]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
52f54ee4559f39586b475aac0050de06f87e444d
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 const struct dma_mapping_ops *dma_ops;
51 EXPORT_SYMBOL(dma_ops);
52
53 static unsigned long dma_reserve __initdata;
54
55 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
56
57 int direct_gbpages __meminitdata
58 #ifdef CONFIG_DIRECT_GBPAGES
59                                 = 1
60 #endif
61 ;
62
63 static int __init parse_direct_gbpages_off(char *arg)
64 {
65         direct_gbpages = 0;
66         return 0;
67 }
68 early_param("nogbpages", parse_direct_gbpages_off);
69
70 static int __init parse_direct_gbpages_on(char *arg)
71 {
72         direct_gbpages = 1;
73         return 0;
74 }
75 early_param("gbpages", parse_direct_gbpages_on);
76
77 /*
78  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
79  * physical space so we can cache the place of the first one and move
80  * around without checking the pgd every time.
81  */
82
83 void show_mem(void)
84 {
85         long i, total = 0, reserved = 0;
86         long shared = 0, cached = 0;
87         struct page *page;
88         pg_data_t *pgdat;
89
90         printk(KERN_INFO "Mem-info:\n");
91         show_free_areas();
92         for_each_online_pgdat(pgdat) {
93                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
94                         /*
95                          * This loop can take a while with 256 GB and
96                          * 4k pages so defer the NMI watchdog:
97                          */
98                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
99                                 touch_nmi_watchdog();
100
101                         if (!pfn_valid(pgdat->node_start_pfn + i))
102                                 continue;
103
104                         page = pfn_to_page(pgdat->node_start_pfn + i);
105                         total++;
106                         if (PageReserved(page))
107                                 reserved++;
108                         else if (PageSwapCache(page))
109                                 cached++;
110                         else if (page_count(page))
111                                 shared += page_count(page) - 1;
112                 }
113         }
114         printk(KERN_INFO "%lu pages of RAM\n",          total);
115         printk(KERN_INFO "%lu reserved pages\n",        reserved);
116         printk(KERN_INFO "%lu pages shared\n",          shared);
117         printk(KERN_INFO "%lu pages swap cached\n",     cached);
118 }
119
120 int after_bootmem;
121
122 static __init void *spp_getpage(void)
123 {
124         void *ptr;
125
126         if (after_bootmem)
127                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
128         else
129                 ptr = alloc_bootmem_pages(PAGE_SIZE);
130
131         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
132                 panic("set_pte_phys: cannot allocate page data %s\n",
133                         after_bootmem ? "after bootmem" : "");
134         }
135
136         pr_debug("spp_getpage %p\n", ptr);
137
138         return ptr;
139 }
140
141 static __init void
142 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
143 {
144         pgd_t *pgd;
145         pud_t *pud;
146         pmd_t *pmd;
147         pte_t *pte, new_pte;
148
149         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
150
151         pgd = pgd_offset_k(vaddr);
152         if (pgd_none(*pgd)) {
153                 printk(KERN_ERR
154                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
155                 return;
156         }
157         pud = pud_offset(pgd, vaddr);
158         if (pud_none(*pud)) {
159                 pmd = (pmd_t *) spp_getpage();
160                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
161                 if (pmd != pmd_offset(pud, 0)) {
162                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
163                                 pmd, pmd_offset(pud, 0));
164                         return;
165                 }
166         }
167         pmd = pmd_offset(pud, vaddr);
168         if (pmd_none(*pmd)) {
169                 pte = (pte_t *) spp_getpage();
170                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
171                 if (pte != pte_offset_kernel(pmd, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
173                         return;
174                 }
175         }
176         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
177
178         pte = pte_offset_kernel(pmd, vaddr);
179         if (!pte_none(*pte) &&
180             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
181                 pte_ERROR(*pte);
182         set_pte(pte, new_pte);
183
184         /*
185          * It's enough to flush this one mapping.
