]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
Merge branch 'linus' into x86/bootmem
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
34
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54
55 static int __init parse_direct_gbpages_off(char *arg)
56 {
57         direct_gbpages = 0;
58         return 0;
59 }
60 early_param("nogbpages", parse_direct_gbpages_off);
61
62 static int __init parse_direct_gbpages_on(char *arg)
63 {
64         direct_gbpages = 1;
65         return 0;
66 }
67 early_param("gbpages", parse_direct_gbpages_on);
68
69 /*
70  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71  * physical space so we can cache the place of the first one and move
72  * around without checking the pgd every time.
73  */
74
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
77
78 int force_personality32;
79
80 /*
81  * noexec32=on|off
82  * Control non executable heap for 32bit processes.
83  * To control the stack too use noexec=off
84  *
85  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86  * off  PROT_READ implies PROT_EXEC
87  */
88 static int __init nonx32_setup(char *str)
89 {
90         if (!strcmp(str, "on"))
91                 force_personality32 &= ~READ_IMPLIES_EXEC;
92         else if (!strcmp(str, "off"))
93                 force_personality32 |= READ_IMPLIES_EXEC;
94         return 1;
95 }
96 __setup("noexec32=", nonx32_setup);
97
98 /*
99  * When memory was added/removed make sure all the processes MM have
100  * suitable PGD entries in the local PGD level page.
101  */
102 void sync_global_pgds(unsigned long start, unsigned long end)
103 {
104         unsigned long address;
105
106         for (address = start; address <= end; address += PGDIR_SIZE) {
107                 const pgd_t *pgd_ref = pgd_offset_k(address);
108                 unsigned long flags;
109                 struct page *page;
110
111                 if (pgd_none(*pgd_ref))
112                         continue;
113
114                 spin_lock_irqsave(&pgd_lock, flags);
115                 list_for_each_entry(page, &pgd_list, lru) {
116                         pgd_t *pgd;
117                         spinlock_t *pgt_lock;
118
119                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
120                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
121                         spin_lock(pgt_lock);
122
123                         if (pgd_none(*pgd))
124                                 set_pgd(pgd, *pgd_ref);
125                         else
126                                 BUG_ON(pgd_page_vaddr(*pgd)
127                                        != pgd_page_vaddr(*pgd_ref));
128
129                         spin_unlock(pgt_lock);
130                 }
131                 spin_unlock_irqrestore(&pgd_lock, flags);
132         }
133 }
134
135 /*
136  * NOTE: This function is marked __ref because it calls __init function
137  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
138  */
139 static __ref void *spp_getpage(void)
140 {
141         void *ptr;
142
143         if (after_bootmem)
144                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
145         else
146                 ptr = alloc_bootmem_pages(PAGE_SIZE);
147
148         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
149                 panic("set_pte_phys: cannot allocate page data %s\n",
150                         after_bootmem ? "after bootmem" : "");
151         }
152
153         pr_debug("spp_getpage %p\n", ptr);
154
155         return ptr;
156 }
157
158 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
159 {
160         if (pgd_none(*pgd)) {
161                 pud_t *pud = (pud_t *)spp_getpage();
162                 pgd_populate(&init_mm, pgd, pud);
163                 if (pud != pud_offset(pgd, 0))
164                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
165                                pud, pud_offset(pgd, 0));
166         }
167         return pud_offset(pgd, vaddr);
168 }
169
170 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
171 {
172         if (pud_none(*pud)) {
173                 pmd_t *pmd = (pmd_t *) spp_getpage();
174                 pud_populate(&init_mm, pud, pmd);
175                 if (pmd != pmd_offset(pud, 0))
176                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177                                pmd, pmd_offset(pud, 0));
178         }
179         return pmd_offset(pud, vaddr);
180 }
181
182 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
183 {
184         if (pmd_none(*pmd)) {
185                 pte_t *pte = (pte_t *) spp_getpage();
186                 pmd_populate_kernel(&init_mm, pmd, pte);
187                 if (pte != pte_offset_kernel(pmd, 0))
188                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
189         }
190         return pte_offset_kernel(pmd, vaddr);
191 }
192
193 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
194 {
195         pud_t *pud;
196         pmd_t *pmd;
197         pte_t *pte;
198
199         pud = pud_page + pud_index(vaddr);
200         pmd = fill_pmd(pud, vaddr);
201         pte = fill_pte(pmd, vaddr);
202
203         set_pte(pte, new_pte);
204
205         /*
206          * It's enough to flush this one mapping.
