]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/pci/vmd.c
x86/PCI: VMD: Eliminate index member from IRQ list
[karo-tx-linux.git] / arch / x86 / pci / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR      0
31 #define VMD_MEMBAR1     2
32 #define VMD_MEMBAR2     4
33
34 /*
35  * Lock for manipulating VMD IRQ lists.
36  */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41  * @node:       list item for parent traversal.
42  * @rcu:        RCU callback item for freeing.
43  * @irq:        back pointer to parent.
44  * @virq:       the virtual IRQ value provided to the requesting driver.
45  *
46  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47  * a VMD IRQ using this structure.
48  */
49 struct vmd_irq {
50         struct list_head        node;
51         struct rcu_head         rcu;
52         struct vmd_irq_list     *irq;
53         unsigned int            virq;
54 };
55
56 /**
57  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58  * @irq_list:   the list of irq's the VMD one demuxes to.
59  * @count:      number of child IRQs assigned to this vector; used to track
60  *              sharing.
61  */
62 struct vmd_irq_list {
63         struct list_head        irq_list;
64         unsigned int            count;
65 };
66
67 struct vmd_dev {
68         struct pci_dev          *dev;
69
70         spinlock_t              cfg_lock;
71         char __iomem            *cfgbar;
72
73         int msix_count;
74         struct vmd_irq_list     *irqs;
75
76         struct pci_sysdata      sysdata;
77         struct resource         resources[3];
78         struct irq_domain       *irq_domain;
79         struct pci_bus          *bus;
80
81 #ifdef CONFIG_X86_DEV_DMA_OPS
82         struct dma_map_ops      dma_ops;
83         struct dma_domain       dma_domain;
84 #endif
85 };
86
87 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
88 {
89         return container_of(bus->sysdata, struct vmd_dev, sysdata);
90 }
91
92 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
93                                            struct vmd_irq_list *irqs)
94 {
95         return irqs - vmd->irqs;
96 }
97
98 /*
99  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100  * but the MSI entry for the hardware it's driving will be programmed with a
101  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
102  * domain into one of its own, and the VMD driver de-muxes these for the
103  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
104  * and irq_chip to set this up.
105  */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108         struct vmd_irq *vmdirq = data->chip_data;
109         struct vmd_irq_list *irq = vmdirq->irq;
110         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
111
112         msg->address_hi = MSI_ADDR_BASE_HI;
113         msg->address_lo = MSI_ADDR_BASE_LO |
114                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
115         msg->data = 0;
116 }
117
118 /*
119  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
120  */
121 static void vmd_irq_enable(struct irq_data *data)
122 {
123         struct vmd_irq *vmdirq = data->chip_data;
124         unsigned long flags;
125
126         raw_spin_lock_irqsave(&list_lock, flags);
127         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
128         raw_spin_unlock_irqrestore(&list_lock, flags);
129
130         data->chip->irq_unmask(data);
131 }
132
133 static void vmd_irq_disable(struct irq_data *data)
134 {
135         struct vmd_irq *vmdirq = data->chip_data;
136         unsigned long flags;
137
138         data->chip->irq_mask(data);
139
140         raw_spin_lock_irqsave(&list_lock, flags);
141         list_del_rcu(&vmdirq->node);
142         INIT_LIST_HEAD_RCU(&vmdirq->node);
143         raw_spin_unlock_irqrestore(&list_lock, flags);
144 }
145
146 /*
147  * XXX: Stubbed until we develop acceptable way to not create conflicts with
148  * other devices sharing the same vector.
149  */
150 static int vmd_irq_set_affinity(struct irq_data *data,
151                                 const struct cpumask *dest, bool force)
152 {
153         return -EINVAL;
154 }
155
156 static struct irq_chip vmd_msi_controller = {
157         .name                   = "VMD-MSI",
158         .irq_enable             = vmd_irq_enable,
159         .irq_disable            = vmd_irq_disable,
160         .irq_compose_msi_msg    = vmd_compose_msi_msg,
161         .irq_set_affinity       = vmd_irq_set_affinity,
162 };
163
164 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
165                                      msi_alloc_info_t *arg)
166 {
167         return 0;
168 }
169
170 /*
171  * XXX: We can be even smarter selecting the best IRQ once we solve the
172  * affinity problem.
