]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/enlighten.c
xen/setup: filter APERFMPERF cpuid feature out
[karo-tx-linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/pci_x86.h>
66
67 #include "xen-ops.h"
68 #include "mmu.h"
69 #include "multicalls.h"
70
71 EXPORT_SYMBOL_GPL(hypercall_page);
72
73 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
74 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
75
76 enum xen_domain_type xen_domain_type = XEN_NATIVE;
77 EXPORT_SYMBOL_GPL(xen_domain_type);
78
79 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
80 EXPORT_SYMBOL(machine_to_phys_mapping);
81 unsigned long  machine_to_phys_nr;
82 EXPORT_SYMBOL(machine_to_phys_nr);
83
84 struct start_info *xen_start_info;
85 EXPORT_SYMBOL_GPL(xen_start_info);
86
87 struct shared_info xen_dummy_shared_info;
88
89 void *xen_initial_gdt;
90
91 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
92 __read_mostly int xen_have_vector_callback;
93 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
94
95 /*
96  * Point at some empty memory to start with. We map the real shared_info
97  * page as soon as fixmap is up and running.
98  */
99 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
100
101 /*
102  * Flag to determine whether vcpu info placement is available on all
103  * VCPUs.  We assume it is to start with, and then set it to zero on
104  * the first failure.  This is because it can succeed on some VCPUs
105  * and not others, since it can involve hypervisor memory allocation,
106  * or because the guest failed to guarantee all the appropriate
107  * constraints on all VCPUs (ie buffer can't cross a page boundary).
108  *
109  * Note that any particular CPU may be using a placed vcpu structure,
110  * but we can only optimise if the all are.
111  *
112  * 0: not available, 1: available
113  */
114 static int have_vcpu_info_placement = 1;
115
116 static void clamp_max_cpus(void)
117 {
118 #ifdef CONFIG_SMP
119         if (setup_max_cpus > MAX_VIRT_CPUS)
120                 setup_max_cpus = MAX_VIRT_CPUS;
121 #endif
122 }
123
124 static void xen_vcpu_setup(int cpu)
125 {
126         struct vcpu_register_vcpu_info info;
127         int err;
128         struct vcpu_info *vcpup;
129
130         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
131
132         if (cpu < MAX_VIRT_CPUS)
133                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
134
135         if (!have_vcpu_info_placement) {
136                 if (cpu >= MAX_VIRT_CPUS)
137                         clamp_max_cpus();
138                 return;
139         }
140
141         vcpup = &per_cpu(xen_vcpu_info, cpu);
142         info.mfn = arbitrary_virt_to_mfn(vcpup);
143         info.offset = offset_in_page(vcpup);
144
145         /* Check to see if the hypervisor will put the vcpu_info
146            structure where we want it, which allows direct access via
147            a percpu-variable. */
148         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
149
150         if (err) {
151                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
152                 have_vcpu_info_placement = 0;
153                 clamp_max_cpus();
154         } else {
155                 /* This cpu is using the registered vcpu info, even if
156                    later ones fail to. */
157                 per_cpu(xen_vcpu, cpu) = vcpup;
158         }
159 }
160
161 /*
162  * On restore, set the vcpu placement up again.
163  * If it fails, then we're in a bad state, since
164  * we can't back out from using it...
165  */
166 void xen_vcpu_restore(void)
167 {
168         int cpu;
169
170         for_each_online_cpu(cpu) {
171                 bool other_cpu = (cpu != smp_processor_id());
172
173                 if (other_cpu &&
174                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
175                         BUG();
176
177                 xen_setup_runstate_info(cpu);
178
179                 if (have_vcpu_info_placement)
180                         xen_vcpu_setup(cpu);
181
182                 if (other_cpu &&
183                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184                         BUG();
185         }
186 }
187
188 static void __init xen_banner(void)
189 {
190         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
191         struct xen_extraversion extra;
192         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
193
194         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
195                pv_info.name);
196         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
197                version >> 16, version & 0xffff, extra.extraversion,
198                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
199 }
200
201 #define CPUID_THERM_POWER_LEAF 6
202 #define APERFMPERF_PRESENT 0
203
204 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
205 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
206
207 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
208                       unsigned int *cx, unsigned int *dx)
209 {
210         unsigned maskebx = ~0;
211         unsigned maskecx = ~0;
212         unsigned maskedx = ~0;
213
214         /*
215          * Mask out inconvenient features, to try and disable as many
216          * unsupported kernel subsystems as possible.
