]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
Merge remote-tracking branch 'tty/tty-next'
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/memremap.h>
34 #include <linux/nmi.h>
35 #include <linux/gfp.h>
36 #include <linux/kcore.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/e820.h>
46 #include <asm/apic.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
50 #include <asm/smp.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
53 #include <asm/numa.h>
54 #include <asm/cacheflush.h>
55 #include <asm/init.h>
56 #include <asm/uv/uv.h>
57 #include <asm/setup.h>
58
59 #include "mm_internal.h"
60
61 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
62                            unsigned long addr, unsigned long end)
63 {
64         addr &= PMD_MASK;
65         for (; addr < end; addr += PMD_SIZE) {
66                 pmd_t *pmd = pmd_page + pmd_index(addr);
67
68                 if (!pmd_present(*pmd))
69                         set_pmd(pmd, __pmd(addr | pmd_flag));
70         }
71 }
72 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
73                           unsigned long addr, unsigned long end)
74 {
75         unsigned long next;
76
77         for (; addr < end; addr = next) {
78                 pud_t *pud = pud_page + pud_index(addr);
79                 pmd_t *pmd;
80
81                 next = (addr & PUD_MASK) + PUD_SIZE;
82                 if (next > end)
83                         next = end;
84
85                 if (pud_present(*pud)) {
86                         pmd = pmd_offset(pud, 0);
87                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
88                         continue;
89                 }
90                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
91                 if (!pmd)
92                         return -ENOMEM;
93                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
94                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
95         }
96
97         return 0;
98 }
99
100 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
101                               unsigned long addr, unsigned long end)
102 {
103         unsigned long next;
104         int result;
105         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
106
107         for (; addr < end; addr = next) {
108                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
109                 pud_t *pud;
110
111                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
112                 if (next > end)
113                         next = end;
114
115                 if (pgd_present(*pgd)) {
116                         pud = pud_offset(pgd, 0);
117                         result = ident_pud_init(info, pud, addr, next);
118                         if (result)
119                                 return result;
120                         continue;
121                 }
122
123                 pud = (pud_t *)info->alloc_pgt_page(info->context);
124                 if (!pud)
125                         return -ENOMEM;
126                 result = ident_pud_init(info, pud, addr, next);
127                 if (result)
128                         return result;
129                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
130         }
131
132         return 0;
133 }
134
135 /*
136  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
137  * physical space so we can cache the place of the first one and move
138  * around without checking the pgd every time.
139  */
140
141 pteval_t __supported_pte_mask __read_mostly = ~0;
142 EXPORT_SYMBOL_GPL(__supported_pte_mask);
143
144 int force_personality32;
145
146 /*
147  * noexec32=on|off
148  * Control non executable heap for 32bit processes.
149  * To control the stack too use noexec=off
150  *
151  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
152  * off  PROT_READ implies PROT_EXEC
153  */
154 static int __init nonx32_setup(char *str)
155 {
156         if (!strcmp(str, "on"))
157                 force_personality32 &= ~READ_IMPLIES_EXEC;
158         else if (!strcmp(str, "off"))
159                 force_personality32 |= READ_IMPLIES_EXEC;
160         return 1;
161 }
162 __setup("noexec32=", nonx32_setup);
163
164 /*
165  * When memory was added/removed make sure all the processes MM have
166  * suitable PGD entries in the local PGD level page.
167  */
168 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
169 {
170         unsigned long address;
171
172         for (address = start; address <= end; address += PGDIR_SIZE) {
173                 const pgd_t *pgd_ref = pgd_offset_k(address);
174                 struct page *page;
175
176                 /*
177                  * When it is called after memory hot remove, pgd_none()
178                  * returns true. In this case (removed == 1), we must clear
179                  * the PGD entries in the local PGD level page.
