5801 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5802 {
5803         struct kvm_run *kvm_run = vcpu->run;
5804
5805         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5806         kvm_run->cr8 = kvm_get_cr8(vcpu);
5807         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5808         if (irqchip_in_kernel(vcpu->kvm))
5809                 kvm_run->ready_for_interrupt_injection = 1;
5810         else
5811                 kvm_run->ready_for_interrupt_injection =
5812                         kvm_arch_interrupt_allowed(vcpu) &&
5813                         !kvm_cpu_has_interrupt(vcpu) &&
5814                         !kvm_event_needs_reinjection(vcpu);
5815 }
5816
5817 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5818 {
5819         int max_irr, tpr;
5820
5821         if (!kvm_x86_ops->update_cr8_intercept)
5822                 return;
5823
5824         if (!vcpu->arch.apic)
5825                 return;
5826
5827         if (!vcpu->arch.apic->vapic_addr)
5828                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5829         else
5830                 max_irr = -1;
5831
5832         if (max_irr != -1)
5833                 max_irr >>= 4;
5834
5835         tpr = kvm_lapic_get_cr8(vcpu);
5836
5837         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5838 }
5839
5840 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5841 {
5842         int r;
5843
5844         /* try to reinject previous events if any */
5845         if (vcpu->arch.exception.pending) {
5846                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5847                                         vcpu->arch.exception.has_error_code,
5848                                         vcpu->arch.exception.error_code);
5849                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5850                                           vcpu->arch.exception.has_error_code,
5851                                           vcpu->arch.exception.error_code,
5852                                           vcpu->arch.exception.reinject);
5853                 return 0;
5854         }
5855
5856         if (vcpu->arch.nmi_injected) {
5857                 kvm_x86_ops->set_nmi(vcpu);
5858                 return 0;
5859         }
5860
5861         if (vcpu->arch.interrupt.pending) {
5862                 kvm_x86_ops->set_irq(vcpu);
5863                 return 0;
5864         }
5865
5866         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5867                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5868                 if (r != 0)
5869                         return r;
5870         }
5871
5872         /* try to inject new event if pending */
5873         if (vcpu->arch.nmi_pending) {
5874                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5875                         --vcpu->arch.nmi_pending;
5876                         vcpu->arch.nmi_injected = true;
5877                         kvm_x86_ops->set_nmi(vcpu);
5878                 }
5879         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5880                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5881                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5882                                             false);
5883                         kvm_x86_ops->set_irq(vcpu);
5884                 }
5885         }
5886         return 0;
5887 }
5888
5889 static void process_nmi(struct kvm_vcpu *vcpu)
5890 {
5891         unsigned limit = 2;
5892
5893         /*
5894          * x86 is limited to one NMI running, and one NMI pending after it.
5895          * If an NMI is already in progress, limit further NMIs to just one.
5896          * Otherwise, allow two (and we'll inject the first one immediately).
5897          */
5898         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5899                 limit = 1;
5900
5901         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5902         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5903         kvm_make_request(KVM_REQ_EVENT, vcpu);
5904 }
5905
5906 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5907 {
5908         u64 eoi_exit_bitmap[4];
5909         u32 tmr[8];
5910
5911         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5912                 return;
5913
5914         memset(eoi_exit_bitmap, 0, 32);
5915         memset(tmr, 0, 32);
5916
5917         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5918         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5919         kvm_apic_update_tmr(vcpu, tmr);
5920 }
5921
5922 /*
5923  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5924  * exiting to the userspace.  Otherwise, the value will be returned to the
5925  * userspace.
5926  */
5927 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5928 {
5929         int r;
5930         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5931                 vcpu->run->request_interrupt_window;
5932         bool req_immediate_exit = false;
5933
5934         if (vcpu->requests) {
5935                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5936                         kvm_mmu_unload(vcpu);
5937                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5938                         __kvm_migrate_timers(vcpu);
5939                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5940                         kvm_gen_update_masterclock(vcpu->kvm);
5941                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5942                         kvm_gen_kvmclock_update(vcpu);
5943                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5944                         r = kvm_guest_time_update(vcpu);
5945                         if (unlikely(r))
5946                                 goto out;
5947                 }
5948                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5949                         kvm_mmu_sync_roots(vcpu);
5950                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5951                         kvm_x86_ops->tlb_flush(vcpu);
5952                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5953                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5954                         r = 0;
5955                         goto out;
5956                 }
5957                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5958                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5959                         r = 0;
5960                         goto out;
5961                 }
5962                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5963                         vcpu->fpu_active = 0;
5964                         kvm_x86_ops->fpu_deactivate(vcpu);
5965                 }
5966                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5967                         /* Page is swapped out. Do synthetic halt */
5968                         vcpu->arch.apf.halted = true;
5969                         r = 1;
5970                         goto out;
5971                 }
5972                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5973                         record_steal_time(vcpu);
5974                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5975                         process_nmi(vcpu);
5976                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5977                         kvm_handle_pmu_event(vcpu);
5978                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5979                         kvm_deliver_pmi(vcpu);
5980                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5981                         vcpu_scan_ioapic(vcpu);
5982         }
5983
5984         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5985                 kvm_apic_accept_events(vcpu);
5986                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5987                         r = 1;
5988                         goto out;
5989                 }
5990
5991                 if (inject_pending_event(vcpu, req_int_win) != 0)
5992                         req_immediate_exit = true;
5993                 /* enable NMI/IRQ window open exits if needed */
5994                 else if (vcpu->arch.nmi_pending)
5995                         kvm_x86_ops->enable_nmi_window(vcpu);
5996                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5997                         kvm_x86_ops->enable_irq_window(vcpu);
5998
5999                 if (kvm_lapic_enabled(vcpu)) {
6000                         /*
6001                          * Update architecture specific hints for APIC
6002                          * virtual interrupt delivery.
6003                          */
6004                         if (kvm_x86_ops->hwapic_irr_update)
6005                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6006                                         kvm_lapic_find_highest_irr(vcpu));
6007                         update_cr8_intercept(vcpu);
6008                         kvm_lapic_sync_to_vapic(vcpu);
6009                 }
6010         }
6011
6012         r = kvm_mmu_reload(vcpu);
6013         if (unlikely(r)) {
6014                 goto cancel_injection;
6015         }
6016
6017         preempt_disable();
6018
6019         kvm_x86_ops->prepare_guest_switch(vcpu);
6020         if (vcpu->fpu_active)
6021                 kvm_load_guest_fpu(vcpu);
6022         kvm_load_guest_xcr0(vcpu);
6023
6024         vcpu->mode = IN_GUEST_MODE;
6025
6026         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6027
6028         /* We should set ->mode before check ->requests,
6029          * see the comment in make_all_cpus_request.
