]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge remote-tracking branches 'regulator/topic/palmas', 'regulator/topic/pbias'...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 static bool backwards_tsc_observed = false;
110
111 #define KVM_NR_SHARED_MSRS 16
112
113 struct kvm_shared_msrs_global {
114         int nr;
115         u32 msrs[KVM_NR_SHARED_MSRS];
116 };
117
118 struct kvm_shared_msrs {
119         struct user_return_notifier urn;
120         bool registered;
121         struct kvm_shared_msr_values {
122                 u64 host;
123                 u64 curr;
124         } values[KVM_NR_SHARED_MSRS];
125 };
126
127 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
128 static struct kvm_shared_msrs __percpu *shared_msrs;
129
130 struct kvm_stats_debugfs_item debugfs_entries[] = {
131         { "pf_fixed", VCPU_STAT(pf_fixed) },
132         { "pf_guest", VCPU_STAT(pf_guest) },
133         { "tlb_flush", VCPU_STAT(tlb_flush) },
134         { "invlpg", VCPU_STAT(invlpg) },
135         { "exits", VCPU_STAT(exits) },
136         { "io_exits", VCPU_STAT(io_exits) },
137         { "mmio_exits", VCPU_STAT(mmio_exits) },
138         { "signal_exits", VCPU_STAT(signal_exits) },
139         { "irq_window", VCPU_STAT(irq_window_exits) },
140         { "nmi_window", VCPU_STAT(nmi_window_exits) },
141         { "halt_exits", VCPU_STAT(halt_exits) },
142         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
143         { "hypercalls", VCPU_STAT(hypercalls) },
144         { "request_irq", VCPU_STAT(request_irq_exits) },
145         { "irq_exits", VCPU_STAT(irq_exits) },
146         { "host_state_reload", VCPU_STAT(host_state_reload) },
147         { "efer_reload", VCPU_STAT(efer_reload) },
148         { "fpu_reload", VCPU_STAT(fpu_reload) },
149         { "insn_emulation", VCPU_STAT(insn_emulation) },
150         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
151         { "irq_injections", VCPU_STAT(irq_injections) },
152         { "nmi_injections", VCPU_STAT(nmi_injections) },
153         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
154         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
155         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
156         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
157         { "mmu_flooded", VM_STAT(mmu_flooded) },
158         { "mmu_recycled", VM_STAT(mmu_recycled) },
159         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
160         { "mmu_unsync", VM_STAT(mmu_unsync) },
161         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
162         { "largepages", VM_STAT(lpages) },
163         { NULL }
164 };
165
166 u64 __read_mostly host_xcr0;
167
168 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
169
170 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
171 {
172         int i;
173         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
174                 vcpu->arch.apf.gfns[i] = ~0;
175 }
176
177 static void kvm_on_user_return(struct user_return_notifier *urn)
178 {
179         unsigned slot;
180         struct kvm_shared_msrs *locals
181                 = container_of(urn, struct kvm_shared_msrs, urn);
182         struct kvm_shared_msr_values *values;
183
184         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
185                 values = &locals->values[slot];
186                 if (values->host != values->curr) {
187                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
188                         values->curr = values->host;
189                 }
190         }
191         locals->registered = false;
192         user_return_notifier_unregister(urn);
193 }
194
195 static void shared_msr_update(unsigned slot, u32 msr)
196 {
197         u64 value;
198         unsigned int cpu = smp_processor_id();
199         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
200
201         /* only read, and nobody should modify it at this time,
202          * so don't need lock */
203         if (slot >= shared_msrs_global.nr) {
204                 printk(KERN_ERR "kvm: invalid MSR slot!");
205                 return;
206         }
207         rdmsrl_safe(msr, &value);
208         smsr->values[slot].host = value;
209         smsr->values[slot].curr = value;
210 }
211
212 void kvm_define_shared_msr(unsigned slot, u32 msr)
213 {
214         if (slot >= shared_msrs_global.nr)
215                 shared_msrs_global.nr = slot + 1;
216         shared_msrs_global.msrs[slot] = msr;
217         /* we need ensured the shared_msr_global have been updated */
218         smp_wmb();
219 }
220 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
221
222 static void kvm_shared_msr_cpu_online(void)
223 {
224         unsigned i;
225
226         for (i = 0; i < shared_msrs_global.nr; ++i)
227                 shared_msr_update(i, shared_msrs_global.msrs[i]);
228 }
229
230 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
231 {
232         unsigned int cpu = smp_processor_id();
233         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
234
235         if (((value ^ smsr->values[slot].curr) & mask) == 0)
236                 return;
237         smsr->values[slot].curr = value;
238         wrmsrl(shared_msrs_global.msrs[slot], value);
239         if (!smsr->registered) {
240                 smsr->urn.on_user_return = kvm_on_user_return;
241                 user_return_notifier_register(&smsr->urn);
242                 smsr->registered = true;
243         }
244 }
245 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
246
247 static void drop_user_return_notifiers(void *ignore)
248 {
249         unsigned int cpu = smp_processor_id();
250         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
251
252         if (smsr->registered)
253                 kvm_on_user_return(&smsr->urn);
254 }
255
256 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
257 {
258         return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
263 {
264         u64 old_state = vcpu->arch.apic_base &
265                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266         u64 new_state = msr_info->data &
267                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
268         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
269                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
270
271         if (!msr_info->host_initiated &&
272             ((msr_info->data & reserved_bits) != 0 ||
273              new_state == X2APIC_ENABLE ||
274              (new_state == MSR_IA32_APICBASE_ENABLE &&
275               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
276              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
277               old_state == 0)))
278                 return 1;
279
280         kvm_lapic_set_base(vcpu, msr_info->data);
281         return 0;
282 }
283 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
284
285 asmlinkage __visible void kvm_spurious_fault(void)
286 {
287         /* Fault while not rebooting.  We want the trace. */
288         BUG();
289 }
290 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
291
292 #define EXCPT_BENIGN            0
293 #define EXCPT_CONTRIBUTORY      1
294 #define EXCPT_PF                2
295
296 static int exception_class(int vector)
297 {
298         switch (vector) {
299         case PF_VECTOR:
300                 return EXCPT_PF;
301         case DE_VECTOR:
302         case TS_VECTOR:
303         case NP_VECTOR:
304         case SS_VECTOR:
305         case GP_VECTOR:
306                 return EXCPT_CONTRIBUTORY;
307         default:
308                 break;
309         }
310         return EXCPT_BENIGN;
311 }
312
313 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
314                 unsigned nr, bool has_error, u32 error_code,
315                 bool reinject)
316 {
317         u32 prev_nr;
318         int class1, class2;
319
320         kvm_make_request(KVM_REQ_EVENT, vcpu);
321
322         if (!vcpu->arch.exception.pending) {
323         queue:
324                 vcpu->arch.exception.pending = true;
325                 vcpu->arch.exception.has_error_code = has_error;
326                 vcpu->arch.exception.nr = nr;
327                 vcpu->arch.exception.error_code = error_code;
328                 vcpu->arch.exception.reinject = reinject;
329                 return;
330         }
331
332         /* to check exception */
333         prev_nr = vcpu->arch.exception.nr;
334         if (prev_nr == DF_VECTOR) {
335                 /* triple fault -> shutdown */
336                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
337                 return;
338         }
339         class1 = exception_class(prev_nr);
340         class2 = exception_class(nr);
341         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
342                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
343                 /* generate double fault per SDM Table 5-5 */
344                 vcpu->arch.exception.pending = true;
345                 vcpu->arch.exception.has_error_code = true;
346                 vcpu->arch.exception.nr = DF_VECTOR;
347                 vcpu->arch.exception.error_code = 0;
348         } else
349                 /* replace previous exception with a new one in a hope
350                    that instruction re-execution will regenerate lost
351                    exception */
352                 goto queue;
353 }
354
355 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
356 {
357         kvm_multiple_exception(vcpu, nr, false, 0, false);
358 }
359 EXPORT_SYMBOL_GPL(kvm_queue_exception);
360
361 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
362 {
363         kvm_multiple_exception(vcpu, nr, false, 0, true);
364 }
365 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
366
367 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
368 {
369         if (err)
370                 kvm_inject_gp(vcpu, 0);
371         else
372                 kvm_x86_ops->skip_emulated_instruction(vcpu);
373 }
374 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
375
376 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
377 {
378         ++vcpu->stat.pf_guest;
379         vcpu->arch.cr2 = fault->address;
380         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
381 }
382 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
383
384 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
385 {
386         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
387                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
388         else
389                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
390 }
391
392 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
393 {
394         atomic_inc(&vcpu->arch.nmi_queued);
395         kvm_make_request(KVM_REQ_NMI, vcpu);
396 }
397 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
398
399 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
400 {
401         kvm_multiple_exception(vcpu, nr, true, error_code, false);
402 }
403 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
404
405 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
406 {
407         kvm_multiple_exception(vcpu, nr, true, error_code, true);
408 }
409 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
410
411 /*
412  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
413  * a #GP and return false.
414  */
415 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
416 {
417         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
418                 return true;
419         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
420         return false;
421 }
422 EXPORT_SYMBOL_GPL(kvm_require_cpl);
423
424 /*
425  * This function will be used to read from the physical memory of the currently
426  * running guest. The difference to kvm_read_guest_page is that this function
427  * can read from guest physical or from the guest's guest physical memory.
428  */
429 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
430                             gfn_t ngfn, void *data, int offset, int len,
431                             u32 access)
432 {
433         gfn_t real_gfn;
434         gpa_t ngpa;
435
436         ngpa     = gfn_to_gpa(ngfn);
437         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
438         if (real_gfn == UNMAPPED_GVA)
439                 return -EFAULT;
440
441         real_gfn = gpa_to_gfn(real_gfn);
442
443         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
444 }
445 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
446
447 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
448                                void *data, int offset, int len, u32 access)
449 {
450         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
451                                        data, offset, len, access);
452 }
453
454 /*
455  * Load the pae pdptrs.  Return true is they are all valid.
456  */
457 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
458 {
459         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
460         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
461         int i;
462         int ret;
463         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
464
465         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
466                                       offset * sizeof(u64), sizeof(pdpte),
467                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
468         if (ret < 0) {
469                 ret = 0;
470                 goto out;
471         }
472         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
473                 if (is_present_gpte(pdpte[i]) &&
474                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
475                         ret = 0;
476                         goto out;
477                 }
478         }
479         ret = 1;
480
481         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
482         __set_bit(VCPU_EXREG_PDPTR,
483                   (unsigned long *)&vcpu->arch.regs_avail);
484         __set_bit(VCPU_EXREG_PDPTR,
485                   (unsigned long *)&vcpu->arch.regs_dirty);
486 out:
487
488         return ret;
489 }
490 EXPORT_SYMBOL_GPL(load_pdptrs);
491
492 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
493 {
494         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
495         bool changed = true;
496         int offset;
497         gfn_t gfn;
498         int r;
499
500         if (is_long_mode(vcpu) || !is_pae(vcpu))
501                 return false;
502
503         if (!test_bit(VCPU_EXREG_PDPTR,
504                       (unsigned long *)&vcpu->arch.regs_avail))
505                 return true;
506
507         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
508         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
509         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
510                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
511         if (r < 0)
512                 goto out;
513         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
514 out:
515
516         return changed;
517 }
518
519 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
520 {
521         unsigned long old_cr0 = kvm_read_cr0(vcpu);
522         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
523                                     X86_CR0_CD | X86_CR0_NW;
524
525         cr0 |= X86_CR0_ET;
526
527 #ifdef CONFIG_X86_64
528         if (cr0 & 0xffffffff00000000UL)
529                 return 1;
530 #endif
531
532         cr0 &= ~CR0_RESERVED_BITS;
533
534         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
535                 return 1;
536
537         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
538                 return 1;
539
540         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
541 #ifdef CONFIG_X86_64
542                 if ((vcpu->arch.efer & EFER_LME)) {
543                         int cs_db, cs_l;
544
545                         if (!is_pae(vcpu))
546                                 return 1;
547                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
548                         if (cs_l)
549                                 return 1;
550                 } else
551 #endif
552                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
553                                                  kvm_read_cr3(vcpu)))
554                         return 1;
555         }
556
557         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
558                 return 1;
559
560         kvm_x86_ops->set_cr0(vcpu, cr0);
561
562         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
563                 kvm_clear_async_pf_completion_queue(vcpu);
564                 kvm_async_pf_hash_reset(vcpu);
565         }
566
567         if ((cr0 ^ old_cr0) & update_bits)
568                 kvm_mmu_reset_context(vcpu);
569         return 0;
570 }
571 EXPORT_SYMBOL_GPL(kvm_set_cr0);
572
573 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
574 {
575         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
576 }
577 EXPORT_SYMBOL_GPL(kvm_lmsw);
578
579 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
580 {
581         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
582                         !vcpu->guest_xcr0_loaded) {
583                 /* kvm_set_xcr() also depends on this */
584                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
585                 vcpu->guest_xcr0_loaded = 1;
586         }
587 }
588
589 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
590 {
591         if (vcpu->guest_xcr0_loaded) {
592                 if (vcpu->arch.xcr0 != host_xcr0)
593                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
594                 vcpu->guest_xcr0_loaded = 0;
595         }
596 }
597
598 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
599 {
600         u64 xcr0 = xcr;
601         u64 old_xcr0 = vcpu->arch.xcr0;
602         u64 valid_bits;
603
604         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
605         if (index != XCR_XFEATURE_ENABLED_MASK)
606                 return 1;
607         if (!(xcr0 & XSTATE_FP))
608                 return 1;
609         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
610                 return 1;
611
612         /*
613          * Do not allow the guest to set bits that we do not support
614          * saving.  However, xcr0 bit 0 is always set, even if the
615          * emulated CPU does not support XSAVE (see fx_init).
616          */
617         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
618         if (xcr0 & ~valid_bits)
619                 return 1;
620
621         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
622                 return 1;
623
624         kvm_put_guest_xcr0(vcpu);
625         vcpu->arch.xcr0 = xcr0;
626
627         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
628                 kvm_update_cpuid(vcpu);
629         return 0;
630 }
631
632 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
633 {
634         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
635             __kvm_set_xcr(vcpu, index, xcr)) {
636                 kvm_inject_gp(vcpu, 0);
637                 return 1;
638         }
639         return 0;
640 }
641 EXPORT_SYMBOL_GPL(kvm_set_xcr);
642
643 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
644 {
645         unsigned long old_cr4 = kvm_read_cr4(vcpu);
646         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
647                                    X86_CR4_PAE | X86_CR4_SMEP;
648         if (cr4 & CR4_RESERVED_BITS)
649                 return 1;
650
651         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
652                 return 1;
653
654         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
655                 return 1;
656
657         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
658                 return 1;
659
660         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
661                 return 1;
662
663         if (is_long_mode(vcpu)) {
664                 if (!(cr4 & X86_CR4_PAE))
665                         return 1;
666         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
667                    && ((cr4 ^ old_cr4) & pdptr_bits)
668                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669                                    kvm_read_cr3(vcpu)))
670                 return 1;
671
672         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
673                 if (!guest_cpuid_has_pcid(vcpu))
674                         return 1;
675
676                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
677                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
678                         return 1;
679         }
680
681         if (kvm_x86_ops->set_cr4(vcpu, cr4))
682                 return 1;
683
684         if (((cr4 ^ old_cr4) & pdptr_bits) ||
685             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
686                 kvm_mmu_reset_context(vcpu);
687
688         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
689                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
690
691         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
692                 kvm_update_cpuid(vcpu);
693
694         return 0;
695 }
696 EXPORT_SYMBOL_GPL(kvm_set_cr4);
697
698 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
699 {
700         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
701                 kvm_mmu_sync_roots(vcpu);
702                 kvm_mmu_flush_tlb(vcpu);
703                 return 0;
704         }
705
706         if (is_long_mode(vcpu)) {
707                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
708                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
709                                 return 1;
710                 } else
711                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
712                                 return 1;
713         } else {
714                 if (is_pae(vcpu)) {
715                         if (cr3 & CR3_PAE_RESERVED_BITS)
716                                 return 1;
717                         if (is_paging(vcpu) &&
718                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
719                                 return 1;
720                 }
721                 /*
722                  * We don't check reserved bits in nonpae mode, because
723                  * this isn't enforced, and VMware depends on this.
724                  */
725         }
726
727         vcpu->arch.cr3 = cr3;
728         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
729         kvm_mmu_new_cr3(vcpu);
730         return 0;
731 }
732 EXPORT_SYMBOL_GPL(kvm_set_cr3);
733
734 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
735 {
736         if (cr8 & CR8_RESERVED_BITS)
737                 return 1;
738         if (irqchip_in_kernel(vcpu->kvm))
739                 kvm_lapic_set_tpr(vcpu, cr8);
740         else
741                 vcpu->arch.cr8 = cr8;
742         return 0;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_cr8);
745
746 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
747 {
748         if (irqchip_in_kernel(vcpu->kvm))
749                 return kvm_lapic_get_cr8(vcpu);
750         else
751                 return vcpu->arch.cr8;
752 }
753 EXPORT_SYMBOL_GPL(kvm_get_cr8);
754
755 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
756 {
757         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
758                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
759 }
760
761 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
762 {
763         unsigned long dr7;
764
765         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
766                 dr7 = vcpu->arch.guest_debug_dr7;
767         else
768                 dr7 = vcpu->arch.dr7;
769         kvm_x86_ops->set_dr7(vcpu, dr7);
770         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
771         if (dr7 & DR7_BP_EN_MASK)
772                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
773 }
774
775 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
776 {
777         switch (dr) {
778         case 0 ... 3:
779                 vcpu->arch.db[dr] = val;
780                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
781                         vcpu->arch.eff_db[dr] = val;
782                 break;
783         case 4:
784                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
785                         return 1; /* #UD */
786                 /* fall through */
787         case 6:
788                 if (val & 0xffffffff00000000ULL)
789                         return -1; /* #GP */
790                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
791                 kvm_update_dr6(vcpu);
792                 break;
793         case 5:
794                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
795                         return 1; /* #UD */
796                 /* fall through */
797         default: /* 7 */
798                 if (val & 0xffffffff00000000ULL)
799                         return -1; /* #GP */
800                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
801                 kvm_update_dr7(vcpu);
802                 break;
803         }
804
805         return 0;
806 }
807
808 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
809 {
810         int res;
811
812         res = __kvm_set_dr(vcpu, dr, val);
813         if (res > 0)
814                 kvm_queue_exception(vcpu, UD_VECTOR);
815         else if (res < 0)
816                 kvm_inject_gp(vcpu, 0);
817
818         return res;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_dr);
821
822 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
823 {
824         switch (dr) {
825         case 0 ... 3:
826                 *val = vcpu->arch.db[dr];
827                 break;
828         case 4:
829                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
830                         return 1;
831                 /* fall through */
832         case 6:
833                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
834                         *val = vcpu->arch.dr6;
835                 else
836                         *val = kvm_x86_ops->get_dr6(vcpu);
837                 break;
838         case 5:
839                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
840                         return 1;
841                 /* fall through */
842         default: /* 7 */
843                 *val = vcpu->arch.dr7;
844                 break;
845         }
846
847         return 0;
848 }
849
850 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
851 {
852         if (_kvm_get_dr(vcpu, dr, val)) {
853                 kvm_queue_exception(vcpu, UD_VECTOR);
854                 return 1;
855         }
856         return 0;
857 }
858 EXPORT_SYMBOL_GPL(kvm_get_dr);
859
860 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
861 {
862         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
863         u64 data;
864         int err;
865
866         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
867         if (err)
868                 return err;
869         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
870         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
871         return err;
872 }
873 EXPORT_SYMBOL_GPL(kvm_rdpmc);
874
875 /*
876  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
877  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
878  *
879  * This list is modified at module load time to reflect the
880  * capabilities of the host cpu. This capabilities test skips MSRs that are
881  * kvm-specific. Those are put in the beginning of the list.
882  */
883
884 #define KVM_SAVE_MSRS_BEGIN     12
885 static u32 msrs_to_save[] = {
886         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
887         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
888         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
889         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
890         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
891         MSR_KVM_PV_EOI_EN,
892         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
893         MSR_STAR,
894 #ifdef CONFIG_X86_64
895         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
896 #endif
897         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
898         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
899 };
900
901 static unsigned num_msrs_to_save;
902
903 static const u32 emulated_msrs[] = {
904         MSR_IA32_TSC_ADJUST,
905         MSR_IA32_TSCDEADLINE,
906         MSR_IA32_MISC_ENABLE,
907         MSR_IA32_MCG_STATUS,
908         MSR_IA32_MCG_CTL,
909 };
910
911 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
912 {
913         if (efer & efer_reserved_bits)
914                 return false;
915
916         if (efer & EFER_FFXSR) {
917                 struct kvm_cpuid_entry2 *feat;
918
919                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
920                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
921                         return false;
922         }
923
924         if (efer & EFER_SVME) {
925                 struct kvm_cpuid_entry2 *feat;
926
927                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
928                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
929                         return false;
930         }
931
932         return true;
933 }
934 EXPORT_SYMBOL_GPL(kvm_valid_efer);
935
936 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
937 {
938         u64 old_efer = vcpu->arch.efer;
939
940         if (!kvm_valid_efer(vcpu, efer))
941                 return 1;
942
943         if (is_paging(vcpu)
944             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
945                 return 1;
946
947         efer &= ~EFER_LMA;
948         efer |= vcpu->arch.efer & EFER_LMA;
949
950         kvm_x86_ops->set_efer(vcpu, efer);
951
952         /* Update reserved bits */
953         if ((efer ^ old_efer) & EFER_NX)
954                 kvm_mmu_reset_context(vcpu);
955
956         return 0;
957 }
958
959 void kvm_enable_efer_bits(u64 mask)
960 {
961        efer_reserved_bits &= ~mask;
962 }
963 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
964
965
966 /*
967  * Writes msr value into into the appropriate "register".
968  * Returns 0 on success, non-0 otherwise.
969  * Assumes vcpu_load() was already called.
970  */
971 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
972 {
973         return kvm_x86_ops->set_msr(vcpu, msr);
974 }
975
976 /*
977  * Adapt set_msr() to msr_io()'s calling convention
978  */
979 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
980 {
981         struct msr_data msr;
982
983         msr.data = *data;
984         msr.index = index;
985         msr.host_initiated = true;
986         return kvm_set_msr(vcpu, &msr);
987 }
988
989 #ifdef CONFIG_X86_64
990 struct pvclock_gtod_data {
991         seqcount_t      seq;
992
993         struct { /* extract of a clocksource struct */
994                 int vclock_mode;
995                 cycle_t cycle_last;
996                 cycle_t mask;
997                 u32     mult;
998                 u32     shift;
999         } clock;
1000
1001         /* open coded 'struct timespec' */
1002         u64             monotonic_time_snsec;
1003         time_t          monotonic_time_sec;
1004 };
1005
1006 static struct pvclock_gtod_data pvclock_gtod_data;
1007
1008 static void update_pvclock_gtod(struct timekeeper *tk)
1009 {
1010         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1011
1012         write_seqcount_begin(&vdata->seq);
1013
1014         /* copy pvclock gtod data */
1015         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
1016         vdata->clock.cycle_last         = tk->clock->cycle_last;
1017         vdata->clock.mask               = tk->clock->mask;
1018         vdata->clock.mult               = tk->mult;
1019         vdata->clock.shift              = tk->shift;
1020
1021         vdata->monotonic_time_sec       = tk->xtime_sec
1022                                         + tk->wall_to_monotonic.tv_sec;
1023         vdata->monotonic_time_snsec     = tk->xtime_nsec
1024                                         + (tk->wall_to_monotonic.tv_nsec
1025                                                 << tk->shift);
1026         while (vdata->monotonic_time_snsec >=
1027                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
1028                 vdata->monotonic_time_snsec -=
1029                                         ((u64)NSEC_PER_SEC) << tk->shift;
1030                 vdata->monotonic_time_sec++;
1031         }
1032
1033         write_seqcount_end(&vdata->seq);
1034 }
1035 #endif
1036
1037
1038 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1039 {
1040         int version;
1041         int r;
1042         struct pvclock_wall_clock wc;
1043         struct timespec boot;
1044
1045         if (!wall_clock)
1046                 return;
1047
1048         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1049         if (r)
1050                 return;
1051
1052         if (version & 1)
1053                 ++version;  /* first time write, random junk */
1054
1055         ++version;
1056
1057         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1058
1059         /*
1060          * The guest calculates current wall clock time by adding
1061          * system time (updated by kvm_guest_time_update below) to the
1062          * wall clock specified here.  guest system time equals host
1063          * system time for us, thus we must fill in host boot time here.
