]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi.c
Merge branch 'x86/vdso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip...
[karo-tx-linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *      Skip non-WB memory and ignore empty memory ranges.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 #define EFI_MIN_RESERVE 5120
60
61 #define EFI_DUMMY_GUID \
62         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
63
64 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
65
66 struct efi_memory_map memmap;
67
68 static struct efi efi_phys __initdata;
69 static efi_system_table_t efi_systab __initdata;
70
71 static efi_config_table_type_t arch_tables[] __initdata = {
72 #ifdef CONFIG_X86_UV
73         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
74 #endif
75         {NULL_GUID, NULL, NULL},
76 };
77
78 u64 efi_setup;          /* efi setup_data physical address */
79
80 static bool disable_runtime __initdata = false;
81 static int __init setup_noefi(char *arg)
82 {
83         disable_runtime = true;
84         return 0;
85 }
86 early_param("noefi", setup_noefi);
87
88 int add_efi_memmap;
89 EXPORT_SYMBOL(add_efi_memmap);
90
91 static int __init setup_add_efi_memmap(char *arg)
92 {
93         add_efi_memmap = 1;
94         return 0;
95 }
96 early_param("add_efi_memmap", setup_add_efi_memmap);
97
98 static bool efi_no_storage_paranoia;
99
100 static int __init setup_storage_paranoia(char *arg)
101 {
102         efi_no_storage_paranoia = true;
103         return 0;
104 }
105 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
106
107 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
108 {
109         unsigned long flags;
110         efi_status_t status;
111
112         spin_lock_irqsave(&rtc_lock, flags);
113         status = efi_call_virt2(get_time, tm, tc);
114         spin_unlock_irqrestore(&rtc_lock, flags);
115         return status;
116 }
117
118 static efi_status_t virt_efi_set_time(efi_time_t *tm)
119 {
120         unsigned long flags;
121         efi_status_t status;
122
123         spin_lock_irqsave(&rtc_lock, flags);
124         status = efi_call_virt1(set_time, tm);
125         spin_unlock_irqrestore(&rtc_lock, flags);
126         return status;
127 }
128
129 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
130                                              efi_bool_t *pending,
131                                              efi_time_t *tm)
132 {
133         unsigned long flags;
134         efi_status_t status;
135
136         spin_lock_irqsave(&rtc_lock, flags);
137         status = efi_call_virt3(get_wakeup_time,
138                                 enabled, pending, tm);
139         spin_unlock_irqrestore(&rtc_lock, flags);
140         return status;
141 }
142
143 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
144 {
145         unsigned long flags;
146         efi_status_t status;
147
148         spin_lock_irqsave(&rtc_lock, flags);
149         status = efi_call_virt2(set_wakeup_time,
150                                 enabled, tm);
151         spin_unlock_irqrestore(&rtc_lock, flags);
152         return status;
153 }
154
155 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
156                                           efi_guid_t *vendor,
157                                           u32 *attr,
158                                           unsigned long *data_size,
159                                           void *data)
160 {
161         return efi_call_virt5(get_variable,
162                               name, vendor, attr,
163                               data_size, data);
164 }
165
166 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
167                                                efi_char16_t *name,
168                                                efi_guid_t *vendor)
169 {
170         return efi_call_virt3(get_next_variable,
171                               name_size, name, vendor);
172 }
173
174 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
175                                           efi_guid_t *vendor,
176                                           u32 attr,
177                                           unsigned long data_size,
178                                           void *data)
179 {
180         return efi_call_virt5(set_variable,
181                               name, vendor, attr,
182                               data_size, data);
183 }
184
185 static efi_status_t virt_efi_query_variable_info(u32 attr,
186                                                  u64 *storage_space,
187                                                  u64 *remaining_space,
188                                                  u64 *max_variable_size)
189 {
190         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
191                 return EFI_UNSUPPORTED;
192
193         return efi_call_virt4(query_variable_info, attr, storage_space,
194                               remaining_space, max_variable_size);
195 }
196
197 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
198 {
199         return efi_call_virt1(get_next_high_mono_count, count);
200 }
201
202 static void virt_efi_reset_system(int reset_type,
203                                   efi_status_t status,
204                                   unsigned long data_size,
205                                   efi_char16_t *data)
206 {
207         efi_call_virt4(reset_system, reset_type, status,
208                        data_size, data);
209 }
210
211 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
212                                             unsigned long count,
213                                             unsigned long sg_list)
214 {
215         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
216                 return EFI_UNSUPPORTED;
217
218         return efi_call_virt3(update_capsule, capsules, count, sg_list);
219 }
220
221 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
222                                                 unsigned long count,
223                                                 u64 *max_size,
224                                                 int *reset_type)
225 {
226         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
227                 return EFI_UNSUPPORTED;
228
229         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
230                               reset_type);
231 }
232
233 static efi_status_t __init phys_efi_set_virtual_address_map(
234         unsigned long memory_map_size,
