]> git.karo-electronics.de Git - linux-beck.git/blob - arch/x86/mm/pageattr.c
Merge branch 'pm-tools'
[linux-beck.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         int             numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84         if (direct_gbpages)
85                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
91
92 #ifdef CONFIG_X86_64
93
94 static inline unsigned long highmap_start_pfn(void)
95 {
96         return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98
99 static inline unsigned long highmap_end_pfn(void)
100 {
101         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103
104 #endif
105
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115         return addr >= start && addr < end;
116 }
117
118 /*
119  * Flushing functions
120  */
121
122 /**
123  * clflush_cache_range - flush a cache range with clflush
124  * @vaddr:      virtual start address
125  * @size:       number of bytes to flush
126  *
127  * clflushopt is an unordered instruction which needs fencing with mfence or
128  * sfence to avoid ordering issues.
129  */
130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
133         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
134         void *vend = vaddr + size;
135
136         if (p >= vend)
137                 return;
138
139         mb();
140
141         for (; p < vend; p += clflush_size)
142                 clflushopt(p);
143
144         mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148 static void __cpa_flush_all(void *arg)
149 {
150         unsigned long cache = (unsigned long)arg;
151
152         /*
153          * Flush all to work around Errata in early athlons regarding
154          * large page flushing.
155          */
156         __flush_tlb_all();
157
158         if (cache && boot_cpu_data.x86 >= 4)
159                 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164         BUG_ON(irqs_disabled());
165
166         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171         /*
172          * We could optimize that further and do individual per page
173          * tlb invalidates for a low number of pages. Caveat: we must
174          * flush the high aliases on 64bit as well.
175          */
176         __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181         unsigned int i, level;
182         unsigned long addr;
183
184         BUG_ON(irqs_disabled());
185         WARN_ON(PAGE_ALIGN(start) != start);
186
187         on_each_cpu(__cpa_flush_range, NULL, 1);
188
189         if (!cache)
190                 return;
191
192         /*
193          * We only need to flush on one CPU,
194          * clflush is a MESI-coherent instruction that
195          * will cause all other CPUs to flush the same
196          * cachelines:
197          */
198         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199                 pte_t *pte = lookup_address(addr, &level);
200
201                 /*
202                  * Only flush present addresses:
203                  */
204                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205                         clflush_cache_range((void *) addr, PAGE_SIZE);
206         }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210                             int in_flags, struct page **pages)
211 {
212         unsigned int i, level;
213         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215         BUG_ON(irqs_disabled());
216
217         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219         if (!cache || do_wbinvd)
220                 return;
221
222         /*
223          * We only need to flush on one CPU,
224          * clflush is a MESI-coherent instruction that
225          * will cause all other CPUs to flush the same
226          * cachelines:
227          */
228         for (i = 0; i < numpages; i++) {
229                 unsigned long addr;
230                 pte_t *pte;
231
232                 if (in_flags & CPA_PAGES_ARRAY)
233                         addr = (unsigned long)page_address(pages[i]);
234                 else
235                         addr = start[i];
236
237                 pte = lookup_address(addr, &level);
238
239                 /*
240                  * Only flush present addresses:
241                  */
242                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243                         clflush_cache_range((void *)addr, PAGE_SIZE);
244         }
245 }
246
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254                                    unsigned long pfn)
255 {
256         pgprot_t forbidden = __pgprot(0);
257
258         /*
259          * The BIOS area between 640k and 1Mb needs to be executable for
260          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261          */
262 #ifdef CONFIG_PCI_BIOS
263         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264                 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267         /*
268          * The kernel text needs to be executable for obvious reasons
269          * Does not cover __inittext since that is gone later on. On
270          * 64bit we do not enforce !NX on the low mapping
271          */
272         if (within(address, (unsigned long)_text, (unsigned long)_etext))
273                 pgprot_val(forbidden) |= _PAGE_NX;
274
275         /*
276          * The .rodata section needs to be read-only. Using the pfn
277          * catches all aliases.
278          */
279         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
280                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
281                 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284         /*
285          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286          * kernel text mappings for the large page aligned text, rodata sections
287          * will be always read-only. For the kernel identity mappings covering
288          * the holes caused by this alignment can be anything that user asks.
289          *
290          * This will preserve the large page mappings for kernel text/data
291          * at no extra cost.
292          */
293         if (kernel_set_to_readonly &&
294             within(address, (unsigned long)_text,
295                    (unsigned long)__end_rodata_hpage_align)) {
296                 unsigned int level;
297
298                 /*
299                  * Don't enforce the !RW mapping for the kernel text mapping,
300                  * if the current mapping is already using small page mapping.
301                  * No need to work hard to preserve large page mappings in this
302                  * case.
303                  *
304                  * This also fixes the Linux Xen paravirt guest boot failure
305                  * (because of unexpected read-only mappings for kernel identity
306                  * mappings). In this paravirt guest case, the kernel text
307                  * mapping and the kernel identity mapping share the same
308                  * page-table pages. Thus we can't really use different
309                  * protections for the kernel text and identity mappings. Also,
310                  * these shared mappings are made of small page mappings.
311                  * Thus this don't enforce !RW mapping for small page kernel
312                  * text mapping logic will help Linux Xen parvirt guest boot
313                  * as well.
314                  */
315                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316                         pgprot_val(forbidden) |= _PAGE_RW;
317         }
318 #endif
319
320         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322         return prot;
323 }
324
325 /*
326  * Lookup the page table entry for a virtual address in a specific pgd.
327  * Return a pointer to the entry and the level of the mapping.
328  */
329 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
330                              unsigned int *level)
331 {
332         pud_t *pud;
333         pmd_t *pmd;
334
335         *level = PG_LEVEL_NONE;
336
337         if (pgd_none(*pgd))
338                 return NULL;
339
340         pud = pud_offset(pgd, address);
341         if (pud_none(*pud))
342                 return NULL;
343
344         *level = PG_LEVEL_1G;
345         if (pud_large(*pud) || !pud_present(*pud))
346                 return (pte_t *)pud;
347
348         pmd = pmd_offset(pud, address);
349         if (pmd_none(*pmd))
350                 return NULL;
351
352         *level = PG_LEVEL_2M;
353         if (pmd_large(*pmd) || !pmd_present(*pmd))
354                 return (pte_t *)pmd;
355
356         *level = PG_LEVEL_4K;
357
358         return pte_offset_kernel(pmd, address);
359 }
360
361 /*
362  * Lookup the page table entry for a virtual address. Return a pointer
363  * to the entry and the level of the mapping.
