]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi_64.c
Merge tag 'xfs-4.12-fixes-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[karo-tx-linux.git] / arch / x86 / platform / efi / efi_64.c
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *      Fenghua Yu <fenghua.yu@intel.com>
7  *      Bibo Mao <bibo.mao@intel.com>
8  *      Chandramouli Narayanan <mouli@linux.intel.com>
9  *      Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17
18 #define pr_fmt(fmt) "efi: " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820/api.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48
49 /*
50  * We allocate runtime services regions top-down, starting from -4G, i.e.
51  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52  */
53 static u64 efi_va = EFI_VA_START;
54
55 struct efi_scratch efi_scratch;
56
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59         efi_memory_desc_t *md;
60
61         if (!(__supported_pte_mask & _PAGE_NX))
62                 return;
63
64         /* Make EFI service code area executable */
65         for_each_efi_memory_desc(md) {
66                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67                     md->type == EFI_BOOT_SERVICES_CODE)
68                         efi_set_executable(md, executable);
69         }
70 }
71
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74         unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
75         pgd_t *save_pgd, *pgd_k, *pgd_efi;
76         p4d_t *p4d, *p4d_k, *p4d_efi;
77         pud_t *pud;
78
79         int pgd;
80         int n_pgds, i, j;
81
82         if (!efi_enabled(EFI_OLD_MEMMAP)) {
83                 save_pgd = (pgd_t *)read_cr3();
84                 write_cr3((unsigned long)efi_scratch.efi_pgt);
85                 goto out;
86         }
87
88         early_code_mapping_set_exec(1);
89
90         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
91         save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
92
93         /*
94          * Build 1:1 identity mapping for efi=old_map usage. Note that
95          * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
96          * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
97          * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
98          * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
99          * This means here we can only reuse the PMD tables of the direct mapping.
100          */
101         for (pgd = 0; pgd < n_pgds; pgd++) {
102                 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
103                 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
104                 pgd_efi = pgd_offset_k(addr_pgd);
105                 save_pgd[pgd] = *pgd_efi;
106
107                 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
108                 if (!p4d) {
109                         pr_err("Failed to allocate p4d table!\n");
110                         goto out;
111                 }
112
113                 for (i = 0; i < PTRS_PER_P4D; i++) {
114                         addr_p4d = addr_pgd + i * P4D_SIZE;
115                         p4d_efi = p4d + p4d_index(addr_p4d);
116
117                         pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
118                         if (!pud) {
119                                 pr_err("Failed to allocate pud table!\n");
120                                 goto out;
121                         }
122
123                         for (j = 0; j < PTRS_PER_PUD; j++) {
124                                 addr_pud = addr_p4d + j * PUD_SIZE;
125
126                                 if (addr_pud > (max_pfn << PAGE_SHIFT))
127                                         break;
128
129                                 vaddr = (unsigned long)__va(addr_pud);
130
131                                 pgd_k = pgd_offset_k(vaddr);
132                                 p4d_k = p4d_offset(pgd_k, vaddr);
133                                 pud[j] = *pud_offset(p4d_k, vaddr);
134                         }
135                 }
136         }
137 out:
138         __flush_tlb_all();
139
140         return save_pgd;
141 }
142
143 void __init efi_call_phys_epilog(pgd_t *save_pgd)
144 {
145         /*
146          * After the lock is released, the original page table is restored.
147          */
148         int pgd_idx, i;
149         int nr_pgds;
150         pgd_t *pgd;
151         p4d_t *p4d;
152         pud_t *pud;
153
154         if (!efi_enabled(EFI_OLD_MEMMAP)) {
155                 write_cr3((unsigned long)save_pgd);
156                 __flush_tlb_all();
157                 return;
158         }
159
160         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
161
162         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
163                 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
164                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
165
166                 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
167                         continue;
168
169                 for (i = 0; i < PTRS_PER_P4D; i++) {
170                         p4d = p4d_offset(pgd,
171                                          pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
172
173                         if (!(p4d_val(*p4d) & _PAGE_PRESENT))
174                                 continue;
175
176                         pud = (pud_t *)p4d_page_vaddr(*p4d);
177                         pud_free(&init_mm, pud);
178                 }
179
180                 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
181                 p4d_free(&init_mm, p4d);
182         }
183
184         kfree(save_pgd);
185
186         __flush_tlb_all();
187         early_code_mapping_set_exec(0);
188 }
189
190 static pgd_t *efi_pgd;
191
192 /*
193  * We need our own copy of the higher levels of the page tables
194  * because we want to avoid inserting EFI region mappings (EFI_VA_END
195  * to EFI_VA_START) into the standard kernel page tables. Everything
196  * else can be shared, see efi_sync_low_kernel_mappings().