235         unsigned long descriptor_size,
236         u32 descriptor_version,
237         efi_memory_desc_t *virtual_map)
238 {
239         efi_status_t status;
240
241         efi_call_phys_prelog();
242         status = efi_call_phys4(efi_phys.set_virtual_address_map,
243                                 memory_map_size, descriptor_size,
244                                 descriptor_version, virtual_map);
245         efi_call_phys_epilog();
246         return status;
247 }
248
249 int efi_set_rtc_mmss(const struct timespec *now)
250 {
251         unsigned long nowtime = now->tv_sec;
252         efi_status_t    status;
253         efi_time_t      eft;
254         efi_time_cap_t  cap;
255         struct rtc_time tm;
256
257         status = efi.get_time(&eft, &cap);
258         if (status != EFI_SUCCESS) {
259                 pr_err("Oops: efitime: can't read time!\n");
260                 return -1;
261         }
262
263         rtc_time_to_tm(nowtime, &tm);
264         if (!rtc_valid_tm(&tm)) {
265                 eft.year = tm.tm_year + 1900;
266                 eft.month = tm.tm_mon + 1;
267                 eft.day = tm.tm_mday;
268                 eft.minute = tm.tm_min;
269                 eft.second = tm.tm_sec;
270                 eft.nanosecond = 0;
271         } else {
272                 pr_err("%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
273                        __func__, nowtime);
274                 return -1;
275         }
276
277         status = efi.set_time(&eft);
278         if (status != EFI_SUCCESS) {
279                 pr_err("Oops: efitime: can't write time!\n");
280                 return -1;
281         }
282         return 0;
283 }
284
285 void efi_get_time(struct timespec *now)
286 {
287         efi_status_t status;
288         efi_time_t eft;
289         efi_time_cap_t cap;
290
291         status = efi.get_time(&eft, &cap);
292         if (status != EFI_SUCCESS)
293                 pr_err("Oops: efitime: can't read time!\n");
294
295         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
296                              eft.minute, eft.second);
297         now->tv_nsec = 0;
298 }
299
300 /*
301  * Tell the kernel about the EFI memory map.  This might include
302  * more than the max 128 entries that can fit in the e820 legacy
303  * (zeropage) memory map.
304  */
305
306 static void __init do_add_efi_memmap(void)
307 {
308         void *p;
309
310         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
311                 efi_memory_desc_t *md = p;
312                 unsigned long long start = md->phys_addr;
313                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
314                 int e820_type;
315
316                 switch (md->type) {
317                 case EFI_LOADER_CODE:
318                 case EFI_LOADER_DATA:
319                 case EFI_BOOT_SERVICES_CODE:
320                 case EFI_BOOT_SERVICES_DATA:
321                 case EFI_CONVENTIONAL_MEMORY:
322                         if (md->attribute & EFI_MEMORY_WB)
323                                 e820_type = E820_RAM;
324                         else
325                                 e820_type = E820_RESERVED;
326                         break;
327                 case EFI_ACPI_RECLAIM_MEMORY:
328                         e820_type = E820_ACPI;
329                         break;
330                 case EFI_ACPI_MEMORY_NVS:
331                         e820_type = E820_NVS;
332                         break;
333                 case EFI_UNUSABLE_MEMORY:
334                         e820_type = E820_UNUSABLE;
335                         break;
336                 default:
337                         /*
338                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
339                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
340                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
341                          */
342                         e820_type = E820_RESERVED;
343                         break;
344                 }
345                 e820_add_region(start, size, e820_type);
346         }
347         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
348 }
349
350 int __init efi_memblock_x86_reserve_range(void)
351 {
352         struct efi_info *e = &boot_params.efi_info;
353         unsigned long pmap;
354
355 #ifdef CONFIG_X86_32
356         /* Can't handle data above 4GB at this time */
357         if (e->efi_memmap_hi) {
358                 pr_err("Memory map is above 4GB, disabling EFI.\n");
359                 return -EINVAL;
360         }
361         pmap =  e->efi_memmap;
362 #else
363         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
364 #endif
365         memmap.phys_map         = (void *)pmap;
366         memmap.nr_map           = e->efi_memmap_size /
367                                   e->efi_memdesc_size;
368         memmap.desc_size        = e->efi_memdesc_size;
369         memmap.desc_version     = e->efi_memdesc_version;
370
371         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
372
373         efi.memmap = &memmap;
374
375         return 0;
376 }
377
378 static void __init print_efi_memmap(void)
379 {
380 #ifdef EFI_DEBUG
381         efi_memory_desc_t *md;
382         void *p;
383         int i;
384
385         for (p = memmap.map, i = 0;
386              p < memmap.map_end;
387              p += memmap.desc_size, i++) {
388                 md = p;
389                 pr_info("mem%02u: type=%u, attr=0x%llx, range=[0x%016llx-0x%016llx) (%lluMB)\n",
390                         i, md->type, md->attribute, md->phys_addr,
391                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
392                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
393         }
394 #endif  /*  EFI_DEBUG  */
395 }
396
397 void __init efi_reserve_boot_services(void)
398 {
399         void *p;
400
401         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
402                 efi_memory_desc_t *md = p;
403                 u64 start = md->phys_addr;
404                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
405
406                 if (md->type != EFI_BOOT_SERVICES_CODE &&
407                     md->type != EFI_BOOT_SERVICES_DATA)
408                         continue;
409                 /* Only reserve where possible:
410                  * - Not within any already allocated areas
411                  * - Not over any memory area (really needed, if above?)
