]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off  PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83         if (!strcmp(str, "on"))
84                 force_personality32 &= ~READ_IMPLIES_EXEC;
85         else if (!strcmp(str, "off"))
86                 force_personality32 |= READ_IMPLIES_EXEC;
87         return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92  * When memory was added make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end)
96 {
97         unsigned long address;
98
99         for (address = start; address <= end; address += PGDIR_SIZE) {
100                 const pgd_t *pgd_ref = pgd_offset_k(address);
101                 struct page *page;
102
103                 if (pgd_none(*pgd_ref))
104                         continue;
105
106                 spin_lock(&pgd_lock);
107                 list_for_each_entry(page, &pgd_list, lru) {
108                         pgd_t *pgd;
109                         spinlock_t *pgt_lock;
110
111                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
112                         /* the pgt_lock only for Xen */
113                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
114                         spin_lock(pgt_lock);
115
116                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
117                                 BUG_ON(pgd_page_vaddr(*pgd)
118                                        != pgd_page_vaddr(*pgd_ref));
119
120                         if (pgd_none(*pgd))
121                                 set_pgd(pgd, *pgd_ref);
122
123                         spin_unlock(pgt_lock);
124                 }
125                 spin_unlock(&pgd_lock);
126         }
127 }
128
129 /*
130  * NOTE: This function is marked __ref because it calls __init function
131  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
132  */
133 static __ref void *spp_getpage(void)
134 {
135         void *ptr;
136
137         if (after_bootmem)
138                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
139         else
140                 ptr = alloc_bootmem_pages(PAGE_SIZE);
141
142         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
143                 panic("set_pte_phys: cannot allocate page data %s\n",
144                         after_bootmem ? "after bootmem" : "");
145         }
146
147         pr_debug("spp_getpage %p\n", ptr);
148
149         return ptr;
150 }
151
152 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
153 {
154         if (pgd_none(*pgd)) {
155                 pud_t *pud = (pud_t *)spp_getpage();
156                 pgd_populate(&init_mm, pgd, pud);
157                 if (pud != pud_offset(pgd, 0))
158                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
159                                pud, pud_offset(pgd, 0));
160         }
161         return pud_offset(pgd, vaddr);
162 }
163
164 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
165 {
166         if (pud_none(*pud)) {
167                 pmd_t *pmd = (pmd_t *) spp_getpage();
168                 pud_populate(&init_mm, pud, pmd);
169                 if (pmd != pmd_offset(pud, 0))
170                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
171                                pmd, pmd_offset(pud, 0));
172         }
173         return pmd_offset(pud, vaddr);
174 }
175
176 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
177 {
178         if (pmd_none(*pmd)) {
179                 pte_t *pte = (pte_t *) spp_getpage();
180                 pmd_populate_kernel(&init_mm, pmd, pte);
181                 if (pte != pte_offset_kernel(pmd, 0))
182                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
183         }
184         return pte_offset_kernel(pmd, vaddr);
185 }
186
187 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
188 {
189         pud_t *pud;
190         pmd_t *pmd;
191         pte_t *pte;
192
193         pud = pud_page + pud_index(vaddr);
194         pmd = fill_pmd(pud, vaddr);
195         pte = fill_pte(pmd, vaddr);
196
197         set_pte(pte, new_pte);
198
199         /*
200          * It's enough to flush this one mapping.
201          * (PGE mappings get flushed as well)
202          */
203         __flush_tlb_one(vaddr);
204 }
205
206 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
207 {
208         pgd_t *pgd;
209         pud_t *pud_page;
210
211         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
212
213         pgd = pgd_offset_k(vaddr);
214         if (pgd_none(*pgd)) {
215                 printk(KERN_ERR
216                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
217                 return;
218         }
219         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
220         set_pte_vaddr_pud(pud_page, vaddr, pteval);
221 }
222
223 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
224 {
225         pgd_t *pgd;
226         pud_t *pud;
227
228         pgd = pgd_offset_k(vaddr);
229         pud = fill_pud(pgd, vaddr);
230         return fill_pmd(pud, vaddr);
231 }
232
233 pte_t * __init populate_extra_pte(unsigned long vaddr)
234 {
235         pmd_t *pmd;
236
237         pmd = populate_extra_pmd(vaddr);
238         return fill_pte(pmd, vaddr);
239 }
240
241 /*
242  * Create large page table mappings for a range of physical addresses.