1064          */
1065         getboottime(&boot);
1066
1067         if (kvm->arch.kvmclock_offset) {
1068                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1069                 boot = timespec_sub(boot, ts);
1070         }
1071         wc.sec = boot.tv_sec;
1072         wc.nsec = boot.tv_nsec;
1073         wc.version = version;
1074
1075         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1076
1077         version++;
1078         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1079 }
1080
1081 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1082 {
1083         uint32_t quotient, remainder;
1084
1085         /* Don't try to replace with do_div(), this one calculates
1086          * "(dividend << 32) / divisor" */
1087         __asm__ ( "divl %4"
1088                   : "=a" (quotient), "=d" (remainder)
1089                   : "0" (0), "1" (dividend), "r" (divisor) );
1090         return quotient;
1091 }
1092
1093 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1094                                s8 *pshift, u32 *pmultiplier)
1095 {
1096         uint64_t scaled64;
1097         int32_t  shift = 0;
1098         uint64_t tps64;
1099         uint32_t tps32;
1100
1101         tps64 = base_khz * 1000LL;
1102         scaled64 = scaled_khz * 1000LL;
1103         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1104                 tps64 >>= 1;
1105                 shift--;
1106         }
1107
1108         tps32 = (uint32_t)tps64;
1109         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1110                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1111                         scaled64 >>= 1;
1112                 else
1113                         tps32 <<= 1;
1114                 shift++;
1115         }
1116
1117         *pshift = shift;
1118         *pmultiplier = div_frac(scaled64, tps32);
1119
1120         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1121                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1122 }
1123
1124 static inline u64 get_kernel_ns(void)
1125 {
1126         struct timespec ts;
1127
1128         ktime_get_ts(&ts);
1129         monotonic_to_bootbased(&ts);
1130         return timespec_to_ns(&ts);
1131 }
1132
1133 #ifdef CONFIG_X86_64
1134 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1135 #endif
1136
1137 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1138 unsigned long max_tsc_khz;
1139
1140 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1141 {
1142         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1143                                    vcpu->arch.virtual_tsc_shift);
1144 }
1145
1146 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1147 {
1148         u64 v = (u64)khz * (1000000 + ppm);
1149         do_div(v, 1000000);
1150         return v;
1151 }
1152
1153 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1154 {
1155         u32 thresh_lo, thresh_hi;
1156         int use_scaling = 0;
1157
1158         /* tsc_khz can be zero if TSC calibration fails */
1159         if (this_tsc_khz == 0)
1160                 return;
1161
1162         /* Compute a scale to convert nanoseconds in TSC cycles */
1163         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1164                            &vcpu->arch.virtual_tsc_shift,
1165                            &vcpu->arch.virtual_tsc_mult);
1166         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1167
1168         /*
1169          * Compute the variation in TSC rate which is acceptable
1170          * within the range of tolerance and decide if the
1171          * rate being applied is within that bounds of the hardware
1172          * rate.  If so, no scaling or compensation need be done.
1173          */
1174         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1175         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1176         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1177                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1178                 use_scaling = 1;
1179         }
1180         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1181 }
1182
1183 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1184 {
1185         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1186                                       vcpu->arch.virtual_tsc_mult,
1187                                       vcpu->arch.virtual_tsc_shift);
1188         tsc += vcpu->arch.this_tsc_write;
1189         return tsc;
1190 }
1191
1192 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1193 {
1194 #ifdef CONFIG_X86_64
1195         bool vcpus_matched;
1196         bool do_request = false;
1197         struct kvm_arch *ka = &vcpu->kvm->arch;
1198         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1199
1200         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1201                          atomic_read(&vcpu->kvm->online_vcpus));
1202
1203         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1204                 if (!ka->use_master_clock)
1205                         do_request = 1;
1206
1207         if (!vcpus_matched && ka->use_master_clock)
1208                         do_request = 1;
1209
1210         if (do_request)
1211                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1212
1213         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1214                             atomic_read(&vcpu->kvm->online_vcpus),
1215                             ka->use_master_clock, gtod->clock.vclock_mode);
1216 #endif
1217 }
1218
1219 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1220 {
1221         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1222         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1223 }
1224
1225 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1226 {
1227         struct kvm *kvm = vcpu->kvm;
1228         u64 offset, ns, elapsed;
1229         unsigned long flags;
1230         s64 usdiff;
1231         bool matched;
1232         u64 data = msr->data;
1233
1234         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1235         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1236         ns = get_kernel_ns();
1237         elapsed = ns - kvm->arch.last_tsc_nsec;
1238
1239         if (vcpu->arch.virtual_tsc_khz) {
1240                 int faulted = 0;
1241
1242                 /* n.b - signed multiplication and division required */
1243                 usdiff = data - kvm->arch.last_tsc_write;
1244 #ifdef CONFIG_X86_64
1245                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1246 #else
1247                 /* do_div() only does unsigned */
1248                 asm("1: idivl %[divisor]\n"
1249                     "2: xor %%edx, %%edx\n"
1250                     "   movl $0, %[faulted]\n"
1251                     "3:\n"
1252                     ".section .fixup,\"ax\"\n"
1253                     "4: movl $1, %[faulted]\n"
1254                     "   jmp  3b\n"
1255                     ".previous\n"
1256
1257                 _ASM_EXTABLE(1b, 4b)
1258
1259                 : "=A"(usdiff), [faulted] "=r" (faulted)
1260                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1261
1262 #endif
1263                 do_div(elapsed, 1000);
1264                 usdiff -= elapsed;
1265                 if (usdiff < 0)
1266                         usdiff = -usdiff;
1267
1268                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1269                 if (faulted)
1270                         usdiff = USEC_PER_SEC;
1271         } else
1272                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1273
1274         /*
1275          * Special case: TSC write with a small delta (1 second) of virtual
1276          * cycle time against real time is interpreted as an attempt to
1277          * synchronize the CPU.
1278          *
1279          * For a reliable TSC, we can match TSC offsets, and for an unstable
1280          * TSC, we add elapsed time in this computation.  We could let the
1281          * compensation code attempt to catch up if we fall behind, but
1282          * it's better to try to match offsets from the beginning.
1283          */
1284         if (usdiff < USEC_PER_SEC &&
1285             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1286                 if (!check_tsc_unstable()) {
1287                         offset = kvm->arch.cur_tsc_offset;
1288                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1289                 } else {
1290                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1291                         data += delta;
1292                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1293                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1294                 }
1295                 matched = true;
1296         } else {
1297                 /*
1298                  * We split periods of matched TSC writes into generations.
1299                  * For each generation, we track the original measured
1300                  * nanosecond time, offset, and write, so if TSCs are in
1301                  * sync, we can match exact offset, and if not, we can match
1302                  * exact software computation in compute_guest_tsc()
1303                  *
1304                  * These values are tracked in kvm->arch.cur_xxx variables.
1305                  */
1306                 kvm->arch.cur_tsc_generation++;
1307                 kvm->arch.cur_tsc_nsec = ns;
1308                 kvm->arch.cur_tsc_write = data;
1309                 kvm->arch.cur_tsc_offset = offset;
1310                 matched = false;
1311                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1312                          kvm->arch.cur_tsc_generation, data);
1313         }
1314
1315         /*
1316          * We also track th most recent recorded KHZ, write and time to
1317          * allow the matching interval to be extended at each write.
1318          */
1319         kvm->arch.last_tsc_nsec = ns;
1320         kvm->arch.last_tsc_write = data;
1321         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1322
1323         vcpu->arch.last_guest_tsc = data;
1324
1325         /* Keep track of which generation this VCPU has synchronized to */
1326         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1327         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1328         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1329
1330         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1331                 update_ia32_tsc_adjust_msr(vcpu, offset);
1332         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1333         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1334
1335         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1336         if (matched)
1337                 kvm->arch.nr_vcpus_matched_tsc++;
1338         else
1339                 kvm->arch.nr_vcpus_matched_tsc = 0;
1340
1341         kvm_track_tsc_matching(vcpu);
1342         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1343 }
1344
1345 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1346
1347 #ifdef CONFIG_X86_64
1348
1349 static cycle_t read_tsc(void)
1350 {
1351         cycle_t ret;
1352         u64 last;
1353
1354         /*
1355          * Empirically, a fence (of type that depends on the CPU)
1356          * before rdtsc is enough to ensure that rdtsc is ordered
1357          * with respect to loads.  The various CPU manuals are unclear
1358          * as to whether rdtsc can be reordered with later loads,
1359          * but no one has ever seen it happen.
1360          */
1361         rdtsc_barrier();
1362         ret = (cycle_t)vget_cycles();
1363
1364         last = pvclock_gtod_data.clock.cycle_last;
1365
1366         if (likely(ret >= last))
1367                 return ret;
1368
1369         /*
1370          * GCC likes to generate cmov here, but this branch is extremely
1371          * predictable (it's just a funciton of time and the likely is
1372          * very likely) and there's a data dependence, so force GCC
1373          * to generate a branch instead.  I don't barrier() because
1374          * we don't actually need a barrier, and if this function
1375          * ever gets inlined it will generate worse code.
1376          */
1377         asm volatile ("");
1378         return last;
1379 }
1380
1381 static inline u64 vgettsc(cycle_t *cycle_now)
1382 {
1383         long v;
1384         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1385
1386         *cycle_now = read_tsc();
1387
1388         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1389         return v * gtod->clock.mult;
1390 }
1391
1392 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1393 {
1394         unsigned long seq;
1395         u64 ns;
1396         int mode;
1397         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1398
1399         ts->tv_nsec = 0;
1400         do {
1401                 seq = read_seqcount_begin(&gtod->seq);
1402                 mode = gtod->clock.vclock_mode;
1403                 ts->tv_sec = gtod->monotonic_time_sec;
1404                 ns = gtod->monotonic_time_snsec;
1405                 ns += vgettsc(cycle_now);
1406                 ns >>= gtod->clock.shift;
1407         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1408         timespec_add_ns(ts, ns);
1409
1410         return mode;
1411 }
1412
1413 /* returns true if host is using tsc clocksource */
1414 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1415 {
1416         struct timespec ts;
1417
1418         /* checked again under seqlock below */
1419         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1420                 return false;
1421
1422         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1423                 return false;
1424
1425         monotonic_to_bootbased(&ts);
1426         *kernel_ns = timespec_to_ns(&ts);
1427
1428         return true;
1429 }
1430 #endif
1431
1432 /*
1433  *
1434  * Assuming a stable TSC across physical CPUS, and a stable TSC
1435  * across virtual CPUs, the following condition is possible.
1436  * Each numbered line represents an event visible to both
1437  * CPUs at the next numbered event.
1438  *
1439  * "timespecX" represents host monotonic time. "tscX" represents
1440  * RDTSC value.
1441  *
1442  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1443  *
1444  * 1.  read timespec0,tsc0
1445  * 2.                                   | timespec1 = timespec0 + N
1446  *                                      | tsc1 = tsc0 + M
1447  * 3. transition to guest               | transition to guest
1448  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1449  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1450  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1451  *
1452  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1453  *
1454  *      - ret0 < ret1
1455  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1456  *              ...
1457  *      - 0 < N - M => M < N
1458  *
1459  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1460  * always the case (the difference between two distinct xtime instances
1461  * might be smaller then the difference between corresponding TSC reads,
1462  * when updating guest vcpus pvclock areas).
1463  *
1464  * To avoid that problem, do not allow visibility of distinct
1465  * system_timestamp/tsc_timestamp values simultaneously: use a master
1466  * copy of host monotonic time values. Update that master copy
1467  * in lockstep.
1468  *
1469  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1470  *
1471  */
1472
1473 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1474 {
1475 #ifdef CONFIG_X86_64
1476         struct kvm_arch *ka = &kvm->arch;
1477         int vclock_mode;
1478         bool host_tsc_clocksource, vcpus_matched;
1479
1480         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1481                         atomic_read(&kvm->online_vcpus));
1482
1483         /*
1484          * If the host uses TSC clock, then passthrough TSC as stable
1485          * to the guest.
1486          */
1487         host_tsc_clocksource = kvm_get_time_and_clockread(
1488                                         &ka->master_kernel_ns,
1489                                         &ka->master_cycle_now);
1490
1491         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1492                                 && !backwards_tsc_observed;
1493
1494         if (ka->use_master_clock)
1495                 atomic_set(&kvm_guest_has_master_clock, 1);
1496
1497         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1498         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1499                                         vcpus_matched);
1500 #endif
1501 }
1502
1503 static void kvm_gen_update_masterclock(struct kvm *kvm)
1504 {
1505 #ifdef CONFIG_X86_64
1506         int i;
1507         struct kvm_vcpu *vcpu;
1508         struct kvm_arch *ka = &kvm->arch;
1509
1510         spin_lock(&ka->pvclock_gtod_sync_lock);
1511         kvm_make_mclock_inprogress_request(kvm);
1512         /* no guest entries from this point */
1513         pvclock_update_vm_gtod_copy(kvm);
1514
1515         kvm_for_each_vcpu(i, vcpu, kvm)
1516                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1517
1518         /* guest entries allowed */
1519         kvm_for_each_vcpu(i, vcpu, kvm)
1520                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1521
1522         spin_unlock(&ka->pvclock_gtod_sync_lock);
1523 #endif
1524 }
1525
1526 static int kvm_guest_time_update(struct kvm_vcpu *v)
1527 {
1528         unsigned long flags, this_tsc_khz;
1529         struct kvm_vcpu_arch *vcpu = &v->arch;
1530         struct kvm_arch *ka = &v->kvm->arch;
1531         s64 kernel_ns;
1532         u64 tsc_timestamp, host_tsc;
1533         struct pvclock_vcpu_time_info guest_hv_clock;
1534         u8 pvclock_flags;
1535         bool use_master_clock;
1536
1537         kernel_ns = 0;
1538         host_tsc = 0;
1539
1540         /*
1541          * If the host uses TSC clock, then passthrough TSC as stable
1542          * to the guest.
1543          */
1544         spin_lock(&ka->pvclock_gtod_sync_lock);
1545         use_master_clock = ka->use_master_clock;
1546         if (use_master_clock) {
1547                 host_tsc = ka->master_cycle_now;
1548                 kernel_ns = ka->master_kernel_ns;
1549         }
1550         spin_unlock(&ka->pvclock_gtod_sync_lock);
1551
1552         /* Keep irq disabled to prevent changes to the clock */
1553         local_irq_save(flags);
1554         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1555         if (unlikely(this_tsc_khz == 0)) {
1556                 local_irq_restore(flags);
1557                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1558                 return 1;
1559         }
1560         if (!use_master_clock) {
1561                 host_tsc = native_read_tsc();
1562                 kernel_ns = get_kernel_ns();
1563         }
1564
1565         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1566
1567         /*
1568          * We may have to catch up the TSC to match elapsed wall clock
1569          * time for two reasons, even if kvmclock is used.
1570          *   1) CPU could have been running below the maximum TSC rate
1571          *   2) Broken TSC compensation resets the base at each VCPU
1572          *      entry to avoid unknown leaps of TSC even when running
1573          *      again on the same CPU.  This may cause apparent elapsed
1574          *      time to disappear, and the guest to stand still or run
1575          *      very slowly.
1576          */
1577         if (vcpu->tsc_catchup) {
1578                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1579                 if (tsc > tsc_timestamp) {
1580                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1581                         tsc_timestamp = tsc;
1582                 }
1583         }
1584
1585         local_irq_restore(flags);
1586
1587         if (!vcpu->pv_time_enabled)
1588                 return 0;
1589
1590         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1591                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1592                                    &vcpu->hv_clock.tsc_shift,
1593                                    &vcpu->hv_clock.tsc_to_system_mul);
1594                 vcpu->hw_tsc_khz = this_tsc_khz;
1595         }
1596
1597         /* With all the info we got, fill in the values */
1598         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1599         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1600         vcpu->last_guest_tsc = tsc_timestamp;
1601
1602         /*
1603          * The interface expects us to write an even number signaling that the
1604          * update is finished. Since the guest won't see the intermediate
1605          * state, we just increase by 2 at the end.
1606          */
1607         vcpu->hv_clock.version += 2;
1608
1609         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1610                 &guest_hv_clock, sizeof(guest_hv_clock))))
1611                 return 0;
1612
1613         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1614         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1615
1616         if (vcpu->pvclock_set_guest_stopped_request) {
1617                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1618                 vcpu->pvclock_set_guest_stopped_request = false;
1619         }
1620
1621         /* If the host uses TSC clocksource, then it is stable */
1622         if (use_master_clock)
1623                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1624
1625         vcpu->hv_clock.flags = pvclock_flags;
1626
1627         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1628                                 &vcpu->hv_clock,
1629                                 sizeof(vcpu->hv_clock));
1630         return 0;
1631 }
1632
1633 /*
1634  * kvmclock updates which are isolated to a given vcpu, such as
1635  * vcpu->cpu migration, should not allow system_timestamp from
1636  * the rest of the vcpus to remain static. Otherwise ntp frequency
1637  * correction applies to one vcpu's system_timestamp but not
1638  * the others.
1639  *
1640  * So in those cases, request a kvmclock update for all vcpus.
1641  * We need to rate-limit these requests though, as they can
1642  * considerably slow guests that have a large number of vcpus.
1643  * The time for a remote vcpu to update its kvmclock is bound
1644  * by the delay we use to rate-limit the updates.
1645  */
1646
1647 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1648
1649 static void kvmclock_update_fn(struct work_struct *work)
1650 {
1651         int i;
1652         struct delayed_work *dwork = to_delayed_work(work);
1653         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1654                                            kvmclock_update_work);
1655         struct kvm *kvm = container_of(ka, struct kvm, arch);
1656         struct kvm_vcpu *vcpu;
1657
1658         kvm_for_each_vcpu(i, vcpu, kvm) {
1659                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1660                 kvm_vcpu_kick(vcpu);
1661         }
1662 }
1663
1664 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1665 {
1666         struct kvm *kvm = v->kvm;
1667
1668         set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1669         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1670                                         KVMCLOCK_UPDATE_DELAY);
1671 }
1672
1673 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1674
1675 static void kvmclock_sync_fn(struct work_struct *work)
1676 {
1677         struct delayed_work *dwork = to_delayed_work(work);
1678         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1679                                            kvmclock_sync_work);
1680         struct kvm *kvm = container_of(ka, struct kvm, arch);
1681
1682         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1683         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1684                                         KVMCLOCK_SYNC_PERIOD);
1685 }
1686
1687 static bool msr_mtrr_valid(unsigned msr)
1688 {
1689         switch (msr) {
1690         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1691         case MSR_MTRRfix64K_00000:
1692         case MSR_MTRRfix16K_80000:
1693         case MSR_MTRRfix16K_A0000:
1694         case MSR_MTRRfix4K_C0000:
1695         case MSR_MTRRfix4K_C8000:
1696         case MSR_MTRRfix4K_D0000:
1697         case MSR_MTRRfix4K_D8000:
1698         case MSR_MTRRfix4K_E0000:
1699         case MSR_MTRRfix4K_E8000:
1700         case MSR_MTRRfix4K_F0000:
1701         case MSR_MTRRfix4K_F8000:
1702         case MSR_MTRRdefType:
1703         case MSR_IA32_CR_PAT:
1704                 return true;
1705         case 0x2f8:
1706                 return true;
1707         }
1708         return false;
1709 }
1710
1711 static bool valid_pat_type(unsigned t)
1712 {
1713         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1714 }
1715
1716 static bool valid_mtrr_type(unsigned t)
1717 {
1718         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1719 }
1720
1721 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1722 {
1723         int i;
1724
1725         if (!msr_mtrr_valid(msr))
1726                 return false;
1727
1728         if (msr == MSR_IA32_CR_PAT) {
1729                 for (i = 0; i < 8; i++)
1730                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1731                                 return false;
1732                 return true;
1733         } else if (msr == MSR_MTRRdefType) {
1734                 if (data & ~0xcff)
1735                         return false;
1736                 return valid_mtrr_type(data & 0xff);
1737         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1738                 for (i = 0; i < 8 ; i++)
1739                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1740                                 return false;
1741                 return true;
1742         }
1743
1744         /* variable MTRRs */
1745         return valid_mtrr_type(data & 0xff);
1746 }
1747
1748 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1749 {
1750         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1751
1752         if (!mtrr_valid(vcpu, msr, data))
1753                 return 1;
1754
1755         if (msr == MSR_MTRRdefType) {
1756                 vcpu->arch.mtrr_state.def_type = data;
1757                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1758         } else if (msr == MSR_MTRRfix64K_00000)
1759                 p[0] = data;
1760         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1761                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1762         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1763                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1764         else if (msr == MSR_IA32_CR_PAT)
1765                 vcpu->arch.pat = data;
1766         else {  /* Variable MTRRs */
1767                 int idx, is_mtrr_mask;
1768                 u64 *pt;
1769
1770                 idx = (msr - 0x200) / 2;
1771                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1772                 if (!is_mtrr_mask)
1773                         pt =
1774                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1775                 else
1776                         pt =
1777                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1778                 *pt = data;
1779         }
1780
1781         kvm_mmu_reset_context(vcpu);
1782         return 0;
1783 }
1784
1785 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1786 {
1787         u64 mcg_cap = vcpu->arch.mcg_cap;
1788         unsigned bank_num = mcg_cap & 0xff;
1789
1790         switch (msr) {
1791         case MSR_IA32_MCG_STATUS:
1792                 vcpu->arch.mcg_status = data;
1793                 break;
1794         case MSR_IA32_MCG_CTL:
1795                 if (!(mcg_cap & MCG_CTL_P))
1796                         return 1;
1797                 if (data != 0 && data != ~(u64)0)
1798                         return -1;
1799                 vcpu->arch.mcg_ctl = data;
1800                 break;
1801         default:
1802                 if (msr >= MSR_IA32_MC0_CTL &&
1803                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1804                         u32 offset = msr - MSR_IA32_MC0_CTL;
1805                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1806                          * some Linux kernels though clear bit 10 in bank 4 to
1807                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1808                          * this to avoid an uncatched #GP in the guest
1809                          */
1810                         if ((offset & 0x3) == 0 &&
1811                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1812                                 return -1;
1813                         vcpu->arch.mce_banks[offset] = data;
1814                         break;
1815                 }
1816                 return 1;
1817         }
1818         return 0;
1819 }
1820
1821 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1822 {
1823         struct kvm *kvm = vcpu->kvm;
1824         int lm = is_long_mode(vcpu);
1825         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1826                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1827         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1828                 : kvm->arch.xen_hvm_config.blob_size_32;
1829         u32 page_num = data & ~PAGE_MASK;
1830         u64 page_addr = data & PAGE_MASK;
1831         u8 *page;
1832         int r;
1833
1834         r = -E2BIG;
1835         if (page_num >= blob_size)
1836                 goto out;
1837         r = -ENOMEM;
1838         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1839         if (IS_ERR(page)) {
1840                 r = PTR_ERR(page);
1841                 goto out;
1842         }
1843         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1844                 goto out_free;
1845         r = 0;
1846 out_free:
1847         kfree(page);
1848 out:
1849         return r;
1850 }
1851
1852 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1853 {
1854         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1855 }
1856
1857 static bool kvm_hv_msr_partition_wide(u32 msr)
1858 {
1859         bool r = false;
1860         switch (msr) {
1861         case HV_X64_MSR_GUEST_OS_ID:
1862         case HV_X64_MSR_HYPERCALL:
1863         case HV_X64_MSR_REFERENCE_TSC:
1864         case HV_X64_MSR_TIME_REF_COUNT:
1865                 r = true;
1866                 break;
1867         }
1868
1869         return r;
1870 }
1871
1872 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1873 {
1874         struct kvm *kvm = vcpu->kvm;
1875
1876         switch (msr) {
1877         case HV_X64_MSR_GUEST_OS_ID:
1878                 kvm->arch.hv_guest_os_id = data;
1879                 /* setting guest os id to zero disables hypercall page */
1880                 if (!kvm->arch.hv_guest_os_id)
1881                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1882                 break;
1883         case HV_X64_MSR_HYPERCALL: {
1884                 u64 gfn;
1885                 unsigned long addr;
1886                 u8 instructions[4];
1887
1888                 /* if guest os id is not set hypercall should remain disabled */
1889                 if (!kvm->arch.hv_guest_os_id)
1890                         break;
1891                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1892                         kvm->arch.hv_hypercall = data;
1893                         break;
1894                 }
1895                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1896                 addr = gfn_to_hva(kvm, gfn);
1897                 if (kvm_is_error_hva(addr))
1898                         return 1;
1899                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1900                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1901                 if (__copy_to_user((void __user *)addr, instructions, 4))
1902                         return 1;
1903                 kvm->arch.hv_hypercall = data;
1904                 mark_page_dirty(kvm, gfn);
1905                 break;
1906         }
1907         case HV_X64_MSR_REFERENCE_TSC: {
1908                 u64 gfn;
1909                 HV_REFERENCE_TSC_PAGE tsc_ref;
1910                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1911                 kvm->arch.hv_tsc_page = data;
1912                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1913                         break;
1914                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1915                 if (kvm_write_guest(kvm, data,
1916                         &tsc_ref, sizeof(tsc_ref)))
1917                         return 1;
1918                 mark_page_dirty(kvm, gfn);
1919                 break;
1920         }
1921         default:
1922                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1923                             "data 0x%llx\n", msr, data);
1924                 return 1;
1925         }
1926         return 0;
1927 }
1928
1929 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1930 {
1931         switch (msr) {
1932         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1933                 u64 gfn;
1934                 unsigned long addr;
1935
1936                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1937                         vcpu->arch.hv_vapic = data;
1938                         break;
1939                 }
1940                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1941                 addr = gfn_to_hva(vcpu->kvm, gfn);
1942                 if (kvm_is_error_hva(addr))
1943                         return 1;
1944                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1945                         return 1;
1946                 vcpu->arch.hv_vapic = data;
1947                 mark_page_dirty(vcpu->kvm, gfn);
1948                 break;
1949         }
1950         case HV_X64_MSR_EOI:
1951                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1952         case HV_X64_MSR_ICR:
1953                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1954         case HV_X64_MSR_TPR:
1955                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1956         default:
1957                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1958                             "data 0x%llx\n", msr, data);
1959                 return 1;
1960         }
1961
1962         return 0;
1963 }
1964
1965 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1966 {
1967         gpa_t gpa = data & ~0x3f;
1968
1969         /* Bits 2:5 are reserved, Should be zero */
1970         if (data & 0x3c)
1971                 return 1;
1972
1973         vcpu->arch.apf.msr_val = data;
1974
1975         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1976                 kvm_clear_async_pf_completion_queue(vcpu);
1977                 kvm_async_pf_hash_reset(vcpu);
1978                 return 0;
1979         }
1980
1981         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1982                                         sizeof(u32)))
1983                 return 1;
1984
1985         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1986         kvm_async_pf_wakeup_all(vcpu);
1987         return 0;
1988 }
1989
1990 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1991 {
1992         vcpu->arch.pv_time_enabled = false;
1993 }
1994
1995 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1996 {
1997         u64 delta;
1998
1999         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2000                 return;
2001
2002         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2003         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2004         vcpu->arch.st.accum_steal = delta;
2005 }
2006
2007 static void record_steal_time(struct kvm_vcpu *vcpu)
2008 {
2009         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010                 return;
2011
2012         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2013                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2014                 return;
2015
2016         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2017         vcpu->arch.st.steal.version += 2;
2018         vcpu->arch.st.accum_steal = 0;
2019
2020         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2021                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2022 }
2023
2024 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2025 {
2026         bool pr = false;
2027         u32 msr = msr_info->index;
2028         u64 data = msr_info->data;
2029
2030         switch (msr) {
2031         case MSR_AMD64_NB_CFG:
2032         case MSR_IA32_UCODE_REV:
2033         case MSR_IA32_UCODE_WRITE:
2034         case MSR_VM_HSAVE_PA:
2035         case MSR_AMD64_PATCH_LOADER:
2036         case MSR_AMD64_BU_CFG2:
2037                 break;
2038
2039         case MSR_EFER:
2040                 return set_efer(vcpu, data);
2041         case MSR_K7_HWCR:
2042                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2043                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2044                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2045                 if (data != 0) {
2046                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2047                                     data);
2048                         return 1;
2049                 }
2050                 break;
2051         case MSR_FAM10H_MMIO_CONF_BASE:
2052                 if (data != 0) {
2053                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2054                                     "0x%llx\n", data);
2055                         return 1;
2056                 }
2057                 break;
2058         case MSR_IA32_DEBUGCTLMSR:
2059                 if (!data) {
2060                         /* We support the non-activated case already */
2061                         break;
2062                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2063                         /* Values other than LBR and BTF are vendor-specific,
2064                            thus reserved and should throw a #GP */
2065                         return 1;
2066                 }
2067                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2068                             __func__, data);
2069                 break;
2070         case 0x200 ... 0x2ff:
2071                 return set_msr_mtrr(vcpu, msr, data);
2072         case MSR_IA32_APICBASE:
2073                 return kvm_set_apic_base(vcpu, msr_info);
2074         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2075                 return kvm_x2apic_msr_write(vcpu, msr, data);
2076         case MSR_IA32_TSCDEADLINE:
2077                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2078                 break;
2079         case MSR_IA32_TSC_ADJUST:
2080                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2081                         if (!msr_info->host_initiated) {
2082                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2083                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2084                         }
2085                         vcpu->arch.ia32_tsc_adjust_msr = data;
2086                 }
2087                 break;
2088         case MSR_IA32_MISC_ENABLE:
2089                 vcpu->arch.ia32_misc_enable_msr = data;
2090                 break;
2091         case MSR_KVM_WALL_CLOCK_NEW:
2092         case MSR_KVM_WALL_CLOCK:
2093                 vcpu->kvm->arch.wall_clock = data;
2094                 kvm_write_wall_clock(vcpu->kvm, data);
2095                 break;
2096         case MSR_KVM_SYSTEM_TIME_NEW:
2097         case MSR_KVM_SYSTEM_TIME: {
2098                 u64 gpa_offset;
2099                 kvmclock_reset(vcpu);
2100
2101                 vcpu->arch.time = data;
2102                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2103
2104                 /* we verify if the enable bit is set... */
2105                 if (!(data & 1))
2106                         break;
2107
2108                 gpa_offset = data & ~(PAGE_MASK | 1);
2109
2110                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2111                      &vcpu->arch.pv_time, data & ~1ULL,
2112                      sizeof(struct pvclock_vcpu_time_info)))
2113                         vcpu->arch.pv_time_enabled = false;
2114                 else
2115                         vcpu->arch.pv_time_enabled = true;
2116
2117                 break;
2118         }
2119         case MSR_KVM_ASYNC_PF_EN:
2120                 if (kvm_pv_enable_async_pf(vcpu, data))
2121                         return 1;
2122                 break;
2123         case MSR_KVM_STEAL_TIME:
2124
2125                 if (unlikely(!sched_info_on()))
2126                         return 1;
2127
2128                 if (data & KVM_STEAL_RESERVED_MASK)
2129                         return 1;
2130
2131                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2132                                                 data & KVM_STEAL_VALID_BITS,
2133                                                 sizeof(struct kvm_steal_time)))
2134                         return 1;
2135
2136                 vcpu->arch.st.msr_val = data;
2137
2138                 if (!(data & KVM_MSR_ENABLED))
2139                         break;
2140
2141                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2142
2143                 preempt_disable();
2144                 accumulate_steal_time(vcpu);
2145                 preempt_enable();
2146
2147                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2148
2149                 break;
2150         case MSR_KVM_PV_EOI_EN:
2151                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2152                         return 1;
2153                 break;
2154
2155         case MSR_IA32_MCG_CTL:
2156         case MSR_IA32_MCG_STATUS:
2157         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2158                 return set_msr_mce(vcpu, msr, data);
2159
2160         /* Performance counters are not protected by a CPUID bit,
2161          * so we should check all of them in the generic path for the sake of
2162          * cross vendor migration.