412                  * - Not within any part of the kernel
413                  * - Not the bios reserved area
414                 */
415                 if ((start + size > __pa_symbol(_text)
416                                 && start <= __pa_symbol(_end)) ||
417                         !e820_all_mapped(start, start+size, E820_RAM) ||
418                         memblock_is_region_reserved(start, size)) {
419                         /* Could not reserve, skip it */
420                         md->num_pages = 0;
421                         memblock_dbg("Could not reserve boot range [0x%010llx-0x%010llx]\n",
422                                      start, start+size-1);
423                 } else
424                         memblock_reserve(start, size);
425         }
426 }
427
428 void __init efi_unmap_memmap(void)
429 {
430         clear_bit(EFI_MEMMAP, &efi.flags);
431         if (memmap.map) {
432                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
433                 memmap.map = NULL;
434         }
435 }
436
437 void __init efi_free_boot_services(void)
438 {
439         void *p;
440
441         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
442                 efi_memory_desc_t *md = p;
443                 unsigned long long start = md->phys_addr;
444                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
445
446                 if (md->type != EFI_BOOT_SERVICES_CODE &&
447                     md->type != EFI_BOOT_SERVICES_DATA)
448                         continue;
449
450                 /* Could not reserve boot area */
451                 if (!size)
452                         continue;
453
454                 free_bootmem_late(start, size);
455         }
456
457         efi_unmap_memmap();
458 }
459
460 static int __init efi_systab_init(void *phys)
461 {
462         if (efi_enabled(EFI_64BIT)) {
463                 efi_system_table_64_t *systab64;
464                 struct efi_setup_data *data = NULL;
465                 u64 tmp = 0;
466
467                 if (efi_setup) {
468                         data = early_memremap(efi_setup, sizeof(*data));
469                         if (!data)
470                                 return -ENOMEM;
471                 }
472                 systab64 = early_ioremap((unsigned long)phys,
473                                          sizeof(*systab64));
474                 if (systab64 == NULL) {
475                         pr_err("Couldn't map the system table!\n");
476                         if (data)
477                                 early_iounmap(data, sizeof(*data));
478                         return -ENOMEM;
479                 }
480
481                 efi_systab.hdr = systab64->hdr;
482                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
483                                               systab64->fw_vendor;
484                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
485                 efi_systab.fw_revision = systab64->fw_revision;
486                 efi_systab.con_in_handle = systab64->con_in_handle;
487                 tmp |= systab64->con_in_handle;
488                 efi_systab.con_in = systab64->con_in;
489                 tmp |= systab64->con_in;
490                 efi_systab.con_out_handle = systab64->con_out_handle;
491                 tmp |= systab64->con_out_handle;
492                 efi_systab.con_out = systab64->con_out;
493                 tmp |= systab64->con_out;
494                 efi_systab.stderr_handle = systab64->stderr_handle;
495                 tmp |= systab64->stderr_handle;
496                 efi_systab.stderr = systab64->stderr;
497                 tmp |= systab64->stderr;
498                 efi_systab.runtime = data ?