243  */
244 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
245                                         enum page_cache_mode cache)
246 {
247         pgd_t *pgd;
248         pud_t *pud;
249         pmd_t *pmd;
250         pgprot_t prot;
251
252         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
253                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
254         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
255         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
256                 pgd = pgd_offset_k((unsigned long)__va(phys));
257                 if (pgd_none(*pgd)) {
258                         pud = (pud_t *) spp_getpage();
259                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
260                                                 _PAGE_USER));
261                 }
262                 pud = pud_offset(pgd, (unsigned long)__va(phys));
263                 if (pud_none(*pud)) {
264                         pmd = (pmd_t *) spp_getpage();
265                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
266                                                 _PAGE_USER));
267                 }
268                 pmd = pmd_offset(pud, phys);
269                 BUG_ON(!pmd_none(*pmd));
270                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
271         }
272 }
273
274 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
275 {
276         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
277 }
278
279 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
280 {
281         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
282 }
283
284 /*
285  * The head.S code sets up the kernel high mapping:
286  *
287  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
288  *
289  * phys_base holds the negative offset to the kernel, which is added
290  * to the compile time generated pmds. This results in invalid pmds up
291  * to the point where we hit the physaddr 0 mapping.
292  *
293  * We limit the mappings to the region from _text to _brk_end.  _brk_end
294  * is rounded up to the 2MB boundary. This catches the invalid pmds as
295  * well, as they are located before _text:
296  */
297 void __init cleanup_highmap(void)
298 {
299         unsigned long vaddr = __START_KERNEL_map;
300         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
301         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
302         pmd_t *pmd = level2_kernel_pgt;
303
304         /*
305          * Native path, max_pfn_mapped is not set yet.
306          * Xen has valid max_pfn_mapped set in
307          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
308          */
309         if (max_pfn_mapped)
310                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
311
312         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
313                 if (pmd_none(*pmd))
314                         continue;
315                 if (vaddr < (unsigned long) _text || vaddr > end)
316                         set_pmd(pmd, __pmd(0));
317         }
318 }
319
320 /*
321  * Create PTE level page table mapping for physical addresses.
322  * It returns the last physical address mapped.
323  */
324 static unsigned long __meminit
325 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
326               pgprot_t prot)
327 {
328         unsigned long pages = 0, paddr_next;
329         unsigned long paddr_last = paddr_end;
330         pte_t *pte;
331         int i;
332
333         pte = pte_page + pte_index(paddr);
334         i = pte_index(paddr);
335
336         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
337                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
338                 if (paddr >= paddr_end) {
339                         if (!after_bootmem &&
340                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
341                                              E820_RAM) &&
342                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
343                                              E820_RESERVED_KERN))
344                                 set_pte(pte, __pte(0));
345                         continue;
346                 }
347
348                 /*
349                  * We will re-use the existing mapping.
350                  * Xen for example has some special requirements, like mapping
351                  * pagetable pages as RO. So assume someone who pre-setup
352                  * these mappings are more intelligent.
353                  */
354                 if (!pte_none(*pte)) {
355                         if (!after_bootmem)
356                                 pages++;
357                         continue;
358                 }
359
360                 if (0)
361                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
362                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
363                 pages++;
364                 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
365                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
366         }
367
368         update_page_count(PG_LEVEL_4K, pages);
369
370         return paddr_last;
371 }
372
373 /*
374  * Create PMD level page table mapping for physical addresses. The virtual
375  * and physical address have to be aligned at this level.
376  * It returns the last physical address mapped.
377  */
378 static unsigned long __meminit
379 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
380               unsigned long page_size_mask, pgprot_t prot)
381 {
382         unsigned long pages = 0, paddr_next;
383         unsigned long paddr_last = paddr_end;
384
385         int i = pmd_index(paddr);
386
387         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
388                 pmd_t *pmd = pmd_page + pmd_index(paddr);
389                 pte_t *pte;
390                 pgprot_t new_prot = prot;
391
392                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
393                 if (paddr >= paddr_end) {
394                         if (!after_bootmem &&
395                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
396                                              E820_RAM) &&
397                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
398                                              E820_RESERVED_KERN))
399                                 set_pmd(pmd, __pmd(0));
400                         continue;
401                 }
402
403                 if (!pmd_none(*pmd)) {
404                         if (!pmd_large(*pmd)) {
405                                 spin_lock(&init_mm.page_table_lock);
406                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
407                                 paddr_last = phys_pte_init(pte, paddr,
408                                                            paddr_end, prot);
409                                 spin_unlock(&init_mm.page_table_lock);
410                                 continue;
411                         }
412                         /*
413                          * If we are ok with PG_LEVEL_2M mapping, then we will
414                          * use the existing mapping,
415                          *
416                          * Otherwise, we will split the large page mapping but
417                          * use the same existing protection bits except for
418                          * large page, so that we don't violate Intel's TLB
419                          * Application note (317080) which says, while changing
420                          * the page sizes, new and old translations should
421                          * not differ with respect to page frame and
422                          * attributes.