2163          * Writing a zero into the event select MSRs disables them,
2164          * which we perfectly emulate ;-). Any other value should be at least
2165          * reported, some guests depend on them.
2166          */
2167         case MSR_K7_EVNTSEL0:
2168         case MSR_K7_EVNTSEL1:
2169         case MSR_K7_EVNTSEL2:
2170         case MSR_K7_EVNTSEL3:
2171                 if (data != 0)
2172                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2173                                     "0x%x data 0x%llx\n", msr, data);
2174                 break;
2175         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2176          * so we ignore writes to make it happy.
2177          */
2178         case MSR_K7_PERFCTR0:
2179         case MSR_K7_PERFCTR1:
2180         case MSR_K7_PERFCTR2:
2181         case MSR_K7_PERFCTR3:
2182                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2183                             "0x%x data 0x%llx\n", msr, data);
2184                 break;
2185         case MSR_P6_PERFCTR0:
2186         case MSR_P6_PERFCTR1:
2187                 pr = true;
2188         case MSR_P6_EVNTSEL0:
2189         case MSR_P6_EVNTSEL1:
2190                 if (kvm_pmu_msr(vcpu, msr))
2191                         return kvm_pmu_set_msr(vcpu, msr_info);
2192
2193                 if (pr || data != 0)
2194                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2195                                     "0x%x data 0x%llx\n", msr, data);
2196                 break;
2197         case MSR_K7_CLK_CTL:
2198                 /*
2199                  * Ignore all writes to this no longer documented MSR.
2200                  * Writes are only relevant for old K7 processors,
2201                  * all pre-dating SVM, but a recommended workaround from
2202                  * AMD for these chips. It is possible to specify the
2203                  * affected processor models on the command line, hence
2204                  * the need to ignore the workaround.
2205                  */
2206                 break;
2207         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2208                 if (kvm_hv_msr_partition_wide(msr)) {
2209                         int r;
2210                         mutex_lock(&vcpu->kvm->lock);
2211                         r = set_msr_hyperv_pw(vcpu, msr, data);
2212                         mutex_unlock(&vcpu->kvm->lock);
2213                         return r;
2214                 } else
2215                         return set_msr_hyperv(vcpu, msr, data);
2216                 break;
2217         case MSR_IA32_BBL_CR_CTL3:
2218                 /* Drop writes to this legacy MSR -- see rdmsr
2219                  * counterpart for further detail.
2220                  */
2221                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2222                 break;
2223         case MSR_AMD64_OSVW_ID_LENGTH:
2224                 if (!guest_cpuid_has_osvw(vcpu))
2225                         return 1;
2226                 vcpu->arch.osvw.length = data;
2227                 break;
2228         case MSR_AMD64_OSVW_STATUS:
2229                 if (!guest_cpuid_has_osvw(vcpu))
2230                         return 1;
2231                 vcpu->arch.osvw.status = data;
2232                 break;
2233         default:
2234                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2235                         return xen_hvm_config(vcpu, data);
2236                 if (kvm_pmu_msr(vcpu, msr))
2237                         return kvm_pmu_set_msr(vcpu, msr_info);
2238                 if (!ignore_msrs) {
2239                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2240                                     msr, data);
2241                         return 1;
2242                 } else {
2243                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2244                                     msr, data);
2245                         break;
2246                 }
2247         }
2248         return 0;
2249 }
2250 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2251
2252
2253 /*
2254  * Reads an msr value (of 'msr_index') into 'pdata'.
2255  * Returns 0 on success, non-0 otherwise.
2256  * Assumes vcpu_load() was already called.
2257  */
2258 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2259 {
2260         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2261 }
2262
2263 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2264 {
2265         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2266
2267         if (!msr_mtrr_valid(msr))
2268                 return 1;
2269
2270         if (msr == MSR_MTRRdefType)
2271                 *pdata = vcpu->arch.mtrr_state.def_type +
2272                          (vcpu->arch.mtrr_state.enabled << 10);
2273         else if (msr == MSR_MTRRfix64K_00000)
2274                 *pdata = p[0];
2275         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2276                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2277         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2278                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2279         else if (msr == MSR_IA32_CR_PAT)
2280                 *pdata = vcpu->arch.pat;
2281         else {  /* Variable MTRRs */
2282                 int idx, is_mtrr_mask;
2283                 u64 *pt;
2284
2285                 idx = (msr - 0x200) / 2;
2286                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2287                 if (!is_mtrr_mask)
2288                         pt =
2289                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2290                 else
2291                         pt =
2292                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2293                 *pdata = *pt;
2294         }
2295
2296         return 0;
2297 }
2298
2299 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2300 {
2301         u64 data;
2302         u64 mcg_cap = vcpu->arch.mcg_cap;
2303         unsigned bank_num = mcg_cap & 0xff;
2304
2305         switch (msr) {
2306         case MSR_IA32_P5_MC_ADDR:
2307         case MSR_IA32_P5_MC_TYPE:
2308                 data = 0;
2309                 break;
2310         case MSR_IA32_MCG_CAP:
2311                 data = vcpu->arch.mcg_cap;
2312                 break;
2313         case MSR_IA32_MCG_CTL:
2314                 if (!(mcg_cap & MCG_CTL_P))
2315                         return 1;
2316                 data = vcpu->arch.mcg_ctl;
2317                 break;
2318         case MSR_IA32_MCG_STATUS:
2319                 data = vcpu->arch.mcg_status;
2320                 break;
2321         default:
2322                 if (msr >= MSR_IA32_MC0_CTL &&
2323                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2324                         u32 offset = msr - MSR_IA32_MC0_CTL;
2325                         data = vcpu->arch.mce_banks[offset];
2326                         break;
2327                 }
2328                 return 1;
2329         }
2330         *pdata = data;
2331         return 0;
2332 }
2333
2334 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2335 {
2336         u64 data = 0;
2337         struct kvm *kvm = vcpu->kvm;
2338
2339         switch (msr) {
2340         case HV_X64_MSR_GUEST_OS_ID:
2341                 data = kvm->arch.hv_guest_os_id;
2342                 break;
2343         case HV_X64_MSR_HYPERCALL:
2344                 data = kvm->arch.hv_hypercall;
2345                 break;
2346         case HV_X64_MSR_TIME_REF_COUNT: {
2347                 data =
2348                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2349                 break;
2350         }
2351         case HV_X64_MSR_REFERENCE_TSC:
2352                 data = kvm->arch.hv_tsc_page;
2353                 break;
2354         default:
2355                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2356                 return 1;
2357         }
2358
2359         *pdata = data;
2360         return 0;
2361 }
2362
2363 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2364 {
2365         u64 data = 0;
2366
2367         switch (msr) {
2368         case HV_X64_MSR_VP_INDEX: {
2369                 int r;
2370                 struct kvm_vcpu *v;
2371                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2372                         if (v == vcpu) {
2373                                 data = r;
2374                                 break;
2375                         }
2376                 }
2377                 break;
2378         }
2379         case HV_X64_MSR_EOI:
2380                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2381         case HV_X64_MSR_ICR:
2382                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2383         case HV_X64_MSR_TPR:
2384                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2385         case HV_X64_MSR_APIC_ASSIST_PAGE:
2386                 data = vcpu->arch.hv_vapic;
2387                 break;
2388         default:
2389                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2390                 return 1;
2391         }
2392         *pdata = data;
2393         return 0;
2394 }
2395
2396 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2397 {
2398         u64 data;
2399
2400         switch (msr) {
2401         case MSR_IA32_PLATFORM_ID:
2402         case MSR_IA32_EBL_CR_POWERON:
2403         case MSR_IA32_DEBUGCTLMSR:
2404         case MSR_IA32_LASTBRANCHFROMIP:
2405         case MSR_IA32_LASTBRANCHTOIP:
2406         case MSR_IA32_LASTINTFROMIP:
2407         case MSR_IA32_LASTINTTOIP:
2408         case MSR_K8_SYSCFG:
2409         case MSR_K7_HWCR:
2410         case MSR_VM_HSAVE_PA:
2411         case MSR_K7_EVNTSEL0:
2412         case MSR_K7_PERFCTR0:
2413         case MSR_K8_INT_PENDING_MSG:
2414         case MSR_AMD64_NB_CFG:
2415         case MSR_FAM10H_MMIO_CONF_BASE:
2416         case MSR_AMD64_BU_CFG2:
2417                 data = 0;
2418                 break;
2419         case MSR_P6_PERFCTR0:
2420         case MSR_P6_PERFCTR1:
2421         case MSR_P6_EVNTSEL0:
2422         case MSR_P6_EVNTSEL1:
2423                 if (kvm_pmu_msr(vcpu, msr))
2424                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2425                 data = 0;
2426                 break;
2427         case MSR_IA32_UCODE_REV:
2428                 data = 0x100000000ULL;
2429                 break;
2430         case MSR_MTRRcap:
2431                 data = 0x500 | KVM_NR_VAR_MTRR;
2432                 break;
2433         case 0x200 ... 0x2ff:
2434                 return get_msr_mtrr(vcpu, msr, pdata);
2435         case 0xcd: /* fsb frequency */
2436                 data = 3;
2437                 break;
2438                 /*
2439                  * MSR_EBC_FREQUENCY_ID
2440                  * Conservative value valid for even the basic CPU models.
2441                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2442                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2443                  * and 266MHz for model 3, or 4. Set Core Clock
2444                  * Frequency to System Bus Frequency Ratio to 1 (bits
2445                  * 31:24) even though these are only valid for CPU
2446                  * models > 2, however guests may end up dividing or
2447                  * multiplying by zero otherwise.
2448                  */
2449         case MSR_EBC_FREQUENCY_ID:
2450                 data = 1 << 24;
2451                 break;
2452         case MSR_IA32_APICBASE:
2453                 data = kvm_get_apic_base(vcpu);
2454                 break;
2455         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2456                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2457                 break;
2458         case MSR_IA32_TSCDEADLINE:
2459                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2460                 break;
2461         case MSR_IA32_TSC_ADJUST:
2462                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2463                 break;
2464         case MSR_IA32_MISC_ENABLE:
2465                 data = vcpu->arch.ia32_misc_enable_msr;
2466                 break;
2467         case MSR_IA32_PERF_STATUS:
2468                 /* TSC increment by tick */
2469                 data = 1000ULL;
2470                 /* CPU multiplier */
2471                 data |= (((uint64_t)4ULL) << 40);
2472                 break;
2473         case MSR_EFER:
2474                 data = vcpu->arch.efer;
2475                 break;
2476         case MSR_KVM_WALL_CLOCK:
2477         case MSR_KVM_WALL_CLOCK_NEW:
2478                 data = vcpu->kvm->arch.wall_clock;
2479                 break;
2480         case MSR_KVM_SYSTEM_TIME:
2481         case MSR_KVM_SYSTEM_TIME_NEW:
2482                 data = vcpu->arch.time;
2483                 break;
2484         case MSR_KVM_ASYNC_PF_EN:
2485                 data = vcpu->arch.apf.msr_val;
2486                 break;
2487         case MSR_KVM_STEAL_TIME:
2488                 data = vcpu->arch.st.msr_val;
2489                 break;
2490         case MSR_KVM_PV_EOI_EN:
2491                 data = vcpu->arch.pv_eoi.msr_val;
2492                 break;
2493         case MSR_IA32_P5_MC_ADDR:
2494         case MSR_IA32_P5_MC_TYPE:
2495         case MSR_IA32_MCG_CAP:
2496         case MSR_IA32_MCG_CTL:
2497         case MSR_IA32_MCG_STATUS:
2498         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2499                 return get_msr_mce(vcpu, msr, pdata);
2500         case MSR_K7_CLK_CTL:
2501                 /*
2502                  * Provide expected ramp-up count for K7. All other
2503                  * are set to zero, indicating minimum divisors for
2504                  * every field.
2505                  *
2506                  * This prevents guest kernels on AMD host with CPU
2507                  * type 6, model 8 and higher from exploding due to
2508                  * the rdmsr failing.
2509                  */
2510                 data = 0x20000000;
2511                 break;
2512         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2513                 if (kvm_hv_msr_partition_wide(msr)) {
2514                         int r;
2515                         mutex_lock(&vcpu->kvm->lock);
2516                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2517                         mutex_unlock(&vcpu->kvm->lock);
2518                         return r;
2519                 } else
2520                         return get_msr_hyperv(vcpu, msr, pdata);
2521                 break;
2522         case MSR_IA32_BBL_CR_CTL3:
2523                 /* This legacy MSR exists but isn't fully documented in current
2524                  * silicon.  It is however accessed by winxp in very narrow
2525                  * scenarios where it sets bit #19, itself documented as
2526                  * a "reserved" bit.  Best effort attempt to source coherent
2527                  * read data here should the balance of the register be
2528                  * interpreted by the guest:
2529                  *
2530                  * L2 cache control register 3: 64GB range, 256KB size,
2531                  * enabled, latency 0x1, configured
2532                  */
2533                 data = 0xbe702111;
2534                 break;
2535         case MSR_AMD64_OSVW_ID_LENGTH:
2536                 if (!guest_cpuid_has_osvw(vcpu))
2537                         return 1;
2538                 data = vcpu->arch.osvw.length;
2539                 break;
2540         case MSR_AMD64_OSVW_STATUS:
2541                 if (!guest_cpuid_has_osvw(vcpu))
2542                         return 1;
2543                 data = vcpu->arch.osvw.status;
2544                 break;
2545         default:
2546                 if (kvm_pmu_msr(vcpu, msr))
2547                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2548                 if (!ignore_msrs) {
2549                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2550                         return 1;
2551                 } else {
2552                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2553                         data = 0;
2554                 }
2555                 break;
2556         }
2557         *pdata = data;
2558         return 0;
2559 }
2560 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2561
2562 /*
2563  * Read or write a bunch of msrs. All parameters are kernel addresses.
2564  *
2565  * @return number of msrs set successfully.
2566  */
2567 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2568                     struct kvm_msr_entry *entries,
2569                     int (*do_msr)(struct kvm_vcpu *vcpu,
2570                                   unsigned index, u64 *data))
2571 {
2572         int i, idx;
2573
2574         idx = srcu_read_lock(&vcpu->kvm->srcu);
2575         for (i = 0; i < msrs->nmsrs; ++i)
2576                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2577                         break;
2578         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2579
2580         return i;
2581 }
2582
2583 /*
2584  * Read or write a bunch of msrs. Parameters are user addresses.
2585  *
2586  * @return number of msrs set successfully.