6030          */
6031         smp_mb__after_srcu_read_unlock();
6032
6033         local_irq_disable();
6034
6035         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6036             || need_resched() || signal_pending(current)) {
6037                 vcpu->mode = OUTSIDE_GUEST_MODE;
6038                 smp_wmb();
6039                 local_irq_enable();
6040                 preempt_enable();
6041                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6042                 r = 1;
6043                 goto cancel_injection;
6044         }
6045
6046         if (req_immediate_exit)
6047                 smp_send_reschedule(vcpu->cpu);
6048
6049         kvm_guest_enter();
6050
6051         if (unlikely(vcpu->arch.switch_db_regs)) {
6052                 set_debugreg(0, 7);
6053                 set_debugreg(vcpu->arch.eff_db[0], 0);
6054                 set_debugreg(vcpu->arch.eff_db[1], 1);
6055                 set_debugreg(vcpu->arch.eff_db[2], 2);
6056                 set_debugreg(vcpu->arch.eff_db[3], 3);
6057                 set_debugreg(vcpu->arch.dr6, 6);
6058         }
6059
6060         trace_kvm_entry(vcpu->vcpu_id);
6061         kvm_x86_ops->run(vcpu);
6062
6063         /*
6064          * Do this here before restoring debug registers on the host.  And
6065          * since we do this before handling the vmexit, a DR access vmexit
6066          * can (a) read the correct value of the debug registers, (b) set
6067          * KVM_DEBUGREG_WONT_EXIT again.
6068          */
6069         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6070                 int i;
6071
6072                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6073                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6074                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6075                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6076         }
6077
6078         /*
6079          * If the guest has used debug registers, at least dr7
6080          * will be disabled while returning to the host.
6081          * If we don't have active breakpoints in the host, we don't
6082          * care about the messed up debug address registers. But if
6083          * we have some of them active, restore the old state.
6084          */
6085         if (hw_breakpoint_active())
6086                 hw_breakpoint_restore();
6087
6088         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6089                                                            native_read_tsc());
6090
6091         vcpu->mode = OUTSIDE_GUEST_MODE;
6092         smp_wmb();
6093
6094         /* Interrupt is enabled by handle_external_intr() */
6095         kvm_x86_ops->handle_external_intr(vcpu);
6096
6097         ++vcpu->stat.exits;
6098
6099         /*
6100          * We must have an instruction between local_irq_enable() and
6101          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6102          * the interrupt shadow.  The stat.exits increment will do nicely.
6103          * But we need to prevent reordering, hence this barrier():
6104          */
6105         barrier();
6106
6107         kvm_guest_exit();
6108
6109         preempt_enable();
6110
6111         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6112
6113         /*
6114          * Profile KVM exit RIPs:
6115          */
6116         if (unlikely(prof_on == KVM_PROFILING)) {
6117                 unsigned long rip = kvm_rip_read(vcpu);
6118                 profile_hit(KVM_PROFILING, (void *)rip);
6119         }
6120
6121         if (unlikely(vcpu->arch.tsc_always_catchup))
6122                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6123
6124         if (vcpu->arch.apic_attention)
6125                 kvm_lapic_sync_from_vapic(vcpu);
6126
6127         r = kvm_x86_ops->handle_exit(vcpu);
6128         return r;
6129
6130 cancel_injection:
6131         kvm_x86_ops->cancel_injection(vcpu);
6132         if (unlikely(vcpu->arch.apic_attention))
6133                 kvm_lapic_sync_from_vapic(vcpu);
6134 out:
6135         return r;
6136 }
6137
6138
6139 static int __vcpu_run(struct kvm_vcpu *vcpu)
6140 {
6141         int r;
6142         struct kvm *kvm = vcpu->kvm;
6143
6144         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6145
6146         r = 1;
6147         while (r > 0) {
6148                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6149                     !vcpu->arch.apf.halted)
6150                         r = vcpu_enter_guest(vcpu);
6151                 else {
6152                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6153                         kvm_vcpu_block(vcpu);
6154                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6155                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6156                                 kvm_apic_accept_events(vcpu);
6157                                 switch(vcpu->arch.mp_state) {
6158                                 case KVM_MP_STATE_HALTED:
6159                                         vcpu->arch.pv.pv_unhalted = false;
6160                                         vcpu->arch.mp_state =
6161                                                 KVM_MP_STATE_RUNNABLE;
6162                                 case KVM_MP_STATE_RUNNABLE:
6163                                         vcpu->arch.apf.halted = false;
6164                                         break;
6165                                 case KVM_MP_STATE_INIT_RECEIVED:
6166                                         break;
6167                                 default:
6168                                         r = -EINTR;
6169                                         break;
6170                                 }
6171                         }
6172                 }
6173
6174                 if (r <= 0)
6175                         break;
6176
6177                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6178                 if (kvm_cpu_has_pending_timer(vcpu))
6179                         kvm_inject_pending_timer_irqs(vcpu);
6180
6181                 if (dm_request_for_irq_injection(vcpu)) {
6182                         r = -EINTR;
6183                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6184                         ++vcpu->stat.request_irq_exits;
6185                 }
6186
6187                 kvm_check_async_pf_completion(vcpu);
6188
6189                 if (signal_pending(current)) {
6190                         r = -EINTR;
6191                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6192                         ++vcpu->stat.signal_exits;
6193                 }
6194                 if (need_resched()) {
6195                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6196                         cond_resched();
6197                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6198                 }
6199         }
6200
6201         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6202
6203         return r;
6204 }
6205
6206 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6207 {
6208         int r;
6209         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6210         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6211         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6212         if (r != EMULATE_DONE)
6213                 return 0;
6214         return 1;
6215 }
6216
6217 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6218 {
6219         BUG_ON(!vcpu->arch.pio.count);
6220
6221         return complete_emulated_io(vcpu);
6222 }
6223
6224 /*
6225  * Implements the following, as a state machine:
6226  *
6227  * read:
6228  *   for each fragment
6229  *     for each mmio piece in the fragment
6230  *       write gpa, len
6231  *       exit
6232  *       copy data
6233  *   execute insn
6234  *
6235  * write:
6236  *   for each fragment
6237  *     for each mmio piece in the fragment
6238  *       write gpa, len
6239  *       copy data
6240  *       exit
6241  */
6242 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6243 {
6244         struct kvm_run *run = vcpu->run;
6245         struct kvm_mmio_fragment *frag;
6246         unsigned len;
6247
6248         BUG_ON(!vcpu->mmio_needed);
6249
6250         /* Complete previous fragment */
6251         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6252         len = min(8u, frag->len);
6253         if (!vcpu->mmio_is_write)
6254                 memcpy(frag->data, run->mmio.data, len);
6255
6256         if (frag->len <= 8) {
6257                 /* Switch to the next fragment. */
6258                 frag++;
6259                 vcpu->mmio_cur_fragment++;
6260         } else {
6261                 /* Go forward to the next mmio piece. */
6262                 frag->data += len;
6263                 frag->gpa += len;
6264                 frag->len -= len;
6265         }
6266