207          * (PGE mappings get flushed as well)
208          */
209         __flush_tlb_one(vaddr);
210 }
211
212 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
213 {
214         pgd_t *pgd;
215         pud_t *pud_page;
216
217         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
218
219         pgd = pgd_offset_k(vaddr);
220         if (pgd_none(*pgd)) {
221                 printk(KERN_ERR
222                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
223                 return;
224         }
225         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226         set_pte_vaddr_pud(pud_page, vaddr, pteval);
227 }
228
229 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
230 {
231         pgd_t *pgd;
232         pud_t *pud;
233
234         pgd = pgd_offset_k(vaddr);
235         pud = fill_pud(pgd, vaddr);
236         return fill_pmd(pud, vaddr);
237 }
238
239 pte_t * __init populate_extra_pte(unsigned long vaddr)
240 {
241         pmd_t *pmd;
242
243         pmd = populate_extra_pmd(vaddr);
244         return fill_pte(pmd, vaddr);
245 }
246
247 /*
248  * Create large page table mappings for a range of physical addresses.
249  */
250 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
251                                                 pgprot_t prot)
252 {
253         pgd_t *pgd;
254         pud_t *pud;
255         pmd_t *pmd;
256
257         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
258         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
259                 pgd = pgd_offset_k((unsigned long)__va(phys));
260                 if (pgd_none(*pgd)) {
261                         pud = (pud_t *) spp_getpage();
262                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
263                                                 _PAGE_USER));
264                 }
265                 pud = pud_offset(pgd, (unsigned long)__va(phys));
266                 if (pud_none(*pud)) {
267                         pmd = (pmd_t *) spp_getpage();
268                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
269                                                 _PAGE_USER));
270                 }
271                 pmd = pmd_offset(pud, phys);
272                 BUG_ON(!pmd_none(*pmd));
273                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
274         }
275 }
276
277 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
278 {
279         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
280 }
281
282 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
283 {
284         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
285 }
286
287 /*
288  * The head.S code sets up the kernel high mapping:
289  *
290  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
291  *
292  * phys_addr holds the negative offset to the kernel, which is added
293  * to the compile time generated pmds. This results in invalid pmds up
294  * to the point where we hit the physaddr 0 mapping.
295  *
296  * We limit the mappings to the region from _text to _end.  _end is
297  * rounded up to the 2MB boundary. This catches the invalid pmds as
298  * well, as they are located before _text:
299  */
300 void __init cleanup_highmap(void)
301 {
302         unsigned long vaddr = __START_KERNEL_map;
303         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
304         pmd_t *pmd = level2_kernel_pgt;
305         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
306
307         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
308                 if (pmd_none(*pmd))
309                         continue;
310                 if (vaddr < (unsigned long) _text || vaddr > end)
311                         set_pmd(pmd, __pmd(0));
312         }
313 }
314
315 static __ref void *alloc_low_page(unsigned long *phys)
316 {
317         unsigned long pfn = e820_table_end++;
318         void *adr;
319
320         if (after_bootmem) {
321                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
322                 *phys = __pa(adr);
323
324                 return adr;
325         }
326
327         if (pfn >= e820_table_top)
328                 panic("alloc_low_page: ran out of memory");
329
330         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
331         clear_page(adr);
332         *phys  = pfn * PAGE_SIZE;
333         return adr;
334 }
335
336 static __ref void *map_low_page(void *virt)
337 {
338         void *adr;
339         unsigned long phys, left;
340
341         if (after_bootmem)
342                 return virt;
343
344         phys = __pa(virt);
345         left = phys & (PAGE_SIZE - 1);
346         adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
347         adr = (void *)(((unsigned long)adr) | left);
348
349         return adr;
350 }
351
352 static __ref void unmap_low_page(void *adr)
353 {
354         if (after_bootmem)
355                 return;
356
357         early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
358 }
359
360 static unsigned long __meminit
361 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
362               pgprot_t prot)
363 {
364         unsigned pages = 0;
365         unsigned long last_map_addr = end;
366         int i;
367
368         pte_t *pte = pte_page + pte_index(addr);
369
370         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
371
372                 if (addr >= end) {
373                         if (!after_bootmem) {
374                                 for(; i < PTRS_PER_PTE; i++, pte++)
375                                         set_pte(pte, __pte(0));
376                         }
377                         break;
378                 }
379
380                 /*
381                  * We will re-use the existing mapping.