180                  */
181                 if (pgd_none(*pgd_ref) && !removed)
182                         continue;
183
184                 spin_lock(&pgd_lock);
185                 list_for_each_entry(page, &pgd_list, lru) {
186                         pgd_t *pgd;
187                         spinlock_t *pgt_lock;
188
189                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
190                         /* the pgt_lock only for Xen */
191                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
192                         spin_lock(pgt_lock);
193
194                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
195                                 BUG_ON(pgd_page_vaddr(*pgd)
196                                        != pgd_page_vaddr(*pgd_ref));
197
198                         if (removed) {
199                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
200                                         pgd_clear(pgd);
201                         } else {
202                                 if (pgd_none(*pgd))
203                                         set_pgd(pgd, *pgd_ref);
204                         }
205
206                         spin_unlock(pgt_lock);
207                 }
208                 spin_unlock(&pgd_lock);
209         }
210 }
211
212 /*
213  * NOTE: This function is marked __ref because it calls __init function
214  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
215  */
216 static __ref void *spp_getpage(void)
217 {
218         void *ptr;
219
220         if (after_bootmem)
221                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
222         else
223                 ptr = alloc_bootmem_pages(PAGE_SIZE);
224
225         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
226                 panic("set_pte_phys: cannot allocate page data %s\n",
227                         after_bootmem ? "after bootmem" : "");
228         }
229
230         pr_debug("spp_getpage %p\n", ptr);
231
232         return ptr;
233 }
234
235 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
236 {
237         if (pgd_none(*pgd)) {
238                 pud_t *pud = (pud_t *)spp_getpage();
239                 pgd_populate(&init_mm, pgd, pud);
240                 if (pud != pud_offset(pgd, 0))
241                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
242                                pud, pud_offset(pgd, 0));
243         }
244         return pud_offset(pgd, vaddr);
245 }
246
247 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
248 {
249         if (pud_none(*pud)) {
250                 pmd_t *pmd = (pmd_t *) spp_getpage();
251                 pud_populate(&init_mm, pud, pmd);
252                 if (pmd != pmd_offset(pud, 0))
253                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
254                                pmd, pmd_offset(pud, 0));
255         }
256         return pmd_offset(pud, vaddr);
257 }
258
259 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
260 {
261         if (pmd_none(*pmd)) {
262                 pte_t *pte = (pte_t *) spp_getpage();
263                 pmd_populate_kernel(&init_mm, pmd, pte);
264                 if (pte != pte_offset_kernel(pmd, 0))
265                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
266         }
267         return pte_offset_kernel(pmd, vaddr);
268 }
269
270 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
271 {
272         pud_t *pud;
273         pmd_t *pmd;
274         pte_t *pte;
275
276         pud = pud_page + pud_index(vaddr);
277         pmd = fill_pmd(pud, vaddr);
278         pte = fill_pte(pmd, vaddr);
279
280         set_pte(pte, new_pte);
281
282         /*
283          * It's enough to flush this one mapping.
284          * (PGE mappings get flushed as well)
285          */
286         __flush_tlb_one(vaddr);
287 }
288
289 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
290 {
291         pgd_t *pgd;
292         pud_t *pud_page;
293
294         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
295
296         pgd = pgd_offset_k(vaddr);
297         if (pgd_none(*pgd)) {
298                 printk(KERN_ERR
299                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
300                 return;
301         }
302         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
303         set_pte_vaddr_pud(pud_page, vaddr, pteval);
304 }
305
306 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
307 {
308         pgd_t *pgd;
309         pud_t *pud;
310
311         pgd = pgd_offset_k(vaddr);
312         pud = fill_pud(pgd, vaddr);
313         return fill_pmd(pud, vaddr);
314 }
315
316 pte_t * __init populate_extra_pte(unsigned long vaddr)
317 {
318         pmd_t *pmd;
319
320         pmd = populate_extra_pmd(vaddr);
321         return fill_pte(pmd, vaddr);
322 }
323
324 /*
325  * Create large page table mappings for a range of physical addresses.
326  */
327 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
328                                         enum page_cache_mode cache)
329 {
330         pgd_t *pgd;
331         pud_t *pud;
332         pmd_t *pmd;
333         pgprot_t prot;
334
335         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
336                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
337         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
338         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
339                 pgd = pgd_offset_k((unsigned long)__va(phys));
340                 if (pgd_none(*pgd)) {
341                         pud = (pud_t *) spp_getpage();
342                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
343                                                 _PAGE_USER));
344                 }
345                 pud = pud_offset(pgd, (unsigned long)__va(phys));
346                 if (pud_none(*pud)) {
347                         pmd = (pmd_t *) spp_getpage();
348                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
349                                                 _PAGE_USER));
350                 }
351                 pmd = pmd_offset(pud, phys);
352                 BUG_ON(!pmd_none(*pmd));
353                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
354         }
355 }
356
357 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
358 {
359         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
360 }
361
362 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
363 {
364         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
365 }
366
367 /*
368  * The head.S code sets up the kernel high mapping:
369  *
370  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
371  *
372  * phys_base holds the negative offset to the kernel, which is added
373  * to the compile time generated pmds. This results in invalid pmds up
374  * to the point where we hit the physaddr 0 mapping.
375  *
376  * We limit the mappings to the region from _text to _brk_end.  _brk_end
377  * is rounded up to the 2MB boundary. This catches the invalid pmds as
378  * well, as they are located before _text:
379  */
380 void __init cleanup_highmap(void)
381 {
382         unsigned long vaddr = __START_KERNEL_map;
383         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
384         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
385         pmd_t *pmd = level2_kernel_pgt;
386
387         /*
388          * Native path, max_pfn_mapped is not set yet.
389          * Xen has valid max_pfn_mapped set in
390          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
391          */
392         if (max_pfn_mapped)
393                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
394
395         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
396                 if (pmd_none(*pmd))
397                         continue;
398                 if (vaddr < (unsigned long) _text || vaddr > end)
399                         set_pmd(pmd, __pmd(0));
400         }
401 }
402
403 static unsigned long __meminit
404 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
405               pgprot_t prot)
406 {
407         unsigned long pages = 0, next;
408         unsigned long last_map_addr = end;
409         int i;
410
411         pte_t *pte = pte_page + pte_index(addr);
412
413         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
414                 next = (addr & PAGE_MASK) + PAGE_SIZE;
415                 if (addr >= end) {
416                         if (!after_bootmem &&
417                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
418                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
419                                 set_pte(pte, __pte(0));
420                         continue;
421                 }
422
423                 /*
424                  * We will re-use the existing mapping.