6267         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6268                 vcpu->mmio_needed = 0;
6269
6270                 /* FIXME: return into emulator if single-stepping.  */
6271                 if (vcpu->mmio_is_write)
6272                         return 1;
6273                 vcpu->mmio_read_completed = 1;
6274                 return complete_emulated_io(vcpu);
6275         }
6276
6277         run->exit_reason = KVM_EXIT_MMIO;
6278         run->mmio.phys_addr = frag->gpa;
6279         if (vcpu->mmio_is_write)
6280                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6281         run->mmio.len = min(8u, frag->len);
6282         run->mmio.is_write = vcpu->mmio_is_write;
6283         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6284         return 0;
6285 }
6286
6287
6288 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6289 {
6290         int r;
6291         sigset_t sigsaved;
6292
6293         if (!tsk_used_math(current) && init_fpu(current))
6294                 return -ENOMEM;
6295
6296         if (vcpu->sigset_active)
6297                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6298
6299         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6300                 kvm_vcpu_block(vcpu);
6301                 kvm_apic_accept_events(vcpu);
6302                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6303                 r = -EAGAIN;
6304                 goto out;
6305         }
6306
6307         /* re-sync apic's tpr */
6308         if (!irqchip_in_kernel(vcpu->kvm)) {
6309                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6310                         r = -EINVAL;
6311                         goto out;
6312                 }
6313         }
6314
6315         if (unlikely(vcpu->arch.complete_userspace_io)) {
6316                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6317                 vcpu->arch.complete_userspace_io = NULL;
6318                 r = cui(vcpu);
6319                 if (r <= 0)
6320                         goto out;
6321         } else
6322                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6323
6324         r = __vcpu_run(vcpu);
6325
6326 out:
6327         post_kvm_run_save(vcpu);
6328         if (vcpu->sigset_active)
6329                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6330
6331         return r;
6332 }
6333
6334 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6335 {
6336         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6337                 /*
6338                  * We are here if userspace calls get_regs() in the middle of
6339                  * instruction emulation. Registers state needs to be copied
6340                  * back from emulation context to vcpu. Userspace shouldn't do
6341                  * that usually, but some bad designed PV devices (vmware
6342                  * backdoor interface) need this to work
6343                  */
6344                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6345                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6346         }
6347         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6348         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6349         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6350         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6351         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6352         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6353         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6354         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6355 #ifdef CONFIG_X86_64
6356         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6357         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6358         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6359         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6360         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6361         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6362         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6363         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6364 #endif
6365
6366         regs->rip = kvm_rip_read(vcpu);
6367         regs->rflags = kvm_get_rflags(vcpu);
6368
6369         return 0;
6370 }
6371
6372 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6373 {
6374         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6375         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6376
6377         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6378         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6379         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6380         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6381         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6382         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6383         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6384         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6385 #ifdef CONFIG_X86_64
6386         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6387         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6388         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6389         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6390         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6391         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6392         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6393         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6394 #endif
6395
6396         kvm_rip_write(vcpu, regs->rip);
6397         kvm_set_rflags(vcpu, regs->rflags);
6398
6399         vcpu->arch.exception.pending = false;
6400
6401         kvm_make_request(KVM_REQ_EVENT, vcpu);
6402
6403         return 0;
6404 }
6405
6406 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6407 {
6408         struct kvm_segment cs;
6409
6410         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6411         *db = cs.db;
6412         *l = cs.l;
6413 }
6414 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6415
6416 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6417                                   struct kvm_sregs *sregs)
6418 {
6419         struct desc_ptr dt;
6420
6421         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6422         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6423         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6424         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6425         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6426         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6427
6428         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6429         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6430
6431         kvm_x86_ops->get_idt(vcpu, &dt);
6432         sregs->idt.limit = dt.size;
6433         sregs->idt.base = dt.address;
6434         kvm_x86_ops->get_gdt(vcpu, &dt);
6435         sregs->gdt.limit = dt.size;
6436         sregs->gdt.base = dt.address;
6437
6438         sregs->cr0 = kvm_read_cr0(vcpu);
6439         sregs->cr2 = vcpu->arch.cr2;
6440         sregs->cr3 = kvm_read_cr3(vcpu);
6441         sregs->cr4 = kvm_read_cr4(vcpu);
6442         sregs->cr8 = kvm_get_cr8(vcpu);
6443         sregs->efer = vcpu->arch.efer;
6444         sregs->apic_base = kvm_get_apic_base(vcpu);
6445
6446         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6447
6448         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6449                 set_bit(vcpu->arch.interrupt.nr,
6450                         (unsigned long *)sregs->interrupt_bitmap);
6451
6452         return 0;
6453 }
6454
6455 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6456                                     struct kvm_mp_state *mp_state)
6457 {
6458         kvm_apic_accept_events(vcpu);
6459         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6460                                         vcpu->arch.pv.pv_unhalted)
6461                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6462         else
6463                 mp_state->mp_state = vcpu->arch.mp_state;
6464
6465         return 0;
6466 }
6467
6468 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6469                                     struct kvm_mp_state *mp_state)
6470 {
6471         if (!kvm_vcpu_has_lapic(vcpu) &&
6472             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6473                 return -EINVAL;
6474
6475         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6476                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6477                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6478         } else
6479                 vcpu->arch.mp_state = mp_state->mp_state;
6480         kvm_make_request(KVM_REQ_EVENT, vcpu);