197  */
198 int __init efi_alloc_page_tables(void)
199 {
200         pgd_t *pgd;
201         p4d_t *p4d;
202         pud_t *pud;
203         gfp_t gfp_mask;
204
205         if (efi_enabled(EFI_OLD_MEMMAP))
206                 return 0;
207
208         gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
209         efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
210         if (!efi_pgd)
211                 return -ENOMEM;
212
213         pgd = efi_pgd + pgd_index(EFI_VA_END);
214         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
215         if (!p4d) {
216                 free_page((unsigned long)efi_pgd);
217                 return -ENOMEM;
218         }
219
220         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
221         if (!pud) {
222                 if (CONFIG_PGTABLE_LEVELS > 4)
223                         free_page((unsigned long) pgd_page_vaddr(*pgd));
224                 free_page((unsigned long)efi_pgd);
225                 return -ENOMEM;
226         }
227
228         return 0;
229 }
230
231 /*
232  * Add low kernel mappings for passing arguments to EFI functions.
233  */
234 void efi_sync_low_kernel_mappings(void)
235 {
236         unsigned num_entries;
237         pgd_t *pgd_k, *pgd_efi;
238         p4d_t *p4d_k, *p4d_efi;
239         pud_t *pud_k, *pud_efi;
240
241         if (efi_enabled(EFI_OLD_MEMMAP))
242                 return;
243
244         /*
245          * We can share all PGD entries apart from the one entry that
246          * covers the EFI runtime mapping space.
247          *
248          * Make sure the EFI runtime region mappings are guaranteed to
249          * only span a single PGD entry and that the entry also maps
250          * other important kernel regions.
251          */
252         BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
253         BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
254                         (EFI_VA_END & PGDIR_MASK));
255
256         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
257         pgd_k = pgd_offset_k(PAGE_OFFSET);
258
259         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
260         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
261
262         /*
263          * As with PGDs, we share all P4D entries apart from the one entry
264          * that covers the EFI runtime mapping space.
265          */
266         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
267         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
268
269         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
270         pgd_k = pgd_offset_k(EFI_VA_END);
271         p4d_efi = p4d_offset(pgd_efi, 0);
272         p4d_k = p4d_offset(pgd_k, 0);
273
274         num_entries = p4d_index(EFI_VA_END);
275         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
276
277         /*
278          * We share all the PUD entries apart from those that map the
279          * EFI regions. Copy around them.
280          */
281         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
282         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
283
284         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
285         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
286         pud_efi = pud_offset(p4d_efi, 0);
287         pud_k = pud_offset(p4d_k, 0);
288
289         num_entries = pud_index(EFI_VA_END);
290         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
291
292         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
293         pud_k = pud_offset(p4d_k, EFI_VA_START);
294
295         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
296         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
297 }
298
299 /*
300  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
301  */
302 static inline phys_addr_t
303 virt_to_phys_or_null_size(void *va, unsigned long size)
304 {
305         bool bad_size;
306
307         if (!va)
308                 return 0;
309
310         if (virt_addr_valid(va))
311                 return virt_to_phys(va);
312
313         /*
314          * A fully aligned variable on the stack is guaranteed not to
315          * cross a page bounary. Try to catch strings on the stack by
316          * checking that 'size' is a power of two.