173  */
174 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
175 {
176         int i, best = 1;
177         unsigned long flags;
178
179         if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
180                 return &vmd->irqs[0];
181
182         raw_spin_lock_irqsave(&list_lock, flags);
183         for (i = 1; i < vmd->msix_count; i++)
184                 if (vmd->irqs[i].count < vmd->irqs[best].count)
185                         best = i;
186         vmd->irqs[best].count++;
187         raw_spin_unlock_irqrestore(&list_lock, flags);
188
189         return &vmd->irqs[best];
190 }
191
192 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
193                         unsigned int virq, irq_hw_number_t hwirq,
194                         msi_alloc_info_t *arg)
195 {
196         struct msi_desc *desc = arg->desc;
197         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
198         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
199         unsigned int index, vector;
200
201         if (!vmdirq)
202                 return -ENOMEM;
203
204         INIT_LIST_HEAD(&vmdirq->node);
205         vmdirq->irq = vmd_next_irq(vmd, desc);
206         vmdirq->virq = virq;
207         index = index_from_irqs(vmd, vmdirq->irq);
208         vector = pci_irq_vector(vmd->dev, index);
209
210         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
211                             handle_untracked_irq, vmd, NULL);
212         return 0;
213 }
214
215 static void vmd_msi_free(struct irq_domain *domain,
216                         struct msi_domain_info *info, unsigned int virq)
217 {
218         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
219         unsigned long flags;
220
221         /* XXX: Potential optimization to rebalance */
222         raw_spin_lock_irqsave(&list_lock, flags);
223         vmdirq->irq->count--;
224         raw_spin_unlock_irqrestore(&list_lock, flags);
225
226         kfree_rcu(vmdirq, rcu);
227 }
228
229 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
230                            int nvec, msi_alloc_info_t *arg)
231 {
232         struct pci_dev *pdev = to_pci_dev(dev);
233         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
234
235         if (nvec > vmd->msix_count)
236                 return vmd->msix_count;
237
238         memset(arg, 0, sizeof(*arg));
239         return 0;
240 }
241
242 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
243 {
244         arg->desc = desc;
245 }
246
247 static struct msi_domain_ops vmd_msi_domain_ops = {
248         .get_hwirq      = vmd_get_hwirq,
249         .msi_init       = vmd_msi_init,
250         .msi_free       = vmd_msi_free,
251         .msi_prepare    = vmd_msi_prepare,
252         .set_desc       = vmd_set_desc,
253 };
254
255 static struct msi_domain_info vmd_msi_domain_info = {
256         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
257                           MSI_FLAG_PCI_MSIX,
258         .ops            = &vmd_msi_domain_ops,
259         .chip           = &vmd_msi_controller,
260 };
261
262 #ifdef CONFIG_X86_DEV_DMA_OPS
263 /*
264  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
265  * VMD domain need to be mapped for the VMD, not the device requiring
266  * the mapping.