2587  */
2588 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2589                   int (*do_msr)(struct kvm_vcpu *vcpu,
2590                                 unsigned index, u64 *data),
2591                   int writeback)
2592 {
2593         struct kvm_msrs msrs;
2594         struct kvm_msr_entry *entries;
2595         int r, n;
2596         unsigned size;
2597
2598         r = -EFAULT;
2599         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2600                 goto out;
2601
2602         r = -E2BIG;
2603         if (msrs.nmsrs >= MAX_IO_MSRS)
2604                 goto out;
2605
2606         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2607         entries = memdup_user(user_msrs->entries, size);
2608         if (IS_ERR(entries)) {
2609                 r = PTR_ERR(entries);
2610                 goto out;
2611         }
2612
2613         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2614         if (r < 0)
2615                 goto out_free;
2616
2617         r = -EFAULT;
2618         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2619                 goto out_free;
2620
2621         r = n;
2622
2623 out_free:
2624         kfree(entries);
2625 out:
2626         return r;
2627 }
2628
2629 int kvm_dev_ioctl_check_extension(long ext)
2630 {
2631         int r;
2632
2633         switch (ext) {
2634         case KVM_CAP_IRQCHIP:
2635         case KVM_CAP_HLT:
2636         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2637         case KVM_CAP_SET_TSS_ADDR:
2638         case KVM_CAP_EXT_CPUID:
2639         case KVM_CAP_EXT_EMUL_CPUID:
2640         case KVM_CAP_CLOCKSOURCE:
2641         case KVM_CAP_PIT:
2642         case KVM_CAP_NOP_IO_DELAY:
2643         case KVM_CAP_MP_STATE:
2644         case KVM_CAP_SYNC_MMU:
2645         case KVM_CAP_USER_NMI:
2646         case KVM_CAP_REINJECT_CONTROL:
2647         case KVM_CAP_IRQ_INJECT_STATUS:
2648         case KVM_CAP_IRQFD:
2649         case KVM_CAP_IOEVENTFD:
2650         case KVM_CAP_PIT2:
2651         case KVM_CAP_PIT_STATE2:
2652         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2653         case KVM_CAP_XEN_HVM:
2654         case KVM_CAP_ADJUST_CLOCK:
2655         case KVM_CAP_VCPU_EVENTS:
2656         case KVM_CAP_HYPERV:
2657         case KVM_CAP_HYPERV_VAPIC:
2658         case KVM_CAP_HYPERV_SPIN:
2659         case KVM_CAP_PCI_SEGMENT:
2660         case KVM_CAP_DEBUGREGS:
2661         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2662         case KVM_CAP_XSAVE:
2663         case KVM_CAP_ASYNC_PF:
2664         case KVM_CAP_GET_TSC_KHZ:
2665         case KVM_CAP_KVMCLOCK_CTRL:
2666         case KVM_CAP_READONLY_MEM:
2667         case KVM_CAP_HYPERV_TIME:
2668         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2669 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2670         case KVM_CAP_ASSIGN_DEV_IRQ:
2671         case KVM_CAP_PCI_2_3:
2672 #endif
2673                 r = 1;
2674                 break;
2675         case KVM_CAP_COALESCED_MMIO:
2676                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2677                 break;
2678         case KVM_CAP_VAPIC:
2679                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2680                 break;
2681         case KVM_CAP_NR_VCPUS:
2682                 r = KVM_SOFT_MAX_VCPUS;
2683                 break;
2684         case KVM_CAP_MAX_VCPUS:
2685                 r = KVM_MAX_VCPUS;
2686                 break;
2687         case KVM_CAP_NR_MEMSLOTS:
2688                 r = KVM_USER_MEM_SLOTS;
2689                 break;
2690         case KVM_CAP_PV_MMU:    /* obsolete */
2691                 r = 0;
2692                 break;
2693 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2694         case KVM_CAP_IOMMU:
2695                 r = iommu_present(&pci_bus_type);
2696                 break;
2697 #endif
2698         case KVM_CAP_MCE:
2699                 r = KVM_MAX_MCE_BANKS;
2700                 break;
2701         case KVM_CAP_XCRS:
2702                 r = cpu_has_xsave;
2703                 break;
2704         case KVM_CAP_TSC_CONTROL:
2705                 r = kvm_has_tsc_control;
2706                 break;
2707         case KVM_CAP_TSC_DEADLINE_TIMER:
2708                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2709                 break;
2710         default:
2711                 r = 0;
2712                 break;
2713         }
2714         return r;
2715
2716 }
2717
2718 long kvm_arch_dev_ioctl(struct file *filp,
2719                         unsigned int ioctl, unsigned long arg)
2720 {
2721         void __user *argp = (void __user *)arg;
2722         long r;
2723
2724         switch (ioctl) {
2725         case KVM_GET_MSR_INDEX_LIST: {
2726                 struct kvm_msr_list __user *user_msr_list = argp;
2727                 struct kvm_msr_list msr_list;
2728                 unsigned n;
2729
2730                 r = -EFAULT;
2731                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2732                         goto out;
2733                 n = msr_list.nmsrs;
2734                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2735                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2736                         goto out;
2737                 r = -E2BIG;
2738                 if (n < msr_list.nmsrs)
2739                         goto out;
2740                 r = -EFAULT;
2741                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2742                                  num_msrs_to_save * sizeof(u32)))
2743                         goto out;
2744                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2745                                  &emulated_msrs,
2746                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2747                         goto out;
2748                 r = 0;
2749                 break;
2750         }
2751         case KVM_GET_SUPPORTED_CPUID:
2752         case KVM_GET_EMULATED_CPUID: {
2753                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2754                 struct kvm_cpuid2 cpuid;
2755
2756                 r = -EFAULT;
2757                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2758                         goto out;
2759
2760                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2761                                             ioctl);
2762                 if (r)
2763                         goto out;
2764
2765                 r = -EFAULT;
2766                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2767                         goto out;
2768                 r = 0;
2769                 break;
2770         }
2771         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2772                 u64 mce_cap;
2773
2774                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2775                 r = -EFAULT;
2776                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2777                         goto out;
2778                 r = 0;
2779                 break;
2780         }
2781         default:
2782                 r = -EINVAL;
2783         }
2784 out:
2785         return r;
2786 }
2787
2788 static void wbinvd_ipi(void *garbage)
2789 {
2790         wbinvd();
2791 }
2792
2793 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2794 {
2795         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2796 }
2797
2798 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2799 {
2800         /* Address WBINVD may be executed by guest */
2801         if (need_emulate_wbinvd(vcpu)) {
2802                 if (kvm_x86_ops->has_wbinvd_exit())
2803                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2804                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2805                         smp_call_function_single(vcpu->cpu,
2806                                         wbinvd_ipi, NULL, 1);
2807         }
2808
2809         kvm_x86_ops->vcpu_load(vcpu, cpu);
2810
2811         /* Apply any externally detected TSC adjustments (due to suspend) */
2812         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2813                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2814                 vcpu->arch.tsc_offset_adjustment = 0;
2815                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2816         }
2817
2818         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2819                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2820                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2821                 if (tsc_delta < 0)
2822                         mark_tsc_unstable("KVM discovered backwards TSC");
2823                 if (check_tsc_unstable()) {
2824                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2825                                                 vcpu->arch.last_guest_tsc);
2826                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2827                         vcpu->arch.tsc_catchup = 1;
2828                 }
2829                 /*
2830                  * On a host with synchronized TSC, there is no need to update
2831                  * kvmclock on vcpu->cpu migration
2832                  */
2833                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2834                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2835                 if (vcpu->cpu != cpu)
2836                         kvm_migrate_timers(vcpu);
2837                 vcpu->cpu = cpu;
2838         }
2839
2840         accumulate_steal_time(vcpu);
2841         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2842 }
2843
2844 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2845 {
2846         kvm_x86_ops->vcpu_put(vcpu);
2847         kvm_put_guest_fpu(vcpu);
2848         vcpu->arch.last_host_tsc = native_read_tsc();
2849 }
2850
2851 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2852                                     struct kvm_lapic_state *s)
2853 {
2854         kvm_x86_ops->sync_pir_to_irr(vcpu);
2855         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2856
2857         return 0;
2858 }
2859
2860 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2861                                     struct kvm_lapic_state *s)
2862 {
2863         kvm_apic_post_state_restore(vcpu, s);
2864         update_cr8_intercept(vcpu);
2865
2866         return 0;
2867 }
2868
2869 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2870                                     struct kvm_interrupt *irq)
2871 {
2872         if (irq->irq >= KVM_NR_INTERRUPTS)
2873                 return -EINVAL;
2874         if (irqchip_in_kernel(vcpu->kvm))
2875                 return -ENXIO;
2876
2877         kvm_queue_interrupt(vcpu, irq->irq, false);
2878         kvm_make_request(KVM_REQ_EVENT, vcpu);
2879
2880         return 0;
2881 }
2882
2883 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2884 {
2885         kvm_inject_nmi(vcpu);
2886
2887         return 0;
2888 }
2889
2890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2891                                            struct kvm_tpr_access_ctl *tac)
2892 {
2893         if (tac->flags)
2894                 return -EINVAL;
2895         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2896         return 0;
2897 }
2898
2899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2900                                         u64 mcg_cap)
2901 {
2902         int r;
2903         unsigned bank_num = mcg_cap & 0xff, bank;
2904
2905         r = -EINVAL;
2906         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2907                 goto out;
2908         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2909                 goto out;
2910         r = 0;
2911         vcpu->arch.mcg_cap = mcg_cap;
2912         /* Init IA32_MCG_CTL to all 1s */
2913         if (mcg_cap & MCG_CTL_P)
2914                 vcpu->arch.mcg_ctl = ~(u64)0;
2915         /* Init IA32_MCi_CTL to all 1s */
2916         for (bank = 0; bank < bank_num; bank++)
2917                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2918 out:
2919         return r;
2920 }
2921
2922 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2923                                       struct kvm_x86_mce *mce)
2924 {
2925         u64 mcg_cap = vcpu->arch.mcg_cap;
2926         unsigned bank_num = mcg_cap & 0xff;
2927         u64 *banks = vcpu->arch.mce_banks;
2928
2929         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2930                 return -EINVAL;
2931         /*
2932          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2933          * reporting is disabled
2934          */
2935         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2936             vcpu->arch.mcg_ctl != ~(u64)0)
2937                 return 0;
2938         banks += 4 * mce->bank;
2939         /*
2940          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2941          * reporting is disabled for the bank
2942          */
2943         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2944                 return 0;
2945         if (mce->status & MCI_STATUS_UC) {
2946                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2947                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2948                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2949                         return 0;
2950                 }
2951                 if (banks[1] & MCI_STATUS_VAL)
2952                         mce->status |= MCI_STATUS_OVER;
2953                 banks[2] = mce->addr;
2954                 banks[3] = mce->misc;
2955                 vcpu->arch.mcg_status = mce->mcg_status;
2956                 banks[1] = mce->status;
2957                 kvm_queue_exception(vcpu, MC_VECTOR);
2958         } else if (!(banks[1] & MCI_STATUS_VAL)
2959                    || !(banks[1] & MCI_STATUS_UC)) {
2960                 if (banks[1] & MCI_STATUS_VAL)
2961                         mce->status |= MCI_STATUS_OVER;
2962                 banks[2] = mce->addr;
2963                 banks[3] = mce->misc;
2964                 banks[1] = mce->status;
2965         } else
2966                 banks[1] |= MCI_STATUS_OVER;
2967         return 0;
2968 }
2969
2970 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2971                                                struct kvm_vcpu_events *events)
2972 {
2973         process_nmi(vcpu);
2974         events->exception.injected =
2975                 vcpu->arch.exception.pending &&
2976                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2977         events->exception.nr = vcpu->arch.exception.nr;
2978         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2979         events->exception.pad = 0;
2980         events->exception.error_code = vcpu->arch.exception.error_code;
2981
2982         events->interrupt.injected =
2983                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2984         events->interrupt.nr = vcpu->arch.interrupt.nr;
2985         events->interrupt.soft = 0;
2986         events->interrupt.shadow =
2987                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2988                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2989
2990         events->nmi.injected = vcpu->arch.nmi_injected;
2991         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2992         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2993         events->nmi.pad = 0;
2994
2995         events->sipi_vector = 0; /* never valid when reporting to user space */
2996
2997         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2998                          | KVM_VCPUEVENT_VALID_SHADOW);
2999         memset(&events->reserved, 0, sizeof(events->reserved));
3000 }
3001
3002 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3003                                               struct kvm_vcpu_events *events)
3004 {
3005         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3006                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3007                               | KVM_VCPUEVENT_VALID_SHADOW))
3008                 return -EINVAL;
3009
3010         process_nmi(vcpu);
3011         vcpu->arch.exception.pending = events->exception.injected;
3012         vcpu->arch.exception.nr = events->exception.nr;
3013         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3014         vcpu->arch.exception.error_code = events->exception.error_code;
3015
3016         vcpu->arch.interrupt.pending = events->interrupt.injected;
3017         vcpu->arch.interrupt.nr = events->interrupt.nr;
3018         vcpu->arch.interrupt.soft = events->interrupt.soft;
3019         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3020                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3021                                                   events->interrupt.shadow);
3022
3023         vcpu->arch.nmi_injected = events->nmi.injected;
3024         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3025                 vcpu->arch.nmi_pending = events->nmi.pending;
3026         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3027
3028         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3029             kvm_vcpu_has_lapic(vcpu))
3030                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3031
3032         kvm_make_request(KVM_REQ_EVENT, vcpu);
3033
3034         return 0;
3035 }
3036
3037 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3038                                              struct kvm_debugregs *dbgregs)
3039 {
3040         unsigned long val;
3041
3042         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3043         _kvm_get_dr(vcpu, 6, &val);
3044         dbgregs->dr6 = val;
3045         dbgregs->dr7 = vcpu->arch.dr7;
3046         dbgregs->flags = 0;
3047         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3048 }
3049
3050 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3051                                             struct kvm_debugregs *dbgregs)
3052 {
3053         if (dbgregs->flags)
3054                 return -EINVAL;
3055
3056         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3057         vcpu->arch.dr6 = dbgregs->dr6;
3058         kvm_update_dr6(vcpu);
3059         vcpu->arch.dr7 = dbgregs->dr7;
3060         kvm_update_dr7(vcpu);
3061
3062         return 0;
3063 }
3064
3065 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3066                                          struct kvm_xsave *guest_xsave)
3067 {
3068         if (cpu_has_xsave) {
3069                 memcpy(guest_xsave->region,
3070                         &vcpu->arch.guest_fpu.state->xsave,
3071                         vcpu->arch.guest_xstate_size);
3072                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3073                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3074         } else {
3075                 memcpy(guest_xsave->region,
3076                         &vcpu->arch.guest_fpu.state->fxsave,
3077                         sizeof(struct i387_fxsave_struct));
3078                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3079                         XSTATE_FPSSE;
3080         }
3081 }
3082
3083 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3084                                         struct kvm_xsave *guest_xsave)
3085 {
3086         u64 xstate_bv =
3087                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3088
3089         if (cpu_has_xsave) {
3090                 /*
3091                  * Here we allow setting states that are not present in
3092                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3093                  * with old userspace.
3094                  */
3095                 if (xstate_bv & ~kvm_supported_xcr0())
3096                         return -EINVAL;
3097                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3098                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3099         } else {
3100                 if (xstate_bv & ~XSTATE_FPSSE)
3101                         return -EINVAL;
3102                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3103                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3104         }
3105         return 0;
3106 }
3107
3108 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3109                                         struct kvm_xcrs *guest_xcrs)
3110 {
3111         if (!cpu_has_xsave) {
3112                 guest_xcrs->nr_xcrs = 0;
3113                 return;
3114         }
3115
3116         guest_xcrs->nr_xcrs = 1;
3117         guest_xcrs->flags = 0;
3118         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3119         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3120 }
3121
3122 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3123                                        struct kvm_xcrs *guest_xcrs)
3124 {
3125         int i, r = 0;
3126
3127         if (!cpu_has_xsave)
3128                 return -EINVAL;
3129
3130         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3131                 return -EINVAL;
3132
3133         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3134                 /* Only support XCR0 currently */
3135                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3136                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3137                                 guest_xcrs->xcrs[i].value);
3138                         break;
3139                 }
3140         if (r)
3141                 r = -EINVAL;
3142         return r;
3143 }
3144
3145 /*
3146  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3147  * stopped by the hypervisor.  This function will be called from the host only.
3148  * EINVAL is returned when the host attempts to set the flag for a guest that
3149  * does not support pv clocks.
3150  */
3151 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3152 {
3153         if (!vcpu->arch.pv_time_enabled)
3154                 return -EINVAL;
3155         vcpu->arch.pvclock_set_guest_stopped_request = true;
3156         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3157         return 0;
3158 }
3159
3160 long kvm_arch_vcpu_ioctl(struct file *filp,
3161                          unsigned int ioctl, unsigned long arg)
3162 {
3163         struct kvm_vcpu *vcpu = filp->private_data;
3164         void __user *argp = (void __user *)arg;
3165         int r;
3166         union {
3167                 struct kvm_lapic_state *lapic;
3168                 struct kvm_xsave *xsave;
3169                 struct kvm_xcrs *xcrs;
3170                 void *buffer;
3171         } u;
3172
3173         u.buffer = NULL;
3174         switch (ioctl) {
3175         case KVM_GET_LAPIC: {
3176                 r = -EINVAL;
3177                 if (!vcpu->arch.apic)
3178                         goto out;
3179                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3180
3181                 r = -ENOMEM;
3182                 if (!u.lapic)
3183                         goto out;
3184                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3185                 if (r)
3186                         goto out;
3187                 r = -EFAULT;
3188                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3189                         goto out;
3190                 r = 0;
3191                 break;
3192         }
3193         case KVM_SET_LAPIC: {
3194                 r = -EINVAL;
3195                 if (!vcpu->arch.apic)
3196                         goto out;
3197                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3198                 if (IS_ERR(u.lapic))
3199                         return PTR_ERR(u.lapic);
3200
3201                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3202                 break;
3203         }
3204         case KVM_INTERRUPT: {
3205                 struct kvm_interrupt irq;
3206
3207                 r = -EFAULT;
3208                 if (copy_from_user(&irq, argp, sizeof irq))
3209                         goto out;
3210                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3211                 break;
3212         }
3213         case KVM_NMI: {
3214                 r = kvm_vcpu_ioctl_nmi(vcpu);
3215                 break;
3216         }
3217         case KVM_SET_CPUID: {
3218                 struct kvm_cpuid __user *cpuid_arg = argp;
3219                 struct kvm_cpuid cpuid;
3220
3221                 r = -EFAULT;
3222                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3223                         goto out;
3224                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3225                 break;
3226         }
3227         case KVM_SET_CPUID2: {
3228                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3229                 struct kvm_cpuid2 cpuid;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3233                         goto out;
3234                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3235                                               cpuid_arg->entries);
3236                 break;
3237         }
3238         case KVM_GET_CPUID2: {
3239                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3240                 struct kvm_cpuid2 cpuid;
3241
3242                 r = -EFAULT;
3243                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3244                         goto out;
3245                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3246                                               cpuid_arg->entries);
3247                 if (r)
3248                         goto out;
3249                 r = -EFAULT;
3250                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3251                         goto out;
3252                 r = 0;
3253                 break;
3254         }
3255         case KVM_GET_MSRS:
3256                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3257                 break;
3258         case KVM_SET_MSRS:
3259                 r = msr_io(vcpu, argp, do_set_msr, 0);
3260                 break;
3261         case KVM_TPR_ACCESS_REPORTING: {
3262                 struct kvm_tpr_access_ctl tac;
3263
3264                 r = -EFAULT;
3265                 if (copy_from_user(&tac, argp, sizeof tac))
3266                         goto out;
3267                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3268                 if (r)
3269                         goto out;
3270                 r = -EFAULT;
3271                 if (copy_to_user(argp, &tac, sizeof tac))
3272                         goto out;
3273                 r = 0;
3274                 break;
3275         };
3276         case KVM_SET_VAPIC_ADDR: {
3277                 struct kvm_vapic_addr va;
3278
3279                 r = -EINVAL;
3280                 if (!irqchip_in_kernel(vcpu->kvm))
3281                         goto out;
3282                 r = -EFAULT;
3283                 if (copy_from_user(&va, argp, sizeof va))
3284                         goto out;
3285                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3286                 break;
3287         }
3288         case KVM_X86_SETUP_MCE: {
3289                 u64 mcg_cap;
3290
3291                 r = -EFAULT;
3292                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3293                         goto out;
3294                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3295                 break;
3296         }
3297         case KVM_X86_SET_MCE: {
3298                 struct kvm_x86_mce mce;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&mce, argp, sizeof mce))
3302                         goto out;
3303                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3304                 break;
3305         }
3306         case KVM_GET_VCPU_EVENTS: {
3307                 struct kvm_vcpu_events events;
3308
3309                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3310
3311                 r = -EFAULT;
3312                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3313                         break;
3314                 r = 0;
3315                 break;
3316         }
3317         case KVM_SET_VCPU_EVENTS: {
3318                 struct kvm_vcpu_events events;
3319
3320                 r = -EFAULT;
3321                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3322                         break;
3323
3324                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3325                 break;
3326         }
3327         case KVM_GET_DEBUGREGS: {
3328                 struct kvm_debugregs dbgregs;
3329
3330                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3331
3332                 r = -EFAULT;
3333                 if (copy_to_user(argp, &dbgregs,
3334                                  sizeof(struct kvm_debugregs)))
3335                         break;
3336                 r = 0;
3337                 break;
3338         }
3339         case KVM_SET_DEBUGREGS: {
3340                 struct kvm_debugregs dbgregs;
3341
3342                 r = -EFAULT;
3343                 if (copy_from_user(&dbgregs, argp,
3344                                    sizeof(struct kvm_debugregs)))
3345                         break;
3346
3347                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3348                 break;
3349         }
3350         case KVM_GET_XSAVE: {
3351                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3352                 r = -ENOMEM;
3353                 if (!u.xsave)
3354                         break;
3355
3356                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3357
3358                 r = -EFAULT;
3359                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3360                         break;
3361                 r = 0;
3362                 break;
3363         }
3364         case KVM_SET_XSAVE: {
3365                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3366                 if (IS_ERR(u.xsave))
3367                         return PTR_ERR(u.xsave);
3368
3369                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3370                 break;
3371         }
3372         case KVM_GET_XCRS: {
3373                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3374                 r = -ENOMEM;
3375                 if (!u.xcrs)
3376                         break;
3377
3378                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3379
3380                 r = -EFAULT;
3381                 if (copy_to_user(argp, u.xcrs,
3382                                  sizeof(struct kvm_xcrs)))
3383                         break;
3384                 r = 0;
3385                 break;
3386         }
3387         case KVM_SET_XCRS: {
3388                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3389                 if (IS_ERR(u.xcrs))
3390                         return PTR_ERR(u.xcrs);
3391
3392                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3393                 break;
3394         }
3395         case KVM_SET_TSC_KHZ: {
3396                 u32 user_tsc_khz;
3397
3398                 r = -EINVAL;
3399                 user_tsc_khz = (u32)arg;
3400
3401                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3402                         goto out;
3403
3404                 if (user_tsc_khz == 0)
3405                         user_tsc_khz = tsc_khz;
3406
3407                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3408
3409                 r = 0;
3410                 goto out;
3411         }
3412         case KVM_GET_TSC_KHZ: {
3413                 r = vcpu->arch.virtual_tsc_khz;
3414                 goto out;
3415         }
3416         case KVM_KVMCLOCK_CTRL: {
3417                 r = kvm_set_guest_paused(vcpu);
3418                 goto out;
3419         }
3420         default:
3421                 r = -EINVAL;
3422         }
3423 out:
3424         kfree(u.buffer);
3425         return r;
3426 }
3427
3428 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3429 {
3430         return VM_FAULT_SIGBUS;
3431 }
3432
3433 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3434 {
3435         int ret;
3436
3437         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3438                 return -EINVAL;
3439         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3440         return ret;
3441 }
3442
3443 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3444                                               u64 ident_addr)
3445 {
3446         kvm->arch.ept_identity_map_addr = ident_addr;
3447         return 0;
3448 }
3449
3450 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3451                                           u32 kvm_nr_mmu_pages)
3452 {
3453         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3454                 return -EINVAL;
3455
3456         mutex_lock(&kvm->slots_lock);
3457
3458         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3459         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3460
3461         mutex_unlock(&kvm->slots_lock);
3462         return 0;
3463 }
3464
3465 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3466 {
3467         return kvm->arch.n_max_mmu_pages;
3468 }
3469
3470 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3471 {
3472         int r;
3473
3474         r = 0;
3475         switch (chip->chip_id) {
3476         case KVM_IRQCHIP_PIC_MASTER:
3477                 memcpy(&chip->chip.pic,
3478                         &pic_irqchip(kvm)->pics[0],
3479                         sizeof(struct kvm_pic_state));
3480                 break;
3481         case KVM_IRQCHIP_PIC_SLAVE:
3482                 memcpy(&chip->chip.pic,
3483                         &pic_irqchip(kvm)->pics[1],
3484                         sizeof(struct kvm_pic_state));
3485                 break;
3486         case KVM_IRQCHIP_IOAPIC:
3487                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3488                 break;
3489         default:
3490                 r = -EINVAL;
3491                 break;
3492         }
3493         return r;
3494 }
3495
3496 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3497 {
3498         int r;
3499
3500         r = 0;
3501         switch (chip->chip_id) {
3502         case KVM_IRQCHIP_PIC_MASTER:
3503                 spin_lock(&pic_irqchip(kvm)->lock);
3504                 memcpy(&pic_irqchip(kvm)->pics[0],
3505                         &chip->chip.pic,
3506                         sizeof(struct kvm_pic_state));
3507                 spin_unlock(&pic_irqchip(kvm)->lock);
3508                 break;
3509         case KVM_IRQCHIP_PIC_SLAVE:
3510                 spin_lock(&pic_irqchip(kvm)->lock);
3511                 memcpy(&pic_irqchip(kvm)->pics[1],
3512                         &chip->chip.pic,
3513                         sizeof(struct kvm_pic_state));
3514                 spin_unlock(&pic_irqchip(kvm)->lock);
3515                 break;
3516         case KVM_IRQCHIP_IOAPIC:
3517                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3518                 break;
3519         default:
3520                 r = -EINVAL;
3521                 break;
3522         }
3523         kvm_pic_update_irq(pic_irqchip(kvm));
3524         return r;
3525 }
3526
3527 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3528 {
3529         int r = 0;
3530
3531         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3532         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3533         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3534         return r;
3535 }
3536
3537 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3538 {
3539         int r = 0;
3540
3541         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3542         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3543         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3544         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3545         return r;
3546 }
3547
3548 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3549 {
3550         int r = 0;
3551
3552         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3553         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3554                 sizeof(ps->channels));
3555         ps->flags = kvm->arch.vpit->pit_state.flags;
3556         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3557         memset(&ps->reserved, 0, sizeof(ps->reserved));
3558         return r;
3559 }
3560
3561 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3562 {
3563         int r = 0, start = 0;
3564         u32 prev_legacy, cur_legacy;
3565         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3566         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3567         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3568         if (!prev_legacy && cur_legacy)
3569                 start = 1;
3570         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3571                sizeof(kvm->arch.vpit->pit_state.channels));
3572         kvm->arch.vpit->pit_state.flags = ps->flags;
3573         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3574         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3575         return r;
3576 }
3577
3578 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3579                                  struct kvm_reinject_control *control)
3580 {
3581         if (!kvm->arch.vpit)
3582                 return -ENXIO;
3583         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3584         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3585         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3586         return 0;
3587 }
3588
3589 /**
3590  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3591  * @kvm: kvm instance
3592  * @log: slot id and address to which we copy the log
3593  *
3594  * We need to keep it in mind that VCPU threads can write to the bitmap
3595  * concurrently.  So, to avoid losing data, we keep the following order for
3596  * each bit:
3597  *
3598  *   1. Take a snapshot of the bit and clear it if needed.
3599  *   2. Write protect the corresponding page.
3600  *   3. Flush TLB's if needed.
3601  *   4. Copy the snapshot to the userspace.
3602  *
3603  * Between 2 and 3, the guest may write to the page using the remaining TLB
3604  * entry.  This is not a problem because the page will be reported dirty at
3605  * step 4 using the snapshot taken before and step 3 ensures that successive
3606  * writes will be logged for the next call.
3607  */
3608 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3609 {
3610         int r;
3611         struct kvm_memory_slot *memslot;
3612         unsigned long n, i;
3613         unsigned long *dirty_bitmap;
3614         unsigned long *dirty_bitmap_buffer;
3615         bool is_dirty = false;
3616
3617         mutex_lock(&kvm->slots_lock);
3618
3619         r = -EINVAL;
3620         if (log->slot >= KVM_USER_MEM_SLOTS)
3621                 goto out;
3622
3623         memslot = id_to_memslot(kvm->memslots, log->slot);
3624
3625         dirty_bitmap = memslot->dirty_bitmap;
3626         r = -ENOENT;
3627         if (!dirty_bitmap)
3628                 goto out;
3629
3630         n = kvm_dirty_bitmap_bytes(memslot);
3631
3632         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3633         memset(dirty_bitmap_buffer, 0, n);
3634
3635         spin_lock(&kvm->mmu_lock);
3636
3637         for (i = 0; i < n / sizeof(long); i++) {
3638                 unsigned long mask;
3639                 gfn_t offset;
3640
3641                 if (!dirty_bitmap[i])
3642                         continue;
3643
3644                 is_dirty = true;
3645
3646                 mask = xchg(&dirty_bitmap[i], 0);
3647                 dirty_bitmap_buffer[i] = mask;
3648
3649                 offset = i * BITS_PER_LONG;
3650                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3651         }
3652         if (is_dirty)
3653                 kvm_flush_remote_tlbs(kvm);
3654
3655         spin_unlock(&kvm->mmu_lock);
3656
3657         r = -EFAULT;
3658         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3659                 goto out;
3660
3661         r = 0;
3662 out:
3663         mutex_unlock(&kvm->slots_lock);
3664         return r;
3665 }
3666
3667 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3668                         bool line_status)
3669 {
3670         if (!irqchip_in_kernel(kvm))
3671                 return -ENXIO;
3672
3673         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3674                                         irq_event->irq, irq_event->level,
3675                                         line_status);
3676         return 0;
3677 }
3678
3679 long kvm_arch_vm_ioctl(struct file *filp,
3680                        unsigned int ioctl, unsigned long arg)
3681 {
3682         struct kvm *kvm = filp->private_data;
3683         void __user *argp = (void __user *)arg;
3684         int r = -ENOTTY;
3685         /*
3686          * This union makes it completely explicit to gcc-3.x
3687          * that these two variables' stack usage should be
3688          * combined, not added together.