6481         return 0;
6482 }
6483
6484 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6485                     int reason, bool has_error_code, u32 error_code)
6486 {
6487         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6488         int ret;
6489
6490         init_emulate_ctxt(vcpu);
6491
6492         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6493                                    has_error_code, error_code);
6494
6495         if (ret)
6496                 return EMULATE_FAIL;
6497
6498         kvm_rip_write(vcpu, ctxt->eip);
6499         kvm_set_rflags(vcpu, ctxt->eflags);
6500         kvm_make_request(KVM_REQ_EVENT, vcpu);
6501         return EMULATE_DONE;
6502 }
6503 EXPORT_SYMBOL_GPL(kvm_task_switch);
6504
6505 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6506                                   struct kvm_sregs *sregs)
6507 {
6508         struct msr_data apic_base_msr;
6509         int mmu_reset_needed = 0;
6510         int pending_vec, max_bits, idx;
6511         struct desc_ptr dt;
6512
6513         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6514                 return -EINVAL;
6515
6516         dt.size = sregs->idt.limit;
6517         dt.address = sregs->idt.base;
6518         kvm_x86_ops->set_idt(vcpu, &dt);
6519         dt.size = sregs->gdt.limit;
6520         dt.address = sregs->gdt.base;
6521         kvm_x86_ops->set_gdt(vcpu, &dt);
6522
6523         vcpu->arch.cr2 = sregs->cr2;
6524         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6525         vcpu->arch.cr3 = sregs->cr3;
6526         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6527
6528         kvm_set_cr8(vcpu, sregs->cr8);
6529
6530         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6531         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6532         apic_base_msr.data = sregs->apic_base;
6533         apic_base_msr.host_initiated = true;
6534         kvm_set_apic_base(vcpu, &apic_base_msr);
6535
6536         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6537         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6538         vcpu->arch.cr0 = sregs->cr0;
6539
6540         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6541         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6542         if (sregs->cr4 & X86_CR4_OSXSAVE)
6543                 kvm_update_cpuid(vcpu);
6544
6545         idx = srcu_read_lock(&vcpu->kvm->srcu);
6546         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6547                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6548                 mmu_reset_needed = 1;
6549         }
6550         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6551
6552         if (mmu_reset_needed)
6553                 kvm_mmu_reset_context(vcpu);
6554
6555         max_bits = KVM_NR_INTERRUPTS;
6556         pending_vec = find_first_bit(
6557                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6558         if (pending_vec < max_bits) {
6559                 kvm_queue_interrupt(vcpu, pending_vec, false);
6560                 pr_debug("Set back pending irq %d\n", pending_vec);
6561         }
6562
6563         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6564         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6565         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6566         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6567         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6568         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6569
6570         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6571         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6572
6573         update_cr8_intercept(vcpu);
6574
6575         /* Older userspace won't unhalt the vcpu on reset. */
6576         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6577             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6578             !is_protmode(vcpu))
6579                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6580
6581         kvm_make_request(KVM_REQ_EVENT, vcpu);
6582
6583         return 0;
6584 }
6585
6586 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6587                                         struct kvm_guest_debug *dbg)
6588 {
6589         unsigned long rflags;
6590         int i, r;
6591
6592         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6593                 r = -EBUSY;
6594                 if (vcpu->arch.exception.pending)
6595                         goto out;
6596                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6597                         kvm_queue_exception(vcpu, DB_VECTOR);
6598                 else
6599                         kvm_queue_exception(vcpu, BP_VECTOR);
6600         }
6601
6602         /*
6603          * Read rflags as long as potentially injected trace flags are still
6604          * filtered out.
6605          */
6606         rflags = kvm_get_rflags(vcpu);
6607
6608         vcpu->guest_debug = dbg->control;
6609         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6610                 vcpu->guest_debug = 0;
6611
6612         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6613                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6614                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6615                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6616         } else {
6617                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6618                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6619         }
6620         kvm_update_dr7(vcpu);
6621
6622         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6623                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6624                         get_segment_base(vcpu, VCPU_SREG_CS);
6625
6626         /*
6627          * Trigger an rflags update that will inject or remove the trace
6628          * flags.
6629          */
6630         kvm_set_rflags(vcpu, rflags);
6631
6632         kvm_x86_ops->update_db_bp_intercept(vcpu);
6633
6634         r = 0;
6635
6636 out:
6637
6638         return r;
6639 }
6640
6641 /*
6642  * Translate a guest virtual address to a guest physical address.
6643  */
6644 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6645                                     struct kvm_translation *tr)
6646 {
6647         unsigned long vaddr = tr->linear_address;
6648         gpa_t gpa;
6649         int idx;
6650
6651         idx = srcu_read_lock(&vcpu->kvm->srcu);
6652         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6653         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6654         tr->physical_address = gpa;
6655         tr->valid = gpa != UNMAPPED_GVA;
6656         tr->writeable = 1;
6657         tr->usermode = 0;
6658
6659         return 0;
6660 }
6661
6662 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6663 {
6664         struct i387_fxsave_struct *fxsave =
6665                         &vcpu->arch.guest_fpu.state->fxsave;
6666
6667         memcpy(fpu->fpr, fxsave->st_space, 128);
6668         fpu->fcw = fxsave->cwd;
6669         fpu->fsw = fxsave->swd;
6670         fpu->ftwx = fxsave->twd;
6671         fpu->last_opcode = fxsave->fop;
6672         fpu->last_ip = fxsave->rip;
6673         fpu->last_dp = fxsave->rdp;
6674         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6675
6676         return 0;
6677 }
6678
6679 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6680 {
6681         struct i387_fxsave_struct *fxsave =
6682                         &vcpu->arch.guest_fpu.state->fxsave;
6683
6684         memcpy(fxsave->st_space, fpu->fpr, 128);
6685         fxsave->cwd = fpu->fcw;
6686         fxsave->swd = fpu->fsw;
6687         fxsave->twd = fpu->ftwx;
6688         fxsave->fop = fpu->last_opcode;
6689         fxsave->rip = fpu->last_ip;
6690         fxsave->rdp = fpu->last_dp;
6691         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6692
6693         return 0;
6694 }
6695
6696 int fx_init(struct kvm_vcpu *vcpu)
6697 {
6698         int err;
6699
6700         err = fpu_alloc(&vcpu->arch.guest_fpu);
6701         if (err)
6702                 return err;
6703
6704         fpu_finit(&vcpu->arch.guest_fpu);
6705
6706         /*
6707          * Ensure guest xcr0 is valid for loading
6708          */
6709         vcpu->arch.xcr0 = XSTATE_FP;
6710
6711         vcpu->arch.cr0 |= X86_CR0_ET;
6712
6713         return 0;
6714 }
6715 EXPORT_SYMBOL_GPL(fx_init);
6716
6717 static void fx_free(struct kvm_vcpu *vcpu)
6718 {
6719         fpu_free(&vcpu->arch.guest_fpu);
6720 }
6721
6722 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6723 {
6724         if (vcpu->guest_fpu_loaded)
6725                 return;
6726
6727         /*
6728          * Restore all possible states in the guest,
6729          * and assume host would use all available bits.