423                          */
424                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
425                                 if (!after_bootmem)
426                                         pages++;
427                                 paddr_last = paddr_next;
428                                 continue;
429                         }
430                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
431                 }
432
433                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
434                         pages++;
435                         spin_lock(&init_mm.page_table_lock);
436                         set_pte((pte_t *)pmd,
437                                 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
438                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
439                         spin_unlock(&init_mm.page_table_lock);
440                         paddr_last = paddr_next;
441                         continue;
442                 }
443
444                 pte = alloc_low_page();
445                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
446
447                 spin_lock(&init_mm.page_table_lock);
448                 pmd_populate_kernel(&init_mm, pmd, pte);
449                 spin_unlock(&init_mm.page_table_lock);
450         }
451         update_page_count(PG_LEVEL_2M, pages);
452         return paddr_last;
453 }
454
455 /*
456  * Create PUD level page table mapping for physical addresses. The virtual
457  * and physical address do not have to be aligned at this level. KASLR can
458  * randomize virtual addresses up to this level.
459  * It returns the last physical address mapped.
460  */
461 static unsigned long __meminit
462 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
463               unsigned long page_size_mask)
464 {
465         unsigned long pages = 0, paddr_next;
466         unsigned long paddr_last = paddr_end;
467         unsigned long vaddr = (unsigned long)__va(paddr);
468         int i = pud_index(vaddr);
469
470         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
471                 pud_t *pud;
472                 pmd_t *pmd;
473                 pgprot_t prot = PAGE_KERNEL;
474
475                 vaddr = (unsigned long)__va(paddr);
476                 pud = pud_page + pud_index(vaddr);
477                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
478
479                 if (paddr >= paddr_end) {
480                         if (!after_bootmem &&
481                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
482                                              E820_RAM) &&
483                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
484                                              E820_RESERVED_KERN))
485                                 set_pud(pud, __pud(0));
486                         continue;
487                 }
488
489                 if (!pud_none(*pud)) {
490                         if (!pud_large(*pud)) {
491                                 pmd = pmd_offset(pud, 0);
492                                 paddr_last = phys_pmd_init(pmd, paddr,
493                                                            paddr_end,
494                                                            page_size_mask,
495                                                            prot);
496                                 __flush_tlb_all();
497                                 continue;
498                         }
499                         /*
500                          * If we are ok with PG_LEVEL_1G mapping, then we will
501                          * use the existing mapping.
502                          *
503                          * Otherwise, we will split the gbpage mapping but use
504                          * the same existing protection  bits except for large
505                          * page, so that we don't violate Intel's TLB
506                          * Application note (317080) which says, while changing
507                          * the page sizes, new and old translations should
508                          * not differ with respect to page frame and
509                          * attributes.
510                          */
511                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
512                                 if (!after_bootmem)
513                                         pages++;
514                                 paddr_last = paddr_next;
515                                 continue;
516                         }
517                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
518                 }
519
520                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
521                         pages++;
522                         spin_lock(&init_mm.page_table_lock);
523                         set_pte((pte_t *)pud,
524                                 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
525                                         PAGE_KERNEL_LARGE));
526                         spin_unlock(&init_mm.page_table_lock);
527                         paddr_last = paddr_next;
528                         continue;
529                 }
530
531                 pmd = alloc_low_page();
532                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
533                                            page_size_mask, prot);
534
535                 spin_lock(&init_mm.page_table_lock);
536                 pud_populate(&init_mm, pud, pmd);
537                 spin_unlock(&init_mm.page_table_lock);
538         }
539         __flush_tlb_all();
540
541         update_page_count(PG_LEVEL_1G, pages);
542
543         return paddr_last;
544 }
545
546 /*
547  * Create page table mapping for the physical memory for specific physical
548  * addresses. The virtual and physical addresses have to be aligned on PMD level
549  * down. It returns the last physical address mapped.