425                  * Xen for example has some special requirements, like mapping
426                  * pagetable pages as RO. So assume someone who pre-setup
427                  * these mappings are more intelligent.
428                  */
429                 if (pte_val(*pte)) {
430                         if (!after_bootmem)
431                                 pages++;
432                         continue;
433                 }
434
435                 if (0)
436                         printk("   pte=%p addr=%lx pte=%016lx\n",
437                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
438                 pages++;
439                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
440                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
441         }
442
443         update_page_count(PG_LEVEL_4K, pages);
444
445         return last_map_addr;
446 }
447
448 static unsigned long __meminit
449 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
450               unsigned long page_size_mask, pgprot_t prot)
451 {
452         unsigned long pages = 0, next;
453         unsigned long last_map_addr = end;
454
455         int i = pmd_index(address);
456
457         for (; i < PTRS_PER_PMD; i++, address = next) {
458                 pmd_t *pmd = pmd_page + pmd_index(address);
459                 pte_t *pte;
460                 pgprot_t new_prot = prot;
461
462                 next = (address & PMD_MASK) + PMD_SIZE;
463                 if (address >= end) {
464                         if (!after_bootmem &&
465                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
466                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
467                                 set_pmd(pmd, __pmd(0));
468                         continue;
469                 }
470
471                 if (pmd_val(*pmd)) {
472                         if (!pmd_large(*pmd)) {
473                                 spin_lock(&init_mm.page_table_lock);
474                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
475                                 last_map_addr = phys_pte_init(pte, address,
476                                                                 end, prot);
477                                 spin_unlock(&init_mm.page_table_lock);
478                                 continue;
479                         }
480                         /*
481                          * If we are ok with PG_LEVEL_2M mapping, then we will
482                          * use the existing mapping,
483                          *
484                          * Otherwise, we will split the large page mapping but
485                          * use the same existing protection bits except for
486                          * large page, so that we don't violate Intel's TLB
487                          * Application note (317080) which says, while changing
488                          * the page sizes, new and old translations should
489                          * not differ with respect to page frame and
490                          * attributes.
491                          */
492                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
493                                 if (!after_bootmem)
494                                         pages++;
495                                 last_map_addr = next;
496                                 continue;
497                         }
498                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
499                 }
500
501                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
502                         pages++;
503                         spin_lock(&init_mm.page_table_lock);
504                         set_pte((pte_t *)pmd,
505                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
506                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
507                         spin_unlock(&init_mm.page_table_lock);
508                         last_map_addr = next;
509                         continue;
510                 }
511
512                 pte = alloc_low_page();
513                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
514
515                 spin_lock(&init_mm.page_table_lock);
516                 pmd_populate_kernel(&init_mm, pmd, pte);
517                 spin_unlock(&init_mm.page_table_lock);
518         }
519         update_page_count(PG_LEVEL_2M, pages);
520         return last_map_addr;
521 }
522
523 static unsigned long __meminit
524 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
525                          unsigned long page_size_mask)
526 {
527         unsigned long pages = 0, next;
528         unsigned long last_map_addr = end;
529         int i = pud_index(addr);
530
531         for (; i < PTRS_PER_PUD; i++, addr = next) {
532                 pud_t *pud = pud_page + pud_index(addr);
533                 pmd_t *pmd;
534                 pgprot_t prot = PAGE_KERNEL;
535
536                 next = (addr & PUD_MASK) + PUD_SIZE;
537                 if (addr >= end) {
538                         if (!after_bootmem &&
539                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
540                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
541                                 set_pud(pud, __pud(0));
542                         continue;
543                 }
544
545                 if (pud_val(*pud)) {
546                         if (!pud_large(*pud)) {
547                                 pmd = pmd_offset(pud, 0);
548                                 last_map_addr = phys_pmd_init(pmd, addr, end,
549                                                          page_size_mask, prot);
550                                 __flush_tlb_all();
551                                 continue;
552                         }
553                         /*
554                          * If we are ok with PG_LEVEL_1G mapping, then we will
555                          * use the existing mapping.
556                          *
557                          * Otherwise, we will split the gbpage mapping but use
558                          * the same existing protection  bits except for large
559                          * page, so that we don't violate Intel's TLB
560                          * Application note (317080) which says, while changing
561                          * the page sizes, new and old translations should
562                          * not differ with respect to page frame and
563                          * attributes.