267  */
268 static struct device *to_vmd_dev(struct device *dev)
269 {
270         struct pci_dev *pdev = to_pci_dev(dev);
271         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
272
273         return &vmd->dev->dev;
274 }
275
276 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
277 {
278         return get_dma_ops(to_vmd_dev(dev));
279 }
280
281 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
282                        gfp_t flag, unsigned long attrs)
283 {
284         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
285                                        attrs);
286 }
287
288 static void vmd_free(struct device *dev, size_t size, void *vaddr,
289                      dma_addr_t addr, unsigned long attrs)
290 {
291         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
292                                       attrs);
293 }
294
295 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
296                     void *cpu_addr, dma_addr_t addr, size_t size,
297                     unsigned long attrs)
298 {
299         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
300                                       size, attrs);
301 }
302
303 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
304                            void *cpu_addr, dma_addr_t addr, size_t size,
305                            unsigned long attrs)
306 {
307         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
308                                              addr, size, attrs);
309 }
310
311 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
312                                unsigned long offset, size_t size,
313                                enum dma_data_direction dir,
314                                unsigned long attrs)
315 {
316         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
317                                           dir, attrs);
318 }
319
320 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
321                            enum dma_data_direction dir, unsigned long attrs)
322 {
323         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
324 }
325
326 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
327                       enum dma_data_direction dir, unsigned long attrs)
328 {
329         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
330 }
331
332 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
333                          enum dma_data_direction dir, unsigned long attrs)
334 {
335         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
336 }
337
338 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
339                                     size_t size, enum dma_data_direction dir)
340 {
341         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
342 }
343
344 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
345                                        size_t size, enum dma_data_direction dir)
346 {
347         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
348                                                  dir);
349 }
350
351 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
352                                 int nents, enum dma_data_direction dir)
353 {
354         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
355 }
356
357 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
358                                    int nents, enum dma_data_direction dir)
359 {
360         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
361 }
362
363 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
364 {
365         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
366 }
367
368 static int vmd_dma_supported(struct device *dev, u64 mask)
369 {
370         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
371 }
372
373 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
374 static u64 vmd_get_required_mask(struct device *dev)
375 {
376         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
377 }
378 #endif
379
380 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
381 {
382         struct dma_domain *domain = &vmd->dma_domain;
383
384         if (get_dma_ops(&vmd->dev->dev))
385                 del_dma_domain(domain);
386 }
387
388 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
389         do {                                    \
390                 if (source->fn)                 \
391                         dest->fn = vmd_##fn;    \
392         } while (0)
393
394 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
395 {
396         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
397         struct dma_map_ops *dest = &vmd->dma_ops;
398         struct dma_domain *domain = &vmd->dma_domain;
399
400         domain->domain_nr = vmd->sysdata.domain;
401         domain->dma_ops = dest;
402
403         if (!source)
404                 return;
405         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
406         ASSIGN_VMD_DMA_OPS(source, dest, free);
407         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
408         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
409         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
410         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
411         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
412         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
413         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
414         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
415         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
416         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
417         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
418         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
419 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
420         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
421 #endif
422         add_dma_domain(domain);
423 }
424 #undef ASSIGN_VMD_DMA_OPS
425 #else
426 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
427 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
428 #endif
429
430 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
431                                   unsigned int devfn, int reg, int len)
432 {
433         char __iomem *addr = vmd->cfgbar +
434                              (bus->number << 20) + (devfn << 12) + reg;
435
436         if ((addr - vmd->cfgbar) + len >=
437             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
438                 return NULL;
439
440         return addr;
441 }
442
443 /*
444  * CPU may deadlock if config space is not serialized on some versions of this
445  * hardware, so all config space access is done under a spinlock.
446  */
447 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
448                         int len, u32 *value)
449 {
450         struct vmd_dev *vmd = vmd_from_bus(bus);
451         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
452         unsigned long flags;
453         int ret = 0;
454
455         if (!addr)
456                 return -EFAULT;
457
458         spin_lock_irqsave(&vmd->cfg_lock, flags);
459         switch (len) {
460         case 1:
461                 *value = readb(addr);
462                 break;
463         case 2:
464                 *value = readw(addr);
465                 break;
466         case 4:
467                 *value = readl(addr);
468                 break;
469         default:
470                 ret = -EINVAL;
471                 break;
472         }
473         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
474         return ret;
475 }
476
477 /*
478  * VMD h/w converts non-posted config writes to posted memory writes. The
479  * read-back in this function forces the completion so it returns only after
480  * the config space was written, as expected.
