4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Robert Richter <robert.richter@amd.com>
9 * @author Barry Kasindorf <barry.kasindorf@amd.com>
10 * @author Jason Yeh <jason.yeh@amd.com>
11 * @author Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
14 #include <linux/init.h>
15 #include <linux/notifier.h>
16 #include <linux/smp.h>
17 #include <linux/oprofile.h>
18 #include <linux/sysdev.h>
19 #include <linux/slab.h>
20 #include <linux/moduleparam.h>
21 #include <linux/kdebug.h>
22 #include <linux/cpu.h>
27 #include "op_counter.h"
28 #include "op_x86_model.h"
30 static struct op_x86_model_spec *model;
31 static DEFINE_PER_CPU(struct op_msrs, cpu_msrs);
32 static DEFINE_PER_CPU(unsigned long, saved_lvtpc);
34 /* 0 == registered but off, 1 == registered and on */
35 static int nmi_enabled = 0;
37 struct op_counter_config counter_config[OP_MAX_COUNTER];
39 /* common functions */
41 u64 op_x86_get_ctrl(struct op_x86_model_spec const *model,
42 struct op_counter_config *counter_config)
45 u16 event = (u16)counter_config->event;
47 val |= ARCH_PERFMON_EVENTSEL_INT;
48 val |= counter_config->user ? ARCH_PERFMON_EVENTSEL_USR : 0;
49 val |= counter_config->kernel ? ARCH_PERFMON_EVENTSEL_OS : 0;
50 val |= (counter_config->unit_mask & 0xFF) << 8;
51 event &= model->event_mask ? model->event_mask : 0xFF;
53 val |= (event & 0x0F00) << 24;
59 static int profile_exceptions_notify(struct notifier_block *self,
60 unsigned long val, void *data)
62 struct die_args *args = (struct die_args *)data;
63 int ret = NOTIFY_DONE;
64 int cpu = smp_processor_id();
69 model->check_ctrs(args->regs, &per_cpu(cpu_msrs, cpu));
78 static void nmi_cpu_save_registers(struct op_msrs *msrs)
80 struct op_msr *counters = msrs->counters;
81 struct op_msr *controls = msrs->controls;
84 for (i = 0; i < model->num_counters; ++i) {
86 rdmsrl(counters[i].addr, counters[i].saved);
89 for (i = 0; i < model->num_controls; ++i) {
91 rdmsrl(controls[i].addr, controls[i].saved);
95 static void nmi_cpu_start(void *dummy)
97 struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
101 static int nmi_start(void)
103 on_each_cpu(nmi_cpu_start, NULL, 1);
107 static void nmi_cpu_stop(void *dummy)
109 struct op_msrs const *msrs = &__get_cpu_var(cpu_msrs);
113 static void nmi_stop(void)
115 on_each_cpu(nmi_cpu_stop, NULL, 1);
118 #ifdef CONFIG_OPROFILE_EVENT_MULTIPLEX
120 static DEFINE_PER_CPU(int, switch_index);
122 static inline int has_mux(void)
124 return !!model->switch_ctrl;
127 inline int op_x86_phys_to_virt(int phys)
129 return __get_cpu_var(switch_index) + phys;
132 inline int op_x86_virt_to_phys(int virt)
134 return virt % model->num_counters;
137 static void nmi_shutdown_mux(void)
144 for_each_possible_cpu(i) {
145 kfree(per_cpu(cpu_msrs, i).multiplex);
146 per_cpu(cpu_msrs, i).multiplex = NULL;
147 per_cpu(switch_index, i) = 0;
151 static int nmi_setup_mux(void)
153 size_t multiplex_size =
154 sizeof(struct op_msr) * model->num_virt_counters;
160 for_each_possible_cpu(i) {
161 per_cpu(cpu_msrs, i).multiplex =
162 kzalloc(multiplex_size, GFP_KERNEL);
163 if (!per_cpu(cpu_msrs, i).multiplex)
170 static void nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs)
173 struct op_msr *multiplex = msrs->multiplex;
178 for (i = 0; i < model->num_virt_counters; ++i) {
179 if (counter_config[i].enabled) {
180 multiplex[i].saved = -(u64)counter_config[i].count;