564                          */
565                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
566                                 if (!after_bootmem)
567                                         pages++;
568                                 last_map_addr = next;
569                                 continue;
570                         }
571                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
572                 }
573
574                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
575                         pages++;
576                         spin_lock(&init_mm.page_table_lock);
577                         set_pte((pte_t *)pud,
578                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
579                                         PAGE_KERNEL_LARGE));
580                         spin_unlock(&init_mm.page_table_lock);
581                         last_map_addr = next;
582                         continue;
583                 }
584
585                 pmd = alloc_low_page();
586                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
587                                               prot);
588
589                 spin_lock(&init_mm.page_table_lock);
590                 pud_populate(&init_mm, pud, pmd);
591                 spin_unlock(&init_mm.page_table_lock);
592         }
593         __flush_tlb_all();
594
595         update_page_count(PG_LEVEL_1G, pages);
596
597         return last_map_addr;
598 }
599
600 unsigned long __meminit
601 kernel_physical_mapping_init(unsigned long start,
602                              unsigned long end,
603                              unsigned long page_size_mask)
604 {
605         bool pgd_changed = false;
606         unsigned long next, last_map_addr = end;
607         unsigned long addr;
608
609         start = (unsigned long)__va(start);
610         end = (unsigned long)__va(end);
611         addr = start;
612
613         for (; start < end; start = next) {
614                 pgd_t *pgd = pgd_offset_k(start);
615                 pud_t *pud;
616
617                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
618
619                 if (pgd_val(*pgd)) {
620                         pud = (pud_t *)pgd_page_vaddr(*pgd);
621                         last_map_addr = phys_pud_init(pud, __pa(start),
622                                                  __pa(end), page_size_mask);
623                         continue;
624                 }
625
626                 pud = alloc_low_page();
627                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
628                                                  page_size_mask);
629
630                 spin_lock(&init_mm.page_table_lock);
631                 pgd_populate(&init_mm, pgd, pud);
632                 spin_unlock(&init_mm.page_table_lock);
633                 pgd_changed = true;
634         }
635
636         if (pgd_changed)
637                 sync_global_pgds(addr, end - 1, 0);
638
639         __flush_tlb_all();
640
641         return last_map_addr;
642 }
643
644 #ifndef CONFIG_NUMA
645 void __init initmem_init(void)
646 {
647         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
648 }
649 #endif
650
651 void __init paging_init(void)
652 {
653         sparse_memory_present_with_active_regions(MAX_NUMNODES);
654         sparse_init();
655
656         /*
657          * clear the default setting with node 0
658          * note: don't use nodes_clear here, that is really clearing when
659          *       numa support is not compiled in, and later node_set_state
660          *       will not set it back.
661          */
662         node_clear_state(0, N_MEMORY);
663         if (N_MEMORY != N_NORMAL_MEMORY)
664                 node_clear_state(0, N_NORMAL_MEMORY);
665
666         zone_sizes_init();
667 }
668
669 /*
670  * Memory hotplug specific functions
671  */
672 #ifdef CONFIG_MEMORY_HOTPLUG
673 /*
674  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
675  * updating.
676  */
677 static void  update_end_of_memory_vars(u64 start, u64 size)
678 {
679         unsigned long end_pfn = PFN_UP(start + size);
680
681         if (end_pfn > max_pfn) {
682                 max_pfn = end_pfn;
683                 max_low_pfn = end_pfn;
684                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
685         }
686 }
687
688 /*
689  * Memory is added always to NORMAL zone. This means you will never get
690  * additional DMA/DMA32 memory.
691  */
692 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
693 {
694         struct pglist_data *pgdat = NODE_DATA(nid);
695         struct zone *zone = pgdat->node_zones +
696                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
697         unsigned long start_pfn = start >> PAGE_SHIFT;
698         unsigned long nr_pages = size >> PAGE_SHIFT;
699         int ret;
700
701         init_memory_mapping(start, start + size);
702
703         ret = __add_pages(nid, zone, start_pfn, nr_pages);
704         WARN_ON_ONCE(ret);
705
706         /* update max_pfn, max_low_pfn and high_memory */
707         update_end_of_memory_vars(start, size);
708
709         return ret;
710 }
711 EXPORT_SYMBOL_GPL(arch_add_memory);
712
713 #define PAGE_INUSE 0xFD
714
715 static void __meminit free_pagetable(struct page *page, int order)
716 {
717         unsigned long magic;
718         unsigned int nr_pages = 1 << order;
719         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
720
721         if (altmap) {
722                 vmem_altmap_free(altmap, nr_pages);
723                 return;
724         }
725
726         /* bootmem page has reserved flag */
727         if (PageReserved(page)) {
728                 __ClearPageReserved(page);
729
730                 magic = (unsigned long)page->lru.next;
731                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
732                         while (nr_pages--)
733                                 put_page_bootmem(page++);
734                 } else
735                         while (nr_pages--)
736                                 free_reserved_page(page++);