499                                      (void *)(unsigned long)data->runtime :
500                                      (void *)(unsigned long)systab64->runtime;
501                 tmp |= data ? data->runtime : systab64->runtime;
502                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
503                 tmp |= systab64->boottime;
504                 efi_systab.nr_tables = systab64->nr_tables;
505                 efi_systab.tables = data ? (unsigned long)data->tables :
506                                            systab64->tables;
507                 tmp |= data ? data->tables : systab64->tables;
508
509                 early_iounmap(systab64, sizeof(*systab64));
510                 if (data)
511                         early_iounmap(data, sizeof(*data));
512 #ifdef CONFIG_X86_32
513                 if (tmp >> 32) {
514                         pr_err("EFI data located above 4GB, disabling EFI.\n");
515                         return -EINVAL;
516                 }
517 #endif
518         } else {
519                 efi_system_table_32_t *systab32;
520
521                 systab32 = early_ioremap((unsigned long)phys,
522                                          sizeof(*systab32));
523                 if (systab32 == NULL) {
524                         pr_err("Couldn't map the system table!\n");
525                         return -ENOMEM;
526                 }
527
528                 efi_systab.hdr = systab32->hdr;
529                 efi_systab.fw_vendor = systab32->fw_vendor;
530                 efi_systab.fw_revision = systab32->fw_revision;
531                 efi_systab.con_in_handle = systab32->con_in_handle;
532                 efi_systab.con_in = systab32->con_in;
533                 efi_systab.con_out_handle = systab32->con_out_handle;
534                 efi_systab.con_out = systab32->con_out;
535                 efi_systab.stderr_handle = systab32->stderr_handle;
536                 efi_systab.stderr = systab32->stderr;
537                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
538                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
539                 efi_systab.nr_tables = systab32->nr_tables;
540                 efi_systab.tables = systab32->tables;
541
542                 early_iounmap(systab32, sizeof(*systab32));
543         }
544
545         efi.systab = &efi_systab;
546
547         /*
548          * Verify the EFI Table
549          */
550         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
551                 pr_err("System table signature incorrect!\n");
552                 return -EINVAL;
553         }
554         if ((efi.systab->hdr.revision >> 16) == 0)
555                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
556                        efi.systab->hdr.revision >> 16,
557                        efi.systab->hdr.revision & 0xffff);
558
559         set_bit(EFI_SYSTEM_TABLES, &efi.flags);
560
561         return 0;
562 }
563
564 static int __init efi_runtime_init32(void)
565 {
566         efi_runtime_services_32_t *runtime;
567
568         runtime = early_ioremap((unsigned long)efi.systab->runtime,
569                         sizeof(efi_runtime_services_32_t));
570         if (!runtime) {
571                 pr_err("Could not map the runtime service table!\n");
572                 return -ENOMEM;
573         }
574
575         /*
576          * We will only need *early* access to the following two
577          * EFI runtime services before set_virtual_address_map
578          * is invoked.
579          */
580         efi_phys.set_virtual_address_map =
581                         (efi_set_virtual_address_map_t *)
582                         (unsigned long)runtime->set_virtual_address_map;
583         early_iounmap(runtime, sizeof(efi_runtime_services_32_t));
584
585         return 0;
586 }
587
588 static int __init efi_runtime_init64(void)
589 {
590         efi_runtime_services_64_t *runtime;
591
592         runtime = early_ioremap((unsigned long)efi.systab->runtime,
593                         sizeof(efi_runtime_services_64_t));
594         if (!runtime) {
595                 pr_err("Could not map the runtime service table!\n");
596                 return -ENOMEM;
597         }
598
599         /*
600          * We will only need *early* access to the following two
601          * EFI runtime services before set_virtual_address_map
602          * is invoked.
603          */
604         efi_phys.set_virtual_address_map =
605                         (efi_set_virtual_address_map_t *)
606                         (unsigned long)runtime->set_virtual_address_map;
607         early_iounmap(runtime, sizeof(efi_runtime_services_64_t));
608
609         return 0;
610 }
611
612 static int __init efi_runtime_init(void)
613 {
614         int rv;
615
616         /*
617          * Check out the runtime services table. We need to map
618          * the runtime services table so that we can grab the physical
619          * address of several of the EFI runtime functions, needed to
620          * set the firmware into virtual mode.
621          */
622         if (efi_enabled(EFI_64BIT))
623                 rv = efi_runtime_init64();
624         else
625                 rv = efi_runtime_init32();
626
627         if (rv)
628                 return rv;
629
630         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
631
632         return 0;
633 }
634
635 static int __init efi_memmap_init(void)
636 {
637         /* Map the EFI memory map */
638         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
639                                    memmap.nr_map * memmap.desc_size);
640         if (memmap.map == NULL) {
641                 pr_err("Could not map the memory map!\n");
642                 return -ENOMEM;
643         }
644         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
645
646         if (add_efi_memmap)
647                 do_add_efi_memmap();
648
649         set_bit(EFI_MEMMAP, &efi.flags);
650
651         return 0;
652 }
653
654 /*
655  * A number of config table entries get remapped to virtual addresses
656  * after entering EFI virtual mode. However, the kexec kernel requires
657  * their physical addresses therefore we pass them via setup_data and
658  * correct those entries to their respective physical addresses here.
659  *
660  * Currently only handles smbios which is necessary for some firmware
661  * implementation.