182 multiplex[i].saved = 0;
186 per_cpu(switch_index, cpu) = 0;
189 static void nmi_cpu_save_mpx_registers(struct op_msrs *msrs)
191 struct op_msr *counters = msrs->counters;
192 struct op_msr *multiplex = msrs->multiplex;
195 for (i = 0; i < model->num_counters; ++i) {
196 int virt = op_x86_phys_to_virt(i);
197 if (counters[i].addr)
198 rdmsrl(counters[i].addr, multiplex[virt].saved);
202 static void nmi_cpu_restore_mpx_registers(struct op_msrs *msrs)
204 struct op_msr *counters = msrs->counters;
205 struct op_msr *multiplex = msrs->multiplex;
208 for (i = 0; i < model->num_counters; ++i) {
209 int virt = op_x86_phys_to_virt(i);
210 if (counters[i].addr)
211 wrmsrl(counters[i].addr, multiplex[virt].saved);
215 static void nmi_cpu_switch(void *dummy)
217 int cpu = smp_processor_id();
218 int si = per_cpu(switch_index, cpu);
219 struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
222 nmi_cpu_save_mpx_registers(msrs);
224 /* move to next set */
225 si += model->num_counters;
226 if ((si >= model->num_virt_counters) || (counter_config[si].count == 0))
227 per_cpu(switch_index, cpu) = 0;
229 per_cpu(switch_index, cpu) = si;
231 model->switch_ctrl(model, msrs);
232 nmi_cpu_restore_mpx_registers(msrs);
239 * Quick check to see if multiplexing is necessary.
240 * The check should be sufficient since counters are used
243 static int nmi_multiplex_on(void)
245 return counter_config[model->num_counters].count ? 0 : -EINVAL;
248 static int nmi_switch_event(void)
251 return -ENOSYS; /* not implemented */
252 if (nmi_multiplex_on() < 0)
253 return -EINVAL; /* not necessary */
255 on_each_cpu(nmi_cpu_switch, NULL, 1);
260 static inline void mux_init(struct oprofile_operations *ops)
263 ops->switch_events = nmi_switch_event;
266 static void mux_clone(int cpu)
271 memcpy(per_cpu(cpu_msrs, cpu).multiplex,
272 per_cpu(cpu_msrs, 0).multiplex,
273 sizeof(struct op_msr) * model->num_virt_counters);
278 inline int op_x86_phys_to_virt(int phys) { return phys; }
279 inline int op_x86_virt_to_phys(int virt) { return virt; }
280 static inline void nmi_shutdown_mux(void) { }
281 static inline int nmi_setup_mux(void) { return 1; }
283 nmi_cpu_setup_mux(int cpu, struct op_msrs const * const msrs) { }
284 static inline void mux_init(struct oprofile_operations *ops) { }
285 static void mux_clone(int cpu) { }
289 static void free_msrs(void)
292 for_each_possible_cpu(i) {
293 kfree(per_cpu(cpu_msrs, i).counters);
294 per_cpu(cpu_msrs, i).counters = NULL;
295 kfree(per_cpu(cpu_msrs, i).controls);
296 per_cpu(cpu_msrs, i).controls = NULL;
300 static int allocate_msrs(void)
302 size_t controls_size = sizeof(struct op_msr) * model->num_controls;
303 size_t counters_size = sizeof(struct op_msr) * model->num_counters;
306 for_each_possible_cpu(i) {
307 per_cpu(cpu_msrs, i).counters = kzalloc(counters_size,
309 if (!per_cpu(cpu_msrs, i).counters)
311 per_cpu(cpu_msrs, i).controls = kzalloc(controls_size,
313 if (!per_cpu(cpu_msrs, i).controls)
320 static void nmi_cpu_setup(void *dummy)
322 int cpu = smp_processor_id();
323 struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
324 nmi_cpu_save_registers(msrs);
325 spin_lock(&oprofilefs_lock);
326 model->setup_ctrs(model, msrs);
327 nmi_cpu_setup_mux(cpu, msrs);
328 spin_unlock(&oprofilefs_lock);
329 per_cpu(saved_lvtpc, cpu) = apic_read(APIC_LVTPC);
330 apic_write(APIC_LVTPC, APIC_DM_NMI);