364  *
365  * Note: We return pud and pmd either when the entry is marked large
366  * or when the present bit is not set. Otherwise we would return a
367  * pointer to a nonexisting mapping.
368  */
369 pte_t *lookup_address(unsigned long address, unsigned int *level)
370 {
371         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
372 }
373 EXPORT_SYMBOL_GPL(lookup_address);
374
375 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
376                                   unsigned int *level)
377 {
378         if (cpa->pgd)
379                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
380                                                address, level);
381
382         return lookup_address(address, level);
383 }
384
385 /*
386  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
387  * or NULL if not present.
388  */
389 pmd_t *lookup_pmd_address(unsigned long address)
390 {
391         pgd_t *pgd;
392         pud_t *pud;
393
394         pgd = pgd_offset_k(address);
395         if (pgd_none(*pgd))
396                 return NULL;
397
398         pud = pud_offset(pgd, address);
399         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
400                 return NULL;
401
402         return pmd_offset(pud, address);
403 }
404
405 /*
406  * This is necessary because __pa() does not work on some
407  * kinds of memory, like vmalloc() or the alloc_remap()
408  * areas on 32-bit NUMA systems.  The percpu areas can
409  * end up in this kind of memory, for instance.
410  *
411  * This could be optimized, but it is only intended to be
412  * used at inititalization time, and keeping it
413  * unoptimized should increase the testing coverage for
414  * the more obscure platforms.
415  */
416 phys_addr_t slow_virt_to_phys(void *__virt_addr)
417 {
418         unsigned long virt_addr = (unsigned long)__virt_addr;
419         unsigned long phys_addr, offset;
420         enum pg_level level;
421         pte_t *pte;
422
423         pte = lookup_address(virt_addr, &level);
424         BUG_ON(!pte);
425
426         switch (level) {
427         case PG_LEVEL_1G:
428                 phys_addr = pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
429                 offset = virt_addr & ~PUD_PAGE_MASK;
430                 break;
431         case PG_LEVEL_2M:
432                 phys_addr = pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
433                 offset = virt_addr & ~PMD_PAGE_MASK;
434                 break;
435         default:
436                 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
437                 offset = virt_addr & ~PAGE_MASK;
438         }
439
440         return (phys_addr_t)(phys_addr | offset);
441 }
442 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
443
444 /*
445  * Set the new pmd in all the pgds we know about:
446  */
447 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
448 {
449         /* change init_mm */
450         set_pte_atomic(kpte, pte);
451 #ifdef CONFIG_X86_32
452         if (!SHARED_KERNEL_PMD) {
453                 struct page *page;
454
455                 list_for_each_entry(page, &pgd_list, lru) {
456                         pgd_t *pgd;
457                         pud_t *pud;
458                         pmd_t *pmd;
459
460                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
461                         pud = pud_offset(pgd, address);
462                         pmd = pmd_offset(pud, address);
463                         set_pte_atomic((pte_t *)pmd, pte);
464                 }
465         }
466 #endif
467 }
468
469 static int
470 try_preserve_large_page(pte_t *kpte, unsigned long address,
471                         struct cpa_data *cpa)
472 {
473         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
474         pte_t new_pte, old_pte, *tmp;
475         pgprot_t old_prot, new_prot, req_prot;
476         int i, do_split = 1;
477         enum pg_level level;
478
479         if (cpa->force_split)
480                 return 1;
481
482         spin_lock(&pgd_lock);
483         /*
484          * Check for races, another CPU might have split this page
485          * up already:
486          */
487         tmp = _lookup_address_cpa(cpa, address, &level);
488         if (tmp != kpte)
489                 goto out_unlock;
490
491         switch (level) {
492         case PG_LEVEL_2M:
493                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
494                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
495                 break;
496         case PG_LEVEL_1G:
497                 old_prot = pud_pgprot(*(pud_t *)kpte);
498                 old_pfn = pud_pfn(*(pud_t *)kpte);
499                 break;
500         default:
501                 do_split = -EINVAL;
502                 goto out_unlock;
503         }
504
505         psize = page_level_size(level);
506         pmask = page_level_mask(level);
507
508         /*
509          * Calculate the number of pages, which fit into this large
510          * page starting at address:
511          */
512         nextpage_addr = (address + psize) & pmask;
513         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
514         if (numpages < cpa->numpages)
515                 cpa->numpages = numpages;
516
517         /*
518          * We are safe now. Check whether the new pgprot is the same:
519          * Convert protection attributes to 4k-format, as cpa->mask* are set
520          * up accordingly.
521          */
522         old_pte = *kpte;
523         req_prot = pgprot_large_2_4k(old_prot);
524
525         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
526         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
527
528         /*
529          * req_prot is in format of 4k pages. It must be converted to large
530          * page format: the caching mode includes the PAT bit located at
531          * different bit positions in the two formats.
532          */
533         req_prot = pgprot_4k_2_large(req_prot);
534
535         /*
536          * Set the PSE and GLOBAL flags only if the PRESENT flag is
537          * set otherwise pmd_present/pmd_huge will return true even on
538          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
539          * for the ancient hardware that doesn't support it.
540          */
541         if (pgprot_val(req_prot) & _PAGE_PRESENT)
542                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
543         else
544                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
545
546         req_prot = canon_pgprot(req_prot);
547
548         /*
549          * old_pfn points to the large page base pfn. So we need
550          * to add the offset of the virtual address:
551          */
552         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
553         cpa->pfn = pfn;
554
555         new_prot = static_protections(req_prot, address, pfn);
556
557         /*
558          * We need to check the full range, whether
559          * static_protection() requires a different pgprot for one of
560          * the pages in the range we try to preserve:
561          */
562         addr = address & pmask;
563         pfn = old_pfn;
564         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
565                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
566
567                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
568                         goto out_unlock;
569         }
570
571         /*
572          * If there are no changes, return. maxpages has been updated
573          * above:
574          */
575         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
576                 do_split = 0;
577                 goto out_unlock;
578         }
579
580         /*
581          * We need to change the attributes. Check, whether we can
582          * change the large page in one go. We request a split, when
583          * the address is not aligned and the number of pages is
584          * smaller than the number of pages in the large page. Note
585          * that we limited the number of possible pages already to
586          * the number of pages in the large page.
587          */
588         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
589                 /*
590                  * The address is aligned and the number of pages
591                  * covers the full page.