737         } else
738                 free_pages((unsigned long)page_address(page), order);
739 }
740
741 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
742 {
743         pte_t *pte;
744         int i;
745
746         for (i = 0; i < PTRS_PER_PTE; i++) {
747                 pte = pte_start + i;
748                 if (pte_val(*pte))
749                         return;
750         }
751
752         /* free a pte talbe */
753         free_pagetable(pmd_page(*pmd), 0);
754         spin_lock(&init_mm.page_table_lock);
755         pmd_clear(pmd);
756         spin_unlock(&init_mm.page_table_lock);
757 }
758
759 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
760 {
761         pmd_t *pmd;
762         int i;
763
764         for (i = 0; i < PTRS_PER_PMD; i++) {
765                 pmd = pmd_start + i;
766                 if (pmd_val(*pmd))
767                         return;
768         }
769
770         /* free a pmd talbe */
771         free_pagetable(pud_page(*pud), 0);
772         spin_lock(&init_mm.page_table_lock);
773         pud_clear(pud);
774         spin_unlock(&init_mm.page_table_lock);
775 }
776
777 /* Return true if pgd is changed, otherwise return false. */
778 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
779 {
780         pud_t *pud;
781         int i;
782
783         for (i = 0; i < PTRS_PER_PUD; i++) {
784                 pud = pud_start + i;
785                 if (pud_val(*pud))
786                         return false;
787         }
788
789         /* free a pud table */
790         free_pagetable(pgd_page(*pgd), 0);
791         spin_lock(&init_mm.page_table_lock);
792         pgd_clear(pgd);
793         spin_unlock(&init_mm.page_table_lock);
794
795         return true;
796 }
797
798 static void __meminit
799 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
800                  bool direct)
801 {
802         unsigned long next, pages = 0;
803         pte_t *pte;
804         void *page_addr;
805         phys_addr_t phys_addr;
806
807         pte = pte_start + pte_index(addr);
808         for (; addr < end; addr = next, pte++) {
809                 next = (addr + PAGE_SIZE) & PAGE_MASK;
810                 if (next > end)
811                         next = end;
812
813                 if (!pte_present(*pte))
814                         continue;
815
816                 /*
817                  * We mapped [0,1G) memory as identity mapping when
818                  * initializing, in arch/x86/kernel/head_64.S. These
819                  * pagetables cannot be removed.
820                  */
821                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
822                 if (phys_addr < (phys_addr_t)0x40000000)
823                         return;
824
825                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
826                         /*
827                          * Do not free direct mapping pages since they were
828                          * freed when offlining, or simplely not in use.
829                          */
830                         if (!direct)
831                                 free_pagetable(pte_page(*pte), 0);
832
833                         spin_lock(&init_mm.page_table_lock);
834                         pte_clear(&init_mm, addr, pte);
835                         spin_unlock(&init_mm.page_table_lock);
836
837                         /* For non-direct mapping, pages means nothing. */
838                         pages++;
839                 } else {
840                         /*
841                          * If we are here, we are freeing vmemmap pages since
842                          * direct mapped memory ranges to be freed are aligned.
843                          *
844                          * If we are not removing the whole page, it means
845                          * other page structs in this page are being used and
846                          * we canot remove them. So fill the unused page_structs
847                          * with 0xFD, and remove the page when it is wholly
848                          * filled with 0xFD.
849                          */
850                         memset((void *)addr, PAGE_INUSE, next - addr);
851
852                         page_addr = page_address(pte_page(*pte));
853                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
854                                 free_pagetable(pte_page(*pte), 0);
855
856                                 spin_lock(&init_mm.page_table_lock);
857                                 pte_clear(&init_mm, addr, pte);
858                                 spin_unlock(&init_mm.page_table_lock);
859                         }
860                 }
861         }
862
863         /* Call free_pte_table() in remove_pmd_table(). */
864         flush_tlb_all();
865         if (direct)
866                 update_page_count(PG_LEVEL_4K, -pages);
867 }
868
869 static void __meminit
870 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
871                  bool direct)
872 {
873         unsigned long next, pages = 0;
874         pte_t *pte_base;
875         pmd_t *pmd;
876         void *page_addr;
877
878         pmd = pmd_start + pmd_index(addr);
879         for (; addr < end; addr = next, pmd++) {
880                 next = pmd_addr_end(addr, end);
881
882                 if (!pmd_present(*pmd))
883                         continue;
884
885                 if (pmd_large(*pmd)) {
886                         if (IS_ALIGNED(addr, PMD_SIZE) &&
887                             IS_ALIGNED(next, PMD_SIZE)) {
888                                 if (!direct)
889                                         free_pagetable(pmd_page(*pmd),
890                                                        get_order(PMD_SIZE));
891
892                                 spin_lock(&init_mm.page_table_lock);
893                                 pmd_clear(pmd);
894                                 spin_unlock(&init_mm.page_table_lock);
895                                 pages++;
896                         } else {