3689          */
3690         union {
3691                 struct kvm_pit_state ps;
3692                 struct kvm_pit_state2 ps2;
3693                 struct kvm_pit_config pit_config;
3694         } u;
3695
3696         switch (ioctl) {
3697         case KVM_SET_TSS_ADDR:
3698                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3699                 break;
3700         case KVM_SET_IDENTITY_MAP_ADDR: {
3701                 u64 ident_addr;
3702
3703                 r = -EFAULT;
3704                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3705                         goto out;
3706                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3707                 break;
3708         }
3709         case KVM_SET_NR_MMU_PAGES:
3710                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3711                 break;
3712         case KVM_GET_NR_MMU_PAGES:
3713                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3714                 break;
3715         case KVM_CREATE_IRQCHIP: {
3716                 struct kvm_pic *vpic;
3717
3718                 mutex_lock(&kvm->lock);
3719                 r = -EEXIST;
3720                 if (kvm->arch.vpic)
3721                         goto create_irqchip_unlock;
3722                 r = -EINVAL;
3723                 if (atomic_read(&kvm->online_vcpus))
3724                         goto create_irqchip_unlock;
3725                 r = -ENOMEM;
3726                 vpic = kvm_create_pic(kvm);
3727                 if (vpic) {
3728                         r = kvm_ioapic_init(kvm);
3729                         if (r) {
3730                                 mutex_lock(&kvm->slots_lock);
3731                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3732                                                           &vpic->dev_master);
3733                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3734                                                           &vpic->dev_slave);
3735                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3736                                                           &vpic->dev_eclr);
3737                                 mutex_unlock(&kvm->slots_lock);
3738                                 kfree(vpic);
3739                                 goto create_irqchip_unlock;
3740                         }
3741                 } else
3742                         goto create_irqchip_unlock;
3743                 smp_wmb();
3744                 kvm->arch.vpic = vpic;
3745                 smp_wmb();
3746                 r = kvm_setup_default_irq_routing(kvm);
3747                 if (r) {
3748                         mutex_lock(&kvm->slots_lock);
3749                         mutex_lock(&kvm->irq_lock);
3750                         kvm_ioapic_destroy(kvm);
3751                         kvm_destroy_pic(kvm);
3752                         mutex_unlock(&kvm->irq_lock);
3753                         mutex_unlock(&kvm->slots_lock);
3754                 }
3755         create_irqchip_unlock:
3756                 mutex_unlock(&kvm->lock);
3757                 break;
3758         }
3759         case KVM_CREATE_PIT:
3760                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3761                 goto create_pit;
3762         case KVM_CREATE_PIT2:
3763                 r = -EFAULT;
3764                 if (copy_from_user(&u.pit_config, argp,
3765                                    sizeof(struct kvm_pit_config)))
3766                         goto out;
3767         create_pit:
3768                 mutex_lock(&kvm->slots_lock);
3769                 r = -EEXIST;
3770                 if (kvm->arch.vpit)
3771                         goto create_pit_unlock;
3772                 r = -ENOMEM;
3773                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3774                 if (kvm->arch.vpit)
3775                         r = 0;
3776         create_pit_unlock:
3777                 mutex_unlock(&kvm->slots_lock);
3778                 break;
3779         case KVM_GET_IRQCHIP: {
3780                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3781                 struct kvm_irqchip *chip;
3782
3783                 chip = memdup_user(argp, sizeof(*chip));
3784                 if (IS_ERR(chip)) {
3785                         r = PTR_ERR(chip);
3786                         goto out;
3787                 }
3788
3789                 r = -ENXIO;
3790                 if (!irqchip_in_kernel(kvm))
3791                         goto get_irqchip_out;
3792                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3793                 if (r)
3794                         goto get_irqchip_out;
3795                 r = -EFAULT;
3796                 if (copy_to_user(argp, chip, sizeof *chip))
3797                         goto get_irqchip_out;
3798                 r = 0;
3799         get_irqchip_out:
3800                 kfree(chip);
3801                 break;
3802         }
3803         case KVM_SET_IRQCHIP: {
3804                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3805                 struct kvm_irqchip *chip;
3806
3807                 chip = memdup_user(argp, sizeof(*chip));
3808                 if (IS_ERR(chip)) {
3809                         r = PTR_ERR(chip);
3810                         goto out;
3811                 }
3812
3813                 r = -ENXIO;
3814                 if (!irqchip_in_kernel(kvm))
3815                         goto set_irqchip_out;
3816                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3817                 if (r)
3818                         goto set_irqchip_out;
3819                 r = 0;
3820         set_irqchip_out:
3821                 kfree(chip);
3822                 break;
3823         }
3824         case KVM_GET_PIT: {
3825                 r = -EFAULT;
3826                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3827                         goto out;
3828                 r = -ENXIO;
3829                 if (!kvm->arch.vpit)
3830                         goto out;
3831                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3832                 if (r)
3833                         goto out;
3834                 r = -EFAULT;
3835                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3836                         goto out;
3837                 r = 0;
3838                 break;
3839         }
3840         case KVM_SET_PIT: {
3841                 r = -EFAULT;
3842                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3843                         goto out;
3844                 r = -ENXIO;
3845                 if (!kvm->arch.vpit)
3846                         goto out;
3847                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3848                 break;
3849         }
3850         case KVM_GET_PIT2: {
3851                 r = -ENXIO;
3852                 if (!kvm->arch.vpit)
3853                         goto out;
3854                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3855                 if (r)
3856                         goto out;
3857                 r = -EFAULT;
3858                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3859                         goto out;
3860                 r = 0;
3861                 break;
3862         }
3863         case KVM_SET_PIT2: {
3864                 r = -EFAULT;
3865                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3866                         goto out;
3867                 r = -ENXIO;
3868                 if (!kvm->arch.vpit)
3869                         goto out;
3870                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3871                 break;
3872         }
3873         case KVM_REINJECT_CONTROL: {
3874                 struct kvm_reinject_control control;
3875                 r =  -EFAULT;
3876                 if (copy_from_user(&control, argp, sizeof(control)))
3877                         goto out;
3878                 r = kvm_vm_ioctl_reinject(kvm, &control);
3879                 break;
3880         }
3881         case KVM_XEN_HVM_CONFIG: {
3882                 r = -EFAULT;
3883                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3884                                    sizeof(struct kvm_xen_hvm_config)))
3885                         goto out;
3886                 r = -EINVAL;
3887                 if (kvm->arch.xen_hvm_config.flags)
3888                         goto out;
3889                 r = 0;
3890                 break;
3891         }
3892         case KVM_SET_CLOCK: {
3893                 struct kvm_clock_data user_ns;
3894                 u64 now_ns;
3895                 s64 delta;
3896
3897                 r = -EFAULT;
3898                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3899                         goto out;
3900
3901                 r = -EINVAL;
3902                 if (user_ns.flags)
3903                         goto out;
3904
3905                 r = 0;
3906                 local_irq_disable();
3907                 now_ns = get_kernel_ns();
3908                 delta = user_ns.clock - now_ns;
3909                 local_irq_enable();
3910                 kvm->arch.kvmclock_offset = delta;
3911                 kvm_gen_update_masterclock(kvm);
3912                 break;
3913         }
3914         case KVM_GET_CLOCK: {
3915                 struct kvm_clock_data user_ns;
3916                 u64 now_ns;
3917
3918                 local_irq_disable();
3919                 now_ns = get_kernel_ns();
3920                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3921                 local_irq_enable();
3922                 user_ns.flags = 0;
3923                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3924
3925                 r = -EFAULT;
3926                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3927                         goto out;
3928                 r = 0;
3929                 break;
3930         }
3931
3932         default:
3933                 ;
3934         }
3935 out:
3936         return r;
3937 }
3938
3939 static void kvm_init_msr_list(void)
3940 {
3941         u32 dummy[2];
3942         unsigned i, j;
3943
3944         /* skip the first msrs in the list. KVM-specific */
3945         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3946                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3947                         continue;
3948
3949                 /*
3950                  * Even MSRs that are valid in the host may not be exposed
3951                  * to the guests in some cases.  We could work around this
3952                  * in VMX with the generic MSR save/load machinery, but it
3953                  * is not really worthwhile since it will really only
3954                  * happen with nested virtualization.
3955                  */
3956                 switch (msrs_to_save[i]) {
3957                 case MSR_IA32_BNDCFGS:
3958                         if (!kvm_x86_ops->mpx_supported())
3959                                 continue;
3960                         break;
3961                 default:
3962                         break;
3963                 }
3964
3965                 if (j < i)
3966                         msrs_to_save[j] = msrs_to_save[i];
3967                 j++;
3968         }
3969         num_msrs_to_save = j;
3970 }
3971
3972 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3973                            const void *v)
3974 {
3975         int handled = 0;
3976         int n;
3977
3978         do {
3979                 n = min(len, 8);
3980                 if (!(vcpu->arch.apic &&
3981                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3982                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3983                         break;
3984                 handled += n;
3985                 addr += n;
3986                 len -= n;
3987                 v += n;
3988         } while (len);
3989
3990         return handled;
3991 }
3992
3993 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3994 {
3995         int handled = 0;
3996         int n;
3997
3998         do {
3999                 n = min(len, 8);
4000                 if (!(vcpu->arch.apic &&
4001                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4002                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4003                         break;
4004                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4005                 handled += n;
4006                 addr += n;
4007                 len -= n;
4008                 v += n;
4009         } while (len);
4010
4011         return handled;
4012 }
4013
4014 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4015                         struct kvm_segment *var, int seg)
4016 {
4017         kvm_x86_ops->set_segment(vcpu, var, seg);
4018 }
4019
4020 void kvm_get_segment(struct kvm_vcpu *vcpu,
4021                      struct kvm_segment *var, int seg)
4022 {
4023         kvm_x86_ops->get_segment(vcpu, var, seg);
4024 }
4025
4026 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4027 {
4028         gpa_t t_gpa;
4029         struct x86_exception exception;
4030
4031         BUG_ON(!mmu_is_nested(vcpu));
4032
4033         /* NPT walks are always user-walks */
4034         access |= PFERR_USER_MASK;
4035         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4036
4037         return t_gpa;
4038 }
4039
4040 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4041                               struct x86_exception *exception)
4042 {
4043         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4044         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4045 }
4046
4047  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4048                                 struct x86_exception *exception)
4049 {
4050         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4051         access |= PFERR_FETCH_MASK;
4052         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4053 }
4054
4055 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4056                                struct x86_exception *exception)
4057 {
4058         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4059         access |= PFERR_WRITE_MASK;
4060         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4061 }
4062
4063 /* uses this to access any guest's mapped memory without checking CPL */
4064 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4065                                 struct x86_exception *exception)
4066 {
4067         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4068 }
4069
4070 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4071                                       struct kvm_vcpu *vcpu, u32 access,
4072                                       struct x86_exception *exception)
4073 {
4074         void *data = val;
4075         int r = X86EMUL_CONTINUE;
4076
4077         while (bytes) {
4078                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4079                                                             exception);
4080                 unsigned offset = addr & (PAGE_SIZE-1);
4081                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4082                 int ret;
4083
4084                 if (gpa == UNMAPPED_GVA)
4085                         return X86EMUL_PROPAGATE_FAULT;
4086                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4087                 if (ret < 0) {
4088                         r = X86EMUL_IO_NEEDED;
4089                         goto out;
4090                 }
4091
4092                 bytes -= toread;
4093                 data += toread;
4094                 addr += toread;
4095         }
4096 out:
4097         return r;
4098 }
4099
4100 /* used for instruction fetching */
4101 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4102                                 gva_t addr, void *val, unsigned int bytes,
4103                                 struct x86_exception *exception)
4104 {
4105         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4106         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4107
4108         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4109                                           access | PFERR_FETCH_MASK,
4110                                           exception);
4111 }
4112
4113 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4114                                gva_t addr, void *val, unsigned int bytes,
4115                                struct x86_exception *exception)
4116 {
4117         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4118         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4119
4120         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4121                                           exception);
4122 }
4123 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4124
4125 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4126                                       gva_t addr, void *val, unsigned int bytes,
4127                                       struct x86_exception *exception)
4128 {
4129         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4130         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4131 }
4132
4133 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4134                                        gva_t addr, void *val,
4135                                        unsigned int bytes,
4136                                        struct x86_exception *exception)
4137 {
4138         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4139         void *data = val;
4140         int r = X86EMUL_CONTINUE;
4141
4142         while (bytes) {
4143                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4144                                                              PFERR_WRITE_MASK,
4145                                                              exception);
4146                 unsigned offset = addr & (PAGE_SIZE-1);
4147                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4148                 int ret;
4149
4150                 if (gpa == UNMAPPED_GVA)
4151                         return X86EMUL_PROPAGATE_FAULT;
4152                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4153                 if (ret < 0) {
4154                         r = X86EMUL_IO_NEEDED;
4155                         goto out;
4156                 }
4157
4158                 bytes -= towrite;
4159                 data += towrite;
4160                 addr += towrite;
4161         }
4162 out:
4163         return r;
4164 }
4165 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4166
4167 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4168                                 gpa_t *gpa, struct x86_exception *exception,
4169                                 bool write)
4170 {
4171         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4172                 | (write ? PFERR_WRITE_MASK : 0);
4173
4174         if (vcpu_match_mmio_gva(vcpu, gva)
4175             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4176                                  vcpu->arch.access, access)) {
4177                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4178                                         (gva & (PAGE_SIZE - 1));
4179                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4180                 return 1;
4181         }
4182
4183         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4184
4185         if (*gpa == UNMAPPED_GVA)
4186                 return -1;
4187
4188         /* For APIC access vmexit */
4189         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4190                 return 1;
4191
4192         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4193                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4194                 return 1;
4195         }
4196
4197         return 0;
4198 }
4199
4200 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4201                         const void *val, int bytes)
4202 {
4203         int ret;
4204
4205         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4206         if (ret < 0)
4207                 return 0;
4208         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4209         return 1;
4210 }
4211
4212 struct read_write_emulator_ops {
4213         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4214                                   int bytes);
4215         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4216                                   void *val, int bytes);
4217         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4218                                int bytes, void *val);
4219         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4220                                     void *val, int bytes);
4221         bool write;
4222 };
4223
4224 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4225 {
4226         if (vcpu->mmio_read_completed) {
4227                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4228                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4229                 vcpu->mmio_read_completed = 0;
4230                 return 1;
4231         }
4232
4233         return 0;
4234 }
4235
4236 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4237                         void *val, int bytes)
4238 {
4239         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4240 }
4241
4242 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4243                          void *val, int bytes)
4244 {
4245         return emulator_write_phys(vcpu, gpa, val, bytes);
4246 }
4247
4248 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4249 {
4250         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4251         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4252 }
4253
4254 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4255                           void *val, int bytes)
4256 {
4257         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4258         return X86EMUL_IO_NEEDED;
4259 }
4260
4261 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4262                            void *val, int bytes)
4263 {
4264         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4265
4266         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4267         return X86EMUL_CONTINUE;
4268 }
4269
4270 static const struct read_write_emulator_ops read_emultor = {
4271         .read_write_prepare = read_prepare,
4272         .read_write_emulate = read_emulate,
4273         .read_write_mmio = vcpu_mmio_read,
4274         .read_write_exit_mmio = read_exit_mmio,
4275 };
4276
4277 static const struct read_write_emulator_ops write_emultor = {
4278         .read_write_emulate = write_emulate,
4279         .read_write_mmio = write_mmio,
4280         .read_write_exit_mmio = write_exit_mmio,
4281         .write = true,
4282 };
4283
4284 static int emulator_read_write_onepage(unsigned long addr, void *val,
4285                                        unsigned int bytes,
4286                                        struct x86_exception *exception,
4287                                        struct kvm_vcpu *vcpu,
4288                                        const struct read_write_emulator_ops *ops)
4289 {
4290         gpa_t gpa;
4291         int handled, ret;
4292         bool write = ops->write;
4293         struct kvm_mmio_fragment *frag;
4294
4295         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4296
4297         if (ret < 0)
4298                 return X86EMUL_PROPAGATE_FAULT;
4299
4300         /* For APIC access vmexit */
4301         if (ret)
4302                 goto mmio;
4303
4304         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4305                 return X86EMUL_CONTINUE;
4306
4307 mmio:
4308         /*
4309          * Is this MMIO handled locally?
4310          */
4311         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4312         if (handled == bytes)
4313                 return X86EMUL_CONTINUE;
4314
4315         gpa += handled;
4316         bytes -= handled;
4317         val += handled;
4318
4319         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4320         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4321         frag->gpa = gpa;
4322         frag->data = val;
4323         frag->len = bytes;
4324         return X86EMUL_CONTINUE;
4325 }
4326
4327 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4328                         void *val, unsigned int bytes,
4329                         struct x86_exception *exception,
4330                         const struct read_write_emulator_ops *ops)
4331 {
4332         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4333         gpa_t gpa;
4334         int rc;
4335
4336         if (ops->read_write_prepare &&
4337                   ops->read_write_prepare(vcpu, val, bytes))
4338                 return X86EMUL_CONTINUE;
4339
4340         vcpu->mmio_nr_fragments = 0;
4341
4342         /* Crossing a page boundary? */
4343         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4344                 int now;
4345
4346                 now = -addr & ~PAGE_MASK;
4347                 rc = emulator_read_write_onepage(addr, val, now, exception,
4348                                                  vcpu, ops);
4349
4350                 if (rc != X86EMUL_CONTINUE)
4351                         return rc;
4352                 addr += now;
4353                 val += now;
4354                 bytes -= now;
4355         }
4356
4357         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4358                                          vcpu, ops);
4359         if (rc != X86EMUL_CONTINUE)
4360                 return rc;
4361
4362         if (!vcpu->mmio_nr_fragments)
4363                 return rc;
4364
4365         gpa = vcpu->mmio_fragments[0].gpa;
4366
4367         vcpu->mmio_needed = 1;
4368         vcpu->mmio_cur_fragment = 0;
4369
4370         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4371         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4372         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4373         vcpu->run->mmio.phys_addr = gpa;
4374
4375         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4376 }
4377
4378 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4379                                   unsigned long addr,
4380                                   void *val,
4381                                   unsigned int bytes,
4382                                   struct x86_exception *exception)
4383 {
4384         return emulator_read_write(ctxt, addr, val, bytes,
4385                                    exception, &read_emultor);
4386 }
4387
4388 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4389                             unsigned long addr,
4390                             const void *val,
4391                             unsigned int bytes,
4392                             struct x86_exception *exception)
4393 {
4394         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4395                                    exception, &write_emultor);
4396 }
4397
4398 #define CMPXCHG_TYPE(t, ptr, old, new) \
4399         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4400
4401 #ifdef CONFIG_X86_64
4402 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4403 #else
4404 #  define CMPXCHG64(ptr, old, new) \
4405         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4406 #endif
4407
4408 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4409                                      unsigned long addr,
4410                                      const void *old,
4411                                      const void *new,
4412                                      unsigned int bytes,
4413                                      struct x86_exception *exception)
4414 {
4415         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4416         gpa_t gpa;
4417         struct page *page;
4418         char *kaddr;
4419         bool exchanged;
4420
4421         /* guests cmpxchg8b have to be emulated atomically */
4422         if (bytes > 8 || (bytes & (bytes - 1)))
4423                 goto emul_write;
4424
4425         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4426
4427         if (gpa == UNMAPPED_GVA ||
4428             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4429                 goto emul_write;
4430
4431         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4432                 goto emul_write;
4433
4434         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4435         if (is_error_page(page))
4436                 goto emul_write;
4437
4438         kaddr = kmap_atomic(page);
4439         kaddr += offset_in_page(gpa);
4440         switch (bytes) {
4441         case 1:
4442                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4443                 break;
4444         case 2:
4445                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4446                 break;
4447         case 4:
4448                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4449                 break;
4450         case 8:
4451                 exchanged = CMPXCHG64(kaddr, old, new);
4452                 break;
4453         default:
4454                 BUG();
4455         }
4456         kunmap_atomic(kaddr);
4457         kvm_release_page_dirty(page);
4458
4459         if (!exchanged)
4460                 return X86EMUL_CMPXCHG_FAILED;
4461
4462         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4463         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4464
4465         return X86EMUL_CONTINUE;
4466
4467 emul_write:
4468         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4469
4470         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4471 }
4472
4473 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4474 {
4475         /* TODO: String I/O for in kernel device */
4476         int r;
4477
4478         if (vcpu->arch.pio.in)
4479                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4480                                     vcpu->arch.pio.size, pd);
4481         else
4482                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4483                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4484                                      pd);
4485         return r;
4486 }
4487
4488 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4489                                unsigned short port, void *val,
4490                                unsigned int count, bool in)
4491 {
4492         trace_kvm_pio(!in, port, size, count);
4493
4494         vcpu->arch.pio.port = port;
4495         vcpu->arch.pio.in = in;
4496         vcpu->arch.pio.count  = count;
4497         vcpu->arch.pio.size = size;
4498
4499         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4500                 vcpu->arch.pio.count = 0;
4501                 return 1;
4502         }
4503
4504         vcpu->run->exit_reason = KVM_EXIT_IO;
4505         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4506         vcpu->run->io.size = size;
4507         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4508         vcpu->run->io.count = count;
4509         vcpu->run->io.port = port;
4510
4511         return 0;
4512 }
4513
4514 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4515                                     int size, unsigned short port, void *val,
4516                                     unsigned int count)
4517 {
4518         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519         int ret;
4520
4521         if (vcpu->arch.pio.count)
4522                 goto data_avail;
4523
4524         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4525         if (ret) {
4526 data_avail:
4527                 memcpy(val, vcpu->arch.pio_data, size * count);
4528                 vcpu->arch.pio.count = 0;
4529                 return 1;
4530         }
4531
4532         return 0;
4533 }
4534
4535 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4536                                      int size, unsigned short port,
4537                                      const void *val, unsigned int count)
4538 {
4539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4540
4541         memcpy(vcpu->arch.pio_data, val, size * count);
4542         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4543 }
4544
4545 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4546 {
4547         return kvm_x86_ops->get_segment_base(vcpu, seg);
4548 }
4549
4550 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4551 {
4552         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4553 }
4554
4555 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4556 {
4557         if (!need_emulate_wbinvd(vcpu))
4558                 return X86EMUL_CONTINUE;
4559
4560         if (kvm_x86_ops->has_wbinvd_exit()) {
4561                 int cpu = get_cpu();
4562
4563                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4564                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4565                                 wbinvd_ipi, NULL, 1);
4566                 put_cpu();
4567                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4568         } else
4569                 wbinvd();
4570         return X86EMUL_CONTINUE;
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4573
4574 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4575 {
4576         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4577 }
4578
4579 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4580 {
4581         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4582 }
4583
4584 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4585 {
4586
4587         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4588 }
4589
4590 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4591 {
4592         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4593 }
4594
4595 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4596 {
4597         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4598         unsigned long value;
4599
4600         switch (cr) {
4601         case 0:
4602                 value = kvm_read_cr0(vcpu);
4603                 break;
4604         case 2:
4605                 value = vcpu->arch.cr2;
4606                 break;
4607         case 3:
4608                 value = kvm_read_cr3(vcpu);
4609                 break;
4610         case 4:
4611                 value = kvm_read_cr4(vcpu);
4612                 break;
4613         case 8:
4614                 value = kvm_get_cr8(vcpu);
4615                 break;
4616         default:
4617                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4618                 return 0;
4619         }
4620
4621         return value;
4622 }
4623
4624 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4625 {
4626         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4627         int res = 0;
4628
4629         switch (cr) {
4630         case 0:
4631                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4632                 break;
4633         case 2:
4634                 vcpu->arch.cr2 = val;
4635                 break;
4636         case 3:
4637                 res = kvm_set_cr3(vcpu, val);
4638                 break;
4639         case 4:
4640                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4641                 break;
4642         case 8:
4643                 res = kvm_set_cr8(vcpu, val);
4644                 break;
4645         default:
4646                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4647                 res = -1;
4648         }
4649
4650         return res;
4651 }
4652
4653 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4654 {
4655         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4656 }
4657
4658 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4659 {
4660         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4661 }
4662
4663 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4664 {
4665         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4666 }
4667
4668 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4669 {
4670         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4671 }
4672
4673 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4674 {
4675         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4676 }
4677
4678 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4679 {
4680         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4681 }
4682
4683 static unsigned long emulator_get_cached_segment_base(
4684         struct x86_emulate_ctxt *ctxt, int seg)
4685 {
4686         return get_segment_base(emul_to_vcpu(ctxt), seg);
4687 }
4688
4689 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4690                                  struct desc_struct *desc, u32 *base3,
4691                                  int seg)
4692 {
4693         struct kvm_segment var;
4694
4695         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4696         *selector = var.selector;
4697
4698         if (var.unusable) {
4699                 memset(desc, 0, sizeof(*desc));
4700                 return false;
4701         }
4702
4703         if (var.g)
4704                 var.limit >>= 12;
4705         set_desc_limit(desc, var.limit);
4706         set_desc_base(desc, (unsigned long)var.base);
4707 #ifdef CONFIG_X86_64
4708         if (base3)
4709                 *base3 = var.base >> 32;
4710 #endif
4711         desc->type = var.type;
4712         desc->s = var.s;
4713         desc->dpl = var.dpl;
4714         desc->p = var.present;
4715         desc->avl = var.avl;
4716         desc->l = var.l;
4717         desc->d = var.db;
4718         desc->g = var.g;
4719
4720         return true;
4721 }
4722
4723 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4724                                  struct desc_struct *desc, u32 base3,
4725                                  int seg)
4726 {
4727         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728         struct kvm_segment var;
4729
4730         var.selector = selector;
4731         var.base = get_desc_base(desc);
4732 #ifdef CONFIG_X86_64
4733         var.base |= ((u64)base3) << 32;
4734 #endif
4735         var.limit = get_desc_limit(desc);
4736         if (desc->g)
4737                 var.limit = (var.limit << 12) | 0xfff;
4738         var.type = desc->type;
4739         var.present = desc->p;
4740         var.dpl = desc->dpl;
4741         var.db = desc->d;
4742         var.s = desc->s;
4743         var.l = desc->l;
4744         var.g = desc->g;
4745         var.avl = desc->avl;
4746         var.present = desc->p;
4747         var.unusable = !var.present;
4748         var.padding = 0;
4749
4750         kvm_set_segment(vcpu, &var, seg);
4751         return;
4752 }
4753
4754 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4755                             u32 msr_index, u64 *pdata)
4756 {
4757         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4758 }
4759
4760 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4761                             u32 msr_index, u64 data)
4762 {
4763         struct msr_data msr;
4764
4765         msr.data = data;
4766         msr.index = msr_index;
4767         msr.host_initiated = false;
4768         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4769 }
4770
4771 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4772                              u32 pmc, u64 *pdata)
4773 {
4774         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4775 }
4776
4777 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4778 {
4779         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4780 }
4781
4782 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4783 {
4784         preempt_disable();
4785         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4786         /*
4787          * CR0.TS may reference the host fpu state, not the guest fpu state,
4788          * so it may be clear at this point.