592                  */
593                 new_pte = pfn_pte(old_pfn, new_prot);
594                 __set_pmd_pte(kpte, address, new_pte);
595                 cpa->flags |= CPA_FLUSHTLB;
596                 do_split = 0;
597         }
598
599 out_unlock:
600         spin_unlock(&pgd_lock);
601
602         return do_split;
603 }
604
605 static int
606 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
607                    struct page *base)
608 {
609         pte_t *pbase = (pte_t *)page_address(base);
610         unsigned long ref_pfn, pfn, pfninc = 1;
611         unsigned int i, level;
612         pte_t *tmp;
613         pgprot_t ref_prot;
614
615         spin_lock(&pgd_lock);
616         /*
617          * Check for races, another CPU might have split this page
618          * up for us already:
619          */
620         tmp = _lookup_address_cpa(cpa, address, &level);
621         if (tmp != kpte) {
622                 spin_unlock(&pgd_lock);
623                 return 1;
624         }
625
626         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
627
628         switch (level) {
629         case PG_LEVEL_2M:
630                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
631                 /* clear PSE and promote PAT bit to correct position */
632                 ref_prot = pgprot_large_2_4k(ref_prot);
633                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
634                 break;
635
636         case PG_LEVEL_1G:
637                 ref_prot = pud_pgprot(*(pud_t *)kpte);
638                 ref_pfn = pud_pfn(*(pud_t *)kpte);
639                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
640
641                 /*
642                  * Clear the PSE flags if the PRESENT flag is not set
643                  * otherwise pmd_present/pmd_huge will return true
644                  * even on a non present pmd.
645                  */
646                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
647                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
648                 break;
649
650         default:
651                 spin_unlock(&pgd_lock);
652                 return 1;
653         }
654
655         /*
656          * Set the GLOBAL flags only if the PRESENT flag is set
657          * otherwise pmd/pte_present will return true even on a non
658          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
659          * for the ancient hardware that doesn't support it.
660          */
661         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
662                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
663         else
664                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
665
666         /*
667          * Get the target pfn from the original entry:
668          */
669         pfn = ref_pfn;
670         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
671                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
672
673         if (virt_addr_valid(address)) {
674                 unsigned long pfn = PFN_DOWN(__pa(address));
675
676                 if (pfn_range_is_mapped(pfn, pfn + 1))
677                         split_page_count(level);
678         }
679
680         /*
681          * Install the new, split up pagetable.
682          *
683          * We use the standard kernel pagetable protections for the new
684          * pagetable protections, the actual ptes set above control the
685          * primary protection behavior:
686          */
687         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
688
689         /*
690          * Intel Atom errata AAH41 workaround.
691          *
692          * The real fix should be in hw or in a microcode update, but
693          * we also probabilistically try to reduce the window of having
694          * a large TLB mixed with 4K TLBs while instruction fetches are
695          * going on.
696          */
697         __flush_tlb_all();
698         spin_unlock(&pgd_lock);
699
700         return 0;
701 }
702
703 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
704                             unsigned long address)
705 {
706         struct page *base;
707
708         if (!debug_pagealloc)
709                 spin_unlock(&cpa_lock);
710         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
711         if (!debug_pagealloc)
712                 spin_lock(&cpa_lock);
713         if (!base)
714                 return -ENOMEM;
715
716         if (__split_large_page(cpa, kpte, address, base))
717                 __free_page(base);
718
719         return 0;
720 }
721
722 static bool try_to_free_pte_page(pte_t *pte)
723 {
724         int i;
725
726         for (i = 0; i < PTRS_PER_PTE; i++)
727                 if (!pte_none(pte[i]))
728                         return false;
729
730         free_page((unsigned long)pte);
731         return true;
732 }
733
734 static bool try_to_free_pmd_page(pmd_t *pmd)
735 {
736         int i;
737
738         for (i = 0; i < PTRS_PER_PMD; i++)
739                 if (!pmd_none(pmd[i]))
740                         return false;
741
742         free_page((unsigned long)pmd);
743         return true;
744 }
745
746 static bool try_to_free_pud_page(pud_t *pud)
747 {
748         int i;
749
750         for (i = 0; i < PTRS_PER_PUD; i++)
751                 if (!pud_none(pud[i]))
752                         return false;
753
754         free_page((unsigned long)pud);
755         return true;
756 }
757
758 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
759 {
760         pte_t *pte = pte_offset_kernel(pmd, start);
761
762         while (start < end) {
763                 set_pte(pte, __pte(0));
764
765                 start += PAGE_SIZE;
766                 pte++;
767         }
768
769         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
770                 pmd_clear(pmd);
771                 return true;
772         }
773         return false;
774 }
775
776 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
777                               unsigned long start, unsigned long end)
778 {
779         if (unmap_pte_range(pmd, start, end))
780                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
781                         pud_clear(pud);
782 }
783
784 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
785 {
786         pmd_t *pmd = pmd_offset(pud, start);
787
788         /*
789          * Not on a 2MB page boundary?
790          */
791         if (start & (PMD_SIZE - 1)) {
792                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
793                 unsigned long pre_end = min_t(unsigned long, end, next_page);
794
795                 __unmap_pmd_range(pud, pmd, start, pre_end);
796
797                 start = pre_end;
798                 pmd++;
799         }
800
801         /*
802          * Try to unmap in 2M chunks.
803          */
804         while (end - start >= PMD_SIZE) {
805                 if (pmd_large(*pmd))
806                         pmd_clear(pmd);
807                 else
808                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
809
810                 start += PMD_SIZE;
811                 pmd++;
812         }
813
814         /*
815          * 4K leftovers?
816          */
817         if (start < end)
818                 return __unmap_pmd_range(pud, pmd, start, end);
819
820         /*
821          * Try again to free the PMD page if haven't succeeded above.
822          */
823         if (!pud_none(*pud))
824                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
825                         pud_clear(pud);
826 }
827
828 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
829 {
830         pud_t *pud = pud_offset(pgd, start);
831
832         /*
833          * Not on a GB page boundary?
834          */
835         if (start & (PUD_SIZE - 1)) {
836                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
837                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
838
839                 unmap_pmd_range(pud, start, pre_end);
840
841                 start = pre_end;
842                 pud++;
843         }
844
845         /*
846          * Try to unmap in 1G chunks?
847          */
848         while (end - start >= PUD_SIZE) {
849
850                 if (pud_large(*pud))
851                         pud_clear(pud);
852                 else
853                         unmap_pmd_range(pud, start, start + PUD_SIZE);
854
855                 start += PUD_SIZE;
856                 pud++;
857         }
858
859         /*
860          * 2M leftovers?