897                                 /* If here, we are freeing vmemmap pages. */
898                                 memset((void *)addr, PAGE_INUSE, next - addr);
899
900                                 page_addr = page_address(pmd_page(*pmd));
901                                 if (!memchr_inv(page_addr, PAGE_INUSE,
902                                                 PMD_SIZE)) {
903                                         free_pagetable(pmd_page(*pmd),
904                                                        get_order(PMD_SIZE));
905
906                                         spin_lock(&init_mm.page_table_lock);
907                                         pmd_clear(pmd);
908                                         spin_unlock(&init_mm.page_table_lock);
909                                 }
910                         }
911
912                         continue;
913                 }
914
915                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
916                 remove_pte_table(pte_base, addr, next, direct);
917                 free_pte_table(pte_base, pmd);
918         }
919
920         /* Call free_pmd_table() in remove_pud_table(). */
921         if (direct)
922                 update_page_count(PG_LEVEL_2M, -pages);
923 }
924
925 static void __meminit
926 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
927                  bool direct)
928 {
929         unsigned long next, pages = 0;
930         pmd_t *pmd_base;
931         pud_t *pud;
932         void *page_addr;
933
934         pud = pud_start + pud_index(addr);
935         for (; addr < end; addr = next, pud++) {
936                 next = pud_addr_end(addr, end);
937
938                 if (!pud_present(*pud))
939                         continue;
940
941                 if (pud_large(*pud)) {
942                         if (IS_ALIGNED(addr, PUD_SIZE) &&
943                             IS_ALIGNED(next, PUD_SIZE)) {
944                                 if (!direct)
945                                         free_pagetable(pud_page(*pud),
946                                                        get_order(PUD_SIZE));
947
948                                 spin_lock(&init_mm.page_table_lock);
949                                 pud_clear(pud);
950                                 spin_unlock(&init_mm.page_table_lock);
951                                 pages++;
952                         } else {
953                                 /* If here, we are freeing vmemmap pages. */
954                                 memset((void *)addr, PAGE_INUSE, next - addr);
955
956                                 page_addr = page_address(pud_page(*pud));
957                                 if (!memchr_inv(page_addr, PAGE_INUSE,
958                                                 PUD_SIZE)) {
959                                         free_pagetable(pud_page(*pud),
960                                                        get_order(PUD_SIZE));
961
962                                         spin_lock(&init_mm.page_table_lock);
963                                         pud_clear(pud);
964                                         spin_unlock(&init_mm.page_table_lock);
965                                 }
966                         }
967
968                         continue;
969                 }
970
971                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
972                 remove_pmd_table(pmd_base, addr, next, direct);
973                 free_pmd_table(pmd_base, pud);
974         }
975
976         if (direct)
977                 update_page_count(PG_LEVEL_1G, -pages);
978 }
979
980 /* start and end are both virtual address. */
981 static void __meminit
982 remove_pagetable(unsigned long start, unsigned long end, bool direct)
983 {
984         unsigned long next;
985         unsigned long addr;
986         pgd_t *pgd;
987         pud_t *pud;
988         bool pgd_changed = false;
989
990         for (addr = start; addr < end; addr = next) {
991                 next = pgd_addr_end(addr, end);
992
993                 pgd = pgd_offset_k(addr);
994                 if (!pgd_present(*pgd))
995                         continue;
996
997                 pud = (pud_t *)pgd_page_vaddr(*pgd);
998                 remove_pud_table(pud, addr, next, direct);
999                 if (free_pud_table(pud, pgd))
1000                         pgd_changed = true;
1001         }
1002
1003         if (pgd_changed)
1004                 sync_global_pgds(start, end - 1, 1);
1005
1006         flush_tlb_all();
1007 }
1008
1009 void __ref vmemmap_free(unsigned long start, unsigned long end)
1010 {
1011         remove_pagetable(start, end, false);
1012 }
1013
1014 #ifdef CONFIG_MEMORY_HOTREMOVE
1015 static void __meminit
1016 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1017 {
1018         start = (unsigned long)__va(start);
1019         end = (unsigned long)__va(end);
1020
1021         remove_pagetable(start, end, true);
1022 }
1023
1024 int __ref arch_remove_memory(u64 start, u64 size)
1025 {
1026         unsigned long start_pfn = start >> PAGE_SHIFT;
1027         unsigned long nr_pages = size >> PAGE_SHIFT;
1028         struct page *page = pfn_to_page(start_pfn);
1029         struct vmem_altmap *altmap;
1030         struct zone *zone;
1031         int ret;
1032
1033         /* With altmap the first mapped page is offset from @start */
1034         altmap = to_vmem_altmap((unsigned long) page);
1035         if (altmap)
1036                 page += vmem_altmap_offset(altmap);
1037         zone = page_zone(page);
1038         ret = __remove_pages(zone, start_pfn, nr_pages);
1039         WARN_ON_ONCE(ret);
1040         kernel_physical_mapping_remove(start, start + size);
1041
1042         return ret;
1043 }
1044 #endif
1045 #endif /* CONFIG_MEMORY_HOTPLUG */
1046
1047 static struct kcore_list kcore_vsyscall;
1048
1049 static void __init register_page_bootmem_info(void)
1050 {
1051 #ifdef CONFIG_NUMA
1052         int i;
1053
1054         for_each_online_node(i)
1055                 register_page_bootmem_info_node(NODE_DATA(i));
1056 #endif