550  */
551 unsigned long __meminit
552 kernel_physical_mapping_init(unsigned long paddr_start,
553                              unsigned long paddr_end,
554                              unsigned long page_size_mask)
555 {
556         bool pgd_changed = false;
557         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
558
559         paddr_last = paddr_end;
560         vaddr = (unsigned long)__va(paddr_start);
561         vaddr_end = (unsigned long)__va(paddr_end);
562         vaddr_start = vaddr;
563
564         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
565                 pgd_t *pgd = pgd_offset_k(vaddr);
566                 pud_t *pud;
567
568                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
569
570                 if (pgd_val(*pgd)) {
571                         pud = (pud_t *)pgd_page_vaddr(*pgd);
572                         paddr_last = phys_pud_init(pud, __pa(vaddr),
573                                                    __pa(vaddr_end),
574                                                    page_size_mask);
575                         continue;
576                 }
577
578                 pud = alloc_low_page();
579                 paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
580                                            page_size_mask);
581
582                 spin_lock(&init_mm.page_table_lock);
583                 pgd_populate(&init_mm, pgd, pud);
584                 spin_unlock(&init_mm.page_table_lock);
585                 pgd_changed = true;
586         }
587
588         if (pgd_changed)
589                 sync_global_pgds(vaddr_start, vaddr_end - 1);
590
591         __flush_tlb_all();
592
593         return paddr_last;
594 }
595
596 #ifndef CONFIG_NUMA
597 void __init initmem_init(void)
598 {
599         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
600 }
601 #endif
602
603 void __init paging_init(void)
604 {
605         sparse_memory_present_with_active_regions(MAX_NUMNODES);
606         sparse_init();
607
608         /*
609          * clear the default setting with node 0
610          * note: don't use nodes_clear here, that is really clearing when
611          *       numa support is not compiled in, and later node_set_state
612          *       will not set it back.
613          */
614         node_clear_state(0, N_MEMORY);
615         if (N_MEMORY != N_NORMAL_MEMORY)
616                 node_clear_state(0, N_NORMAL_MEMORY);
617
618         zone_sizes_init();
619 }
620
621 /*
622  * Memory hotplug specific functions
623  */
624 #ifdef CONFIG_MEMORY_HOTPLUG
625 /*
626  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
627  * updating.
628  */
629 static void  update_end_of_memory_vars(u64 start, u64 size)
630 {
631         unsigned long end_pfn = PFN_UP(start + size);
632
633         if (end_pfn > max_pfn) {
634                 max_pfn = end_pfn;
635                 max_low_pfn = end_pfn;
636                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
637         }
638 }
639
640 /*
641  * Memory is added always to NORMAL zone. This means you will never get
642  * additional DMA/DMA32 memory.
643  */
644 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
645 {
646         struct pglist_data *pgdat = NODE_DATA(nid);
647         struct zone *zone = pgdat->node_zones +
648                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
649         unsigned long start_pfn = start >> PAGE_SHIFT;
650         unsigned long nr_pages = size >> PAGE_SHIFT;
651         int ret;
652
653         init_memory_mapping(start, start + size);
654
655         ret = __add_pages(nid, zone, start_pfn, nr_pages);
656         WARN_ON_ONCE(ret);
657
658         /* update max_pfn, max_low_pfn and high_memory */
659         update_end_of_memory_vars(start, size);
660
661         return ret;
662 }
663 EXPORT_SYMBOL_GPL(arch_add_memory);
664
665 #define PAGE_INUSE 0xFD
666
667 static void __meminit free_pagetable(struct page *page, int order)
668 {
669         unsigned long magic;
670         unsigned int nr_pages = 1 << order;
671         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
672
673         if (altmap) {
674                 vmem_altmap_free(altmap, nr_pages);
675                 return;
676         }
677
678         /* bootmem page has reserved flag */
679         if (PageReserved(page)) {
680                 __ClearPageReserved(page);
681
682                 magic = (unsigned long)page->lru.next;
683                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
684                         while (nr_pages--)
685                                 put_page_bootmem(page++);
686                 } else
687                         while (nr_pages--)
688                                 free_reserved_page(page++);
689         } else
690                 free_pages((unsigned long)page_address(page), order);
691 }
692
693 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
694 {
695         pte_t *pte;
696         int i;
697
698         for (i = 0; i < PTRS_PER_PTE; i++) {
699                 pte = pte_start + i;
700                 if (!pte_none(*pte))
701                         return;
702         }
703
704         /* free a pte talbe */
705         free_pagetable(pmd_page(*pmd), 0);
706         spin_lock(&init_mm.page_table_lock);
707         pmd_clear(pmd);
708         spin_unlock(&init_mm.page_table_lock);
709 }
710
711 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
712 {
713         pmd_t *pmd;
714         int i;
715
716         for (i = 0; i < PTRS_PER_PMD; i++) {
717                 pmd = pmd_start + i;
718                 if (!pmd_none(*pmd))
719                         return;
720         }
721
722         /* free a pmd talbe */
723         free_pagetable(pud_page(*pud), 0);
724         spin_lock(&init_mm.page_table_lock);
725         pud_clear(pud);
726         spin_unlock(&init_mm.page_table_lock);
727 }
728
729 static void __meminit
730 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
731                  bool direct)
732 {
733         unsigned long next, pages = 0;
734         pte_t *pte;
735         void *page_addr;
736         phys_addr_t phys_addr;
737
738         pte = pte_start + pte_index(addr);
739         for (; addr < end; addr = next, pte++) {
740                 next = (addr + PAGE_SIZE) & PAGE_MASK;
741                 if (next > end)
742                         next = end;
743
744                 if (!pte_present(*pte))
745                         continue;
746
747                 /*
748                  * We mapped [0,1G) memory as identity mapping when
749                  * initializing, in arch/x86/kernel/head_64.S. These
750                  * pagetables cannot be removed.