662  */
663 static int __init efi_reuse_config(u64 tables, int nr_tables)
664 {
665         int i, sz, ret = 0;
666         void *p, *tablep;
667         struct efi_setup_data *data;
668
669         if (!efi_setup)
670                 return 0;
671
672         if (!efi_enabled(EFI_64BIT))
673                 return 0;
674
675         data = early_memremap(efi_setup, sizeof(*data));
676         if (!data) {
677                 ret = -ENOMEM;
678                 goto out;
679         }
680
681         if (!data->smbios)
682                 goto out_memremap;
683
684         sz = sizeof(efi_config_table_64_t);
685
686         p = tablep = early_memremap(tables, nr_tables * sz);
687         if (!p) {
688                 pr_err("Could not map Configuration table!\n");
689                 ret = -ENOMEM;
690                 goto out_memremap;
691         }
692
693         for (i = 0; i < efi.systab->nr_tables; i++) {
694                 efi_guid_t guid;
695
696                 guid = ((efi_config_table_64_t *)p)->guid;
697
698                 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
699                         ((efi_config_table_64_t *)p)->table = data->smbios;
700                 p += sz;
701         }
702         early_iounmap(tablep, nr_tables * sz);
703
704 out_memremap:
705         early_iounmap(data, sizeof(*data));
706 out:
707         return ret;
708 }
709
710 void __init efi_init(void)
711 {
712         efi_char16_t *c16;
713         char vendor[100] = "unknown";
714         int i = 0;
715         void *tmp;
716
717 #ifdef CONFIG_X86_32
718         if (boot_params.efi_info.efi_systab_hi ||
719             boot_params.efi_info.efi_memmap_hi) {
720                 pr_info("Table located above 4GB, disabling EFI.\n");
721                 return;
722         }
723         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
724 #else
725         efi_phys.systab = (efi_system_table_t *)
726                           (boot_params.efi_info.efi_systab |
727                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
728 #endif
729
730         if (efi_systab_init(efi_phys.systab))
731                 return;
732
733         set_bit(EFI_SYSTEM_TABLES, &efi.flags);
734
735         efi.config_table = (unsigned long)efi.systab->tables;
736         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
737         efi.runtime      = (unsigned long)efi.systab->runtime;
738
739         /*
740          * Show what we know for posterity
741          */
742         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
743         if (c16) {
744                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
745                         vendor[i] = *c16++;
746                 vendor[i] = '\0';
747         } else
748                 pr_err("Could not map the firmware vendor!\n");
749         early_iounmap(tmp, 2);
750
751         pr_info("EFI v%u.%.02u by %s\n",
752                 efi.systab->hdr.revision >> 16,
753                 efi.systab->hdr.revision & 0xffff, vendor);
754
755         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
756                 return;
757
758         if (efi_config_init(arch_tables))
759                 return;
760
761         /*
762          * Note: We currently don't support runtime services on an EFI
763          * that doesn't match the kernel 32/64-bit mode.
764          */
765
766         if (!efi_runtime_supported())
767                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
768         else {
769                 if (disable_runtime || efi_runtime_init())
770                         return;
771         }
772         if (efi_memmap_init())
773                 return;
774
775         set_bit(EFI_MEMMAP, &efi.flags);
776
777         print_efi_memmap();
778 }
779
780 void __init efi_late_init(void)
781 {
782         efi_bgrt_init();
783 }
784
785 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
786 {
787         u64 addr, npages;
788
789         addr = md->virt_addr;
790         npages = md->num_pages;
791
792         memrange_efi_to_native(&addr, &npages);
793
794         if (executable)
795                 set_memory_x(addr, npages);
796         else
797                 set_memory_nx(addr, npages);
798 }
799
800 void __init runtime_code_page_mkexec(void)
801 {
802         efi_memory_desc_t *md;
803         void *p;
804
805         /* Make EFI runtime service code area executable */
806         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
807                 md = p;
808
809                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
810                         continue;
811
812                 efi_set_executable(md, true);
813         }
814 }
815
816 void efi_memory_uc(u64 addr, unsigned long size)
817 {
818         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
819         u64 npages;
820
821         npages = round_up(size, page_shift) / page_shift;
822         memrange_efi_to_native(&addr, &npages);
823         set_memory_uc(addr, npages);
824 }
825
826 void __init old_map_region(efi_memory_desc_t *md)
827 {
828         u64 start_pfn, end_pfn, end;
829         unsigned long size;
830         void *va;
831
832         start_pfn = PFN_DOWN(md->phys_addr);
833         size      = md->num_pages << PAGE_SHIFT;
834         end       = md->phys_addr + size;
835         end_pfn   = PFN_UP(end);
836
837         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
838                 va = __va(md->phys_addr);
839
840                 if (!(md->attribute & EFI_MEMORY_WB))
841                         efi_memory_uc((u64)(unsigned long)va, size);
842         } else
843                 va = efi_ioremap(md->phys_addr, size,
844                                  md->type, md->attribute);
845
846         md->virt_addr = (u64) (unsigned long) va;
847         if (!va)
848                 pr_err("ioremap of 0x%llX failed!\n",
849                        (unsigned long long)md->phys_addr);
850 }
851
852 static void native_runtime_setup(void)
853 {
854         efi.get_time = virt_efi_get_time;
855         efi.set_time = virt_efi_set_time;
856         efi.get_wakeup_time = virt_efi_get_wakeup_time;
857         efi.set_wakeup_time = virt_efi_set_wakeup_time;
858         efi.get_variable = virt_efi_get_variable;