1057 }
1058
1059 void __init mem_init(void)
1060 {
1061         pci_iommu_alloc();
1062
1063         /* clear_bss() already clear the empty_zero_page */
1064
1065         register_page_bootmem_info();
1066
1067         /* this will put all memory onto the freelists */
1068         free_all_bootmem();
1069         after_bootmem = 1;
1070
1071         /* Register memory areas for /proc/kcore */
1072         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1073                          PAGE_SIZE, KCORE_OTHER);
1074
1075         mem_init_print_info(NULL);
1076 }
1077
1078 #ifdef CONFIG_DEBUG_RODATA
1079 const int rodata_test_data = 0xC3;
1080 EXPORT_SYMBOL_GPL(rodata_test_data);
1081
1082 int kernel_set_to_readonly;
1083
1084 void set_kernel_text_rw(void)
1085 {
1086         unsigned long start = PFN_ALIGN(_text);
1087         unsigned long end = PFN_ALIGN(__stop___ex_table);
1088
1089         if (!kernel_set_to_readonly)
1090                 return;
1091
1092         pr_debug("Set kernel text: %lx - %lx for read write\n",
1093                  start, end);
1094
1095         /*
1096          * Make the kernel identity mapping for text RW. Kernel text
1097          * mapping will always be RO. Refer to the comment in
1098          * static_protections() in pageattr.c
1099          */
1100         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1101 }
1102
1103 void set_kernel_text_ro(void)
1104 {
1105         unsigned long start = PFN_ALIGN(_text);
1106         unsigned long end = PFN_ALIGN(__stop___ex_table);
1107
1108         if (!kernel_set_to_readonly)
1109                 return;
1110
1111         pr_debug("Set kernel text: %lx - %lx for read only\n",
1112                  start, end);
1113
1114         /*
1115          * Set the kernel identity mapping for text RO.
1116          */
1117         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1118 }
1119
1120 void mark_rodata_ro(void)
1121 {
1122         unsigned long start = PFN_ALIGN(_text);
1123         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1124         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1125         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1126         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1127         unsigned long all_end;
1128
1129         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1130                (end - start) >> 10);
1131         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1132
1133         kernel_set_to_readonly = 1;
1134
1135         /*
1136          * The rodata/data/bss/brk section (but not the kernel text!)
1137          * should also be not-executable.
1138          *
1139          * We align all_end to PMD_SIZE because the existing mapping
1140          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1141          * split the PMD and the reminder between _brk_end and the end
1142          * of the PMD will remain mapped executable.
1143          *
1144          * Any PMD which was setup after the one which covers _brk_end
1145          * has been zapped already via cleanup_highmem().
1146          */
1147         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1148         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1149
1150         rodata_test();
1151
1152 #ifdef CONFIG_CPA_DEBUG
1153         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1154         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1155
1156         printk(KERN_INFO "Testing CPA: again\n");
1157         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1158 #endif
1159
1160         free_init_pages("unused kernel",
1161                         (unsigned long) __va(__pa_symbol(text_end)),
1162                         (unsigned long) __va(__pa_symbol(rodata_start)));
1163         free_init_pages("unused kernel",
1164                         (unsigned long) __va(__pa_symbol(rodata_end)),
1165                         (unsigned long) __va(__pa_symbol(_sdata)));
1166
1167         debug_checkwx();
1168 }
1169
1170 #endif
1171
1172 int kern_addr_valid(unsigned long addr)
1173 {
1174         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1175         pgd_t *pgd;
1176         pud_t *pud;
1177         pmd_t *pmd;
1178         pte_t *pte;
1179
1180         if (above != 0 && above != -1UL)
1181                 return 0;
1182
1183         pgd = pgd_offset_k(addr);
1184         if (pgd_none(*pgd))
1185                 return 0;
1186
1187         pud = pud_offset(pgd, addr);
1188         if (pud_none(*pud))
1189                 return 0;
1190
1191         if (pud_large(*pud))
1192                 return pfn_valid(pud_pfn(*pud));
1193
1194         pmd = pmd_offset(pud, addr);
1195         if (pmd_none(*pmd))
1196                 return 0;
1197
1198         if (pmd_large(*pmd))
1199                 return pfn_valid(pmd_pfn(*pmd));
1200
1201         pte = pte_offset_kernel(pmd, addr);
1202         if (pte_none(*pte))
1203                 return 0;
1204
1205         return pfn_valid(pte_pfn(*pte));
1206 }
1207
1208 static unsigned long probe_memory_block_size(void)
1209 {
1210         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1211
1212         /* if system is UV or has 64GB of RAM or more, use large blocks */
1213         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1214                 bz = 2UL << 30; /* 2GB */
1215
1216         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1217
1218         return bz;
1219 }
1220
1221 static unsigned long memory_block_size_probed;
1222 unsigned long memory_block_size_bytes(void)
1223 {
1224         if (!memory_block_size_probed)
1225                 memory_block_size_probed = probe_memory_block_size();
1226
1227         return memory_block_size_probed;
1228 }
1229
1230 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1231 /*
1232  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1233  */
1234 static long __meminitdata addr_start, addr_end;
1235 static void __meminitdata *p_start, *p_end;
1236 static int __meminitdata node_start;
1237