751                  */
752                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
753                 if (phys_addr < (phys_addr_t)0x40000000)
754                         return;
755
756                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
757                         /*
758                          * Do not free direct mapping pages since they were
759                          * freed when offlining, or simplely not in use.
760                          */
761                         if (!direct)
762                                 free_pagetable(pte_page(*pte), 0);
763
764                         spin_lock(&init_mm.page_table_lock);
765                         pte_clear(&init_mm, addr, pte);
766                         spin_unlock(&init_mm.page_table_lock);
767
768                         /* For non-direct mapping, pages means nothing. */
769                         pages++;
770                 } else {
771                         /*
772                          * If we are here, we are freeing vmemmap pages since
773                          * direct mapped memory ranges to be freed are aligned.
774                          *
775                          * If we are not removing the whole page, it means
776                          * other page structs in this page are being used and
777                          * we canot remove them. So fill the unused page_structs
778                          * with 0xFD, and remove the page when it is wholly
779                          * filled with 0xFD.
780                          */
781                         memset((void *)addr, PAGE_INUSE, next - addr);
782
783                         page_addr = page_address(pte_page(*pte));
784                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
785                                 free_pagetable(pte_page(*pte), 0);
786
787                                 spin_lock(&init_mm.page_table_lock);
788                                 pte_clear(&init_mm, addr, pte);
789                                 spin_unlock(&init_mm.page_table_lock);
790                         }
791                 }
792         }
793
794         /* Call free_pte_table() in remove_pmd_table(). */
795         flush_tlb_all();
796         if (direct)
797                 update_page_count(PG_LEVEL_4K, -pages);
798 }
799
800 static void __meminit
801 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
802                  bool direct)
803 {
804         unsigned long next, pages = 0;
805         pte_t *pte_base;
806         pmd_t *pmd;
807         void *page_addr;
808
809         pmd = pmd_start + pmd_index(addr);
810         for (; addr < end; addr = next, pmd++) {
811                 next = pmd_addr_end(addr, end);
812
813                 if (!pmd_present(*pmd))
814                         continue;
815
816                 if (pmd_large(*pmd)) {
817                         if (IS_ALIGNED(addr, PMD_SIZE) &&
818                             IS_ALIGNED(next, PMD_SIZE)) {
819                                 if (!direct)
820                                         free_pagetable(pmd_page(*pmd),
821                                                        get_order(PMD_SIZE));
822
823                                 spin_lock(&init_mm.page_table_lock);
824                                 pmd_clear(pmd);
825                                 spin_unlock(&init_mm.page_table_lock);
826                                 pages++;
827                         } else {
828                                 /* If here, we are freeing vmemmap pages. */
829                                 memset((void *)addr, PAGE_INUSE, next - addr);
830
831                                 page_addr = page_address(pmd_page(*pmd));
832                                 if (!memchr_inv(page_addr, PAGE_INUSE,
833                                                 PMD_SIZE)) {
834                                         free_pagetable(pmd_page(*pmd),
835                                                        get_order(PMD_SIZE));
836
837                                         spin_lock(&init_mm.page_table_lock);
838                                         pmd_clear(pmd);
839                                         spin_unlock(&init_mm.page_table_lock);
840                                 }
841                         }
842
843                         continue;
844                 }
845
846                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
847                 remove_pte_table(pte_base, addr, next, direct);
848                 free_pte_table(pte_base, pmd);
849         }
850
851         /* Call free_pmd_table() in remove_pud_table(). */
852         if (direct)
853                 update_page_count(PG_LEVEL_2M, -pages);
854 }
855
856 static void __meminit
857 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
858                  bool direct)
859 {
860         unsigned long next, pages = 0;
861         pmd_t *pmd_base;
862         pud_t *pud;
863         void *page_addr;
864
865         pud = pud_start + pud_index(addr);
866         for (; addr < end; addr = next, pud++) {
867                 next = pud_addr_end(addr, end);
868
869                 if (!pud_present(*pud))
870                         continue;
871
872                 if (pud_large(*pud)) {
873                         if (IS_ALIGNED(addr, PUD_SIZE) &&
874                             IS_ALIGNED(next, PUD_SIZE)) {
875                                 if (!direct)
876                                         free_pagetable(pud_page(*pud),