317          */
318         bad_size = size > PAGE_SIZE || !is_power_of_2(size);
319
320         WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
321
322         return slow_virt_to_phys(va);
323 }
324
325 #define virt_to_phys_or_null(addr)                              \
326         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
327
328 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
329 {
330         unsigned long pfn, text;
331         struct page *page;
332         unsigned npages;
333         pgd_t *pgd;
334
335         if (efi_enabled(EFI_OLD_MEMMAP))
336                 return 0;
337
338         efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
339         pgd = efi_pgd;
340
341         /*
342          * It can happen that the physical address of new_memmap lands in memory
343          * which is not mapped in the EFI page table. Therefore we need to go
344          * and ident-map those pages containing the map before calling
345          * phys_efi_set_virtual_address_map().
346          */
347         pfn = pa_memmap >> PAGE_SHIFT;
348         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
349                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
350                 return 1;
351         }
352
353         efi_scratch.use_pgd = true;
354
355         /*
356          * Certain firmware versions are way too sentimential and still believe
357          * they are exclusive and unquestionable owners of the first physical page,
358          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
359          * (but then write-access it later during SetVirtualAddressMap()).
360          *
361          * Create a 1:1 mapping for this page, to avoid triple faults during early
362          * boot with such firmware. We are free to hand this page to the BIOS,
363          * as trim_bios_range() will reserve the first page and isolate it away
364          * from memory allocators anyway.
365          */
366         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
367                 pr_err("Failed to create 1:1 mapping for the first page!\n");
368                 return 1;
369         }
370
371         /*
372          * When making calls to the firmware everything needs to be 1:1
373          * mapped and addressable with 32-bit pointers. Map the kernel
374          * text and allocate a new stack because we can't rely on the
375          * stack pointer being < 4GB.
376          */
377         if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
378                 return 0;
379
380         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
381         if (!page)
382                 panic("Unable to allocate EFI runtime stack < 4GB\n");
383
384         efi_scratch.phys_stack = virt_to_phys(page_address(page));
385         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
386
387         npages = (_etext - _text) >> PAGE_SHIFT;
388         text = __pa(_text);
389         pfn = text >> PAGE_SHIFT;
390
391         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
392                 pr_err("Failed to map kernel text 1:1\n");
393                 return 1;
394         }
395
396         return 0;
397 }
398
399 static void __init __map_region(efi_memory_desc_t *md, u64 va)
400 {
401         unsigned long flags = _PAGE_RW;
402         unsigned long pfn;
403         pgd_t *pgd = efi_pgd;
404
405         if (!(md->attribute & EFI_MEMORY_WB))
406                 flags |= _PAGE_PCD;
407
408         pfn = md->phys_addr >> PAGE_SHIFT;
409         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
410                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
411                            md->phys_addr, va);
412 }
413
414 void __init efi_map_region(efi_memory_desc_t *md)
415 {
416         unsigned long size = md->num_pages << PAGE_SHIFT;
417         u64 pa = md->phys_addr;
418
419         if (efi_enabled(EFI_OLD_MEMMAP))
420                 return old_map_region(md);
421
422         /*
423          * Make sure the 1:1 mappings are present as a catch-all for b0rked
424          * firmware which doesn't update all internal pointers after switching
425          * to virtual mode and would otherwise crap on us.
426          */
427         __map_region(md, md->phys_addr);
428
429         /*
430          * Enforce the 1:1 mapping as the default virtual address when
431          * booting in EFI mixed mode, because even though we may be
432          * running a 64-bit kernel, the firmware may only be 32-bit.
433          */
434         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
435                 md->virt_addr = md->phys_addr;
436                 return;
437         }
438
439         efi_va -= size;
440
441         /* Is PA 2M-aligned? */
442         if (!(pa & (PMD_SIZE - 1))) {
443                 efi_va &= PMD_MASK;
444         } else {
445                 u64 pa_offset = pa & (PMD_SIZE - 1);
446                 u64 prev_va = efi_va;
447
448                 /* get us the same offset within this 2M page */
449                 efi_va = (efi_va & PMD_MASK) + pa_offset;
450
451                 if (efi_va > prev_va)
452                         efi_va -= PMD_SIZE;
453         }
454
455         if (efi_va < EFI_VA_END) {
456                 pr_warn(FW_WARN "VA address range overflow!\n");
457                 return;
458         }
459
460         /* Do the VA map */
461         __map_region(md, efi_va);
462         md->virt_addr = efi_va;
463 }
464
465 /*
466  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
467  * md->virt_addr is the original virtual address which had been mapped in kexec
468  * 1st kernel.