481  */
482 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
483                          int len, u32 value)
484 {
485         struct vmd_dev *vmd = vmd_from_bus(bus);
486         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
487         unsigned long flags;
488         int ret = 0;
489
490         if (!addr)
491                 return -EFAULT;
492
493         spin_lock_irqsave(&vmd->cfg_lock, flags);
494         switch (len) {
495         case 1:
496                 writeb(value, addr);
497                 readb(addr);
498                 break;
499         case 2:
500                 writew(value, addr);
501                 readw(addr);
502                 break;
503         case 4:
504                 writel(value, addr);
505                 readl(addr);
506                 break;
507         default:
508                 ret = -EINVAL;
509                 break;
510         }
511         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
512         return ret;
513 }
514
515 static struct pci_ops vmd_ops = {
516         .read           = vmd_pci_read,
517         .write          = vmd_pci_write,
518 };
519
520 static void vmd_attach_resources(struct vmd_dev *vmd)
521 {
522         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
523         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
524 }
525
526 static void vmd_detach_resources(struct vmd_dev *vmd)
527 {
528         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
529         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
530 }
531
532 /*
533  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
534  */
535 static int vmd_find_free_domain(void)
536 {
537         int domain = 0xffff;
538         struct pci_bus *bus = NULL;
539
540         while ((bus = pci_find_next_bus(bus)) != NULL)
541                 domain = max_t(int, domain, pci_domain_nr(bus));
542         return domain + 1;
543 }
544
545 static int vmd_enable_domain(struct vmd_dev *vmd)
546 {
547         struct pci_sysdata *sd = &vmd->sysdata;
548         struct resource *res;
549         u32 upper_bits;
550         unsigned long flags;
551         LIST_HEAD(resources);
552
553         res = &vmd->dev->resource[VMD_CFGBAR];
554         vmd->resources[0] = (struct resource) {
555                 .name  = "VMD CFGBAR",
556                 .start = 0,
557                 .end   = (resource_size(res) >> 20) - 1,
558                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
559         };
560
561         /*
562          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
563          * put 32-bit resources in the window.
564          *
565          * There's no hardware reason why a 64-bit window *couldn't*
566          * contain a 32-bit resource, but pbus_size_mem() computes the
567          * bridge window size assuming a 64-bit window will contain no
568          * 32-bit resources.  __pci_assign_resource() enforces that
569          * artificial restriction to make sure everything will fit.
570          *
571          * The only way we could use a 64-bit non-prefechable MEMBAR is
572          * if its address is <4GB so that we can convert it to a 32-bit
573          * resource.  To be visible to the host OS, all VMD endpoints must
574          * be initially configured by platform BIOS, which includes setting
575          * up these resources.  We can assume the device is configured
576          * according to the platform needs.
577          */
578         res = &vmd->dev->resource[VMD_MEMBAR1];
579         upper_bits = upper_32_bits(res->end);
580         flags = res->flags & ~IORESOURCE_SIZEALIGN;
581         if (!upper_bits)
582                 flags &= ~IORESOURCE_MEM_64;
583         vmd->resources[1] = (struct resource) {
584                 .name  = "VMD MEMBAR1",
585                 .start = res->start,
586                 .end   = res->end,
587                 .flags = flags,
588                 .parent = res,
589         };
590
591         res = &vmd->dev->resource[VMD_MEMBAR2];
592         upper_bits = upper_32_bits(res->end);
593         flags = res->flags & ~IORESOURCE_SIZEALIGN;
594         if (!upper_bits)
595                 flags &= ~IORESOURCE_MEM_64;
596         vmd->resources[2] = (struct resource) {
597                 .name  = "VMD MEMBAR2",
598                 .start = res->start + 0x2000,
599                 .end   = res->end,
600                 .flags = flags,
601                 .parent = res,
602         };
603
604         sd->domain = vmd_find_free_domain();
605         if (sd->domain < 0)
606                 return sd->domain;
607
608         sd->node = pcibus_to_node(vmd->dev->bus);
609
610         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
611                                                     x86_vector_domain);
612         if (!vmd->irq_domain)