859         efi.get_next_variable = virt_efi_get_next_variable;
860         efi.set_variable = virt_efi_set_variable;
861         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
862         efi.reset_system = virt_efi_reset_system;
863         efi.query_variable_info = virt_efi_query_variable_info;
864         efi.update_capsule = virt_efi_update_capsule;
865         efi.query_capsule_caps = virt_efi_query_capsule_caps;
866 }
867
868 /* Merge contiguous regions of the same type and attribute */
869 static void __init efi_merge_regions(void)
870 {
871         void *p;
872         efi_memory_desc_t *md, *prev_md = NULL;
873
874         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
875                 u64 prev_size;
876                 md = p;
877
878                 if (!prev_md) {
879                         prev_md = md;
880                         continue;
881                 }
882
883                 if (prev_md->type != md->type ||
884                     prev_md->attribute != md->attribute) {
885                         prev_md = md;
886                         continue;
887                 }
888
889                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
890
891                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
892                         prev_md->num_pages += md->num_pages;
893                         md->type = EFI_RESERVED_TYPE;
894                         md->attribute = 0;
895                         continue;
896                 }
897                 prev_md = md;
898         }
899 }
900
901 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
902 {
903         unsigned long size;
904         u64 end, systab;
905
906         size = md->num_pages << EFI_PAGE_SHIFT;
907         end = md->phys_addr + size;
908         systab = (u64)(unsigned long)efi_phys.systab;
909         if (md->phys_addr <= systab && systab < end) {
910                 systab += md->virt_addr - md->phys_addr;
911                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
912         }
913 }
914
915 static void __init save_runtime_map(void)
916 {
917 #ifdef CONFIG_KEXEC
918         efi_memory_desc_t *md;
919         void *tmp, *p, *q = NULL;
920         int count = 0;
921
922         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
923                 md = p;
924
925                 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
926                     (md->type == EFI_BOOT_SERVICES_CODE) ||
927                     (md->type == EFI_BOOT_SERVICES_DATA))
928                         continue;
929                 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
930                 if (!tmp)
931                         goto out;
932                 q = tmp;
933
934                 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
935                 count++;
936         }
937
938         efi_runtime_map_setup(q, count, memmap.desc_size);
939         return;
940
941 out:
942         kfree(q);
943         pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
944 #endif
945 }
946
947 static void *realloc_pages(void *old_memmap, int old_shift)
948 {
949         void *ret;
950
951         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
952         if (!ret)
953                 goto out;
954
955         /*
956          * A first-time allocation doesn't have anything to copy.
957          */
958         if (!old_memmap)
959                 return ret;
960
961         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
962
963 out:
964         free_pages((unsigned long)old_memmap, old_shift);
965         return ret;
966 }
967
968 /*
969  * Map the efi memory ranges of the runtime services and update new_mmap with
970  * virtual addresses.
971  */
972 static void * __init efi_map_regions(int *count, int *pg_shift)
973 {
974         void *p, *new_memmap = NULL;
975         unsigned long left = 0;
976         efi_memory_desc_t *md;
977
978         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
979                 md = p;
980                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
981 #ifdef CONFIG_X86_64
982                         if (md->type != EFI_BOOT_SERVICES_CODE &&
983                             md->type != EFI_BOOT_SERVICES_DATA)
984 #endif
985                                 continue;
986                 }
987
988                 efi_map_region(md);
989                 get_systab_virt_addr(md);
990
991                 if (left < memmap.desc_size) {
992                         new_memmap = realloc_pages(new_memmap, *pg_shift);
993                         if (!new_memmap)
994                                 return NULL;
995
996                         left += PAGE_SIZE << *pg_shift;
997                         (*pg_shift)++;
998                 }
999
1000                 memcpy(new_memmap + (*count * memmap.desc_size), md,
1001                        memmap.desc_size);
1002
1003                 left -= memmap.desc_size;
1004                 (*count)++;
1005         }
1006
1007         return new_memmap;
1008 }
1009
1010 static void __init kexec_enter_virtual_mode(void)
1011 {
1012 #ifdef CONFIG_KEXEC
1013         efi_memory_desc_t *md;
1014         void *p;
1015
1016         efi.systab = NULL;
1017
1018         /*
1019          * We don't do virtual mode, since we don't do runtime services, on
1020          * non-native EFI
1021          */
1022         if (!efi_is_native()) {
1023                 efi_unmap_memmap();
1024                 return;
1025         }
1026
1027         /*
1028         * Map efi regions which were passed via setup_data. The virt_addr is a
1029         * fixed addr which was used in first kernel of a kexec boot.
1030         */
1031         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1032                 md = p;
1033                 efi_map_region_fixed(md); /* FIXME: add error handling */
1034                 get_systab_virt_addr(md);
1035         }
1036
1037         save_runtime_map();
1038
1039         BUG_ON(!efi.systab);
1040
1041         efi_sync_low_kernel_mappings();
1042
1043         /*
1044          * Now that EFI is in virtual mode, update the function
1045          * pointers in the runtime service table to the new virtual addresses.