469  */
470 void __init efi_map_region_fixed(efi_memory_desc_t *md)
471 {
472         __map_region(md, md->phys_addr);
473         __map_region(md, md->virt_addr);
474 }
475
476 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
477                                  u32 type, u64 attribute)
478 {
479         unsigned long last_map_pfn;
480
481         if (type == EFI_MEMORY_MAPPED_IO)
482                 return ioremap(phys_addr, size);
483
484         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
485         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
486                 unsigned long top = last_map_pfn << PAGE_SHIFT;
487                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
488         }
489
490         if (!(attribute & EFI_MEMORY_WB))
491                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
492
493         return (void __iomem *)__va(phys_addr);
494 }
495
496 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
497 {
498         efi_setup = phys_addr + sizeof(struct setup_data);
499 }
500
501 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
502 {
503         unsigned long pfn;
504         pgd_t *pgd = efi_pgd;
505         int err1, err2;
506
507         /* Update the 1:1 mapping */
508         pfn = md->phys_addr >> PAGE_SHIFT;
509         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
510         if (err1) {
511                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
512                            md->phys_addr, md->virt_addr);
513         }
514
515         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
516         if (err2) {
517                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
518                            md->phys_addr, md->virt_addr);
519         }
520
521         return err1 || err2;
522 }
523
524 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
525 {
526         unsigned long pf = 0;
527
528         if (md->attribute & EFI_MEMORY_XP)
529                 pf |= _PAGE_NX;
530
531         if (!(md->attribute & EFI_MEMORY_RO))
532                 pf |= _PAGE_RW;
533
534         return efi_update_mappings(md, pf);
535 }
536
537 void __init efi_runtime_update_mappings(void)
538 {
539         efi_memory_desc_t *md;
540
541         if (efi_enabled(EFI_OLD_MEMMAP)) {
542                 if (__supported_pte_mask & _PAGE_NX)
543                         runtime_code_page_mkexec();
544                 return;
545         }
546
547         /*
548          * Use the EFI Memory Attribute Table for mapping permissions if it
549          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
550          */
551         if (efi_enabled(EFI_MEM_ATTR)) {
552                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
553                 return;
554         }
555
556         /*
557          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
558          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
559          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
560          * published by the firmware. Even if we find a buggy implementation of
561          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
562          * EFI_PROPERTIES_TABLE, because of the same reason.
563          */
564
565         if (!efi_enabled(EFI_NX_PE_DATA))
566                 return;
567
568         for_each_efi_memory_desc(md) {
569                 unsigned long pf = 0;
570
571                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
572                         continue;
573
574                 if (!(md->attribute & EFI_MEMORY_WB))
575                         pf |= _PAGE_PCD;
576
577                 if ((md->attribute & EFI_MEMORY_XP) ||
578                         (md->type == EFI_RUNTIME_SERVICES_DATA))
579                         pf |= _PAGE_NX;
580
581                 if (!(md->attribute & EFI_MEMORY_RO) &&
582                         (md->type != EFI_RUNTIME_SERVICES_CODE))
583                         pf |= _PAGE_RW;
584
585                 efi_update_mappings(md, pf);
586         }
587 }
588
589 void __init efi_dump_pagetable(void)
590 {
591 #ifdef CONFIG_EFI_PGT_DUMP
592         ptdump_walk_pgd_level(NULL, efi_pgd);
593 #endif
594 }
595
596 #ifdef CONFIG_EFI_MIXED
597 extern efi_status_t efi64_thunk(u32, ...);
598
599 #define runtime_service32(func)                                          \
600 ({                                                                       \
601         u32 table = (u32)(unsigned long)efi.systab;                      \
602         u32 *rt, *___f;                                                  \
603                                                                          \
604         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
605         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
606         *___f;                                                           \
607 })
608
609 /*
610  * Switch to the EFI page tables early so that we can access the 1:1
611  * runtime services mappings which are not mapped in any other page
612  * tables. This function must be called before runtime_service32().