861          */
862         if (start < end)
863                 unmap_pmd_range(pud, start, end);
864
865         /*
866          * No need to try to free the PUD page because we'll free it in
867          * populate_pgd's error path
868          */
869 }
870
871 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
872 {
873         pgd_t *pgd_entry = root + pgd_index(addr);
874
875         unmap_pud_range(pgd_entry, addr, end);
876
877         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
878                 pgd_clear(pgd_entry);
879 }
880
881 static int alloc_pte_page(pmd_t *pmd)
882 {
883         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
884         if (!pte)
885                 return -1;
886
887         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
888         return 0;
889 }
890
891 static int alloc_pmd_page(pud_t *pud)
892 {
893         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
894         if (!pmd)
895                 return -1;
896
897         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
898         return 0;
899 }
900
901 static void populate_pte(struct cpa_data *cpa,
902                          unsigned long start, unsigned long end,
903                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
904 {
905         pte_t *pte;
906
907         pte = pte_offset_kernel(pmd, start);
908
909         while (num_pages-- && start < end) {
910
911                 /* deal with the NX bit */
912                 if (!(pgprot_val(pgprot) & _PAGE_NX))
913                         cpa->pfn &= ~_PAGE_NX;
914
915                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
916
917                 start    += PAGE_SIZE;
918                 cpa->pfn += PAGE_SIZE;
919                 pte++;
920         }
921 }
922
923 static int populate_pmd(struct cpa_data *cpa,
924                         unsigned long start, unsigned long end,
925                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
926 {
927         unsigned int cur_pages = 0;
928         pmd_t *pmd;
929         pgprot_t pmd_pgprot;
930
931         /*
932          * Not on a 2M boundary?
933          */
934         if (start & (PMD_SIZE - 1)) {
935                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
936                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
937
938                 pre_end   = min_t(unsigned long, pre_end, next_page);
939                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
940                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
941
942                 /*
943                  * Need a PTE page?
944                  */
945                 pmd = pmd_offset(pud, start);
946                 if (pmd_none(*pmd))
947                         if (alloc_pte_page(pmd))
948                                 return -1;
949
950                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
951
952                 start = pre_end;
953         }
954
955         /*
956          * We mapped them all?
957          */
958         if (num_pages == cur_pages)
959                 return cur_pages;
960
961         pmd_pgprot = pgprot_4k_2_large(pgprot);
962
963         while (end - start >= PMD_SIZE) {
964
965                 /*
966                  * We cannot use a 1G page so allocate a PMD page if needed.
967                  */
968                 if (pud_none(*pud))
969                         if (alloc_pmd_page(pud))
970                                 return -1;
971
972                 pmd = pmd_offset(pud, start);
973
974                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
975                                    massage_pgprot(pmd_pgprot)));
976
977                 start     += PMD_SIZE;
978                 cpa->pfn  += PMD_SIZE;
979                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
980         }
981
982         /*
983          * Map trailing 4K pages.
984          */
985         if (start < end) {
986                 pmd = pmd_offset(pud, start);
987                 if (pmd_none(*pmd))
988                         if (alloc_pte_page(pmd))
989                                 return -1;
990
991                 populate_pte(cpa, start, end, num_pages - cur_pages,
992                              pmd, pgprot);
993         }
994         return num_pages;
995 }
996
997 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
998                         pgprot_t pgprot)
999 {
1000         pud_t *pud;
1001         unsigned long end;
1002         int cur_pages = 0;
1003         pgprot_t pud_pgprot;
1004
1005         end = start + (cpa->numpages << PAGE_SHIFT);
1006
1007         /*
1008          * Not on a Gb page boundary? => map everything up to it with
1009          * smaller pages.
1010          */
1011         if (start & (PUD_SIZE - 1)) {
1012                 unsigned long pre_end;
1013                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1014
1015                 pre_end   = min_t(unsigned long, end, next_page);
1016                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1017                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1018
1019                 pud = pud_offset(pgd, start);
1020
1021                 /*
1022                  * Need a PMD page?
1023                  */
1024                 if (pud_none(*pud))
1025                         if (alloc_pmd_page(pud))
1026                                 return -1;
1027
1028                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1029                                          pud, pgprot);
1030                 if (cur_pages < 0)
1031                         return cur_pages;
1032
1033                 start = pre_end;
1034         }
1035
1036         /* We mapped them all? */
1037         if (cpa->numpages == cur_pages)
1038                 return cur_pages;
1039
1040         pud = pud_offset(pgd, start);
1041         pud_pgprot = pgprot_4k_2_large(pgprot);
1042
1043         /*
1044          * Map everything starting from the Gb boundary, possibly with 1G pages
1045          */
1046         while (end - start >= PUD_SIZE) {
1047                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1048                                    massage_pgprot(pud_pgprot)));
1049
1050                 start     += PUD_SIZE;
1051                 cpa->pfn  += PUD_SIZE;
1052                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1053                 pud++;
1054         }
1055
1056         /* Map trailing leftover */
1057         if (start < end) {
1058                 int tmp;
1059
1060                 pud = pud_offset(pgd, start);
1061                 if (pud_none(*pud))
1062                         if (alloc_pmd_page(pud))
1063                                 return -1;
1064
1065                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1066                                    pud, pgprot);
1067                 if (tmp < 0)
1068                         return cur_pages;
1069
1070                 cur_pages += tmp;
1071         }
1072         return cur_pages;
1073 }
1074
1075 /*
1076  * Restrictions for kernel page table do not necessarily apply when mapping in
1077  * an alternate PGD.
1078  */
1079 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1080 {
1081         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1082         pud_t *pud = NULL;      /* shut up gcc */
1083         pgd_t *pgd_entry;
1084         int ret;
1085
1086         pgd_entry = cpa->pgd + pgd_index(addr);
1087
1088         /*
1089          * Allocate a PUD page and hand it down for mapping.
1090          */
1091         if (pgd_none(*pgd_entry)) {
1092                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1093                 if (!pud)
1094                         return -1;
1095
1096                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1097         }
1098
1099         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1100         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1101
1102         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1103         if (ret < 0) {
1104                 unmap_pgd_range(cpa->pgd, addr,
1105                                 addr + (cpa->numpages << PAGE_SHIFT));
1106                 return ret;
1107         }
1108
1109         cpa->numpages = ret;
1110         return 0;
1111 }
1112
1113 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1114                                int primary)
1115 {
1116         if (cpa->pgd)
1117                 return populate_pgd(cpa, vaddr);
1118
1119         /*
1120          * Ignore all non primary paths.