186          * (PGE mappings get flushed as well)
187          */
188         __flush_tlb_one(vaddr);
189 }
190
191 /*
192  * The head.S code sets up the kernel high mapping:
193  *
194  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
195  *
196  * phys_addr holds the negative offset to the kernel, which is added
197  * to the compile time generated pmds. This results in invalid pmds up
198  * to the point where we hit the physaddr 0 mapping.
199  *
200  * We limit the mappings to the region from _text to _end.  _end is
201  * rounded up to the 2MB boundary. This catches the invalid pmds as
202  * well, as they are located before _text:
203  */
204 void __init cleanup_highmap(void)
205 {
206         unsigned long vaddr = __START_KERNEL_map;
207         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
208         pmd_t *pmd = level2_kernel_pgt;
209         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
210
211         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
212                 if (!pmd_present(*pmd))
213                         continue;
214                 if (vaddr < (unsigned long) _text || vaddr > end)
215                         set_pmd(pmd, __pmd(0));
216         }
217 }
218
219 /* NOTE: this is meant to be run only at boot */
220 void __init
221 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
222 {
223         unsigned long address = __fix_to_virt(idx);
224
225         if (idx >= __end_of_fixed_addresses) {
226                 printk(KERN_ERR "Invalid __set_fixmap\n");
227                 return;
228         }
229         set_pte_phys(address, phys, prot);
230 }
231
232 static unsigned long __initdata table_start;
233 static unsigned long __meminitdata table_end;
234
235 static __meminit void *alloc_low_page(unsigned long *phys)
236 {
237         unsigned long pfn = table_end++;
238         void *adr;
239
240         if (after_bootmem) {
241                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
242                 *phys = __pa(adr);
243
244                 return adr;
245         }
246
247         if (pfn >= end_pfn)
248                 panic("alloc_low_page: ran out of memory");
249
250         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
251         memset(adr, 0, PAGE_SIZE);
252         *phys  = pfn * PAGE_SIZE;
253         return adr;
254 }
255
256 static __meminit void unmap_low_page(void *adr)
257 {
258         if (after_bootmem)
259                 return;
260
261         early_iounmap(adr, PAGE_SIZE);
262 }
263
264 /* Must run before zap_low_mappings */
265 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
266 {
267         pmd_t *pmd, *last_pmd;
268         unsigned long vaddr;
269         int i, pmds;
270
271         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
272         vaddr = __START_KERNEL_map;
273         pmd = level2_kernel_pgt;
274         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
275
276         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
277                 for (i = 0; i < pmds; i++) {
278                         if (pmd_present(pmd[i]))
279                                 goto continue_outer_loop;
280                 }
281                 vaddr += addr & ~PMD_MASK;
282                 addr &= PMD_MASK;
283
284                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
285                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
286                 __flush_tlb_all();
287
288                 return (void *)vaddr;
289 continue_outer_loop:
290                 ;
291         }
292         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
293
294         return NULL;
295 }
296
297 /*
298  * To avoid virtual aliases later:
299  */
300 __meminit void early_iounmap(void *addr, unsigned long size)
301 {
302         unsigned long vaddr;
303         pmd_t *pmd;
304         int i, pmds;
305
306         vaddr = (unsigned long)addr;
307         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
308         pmd = level2_kernel_pgt + pmd_index(vaddr);
309
310         for (i = 0; i < pmds; i++)
311                 pmd_clear(pmd + i);
312
313         __flush_tlb_all();
314 }
315
316 static void __meminit
317 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
318 {
319         int i = pmd_index(address);
320
321         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
322                 pmd_t *pmd = pmd_page + pmd_index(address);
323
324                 if (address >= end) {
325                         if (!after_bootmem) {
326                                 for (; i < PTRS_PER_PMD; i++, pmd++)
327                                         set_pmd(pmd, __pmd(0));
328                         }
329                         break;
330                 }
331
332                 if (pmd_val(*pmd))
333                         continue;
334
335                 set_pte((pte_t *)pmd,
336                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
337         }
338 }
339
340 static void __meminit
341 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
342 {
343         pmd_t *pmd = pmd_offset(pud, 0);
344         spin_lock(&init_mm.page_table_lock);
345         phys_pmd_init(pmd, address, end);
346         spin_unlock(&init_mm.page_table_lock);
347         __flush_tlb_all();
348 }
349
350 static void __meminit
351 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
352 {
353         int i = pud_index(addr);
354
355         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
356                 unsigned long pmd_phys;
357                 pud_t *pud = pud_page + pud_index(addr);
358                 pmd_t *pmd;
359
360                 if (addr >= end)
361                         break;
362
363                 if (!after_bootmem &&
364                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
365                         set_pud(pud, __pud(0));
366                         continue;
367                 }
368
369                 if (pud_val(*pud)) {
370                         if (!pud_large(*pud))