6730          * Guest xcr0 would be loaded later.
6731          */
6732         kvm_put_guest_xcr0(vcpu);
6733         vcpu->guest_fpu_loaded = 1;
6734         __kernel_fpu_begin();
6735         fpu_restore_checking(&vcpu->arch.guest_fpu);
6736         trace_kvm_fpu(1);
6737 }
6738
6739 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6740 {
6741         kvm_put_guest_xcr0(vcpu);
6742
6743         if (!vcpu->guest_fpu_loaded)
6744                 return;
6745
6746         vcpu->guest_fpu_loaded = 0;
6747         fpu_save_init(&vcpu->arch.guest_fpu);
6748         __kernel_fpu_end();
6749         ++vcpu->stat.fpu_reload;
6750         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6751         trace_kvm_fpu(0);
6752 }
6753
6754 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6755 {
6756         kvmclock_reset(vcpu);
6757
6758         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6759         fx_free(vcpu);
6760         kvm_x86_ops->vcpu_free(vcpu);
6761 }
6762
6763 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6764                                                 unsigned int id)
6765 {
6766         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6767                 printk_once(KERN_WARNING
6768                 "kvm: SMP vm created on host with unstable TSC; "
6769                 "guest TSC will not be reliable\n");
6770         return kvm_x86_ops->vcpu_create(kvm, id);
6771 }
6772
6773 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6774 {
6775         int r;
6776
6777         vcpu->arch.mtrr_state.have_fixed = 1;
6778         r = vcpu_load(vcpu);
6779         if (r)
6780                 return r;
6781         kvm_vcpu_reset(vcpu);
6782         kvm_mmu_setup(vcpu);
6783         vcpu_put(vcpu);
6784
6785         return r;
6786 }
6787
6788 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6789 {
6790         int r;
6791         struct msr_data msr;
6792         struct kvm *kvm = vcpu->kvm;
6793
6794         r = vcpu_load(vcpu);
6795         if (r)
6796                 return r;
6797         msr.data = 0x0;
6798         msr.index = MSR_IA32_TSC;
6799         msr.host_initiated = true;
6800         kvm_write_tsc(vcpu, &msr);
6801         vcpu_put(vcpu);
6802
6803         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6804                                         KVMCLOCK_SYNC_PERIOD);
6805
6806         return r;
6807 }
6808
6809 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6810 {
6811         int r;
6812         vcpu->arch.apf.msr_val = 0;
6813
6814         r = vcpu_load(vcpu);
6815         BUG_ON(r);
6816         kvm_mmu_unload(vcpu);
6817         vcpu_put(vcpu);
6818
6819         fx_free(vcpu);
6820         kvm_x86_ops->vcpu_free(vcpu);
6821 }
6822
6823 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6824 {
6825         atomic_set(&vcpu->arch.nmi_queued, 0);
6826         vcpu->arch.nmi_pending = 0;
6827         vcpu->arch.nmi_injected = false;
6828
6829         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6830         vcpu->arch.dr6 = DR6_FIXED_1;
6831         kvm_update_dr6(vcpu);
6832         vcpu->arch.dr7 = DR7_FIXED_1;
6833         kvm_update_dr7(vcpu);
6834
6835         kvm_make_request(KVM_REQ_EVENT, vcpu);
6836         vcpu->arch.apf.msr_val = 0;
6837         vcpu->arch.st.msr_val = 0;
6838
6839         kvmclock_reset(vcpu);
6840
6841         kvm_clear_async_pf_completion_queue(vcpu);
6842         kvm_async_pf_hash_reset(vcpu);
6843         vcpu->arch.apf.halted = false;
6844
6845         kvm_pmu_reset(vcpu);
6846
6847         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6848         vcpu->arch.regs_avail = ~0;
6849         vcpu->arch.regs_dirty = ~0;
6850
6851         kvm_x86_ops->vcpu_reset(vcpu);
6852 }
6853
6854 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6855 {
6856         struct kvm_segment cs;
6857
6858         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6859         cs.selector = vector << 8;
6860         cs.base = vector << 12;
6861         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6862         kvm_rip_write(vcpu, 0);
6863 }
6864
6865 int kvm_arch_hardware_enable(void *garbage)
6866 {
6867         struct kvm *kvm;
6868         struct kvm_vcpu *vcpu;
6869         int i;
6870         int ret;
6871         u64 local_tsc;
6872         u64 max_tsc = 0;
6873         bool stable, backwards_tsc = false;
6874
6875         kvm_shared_msr_cpu_online();
6876         ret = kvm_x86_ops->hardware_enable(garbage);
6877         if (ret != 0)
6878                 return ret;
6879
6880         local_tsc = native_read_tsc();
6881         stable = !check_tsc_unstable();
6882         list_for_each_entry(kvm, &vm_list, vm_list) {
6883                 kvm_for_each_vcpu(i, vcpu, kvm) {
6884                         if (!stable && vcpu->cpu == smp_processor_id())
6885                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6886                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6887                                 backwards_tsc = true;
6888                                 if (vcpu->arch.last_host_tsc > max_tsc)
6889                                         max_tsc = vcpu->arch.last_host_tsc;
6890                         }
6891                 }
6892         }
6893
6894         /*
6895          * Sometimes, even reliable TSCs go backwards.  This happens on
6896          * platforms that reset TSC during suspend or hibernate actions, but
6897          * maintain synchronization.  We must compensate.  Fortunately, we can
6898          * detect that condition here, which happens early in CPU bringup,
6899          * before any KVM threads can be running.  Unfortunately, we can't
6900          * bring the TSCs fully up to date with real time, as we aren't yet far
6901          * enough into CPU bringup that we know how much real time has actually
6902          * elapsed; our helper function, get_kernel_ns() will be using boot
6903          * variables that haven't been updated yet.