1238 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1239                 unsigned long end, int node, struct vmem_altmap *altmap)
1240 {
1241         unsigned long addr;
1242         unsigned long next;
1243         pgd_t *pgd;
1244         pud_t *pud;
1245         pmd_t *pmd;
1246
1247         for (addr = start; addr < end; addr = next) {
1248                 next = pmd_addr_end(addr, end);
1249
1250                 pgd = vmemmap_pgd_populate(addr, node);
1251                 if (!pgd)
1252                         return -ENOMEM;
1253
1254                 pud = vmemmap_pud_populate(pgd, addr, node);
1255                 if (!pud)
1256                         return -ENOMEM;
1257
1258                 pmd = pmd_offset(pud, addr);
1259                 if (pmd_none(*pmd)) {
1260                         void *p;
1261
1262                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1263                         if (p) {
1264                                 pte_t entry;
1265
1266                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1267                                                 PAGE_KERNEL_LARGE);
1268                                 set_pmd(pmd, __pmd(pte_val(entry)));
1269
1270                                 /* check to see if we have contiguous blocks */
1271                                 if (p_end != p || node_start != node) {
1272                                         if (p_start)
1273                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1274                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1275                                         addr_start = addr;
1276                                         node_start = node;
1277                                         p_start = p;
1278                                 }
1279
1280                                 addr_end = addr + PMD_SIZE;
1281                                 p_end = p + PMD_SIZE;
1282                                 continue;
1283                         } else if (altmap)
1284                                 return -ENOMEM; /* no fallback */
1285                 } else if (pmd_large(*pmd)) {
1286                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1287                         continue;
1288                 }
1289                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1290                 if (vmemmap_populate_basepages(addr, next, node))
1291                         return -ENOMEM;
1292         }
1293         return 0;
1294 }
1295
1296 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1297 {
1298         struct vmem_altmap *altmap = to_vmem_altmap(start);
1299         int err;
1300
1301         if (cpu_has_pse)
1302                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1303         else if (altmap) {
1304                 pr_err_once("%s: no cpu support for altmap allocations\n",
1305                                 __func__);
1306                 err = -ENOMEM;
1307         } else
1308                 err = vmemmap_populate_basepages(start, end, node);
1309         if (!err)
1310                 sync_global_pgds(start, end - 1, 0);
1311         return err;
1312 }
1313
1314 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1315 void register_page_bootmem_memmap(unsigned long section_nr,
1316                                   struct page *start_page, unsigned long size)
1317 {
1318         unsigned long addr = (unsigned long)start_page;
1319         unsigned long end = (unsigned long)(start_page + size);
1320         unsigned long next;
1321         pgd_t *pgd;
1322         pud_t *pud;
1323         pmd_t *pmd;
1324         unsigned int nr_pages;
1325         struct page *page;
1326
1327         for (; addr < end; addr = next) {
1328                 pte_t *pte = NULL;
1329
1330                 pgd = pgd_offset_k(addr);
1331                 if (pgd_none(*pgd)) {
1332                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1333                         continue;
1334                 }
1335                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1336
1337                 pud = pud_offset(pgd, addr);
1338                 if (pud_none(*pud)) {
1339                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1340                         continue;
1341                 }
1342                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1343
1344                 if (!cpu_has_pse) {
1345                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1346                         pmd = pmd_offset(pud, addr);
1347                         if (pmd_none(*pmd))
1348                                 continue;
1349                         get_page_bootmem(section_nr, pmd_page(*pmd),
1350                                          MIX_SECTION_INFO);
1351
1352                         pte = pte_offset_kernel(pmd, addr);
1353                         if (pte_none(*pte))
1354                                 continue;
1355                         get_page_bootmem(section_nr, pte_page(*pte),
1356                                          SECTION_INFO);
1357                 } else {
1358                         next = pmd_addr_end(addr, end);
1359
1360                         pmd = pmd_offset(pud, addr);
1361                         if (pmd_none(*pmd))
1362                                 continue;
1363
1364                         nr_pages = 1 << (get_order(PMD_SIZE));
1365                         page = pmd_page(*pmd);
1366                         while (nr_pages--)
1367                                 get_page_bootmem(section_nr, page++,
1368                                                  SECTION_INFO);
1369                 }
1370         }
1371 }
1372 #endif
1373
1374 void __meminit vmemmap_populate_print_last(void)
1375 {
1376         if (p_start) {
1377                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1378                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1379                 p_start = NULL;
1380                 p_end = NULL;
1381                 node_start = 0;
1382         }
1383 }
1384 #endif