382                  * Xen for example has some special requirements, like mapping
383                  * pagetable pages as RO. So assume someone who pre-setup
384                  * these mappings are more intelligent.
385                  */
386                 if (pte_val(*pte)) {
387                         pages++;
388                         continue;
389                 }
390
391                 if (0)
392                         printk("   pte=%p addr=%lx pte=%016lx\n",
393                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
394                 pages++;
395                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
396                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
397         }
398
399         update_page_count(PG_LEVEL_4K, pages);
400
401         return last_map_addr;
402 }
403
404 static unsigned long __meminit
405 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
406               unsigned long page_size_mask, pgprot_t prot)
407 {
408         unsigned long pages = 0;
409         unsigned long last_map_addr = end;
410
411         int i = pmd_index(address);
412
413         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
414                 unsigned long pte_phys;
415                 pmd_t *pmd = pmd_page + pmd_index(address);
416                 pte_t *pte;
417                 pgprot_t new_prot = prot;
418
419                 if (address >= end) {
420                         if (!after_bootmem) {
421                                 for (; i < PTRS_PER_PMD; i++, pmd++)
422                                         set_pmd(pmd, __pmd(0));
423                         }
424                         break;
425                 }
426
427                 if (pmd_val(*pmd)) {
428                         if (!pmd_large(*pmd)) {
429                                 spin_lock(&init_mm.page_table_lock);
430                                 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
431                                 last_map_addr = phys_pte_init(pte, address,
432                                                                 end, prot);
433                                 unmap_low_page(pte);
434                                 spin_unlock(&init_mm.page_table_lock);
435                                 continue;
436                         }
437                         /*
438                          * If we are ok with PG_LEVEL_2M mapping, then we will
439                          * use the existing mapping,
440                          *
441                          * Otherwise, we will split the large page mapping but
442                          * use the same existing protection bits except for
443                          * large page, so that we don't violate Intel's TLB
444                          * Application note (317080) which says, while changing
445                          * the page sizes, new and old translations should
446                          * not differ with respect to page frame and
447                          * attributes.
448                          */
449                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
450                                 pages++;
451                                 continue;
452                         }
453                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
454                 }
455
456                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
457                         pages++;
458                         spin_lock(&init_mm.page_table_lock);
459                         set_pte((pte_t *)pmd,
460                                 pfn_pte(address >> PAGE_SHIFT,
461                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
462                         spin_unlock(&init_mm.page_table_lock);
463                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
464                         continue;
465                 }
466
467                 pte = alloc_low_page(&pte_phys);
468                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
469                 unmap_low_page(pte);
470
471                 spin_lock(&init_mm.page_table_lock);
472                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
473                 spin_unlock(&init_mm.page_table_lock);
474         }
475         update_page_count(PG_LEVEL_2M, pages);
476         return last_map_addr;
477 }
478
479 static unsigned long __meminit
480 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
481                          unsigned long page_size_mask)
482 {
483         unsigned long pages = 0;
484         unsigned long last_map_addr = end;
485         int i = pud_index(addr);
486
487         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
488                 unsigned long pmd_phys;
489                 pud_t *pud = pud_page + pud_index(addr);
490                 pmd_t *pmd;
491                 pgprot_t prot = PAGE_KERNEL;
492
493                 if (addr >= end)
494                         break;
495
496                 if (!after_bootmem &&
497                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
498                         set_pud(pud, __pud(0));
499                         continue;
500                 }
501
502                 if (pud_val(*pud)) {
503                         if (!pud_large(*pud)) {
504                                 pmd = map_low_page(pmd_offset(pud, 0));
505                                 last_map_addr = phys_pmd_init(pmd, addr, end,
506                                                          page_size_mask, prot);
507                                 unmap_low_page(pmd);
508                                 __flush_tlb_all();
509                                 continue;
510                         }
511                         /*
512                          * If we are ok with PG_LEVEL_1G mapping, then we will
513                          * use the existing mapping.