371                                 phys_pmd_update(pud, addr, end);
372                         continue;
373                 }
374
375                 if (direct_gbpages) {
376                         set_pte((pte_t *)pud,
377                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
378                         continue;
379                 }
380
381                 pmd = alloc_low_page(&pmd_phys);
382
383                 spin_lock(&init_mm.page_table_lock);
384                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
385                 phys_pmd_init(pmd, addr, end);
386                 spin_unlock(&init_mm.page_table_lock);
387
388                 unmap_low_page(pmd);
389         }
390         __flush_tlb_all();
391 }
392
393 static void __init find_early_table_space(unsigned long end)
394 {
395         unsigned long puds, pmds, tables, start;
396
397         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
398         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
399         if (!direct_gbpages) {
400                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
401                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
402         }
403
404         /*
405          * RED-PEN putting page tables only on node 0 could
406          * cause a hotspot and fill up ZONE_DMA. The page tables
407          * need roughly 0.5KB per GB.
408          */
409         start = 0x8000;
410         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
411         if (table_start == -1UL)
412                 panic("Cannot find space for the kernel page tables");
413
414         table_start >>= PAGE_SHIFT;
415         table_end = table_start;
416
417         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
418                 end, table_start << PAGE_SHIFT,
419                 (table_start << PAGE_SHIFT) + tables);
420 }
421
422 static void __init init_gbpages(void)
423 {
424         if (direct_gbpages && cpu_has_gbpages)
425                 printk(KERN_INFO "Using GB pages for direct mapping\n");
426         else
427                 direct_gbpages = 0;
428 }
429
430 static void __init memtest(unsigned long start_phys, unsigned long size, unsigned pattern)
431 {
432         unsigned long i;
433         unsigned long *start;
434         unsigned long start_bad;
435         unsigned long last_bad;
436         unsigned long val;
437         unsigned long start_phys_aligned;
438         unsigned long count;
439         unsigned long incr;
440
441         switch (pattern) {
442         case 0:
443                 val = 0UL;
444                 break;
445         case 1:
446                 val = -1UL;
447                 break;
448         case 2:
449                 val = 0x5555555555555555UL;
450                 break;
451         case 3:
452                 val = 0xaaaaaaaaaaaaaaaaUL;
453                 break;
454         default:
455                 return;
456         }
457
458         incr = sizeof(unsigned long);
459         start_phys_aligned = ALIGN(start_phys, incr);
460         count = (size - (start_phys_aligned - start_phys))/incr;
461         start = __va(start_phys_aligned);
462         start_bad = 0;
463         last_bad = 0;
464
465         for (i = 0; i < count; i++)
466                 start[i] = val;
467         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
468                 if (*start != val) {
469                         if (start_phys_aligned == last_bad + incr) {
470                                 last_bad += incr;
471                         } else {
472                                 if (start_bad) {
473                                         printk(KERN_INFO "  %016lxx bad mem addr %016lx - %016lx reserved\n",
474                                                 val, start_bad, last_bad + incr);
475                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
476                                 }
477                                 start_bad = last_bad = start_phys_aligned;
478                         }
479                 }
480         }
481         if (start_bad) {
482                 printk(KERN_INFO "  %016lx bad mem addr %016lx - %016lx reserved\n",
483                         val, start_bad, last_bad + incr);
484                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
485         }
486
487 }
488
489 static int __initdata memtest_pattern;
490 static int __init parse_memtest(char *arg)
491 {
492         if (arg)
493                 memtest_pattern = simple_strtoul(arg, NULL, 0) + 1;
494         return 0;
495 }
496
497 early_param("memtest", parse_memtest);
498
499 static void __init early_memtest(unsigned long start, unsigned long end)
500 {
501         unsigned long t_start, t_size;
502         unsigned pattern;
503
504         if (memtest_pattern)
505                 printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
506         for (pattern = 0; pattern < memtest_pattern; pattern++) {
507                 t_start = start;
508                 t_size = 0;
509                 while (t_start < end) {
510                         t_start = find_e820_area_size(t_start, &t_size, 1);
511
512                         /* done ? */
513                         if (t_start >= end)
514                                 break;
515                         if (t_start + t_size > end)
516                                 t_size = end - t_start;
517
518                         printk(KERN_CONT "\n  %016lx - %016lx pattern %d",
519                                 t_start, t_start + t_size, pattern);
520
521                         memtest(t_start, t_size, pattern);
522
523                         t_start += t_size;
524                 }
525         }
526         if (memtest_pattern)
527                 printk(KERN_CONT "\n");
528 }
529
530 /*
531  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
532  * This runs before bootmem is initialized and gets pages directly from
533  * the physical memory. To access them they are temporarily mapped.