6904          *
6905          * So we simply find the maximum observed TSC above, then record the
6906          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6907          * the adjustment will be applied.  Note that we accumulate
6908          * adjustments, in case multiple suspend cycles happen before some VCPU
6909          * gets a chance to run again.  In the event that no KVM threads get a
6910          * chance to run, we will miss the entire elapsed period, as we'll have
6911          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6912          * loose cycle time.  This isn't too big a deal, since the loss will be
6913          * uniform across all VCPUs (not to mention the scenario is extremely
6914          * unlikely). It is possible that a second hibernate recovery happens
6915          * much faster than a first, causing the observed TSC here to be
6916          * smaller; this would require additional padding adjustment, which is
6917          * why we set last_host_tsc to the local tsc observed here.
6918          *
6919          * N.B. - this code below runs only on platforms with reliable TSC,
6920          * as that is the only way backwards_tsc is set above.  Also note
6921          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6922          * have the same delta_cyc adjustment applied if backwards_tsc
6923          * is detected.  Note further, this adjustment is only done once,
6924          * as we reset last_host_tsc on all VCPUs to stop this from being
6925          * called multiple times (one for each physical CPU bringup).
6926          *
6927          * Platforms with unreliable TSCs don't have to deal with this, they
6928          * will be compensated by the logic in vcpu_load, which sets the TSC to
6929          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6930          * guarantee that they stay in perfect synchronization.
6931          */
6932         if (backwards_tsc) {
6933                 u64 delta_cyc = max_tsc - local_tsc;
6934                 list_for_each_entry(kvm, &vm_list, vm_list) {
6935                         kvm_for_each_vcpu(i, vcpu, kvm) {
6936                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6937                                 vcpu->arch.last_host_tsc = local_tsc;
6938                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6939                                         &vcpu->requests);
6940                         }
6941
6942                         /*
6943                          * We have to disable TSC offset matching.. if you were
6944                          * booting a VM while issuing an S4 host suspend....
6945                          * you may have some problem.  Solving this issue is
6946                          * left as an exercise to the reader.
6947                          */
6948                         kvm->arch.last_tsc_nsec = 0;
6949                         kvm->arch.last_tsc_write = 0;
6950                 }
6951
6952         }
6953         return 0;
6954 }
6955
6956 void kvm_arch_hardware_disable(void *garbage)
6957 {
6958         kvm_x86_ops->hardware_disable(garbage);
6959         drop_user_return_notifiers(garbage);
6960 }
6961
6962 int kvm_arch_hardware_setup(void)
6963 {
6964         return kvm_x86_ops->hardware_setup();
6965 }
6966
6967 void kvm_arch_hardware_unsetup(void)
6968 {
6969         kvm_x86_ops->hardware_unsetup();
6970 }
6971
6972 void kvm_arch_check_processor_compat(void *rtn)
6973 {
6974         kvm_x86_ops->check_processor_compatibility(rtn);
6975 }
6976
6977 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6978 {
6979         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6980 }
6981
6982 struct static_key kvm_no_apic_vcpu __read_mostly;
6983
6984 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6985 {
6986         struct page *page;
6987         struct kvm *kvm;
6988         int r;
6989
6990         BUG_ON(vcpu->kvm == NULL);
6991         kvm = vcpu->kvm;
6992
6993         vcpu->arch.pv.pv_unhalted = false;
6994         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6995         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6996                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6997         else
6998                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6999
7000         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7001         if (!page) {
7002                 r = -ENOMEM;
7003                 goto fail;
7004         }
7005         vcpu->arch.pio_data = page_address(page);
7006
7007         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7008
7009         r = kvm_mmu_create(vcpu);
7010         if (r < 0)
7011                 goto fail_free_pio_data;
7012
7013         if (irqchip_in_kernel(kvm)) {
7014                 r = kvm_create_lapic(vcpu);
7015                 if (r < 0)
7016                         goto fail_mmu_destroy;
7017         } else
7018                 static_key_slow_inc(&kvm_no_apic_vcpu);
7019
7020         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7021                                        GFP_KERNEL);
7022         if (!vcpu->arch.mce_banks) {
7023                 r = -ENOMEM;
7024                 goto fail_free_lapic;
7025         }
7026         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7027
7028         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7029                 r = -ENOMEM;
7030                 goto fail_free_mce_banks;
7031         }
7032
7033         r = fx_init(vcpu);
7034         if (r)
7035                 goto fail_free_wbinvd_dirty_mask;
7036
7037         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7038         vcpu->arch.pv_time_enabled = false;
7039
7040         vcpu->arch.guest_supported_xcr0 = 0;
7041         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7042
7043         kvm_async_pf_hash_reset(vcpu);
7044         kvm_pmu_init(vcpu);
7045
7046         return 0;
7047 fail_free_wbinvd_dirty_mask:
7048         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7049 fail_free_mce_banks:
7050         kfree(vcpu->arch.mce_banks);
7051 fail_free_lapic:
7052         kvm_free_lapic(vcpu);
7053 fail_mmu_destroy:
7054         kvm_mmu_destroy(vcpu);
7055 fail_free_pio_data:
7056         free_page((unsigned long)vcpu->arch.pio_data);
7057 fail:
7058         return r;
7059 }
7060
7061 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7062 {
7063         int idx;
7064
7065         kvm_pmu_destroy(vcpu);
7066         kfree(vcpu->arch.mce_banks);
7067         kvm_free_lapic(vcpu);
7068         idx = srcu_read_lock(&vcpu->kvm->srcu);
7069         kvm_mmu_destroy(vcpu);
7070         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7071         free_page((unsigned long)vcpu->arch.pio_data);
7072         if (!irqchip_in_kernel(vcpu->kvm))
7073                 static_key_slow_dec(&kvm_no_apic_vcpu);
7074 }
7075
7076 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7077 {
7078         if (type)
7079                 return -EINVAL;
7080
7081         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7082         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7083         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7084         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7085
7086         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7087         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7088         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7089         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7090                 &kvm->arch.irq_sources_bitmap);
7091
7092         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7093         mutex_init(&kvm->arch.apic_map_lock);
7094         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7095
7096         pvclock_update_vm_gtod_copy(kvm);
7097
7098         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7099         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7100
7101         return 0;
7102 }
7103
7104 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7105 {
7106         int r;
7107         r = vcpu_load(vcpu);
7108         BUG_ON(r);
7109         kvm_mmu_unload(vcpu);
7110         vcpu_put(vcpu);
7111 }
7112
7113 static void kvm_free_vcpus(struct kvm *kvm)
7114 {
7115         unsigned int i;
7116         struct kvm_vcpu *vcpu;
7117
7118         /*
7119          * Unpin any mmu pages first.