514                          *
515                          * Otherwise, we will split the gbpage mapping but use
516                          * the same existing protection  bits except for large
517                          * page, so that we don't violate Intel's TLB
518                          * Application note (317080) which says, while changing
519                          * the page sizes, new and old translations should
520                          * not differ with respect to page frame and
521                          * attributes.
522                          */
523                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
524                                 pages++;
525                                 continue;
526                         }
527                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
528                 }
529
530                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
531                         pages++;
532                         spin_lock(&init_mm.page_table_lock);
533                         set_pte((pte_t *)pud,
534                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
535                         spin_unlock(&init_mm.page_table_lock);
536                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
537                         continue;
538                 }
539
540                 pmd = alloc_low_page(&pmd_phys);
541                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
542                                               prot);
543                 unmap_low_page(pmd);
544
545                 spin_lock(&init_mm.page_table_lock);
546                 pud_populate(&init_mm, pud, __va(pmd_phys));
547                 spin_unlock(&init_mm.page_table_lock);
548         }
549         __flush_tlb_all();
550
551         update_page_count(PG_LEVEL_1G, pages);
552
553         return last_map_addr;
554 }
555
556 unsigned long __meminit
557 kernel_physical_mapping_init(unsigned long start,
558                              unsigned long end,
559                              unsigned long page_size_mask)
560 {
561         bool pgd_changed = false;
562         unsigned long next, last_map_addr = end;
563         unsigned long addr;
564
565         start = (unsigned long)__va(start);
566         end = (unsigned long)__va(end);
567         addr = start;
568
569         for (; start < end; start = next) {
570                 pgd_t *pgd = pgd_offset_k(start);
571                 unsigned long pud_phys;
572                 pud_t *pud;
573
574                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
575                 if (next > end)
576                         next = end;
577
578                 if (pgd_val(*pgd)) {
579                         pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
580                         last_map_addr = phys_pud_init(pud, __pa(start),
581                                                  __pa(end), page_size_mask);
582                         unmap_low_page(pud);
583                         continue;
584                 }
585
586                 pud = alloc_low_page(&pud_phys);
587                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
588                                                  page_size_mask);
589                 unmap_low_page(pud);
590
591                 spin_lock(&init_mm.page_table_lock);
592                 pgd_populate(&init_mm, pgd, __va(pud_phys));
593                 spin_unlock(&init_mm.page_table_lock);
594                 pgd_changed = true;
595         }
596
597         if (pgd_changed)
598                 sync_global_pgds(addr, end);
599
600         __flush_tlb_all();
601
602         return last_map_addr;
603 }
604
605 #ifndef CONFIG_NUMA
606 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
607                                 int acpi, int k8)
608 {
609         memblock_x86_register_active_regions(0, start_pfn, end_pfn);
610         init_memory_mapping_high();
611 }
612 #endif
613
614 struct mapping_work_data {
615         unsigned long start;
616         unsigned long end;
617         unsigned long pfn_mapped;
618 };
619
620 static int __init_refok
621 mapping_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax)
622 {
623         struct mapping_work_data *data = datax;
624         unsigned long pfn_mapped;
625         unsigned long final_start, final_end;
626
627         final_start = max_t(unsigned long, start_pfn<<PAGE_SHIFT, data->start);
628         final_end = min_t(unsigned long, end_pfn<<PAGE_SHIFT, data->end);
629
630         if (final_end <= final_start)
631                 return 0;
632
633         pfn_mapped = init_memory_mapping(final_start, final_end);