217          */
218         switch (*ax) {
219         case 1:
220                 maskecx = cpuid_leaf1_ecx_mask;
221                 maskedx = cpuid_leaf1_edx_mask;
222                 break;
223
224         case CPUID_THERM_POWER_LEAF:
225                 /* Disabling APERFMPERF for kernel usage */
226                 maskecx = ~(1 << APERFMPERF_PRESENT);
227                 break;
228
229         case 0xb:
230                 /* Suppress extended topology stuff */
231                 maskebx = 0;
232                 break;
233         }
234
235         asm(XEN_EMULATE_PREFIX "cpuid"
236                 : "=a" (*ax),
237                   "=b" (*bx),
238                   "=c" (*cx),
239                   "=d" (*dx)
240                 : "0" (*ax), "2" (*cx));
241
242         *bx &= maskebx;
243         *cx &= maskecx;
244         *dx &= maskedx;
245 }
246
247 static void __init xen_init_cpuid_mask(void)
248 {
249         unsigned int ax, bx, cx, dx;
250         unsigned int xsave_mask;
251
252         cpuid_leaf1_edx_mask =
253                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
254                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
255                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
256                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
257
258         if (!xen_initial_domain())
259                 cpuid_leaf1_edx_mask &=
260                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
261                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
262         ax = 1;
263         xen_cpuid(&ax, &bx, &cx, &dx);
264
265         xsave_mask =
266                 (1 << (X86_FEATURE_XSAVE % 32)) |
267                 (1 << (X86_FEATURE_OSXSAVE % 32));
268
269         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
270         if ((cx & xsave_mask) != xsave_mask)
271                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
272 }
273
274 static void xen_set_debugreg(int reg, unsigned long val)
275 {
276         HYPERVISOR_set_debugreg(reg, val);
277 }
278
279 static unsigned long xen_get_debugreg(int reg)
280 {
281         return HYPERVISOR_get_debugreg(reg);
282 }
283
284 static void xen_end_context_switch(struct task_struct *next)
285 {
286         xen_mc_flush();
287         paravirt_end_context_switch(next);
288 }
289
290 static unsigned long xen_store_tr(void)
291 {
292         return 0;
293 }
294
295 /*
296  * Set the page permissions for a particular virtual address.  If the
297  * address is a vmalloc mapping (or other non-linear mapping), then
298  * find the linear mapping of the page and also set its protections to
299  * match.
300  */
301 static void set_aliased_prot(void *v, pgprot_t prot)
302 {
303         int level;
304         pte_t *ptep;
305         pte_t pte;
306         unsigned long pfn;
307         struct page *page;
308
309         ptep = lookup_address((unsigned long)v, &level);
310         BUG_ON(ptep == NULL);
311
312         pfn = pte_pfn(*ptep);
313         page = pfn_to_page(pfn);
314
315         pte = pfn_pte(pfn, prot);
316
317         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
318                 BUG();
319
320         if (!PageHighMem(page)) {
321                 void *av = __va(PFN_PHYS(pfn));
322
323                 if (av != v)
324                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
325                                 BUG();
326         } else
327                 kmap_flush_unused();
328 }
329
330 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
331 {
332         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
333         int i;
334
335         for(i = 0; i < entries; i += entries_per_page)
336                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
337 }
338
339 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
340 {
341         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
342         int i;
343
344         for(i = 0; i < entries; i += entries_per_page)
345                 set_aliased_prot(ldt + i, PAGE_KERNEL);
346 }
347
348 static void xen_set_ldt(const void *addr, unsigned entries)
349 {
350         struct mmuext_op *op;
351         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
352
353         op = mcs.args;
354         op->cmd = MMUEXT_SET_LDT;
355         op->arg1.linear_addr = (unsigned long)addr;
356         op->arg2.nr_ents = entries;
357
358         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
359
360         xen_mc_issue(PARAVIRT_LAZY_CPU);
361 }
362
363 static void xen_load_gdt(const struct desc_ptr *dtr)
364 {
365         unsigned long va = dtr->address;
366         unsigned int size = dtr->size + 1;
367         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
368         unsigned long frames[pages];
369         int f;
370
371         /*
372          * A GDT can be up to 64k in size, which corresponds to 8192
373          * 8-byte entries, or 16 4k pages..