333 static struct notifier_block profile_exceptions_nb = {
334 .notifier_call = profile_exceptions_notify,
339 static int nmi_setup(void)
344 if (!allocate_msrs())
346 else if (!nmi_setup_mux())
349 err = register_die_notifier(&profile_exceptions_nb);
357 /* We need to serialize save and setup for HT because the subset
358 * of msrs are distinct for save and setup operations
361 /* Assume saved/restored counters are the same on all CPUs */
362 model->fill_in_addresses(&per_cpu(cpu_msrs, 0));
363 for_each_possible_cpu(cpu) {
367 memcpy(per_cpu(cpu_msrs, cpu).counters,
368 per_cpu(cpu_msrs, 0).counters,
369 sizeof(struct op_msr) * model->num_counters);
371 memcpy(per_cpu(cpu_msrs, cpu).controls,
372 per_cpu(cpu_msrs, 0).controls,
373 sizeof(struct op_msr) * model->num_controls);
377 on_each_cpu(nmi_cpu_setup, NULL, 1);
382 static void nmi_cpu_restore_registers(struct op_msrs *msrs)
384 struct op_msr *counters = msrs->counters;
385 struct op_msr *controls = msrs->controls;
388 for (i = 0; i < model->num_controls; ++i) {
389 if (controls[i].addr)
390 wrmsrl(controls[i].addr, controls[i].saved);
393 for (i = 0; i < model->num_counters; ++i) {
394 if (counters[i].addr)
395 wrmsrl(counters[i].addr, counters[i].saved);
399 static void nmi_cpu_shutdown(void *dummy)
402 int cpu = smp_processor_id();
403 struct op_msrs *msrs = &per_cpu(cpu_msrs, cpu);
405 /* restoring APIC_LVTPC can trigger an apic error because the delivery
406 * mode and vector nr combination can be illegal. That's by design: on
407 * power on apic lvt contain a zero vector nr which are legal only for
408 * NMI delivery mode. So inhibit apic err before restoring lvtpc
410 v = apic_read(APIC_LVTERR);
411 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
412 apic_write(APIC_LVTPC, per_cpu(saved_lvtpc, cpu));
413 apic_write(APIC_LVTERR, v);
414 nmi_cpu_restore_registers(msrs);
417 static void nmi_shutdown(void)
419 struct op_msrs *msrs;
422 on_each_cpu(nmi_cpu_shutdown, NULL, 1);
423 unregister_die_notifier(&profile_exceptions_nb);
425 msrs = &get_cpu_var(cpu_msrs);
426 model->shutdown(msrs);
428 put_cpu_var(cpu_msrs);
431 static int nmi_create_files(struct super_block *sb, struct dentry *root)
435 for (i = 0; i < model->num_virt_counters; ++i) {
439 /* quick little hack to _not_ expose a counter if it is not
440 * available for use. This should protect userspace app.
441 * NOTE: assumes 1:1 mapping here (that counters are organized
442 * sequentially in their struct assignment).
444 if (!avail_to_resrv_perfctr_nmi_bit(op_x86_virt_to_phys(i)))
447 snprintf(buf, sizeof(buf), "%d", i);
448 dir = oprofilefs_mkdir(sb, root, buf);
449 oprofilefs_create_ulong(sb, dir, "enabled", &counter_config[i].enabled);
450 oprofilefs_create_ulong(sb, dir, "event", &counter_config[i].event);
451 oprofilefs_create_ulong(sb, dir, "count", &counter_config[i].count);
452 oprofilefs_create_ulong(sb, dir, "unit_mask", &counter_config[i].unit_mask);
453 oprofilefs_create_ulong(sb, dir, "kernel", &counter_config[i].kernel);
454 oprofilefs_create_ulong(sb, dir, "user", &counter_config[i].user);
461 static int oprofile_cpu_notifier(struct notifier_block *b, unsigned long action,
464 int cpu = (unsigned long)data;
466 case CPU_DOWN_FAILED:
468 smp_call_function_single(cpu, nmi_cpu_start, NULL, 0);
470 case CPU_DOWN_PREPARE:
471 smp_call_function_single(cpu, nmi_cpu_stop, NULL, 1);