634
635         if (pfn_mapped > data->pfn_mapped)
636                 data->pfn_mapped = pfn_mapped;
637
638         return 0;
639 }
640
641 static unsigned long __init_refok
642 init_memory_mapping_active_regions(unsigned long start, unsigned long end)
643 {
644         struct mapping_work_data data;
645
646         data.start = start;
647         data.end = end;
648         data.pfn_mapped = 0;
649
650         work_with_active_regions(MAX_NUMNODES, mapping_work_fn, &data);
651
652         return data.pfn_mapped;
653 }
654
655 void __init_refok init_memory_mapping_high(void)
656 {
657         if (max_pfn > max_low_pfn) {
658                 max_pfn_mapped = init_memory_mapping_active_regions(1UL<<32,
659                                                          max_pfn<<PAGE_SHIFT);
660                 /* can we preserve max_low_pfn ? */
661                 max_low_pfn = max_pfn;
662
663                 memblock.current_limit = get_max_mapped();
664         }
665 }
666
667 void __init paging_init(void)
668 {
669         unsigned long max_zone_pfns[MAX_NR_ZONES];
670
671         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
672         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
673         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
674         max_zone_pfns[ZONE_NORMAL] = max_pfn;
675
676         sparse_memory_present_with_active_regions(MAX_NUMNODES);
677         sparse_init();
678
679         /*
680          * clear the default setting with node 0
681          * note: don't use nodes_clear here, that is really clearing when
682          *       numa support is not compiled in, and later node_set_state
683          *       will not set it back.
684          */
685         node_clear_state(0, N_NORMAL_MEMORY);
686
687         free_area_init_nodes(max_zone_pfns);
688 }
689
690 /*
691  * Memory hotplug specific functions
692  */
693 #ifdef CONFIG_MEMORY_HOTPLUG
694 /*
695  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
696  * updating.
697  */
698 static void  update_end_of_memory_vars(u64 start, u64 size)
699 {
700         unsigned long end_pfn = PFN_UP(start + size);
701
702         if (end_pfn > max_pfn) {
703                 max_pfn = end_pfn;
704                 max_low_pfn = end_pfn;
705                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
706         }
707 }
708
709 /*
710  * Memory is added always to NORMAL zone. This means you will never get
711  * additional DMA/DMA32 memory.
712  */
713 int arch_add_memory(int nid, u64 start, u64 size)
714 {
715         struct pglist_data *pgdat = NODE_DATA(nid);
716         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
717         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
718         unsigned long nr_pages = size >> PAGE_SHIFT;
719         int ret;
720
721         last_mapped_pfn = init_memory_mapping(start, start + size);
722         if (last_mapped_pfn > max_pfn_mapped)
723                 max_pfn_mapped = last_mapped_pfn;
724
725         ret = __add_pages(nid, zone, start_pfn, nr_pages);
726         WARN_ON_ONCE(ret);
727
728         /* update max_pfn, max_low_pfn and high_memory */
729         update_end_of_memory_vars(start, size);
730
731         return ret;
732 }
733 EXPORT_SYMBOL_GPL(arch_add_memory);
734
735 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
736 int memory_add_physaddr_to_nid(u64 start)
737 {
738         return 0;
739 }
740 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
741 #endif
742
743 #endif /* CONFIG_MEMORY_HOTPLUG */
744
745 static struct kcore_list kcore_vsyscall;
746
747 void __init mem_init(void)
748 {
749         long codesize, reservedpages, datasize, initsize;
750         unsigned long absent_pages;
751
752         pci_iommu_alloc();
753
754         /* clear_bss() already clear the empty_zero_page */
755
756         reservedpages = 0;
757
758         /* this will put all low memory onto the freelists */
759 #ifdef CONFIG_NUMA
760         totalram_pages = numa_free_all_bootmem();
761 #else
762         totalram_pages = free_all_bootmem();
763 #endif
764
765         absent_pages = absent_pages_in_range(0, max_pfn);
766         reservedpages = max_pfn - totalram_pages - absent_pages;
767         after_bootmem = 1;
768
769         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
770         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
771         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
772
773         /* Register memory areas for /proc/kcore */
774         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
775                          VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
776