7120          */
7121         kvm_for_each_vcpu(i, vcpu, kvm) {
7122                 kvm_clear_async_pf_completion_queue(vcpu);
7123                 kvm_unload_vcpu_mmu(vcpu);
7124         }
7125         kvm_for_each_vcpu(i, vcpu, kvm)
7126                 kvm_arch_vcpu_free(vcpu);
7127
7128         mutex_lock(&kvm->lock);
7129         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7130                 kvm->vcpus[i] = NULL;
7131
7132         atomic_set(&kvm->online_vcpus, 0);
7133         mutex_unlock(&kvm->lock);
7134 }
7135
7136 void kvm_arch_sync_events(struct kvm *kvm)
7137 {
7138         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7139         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7140         kvm_free_all_assigned_devices(kvm);
7141         kvm_free_pit(kvm);
7142 }
7143
7144 void kvm_arch_destroy_vm(struct kvm *kvm)
7145 {
7146         if (current->mm == kvm->mm) {
7147                 /*
7148                  * Free memory regions allocated on behalf of userspace,
7149                  * unless the the memory map has changed due to process exit
7150                  * or fd copying.
7151                  */
7152                 struct kvm_userspace_memory_region mem;
7153                 memset(&mem, 0, sizeof(mem));
7154                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7155                 kvm_set_memory_region(kvm, &mem);
7156
7157                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7158                 kvm_set_memory_region(kvm, &mem);
7159
7160                 mem.slot = TSS_PRIVATE_MEMSLOT;
7161                 kvm_set_memory_region(kvm, &mem);
7162         }
7163         kvm_iommu_unmap_guest(kvm);
7164         kfree(kvm->arch.vpic);
7165         kfree(kvm->arch.vioapic);
7166         kvm_free_vcpus(kvm);
7167         if (kvm->arch.apic_access_page)
7168                 put_page(kvm->arch.apic_access_page);
7169         if (kvm->arch.ept_identity_pagetable)
7170                 put_page(kvm->arch.ept_identity_pagetable);
7171         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7172 }
7173
7174 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7175                            struct kvm_memory_slot *dont)
7176 {
7177         int i;
7178
7179         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7180                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7181                         kvm_kvfree(free->arch.rmap[i]);
7182                         free->arch.rmap[i] = NULL;
7183                 }
7184                 if (i == 0)
7185                         continue;
7186
7187                 if (!dont || free->arch.lpage_info[i - 1] !=
7188                              dont->arch.lpage_info[i - 1]) {
7189                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7190                         free->arch.lpage_info[i - 1] = NULL;
7191                 }
7192         }
7193 }
7194
7195 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7196                             unsigned long npages)
7197 {
7198         int i;
7199
7200         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7201                 unsigned long ugfn;
7202                 int lpages;
7203                 int level = i + 1;
7204
7205                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7206                                       slot->base_gfn, level) + 1;
7207
7208                 slot->arch.rmap[i] =
7209                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7210                 if (!slot->arch.rmap[i])
7211                         goto out_free;
7212                 if (i == 0)
7213                         continue;
7214
7215                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7216                                         sizeof(*slot->arch.lpage_info[i - 1]));
7217                 if (!slot->arch.lpage_info[i - 1])
7218                         goto out_free;
7219
7220                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7221                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7222                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7223                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7224                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7225                 /*
7226                  * If the gfn and userspace address are not aligned wrt each
7227                  * other, or if explicitly asked to, disable large page
7228                  * support for this slot
7229                  */
7230                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7231                     !kvm_largepages_enabled()) {
7232                         unsigned long j;
7233
7234                         for (j = 0; j < lpages; ++j)
7235                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7236                 }
7237         }
7238
7239         return 0;
7240
7241 out_free:
7242         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7243                 kvm_kvfree(slot->arch.rmap[i]);
7244                 slot->arch.rmap[i] = NULL;
7245                 if (i == 0)
7246                         continue;
7247
7248                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7249                 slot->arch.lpage_info[i - 1] = NULL;
7250         }
7251         return -ENOMEM;
7252 }
7253
7254 void kvm_arch_memslots_updated(struct kvm *kvm)
7255 {
7256         /*
7257          * memslots->generation has been incremented.
7258          * mmio generation may have reached its maximum value.
7259          */
7260         kvm_mmu_invalidate_mmio_sptes(kvm);
7261 }
7262
7263 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7264                                 struct kvm_memory_slot *memslot,
7265                                 struct kvm_userspace_memory_region *mem,
7266                                 enum kvm_mr_change change)
7267 {
7268         /*
7269          * Only private memory slots need to be mapped here since
7270          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7271          */
7272         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7273                 unsigned long userspace_addr;
7274
7275                 /*
7276                  * MAP_SHARED to prevent internal slot pages from being moved
7277                  * by fork()/COW.
7278                  */
7279                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7280                                          PROT_READ | PROT_WRITE,
7281                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7282
7283                 if (IS_ERR((void *)userspace_addr))
7284                         return PTR_ERR((void *)userspace_addr);
7285
7286                 memslot->userspace_addr = userspace_addr;
7287         }
7288
7289         return 0;
7290 }
7291
7292 void kvm_arch_commit_memory_region(struct kvm *kvm,
7293                                 struct kvm_userspace_memory_region *mem,
7294                                 const struct kvm_memory_slot *old,
7295                                 enum kvm_mr_change change)
7296 {
7297
7298         int nr_mmu_pages = 0;
7299
7300         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7301                 int ret;
7302
7303                 ret = vm_munmap(old->userspace_addr,
7304                                 old->npages * PAGE_SIZE);
7305                 if (ret < 0)
7306                         printk(KERN_WARNING
7307                                "kvm_vm_ioctl_set_memory_region: "
7308                                "failed to munmap memory\n");
7309         }
7310
7311         if (!kvm->arch.n_requested_mmu_pages)
7312                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7313
7314         if (nr_mmu_pages)
7315                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7316         /*
7317          * Write protect all pages for dirty logging.