477 static struct notifier_block oprofile_cpu_nb = {
478 .notifier_call = oprofile_cpu_notifier
484 static int nmi_suspend(struct sys_device *dev, pm_message_t state)
486 /* Only one CPU left, just stop that one */
487 if (nmi_enabled == 1)
492 static int nmi_resume(struct sys_device *dev)
494 if (nmi_enabled == 1)
499 static struct sysdev_class oprofile_sysclass = {
501 .resume = nmi_resume,
502 .suspend = nmi_suspend,
505 static struct sys_device device_oprofile = {
507 .cls = &oprofile_sysclass,
510 static int __init init_sysfs(void)
514 error = sysdev_class_register(&oprofile_sysclass);
516 error = sysdev_register(&device_oprofile);
520 static void exit_sysfs(void)
522 sysdev_unregister(&device_oprofile);
523 sysdev_class_unregister(&oprofile_sysclass);
527 #define init_sysfs() do { } while (0)
528 #define exit_sysfs() do { } while (0)
529 #endif /* CONFIG_PM */
531 static int __init p4_init(char **cpu_type)
533 __u8 cpu_model = boot_cpu_data.x86_model;
535 if (cpu_model > 6 || cpu_model == 5)
539 *cpu_type = "i386/p4";
543 switch (smp_num_siblings) {
545 *cpu_type = "i386/p4";
550 *cpu_type = "i386/p4-ht";
551 model = &op_p4_ht2_spec;
556 printk(KERN_INFO "oprofile: P4 HyperThreading detected with > 2 threads\n");
557 printk(KERN_INFO "oprofile: Reverting to timer mode.\n");
561 static int force_arch_perfmon;
562 static int force_cpu_type(const char *str, struct kernel_param *kp)
564 if (!strcmp(str, "arch_perfmon")) {
565 force_arch_perfmon = 1;
566 printk(KERN_INFO "oprofile: forcing architectural perfmon\n");
571 module_param_call(cpu_type, force_cpu_type, NULL, NULL, 0);
573 static int __init ppro_init(char **cpu_type)
575 __u8 cpu_model = boot_cpu_data.x86_model;
576 struct op_x86_model_spec *spec = &op_ppro_spec; /* default */
578 if (force_arch_perfmon && cpu_has_arch_perfmon)
583 *cpu_type = "i386/ppro";
586 *cpu_type = "i386/pii";
590 *cpu_type = "i386/piii";
594 *cpu_type = "i386/p6_mobile";
597 *cpu_type = "i386/core";
600 *cpu_type = "i386/core_2";
604 spec = &op_arch_perfmon_spec;
605 *cpu_type = "i386/core_i7";
608 *cpu_type = "i386/atom";
619 /* in order to get sysfs right */
620 static int using_nmi;
622 int __init op_nmi_init(struct oprofile_operations *ops)
624 __u8 vendor = boot_cpu_data.x86_vendor;
625 __u8 family = boot_cpu_data.x86;
626 char *cpu_type = NULL;
634 /* Needs to be at least an Athlon (or hammer in 32bit mode) */
638 cpu_type = "i386/athlon";
642 * Actually it could be i386/hammer too, but
643 * give user space an consistent name.
645 cpu_type = "x86-64/hammer";
648 cpu_type = "x86-64/family10";
651 cpu_type = "x86-64/family11h";
656 model = &op_amd_spec;
659 case X86_VENDOR_INTEL:
666 /* A P6-class processor */
668 ppro_init(&cpu_type);
678 if (!cpu_has_arch_perfmon)
681 /* use arch perfmon as fallback */
682 cpu_type = "i386/arch_perfmon";
683 model = &op_arch_perfmon_spec;
691 register_cpu_notifier(&oprofile_cpu_nb);
693 /* default values, can be overwritten by model */
694 ops->create_files = nmi_create_files;
695 ops->setup = nmi_setup;
696 ops->shutdown = nmi_shutdown;
697 ops->start = nmi_start;
698 ops->stop = nmi_stop;
699 ops->cpu_type = cpu_type;
702 ret = model->init(ops);
706 if (!model->num_virt_counters)
707 model->num_virt_counters = model->num_counters;
713 printk(KERN_INFO "oprofile: using NMI interrupt.\n");
717 void op_nmi_exit(void)
722 unregister_cpu_notifier(&oprofile_cpu_nb);