374          */
375
376         BUG_ON(size > 65536);
377         BUG_ON(va & ~PAGE_MASK);
378
379         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
380                 int level;
381                 pte_t *ptep;
382                 unsigned long pfn, mfn;
383                 void *virt;
384
385                 /*
386                  * The GDT is per-cpu and is in the percpu data area.
387                  * That can be virtually mapped, so we need to do a
388                  * page-walk to get the underlying MFN for the
389                  * hypercall.  The page can also be in the kernel's
390                  * linear range, so we need to RO that mapping too.
391                  */
392                 ptep = lookup_address(va, &level);
393                 BUG_ON(ptep == NULL);
394
395                 pfn = pte_pfn(*ptep);
396                 mfn = pfn_to_mfn(pfn);
397                 virt = __va(PFN_PHYS(pfn));
398
399                 frames[f] = mfn;
400
401                 make_lowmem_page_readonly((void *)va);
402                 make_lowmem_page_readonly(virt);
403         }
404
405         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
406                 BUG();
407 }
408
409 /*
410  * load_gdt for early boot, when the gdt is only mapped once
411  */
412 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
413 {
414         unsigned long va = dtr->address;
415         unsigned int size = dtr->size + 1;
416         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
417         unsigned long frames[pages];
418         int f;
419
420         /*
421          * A GDT can be up to 64k in size, which corresponds to 8192
422          * 8-byte entries, or 16 4k pages..
423          */
424
425         BUG_ON(size > 65536);
426         BUG_ON(va & ~PAGE_MASK);
427
428         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
429                 pte_t pte;
430                 unsigned long pfn, mfn;
431
432                 pfn = virt_to_pfn(va);
433                 mfn = pfn_to_mfn(pfn);
434
435                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
436
437                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
438                         BUG();
439
440                 frames[f] = mfn;
441         }
442
443         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
444                 BUG();
445 }
446
447 static void load_TLS_descriptor(struct thread_struct *t,
448                                 unsigned int cpu, unsigned int i)
449 {
450         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
451         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
452         struct multicall_space mc = __xen_mc_entry(0);
453
454         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
455 }
456
457 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
458 {
459         /*
460          * XXX sleazy hack: If we're being called in a lazy-cpu zone
461          * and lazy gs handling is enabled, it means we're in a
462          * context switch, and %gs has just been saved.  This means we
463          * can zero it out to prevent faults on exit from the
464          * hypervisor if the next process has no %gs.  Either way, it
465          * has been saved, and the new value will get loaded properly.
466          * This will go away as soon as Xen has been modified to not
467          * save/restore %gs for normal hypercalls.
468          *
469          * On x86_64, this hack is not used for %gs, because gs points
470          * to KERNEL_GS_BASE (and uses it for PDA references), so we
471          * must not zero %gs on x86_64
472          *
473          * For x86_64, we need to zero %fs, otherwise we may get an
474          * exception between the new %fs descriptor being loaded and
475          * %fs being effectively cleared at __switch_to().
476          */
477         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
478 #ifdef CONFIG_X86_32
479                 lazy_load_gs(0);
480 #else
481                 loadsegment(fs, 0);
482 #endif
483         }
484
485         xen_mc_batch();
486
487         load_TLS_descriptor(t, cpu, 0);
488         load_TLS_descriptor(t, cpu, 1);
489         load_TLS_descriptor(t, cpu, 2);
490
491         xen_mc_issue(PARAVIRT_LAZY_CPU);
492 }
493
494 #ifdef CONFIG_X86_64
495 static void xen_load_gs_index(unsigned int idx)
496 {
497         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
498                 BUG();
499 }
500 #endif
501
502 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
503                                 const void *ptr)
504 {
505         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
506         u64 entry = *(u64 *)ptr;
507
508         preempt_disable();
509
510         xen_mc_flush();
511         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
512                 BUG();
513
514         preempt_enable();
515 }
516
517 static int cvt_gate_to_trap(int vector, const gate_desc *val,
518                             struct trap_info *info)
519 {
520         unsigned long addr;
521
522         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
523                 return 0;
524
525         info->vector = vector;
526
527         addr = gate_offset(*val);
528 #ifdef CONFIG_X86_64
529         /*
530          * Look for known traps using IST, and substitute them
531          * appropriately.  The debugger ones are the only ones we care
532          * about.  Xen will handle faults like double_fault and
533          * machine_check, so we should never see them.  Warn if
534          * there's an unexpected IST-using fault handler.