4789          */
4790         clts();
4791 }
4792
4793 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4794 {
4795         preempt_enable();
4796 }
4797
4798 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4799                               struct x86_instruction_info *info,
4800                               enum x86_intercept_stage stage)
4801 {
4802         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4803 }
4804
4805 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4806                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4807 {
4808         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4809 }
4810
4811 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4812 {
4813         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4814 }
4815
4816 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4817 {
4818         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4819 }
4820
4821 static const struct x86_emulate_ops emulate_ops = {
4822         .read_gpr            = emulator_read_gpr,
4823         .write_gpr           = emulator_write_gpr,
4824         .read_std            = kvm_read_guest_virt_system,
4825         .write_std           = kvm_write_guest_virt_system,
4826         .fetch               = kvm_fetch_guest_virt,
4827         .read_emulated       = emulator_read_emulated,
4828         .write_emulated      = emulator_write_emulated,
4829         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4830         .invlpg              = emulator_invlpg,
4831         .pio_in_emulated     = emulator_pio_in_emulated,
4832         .pio_out_emulated    = emulator_pio_out_emulated,
4833         .get_segment         = emulator_get_segment,
4834         .set_segment         = emulator_set_segment,
4835         .get_cached_segment_base = emulator_get_cached_segment_base,
4836         .get_gdt             = emulator_get_gdt,
4837         .get_idt             = emulator_get_idt,
4838         .set_gdt             = emulator_set_gdt,
4839         .set_idt             = emulator_set_idt,
4840         .get_cr              = emulator_get_cr,
4841         .set_cr              = emulator_set_cr,
4842         .set_rflags          = emulator_set_rflags,
4843         .cpl                 = emulator_get_cpl,
4844         .get_dr              = emulator_get_dr,
4845         .set_dr              = emulator_set_dr,
4846         .set_msr             = emulator_set_msr,
4847         .get_msr             = emulator_get_msr,
4848         .read_pmc            = emulator_read_pmc,
4849         .halt                = emulator_halt,
4850         .wbinvd              = emulator_wbinvd,
4851         .fix_hypercall       = emulator_fix_hypercall,
4852         .get_fpu             = emulator_get_fpu,
4853         .put_fpu             = emulator_put_fpu,
4854         .intercept           = emulator_intercept,
4855         .get_cpuid           = emulator_get_cpuid,
4856 };
4857
4858 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4859 {
4860         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4861         /*
4862          * an sti; sti; sequence only disable interrupts for the first
4863          * instruction. So, if the last instruction, be it emulated or
4864          * not, left the system with the INT_STI flag enabled, it
4865          * means that the last instruction is an sti. We should not
4866          * leave the flag on in this case. The same goes for mov ss
4867          */
4868         if (!(int_shadow & mask))
4869                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4870 }
4871
4872 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4873 {
4874         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4875         if (ctxt->exception.vector == PF_VECTOR)
4876                 kvm_propagate_fault(vcpu, &ctxt->exception);
4877         else if (ctxt->exception.error_code_valid)
4878                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4879                                       ctxt->exception.error_code);
4880         else
4881                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4882 }
4883
4884 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4885 {
4886         memset(&ctxt->opcode_len, 0,
4887                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4888
4889         ctxt->fetch.start = 0;
4890         ctxt->fetch.end = 0;
4891         ctxt->io_read.pos = 0;
4892         ctxt->io_read.end = 0;
4893         ctxt->mem_read.pos = 0;
4894         ctxt->mem_read.end = 0;
4895 }
4896
4897 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4898 {
4899         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4900         int cs_db, cs_l;
4901
4902         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4903
4904         ctxt->eflags = kvm_get_rflags(vcpu);
4905         ctxt->eip = kvm_rip_read(vcpu);
4906         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4907                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4908                      cs_l                               ? X86EMUL_MODE_PROT64 :
4909                      cs_db                              ? X86EMUL_MODE_PROT32 :
4910                                                           X86EMUL_MODE_PROT16;
4911         ctxt->guest_mode = is_guest_mode(vcpu);
4912
4913         init_decode_cache(ctxt);
4914         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4915 }
4916
4917 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4918 {
4919         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4920         int ret;
4921
4922         init_emulate_ctxt(vcpu);
4923
4924         ctxt->op_bytes = 2;
4925         ctxt->ad_bytes = 2;
4926         ctxt->_eip = ctxt->eip + inc_eip;
4927         ret = emulate_int_real(ctxt, irq);
4928
4929         if (ret != X86EMUL_CONTINUE)
4930                 return EMULATE_FAIL;
4931
4932         ctxt->eip = ctxt->_eip;
4933         kvm_rip_write(vcpu, ctxt->eip);
4934         kvm_set_rflags(vcpu, ctxt->eflags);
4935
4936         if (irq == NMI_VECTOR)
4937                 vcpu->arch.nmi_pending = 0;
4938         else
4939                 vcpu->arch.interrupt.pending = false;
4940
4941         return EMULATE_DONE;
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4944
4945 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4946 {
4947         int r = EMULATE_DONE;
4948
4949         ++vcpu->stat.insn_emulation_fail;
4950         trace_kvm_emulate_insn_failed(vcpu);
4951         if (!is_guest_mode(vcpu)) {
4952                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4953                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4954                 vcpu->run->internal.ndata = 0;
4955                 r = EMULATE_FAIL;
4956         }
4957         kvm_queue_exception(vcpu, UD_VECTOR);
4958
4959         return r;
4960 }
4961
4962 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4963                                   bool write_fault_to_shadow_pgtable,
4964                                   int emulation_type)
4965 {
4966         gpa_t gpa = cr2;
4967         pfn_t pfn;
4968
4969         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4970                 return false;
4971
4972         if (!vcpu->arch.mmu.direct_map) {
4973                 /*
4974                  * Write permission should be allowed since only
4975                  * write access need to be emulated.
4976                  */
4977                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4978
4979                 /*
4980                  * If the mapping is invalid in guest, let cpu retry
4981                  * it to generate fault.
4982                  */
4983                 if (gpa == UNMAPPED_GVA)
4984                         return true;
4985         }
4986
4987         /*
4988          * Do not retry the unhandleable instruction if it faults on the
4989          * readonly host memory, otherwise it will goto a infinite loop:
4990          * retry instruction -> write #PF -> emulation fail -> retry
4991          * instruction -> ...
4992          */
4993         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4994
4995         /*
4996          * If the instruction failed on the error pfn, it can not be fixed,
4997          * report the error to userspace.
4998          */
4999         if (is_error_noslot_pfn(pfn))
5000                 return false;
5001
5002         kvm_release_pfn_clean(pfn);
5003
5004         /* The instructions are well-emulated on direct mmu. */
5005         if (vcpu->arch.mmu.direct_map) {
5006                 unsigned int indirect_shadow_pages;
5007
5008                 spin_lock(&vcpu->kvm->mmu_lock);
5009                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5010                 spin_unlock(&vcpu->kvm->mmu_lock);
5011
5012                 if (indirect_shadow_pages)
5013                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5014
5015                 return true;
5016         }
5017
5018         /*
5019          * if emulation was due to access to shadowed page table
5020          * and it failed try to unshadow page and re-enter the
5021          * guest to let CPU execute the instruction.
5022          */
5023         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5024
5025         /*
5026          * If the access faults on its page table, it can not
5027          * be fixed by unprotecting shadow page and it should
5028          * be reported to userspace.
5029          */
5030         return !write_fault_to_shadow_pgtable;
5031 }
5032
5033 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5034                               unsigned long cr2,  int emulation_type)
5035 {
5036         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5037         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5038
5039         last_retry_eip = vcpu->arch.last_retry_eip;
5040         last_retry_addr = vcpu->arch.last_retry_addr;
5041
5042         /*
5043          * If the emulation is caused by #PF and it is non-page_table
5044          * writing instruction, it means the VM-EXIT is caused by shadow
5045          * page protected, we can zap the shadow page and retry this
5046          * instruction directly.
5047          *
5048          * Note: if the guest uses a non-page-table modifying instruction
5049          * on the PDE that points to the instruction, then we will unmap
5050          * the instruction and go to an infinite loop. So, we cache the
5051          * last retried eip and the last fault address, if we meet the eip
5052          * and the address again, we can break out of the potential infinite
5053          * loop.
5054          */
5055         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5056
5057         if (!(emulation_type & EMULTYPE_RETRY))
5058                 return false;
5059
5060         if (x86_page_table_writing_insn(ctxt))
5061                 return false;
5062
5063         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5064                 return false;
5065
5066         vcpu->arch.last_retry_eip = ctxt->eip;
5067         vcpu->arch.last_retry_addr = cr2;
5068
5069         if (!vcpu->arch.mmu.direct_map)
5070                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5071
5072         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5073
5074         return true;
5075 }
5076
5077 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5078 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5079
5080 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5081                                 unsigned long *db)
5082 {
5083         u32 dr6 = 0;
5084         int i;
5085         u32 enable, rwlen;
5086
5087         enable = dr7;
5088         rwlen = dr7 >> 16;
5089         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5090                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5091                         dr6 |= (1 << i);
5092         return dr6;
5093 }
5094
5095 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5096 {
5097         struct kvm_run *kvm_run = vcpu->run;
5098
5099         /*
5100          * Use the "raw" value to see if TF was passed to the processor.
5101          * Note that the new value of the flags has not been saved yet.
5102          *
5103          * This is correct even for TF set by the guest, because "the
5104          * processor will not generate this exception after the instruction
5105          * that sets the TF flag".
5106          */
5107         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5108
5109         if (unlikely(rflags & X86_EFLAGS_TF)) {
5110                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5111                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5112                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5113                         kvm_run->debug.arch.exception = DB_VECTOR;
5114                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5115                         *r = EMULATE_USER_EXIT;
5116                 } else {
5117                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5118                         /*
5119                          * "Certain debug exceptions may clear bit 0-3.  The
5120                          * remaining contents of the DR6 register are never
5121                          * cleared by the processor".
5122                          */
5123                         vcpu->arch.dr6 &= ~15;
5124                         vcpu->arch.dr6 |= DR6_BS;
5125                         kvm_queue_exception(vcpu, DB_VECTOR);
5126                 }
5127         }
5128 }
5129
5130 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5131 {
5132         struct kvm_run *kvm_run = vcpu->run;
5133         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5134         u32 dr6 = 0;
5135
5136         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5137             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5138                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5139                                            vcpu->arch.guest_debug_dr7,
5140                                            vcpu->arch.eff_db);
5141
5142                 if (dr6 != 0) {
5143                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5144                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5145                                 get_segment_base(vcpu, VCPU_SREG_CS);
5146
5147                         kvm_run->debug.arch.exception = DB_VECTOR;
5148                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5149                         *r = EMULATE_USER_EXIT;
5150                         return true;
5151                 }
5152         }
5153
5154         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5155                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5156                                            vcpu->arch.dr7,
5157                                            vcpu->arch.db);
5158
5159                 if (dr6 != 0) {
5160                         vcpu->arch.dr6 &= ~15;
5161                         vcpu->arch.dr6 |= dr6;
5162                         kvm_queue_exception(vcpu, DB_VECTOR);
5163                         *r = EMULATE_DONE;
5164                         return true;
5165                 }
5166         }
5167
5168         return false;
5169 }
5170
5171 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5172                             unsigned long cr2,
5173                             int emulation_type,
5174                             void *insn,
5175                             int insn_len)
5176 {
5177         int r;
5178         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5179         bool writeback = true;
5180         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5181
5182         /*
5183          * Clear write_fault_to_shadow_pgtable here to ensure it is
5184          * never reused.
5185          */
5186         vcpu->arch.write_fault_to_shadow_pgtable = false;
5187         kvm_clear_exception_queue(vcpu);
5188
5189         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5190                 init_emulate_ctxt(vcpu);
5191
5192                 /*
5193                  * We will reenter on the same instruction since
5194                  * we do not set complete_userspace_io.  This does not
5195                  * handle watchpoints yet, those would be handled in
5196                  * the emulate_ops.
5197                  */
5198                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5199                         return r;
5200
5201                 ctxt->interruptibility = 0;
5202                 ctxt->have_exception = false;
5203                 ctxt->perm_ok = false;
5204
5205                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5206
5207                 r = x86_decode_insn(ctxt, insn, insn_len);
5208
5209                 trace_kvm_emulate_insn_start(vcpu);
5210                 ++vcpu->stat.insn_emulation;
5211                 if (r != EMULATION_OK)  {
5212                         if (emulation_type & EMULTYPE_TRAP_UD)
5213                                 return EMULATE_FAIL;
5214                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5215                                                 emulation_type))
5216                                 return EMULATE_DONE;
5217                         if (emulation_type & EMULTYPE_SKIP)
5218                                 return EMULATE_FAIL;
5219                         return handle_emulation_failure(vcpu);
5220                 }
5221         }
5222
5223         if (emulation_type & EMULTYPE_SKIP) {
5224                 kvm_rip_write(vcpu, ctxt->_eip);
5225                 return EMULATE_DONE;
5226         }
5227
5228         if (retry_instruction(ctxt, cr2, emulation_type))
5229                 return EMULATE_DONE;
5230
5231         /* this is needed for vmware backdoor interface to work since it
5232            changes registers values  during IO operation */
5233         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5234                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5235                 emulator_invalidate_register_cache(ctxt);
5236         }
5237
5238 restart:
5239         r = x86_emulate_insn(ctxt);
5240
5241         if (r == EMULATION_INTERCEPTED)
5242                 return EMULATE_DONE;
5243
5244         if (r == EMULATION_FAILED) {
5245                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5246                                         emulation_type))
5247                         return EMULATE_DONE;
5248
5249                 return handle_emulation_failure(vcpu);
5250         }
5251
5252         if (ctxt->have_exception) {
5253                 inject_emulated_exception(vcpu);
5254                 r = EMULATE_DONE;
5255         } else if (vcpu->arch.pio.count) {
5256                 if (!vcpu->arch.pio.in) {
5257                         /* FIXME: return into emulator if single-stepping.  */
5258                         vcpu->arch.pio.count = 0;
5259                 } else {
5260                         writeback = false;
5261                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5262                 }
5263                 r = EMULATE_USER_EXIT;
5264         } else if (vcpu->mmio_needed) {
5265                 if (!vcpu->mmio_is_write)
5266                         writeback = false;
5267                 r = EMULATE_USER_EXIT;
5268                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5269         } else if (r == EMULATION_RESTART)
5270                 goto restart;
5271         else
5272                 r = EMULATE_DONE;
5273
5274         if (writeback) {
5275                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5276                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5277                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5278                 kvm_rip_write(vcpu, ctxt->eip);
5279                 if (r == EMULATE_DONE)
5280                         kvm_vcpu_check_singlestep(vcpu, &r);
5281                 kvm_set_rflags(vcpu, ctxt->eflags);
5282         } else
5283                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5284
5285         return r;
5286 }
5287 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5288
5289 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5290 {
5291         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5292         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5293                                             size, port, &val, 1);
5294         /* do not return to emulator after return from userspace */
5295         vcpu->arch.pio.count = 0;
5296         return ret;
5297 }
5298 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5299
5300 static void tsc_bad(void *info)
5301 {
5302         __this_cpu_write(cpu_tsc_khz, 0);
5303 }
5304
5305 static void tsc_khz_changed(void *data)
5306 {
5307         struct cpufreq_freqs *freq = data;
5308         unsigned long khz = 0;
5309
5310         if (data)
5311                 khz = freq->new;
5312         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5313                 khz = cpufreq_quick_get(raw_smp_processor_id());
5314         if (!khz)
5315                 khz = tsc_khz;
5316         __this_cpu_write(cpu_tsc_khz, khz);
5317 }
5318
5319 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5320                                      void *data)
5321 {
5322         struct cpufreq_freqs *freq = data;
5323         struct kvm *kvm;
5324         struct kvm_vcpu *vcpu;
5325         int i, send_ipi = 0;
5326
5327         /*
5328          * We allow guests to temporarily run on slowing clocks,
5329          * provided we notify them after, or to run on accelerating
5330          * clocks, provided we notify them before.  Thus time never
5331          * goes backwards.
5332          *
5333          * However, we have a problem.  We can't atomically update
5334          * the frequency of a given CPU from this function; it is
5335          * merely a notifier, which can be called from any CPU.
5336          * Changing the TSC frequency at arbitrary points in time
5337          * requires a recomputation of local variables related to
5338          * the TSC for each VCPU.  We must flag these local variables
5339          * to be updated and be sure the update takes place with the
5340          * new frequency before any guests proceed.
5341          *
5342          * Unfortunately, the combination of hotplug CPU and frequency
5343          * change creates an intractable locking scenario; the order
5344          * of when these callouts happen is undefined with respect to
5345          * CPU hotplug, and they can race with each other.  As such,
5346          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5347          * undefined; you can actually have a CPU frequency change take
5348          * place in between the computation of X and the setting of the
5349          * variable.  To protect against this problem, all updates of
5350          * the per_cpu tsc_khz variable are done in an interrupt
5351          * protected IPI, and all callers wishing to update the value
5352          * must wait for a synchronous IPI to complete (which is trivial
5353          * if the caller is on the CPU already).  This establishes the
5354          * necessary total order on variable updates.
5355          *
5356          * Note that because a guest time update may take place
5357          * anytime after the setting of the VCPU's request bit, the
5358          * correct TSC value must be set before the request.  However,
5359          * to ensure the update actually makes it to any guest which
5360          * starts running in hardware virtualization between the set
5361          * and the acquisition of the spinlock, we must also ping the
5362          * CPU after setting the request bit.
5363          *
5364          */
5365
5366         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5367                 return 0;
5368         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5369                 return 0;
5370
5371         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5372
5373         spin_lock(&kvm_lock);
5374         list_for_each_entry(kvm, &vm_list, vm_list) {
5375                 kvm_for_each_vcpu(i, vcpu, kvm) {
5376                         if (vcpu->cpu != freq->cpu)
5377                                 continue;
5378                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5379                         if (vcpu->cpu != smp_processor_id())
5380                                 send_ipi = 1;
5381                 }
5382         }
5383         spin_unlock(&kvm_lock);
5384
5385         if (freq->old < freq->new && send_ipi) {
5386                 /*
5387                  * We upscale the frequency.  Must make the guest
5388                  * doesn't see old kvmclock values while running with
5389                  * the new frequency, otherwise we risk the guest sees
5390                  * time go backwards.
5391                  *
5392                  * In case we update the frequency for another cpu
5393                  * (which might be in guest context) send an interrupt
5394                  * to kick the cpu out of guest context.  Next time
5395                  * guest context is entered kvmclock will be updated,
5396                  * so the guest will not see stale values.
5397                  */
5398                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5399         }
5400         return 0;
5401 }
5402
5403 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5404         .notifier_call  = kvmclock_cpufreq_notifier
5405 };
5406
5407 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5408                                         unsigned long action, void *hcpu)
5409 {
5410         unsigned int cpu = (unsigned long)hcpu;
5411
5412         switch (action) {
5413                 case CPU_ONLINE:
5414                 case CPU_DOWN_FAILED:
5415                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5416                         break;
5417                 case CPU_DOWN_PREPARE:
5418                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5419                         break;
5420         }
5421         return NOTIFY_OK;
5422 }
5423
5424 static struct notifier_block kvmclock_cpu_notifier_block = {
5425         .notifier_call  = kvmclock_cpu_notifier,
5426         .priority = -INT_MAX
5427 };
5428
5429 static void kvm_timer_init(void)
5430 {
5431         int cpu;
5432
5433         max_tsc_khz = tsc_khz;
5434
5435         cpu_notifier_register_begin();
5436         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5437 #ifdef CONFIG_CPU_FREQ
5438                 struct cpufreq_policy policy;
5439                 memset(&policy, 0, sizeof(policy));
5440                 cpu = get_cpu();
5441                 cpufreq_get_policy(&policy, cpu);
5442                 if (policy.cpuinfo.max_freq)
5443                         max_tsc_khz = policy.cpuinfo.max_freq;
5444                 put_cpu();
5445 #endif
5446                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5447                                           CPUFREQ_TRANSITION_NOTIFIER);
5448         }
5449         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5450         for_each_online_cpu(cpu)
5451                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5452
5453         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5454         cpu_notifier_register_done();
5455
5456 }
5457
5458 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5459
5460 int kvm_is_in_guest(void)
5461 {
5462         return __this_cpu_read(current_vcpu) != NULL;
5463 }
5464
5465 static int kvm_is_user_mode(void)
5466 {
5467         int user_mode = 3;
5468
5469         if (__this_cpu_read(current_vcpu))
5470                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5471
5472         return user_mode != 0;
5473 }
5474
5475 static unsigned long kvm_get_guest_ip(void)
5476 {
5477         unsigned long ip = 0;
5478
5479         if (__this_cpu_read(current_vcpu))
5480                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5481
5482         return ip;
5483 }
5484
5485 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5486         .is_in_guest            = kvm_is_in_guest,
5487         .is_user_mode           = kvm_is_user_mode,
5488         .get_guest_ip           = kvm_get_guest_ip,
5489 };
5490
5491 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5492 {
5493         __this_cpu_write(current_vcpu, vcpu);
5494 }
5495 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5496
5497 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5498 {
5499         __this_cpu_write(current_vcpu, NULL);
5500 }
5501 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5502
5503 static void kvm_set_mmio_spte_mask(void)
5504 {
5505         u64 mask;
5506         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5507
5508         /*
5509          * Set the reserved bits and the present bit of an paging-structure
5510          * entry to generate page fault with PFER.RSV = 1.
5511          */
5512          /* Mask the reserved physical address bits. */
5513         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5514
5515         /* Bit 62 is always reserved for 32bit host. */
5516         mask |= 0x3ull << 62;
5517
5518         /* Set the present bit. */
5519         mask |= 1ull;
5520
5521 #ifdef CONFIG_X86_64
5522         /*
5523          * If reserved bit is not supported, clear the present bit to disable
5524          * mmio page fault.
5525          */
5526         if (maxphyaddr == 52)
5527                 mask &= ~1ull;
5528 #endif
5529
5530         kvm_mmu_set_mmio_spte_mask(mask);
5531 }
5532
5533 #ifdef CONFIG_X86_64
5534 static void pvclock_gtod_update_fn(struct work_struct *work)
5535 {
5536         struct kvm *kvm;
5537
5538         struct kvm_vcpu *vcpu;
5539         int i;
5540
5541         spin_lock(&kvm_lock);
5542         list_for_each_entry(kvm, &vm_list, vm_list)
5543                 kvm_for_each_vcpu(i, vcpu, kvm)
5544                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5545         atomic_set(&kvm_guest_has_master_clock, 0);
5546         spin_unlock(&kvm_lock);
5547 }
5548
5549 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5550
5551 /*
5552  * Notification about pvclock gtod data update.
5553  */
5554 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5555                                void *priv)
5556 {
5557         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5558         struct timekeeper *tk = priv;
5559
5560         update_pvclock_gtod(tk);
5561
5562         /* disable master clock if host does not trust, or does not
5563          * use, TSC clocksource
5564          */
5565         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5566             atomic_read(&kvm_guest_has_master_clock) != 0)
5567                 queue_work(system_long_wq, &pvclock_gtod_work);
5568
5569         return 0;
5570 }
5571
5572 static struct notifier_block pvclock_gtod_notifier = {
5573         .notifier_call = pvclock_gtod_notify,
5574 };
5575 #endif
5576
5577 int kvm_arch_init(void *opaque)
5578 {
5579         int r;
5580         struct kvm_x86_ops *ops = opaque;
5581
5582         if (kvm_x86_ops) {
5583                 printk(KERN_ERR "kvm: already loaded the other module\n");
5584                 r = -EEXIST;
5585                 goto out;
5586         }
5587
5588         if (!ops->cpu_has_kvm_support()) {
5589                 printk(KERN_ERR "kvm: no hardware support\n");
5590                 r = -EOPNOTSUPP;
5591                 goto out;
5592         }
5593         if (ops->disabled_by_bios()) {
5594                 printk(KERN_ERR "kvm: disabled by bios\n");
5595                 r = -EOPNOTSUPP;
5596                 goto out;
5597         }
5598
5599         r = -ENOMEM;
5600         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5601         if (!shared_msrs) {
5602                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5603                 goto out;
5604         }
5605
5606         r = kvm_mmu_module_init();
5607         if (r)
5608                 goto out_free_percpu;
5609
5610         kvm_set_mmio_spte_mask();
5611
5612         kvm_x86_ops = ops;
5613         kvm_init_msr_list();
5614
5615         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5616                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5617
5618         kvm_timer_init();
5619
5620         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5621
5622         if (cpu_has_xsave)
5623                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5624
5625         kvm_lapic_init();
5626 #ifdef CONFIG_X86_64
5627         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5628 #endif
5629
5630         return 0;
5631
5632 out_free_percpu:
5633         free_percpu(shared_msrs);
5634 out:
5635         return r;
5636 }
5637
5638 void kvm_arch_exit(void)
5639 {
5640         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5641
5642         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5643                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5644                                             CPUFREQ_TRANSITION_NOTIFIER);
5645         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5646 #ifdef CONFIG_X86_64
5647         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5648 #endif
5649         kvm_x86_ops = NULL;
5650         kvm_mmu_module_exit();
5651         free_percpu(shared_msrs);
5652 }
5653
5654 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5655 {
5656         ++vcpu->stat.halt_exits;
5657         if (irqchip_in_kernel(vcpu->kvm)) {
5658                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5659                 return 1;
5660         } else {
5661                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5662                 return 0;
5663         }
5664 }
5665 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5666
5667 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5668 {
5669         u64 param, ingpa, outgpa, ret;
5670         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5671         bool fast, longmode;
5672         int cs_db, cs_l;
5673
5674         /*
5675          * hypercall generates UD from non zero cpl and real mode
5676          * per HYPER-V spec
5677          */
5678         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5679                 kvm_queue_exception(vcpu, UD_VECTOR);
5680                 return 0;
5681         }
5682
5683         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5684         longmode = is_long_mode(vcpu) && cs_l == 1;
5685
5686         if (!longmode) {
5687                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5688                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5689                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5690                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5691                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5692                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5693         }
5694 #ifdef CONFIG_X86_64
5695         else {
5696                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5697                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5698                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5699         }
5700 #endif
5701
5702         code = param & 0xffff;
5703         fast = (param >> 16) & 0x1;
5704         rep_cnt = (param >> 32) & 0xfff;
5705         rep_idx = (param >> 48) & 0xfff;
5706
5707         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5708
5709         switch (code) {
5710         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5711                 kvm_vcpu_on_spin(vcpu);
5712                 break;
5713         default:
5714                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5715                 break;
5716         }
5717
5718         ret = res | (((u64)rep_done & 0xfff) << 32);
5719         if (longmode) {
5720                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5721         } else {
5722                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5723                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5724         }
5725
5726         return 1;
5727 }
5728
5729 /*
5730  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5731  *
5732  * @apicid - apicid of vcpu to be kicked.