1121          */
1122         if (!primary)
1123                 return 0;
1124
1125         /*
1126          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1127          * to have holes.
1128          * Also set numpages to '1' indicating that we processed cpa req for
1129          * one virtual address page and its pfn. TBD: numpages can be set based
1130          * on the initial value and the level returned by lookup_address().
1131          */
1132         if (within(vaddr, PAGE_OFFSET,
1133                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1134                 cpa->numpages = 1;
1135                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1136                 return 0;
1137         } else {
1138                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1139                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1140                         *cpa->vaddr);
1141
1142                 return -EFAULT;
1143         }
1144 }
1145
1146 static int __change_page_attr(struct cpa_data *cpa, int primary)
1147 {
1148         unsigned long address;
1149         int do_split, err;
1150         unsigned int level;
1151         pte_t *kpte, old_pte;
1152
1153         if (cpa->flags & CPA_PAGES_ARRAY) {
1154                 struct page *page = cpa->pages[cpa->curpage];
1155                 if (unlikely(PageHighMem(page)))
1156                         return 0;
1157                 address = (unsigned long)page_address(page);
1158         } else if (cpa->flags & CPA_ARRAY)
1159                 address = cpa->vaddr[cpa->curpage];
1160         else
1161                 address = *cpa->vaddr;
1162 repeat:
1163         kpte = _lookup_address_cpa(cpa, address, &level);
1164         if (!kpte)
1165                 return __cpa_process_fault(cpa, address, primary);
1166
1167         old_pte = *kpte;
1168         if (!pte_val(old_pte))
1169                 return __cpa_process_fault(cpa, address, primary);
1170
1171         if (level == PG_LEVEL_4K) {
1172                 pte_t new_pte;
1173                 pgprot_t new_prot = pte_pgprot(old_pte);
1174                 unsigned long pfn = pte_pfn(old_pte);
1175
1176                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1177                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1178
1179                 new_prot = static_protections(new_prot, address, pfn);
1180
1181                 /*
1182                  * Set the GLOBAL flags only if the PRESENT flag is
1183                  * set otherwise pte_present will return true even on
1184                  * a non present pte. The canon_pgprot will clear
1185                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1186                  * support it.
1187                  */
1188                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1189                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1190                 else
1191                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1192
1193                 /*
1194                  * We need to keep the pfn from the existing PTE,
1195                  * after all we're only going to change it's attributes
1196                  * not the memory it points to
1197                  */
1198                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1199                 cpa->pfn = pfn;
1200                 /*
1201                  * Do we really change anything ?
1202                  */
1203                 if (pte_val(old_pte) != pte_val(new_pte)) {
1204                         set_pte_atomic(kpte, new_pte);
1205                         cpa->flags |= CPA_FLUSHTLB;
1206                 }
1207                 cpa->numpages = 1;
1208                 return 0;
1209         }
1210
1211         /*
1212          * Check, whether we can keep the large page intact
1213          * and just change the pte:
1214          */
1215         do_split = try_preserve_large_page(kpte, address, cpa);
1216         /*
1217          * When the range fits into the existing large page,
1218          * return. cp->numpages and cpa->tlbflush have been updated in
1219          * try_large_page:
1220          */
1221         if (do_split <= 0)
1222                 return do_split;
1223
1224         /*
1225          * We have to split the large page:
1226          */
1227         err = split_large_page(cpa, kpte, address);
1228         if (!err) {
1229                 /*
1230                  * Do a global flush tlb after splitting the large page
1231                  * and before we do the actual change page attribute in the PTE.
1232                  *
1233                  * With out this, we violate the TLB application note, that says
1234                  * "The TLBs may contain both ordinary and large-page
1235                  *  translations for a 4-KByte range of linear addresses. This
1236                  *  may occur if software modifies the paging structures so that
1237                  *  the page size used for the address range changes. If the two
1238                  *  translations differ with respect to page frame or attributes
1239                  *  (e.g., permissions), processor behavior is undefined and may
1240                  *  be implementation-specific."
1241                  *
1242                  * We do this global tlb flush inside the cpa_lock, so that we
1243                  * don't allow any other cpu, with stale tlb entries change the
1244                  * page attribute in parallel, that also falls into the
1245                  * just split large page entry.
1246                  */
1247                 flush_tlb_all();
1248                 goto repeat;
1249         }
1250
1251         return err;
1252 }
1253
1254 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1255
1256 static int cpa_process_alias(struct cpa_data *cpa)
1257 {
1258         struct cpa_data alias_cpa;
1259         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1260         unsigned long vaddr;
1261         int ret;
1262
1263         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1264                 return 0;
1265
1266         /*
1267          * No need to redo, when the primary call touched the direct
1268          * mapping already:
1269          */
1270         if (cpa->flags & CPA_PAGES_ARRAY) {
1271                 struct page *page = cpa->pages[cpa->curpage];
1272                 if (unlikely(PageHighMem(page)))
1273                         return 0;
1274                 vaddr = (unsigned long)page_address(page);
1275         } else if (cpa->flags & CPA_ARRAY)
1276                 vaddr = cpa->vaddr[cpa->curpage];
1277         else
1278                 vaddr = *cpa->vaddr;
1279
1280         if (!(within(vaddr, PAGE_OFFSET,
1281                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1282
1283                 alias_cpa = *cpa;
1284                 alias_cpa.vaddr = &laddr;
1285                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1286
1287                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1288                 if (ret)
1289                         return ret;
1290         }
1291
1292 #ifdef CONFIG_X86_64
1293         /*
1294          * If the primary call didn't touch the high mapping already
1295          * and the physical address is inside the kernel map, we need
1296          * to touch the high mapped kernel as well:
1297          */
1298         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1299             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1300                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1301                                                __START_KERNEL_map - phys_base;
1302                 alias_cpa = *cpa;
1303                 alias_cpa.vaddr = &temp_cpa_vaddr;
1304                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1305
1306                 /*
1307                  * The high mapping range is imprecise, so ignore the
1308                  * return value.
1309                  */
1310                 __change_page_attr_set_clr(&alias_cpa, 0);
1311         }
1312 #endif
1313
1314         return 0;
1315 }
1316
1317 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1318 {
1319         int ret, numpages = cpa->numpages;
1320
1321         while (numpages) {
1322                 /*
1323                  * Store the remaining nr of pages for the large page
1324                  * preservation check.