877                                                        get_order(PUD_SIZE));
878
879                                 spin_lock(&init_mm.page_table_lock);
880                                 pud_clear(pud);
881                                 spin_unlock(&init_mm.page_table_lock);
882                                 pages++;
883                         } else {
884                                 /* If here, we are freeing vmemmap pages. */
885                                 memset((void *)addr, PAGE_INUSE, next - addr);
886
887                                 page_addr = page_address(pud_page(*pud));
888                                 if (!memchr_inv(page_addr, PAGE_INUSE,
889                                                 PUD_SIZE)) {
890                                         free_pagetable(pud_page(*pud),
891                                                        get_order(PUD_SIZE));
892
893                                         spin_lock(&init_mm.page_table_lock);
894                                         pud_clear(pud);
895                                         spin_unlock(&init_mm.page_table_lock);
896                                 }
897                         }
898
899                         continue;
900                 }
901
902                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
903                 remove_pmd_table(pmd_base, addr, next, direct);
904                 free_pmd_table(pmd_base, pud);
905         }
906
907         if (direct)
908                 update_page_count(PG_LEVEL_1G, -pages);
909 }
910
911 /* start and end are both virtual address. */
912 static void __meminit
913 remove_pagetable(unsigned long start, unsigned long end, bool direct)
914 {
915         unsigned long next;
916         unsigned long addr;
917         pgd_t *pgd;
918         pud_t *pud;
919
920         for (addr = start; addr < end; addr = next) {
921                 next = pgd_addr_end(addr, end);
922
923                 pgd = pgd_offset_k(addr);
924                 if (!pgd_present(*pgd))
925                         continue;
926
927                 pud = (pud_t *)pgd_page_vaddr(*pgd);
928                 remove_pud_table(pud, addr, next, direct);
929         }
930
931         flush_tlb_all();
932 }
933
934 void __ref vmemmap_free(unsigned long start, unsigned long end)
935 {
936         remove_pagetable(start, end, false);
937 }
938
939 #ifdef CONFIG_MEMORY_HOTREMOVE
940 static void __meminit
941 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
942 {
943         start = (unsigned long)__va(start);
944         end = (unsigned long)__va(end);
945
946         remove_pagetable(start, end, true);
947 }
948
949 int __ref arch_remove_memory(u64 start, u64 size)
950 {
951         unsigned long start_pfn = start >> PAGE_SHIFT;
952         unsigned long nr_pages = size >> PAGE_SHIFT;
953         struct page *page = pfn_to_page(start_pfn);
954         struct vmem_altmap *altmap;
955         struct zone *zone;
956         int ret;
957
958         /* With altmap the first mapped page is offset from @start */
959         altmap = to_vmem_altmap((unsigned long) page);
960         if (altmap)
961                 page += vmem_altmap_offset(altmap);
962         zone = page_zone(page);
963         ret = __remove_pages(zone, start_pfn, nr_pages);
964         WARN_ON_ONCE(ret);
965         kernel_physical_mapping_remove(start, start + size);
966
967         return ret;
968 }
969 #endif
970 #endif /* CONFIG_MEMORY_HOTPLUG */
971
972 static struct kcore_list kcore_vsyscall;
973
974 static void __init register_page_bootmem_info(void)
975 {
976 #ifdef CONFIG_NUMA
977         int i;
978
979         for_each_online_node(i)
980                 register_page_bootmem_info_node(NODE_DATA(i));
981 #endif
982 }
983
984 void __init mem_init(void)
985 {
986         pci_iommu_alloc();
987
988         /* clear_bss() already clear the empty_zero_page */
989
990         register_page_bootmem_info();
991
992         /* this will put all memory onto the freelists */
993         free_all_bootmem();
994         after_bootmem = 1;
995
996         /* Register memory areas for /proc/kcore */
997         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
998                          PAGE_SIZE, KCORE_OTHER);
999
1000         mem_init_print_info(NULL);
1001 }
1002
1003 const int rodata_test_data = 0xC3;
1004 EXPORT_SYMBOL_GPL(rodata_test_data);
1005
1006 int kernel_set_to_readonly;
1007
1008 void set_kernel_text_rw(void)
1009 {
1010         unsigned long start = PFN_ALIGN(_text);
1011         unsigned long end = PFN_ALIGN(__stop___ex_table);
1012
1013         if (!kernel_set_to_readonly)
1014                 return;
1015
1016         pr_debug("Set kernel text: %lx - %lx for read write\n",
1017                  start, end);
1018
1019         /*
1020          * Make the kernel identity mapping for text RW. Kernel text
1021          * mapping will always be RO. Refer to the comment in
1022          * static_protections() in pageattr.c
1023          */
1024         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1025 }
1026
1027 void set_kernel_text_ro(void)
1028 {
1029         unsigned long start = PFN_ALIGN(_text);
1030         unsigned long end = PFN_ALIGN(__stop___ex_table);
1031
1032         if (!kernel_set_to_readonly)
1033                 return;
1034
1035         pr_debug("Set kernel text: %lx - %lx for read only\n",
1036                  start, end);
1037
1038         /*
1039          * Set the kernel identity mapping for text RO.