613                 return -ENODEV;
614
615         pci_add_resource(&resources, &vmd->resources[0]);
616         pci_add_resource(&resources, &vmd->resources[1]);
617         pci_add_resource(&resources, &vmd->resources[2]);
618         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
619                                        &resources);
620         if (!vmd->bus) {
621                 pci_free_resource_list(&resources);
622                 irq_domain_remove(vmd->irq_domain);
623                 return -ENODEV;
624         }
625
626         vmd_attach_resources(vmd);
627         vmd_setup_dma_ops(vmd);
628         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
629         pci_rescan_bus(vmd->bus);
630
631         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
632                                "domain"), "Can't create symlink to domain\n");
633         return 0;
634 }
635
636 static irqreturn_t vmd_irq(int irq, void *data)
637 {
638         struct vmd_irq_list *irqs = data;
639         struct vmd_irq *vmdirq;
640
641         rcu_read_lock();
642         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
643                 generic_handle_irq(vmdirq->virq);
644         rcu_read_unlock();
645
646         return IRQ_HANDLED;
647 }
648
649 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
650 {
651         struct vmd_dev *vmd;
652         int i, err;
653
654         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
655                 return -ENOMEM;
656
657         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
658         if (!vmd)
659                 return -ENOMEM;
660
661         vmd->dev = dev;
662         err = pcim_enable_device(dev);
663         if (err < 0)
664                 return err;
665
666         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
667         if (!vmd->cfgbar)
668                 return -ENOMEM;
669
670         pci_set_master(dev);
671         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
672             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
673                 return -ENODEV;
674
675         vmd->msix_count = pci_msix_vec_count(dev);
676         if (vmd->msix_count < 0)
677                 return -ENODEV;
678
679         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
680                                         PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
681         if (vmd->msix_count < 0)
682                 return vmd->msix_count;
683
684         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
685                                  GFP_KERNEL);
686         if (!vmd->irqs)
687                 return -ENOMEM;
688
689         for (i = 0; i < vmd->msix_count; i++) {
690                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
691                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
692                                        vmd_irq, 0, "vmd", &vmd->irqs[i]);
693                 if (err)
694                         return err;
695         }
696
697         spin_lock_init(&vmd->cfg_lock);
698         pci_set_drvdata(dev, vmd);
699         err = vmd_enable_domain(vmd);
700         if (err)
701                 return err;
702
703         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
704                  vmd->sysdata.domain);
705         return 0;
706 }
707
708 static void vmd_remove(struct pci_dev *dev)
709 {
710         struct vmd_dev *vmd = pci_get_drvdata(dev);
711
712         vmd_detach_resources(vmd);
713         pci_set_drvdata(dev, NULL);
714         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
715         pci_stop_root_bus(vmd->bus);
716         pci_remove_root_bus(vmd->bus);
717         vmd_teardown_dma_ops(vmd);
718         irq_domain_remove(vmd->irq_domain);
719 }
720
721 #ifdef CONFIG_PM
722 static int vmd_suspend(struct device *dev)
723 {
724         struct pci_dev *pdev = to_pci_dev(dev);
725
726         pci_save_state(pdev);
727         return 0;
728 }
729
730 static int vmd_resume(struct device *dev)
731 {
732         struct pci_dev *pdev = to_pci_dev(dev);
733
734         pci_restore_state(pdev);
735         return 0;
736 }
737 #endif
738 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
739
740 static const struct pci_device_id vmd_ids[] = {
741         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
742         {0,}
743 };
744 MODULE_DEVICE_TABLE(pci, vmd_ids);
745
746 static struct pci_driver vmd_drv = {
747         .name           = "vmd",
748         .id_table       = vmd_ids,
749         .probe          = vmd_probe,
750         .remove         = vmd_remove,
751         .driver         = {
752                 .pm     = &vmd_dev_pm_ops,
753         },
754 };
755 module_pci_driver(vmd_drv);
756
757 MODULE_AUTHOR("Intel Corporation");
758 MODULE_LICENSE("GPL v2");
759 MODULE_VERSION("0.6");