1325                  */
1326                 cpa->numpages = numpages;
1327                 /* for array changes, we can't use large page */
1328                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1329                         cpa->numpages = 1;
1330
1331                 if (!debug_pagealloc)
1332                         spin_lock(&cpa_lock);
1333                 ret = __change_page_attr(cpa, checkalias);
1334                 if (!debug_pagealloc)
1335                         spin_unlock(&cpa_lock);
1336                 if (ret)
1337                         return ret;
1338
1339                 if (checkalias) {
1340                         ret = cpa_process_alias(cpa);
1341                         if (ret)
1342                                 return ret;
1343                 }
1344
1345                 /*
1346                  * Adjust the number of pages with the result of the
1347                  * CPA operation. Either a large page has been
1348                  * preserved or a single page update happened.
1349                  */
1350                 BUG_ON(cpa->numpages > numpages);
1351                 numpages -= cpa->numpages;
1352                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1353                         cpa->curpage++;
1354                 else
1355                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1356
1357         }
1358         return 0;
1359 }
1360
1361 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1362                                     pgprot_t mask_set, pgprot_t mask_clr,
1363                                     int force_split, int in_flag,
1364                                     struct page **pages)
1365 {
1366         struct cpa_data cpa;
1367         int ret, cache, checkalias;
1368         unsigned long baddr = 0;
1369
1370         memset(&cpa, 0, sizeof(cpa));
1371
1372         /*
1373          * Check, if we are requested to change a not supported
1374          * feature:
1375          */
1376         mask_set = canon_pgprot(mask_set);
1377         mask_clr = canon_pgprot(mask_clr);
1378         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1379                 return 0;
1380
1381         /* Ensure we are PAGE_SIZE aligned */
1382         if (in_flag & CPA_ARRAY) {
1383                 int i;
1384                 for (i = 0; i < numpages; i++) {
1385                         if (addr[i] & ~PAGE_MASK) {
1386                                 addr[i] &= PAGE_MASK;
1387                                 WARN_ON_ONCE(1);
1388                         }
1389                 }
1390         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1391                 /*
1392                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1393                  * No need to cehck in that case
1394                  */
1395                 if (*addr & ~PAGE_MASK) {
1396                         *addr &= PAGE_MASK;
1397                         /*
1398                          * People should not be passing in unaligned addresses:
1399                          */
1400                         WARN_ON_ONCE(1);
1401                 }
1402                 /*
1403                  * Save address for cache flush. *addr is modified in the call
1404                  * to __change_page_attr_set_clr() below.
1405                  */
1406                 baddr = *addr;
1407         }
1408
1409         /* Must avoid aliasing mappings in the highmem code */
1410         kmap_flush_unused();
1411
1412         vm_unmap_aliases();
1413
1414         cpa.vaddr = addr;
1415         cpa.pages = pages;
1416         cpa.numpages = numpages;
1417         cpa.mask_set = mask_set;
1418         cpa.mask_clr = mask_clr;
1419         cpa.flags = 0;
1420         cpa.curpage = 0;
1421         cpa.force_split = force_split;
1422
1423         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1424                 cpa.flags |= in_flag;
1425
1426         /* No alias checking for _NX bit modifications */
1427         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1428
1429         ret = __change_page_attr_set_clr(&cpa, checkalias);
1430
1431         /*
1432          * Check whether we really changed something:
1433          */
1434         if (!(cpa.flags & CPA_FLUSHTLB))
1435                 goto out;
1436
1437         /*
1438          * No need to flush, when we did not set any of the caching
1439          * attributes:
1440          */
1441         cache = !!pgprot2cachemode(mask_set);
1442
1443         /*
1444          * On success we use CLFLUSH, when the CPU supports it to
1445          * avoid the WBINVD. If the CPU does not support it and in the
1446          * error case we fall back to cpa_flush_all (which uses
1447          * WBINVD):
1448          */
1449         if (!ret && cpu_has_clflush) {
1450                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1451                         cpa_flush_array(addr, numpages, cache,
1452                                         cpa.flags, pages);
1453                 } else
1454                         cpa_flush_range(baddr, numpages, cache);
1455         } else
1456                 cpa_flush_all(cache);
1457
1458 out:
1459         return ret;
1460 }
1461
1462 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1463                                        pgprot_t mask, int array)
1464 {
1465         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1466                 (array ? CPA_ARRAY : 0), NULL);
1467 }
1468
1469 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1470                                          pgprot_t mask, int array)
1471 {
1472         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1473                 (array ? CPA_ARRAY : 0), NULL);
1474 }
1475
1476 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1477                                        pgprot_t mask)
1478 {
1479         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1480                 CPA_PAGES_ARRAY, pages);
1481 }
1482
1483 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1484                                          pgprot_t mask)
1485 {
1486         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1487                 CPA_PAGES_ARRAY, pages);
1488 }
1489
1490 int _set_memory_uc(unsigned long addr, int numpages)
1491 {
1492         /*
1493          * for now UC MINUS. see comments in ioremap_nocache()
1494          * If you really need strong UC use ioremap_uc(), but note
1495          * that you cannot override IO areas with set_memory_*() as
1496          * these helpers cannot work with IO memory.