534  */
535 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
536 {
537         unsigned long next;
538         unsigned long start_phys = start, end_phys = end;
539
540         printk(KERN_INFO "init_memory_mapping\n");
541
542         /*
543          * Find space for the kernel direct mapping tables.
544          *
545          * Later we should allocate these tables in the local node of the
546          * memory mapped. Unfortunately this is done currently before the
547          * nodes are discovered.
548          */
549         if (!after_bootmem) {
550                 init_gbpages();
551                 find_early_table_space(end);
552         }
553
554         start = (unsigned long)__va(start);
555         end = (unsigned long)__va(end);
556
557         for (; start < end; start = next) {
558                 pgd_t *pgd = pgd_offset_k(start);
559                 unsigned long pud_phys;
560                 pud_t *pud;
561
562                 if (after_bootmem)
563                         pud = pud_offset(pgd, start & PGDIR_MASK);
564                 else
565                         pud = alloc_low_page(&pud_phys);
566
567                 next = start + PGDIR_SIZE;
568                 if (next > end)
569                         next = end;
570                 phys_pud_init(pud, __pa(start), __pa(next));
571                 if (!after_bootmem)
572                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
573                 unmap_low_page(pud);
574         }
575
576         if (!after_bootmem)
577                 mmu_cr4_features = read_cr4();
578         __flush_tlb_all();
579
580         if (!after_bootmem)
581                 reserve_early(table_start << PAGE_SHIFT,
582                                  table_end << PAGE_SHIFT, "PGTABLE");
583
584         if (!after_bootmem)
585                 early_memtest(start_phys, end_phys);
586 }
587
588 #ifndef CONFIG_NUMA
589 void __init paging_init(void)
590 {
591         unsigned long max_zone_pfns[MAX_NR_ZONES];
592
593         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
594         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
595         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
596         max_zone_pfns[ZONE_NORMAL] = end_pfn;
597
598         memory_present(0, 0, end_pfn);
599         sparse_init();
600         free_area_init_nodes(max_zone_pfns);
601 }
602 #endif
603
604 /*
605  * Memory hotplug specific functions
606  */
607 void online_page(struct page *page)
608 {
609         ClearPageReserved(page);
610         init_page_count(page);
611         __free_page(page);
612         totalram_pages++;
613         num_physpages++;
614 }
615
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618  * Memory is added always to NORMAL zone. This means you will never get
619  * additional DMA/DMA32 memory.