1046          *
1047          * Call EFI services through wrapper functions.
1048          */
1049         efi.runtime_version = efi_systab.hdr.revision;
1050
1051         native_runtime_setup();
1052
1053         efi.set_virtual_address_map = NULL;
1054
1055         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
1056                 runtime_code_page_mkexec();
1057
1058         /* clean DUMMY object */
1059         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1060                          EFI_VARIABLE_NON_VOLATILE |
1061                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1062                          EFI_VARIABLE_RUNTIME_ACCESS,
1063                          0, NULL);
1064 #endif
1065 }
1066
1067 /*
1068  * This function will switch the EFI runtime services to virtual mode.
1069  * Essentially, we look through the EFI memmap and map every region that
1070  * has the runtime attribute bit set in its memory descriptor into the
1071  * ->trampoline_pgd page table using a top-down VA allocation scheme.
1072  *
1073  * The old method which used to update that memory descriptor with the
1074  * virtual address obtained from ioremap() is still supported when the
1075  * kernel is booted with efi=old_map on its command line. Same old
1076  * method enabled the runtime services to be called without having to
1077  * thunk back into physical mode for every invocation.
1078  *
1079  * The new method does a pagetable switch in a preemption-safe manner
1080  * so that we're in a different address space when calling a runtime
1081  * function. For function arguments passing we do copy the PGDs of the
1082  * kernel page table into ->trampoline_pgd prior to each call.
1083  *
1084  * Specially for kexec boot, efi runtime maps in previous kernel should
1085  * be passed in via setup_data. In that case runtime ranges will be mapped
1086  * to the same virtual addresses as the first kernel, see
1087  * kexec_enter_virtual_mode().
1088  */
1089 static void __init __efi_enter_virtual_mode(void)
1090 {
1091         int count = 0, pg_shift = 0;
1092         void *new_memmap = NULL;
1093         efi_status_t status;
1094
1095         efi.systab = NULL;
1096
1097         efi_merge_regions();
1098         new_memmap = efi_map_regions(&count, &pg_shift);
1099         if (!new_memmap) {
1100                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1101                 return;
1102         }
1103
1104         save_runtime_map();
1105
1106         BUG_ON(!efi.systab);
1107
1108         if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift))
1109                 return;
1110
1111         efi_sync_low_kernel_mappings();
1112         efi_dump_pagetable();
1113
1114         if (efi_is_native()) {
1115                 status = phys_efi_set_virtual_address_map(
1116                                 memmap.desc_size * count,
1117                                 memmap.desc_size,
1118                                 memmap.desc_version,
1119                                 (efi_memory_desc_t *)__pa(new_memmap));
1120         } else {
1121                 status = efi_thunk_set_virtual_address_map(
1122                                 efi_phys.set_virtual_address_map,
1123                                 memmap.desc_size * count,
1124                                 memmap.desc_size,
1125                                 memmap.desc_version,
1126                                 (efi_memory_desc_t *)__pa(new_memmap));
1127         }
1128
1129         if (status != EFI_SUCCESS) {
1130                 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1131                          status);
1132                 panic("EFI call to SetVirtualAddressMap() failed!");
1133         }
1134
1135         /*
1136          * Now that EFI is in virtual mode, update the function
1137          * pointers in the runtime service table to the new virtual addresses.
1138          *
1139          * Call EFI services through wrapper functions.
1140          */
1141         efi.runtime_version = efi_systab.hdr.revision;
1142
1143         if (efi_is_native())
1144                 native_runtime_setup();
1145         else
1146                 efi_thunk_runtime_setup();
1147
1148         efi.set_virtual_address_map = NULL;
1149
1150         efi_runtime_mkexec();
1151
1152         /*
1153          * We mapped the descriptor array into the EFI pagetable above but we're
1154          * not unmapping it here. Here's why:
1155          *
1156          * We're copying select PGDs from the kernel page table to the EFI page
1157          * table and when we do so and make changes to those PGDs like unmapping
1158          * stuff from them, those changes appear in the kernel page table and we
1159          * go boom.
1160          *
1161          * From setup_real_mode():
1162          *
1163          * ...
1164          * trampoline_pgd[0] = init_level4_pgt[pgd_index(__PAGE_OFFSET)].pgd;
1165          *
1166          * In this particular case, our allocation is in PGD 0 of the EFI page
1167          * table but we've copied that PGD from PGD[272] of the EFI page table:
1168          *
1169          *      pgd_index(__PAGE_OFFSET = 0xffff880000000000) = 272
1170          *
1171          * where the direct memory mapping in kernel space is.
1172          *
1173          * new_memmap's VA comes from that direct mapping and thus clearing it,
1174          * it would get cleared in the kernel page table too.