7318          * Existing largepage mappings are destroyed here and new ones will
7319          * not be created until the end of the logging.
7320          */
7321         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7322                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7323 }
7324
7325 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7326 {
7327         kvm_mmu_invalidate_zap_all_pages(kvm);
7328 }
7329
7330 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7331                                    struct kvm_memory_slot *slot)
7332 {
7333         kvm_mmu_invalidate_zap_all_pages(kvm);
7334 }
7335
7336 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7337 {
7338         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7339                 kvm_x86_ops->check_nested_events(vcpu, false);
7340
7341         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7342                 !vcpu->arch.apf.halted)
7343                 || !list_empty_careful(&vcpu->async_pf.done)
7344                 || kvm_apic_has_events(vcpu)
7345                 || vcpu->arch.pv.pv_unhalted
7346                 || atomic_read(&vcpu->arch.nmi_queued) ||
7347                 (kvm_arch_interrupt_allowed(vcpu) &&
7348                  kvm_cpu_has_interrupt(vcpu));
7349 }
7350
7351 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7352 {
7353         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7354 }
7355
7356 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7357 {
7358         return kvm_x86_ops->interrupt_allowed(vcpu);
7359 }
7360
7361 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7362 {
7363         unsigned long current_rip = kvm_rip_read(vcpu) +
7364                 get_segment_base(vcpu, VCPU_SREG_CS);
7365
7366         return current_rip == linear_rip;
7367 }
7368 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7369
7370 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7371 {
7372         unsigned long rflags;
7373
7374         rflags = kvm_x86_ops->get_rflags(vcpu);
7375         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7376                 rflags &= ~X86_EFLAGS_TF;
7377         return rflags;
7378 }
7379 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7380
7381 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7382 {
7383         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7384             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7385                 rflags |= X86_EFLAGS_TF;
7386         kvm_x86_ops->set_rflags(vcpu, rflags);
7387         kvm_make_request(KVM_REQ_EVENT, vcpu);
7388 }
7389 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7390
7391 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7392 {
7393         int r;
7394
7395         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7396               work->wakeup_all)
7397                 return;
7398
7399         r = kvm_mmu_reload(vcpu);
7400         if (unlikely(r))
7401                 return;
7402
7403         if (!vcpu->arch.mmu.direct_map &&
7404               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7405                 return;
7406
7407         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7408 }
7409
7410 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7411 {
7412         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7413 }
7414
7415 static inline u32 kvm_async_pf_next_probe(u32 key)
7416 {
7417         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7418 }
7419
7420 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7421 {
7422         u32 key = kvm_async_pf_hash_fn(gfn);
7423
7424         while (vcpu->arch.apf.gfns[key] != ~0)
7425                 key = kvm_async_pf_next_probe(key);
7426
7427         vcpu->arch.apf.gfns[key] = gfn;
7428 }
7429
7430 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7431 {
7432         int i;
7433         u32 key = kvm_async_pf_hash_fn(gfn);
7434
7435         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7436                      (vcpu->arch.apf.gfns[key] != gfn &&
7437                       vcpu->arch.apf.gfns[key] != ~0); i++)
7438                 key = kvm_async_pf_next_probe(key);
7439
7440         return key;
7441 }
7442
7443 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7444 {
7445         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7446 }
7447
7448 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7449 {
7450         u32 i, j, k;
7451
7452         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7453         while (true) {
7454                 vcpu->arch.apf.gfns[i] = ~0;
7455                 do {
7456                         j = kvm_async_pf_next_probe(j);
7457                         if (vcpu->arch.apf.gfns[j] == ~0)
7458                                 return;
7459                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7460                         /*
7461                          * k lies cyclically in ]i,j]
7462                          * |    i.k.j |
7463                          * |....j i.k.| or  |.k..j i...|
7464                          */
7465                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7466                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7467                 i = j;
7468         }
7469 }
7470
7471 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7472 {
7473
7474         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7475                                       sizeof(val));
7476 }
7477
7478 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7479                                      struct kvm_async_pf *work)
7480 {
7481         struct x86_exception fault;
7482
7483         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7484         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7485
7486         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7487             (vcpu->arch.apf.send_user_only &&
7488              kvm_x86_ops->get_cpl(vcpu) == 0))
7489                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7490         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7491                 fault.vector = PF_VECTOR;
7492                 fault.error_code_valid = true;
7493                 fault.error_code = 0;
7494                 fault.nested_page_fault = false;
7495                 fault.address = work->arch.token;
7496                 kvm_inject_page_fault(vcpu, &fault);
7497         }
7498 }
7499
7500 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7501                                  struct kvm_async_pf *work)
7502 {
7503         struct x86_exception fault;
7504
7505         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7506         if (work->wakeup_all)
7507                 work->arch.token = ~0; /* broadcast wakeup */
7508         else
7509                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7510
7511         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7512             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7513                 fault.vector = PF_VECTOR;
7514                 fault.error_code_valid = true;
7515                 fault.error_code = 0;
7516                 fault.nested_page_fault = false;
7517                 fault.address = work->arch.token;
7518                 kvm_inject_page_fault(vcpu, &fault);
7519         }
7520         vcpu->arch.apf.halted = false;
7521         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7522 }
7523
7524 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7525 {
7526         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7527                 return true;
7528         else
7529                 return !kvm_event_needs_reinjection(vcpu) &&
7530                         kvm_x86_ops->interrupt_allowed(vcpu);
7531 }
7532
7533 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7534 {
7535         atomic_inc(&kvm->arch.noncoherent_dma_count);
7536 }
7537 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7538
7539 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7540 {
7541         atomic_dec(&kvm->arch.noncoherent_dma_count);
7542 }
7543 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7544
7545 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7546 {
7547         return atomic_read(&kvm->arch.noncoherent_dma_count);
7548 }
7549 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7550
7551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);