1040          */
1041         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1042 }
1043
1044 void mark_rodata_ro(void)
1045 {
1046         unsigned long start = PFN_ALIGN(_text);
1047         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1048         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1049         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1050         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1051         unsigned long all_end;
1052
1053         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1054                (end - start) >> 10);
1055         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1056
1057         kernel_set_to_readonly = 1;
1058
1059         /*
1060          * The rodata/data/bss/brk section (but not the kernel text!)
1061          * should also be not-executable.
1062          *
1063          * We align all_end to PMD_SIZE because the existing mapping
1064          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1065          * split the PMD and the reminder between _brk_end and the end
1066          * of the PMD will remain mapped executable.
1067          *
1068          * Any PMD which was setup after the one which covers _brk_end
1069          * has been zapped already via cleanup_highmem().
1070          */
1071         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1072         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1073
1074         rodata_test();
1075
1076 #ifdef CONFIG_CPA_DEBUG
1077         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1078         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1079
1080         printk(KERN_INFO "Testing CPA: again\n");
1081         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1082 #endif
1083
1084         free_init_pages("unused kernel",
1085                         (unsigned long) __va(__pa_symbol(text_end)),
1086                         (unsigned long) __va(__pa_symbol(rodata_start)));
1087         free_init_pages("unused kernel",
1088                         (unsigned long) __va(__pa_symbol(rodata_end)),
1089                         (unsigned long) __va(__pa_symbol(_sdata)));
1090
1091         debug_checkwx();
1092 }
1093
1094 int kern_addr_valid(unsigned long addr)
1095 {
1096         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1097         pgd_t *pgd;
1098         pud_t *pud;
1099         pmd_t *pmd;
1100         pte_t *pte;
1101
1102         if (above != 0 && above != -1UL)
1103                 return 0;
1104
1105         pgd = pgd_offset_k(addr);
1106         if (pgd_none(*pgd))
1107                 return 0;
1108
1109         pud = pud_offset(pgd, addr);
1110         if (pud_none(*pud))
1111                 return 0;
1112
1113         if (pud_large(*pud))
1114                 return pfn_valid(pud_pfn(*pud));
1115
1116         pmd = pmd_offset(pud, addr);
1117         if (pmd_none(*pmd))
1118                 return 0;
1119
1120         if (pmd_large(*pmd))
1121                 return pfn_valid(pmd_pfn(*pmd));
1122
1123         pte = pte_offset_kernel(pmd, addr);
1124         if (pte_none(*pte))
1125                 return 0;
1126
1127         return pfn_valid(pte_pfn(*pte));
1128 }
1129
1130 static unsigned long probe_memory_block_size(void)
1131 {
1132         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1133
1134         /* if system is UV or has 64GB of RAM or more, use large blocks */
1135         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1136                 bz = 2UL << 30; /* 2GB */
1137
1138         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1139
1140         return bz;
1141 }
1142
1143 static unsigned long memory_block_size_probed;
1144 unsigned long memory_block_size_bytes(void)
1145 {
1146         if (!memory_block_size_probed)
1147                 memory_block_size_probed = probe_memory_block_size();
1148
1149         return memory_block_size_probed;
1150 }
1151
1152 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1153 /*
1154  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1155  */
1156 static long __meminitdata addr_start, addr_end;
1157 static void __meminitdata *p_start, *p_end;
1158 static int __meminitdata node_start;
1159
1160 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1161                 unsigned long end, int node, struct vmem_altmap *altmap)
1162 {
1163         unsigned long addr;
1164         unsigned long next;
1165         pgd_t *pgd;
1166         pud_t *pud;
1167         pmd_t *pmd;
1168
1169         for (addr = start; addr < end; addr = next) {
1170                 next = pmd_addr_end(addr, end);
1171
1172                 pgd = vmemmap_pgd_populate(addr, node);
1173                 if (!pgd)
1174                         return -ENOMEM;
1175
1176                 pud = vmemmap_pud_populate(pgd, addr, node);
1177                 if (!pud)
1178                         return -ENOMEM;
1179
1180                 pmd = pmd_offset(pud, addr);
1181                 if (pmd_none(*pmd)) {
1182                         void *p;
1183
1184                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1185                         if (p) {
1186                                 pte_t entry;