620  */
621 int arch_add_memory(int nid, u64 start, u64 size)
622 {
623         struct pglist_data *pgdat = NODE_DATA(nid);
624         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
625         unsigned long start_pfn = start >> PAGE_SHIFT;
626         unsigned long nr_pages = size >> PAGE_SHIFT;
627         int ret;
628
629         init_memory_mapping(start, start + size-1);
630
631         ret = __add_pages(zone, start_pfn, nr_pages);
632         WARN_ON(1);
633
634         return ret;
635 }
636 EXPORT_SYMBOL_GPL(arch_add_memory);
637
638 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
639 int memory_add_physaddr_to_nid(u64 start)
640 {
641         return 0;
642 }
643 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
644 #endif
645
646 #endif /* CONFIG_MEMORY_HOTPLUG */
647
648 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
649                          kcore_modules, kcore_vsyscall;
650
651 void __init mem_init(void)
652 {
653         long codesize, reservedpages, datasize, initsize;
654
655         pci_iommu_alloc();
656
657         /* clear_bss() already clear the empty_zero_page */
658
659         reservedpages = 0;
660
661         /* this will put all low memory onto the freelists */
662 #ifdef CONFIG_NUMA
663         totalram_pages = numa_free_all_bootmem();
664 #else
665         totalram_pages = free_all_bootmem();
666 #endif
667         reservedpages = end_pfn - totalram_pages -
668                                         absent_pages_in_range(0, end_pfn);
669         after_bootmem = 1;
670
671         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
672         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
673         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
674
675         /* Register memory areas for /proc/kcore */
676         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
677         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
678                    VMALLOC_END-VMALLOC_START);
679         kclist_add(&kcore_kernel, &_stext, _end - _stext);
680         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
681         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
682                                  VSYSCALL_END - VSYSCALL_START);
683
684         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
685                                 "%ldk reserved, %ldk data, %ldk init)\n",
686                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
687                 end_pfn << (PAGE_SHIFT-10),
688                 codesize >> 10,
689                 reservedpages << (PAGE_SHIFT-10),
690                 datasize >> 10,
691                 initsize >> 10);
692
693         cpa_init();
694 }
695
696 void free_init_pages(char *what, unsigned long begin, unsigned long end)
697 {
698         unsigned long addr = begin;
699
700         if (addr >= end)
701                 return;
702
703         /*
704          * If debugging page accesses then do not free this memory but
705          * mark them not present - any buggy init-section access will
706          * create a kernel page fault:
707          */
708 #ifdef CONFIG_DEBUG_PAGEALLOC
709         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
710                 begin, PAGE_ALIGN(end));
711         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
712 #else
713         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
714
715         for (; addr < end; addr += PAGE_SIZE) {
716                 ClearPageReserved(virt_to_page(addr));
717                 init_page_count(virt_to_page(addr));
718                 memset((void *)(addr & ~(PAGE_SIZE-1)),
719                         POISON_FREE_INITMEM, PAGE_SIZE);
720                 free_page(addr);
721                 totalram_pages++;
722         }
723 #endif
724 }
725
726 void free_initmem(void)
727 {
728         free_init_pages("unused kernel memory",
729                         (unsigned long)(&__init_begin),
730                         (unsigned long)(&__init_end));
731 }
732
733 #ifdef CONFIG_DEBUG_RODATA
734 const int rodata_test_data = 0xC3;
735 EXPORT_SYMBOL_GPL(rodata_test_data);
736
737 void mark_rodata_ro(void)
738 {
739         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
740
741         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
742                (end - start) >> 10);
743         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
744
745         /*
746          * The rodata section (but not the kernel text!) should also be
747          * not-executable.