1175          *
1176          * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
1177          */
1178         free_pages((unsigned long)new_memmap, pg_shift);
1179
1180         /* clean DUMMY object */
1181         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1182                          EFI_VARIABLE_NON_VOLATILE |
1183                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1184                          EFI_VARIABLE_RUNTIME_ACCESS,
1185                          0, NULL);
1186 }
1187
1188 void __init efi_enter_virtual_mode(void)
1189 {
1190         if (efi_setup)
1191                 kexec_enter_virtual_mode();
1192         else
1193                 __efi_enter_virtual_mode();
1194 }
1195
1196 /*
1197  * Convenience functions to obtain memory types and attributes
1198  */
1199 u32 efi_mem_type(unsigned long phys_addr)
1200 {
1201         efi_memory_desc_t *md;
1202         void *p;
1203
1204         if (!efi_enabled(EFI_MEMMAP))
1205                 return 0;
1206
1207         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1208                 md = p;
1209                 if ((md->phys_addr <= phys_addr) &&
1210                     (phys_addr < (md->phys_addr +
1211                                   (md->num_pages << EFI_PAGE_SHIFT))))
1212                         return md->type;
1213         }
1214         return 0;
1215 }
1216
1217 u64 efi_mem_attributes(unsigned long phys_addr)
1218 {
1219         efi_memory_desc_t *md;
1220         void *p;
1221
1222         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1223                 md = p;
1224                 if ((md->phys_addr <= phys_addr) &&
1225                     (phys_addr < (md->phys_addr +
1226                                   (md->num_pages << EFI_PAGE_SHIFT))))
1227                         return md->attribute;
1228         }
1229         return 0;
1230 }
1231
1232 /*
1233  * Some firmware implementations refuse to boot if there's insufficient space
1234  * in the variable store. Ensure that we never use more than a safe limit.
1235  *
1236  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1237  * store.
1238  */
1239 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1240 {
1241         efi_status_t status;
1242         u64 storage_size, remaining_size, max_size;
1243
1244         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1245                 return 0;
1246
1247         status = efi.query_variable_info(attributes, &storage_size,
1248                                          &remaining_size, &max_size);
1249         if (status != EFI_SUCCESS)
1250                 return status;
1251
1252         /*
1253          * We account for that by refusing the write if permitting it would
1254          * reduce the available space to under 5KB. This figure was provided by
1255          * Samsung, so should be safe.
1256          */
1257         if ((remaining_size - size < EFI_MIN_RESERVE) &&
1258                 !efi_no_storage_paranoia) {
1259
1260                 /*
1261                  * Triggering garbage collection may require that the firmware
1262                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
1263                  * that by attempting to use more space than is available.
1264                  */
1265                 unsigned long dummy_size = remaining_size + 1024;
1266                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1267
1268                 if (!dummy)
1269                         return EFI_OUT_OF_RESOURCES;
1270
1271                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1272                                           EFI_VARIABLE_NON_VOLATILE |
1273                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
1274                                           EFI_VARIABLE_RUNTIME_ACCESS,
1275                                           dummy_size, dummy);
1276
1277                 if (status == EFI_SUCCESS) {
1278                         /*
1279                          * This should have failed, so if it didn't make sure
1280                          * that we delete it...
1281                          */
1282                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1283                                          EFI_VARIABLE_NON_VOLATILE |
1284                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1285                                          EFI_VARIABLE_RUNTIME_ACCESS,
1286                                          0, dummy);
1287                 }
1288
1289                 kfree(dummy);
1290
1291                 /*
1292                  * The runtime code may now have triggered a garbage collection
1293                  * run, so check the variable info again
1294                  */
1295                 status = efi.query_variable_info(attributes, &storage_size,
1296                                                  &remaining_size, &max_size);
1297
1298                 if (status != EFI_SUCCESS)
1299                         return status;
1300
1301                 /*
1302                  * There still isn't enough room, so return an error
1303                  */
1304                 if (remaining_size - size < EFI_MIN_RESERVE)
1305                         return EFI_OUT_OF_RESOURCES;
1306         }
1307
1308         return EFI_SUCCESS;
1309 }
1310 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1311
1312 static int __init parse_efi_cmdline(char *str)
1313 {
1314         if (*str == '=')
1315                 str++;
1316
1317         if (!strncmp(str, "old_map", 7))
1318                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1319
1320         return 0;
1321 }
1322 early_param("efi", parse_efi_cmdline);
1323
1324 void __init efi_apply_memmap_quirks(void)
1325 {
1326         /*
1327          * Once setup is done earlier, unmap the EFI memory map on mismatched
1328          * firmware/kernel architectures since there is no support for runtime
1329          * services.
1330          */
1331         if (!efi_runtime_supported()) {
1332                 pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n");
1333                 efi_unmap_memmap();
1334         }
1335
1336         /*
1337          * UV doesn't support the new EFI pagetable mapping yet.
1338          */
1339         if (is_uv_system())
1340                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1341 }