777         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
778                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
779                 nr_free_pages() << (PAGE_SHIFT-10),
780                 max_pfn << (PAGE_SHIFT-10),
781                 codesize >> 10,
782                 absent_pages << (PAGE_SHIFT-10),
783                 reservedpages << (PAGE_SHIFT-10),
784                 datasize >> 10,
785                 initsize >> 10);
786 }
787
788 #ifdef CONFIG_DEBUG_RODATA
789 const int rodata_test_data = 0xC3;
790 EXPORT_SYMBOL_GPL(rodata_test_data);
791
792 int kernel_set_to_readonly;
793
794 void set_kernel_text_rw(void)
795 {
796         unsigned long start = PFN_ALIGN(_text);
797         unsigned long end = PFN_ALIGN(__stop___ex_table);
798
799         if (!kernel_set_to_readonly)
800                 return;
801
802         pr_debug("Set kernel text: %lx - %lx for read write\n",
803                  start, end);
804
805         /*
806          * Make the kernel identity mapping for text RW. Kernel text
807          * mapping will always be RO. Refer to the comment in
808          * static_protections() in pageattr.c
809          */
810         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
811 }
812
813 void set_kernel_text_ro(void)
814 {
815         unsigned long start = PFN_ALIGN(_text);
816         unsigned long end = PFN_ALIGN(__stop___ex_table);
817
818         if (!kernel_set_to_readonly)
819                 return;
820
821         pr_debug("Set kernel text: %lx - %lx for read only\n",
822                  start, end);
823
824         /*
825          * Set the kernel identity mapping for text RO.
826          */
827         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
828 }
829
830 void mark_rodata_ro(void)
831 {
832         unsigned long start = PFN_ALIGN(_text);
833         unsigned long rodata_start =
834                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
835         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
836         unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
837         unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
838         unsigned long data_start = (unsigned long) &_sdata;
839
840         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
841                (end - start) >> 10);
842         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
843
844         kernel_set_to_readonly = 1;
845
846         /*
847          * The rodata section (but not the kernel text!) should also be
848          * not-executable.
849          */
850         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
851
852         rodata_test();
853
854 #ifdef CONFIG_CPA_DEBUG
855         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
856         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
857
858         printk(KERN_INFO "Testing CPA: again\n");
859         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
860 #endif
861
862         free_init_pages("unused kernel memory",
863                         (unsigned long) page_address(virt_to_page(text_end)),
864                         (unsigned long)
865                                  page_address(virt_to_page(rodata_start)));
866         free_init_pages("unused kernel memory",
867                         (unsigned long) page_address(virt_to_page(rodata_end)),
868                         (unsigned long) page_address(virt_to_page(data_start)));
869 }
870
871 #endif
872
873 int kern_addr_valid(unsigned long addr)
874 {
875         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
876         pgd_t *pgd;
877         pud_t *pud;
878         pmd_t *pmd;
879         pte_t *pte;
880
881         if (above != 0 && above != -1UL)
882                 return 0;
883
884         pgd = pgd_offset_k(addr);
885         if (pgd_none(*pgd))
886                 return 0;
887
888         pud = pud_offset(pgd, addr);
889         if (pud_none(*pud))
890                 return 0;
891
892         pmd = pmd_offset(pud, addr);
893         if (pmd_none(*pmd))
894                 return 0;
895
896         if (pmd_large(*pmd))
897                 return pfn_valid(pmd_pfn(*pmd));
898
899         pte = pte_offset_kernel(pmd, addr);
900         if (pte_none(*pte))
901                 return 0;
902
903         return pfn_valid(pte_pfn(*pte));
904 }
905
906 /*
907  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
908  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
909  * not need special handling anymore:
910  */
911 static struct vm_area_struct gate_vma = {
912         .vm_start       = VSYSCALL_START,
913         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
914         .vm_page_prot   = PAGE_READONLY_EXEC,
