2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
5 #include <asm/fixmap.h>
7 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
9 return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
12 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
17 pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
19 pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
22 pgtable_page_ctor(pte);
26 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
28 pgtable_page_dtor(pte);
29 paravirt_release_pte(page_to_pfn(pte));
30 tlb_remove_page(tlb, pte);
33 #if PAGETABLE_LEVELS > 2
34 void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
36 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
37 tlb_remove_page(tlb, virt_to_page(pmd));
40 #if PAGETABLE_LEVELS > 3
41 void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
43 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
44 tlb_remove_page(tlb, virt_to_page(pud));
46 #endif /* PAGETABLE_LEVELS > 3 */
47 #endif /* PAGETABLE_LEVELS > 2 */
49 static inline void pgd_list_add(pgd_t *pgd)
51 struct page *page = virt_to_page(pgd);
53 list_add(&page->lru, &pgd_list);
56 static inline void pgd_list_del(pgd_t *pgd)
58 struct page *page = virt_to_page(pgd);
63 #define UNSHARED_PTRS_PER_PGD \
64 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
66 static void pgd_ctor(pgd_t *pgd)
68 /* If the pgd points to a shared pagetable level (either the
69 ptes in non-PAE, or shared PMD in PAE), then just copy the
70 references from swapper_pg_dir. */
71 if (PAGETABLE_LEVELS == 2 ||
72 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
73 PAGETABLE_LEVELS == 4) {
74 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
75 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
77 paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
78 __pa(swapper_pg_dir) >> PAGE_SHIFT,
83 /* list required to sync kernel mapping updates */
84 if (!SHARED_KERNEL_PMD)
88 static void pgd_dtor(pgd_t *pgd)
90 unsigned long flags; /* can be called from interrupt context */
92 if (SHARED_KERNEL_PMD)
95 spin_lock_irqsave(&pgd_lock, flags);
97 spin_unlock_irqrestore(&pgd_lock, flags);
101 * List of all pgd's needed for non-PAE so it can invalidate entries
102 * in both cached and uncached pgd's; not needed for PAE since the
103 * kernel pmd is shared. If PAE were not to share the pmd a similar
104 * tactic would be needed. This is essentially codepath-based locking
105 * against pageattr.c; it is the unique case in which a valid change
106 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
107 * vmalloc faults work because attached pagetables are never freed.
111 #ifdef CONFIG_X86_PAE
113 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
114 * updating the top-level pagetable entries to guarantee the
115 * processor notices the update. Since this is expensive, and
116 * all 4 top-level entries are used almost immediately in a
117 * new process's life, we just pre-populate them here.
119 * Also, if we're in a paravirt environment where the kernel pmd is
120 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
121 * and initialize the kernel pmds here.
123 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
125 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
127 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
129 /* Note: almost everything apart from _PAGE_PRESENT is
130 reserved at the pmd (PDPT) level. */
131 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
134 * According to Intel App note "TLBs, Paging-Structure Caches,
135 * and Their Invalidation", April 2007, document 317080-001,
136 * section 8.1: in PAE mode we explicitly have to flush the
137 * TLB via cr3 if the top-level pgd is changed...
139 if (mm == current->active_mm)
140 write_cr3(read_cr3());
142 #else /* !CONFIG_X86_PAE */
144 /* No need to prepopulate any pagetable entries in non-PAE modes. */
145 #define PREALLOCATED_PMDS 0
147 #endif /* CONFIG_X86_PAE */
149 static void free_pmds(pmd_t *pmds[])
153 for(i = 0; i < PREALLOCATED_PMDS; i++)
155 free_page((unsigned long)pmds[i]);
158 static int preallocate_pmds(pmd_t *pmds[])
163 for(i = 0; i < PREALLOCATED_PMDS; i++) {
164 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
179 * Mop up any pmd pages which may still be attached to the pgd.
180 * Normally they will be freed by munmap/exit_mmap, but any pmd we
181 * preallocate which never got a corresponding vma will need to be
184 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
188 for(i = 0; i < PREALLOCATED_PMDS; i++) {
191 if (pgd_val(pgd) != 0) {
192 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
194 pgdp[i] = native_make_pgd(0);
196 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
202 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
208 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
211 pud = pud_offset(pgd, 0);
213 for (addr = i = 0; i < PREALLOCATED_PMDS;
214 i++, pud++, addr += PUD_SIZE) {
215 pmd_t *pmd = pmds[i];
217 if (i >= KERNEL_PGD_BOUNDARY)
218 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
219 sizeof(pmd_t) * PTRS_PER_PMD);
221 pud_populate(mm, pud, pmd);
225 pgd_t *pgd_alloc(struct mm_struct *mm)
228 pmd_t *pmds[PREALLOCATED_PMDS];
231 pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
238 if (preallocate_pmds(pmds) != 0)
241 if (paravirt_pgd_alloc(mm) != 0)
245 * Make sure that pre-populating the pmds is atomic with
246 * respect to anything walking the pgd_list, so that they
247 * never see a partially populated pgd.
249 spin_lock_irqsave(&pgd_lock, flags);
252 pgd_prepopulate_pmd(mm, pgd, pmds);
254 spin_unlock_irqrestore(&pgd_lock, flags);
261 free_page((unsigned long)pgd);
266 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
268 pgd_mop_up_pmds(mm, pgd);
270 paravirt_pgd_free(mm, pgd);
271 free_page((unsigned long)pgd);
274 int ptep_set_access_flags(struct vm_area_struct *vma,
275 unsigned long address, pte_t *ptep,
276 pte_t entry, int dirty)
278 int changed = !pte_same(*ptep, entry);
280 if (changed && dirty) {
282 pte_update_defer(vma->vm_mm, address, ptep);
283 flush_tlb_page(vma, address);
289 int ptep_test_and_clear_young(struct vm_area_struct *vma,
290 unsigned long addr, pte_t *ptep)
294 if (pte_young(*ptep))
295 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
296 (unsigned long *) &ptep->pte);
299 pte_update(vma->vm_mm, addr, ptep);
304 int ptep_clear_flush_young(struct vm_area_struct *vma,
305 unsigned long address, pte_t *ptep)
309 young = ptep_test_and_clear_young(vma, address, ptep);
311 flush_tlb_page(vma, address);
317 * reserve_top_address - reserves a hole in the top of kernel address space
318 * @reserve - size of hole to reserve
320 * Can be used to relocate the fixmap area and poke a hole in the top
321 * of kernel address space to make room for a hypervisor.
323 void __init reserve_top_address(unsigned long reserve)
326 BUG_ON(fixmaps_set > 0);
327 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
329 __FIXADDR_TOP = -reserve - PAGE_SIZE;
330 __VMALLOC_RESERVE += reserve;
336 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
338 unsigned long address = __fix_to_virt(idx);
340 if (idx >= __end_of_fixed_addresses) {
344 set_pte_vaddr(address, pte);
348 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
351 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));