5733  */
5734 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5735 {
5736         struct kvm_lapic_irq lapic_irq;
5737
5738         lapic_irq.shorthand = 0;
5739         lapic_irq.dest_mode = 0;
5740         lapic_irq.dest_id = apicid;
5741
5742         lapic_irq.delivery_mode = APIC_DM_REMRD;
5743         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5744 }
5745
5746 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5747 {
5748         unsigned long nr, a0, a1, a2, a3, ret;
5749         int r = 1;
5750
5751         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5752                 return kvm_hv_hypercall(vcpu);
5753
5754         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5755         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5756         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5757         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5758         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5759
5760         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5761
5762         if (!is_long_mode(vcpu)) {
5763                 nr &= 0xFFFFFFFF;
5764                 a0 &= 0xFFFFFFFF;
5765                 a1 &= 0xFFFFFFFF;
5766                 a2 &= 0xFFFFFFFF;
5767                 a3 &= 0xFFFFFFFF;
5768         }
5769
5770         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5771                 ret = -KVM_EPERM;
5772                 goto out;
5773         }
5774
5775         switch (nr) {
5776         case KVM_HC_VAPIC_POLL_IRQ:
5777                 ret = 0;
5778                 break;
5779         case KVM_HC_KICK_CPU:
5780                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5781                 ret = 0;
5782                 break;
5783         default:
5784                 ret = -KVM_ENOSYS;
5785                 break;
5786         }
5787 out:
5788         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5789         ++vcpu->stat.hypercalls;
5790         return r;
5791 }
5792 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5793
5794 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5795 {
5796         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5797         char instruction[3];
5798         unsigned long rip = kvm_rip_read(vcpu);
5799
5800         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5801
5802         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5803 }
5804
5805 /*
5806  * Check if userspace requested an interrupt window, and that the
5807  * interrupt window is open.
5808  *
5809  * No need to exit to userspace if we already have an interrupt queued.
5810  */
5811 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5812 {
5813         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5814                 vcpu->run->request_interrupt_window &&
5815                 kvm_arch_interrupt_allowed(vcpu));
5816 }
5817
5818 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5819 {
5820         struct kvm_run *kvm_run = vcpu->run;
5821
5822         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5823         kvm_run->cr8 = kvm_get_cr8(vcpu);
5824         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5825         if (irqchip_in_kernel(vcpu->kvm))
5826                 kvm_run->ready_for_interrupt_injection = 1;
5827         else
5828                 kvm_run->ready_for_interrupt_injection =
5829                         kvm_arch_interrupt_allowed(vcpu) &&
5830                         !kvm_cpu_has_interrupt(vcpu) &&
5831                         !kvm_event_needs_reinjection(vcpu);
5832 }
5833
5834 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5835 {
5836         int max_irr, tpr;
5837
5838         if (!kvm_x86_ops->update_cr8_intercept)
5839                 return;
5840
5841         if (!vcpu->arch.apic)
5842                 return;
5843
5844         if (!vcpu->arch.apic->vapic_addr)
5845                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5846         else
5847                 max_irr = -1;
5848
5849         if (max_irr != -1)
5850                 max_irr >>= 4;
5851
5852         tpr = kvm_lapic_get_cr8(vcpu);
5853
5854         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5855 }
5856
5857 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5858 {
5859         int r;
5860
5861         /* try to reinject previous events if any */
5862         if (vcpu->arch.exception.pending) {
5863                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5864                                         vcpu->arch.exception.has_error_code,
5865                                         vcpu->arch.exception.error_code);
5866                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5867                                           vcpu->arch.exception.has_error_code,
5868                                           vcpu->arch.exception.error_code,
5869                                           vcpu->arch.exception.reinject);
5870                 return 0;
5871         }
5872
5873         if (vcpu->arch.nmi_injected) {
5874                 kvm_x86_ops->set_nmi(vcpu);
5875                 return 0;
5876         }
5877
5878         if (vcpu->arch.interrupt.pending) {
5879                 kvm_x86_ops->set_irq(vcpu);
5880                 return 0;
5881         }
5882
5883         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5884                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5885                 if (r != 0)
5886                         return r;
5887         }
5888
5889         /* try to inject new event if pending */
5890         if (vcpu->arch.nmi_pending) {
5891                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5892                         --vcpu->arch.nmi_pending;
5893                         vcpu->arch.nmi_injected = true;
5894                         kvm_x86_ops->set_nmi(vcpu);
5895                 }
5896         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5897                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5898                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5899                                             false);
5900                         kvm_x86_ops->set_irq(vcpu);
5901                 }
5902         }
5903         return 0;
5904 }
5905
5906 static void process_nmi(struct kvm_vcpu *vcpu)
5907 {
5908         unsigned limit = 2;
5909
5910         /*
5911          * x86 is limited to one NMI running, and one NMI pending after it.
5912          * If an NMI is already in progress, limit further NMIs to just one.
5913          * Otherwise, allow two (and we'll inject the first one immediately).
5914          */
5915         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5916                 limit = 1;
5917
5918         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5919         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5920         kvm_make_request(KVM_REQ_EVENT, vcpu);
5921 }
5922
5923 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5924 {
5925         u64 eoi_exit_bitmap[4];
5926         u32 tmr[8];
5927
5928         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5929                 return;
5930
5931         memset(eoi_exit_bitmap, 0, 32);
5932         memset(tmr, 0, 32);
5933
5934         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5935         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5936         kvm_apic_update_tmr(vcpu, tmr);
5937 }
5938
5939 /*
5940  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5941  * exiting to the userspace.  Otherwise, the value will be returned to the
5942  * userspace.
5943  */
5944 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5945 {
5946         int r;
5947         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5948                 vcpu->run->request_interrupt_window;
5949         bool req_immediate_exit = false;
5950
5951         if (vcpu->requests) {
5952                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5953                         kvm_mmu_unload(vcpu);
5954                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5955                         __kvm_migrate_timers(vcpu);
5956                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5957                         kvm_gen_update_masterclock(vcpu->kvm);
5958                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5959                         kvm_gen_kvmclock_update(vcpu);
5960                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5961                         r = kvm_guest_time_update(vcpu);
5962                         if (unlikely(r))
5963                                 goto out;
5964                 }
5965                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5966                         kvm_mmu_sync_roots(vcpu);
5967                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5968                         kvm_x86_ops->tlb_flush(vcpu);
5969                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5970                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5971                         r = 0;
5972                         goto out;
5973                 }
5974                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5975                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5976                         r = 0;
5977                         goto out;
5978                 }
5979                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5980                         vcpu->fpu_active = 0;
5981                         kvm_x86_ops->fpu_deactivate(vcpu);
5982                 }
5983                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5984                         /* Page is swapped out. Do synthetic halt */
5985                         vcpu->arch.apf.halted = true;
5986                         r = 1;
5987                         goto out;
5988                 }
5989                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5990                         record_steal_time(vcpu);
5991                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5992                         process_nmi(vcpu);
5993                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5994                         kvm_handle_pmu_event(vcpu);
5995                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5996                         kvm_deliver_pmi(vcpu);
5997                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5998                         vcpu_scan_ioapic(vcpu);
5999         }
6000
6001         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6002                 kvm_apic_accept_events(vcpu);
6003                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6004                         r = 1;
6005                         goto out;
6006                 }
6007
6008                 if (inject_pending_event(vcpu, req_int_win) != 0)
6009                         req_immediate_exit = true;
6010                 /* enable NMI/IRQ window open exits if needed */
6011                 else if (vcpu->arch.nmi_pending)
6012                         kvm_x86_ops->enable_nmi_window(vcpu);
6013                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6014                         kvm_x86_ops->enable_irq_window(vcpu);
6015
6016                 if (kvm_lapic_enabled(vcpu)) {
6017                         /*
6018                          * Update architecture specific hints for APIC
6019                          * virtual interrupt delivery.
6020                          */
6021                         if (kvm_x86_ops->hwapic_irr_update)
6022                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6023                                         kvm_lapic_find_highest_irr(vcpu));
6024                         update_cr8_intercept(vcpu);
6025                         kvm_lapic_sync_to_vapic(vcpu);
6026                 }
6027         }
6028
6029         r = kvm_mmu_reload(vcpu);
6030         if (unlikely(r)) {
6031                 goto cancel_injection;
6032         }
6033
6034         preempt_disable();
6035
6036         kvm_x86_ops->prepare_guest_switch(vcpu);
6037         if (vcpu->fpu_active)
6038                 kvm_load_guest_fpu(vcpu);
6039         kvm_load_guest_xcr0(vcpu);
6040
6041         vcpu->mode = IN_GUEST_MODE;
6042
6043         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6044
6045         /* We should set ->mode before check ->requests,
6046          * see the comment in make_all_cpus_request.
6047          */
6048         smp_mb__after_srcu_read_unlock();
6049
6050         local_irq_disable();
6051
6052         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6053             || need_resched() || signal_pending(current)) {
6054                 vcpu->mode = OUTSIDE_GUEST_MODE;
6055                 smp_wmb();
6056                 local_irq_enable();
6057                 preempt_enable();
6058                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6059                 r = 1;
6060                 goto cancel_injection;
6061         }
6062
6063         if (req_immediate_exit)
6064                 smp_send_reschedule(vcpu->cpu);
6065
6066         kvm_guest_enter();
6067
6068         if (unlikely(vcpu->arch.switch_db_regs)) {
6069                 set_debugreg(0, 7);
6070                 set_debugreg(vcpu->arch.eff_db[0], 0);
6071                 set_debugreg(vcpu->arch.eff_db[1], 1);
6072                 set_debugreg(vcpu->arch.eff_db[2], 2);
6073                 set_debugreg(vcpu->arch.eff_db[3], 3);
6074                 set_debugreg(vcpu->arch.dr6, 6);
6075         }
6076
6077         trace_kvm_entry(vcpu->vcpu_id);
6078         kvm_x86_ops->run(vcpu);
6079
6080         /*
6081          * Do this here before restoring debug registers on the host.  And
6082          * since we do this before handling the vmexit, a DR access vmexit
6083          * can (a) read the correct value of the debug registers, (b) set
6084          * KVM_DEBUGREG_WONT_EXIT again.
6085          */
6086         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6087                 int i;
6088
6089                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6090                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6091                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6092                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6093         }
6094
6095         /*
6096          * If the guest has used debug registers, at least dr7
6097          * will be disabled while returning to the host.
6098          * If we don't have active breakpoints in the host, we don't
6099          * care about the messed up debug address registers. But if
6100          * we have some of them active, restore the old state.
6101          */
6102         if (hw_breakpoint_active())
6103                 hw_breakpoint_restore();
6104
6105         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6106                                                            native_read_tsc());
6107
6108         vcpu->mode = OUTSIDE_GUEST_MODE;
6109         smp_wmb();
6110
6111         /* Interrupt is enabled by handle_external_intr() */
6112         kvm_x86_ops->handle_external_intr(vcpu);
6113
6114         ++vcpu->stat.exits;
6115
6116         /*
6117          * We must have an instruction between local_irq_enable() and
6118          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6119          * the interrupt shadow.  The stat.exits increment will do nicely.
6120          * But we need to prevent reordering, hence this barrier():
6121          */
6122         barrier();
6123
6124         kvm_guest_exit();
6125
6126         preempt_enable();
6127
6128         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6129
6130         /*
6131          * Profile KVM exit RIPs:
6132          */
6133         if (unlikely(prof_on == KVM_PROFILING)) {
6134                 unsigned long rip = kvm_rip_read(vcpu);
6135                 profile_hit(KVM_PROFILING, (void *)rip);
6136         }
6137
6138         if (unlikely(vcpu->arch.tsc_always_catchup))
6139                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6140
6141         if (vcpu->arch.apic_attention)
6142                 kvm_lapic_sync_from_vapic(vcpu);
6143
6144         r = kvm_x86_ops->handle_exit(vcpu);
6145         return r;
6146
6147 cancel_injection:
6148         kvm_x86_ops->cancel_injection(vcpu);
6149         if (unlikely(vcpu->arch.apic_attention))
6150                 kvm_lapic_sync_from_vapic(vcpu);
6151 out:
6152         return r;
6153 }
6154
6155
6156 static int __vcpu_run(struct kvm_vcpu *vcpu)
6157 {
6158         int r;
6159         struct kvm *kvm = vcpu->kvm;
6160
6161         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6162
6163         r = 1;
6164         while (r > 0) {
6165                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6166                     !vcpu->arch.apf.halted)
6167                         r = vcpu_enter_guest(vcpu);
6168                 else {
6169                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6170                         kvm_vcpu_block(vcpu);
6171                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6172                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6173                                 kvm_apic_accept_events(vcpu);
6174                                 switch(vcpu->arch.mp_state) {
6175                                 case KVM_MP_STATE_HALTED:
6176                                         vcpu->arch.pv.pv_unhalted = false;
6177                                         vcpu->arch.mp_state =
6178                                                 KVM_MP_STATE_RUNNABLE;
6179                                 case KVM_MP_STATE_RUNNABLE:
6180                                         vcpu->arch.apf.halted = false;
6181                                         break;
6182                                 case KVM_MP_STATE_INIT_RECEIVED:
6183                                         break;
6184                                 default:
6185                                         r = -EINTR;
6186                                         break;
6187                                 }
6188                         }
6189                 }
6190
6191                 if (r <= 0)
6192                         break;
6193
6194                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6195                 if (kvm_cpu_has_pending_timer(vcpu))
6196                         kvm_inject_pending_timer_irqs(vcpu);
6197
6198                 if (dm_request_for_irq_injection(vcpu)) {
6199                         r = -EINTR;
6200                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6201                         ++vcpu->stat.request_irq_exits;
6202                 }
6203
6204                 kvm_check_async_pf_completion(vcpu);
6205
6206                 if (signal_pending(current)) {
6207                         r = -EINTR;
6208                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6209                         ++vcpu->stat.signal_exits;
6210                 }
6211                 if (need_resched()) {
6212                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6213                         cond_resched();
6214                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6215                 }
6216         }
6217
6218         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6219
6220         return r;
6221 }
6222
6223 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6224 {
6225         int r;
6226         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6227         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6228         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6229         if (r != EMULATE_DONE)
6230                 return 0;
6231         return 1;
6232 }
6233
6234 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6235 {
6236         BUG_ON(!vcpu->arch.pio.count);
6237
6238         return complete_emulated_io(vcpu);
6239 }
6240
6241 /*
6242  * Implements the following, as a state machine:
6243  *
6244  * read:
6245  *   for each fragment
6246  *     for each mmio piece in the fragment
6247  *       write gpa, len
6248  *       exit
6249  *       copy data
6250  *   execute insn
6251  *
6252  * write:
6253  *   for each fragment
6254  *     for each mmio piece in the fragment
6255  *       write gpa, len
6256  *       copy data
6257  *       exit
6258  */
6259 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6260 {
6261         struct kvm_run *run = vcpu->run;
6262         struct kvm_mmio_fragment *frag;
6263         unsigned len;
6264
6265         BUG_ON(!vcpu->mmio_needed);
6266
6267         /* Complete previous fragment */
6268         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6269         len = min(8u, frag->len);
6270         if (!vcpu->mmio_is_write)
6271                 memcpy(frag->data, run->mmio.data, len);
6272
6273         if (frag->len <= 8) {
6274                 /* Switch to the next fragment. */
6275                 frag++;
6276                 vcpu->mmio_cur_fragment++;
6277         } else {
6278                 /* Go forward to the next mmio piece. */
6279                 frag->data += len;
6280                 frag->gpa += len;
6281                 frag->len -= len;
6282         }
6283
6284         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6285                 vcpu->mmio_needed = 0;
6286
6287                 /* FIXME: return into emulator if single-stepping.  */
6288                 if (vcpu->mmio_is_write)
6289                         return 1;
6290                 vcpu->mmio_read_completed = 1;
6291                 return complete_emulated_io(vcpu);
6292         }
6293
6294         run->exit_reason = KVM_EXIT_MMIO;
6295         run->mmio.phys_addr = frag->gpa;
6296         if (vcpu->mmio_is_write)
6297                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6298         run->mmio.len = min(8u, frag->len);
6299         run->mmio.is_write = vcpu->mmio_is_write;
6300         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6301         return 0;
6302 }
6303
6304
6305 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6306 {
6307         int r;
6308         sigset_t sigsaved;
6309
6310         if (!tsk_used_math(current) && init_fpu(current))
6311                 return -ENOMEM;
6312
6313         if (vcpu->sigset_active)
6314                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6315
6316         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6317                 kvm_vcpu_block(vcpu);
6318                 kvm_apic_accept_events(vcpu);
6319                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6320                 r = -EAGAIN;
6321                 goto out;
6322         }
6323
6324         /* re-sync apic's tpr */
6325         if (!irqchip_in_kernel(vcpu->kvm)) {
6326                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6327                         r = -EINVAL;
6328                         goto out;
6329                 }
6330         }
6331
6332         if (unlikely(vcpu->arch.complete_userspace_io)) {
6333                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6334                 vcpu->arch.complete_userspace_io = NULL;
6335                 r = cui(vcpu);
6336                 if (r <= 0)
6337                         goto out;
6338         } else
6339                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6340
6341         r = __vcpu_run(vcpu);
6342
6343 out:
6344         post_kvm_run_save(vcpu);
6345         if (vcpu->sigset_active)
6346                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6347
6348         return r;
6349 }
6350
6351 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6352 {
6353         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6354                 /*
6355                  * We are here if userspace calls get_regs() in the middle of
6356                  * instruction emulation. Registers state needs to be copied
6357                  * back from emulation context to vcpu. Userspace shouldn't do
6358                  * that usually, but some bad designed PV devices (vmware
6359                  * backdoor interface) need this to work
6360                  */
6361                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6362                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6363         }
6364         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6365         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6366         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6367         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6368         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6369         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6370         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6371         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6372 #ifdef CONFIG_X86_64
6373         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6374         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6375         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6376         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6377         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6378         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6379         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6380         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6381 #endif
6382
6383         regs->rip = kvm_rip_read(vcpu);
6384         regs->rflags = kvm_get_rflags(vcpu);
6385
6386         return 0;
6387 }
6388
6389 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6390 {
6391         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6392         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6393
6394         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6395         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6396         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6397         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6398         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6399         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6400         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6401         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6402 #ifdef CONFIG_X86_64
6403         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6404         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6405         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6406         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6407         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6408         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6409         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6410         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6411 #endif
6412
6413         kvm_rip_write(vcpu, regs->rip);
6414         kvm_set_rflags(vcpu, regs->rflags);
6415
6416         vcpu->arch.exception.pending = false;
6417
6418         kvm_make_request(KVM_REQ_EVENT, vcpu);
6419
6420         return 0;
6421 }
6422
6423 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6424 {
6425         struct kvm_segment cs;
6426
6427         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6428         *db = cs.db;
6429         *l = cs.l;
6430 }
6431 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6432
6433 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6434                                   struct kvm_sregs *sregs)
6435 {
6436         struct desc_ptr dt;
6437
6438         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6439         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6440         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6441         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6442         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6443         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6444
6445         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6446         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6447
6448         kvm_x86_ops->get_idt(vcpu, &dt);
6449         sregs->idt.limit = dt.size;
6450         sregs->idt.base = dt.address;
6451         kvm_x86_ops->get_gdt(vcpu, &dt);
6452         sregs->gdt.limit = dt.size;
6453         sregs->gdt.base = dt.address;
6454
6455         sregs->cr0 = kvm_read_cr0(vcpu);
6456         sregs->cr2 = vcpu->arch.cr2;
6457         sregs->cr3 = kvm_read_cr3(vcpu);
6458         sregs->cr4 = kvm_read_cr4(vcpu);
6459         sregs->cr8 = kvm_get_cr8(vcpu);
6460         sregs->efer = vcpu->arch.efer;
6461         sregs->apic_base = kvm_get_apic_base(vcpu);
6462
6463         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6464
6465         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6466                 set_bit(vcpu->arch.interrupt.nr,
6467                         (unsigned long *)sregs->interrupt_bitmap);
6468
6469         return 0;
6470 }
6471
6472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6473                                     struct kvm_mp_state *mp_state)
6474 {
6475         kvm_apic_accept_events(vcpu);
6476         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6477                                         vcpu->arch.pv.pv_unhalted)
6478                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6479         else
6480                 mp_state->mp_state = vcpu->arch.mp_state;
6481
6482         return 0;
6483 }
6484
6485 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6486                                     struct kvm_mp_state *mp_state)
6487 {
6488         if (!kvm_vcpu_has_lapic(vcpu) &&
6489             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6490                 return -EINVAL;
6491
6492         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6493                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6494                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6495         } else
6496                 vcpu->arch.mp_state = mp_state->mp_state;
6497         kvm_make_request(KVM_REQ_EVENT, vcpu);
6498         return 0;
6499 }
6500
6501 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6502                     int reason, bool has_error_code, u32 error_code)
6503 {
6504         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6505         int ret;
6506
6507         init_emulate_ctxt(vcpu);
6508
6509         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6510                                    has_error_code, error_code);
6511
6512         if (ret)
6513                 return EMULATE_FAIL;
6514
6515         kvm_rip_write(vcpu, ctxt->eip);
6516         kvm_set_rflags(vcpu, ctxt->eflags);
6517         kvm_make_request(KVM_REQ_EVENT, vcpu);
6518         return EMULATE_DONE;
6519 }
6520 EXPORT_SYMBOL_GPL(kvm_task_switch);
6521
6522 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6523                                   struct kvm_sregs *sregs)
6524 {
6525         struct msr_data apic_base_msr;
6526         int mmu_reset_needed = 0;
6527         int pending_vec, max_bits, idx;
6528         struct desc_ptr dt;
6529
6530         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6531                 return -EINVAL;
6532
6533         dt.size = sregs->idt.limit;
6534         dt.address = sregs->idt.base;
6535         kvm_x86_ops->set_idt(vcpu, &dt);
6536         dt.size = sregs->gdt.limit;
6537         dt.address = sregs->gdt.base;
6538         kvm_x86_ops->set_gdt(vcpu, &dt);
6539
6540         vcpu->arch.cr2 = sregs->cr2;
6541         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6542         vcpu->arch.cr3 = sregs->cr3;
6543         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6544
6545         kvm_set_cr8(vcpu, sregs->cr8);
6546
6547         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6548         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6549         apic_base_msr.data = sregs->apic_base;
6550         apic_base_msr.host_initiated = true;
6551         kvm_set_apic_base(vcpu, &apic_base_msr);
6552
6553         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6554         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6555         vcpu->arch.cr0 = sregs->cr0;
6556
6557         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6558         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6559         if (sregs->cr4 & X86_CR4_OSXSAVE)
6560                 kvm_update_cpuid(vcpu);
6561
6562         idx = srcu_read_lock(&vcpu->kvm->srcu);
6563         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6564                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6565                 mmu_reset_needed = 1;
6566         }
6567         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6568
6569         if (mmu_reset_needed)
6570                 kvm_mmu_reset_context(vcpu);
6571
6572         max_bits = KVM_NR_INTERRUPTS;
6573         pending_vec = find_first_bit(
6574                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6575         if (pending_vec < max_bits) {
6576                 kvm_queue_interrupt(vcpu, pending_vec, false);
6577                 pr_debug("Set back pending irq %d\n", pending_vec);
6578         }
6579
6580         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6581         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6582         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6583         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6584         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6585         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6586
6587         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6588         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6589
6590         update_cr8_intercept(vcpu);
6591
6592         /* Older userspace won't unhalt the vcpu on reset. */
6593         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6594             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6595             !is_protmode(vcpu))
6596                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6597
6598         kvm_make_request(KVM_REQ_EVENT, vcpu);
6599
6600         return 0;
6601 }
6602
6603 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6604                                         struct kvm_guest_debug *dbg)
6605 {
6606         unsigned long rflags;
6607         int i, r;
6608
6609         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6610                 r = -EBUSY;
6611                 if (vcpu->arch.exception.pending)
6612                         goto out;
6613                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6614                         kvm_queue_exception(vcpu, DB_VECTOR);
6615                 else
6616                         kvm_queue_exception(vcpu, BP_VECTOR);
6617         }
6618
6619         /*
6620          * Read rflags as long as potentially injected trace flags are still
6621          * filtered out.
6622          */
6623         rflags = kvm_get_rflags(vcpu);
6624
6625         vcpu->guest_debug = dbg->control;
6626         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6627                 vcpu->guest_debug = 0;
6628
6629         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6630                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6631                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6632                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6633         } else {
6634                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6635                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6636         }
6637         kvm_update_dr7(vcpu);
6638
6639         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6640                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6641                         get_segment_base(vcpu, VCPU_SREG_CS);
6642
6643         /*
6644          * Trigger an rflags update that will inject or remove the trace
6645          * flags.
6646          */
6647         kvm_set_rflags(vcpu, rflags);
6648
6649         kvm_x86_ops->update_db_bp_intercept(vcpu);
6650
6651         r = 0;
6652
6653 out:
6654
6655         return r;
6656 }
6657
6658 /*
6659  * Translate a guest virtual address to a guest physical address.