748          */
749         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
750         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
751
752         rodata_test();
753
754 #ifdef CONFIG_CPA_DEBUG
755         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
756         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
757
758         printk(KERN_INFO "Testing CPA: again\n");
759         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
760 #endif
761 }
762
763 #endif
764
765 #ifdef CONFIG_BLK_DEV_INITRD
766 void free_initrd_mem(unsigned long start, unsigned long end)
767 {
768         free_init_pages("initrd memory", start, end);
769 }
770 #endif
771
772 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
773 {
774 #ifdef CONFIG_NUMA
775         int nid = phys_to_nid(phys);
776 #endif
777         unsigned long pfn = phys >> PAGE_SHIFT;
778
779         if (pfn >= end_pfn) {
780                 /*
781                  * This can happen with kdump kernels when accessing
782                  * firmware tables:
783                  */
784                 if (pfn < end_pfn_map)
785                         return;
786
787                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
788                                 phys, len);
789                 return;
790         }
791
792         /* Should check here against the e820 map to avoid double free */
793 #ifdef CONFIG_NUMA
794         reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
795 #else
796         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
797 #endif
798         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
799                 dma_reserve += len / PAGE_SIZE;
800                 set_dma_reserve(dma_reserve);
801         }
802 }
803
804 int kern_addr_valid(unsigned long addr)
805 {
806         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
807         pgd_t *pgd;
808         pud_t *pud;
809         pmd_t *pmd;
810         pte_t *pte;
811
812         if (above != 0 && above != -1UL)
813                 return 0;
814
815         pgd = pgd_offset_k(addr);
816         if (pgd_none(*pgd))
817                 return 0;
818
819         pud = pud_offset(pgd, addr);
820         if (pud_none(*pud))
821                 return 0;
822
823         pmd = pmd_offset(pud, addr);
824         if (pmd_none(*pmd))
825                 return 0;
826
827         if (pmd_large(*pmd))
828                 return pfn_valid(pmd_pfn(*pmd));
829
830         pte = pte_offset_kernel(pmd, addr);
831         if (pte_none(*pte))
832                 return 0;
833
834         return pfn_valid(pte_pfn(*pte));
835 }
836
837 /*
838  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
839  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
840  * not need special handling anymore:
841  */
842 static struct vm_area_struct gate_vma = {
843         .vm_start       = VSYSCALL_START,
844         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
845         .vm_page_prot   = PAGE_READONLY_EXEC,
846         .vm_flags       = VM_READ | VM_EXEC
847 };
848
849 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
850 {
851 #ifdef CONFIG_IA32_EMULATION
852         if (test_tsk_thread_flag(tsk, TIF_IA32))
853                 return NULL;
854 #endif
855         return &gate_vma;
856 }
857
858 int in_gate_area(struct task_struct *task, unsigned long addr)
859 {
860         struct vm_area_struct *vma = get_gate_vma(task);
861
862         if (!vma)
863                 return 0;
864
865         return (addr >= vma->vm_start) && (addr < vma->vm_end);
866 }
867
868 /*
869  * Use this when you have no reliable task/vma, typically from interrupt
870  * context. It is less reliable than using the task's vma and may give
871  * false positives:
872  */
873 int in_gate_area_no_task(unsigned long addr)
874 {
875         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
876 }
877
878 const char *arch_vma_name(struct vm_area_struct *vma)
879 {
880         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
881                 return "[vdso]";
882         if (vma == &gate_vma)
883                 return "[vsyscall]";
884         return NULL;
885 }
886
887 #ifdef CONFIG_SPARSEMEM_VMEMMAP
888 /*
889  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
890  */
891 int __meminit
892 vmemmap_populate(struct page *start_page, unsigned long size, int node)
893 {
894         unsigned long addr = (unsigned long)start_page;
895         unsigned long end = (unsigned long)(start_page + size);
896         unsigned long next;
897         pgd_t *pgd;
898         pud_t *pud;
899         pmd_t *pmd;
900
901         for (; addr < end; addr = next) {
902                 next = pmd_addr_end(addr, end);
903
904                 pgd = vmemmap_pgd_populate(addr, node);
905                 if (!pgd)
906                         return -ENOMEM;
907
908                 pud = vmemmap_pud_populate(pgd, addr, node);
909                 if (!pud)
910                         return -ENOMEM;
911
912                 pmd = pmd_offset(pud, addr);
913                 if (pmd_none(*pmd)) {
914                         pte_t entry;
915                         void *p;
916
917                         p = vmemmap_alloc_block(PMD_SIZE, node);
918                         if (!p)
919                                 return -ENOMEM;
920
921                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
922                                                         PAGE_KERNEL_LARGE);
923                         set_pmd(pmd, __pmd(pte_val(entry)));
924
925                         printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
926                                 addr, addr + PMD_SIZE - 1, p, node);
927                 } else {
928                         vmemmap_verify((pte_t *)pmd, node, addr, next);
929                 }
930         }
931         return 0;
932 }
933 #endif