613  *
614  * Also, disable interrupts because the IDT points to 64-bit handlers,
615  * which aren't going to function correctly when we switch to 32-bit.
616  */
617 #define efi_thunk(f, ...)                                               \
618 ({                                                                      \
619         efi_status_t __s;                                               \
620         unsigned long __flags;                                          \
621         u32 __func;                                                     \
622                                                                         \
623         local_irq_save(__flags);                                        \
624         arch_efi_call_virt_setup();                                     \
625                                                                         \
626         __func = runtime_service32(f);                                  \
627         __s = efi64_thunk(__func, __VA_ARGS__);                         \
628                                                                         \
629         arch_efi_call_virt_teardown();                                  \
630         local_irq_restore(__flags);                                     \
631                                                                         \
632         __s;                                                            \
633 })
634
635 efi_status_t efi_thunk_set_virtual_address_map(
636         void *phys_set_virtual_address_map,
637         unsigned long memory_map_size,
638         unsigned long descriptor_size,
639         u32 descriptor_version,
640         efi_memory_desc_t *virtual_map)
641 {
642         efi_status_t status;
643         unsigned long flags;
644         u32 func;
645
646         efi_sync_low_kernel_mappings();
647         local_irq_save(flags);
648
649         efi_scratch.prev_cr3 = read_cr3();
650         write_cr3((unsigned long)efi_scratch.efi_pgt);
651         __flush_tlb_all();
652
653         func = (u32)(unsigned long)phys_set_virtual_address_map;
654         status = efi64_thunk(func, memory_map_size, descriptor_size,
655                              descriptor_version, virtual_map);
656
657         write_cr3(efi_scratch.prev_cr3);
658         __flush_tlb_all();
659         local_irq_restore(flags);
660
661         return status;
662 }
663
664 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
665 {
666         efi_status_t status;
667         u32 phys_tm, phys_tc;
668
669         spin_lock(&rtc_lock);
670
671         phys_tm = virt_to_phys_or_null(tm);
672         phys_tc = virt_to_phys_or_null(tc);
673
674         status = efi_thunk(get_time, phys_tm, phys_tc);
675
676         spin_unlock(&rtc_lock);
677
678         return status;
679 }
680
681 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
682 {
683         efi_status_t status;
684         u32 phys_tm;
685
686         spin_lock(&rtc_lock);
687
688         phys_tm = virt_to_phys_or_null(tm);
689
690         status = efi_thunk(set_time, phys_tm);
691
692         spin_unlock(&rtc_lock);
693
694         return status;
695 }
696
697 static efi_status_t
698 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
699                           efi_time_t *tm)
700 {
701         efi_status_t status;
702         u32 phys_enabled, phys_pending, phys_tm;
703
704         spin_lock(&rtc_lock);
705
706         phys_enabled = virt_to_phys_or_null(enabled);
707         phys_pending = virt_to_phys_or_null(pending);
708         phys_tm = virt_to_phys_or_null(tm);
709
710         status = efi_thunk(get_wakeup_time, phys_enabled,
711                              phys_pending, phys_tm);
712
713         spin_unlock(&rtc_lock);
714
715         return status;
716 }
717
718 static efi_status_t
719 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
720 {
721         efi_status_t status;
722         u32 phys_tm;
723
724         spin_lock(&rtc_lock);
725
726         phys_tm = virt_to_phys_or_null(tm);
727
728         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
729
730         spin_unlock(&rtc_lock);
731
732         return status;
733 }
734
735 static unsigned long efi_name_size(efi_char16_t *name)
736 {
737         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
738 }
739
740 static efi_status_t
741 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
742                        u32 *attr, unsigned long *data_size, void *data)
743 {
744         efi_status_t status;
745         u32 phys_name, phys_vendor, phys_attr;
746         u32 phys_data_size, phys_data;
747
748         phys_data_size = virt_to_phys_or_null(data_size);
749         phys_vendor = virt_to_phys_or_null(vendor);
750         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