6660  */
6661 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6662                                     struct kvm_translation *tr)
6663 {
6664         unsigned long vaddr = tr->linear_address;
6665         gpa_t gpa;
6666         int idx;
6667
6668         idx = srcu_read_lock(&vcpu->kvm->srcu);
6669         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6670         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6671         tr->physical_address = gpa;
6672         tr->valid = gpa != UNMAPPED_GVA;
6673         tr->writeable = 1;
6674         tr->usermode = 0;
6675
6676         return 0;
6677 }
6678
6679 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6680 {
6681         struct i387_fxsave_struct *fxsave =
6682                         &vcpu->arch.guest_fpu.state->fxsave;
6683
6684         memcpy(fpu->fpr, fxsave->st_space, 128);
6685         fpu->fcw = fxsave->cwd;
6686         fpu->fsw = fxsave->swd;
6687         fpu->ftwx = fxsave->twd;
6688         fpu->last_opcode = fxsave->fop;
6689         fpu->last_ip = fxsave->rip;
6690         fpu->last_dp = fxsave->rdp;
6691         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6692
6693         return 0;
6694 }
6695
6696 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6697 {
6698         struct i387_fxsave_struct *fxsave =
6699                         &vcpu->arch.guest_fpu.state->fxsave;
6700
6701         memcpy(fxsave->st_space, fpu->fpr, 128);
6702         fxsave->cwd = fpu->fcw;
6703         fxsave->swd = fpu->fsw;
6704         fxsave->twd = fpu->ftwx;
6705         fxsave->fop = fpu->last_opcode;
6706         fxsave->rip = fpu->last_ip;
6707         fxsave->rdp = fpu->last_dp;
6708         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6709
6710         return 0;
6711 }
6712
6713 int fx_init(struct kvm_vcpu *vcpu)
6714 {
6715         int err;
6716
6717         err = fpu_alloc(&vcpu->arch.guest_fpu);
6718         if (err)
6719                 return err;
6720
6721         fpu_finit(&vcpu->arch.guest_fpu);
6722
6723         /*
6724          * Ensure guest xcr0 is valid for loading
6725          */
6726         vcpu->arch.xcr0 = XSTATE_FP;
6727
6728         vcpu->arch.cr0 |= X86_CR0_ET;
6729
6730         return 0;
6731 }
6732 EXPORT_SYMBOL_GPL(fx_init);
6733
6734 static void fx_free(struct kvm_vcpu *vcpu)
6735 {
6736         fpu_free(&vcpu->arch.guest_fpu);
6737 }
6738
6739 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6740 {
6741         if (vcpu->guest_fpu_loaded)
6742                 return;
6743
6744         /*
6745          * Restore all possible states in the guest,
6746          * and assume host would use all available bits.
6747          * Guest xcr0 would be loaded later.
6748          */
6749         kvm_put_guest_xcr0(vcpu);
6750         vcpu->guest_fpu_loaded = 1;
6751         __kernel_fpu_begin();
6752         fpu_restore_checking(&vcpu->arch.guest_fpu);
6753         trace_kvm_fpu(1);
6754 }
6755
6756 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6757 {
6758         kvm_put_guest_xcr0(vcpu);
6759
6760         if (!vcpu->guest_fpu_loaded)
6761                 return;
6762
6763         vcpu->guest_fpu_loaded = 0;
6764         fpu_save_init(&vcpu->arch.guest_fpu);
6765         __kernel_fpu_end();
6766         ++vcpu->stat.fpu_reload;
6767         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6768         trace_kvm_fpu(0);
6769 }
6770
6771 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6772 {
6773         kvmclock_reset(vcpu);
6774
6775         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6776         fx_free(vcpu);
6777         kvm_x86_ops->vcpu_free(vcpu);
6778 }
6779
6780 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6781                                                 unsigned int id)
6782 {
6783         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6784                 printk_once(KERN_WARNING
6785                 "kvm: SMP vm created on host with unstable TSC; "
6786                 "guest TSC will not be reliable\n");
6787         return kvm_x86_ops->vcpu_create(kvm, id);
6788 }
6789
6790 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6791 {
6792         int r;
6793
6794         vcpu->arch.mtrr_state.have_fixed = 1;
6795         r = vcpu_load(vcpu);
6796         if (r)
6797                 return r;
6798         kvm_vcpu_reset(vcpu);
6799         kvm_mmu_setup(vcpu);
6800         vcpu_put(vcpu);
6801
6802         return r;
6803 }
6804
6805 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6806 {
6807         int r;
6808         struct msr_data msr;
6809         struct kvm *kvm = vcpu->kvm;
6810
6811         r = vcpu_load(vcpu);
6812         if (r)
6813                 return r;
6814         msr.data = 0x0;
6815         msr.index = MSR_IA32_TSC;
6816         msr.host_initiated = true;
6817         kvm_write_tsc(vcpu, &msr);
6818         vcpu_put(vcpu);
6819
6820         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6821                                         KVMCLOCK_SYNC_PERIOD);
6822
6823         return r;
6824 }
6825
6826 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6827 {
6828         int r;
6829         vcpu->arch.apf.msr_val = 0;
6830
6831         r = vcpu_load(vcpu);
6832         BUG_ON(r);
6833         kvm_mmu_unload(vcpu);
6834         vcpu_put(vcpu);
6835
6836         fx_free(vcpu);
6837         kvm_x86_ops->vcpu_free(vcpu);
6838 }
6839
6840 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6841 {
6842         atomic_set(&vcpu->arch.nmi_queued, 0);
6843         vcpu->arch.nmi_pending = 0;
6844         vcpu->arch.nmi_injected = false;
6845
6846         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6847         vcpu->arch.dr6 = DR6_FIXED_1;
6848         kvm_update_dr6(vcpu);
6849         vcpu->arch.dr7 = DR7_FIXED_1;
6850         kvm_update_dr7(vcpu);
6851
6852         kvm_make_request(KVM_REQ_EVENT, vcpu);
6853         vcpu->arch.apf.msr_val = 0;
6854         vcpu->arch.st.msr_val = 0;
6855
6856         kvmclock_reset(vcpu);
6857
6858         kvm_clear_async_pf_completion_queue(vcpu);
6859         kvm_async_pf_hash_reset(vcpu);
6860         vcpu->arch.apf.halted = false;
6861
6862         kvm_pmu_reset(vcpu);
6863
6864         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6865         vcpu->arch.regs_avail = ~0;
6866         vcpu->arch.regs_dirty = ~0;
6867
6868         kvm_x86_ops->vcpu_reset(vcpu);
6869 }
6870
6871 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6872 {
6873         struct kvm_segment cs;
6874
6875         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6876         cs.selector = vector << 8;
6877         cs.base = vector << 12;
6878         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6879         kvm_rip_write(vcpu, 0);
6880 }
6881
6882 int kvm_arch_hardware_enable(void *garbage)
6883 {
6884         struct kvm *kvm;
6885         struct kvm_vcpu *vcpu;
6886         int i;
6887         int ret;
6888         u64 local_tsc;
6889         u64 max_tsc = 0;
6890         bool stable, backwards_tsc = false;
6891
6892         kvm_shared_msr_cpu_online();
6893         ret = kvm_x86_ops->hardware_enable(garbage);
6894         if (ret != 0)
6895                 return ret;
6896
6897         local_tsc = native_read_tsc();
6898         stable = !check_tsc_unstable();
6899         list_for_each_entry(kvm, &vm_list, vm_list) {
6900                 kvm_for_each_vcpu(i, vcpu, kvm) {
6901                         if (!stable && vcpu->cpu == smp_processor_id())
6902                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6903                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6904                                 backwards_tsc = true;
6905                                 if (vcpu->arch.last_host_tsc > max_tsc)
6906                                         max_tsc = vcpu->arch.last_host_tsc;
6907                         }
6908                 }
6909         }
6910
6911         /*
6912          * Sometimes, even reliable TSCs go backwards.  This happens on
6913          * platforms that reset TSC during suspend or hibernate actions, but
6914          * maintain synchronization.  We must compensate.  Fortunately, we can
6915          * detect that condition here, which happens early in CPU bringup,
6916          * before any KVM threads can be running.  Unfortunately, we can't
6917          * bring the TSCs fully up to date with real time, as we aren't yet far
6918          * enough into CPU bringup that we know how much real time has actually
6919          * elapsed; our helper function, get_kernel_ns() will be using boot
6920          * variables that haven't been updated yet.
6921          *
6922          * So we simply find the maximum observed TSC above, then record the
6923          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6924          * the adjustment will be applied.  Note that we accumulate
6925          * adjustments, in case multiple suspend cycles happen before some VCPU
6926          * gets a chance to run again.  In the event that no KVM threads get a
6927          * chance to run, we will miss the entire elapsed period, as we'll have
6928          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6929          * loose cycle time.  This isn't too big a deal, since the loss will be
6930          * uniform across all VCPUs (not to mention the scenario is extremely
6931          * unlikely). It is possible that a second hibernate recovery happens
6932          * much faster than a first, causing the observed TSC here to be
6933          * smaller; this would require additional padding adjustment, which is
6934          * why we set last_host_tsc to the local tsc observed here.
6935          *
6936          * N.B. - this code below runs only on platforms with reliable TSC,
6937          * as that is the only way backwards_tsc is set above.  Also note
6938          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6939          * have the same delta_cyc adjustment applied if backwards_tsc
6940          * is detected.  Note further, this adjustment is only done once,
6941          * as we reset last_host_tsc on all VCPUs to stop this from being
6942          * called multiple times (one for each physical CPU bringup).
6943          *
6944          * Platforms with unreliable TSCs don't have to deal with this, they
6945          * will be compensated by the logic in vcpu_load, which sets the TSC to
6946          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6947          * guarantee that they stay in perfect synchronization.
6948          */
6949         if (backwards_tsc) {
6950                 u64 delta_cyc = max_tsc - local_tsc;
6951                 backwards_tsc_observed = true;
6952                 list_for_each_entry(kvm, &vm_list, vm_list) {
6953                         kvm_for_each_vcpu(i, vcpu, kvm) {
6954                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6955                                 vcpu->arch.last_host_tsc = local_tsc;
6956                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6957                                         &vcpu->requests);
6958                         }
6959
6960                         /*
6961                          * We have to disable TSC offset matching.. if you were
6962                          * booting a VM while issuing an S4 host suspend....
6963                          * you may have some problem.  Solving this issue is
6964                          * left as an exercise to the reader.
6965                          */
6966                         kvm->arch.last_tsc_nsec = 0;
6967                         kvm->arch.last_tsc_write = 0;
6968                 }
6969
6970         }
6971         return 0;
6972 }
6973
6974 void kvm_arch_hardware_disable(void *garbage)
6975 {
6976         kvm_x86_ops->hardware_disable(garbage);
6977         drop_user_return_notifiers(garbage);
6978 }
6979
6980 int kvm_arch_hardware_setup(void)
6981 {
6982         return kvm_x86_ops->hardware_setup();
6983 }
6984
6985 void kvm_arch_hardware_unsetup(void)
6986 {
6987         kvm_x86_ops->hardware_unsetup();
6988 }
6989
6990 void kvm_arch_check_processor_compat(void *rtn)
6991 {
6992         kvm_x86_ops->check_processor_compatibility(rtn);
6993 }
6994
6995 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6996 {
6997         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6998 }
6999
7000 struct static_key kvm_no_apic_vcpu __read_mostly;
7001
7002 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7003 {
7004         struct page *page;
7005         struct kvm *kvm;
7006         int r;
7007
7008         BUG_ON(vcpu->kvm == NULL);
7009         kvm = vcpu->kvm;
7010
7011         vcpu->arch.pv.pv_unhalted = false;
7012         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7013         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7014                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7015         else
7016                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7017
7018         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7019         if (!page) {
7020                 r = -ENOMEM;
7021                 goto fail;
7022         }
7023         vcpu->arch.pio_data = page_address(page);
7024
7025         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7026
7027         r = kvm_mmu_create(vcpu);
7028         if (r < 0)
7029                 goto fail_free_pio_data;
7030
7031         if (irqchip_in_kernel(kvm)) {
7032                 r = kvm_create_lapic(vcpu);
7033                 if (r < 0)
7034                         goto fail_mmu_destroy;
7035         } else
7036                 static_key_slow_inc(&kvm_no_apic_vcpu);
7037
7038         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7039                                        GFP_KERNEL);
7040         if (!vcpu->arch.mce_banks) {
7041                 r = -ENOMEM;
7042                 goto fail_free_lapic;
7043         }
7044         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7045
7046         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7047                 r = -ENOMEM;
7048                 goto fail_free_mce_banks;
7049         }
7050
7051         r = fx_init(vcpu);
7052         if (r)
7053                 goto fail_free_wbinvd_dirty_mask;
7054
7055         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7056         vcpu->arch.pv_time_enabled = false;
7057
7058         vcpu->arch.guest_supported_xcr0 = 0;
7059         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7060
7061         kvm_async_pf_hash_reset(vcpu);
7062         kvm_pmu_init(vcpu);
7063
7064         return 0;
7065 fail_free_wbinvd_dirty_mask:
7066         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7067 fail_free_mce_banks:
7068         kfree(vcpu->arch.mce_banks);
7069 fail_free_lapic:
7070         kvm_free_lapic(vcpu);
7071 fail_mmu_destroy:
7072         kvm_mmu_destroy(vcpu);
7073 fail_free_pio_data:
7074         free_page((unsigned long)vcpu->arch.pio_data);
7075 fail:
7076         return r;
7077 }
7078
7079 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7080 {
7081         int idx;
7082
7083         kvm_pmu_destroy(vcpu);
7084         kfree(vcpu->arch.mce_banks);
7085         kvm_free_lapic(vcpu);
7086         idx = srcu_read_lock(&vcpu->kvm->srcu);
7087         kvm_mmu_destroy(vcpu);
7088         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7089         free_page((unsigned long)vcpu->arch.pio_data);
7090         if (!irqchip_in_kernel(vcpu->kvm))
7091                 static_key_slow_dec(&kvm_no_apic_vcpu);
7092 }
7093
7094 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7095 {
7096         if (type)
7097                 return -EINVAL;
7098
7099         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7100         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7101         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7102         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7103
7104         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7105         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7106         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7107         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7108                 &kvm->arch.irq_sources_bitmap);
7109
7110         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7111         mutex_init(&kvm->arch.apic_map_lock);
7112         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7113
7114         pvclock_update_vm_gtod_copy(kvm);
7115
7116         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7117         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7118
7119         return 0;
7120 }
7121
7122 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7123 {
7124         int r;
7125         r = vcpu_load(vcpu);
7126         BUG_ON(r);
7127         kvm_mmu_unload(vcpu);
7128         vcpu_put(vcpu);
7129 }
7130
7131 static void kvm_free_vcpus(struct kvm *kvm)
7132 {
7133         unsigned int i;
7134         struct kvm_vcpu *vcpu;
7135
7136         /*
7137          * Unpin any mmu pages first.
7138          */
7139         kvm_for_each_vcpu(i, vcpu, kvm) {
7140                 kvm_clear_async_pf_completion_queue(vcpu);
7141                 kvm_unload_vcpu_mmu(vcpu);
7142         }
7143         kvm_for_each_vcpu(i, vcpu, kvm)
7144                 kvm_arch_vcpu_free(vcpu);
7145
7146         mutex_lock(&kvm->lock);
7147         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7148                 kvm->vcpus[i] = NULL;
7149
7150         atomic_set(&kvm->online_vcpus, 0);
7151         mutex_unlock(&kvm->lock);
7152 }
7153
7154 void kvm_arch_sync_events(struct kvm *kvm)
7155 {
7156         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7157         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7158         kvm_free_all_assigned_devices(kvm);
7159         kvm_free_pit(kvm);
7160 }
7161
7162 void kvm_arch_destroy_vm(struct kvm *kvm)
7163 {
7164         if (current->mm == kvm->mm) {
7165                 /*
7166                  * Free memory regions allocated on behalf of userspace,
7167                  * unless the the memory map has changed due to process exit
7168                  * or fd copying.
7169                  */
7170                 struct kvm_userspace_memory_region mem;
7171                 memset(&mem, 0, sizeof(mem));
7172                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7173                 kvm_set_memory_region(kvm, &mem);
7174
7175                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7176                 kvm_set_memory_region(kvm, &mem);
7177
7178                 mem.slot = TSS_PRIVATE_MEMSLOT;
7179                 kvm_set_memory_region(kvm, &mem);
7180         }
7181         kvm_iommu_unmap_guest(kvm);
7182         kfree(kvm->arch.vpic);
7183         kfree(kvm->arch.vioapic);
7184         kvm_free_vcpus(kvm);
7185         if (kvm->arch.apic_access_page)
7186                 put_page(kvm->arch.apic_access_page);
7187         if (kvm->arch.ept_identity_pagetable)
7188                 put_page(kvm->arch.ept_identity_pagetable);
7189         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7190 }
7191
7192 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7193                            struct kvm_memory_slot *dont)
7194 {
7195         int i;
7196
7197         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7198                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7199                         kvm_kvfree(free->arch.rmap[i]);
7200                         free->arch.rmap[i] = NULL;
7201                 }
7202                 if (i == 0)
7203                         continue;
7204
7205                 if (!dont || free->arch.lpage_info[i - 1] !=
7206                              dont->arch.lpage_info[i - 1]) {
7207                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7208                         free->arch.lpage_info[i - 1] = NULL;
7209                 }
7210         }
7211 }
7212
7213 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7214                             unsigned long npages)
7215 {
7216         int i;
7217
7218         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7219                 unsigned long ugfn;
7220                 int lpages;
7221                 int level = i + 1;
7222
7223                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7224                                       slot->base_gfn, level) + 1;
7225
7226                 slot->arch.rmap[i] =
7227                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7228                 if (!slot->arch.rmap[i])
7229                         goto out_free;
7230                 if (i == 0)
7231                         continue;
7232
7233                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7234                                         sizeof(*slot->arch.lpage_info[i - 1]));
7235                 if (!slot->arch.lpage_info[i - 1])
7236                         goto out_free;
7237
7238                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7239                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7240                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7241                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7242                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7243                 /*
7244                  * If the gfn and userspace address are not aligned wrt each
7245                  * other, or if explicitly asked to, disable large page
7246                  * support for this slot
7247                  */
7248                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7249                     !kvm_largepages_enabled()) {
7250                         unsigned long j;
7251
7252                         for (j = 0; j < lpages; ++j)
7253                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7254                 }
7255         }
7256
7257         return 0;
7258
7259 out_free:
7260         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7261                 kvm_kvfree(slot->arch.rmap[i]);
7262                 slot->arch.rmap[i] = NULL;
7263                 if (i == 0)
7264                         continue;
7265
7266                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7267                 slot->arch.lpage_info[i - 1] = NULL;
7268         }
7269         return -ENOMEM;
7270 }
7271
7272 void kvm_arch_memslots_updated(struct kvm *kvm)
7273 {
7274         /*
7275          * memslots->generation has been incremented.
7276          * mmio generation may have reached its maximum value.
7277          */
7278         kvm_mmu_invalidate_mmio_sptes(kvm);
7279 }
7280
7281 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7282                                 struct kvm_memory_slot *memslot,
7283                                 struct kvm_userspace_memory_region *mem,
7284                                 enum kvm_mr_change change)
7285 {
7286         /*
7287          * Only private memory slots need to be mapped here since
7288          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7289          */
7290         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7291                 unsigned long userspace_addr;
7292
7293                 /*
7294                  * MAP_SHARED to prevent internal slot pages from being moved
7295                  * by fork()/COW.
7296                  */
7297                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7298                                          PROT_READ | PROT_WRITE,
7299                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7300
7301                 if (IS_ERR((void *)userspace_addr))
7302                         return PTR_ERR((void *)userspace_addr);
7303
7304                 memslot->userspace_addr = userspace_addr;
7305         }
7306
7307         return 0;
7308 }
7309
7310 void kvm_arch_commit_memory_region(struct kvm *kvm,
7311                                 struct kvm_userspace_memory_region *mem,
7312                                 const struct kvm_memory_slot *old,
7313                                 enum kvm_mr_change change)
7314 {
7315
7316         int nr_mmu_pages = 0;
7317
7318         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7319                 int ret;
7320
7321                 ret = vm_munmap(old->userspace_addr,
7322                                 old->npages * PAGE_SIZE);
7323                 if (ret < 0)
7324                         printk(KERN_WARNING
7325                                "kvm_vm_ioctl_set_memory_region: "
7326                                "failed to munmap memory\n");
7327         }
7328
7329         if (!kvm->arch.n_requested_mmu_pages)
7330                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7331
7332         if (nr_mmu_pages)
7333                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7334         /*
7335          * Write protect all pages for dirty logging.
7336          * Existing largepage mappings are destroyed here and new ones will
7337          * not be created until the end of the logging.
7338          */
7339         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7340                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7341 }
7342
7343 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7344 {
7345         kvm_mmu_invalidate_zap_all_pages(kvm);
7346 }
7347
7348 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7349                                    struct kvm_memory_slot *slot)
7350 {
7351         kvm_mmu_invalidate_zap_all_pages(kvm);
7352 }
7353
7354 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7355 {
7356         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7357                 kvm_x86_ops->check_nested_events(vcpu, false);
7358
7359         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7360                 !vcpu->arch.apf.halted)
7361                 || !list_empty_careful(&vcpu->async_pf.done)
7362                 || kvm_apic_has_events(vcpu)
7363                 || vcpu->arch.pv.pv_unhalted
7364                 || atomic_read(&vcpu->arch.nmi_queued) ||
7365                 (kvm_arch_interrupt_allowed(vcpu) &&
7366                  kvm_cpu_has_interrupt(vcpu));
7367 }
7368
7369 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7370 {
7371         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7372 }
7373
7374 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7375 {
7376         return kvm_x86_ops->interrupt_allowed(vcpu);
7377 }
7378
7379 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7380 {
7381         unsigned long current_rip = kvm_rip_read(vcpu) +
7382                 get_segment_base(vcpu, VCPU_SREG_CS);
7383
7384         return current_rip == linear_rip;
7385 }
7386 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7387
7388 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7389 {
7390         unsigned long rflags;
7391
7392         rflags = kvm_x86_ops->get_rflags(vcpu);
7393         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7394                 rflags &= ~X86_EFLAGS_TF;
7395         return rflags;
7396 }
7397 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7398
7399 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7400 {
7401         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7402             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7403                 rflags |= X86_EFLAGS_TF;
7404         kvm_x86_ops->set_rflags(vcpu, rflags);
7405         kvm_make_request(KVM_REQ_EVENT, vcpu);
7406 }
7407 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7408
7409 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7410 {
7411         int r;
7412
7413         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7414               work->wakeup_all)
7415                 return;
7416
7417         r = kvm_mmu_reload(vcpu);
7418         if (unlikely(r))
7419                 return;
7420
7421         if (!vcpu->arch.mmu.direct_map &&
7422               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7423                 return;
7424
7425         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7426 }
7427
7428 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7429 {
7430         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7431 }
7432
7433 static inline u32 kvm_async_pf_next_probe(u32 key)
7434 {
7435         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7436 }
7437
7438 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7439 {
7440         u32 key = kvm_async_pf_hash_fn(gfn);
7441
7442         while (vcpu->arch.apf.gfns[key] != ~0)
7443                 key = kvm_async_pf_next_probe(key);
7444
7445         vcpu->arch.apf.gfns[key] = gfn;
7446 }
7447
7448 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7449 {
7450         int i;
7451         u32 key = kvm_async_pf_hash_fn(gfn);
7452
7453         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7454                      (vcpu->arch.apf.gfns[key] != gfn &&
7455                       vcpu->arch.apf.gfns[key] != ~0); i++)
7456                 key = kvm_async_pf_next_probe(key);
7457
7458         return key;
7459 }
7460
7461 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7462 {
7463         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7464 }
7465
7466 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7467 {
7468         u32 i, j, k;
7469
7470         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7471         while (true) {
7472                 vcpu->arch.apf.gfns[i] = ~0;
7473                 do {
7474                         j = kvm_async_pf_next_probe(j);
7475                         if (vcpu->arch.apf.gfns[j] == ~0)
7476                                 return;
7477                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7478                         /*
7479                          * k lies cyclically in ]i,j]
7480                          * |    i.k.j |
7481                          * |....j i.k.| or  |.k..j i...|
7482                          */
7483                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7484                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7485                 i = j;
7486         }
7487 }
7488
7489 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7490 {
7491
7492         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7493                                       sizeof(val));
7494 }
7495
7496 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7497                                      struct kvm_async_pf *work)
7498 {
7499         struct x86_exception fault;
7500
7501         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7502         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7503
7504         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7505             (vcpu->arch.apf.send_user_only &&
7506              kvm_x86_ops->get_cpl(vcpu) == 0))
7507                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7508         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7509                 fault.vector = PF_VECTOR;
7510                 fault.error_code_valid = true;
7511                 fault.error_code = 0;
7512                 fault.nested_page_fault = false;
7513                 fault.address = work->arch.token;
7514                 kvm_inject_page_fault(vcpu, &fault);
7515         }
7516 }
7517
7518 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7519                                  struct kvm_async_pf *work)
7520 {
7521         struct x86_exception fault;
7522
7523         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7524         if (work->wakeup_all)
7525                 work->arch.token = ~0; /* broadcast wakeup */
7526         else
7527                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7528
7529         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7530             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7531                 fault.vector = PF_VECTOR;
7532                 fault.error_code_valid = true;
7533                 fault.error_code = 0;
7534                 fault.nested_page_fault = false;
7535                 fault.address = work->arch.token;
7536                 kvm_inject_page_fault(vcpu, &fault);
7537         }
7538         vcpu->arch.apf.halted = false;
7539         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7540 }
7541
7542 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7543 {
7544         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7545                 return true;
7546         else
7547                 return !kvm_event_needs_reinjection(vcpu) &&
7548                         kvm_x86_ops->interrupt_allowed(vcpu);
7549 }
7550
7551 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7552 {
7553         atomic_inc(&kvm->arch.noncoherent_dma_count);
7554 }
7555 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7556
7557 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7558 {
7559         atomic_dec(&kvm->arch.noncoherent_dma_count);
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7562
7563 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7564 {
7565         return atomic_read(&kvm->arch.noncoherent_dma_count);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7568
7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);