1497          */
1498         return change_page_attr_set(&addr, numpages,
1499                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1500                                     0);
1501 }
1502
1503 int set_memory_uc(unsigned long addr, int numpages)
1504 {
1505         int ret;
1506
1507         /*
1508          * for now UC MINUS. see comments in ioremap_nocache()
1509          */
1510         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1511                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1512         if (ret)
1513                 goto out_err;
1514
1515         ret = _set_memory_uc(addr, numpages);
1516         if (ret)
1517                 goto out_free;
1518
1519         return 0;
1520
1521 out_free:
1522         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1523 out_err:
1524         return ret;
1525 }
1526 EXPORT_SYMBOL(set_memory_uc);
1527
1528 static int _set_memory_array(unsigned long *addr, int addrinarray,
1529                 enum page_cache_mode new_type)
1530 {
1531         enum page_cache_mode set_type;
1532         int i, j;
1533         int ret;
1534
1535         for (i = 0; i < addrinarray; i++) {
1536                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1537                                         new_type, NULL);
1538                 if (ret)
1539                         goto out_free;
1540         }
1541
1542         /* If WC, set to UC- first and then WC */
1543         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1544                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1545
1546         ret = change_page_attr_set(addr, addrinarray,
1547                                    cachemode2pgprot(set_type), 1);
1548
1549         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1550                 ret = change_page_attr_set_clr(addr, addrinarray,
1551                                                cachemode2pgprot(
1552                                                 _PAGE_CACHE_MODE_WC),
1553                                                __pgprot(_PAGE_CACHE_MASK),
1554                                                0, CPA_ARRAY, NULL);
1555         if (ret)
1556                 goto out_free;
1557
1558         return 0;
1559
1560 out_free:
1561         for (j = 0; j < i; j++)
1562                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1563
1564         return ret;
1565 }
1566
1567 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1568 {
1569         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1570 }
1571 EXPORT_SYMBOL(set_memory_array_uc);
1572
1573 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1574 {
1575         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1576 }
1577 EXPORT_SYMBOL(set_memory_array_wc);
1578
1579 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1580 {
1581         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1582 }
1583 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1584
1585 int _set_memory_wc(unsigned long addr, int numpages)
1586 {
1587         int ret;
1588         unsigned long addr_copy = addr;
1589
1590         ret = change_page_attr_set(&addr, numpages,
1591                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1592                                    0);
1593         if (!ret) {
1594                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1595                                                cachemode2pgprot(
1596                                                 _PAGE_CACHE_MODE_WC),
1597                                                __pgprot(_PAGE_CACHE_MASK),
1598                                                0, 0, NULL);
1599         }
1600         return ret;
1601 }
1602
1603 int set_memory_wc(unsigned long addr, int numpages)
1604 {
1605         int ret;
1606
1607         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1608                 _PAGE_CACHE_MODE_WC, NULL);
1609         if (ret)
1610                 return ret;
1611
1612         ret = _set_memory_wc(addr, numpages);
1613         if (ret)
1614                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1615
1616         return ret;
1617 }
1618 EXPORT_SYMBOL(set_memory_wc);
1619
1620 int _set_memory_wt(unsigned long addr, int numpages)
1621 {
1622         return change_page_attr_set(&addr, numpages,
1623                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1624 }
1625
1626 int set_memory_wt(unsigned long addr, int numpages)
1627 {
1628         int ret;
1629
1630         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1631                               _PAGE_CACHE_MODE_WT, NULL);
1632         if (ret)
1633                 return ret;
1634
1635         ret = _set_memory_wt(addr, numpages);
1636         if (ret)
1637                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1638
1639         return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(set_memory_wt);
1642
1643 int _set_memory_wb(unsigned long addr, int numpages)
1644 {
1645         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1646         return change_page_attr_clear(&addr, numpages,
1647                                       __pgprot(_PAGE_CACHE_MASK), 0);
1648 }
1649
1650 int set_memory_wb(unsigned long addr, int numpages)
1651 {
1652         int ret;
1653
1654         ret = _set_memory_wb(addr, numpages);
1655         if (ret)
1656                 return ret;
1657
1658         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1659         return 0;
1660 }
1661 EXPORT_SYMBOL(set_memory_wb);
1662
1663 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1664 {
1665         int i;
1666         int ret;
1667
1668         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1669         ret = change_page_attr_clear(addr, addrinarray,
1670                                       __pgprot(_PAGE_CACHE_MASK), 1);
1671         if (ret)
1672                 return ret;
1673
1674         for (i = 0; i < addrinarray; i++)
1675                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1676
1677         return 0;
1678 }
1679 EXPORT_SYMBOL(set_memory_array_wb);
1680
1681 int set_memory_x(unsigned long addr, int numpages)
1682 {
1683         if (!(__supported_pte_mask & _PAGE_NX))
1684                 return 0;
1685
1686         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1687 }
1688 EXPORT_SYMBOL(set_memory_x);
1689
1690 int set_memory_nx(unsigned long addr, int numpages)
1691 {
1692         if (!(__supported_pte_mask & _PAGE_NX))
1693                 return 0;
1694
1695         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1696 }
1697 EXPORT_SYMBOL(set_memory_nx);
1698
1699 int set_memory_ro(unsigned long addr, int numpages)
1700 {
1701         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1702 }
1703
1704 int set_memory_rw(unsigned long addr, int numpages)
1705 {
1706         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1707 }
1708
1709 int set_memory_np(unsigned long addr, int numpages)
1710 {
1711         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1712 }
1713
1714 int set_memory_4k(unsigned long addr, int numpages)
1715 {
1716         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1717                                         __pgprot(0), 1, 0, NULL);
1718 }
1719
1720 int set_pages_uc(struct page *page, int numpages)
1721 {
1722         unsigned long addr = (unsigned long)page_address(page);
1723
1724         return set_memory_uc(addr, numpages);
1725 }
1726 EXPORT_SYMBOL(set_pages_uc);
1727
1728 static int _set_pages_array(struct page **pages, int addrinarray,
1729                 enum page_cache_mode new_type)
1730 {
1731         unsigned long start;
1732         unsigned long end;
1733         enum page_cache_mode set_type;
1734         int i;
1735         int free_idx;
1736         int ret;
1737
1738         for (i = 0; i < addrinarray; i++) {
1739                 if (PageHighMem(pages[i]))
1740                         continue;
1741                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1742                 end = start + PAGE_SIZE;
1743                 if (reserve_memtype(start, end, new_type, NULL))
1744                         goto err_out;
1745         }
1746
1747         /* If WC, set to UC- first and then WC */