915         .vm_flags       = VM_READ | VM_EXEC
916 };
917
918 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
919 {
920 #ifdef CONFIG_IA32_EMULATION
921         if (test_tsk_thread_flag(tsk, TIF_IA32))
922                 return NULL;
923 #endif
924         return &gate_vma;
925 }
926
927 int in_gate_area(struct task_struct *task, unsigned long addr)
928 {
929         struct vm_area_struct *vma = get_gate_vma(task);
930
931         if (!vma)
932                 return 0;
933
934         return (addr >= vma->vm_start) && (addr < vma->vm_end);
935 }
936
937 /*
938  * Use this when you have no reliable task/vma, typically from interrupt
939  * context. It is less reliable than using the task's vma and may give
940  * false positives:
941  */
942 int in_gate_area_no_task(unsigned long addr)
943 {
944         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
945 }
946
947 const char *arch_vma_name(struct vm_area_struct *vma)
948 {
949         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
950                 return "[vdso]";
951         if (vma == &gate_vma)
952                 return "[vsyscall]";
953         return NULL;
954 }
955
956 #ifdef CONFIG_SPARSEMEM_VMEMMAP
957 /*
958  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
959  */
960 static long __meminitdata addr_start, addr_end;
961 static void __meminitdata *p_start, *p_end;
962 static int __meminitdata node_start;
963
964 int __meminit
965 vmemmap_populate(struct page *start_page, unsigned long size, int node)
966 {
967         unsigned long addr = (unsigned long)start_page;
968         unsigned long end = (unsigned long)(start_page + size);
969         unsigned long next;
970         pgd_t *pgd;
971         pud_t *pud;
972         pmd_t *pmd;
973
974         for (; addr < end; addr = next) {
975                 void *p = NULL;
976
977                 pgd = vmemmap_pgd_populate(addr, node);
978                 if (!pgd)
979                         return -ENOMEM;
980
981                 pud = vmemmap_pud_populate(pgd, addr, node);
982                 if (!pud)
983                         return -ENOMEM;
984
985                 if (!cpu_has_pse) {
986                         next = (addr + PAGE_SIZE) & PAGE_MASK;
987                         pmd = vmemmap_pmd_populate(pud, addr, node);
988
989                         if (!pmd)
990                                 return -ENOMEM;
991
992                         p = vmemmap_pte_populate(pmd, addr, node);
993
994                         if (!p)
995                                 return -ENOMEM;
996
997                         addr_end = addr + PAGE_SIZE;
998                         p_end = p + PAGE_SIZE;
999                 } else {
1000                         next = pmd_addr_end(addr, end);
1001
1002                         pmd = pmd_offset(pud, addr);
1003                         if (pmd_none(*pmd)) {
1004                                 pte_t entry;
1005
1006                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1007                                 if (!p)
1008                                         return -ENOMEM;
1009
1010                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1011                                                 PAGE_KERNEL_LARGE);
1012                                 set_pmd(pmd, __pmd(pte_val(entry)));
1013
1014                                 /* check to see if we have contiguous blocks */
1015                                 if (p_end != p || node_start != node) {
1016                                         if (p_start)
1017                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1018                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1019                                         addr_start = addr;
1020                                         node_start = node;
1021                                         p_start = p;
1022                                 }
1023
1024                                 addr_end = addr + PMD_SIZE;
1025                                 p_end = p + PMD_SIZE;
1026                         } else
1027                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1028                 }
1029
1030         }
1031         sync_global_pgds((unsigned long)start_page, end);
1032         return 0;
1033 }
1034
1035 void __meminit vmemmap_populate_print_last(void)
1036 {
1037         if (p_start) {
1038                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1039                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1040                 p_start = NULL;
1041                 p_end = NULL;
1042                 node_start = 0;
1043         }
1044 }
1045 #endif