751         phys_attr = virt_to_phys_or_null(attr);
752         phys_data = virt_to_phys_or_null_size(data, *data_size);
753
754         status = efi_thunk(get_variable, phys_name, phys_vendor,
755                            phys_attr, phys_data_size, phys_data);
756
757         return status;
758 }
759
760 static efi_status_t
761 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
762                        u32 attr, unsigned long data_size, void *data)
763 {
764         u32 phys_name, phys_vendor, phys_data;
765         efi_status_t status;
766
767         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
768         phys_vendor = virt_to_phys_or_null(vendor);
769         phys_data = virt_to_phys_or_null_size(data, data_size);
770
771         /* If data_size is > sizeof(u32) we've got problems */
772         status = efi_thunk(set_variable, phys_name, phys_vendor,
773                            attr, data_size, phys_data);
774
775         return status;
776 }
777
778 static efi_status_t
779 efi_thunk_get_next_variable(unsigned long *name_size,
780                             efi_char16_t *name,
781                             efi_guid_t *vendor)
782 {
783         efi_status_t status;
784         u32 phys_name_size, phys_name, phys_vendor;
785
786         phys_name_size = virt_to_phys_or_null(name_size);
787         phys_vendor = virt_to_phys_or_null(vendor);
788         phys_name = virt_to_phys_or_null_size(name, *name_size);
789
790         status = efi_thunk(get_next_variable, phys_name_size,
791                            phys_name, phys_vendor);
792
793         return status;
794 }
795
796 static efi_status_t
797 efi_thunk_get_next_high_mono_count(u32 *count)
798 {
799         efi_status_t status;
800         u32 phys_count;
801
802         phys_count = virt_to_phys_or_null(count);
803         status = efi_thunk(get_next_high_mono_count, phys_count);
804
805         return status;
806 }
807
808 static void
809 efi_thunk_reset_system(int reset_type, efi_status_t status,
810                        unsigned long data_size, efi_char16_t *data)
811 {
812         u32 phys_data;
813
814         phys_data = virt_to_phys_or_null_size(data, data_size);
815
816         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
817 }
818
819 static efi_status_t
820 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
821                          unsigned long count, unsigned long sg_list)
822 {
823         /*
824          * To properly support this function we would need to repackage
825          * 'capsules' because the firmware doesn't understand 64-bit
826          * pointers.
827          */
828         return EFI_UNSUPPORTED;
829 }
830
831 static efi_status_t
832 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
833                               u64 *remaining_space,
834                               u64 *max_variable_size)
835 {
836         efi_status_t status;
837         u32 phys_storage, phys_remaining, phys_max;
838
839         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
840                 return EFI_UNSUPPORTED;
841
842         phys_storage = virt_to_phys_or_null(storage_space);
843         phys_remaining = virt_to_phys_or_null(remaining_space);
844         phys_max = virt_to_phys_or_null(max_variable_size);
845
846         status = efi_thunk(query_variable_info, attr, phys_storage,
847                            phys_remaining, phys_max);
848
849         return status;
850 }
851
852 static efi_status_t
853 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
854                              unsigned long count, u64 *max_size,
855                              int *reset_type)
856 {
857         /*
858          * To properly support this function we would need to repackage
859          * 'capsules' because the firmware doesn't understand 64-bit
860          * pointers.
861          */
862         return EFI_UNSUPPORTED;
863 }
864
865 void efi_thunk_runtime_setup(void)
866 {
867         efi.get_time = efi_thunk_get_time;
868         efi.set_time = efi_thunk_set_time;
869         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
870         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
871         efi.get_variable = efi_thunk_get_variable;
872         efi.get_next_variable = efi_thunk_get_next_variable;
873         efi.set_variable = efi_thunk_set_variable;
874         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
875         efi.reset_system = efi_thunk_reset_system;
876         efi.query_variable_info = efi_thunk_query_variable_info;
877         efi.update_capsule = efi_thunk_update_capsule;
878         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
879 }
880 #endif /* CONFIG_EFI_MIXED */