1187
1188                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1189                                                 PAGE_KERNEL_LARGE);
1190                                 set_pmd(pmd, __pmd(pte_val(entry)));
1191
1192                                 /* check to see if we have contiguous blocks */
1193                                 if (p_end != p || node_start != node) {
1194                                         if (p_start)
1195                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1196                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1197                                         addr_start = addr;
1198                                         node_start = node;
1199                                         p_start = p;
1200                                 }
1201
1202                                 addr_end = addr + PMD_SIZE;
1203                                 p_end = p + PMD_SIZE;
1204                                 continue;
1205                         } else if (altmap)
1206                                 return -ENOMEM; /* no fallback */
1207                 } else if (pmd_large(*pmd)) {
1208                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1209                         continue;
1210                 }
1211                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1212                 if (vmemmap_populate_basepages(addr, next, node))
1213                         return -ENOMEM;
1214         }
1215         return 0;
1216 }
1217
1218 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1219 {
1220         struct vmem_altmap *altmap = to_vmem_altmap(start);
1221         int err;
1222
1223         if (boot_cpu_has(X86_FEATURE_PSE))
1224                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1225         else if (altmap) {
1226                 pr_err_once("%s: no cpu support for altmap allocations\n",
1227                                 __func__);
1228                 err = -ENOMEM;
1229         } else
1230                 err = vmemmap_populate_basepages(start, end, node);
1231         if (!err)
1232                 sync_global_pgds(start, end - 1);
1233         return err;
1234 }
1235
1236 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1237 void register_page_bootmem_memmap(unsigned long section_nr,
1238                                   struct page *start_page, unsigned long size)
1239 {
1240         unsigned long addr = (unsigned long)start_page;
1241         unsigned long end = (unsigned long)(start_page + size);
1242         unsigned long next;
1243         pgd_t *pgd;
1244         pud_t *pud;
1245         pmd_t *pmd;
1246         unsigned int nr_pages;
1247         struct page *page;
1248
1249         for (; addr < end; addr = next) {
1250                 pte_t *pte = NULL;
1251
1252                 pgd = pgd_offset_k(addr);
1253                 if (pgd_none(*pgd)) {
1254                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1255                         continue;
1256                 }
1257                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1258
1259                 pud = pud_offset(pgd, addr);
1260                 if (pud_none(*pud)) {
1261                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1262                         continue;
1263                 }
1264                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1265
1266                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1267                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1268                         pmd = pmd_offset(pud, addr);
1269                         if (pmd_none(*pmd))
1270                                 continue;
1271                         get_page_bootmem(section_nr, pmd_page(*pmd),
1272                                          MIX_SECTION_INFO);
1273
1274                         pte = pte_offset_kernel(pmd, addr);
1275                         if (pte_none(*pte))
1276                                 continue;
1277                         get_page_bootmem(section_nr, pte_page(*pte),
1278                                          SECTION_INFO);
1279                 } else {
1280                         next = pmd_addr_end(addr, end);
1281
1282                         pmd = pmd_offset(pud, addr);
1283                         if (pmd_none(*pmd))
1284                                 continue;
1285
1286                         nr_pages = 1 << (get_order(PMD_SIZE));
1287                         page = pmd_page(*pmd);
1288                         while (nr_pages--)
1289                                 get_page_bootmem(section_nr, page++,
1290                                                  SECTION_INFO);
1291                 }
1292         }
1293 }
1294 #endif
1295
1296 void __meminit vmemmap_populate_print_last(void)
1297 {
1298         if (p_start) {
1299                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1300                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1301                 p_start = NULL;
1302                 p_end = NULL;
1303                 node_start = 0;
1304         }
1305 }
1306 #endif