1748         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1749                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1750
1751         ret = cpa_set_pages_array(pages, addrinarray,
1752                                   cachemode2pgprot(set_type));
1753         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1754                 ret = change_page_attr_set_clr(NULL, addrinarray,
1755                                                cachemode2pgprot(
1756                                                 _PAGE_CACHE_MODE_WC),
1757                                                __pgprot(_PAGE_CACHE_MASK),
1758                                                0, CPA_PAGES_ARRAY, pages);
1759         if (ret)
1760                 goto err_out;
1761         return 0; /* Success */
1762 err_out:
1763         free_idx = i;
1764         for (i = 0; i < free_idx; i++) {
1765                 if (PageHighMem(pages[i]))
1766                         continue;
1767                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1768                 end = start + PAGE_SIZE;
1769                 free_memtype(start, end);
1770         }
1771         return -EINVAL;
1772 }
1773
1774 int set_pages_array_uc(struct page **pages, int addrinarray)
1775 {
1776         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1777 }
1778 EXPORT_SYMBOL(set_pages_array_uc);
1779
1780 int set_pages_array_wc(struct page **pages, int addrinarray)
1781 {
1782         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1783 }
1784 EXPORT_SYMBOL(set_pages_array_wc);
1785
1786 int set_pages_array_wt(struct page **pages, int addrinarray)
1787 {
1788         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1789 }
1790 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1791
1792 int set_pages_wb(struct page *page, int numpages)
1793 {
1794         unsigned long addr = (unsigned long)page_address(page);
1795
1796         return set_memory_wb(addr, numpages);
1797 }
1798 EXPORT_SYMBOL(set_pages_wb);
1799
1800 int set_pages_array_wb(struct page **pages, int addrinarray)
1801 {
1802         int retval;
1803         unsigned long start;
1804         unsigned long end;
1805         int i;
1806
1807         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1808         retval = cpa_clear_pages_array(pages, addrinarray,
1809                         __pgprot(_PAGE_CACHE_MASK));
1810         if (retval)
1811                 return retval;
1812
1813         for (i = 0; i < addrinarray; i++) {
1814                 if (PageHighMem(pages[i]))
1815                         continue;
1816                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1817                 end = start + PAGE_SIZE;
1818                 free_memtype(start, end);
1819         }
1820
1821         return 0;
1822 }
1823 EXPORT_SYMBOL(set_pages_array_wb);
1824
1825 int set_pages_x(struct page *page, int numpages)
1826 {
1827         unsigned long addr = (unsigned long)page_address(page);
1828
1829         return set_memory_x(addr, numpages);
1830 }
1831 EXPORT_SYMBOL(set_pages_x);
1832
1833 int set_pages_nx(struct page *page, int numpages)
1834 {
1835         unsigned long addr = (unsigned long)page_address(page);
1836
1837         return set_memory_nx(addr, numpages);
1838 }
1839 EXPORT_SYMBOL(set_pages_nx);
1840
1841 int set_pages_ro(struct page *page, int numpages)
1842 {
1843         unsigned long addr = (unsigned long)page_address(page);
1844
1845         return set_memory_ro(addr, numpages);
1846 }
1847
1848 int set_pages_rw(struct page *page, int numpages)
1849 {
1850         unsigned long addr = (unsigned long)page_address(page);
1851
1852         return set_memory_rw(addr, numpages);
1853 }
1854
1855 #ifdef CONFIG_DEBUG_PAGEALLOC
1856
1857 static int __set_pages_p(struct page *page, int numpages)
1858 {
1859         unsigned long tempaddr = (unsigned long) page_address(page);
1860         struct cpa_data cpa = { .vaddr = &tempaddr,
1861                                 .pgd = NULL,
1862                                 .numpages = numpages,
1863                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1864                                 .mask_clr = __pgprot(0),
1865                                 .flags = 0};
1866
1867         /*
1868          * No alias checking needed for setting present flag. otherwise,
1869          * we may need to break large pages for 64-bit kernel text
1870          * mappings (this adds to complexity if we want to do this from
1871          * atomic context especially). Let's keep it simple!
1872          */
1873         return __change_page_attr_set_clr(&cpa, 0);
1874 }
1875
1876 static int __set_pages_np(struct page *page, int numpages)
1877 {
1878         unsigned long tempaddr = (unsigned long) page_address(page);
1879         struct cpa_data cpa = { .vaddr = &tempaddr,
1880                                 .pgd = NULL,
1881                                 .numpages = numpages,
1882                                 .mask_set = __pgprot(0),
1883                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1884                                 .flags = 0};
1885
1886         /*
1887          * No alias checking needed for setting not present flag. otherwise,
1888          * we may need to break large pages for 64-bit kernel text
1889          * mappings (this adds to complexity if we want to do this from
1890          * atomic context especially). Let's keep it simple!
1891          */
1892         return __change_page_attr_set_clr(&cpa, 0);
1893 }
1894
1895 void __kernel_map_pages(struct page *page, int numpages, int enable)
1896 {
1897         if (PageHighMem(page))
1898                 return;
1899         if (!enable) {
1900                 debug_check_no_locks_freed(page_address(page),
1901                                            numpages * PAGE_SIZE);
1902         }
1903
1904         /*
1905          * The return value is ignored as the calls cannot fail.
1906          * Large pages for identity mappings are not used at boot time
1907          * and hence no memory allocations during large page split.
1908          */
1909         if (enable)
1910                 __set_pages_p(page, numpages);
1911         else
1912                 __set_pages_np(page, numpages);
1913
1914         /*
1915          * We should perform an IPI and flush all tlbs,
1916          * but that can deadlock->flush only current cpu:
1917          */
1918         __flush_tlb_all();
1919
1920         arch_flush_lazy_mmu_mode();
1921 }
1922
1923 #ifdef CONFIG_HIBERNATION
1924
1925 bool kernel_page_present(struct page *page)
1926 {
1927         unsigned int level;
1928         pte_t *pte;
1929
1930         if (PageHighMem(page))
1931                 return false;
1932
1933         pte = lookup_address((unsigned long)page_address(page), &level);
1934         return (pte_val(*pte) & _PAGE_PRESENT);
1935 }
1936
1937 #endif /* CONFIG_HIBERNATION */
1938
1939 #endif /* CONFIG_DEBUG_PAGEALLOC */
1940
1941 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1942                             unsigned numpages, unsigned long page_flags)
1943 {
1944         int retval = -EINVAL;
1945
1946         struct cpa_data cpa = {
1947                 .vaddr = &address,
1948                 .pfn = pfn,
1949                 .pgd = pgd,
1950                 .numpages = numpages,
1951                 .mask_set = __pgprot(0),
1952                 .mask_clr = __pgprot(0),
1953                 .flags = 0,
1954         };
1955
1956         if (!(__supported_pte_mask & _PAGE_NX))
1957                 goto out;
1958
1959         if (!(page_flags & _PAGE_NX))
1960                 cpa.mask_clr = __pgprot(_PAGE_NX);
1961
1962         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1963
1964         retval = __change_page_attr_set_clr(&cpa, 0);
1965         __flush_tlb_all();
1966
1967 out:
1968         return retval;
1969 }
1970
1971 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1972                                unsigned numpages)
1973 {
1974         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1975 }
1976
1977 /*
1978  * The testcases use internal knowledge of the implementation that shouldn't
1979  * be exposed to the rest of the kernel. Include these directly here.
1980  */
1981 #ifdef CONFIG_CPA_DEBUG
1982 #include "pageattr-test.c"
1983 #endif