535          */
536         if (addr == (unsigned long)debug)
537                 addr = (unsigned long)xen_debug;
538         else if (addr == (unsigned long)int3)
539                 addr = (unsigned long)xen_int3;
540         else if (addr == (unsigned long)stack_segment)
541                 addr = (unsigned long)xen_stack_segment;
542         else if (addr == (unsigned long)double_fault ||
543                  addr == (unsigned long)nmi) {
544                 /* Don't need to handle these */
545                 return 0;
546 #ifdef CONFIG_X86_MCE
547         } else if (addr == (unsigned long)machine_check) {
548                 return 0;
549 #endif
550         } else {
551                 /* Some other trap using IST? */
552                 if (WARN_ON(val->ist != 0))
553                         return 0;
554         }
555 #endif  /* CONFIG_X86_64 */
556         info->address = addr;
557
558         info->cs = gate_segment(*val);
559         info->flags = val->dpl;
560         /* interrupt gates clear IF */
561         if (val->type == GATE_INTERRUPT)
562                 info->flags |= 1 << 2;
563
564         return 1;
565 }
566
567 /* Locations of each CPU's IDT */
568 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
569
570 /* Set an IDT entry.  If the entry is part of the current IDT, then
571    also update Xen. */
572 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
573 {
574         unsigned long p = (unsigned long)&dt[entrynum];
575         unsigned long start, end;
576
577         preempt_disable();
578
579         start = __this_cpu_read(idt_desc.address);
580         end = start + __this_cpu_read(idt_desc.size) + 1;
581
582         xen_mc_flush();
583
584         native_write_idt_entry(dt, entrynum, g);
585
586         if (p >= start && (p + 8) <= end) {
587                 struct trap_info info[2];
588
589                 info[1].address = 0;
590
591                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
592                         if (HYPERVISOR_set_trap_table(info))
593                                 BUG();
594         }
595
596         preempt_enable();
597 }
598
599 static void xen_convert_trap_info(const struct desc_ptr *desc,
600                                   struct trap_info *traps)
601 {
602         unsigned in, out, count;
603
604         count = (desc->size+1) / sizeof(gate_desc);
605         BUG_ON(count > 256);
606
607         for (in = out = 0; in < count; in++) {
608                 gate_desc *entry = (gate_desc*)(desc->address) + in;
609
610                 if (cvt_gate_to_trap(in, entry, &traps[out]))
611                         out++;
612         }
613         traps[out].address = 0;
614 }
615
616 void xen_copy_trap_info(struct trap_info *traps)
617 {
618         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
619
620         xen_convert_trap_info(desc, traps);
621 }
622
623 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
624    hold a spinlock to protect the static traps[] array (static because
625    it avoids allocation, and saves stack space). */
626 static void xen_load_idt(const struct desc_ptr *desc)
627 {
628         static DEFINE_SPINLOCK(lock);
629         static struct trap_info traps[257];
630
631         spin_lock(&lock);
632
633         __get_cpu_var(idt_desc) = *desc;
634
635         xen_convert_trap_info(desc, traps);
636
637         xen_mc_flush();
638         if (HYPERVISOR_set_trap_table(traps))
639                 BUG();
640
641         spin_unlock(&lock);
642 }
643
644 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
645    they're handled differently. */
646 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
647                                 const void *desc, int type)
648 {
649         preempt_disable();
650
651         switch (type) {
652         case DESC_LDT:
653         case DESC_TSS:
654                 /* ignore */
655                 break;
656
657         default: {
658                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
659
660                 xen_mc_flush();
661                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
662                         BUG();
663         }
664
665         }
666
667         preempt_enable();
668 }
669
670 /*
671  * Version of write_gdt_entry for use at early boot-time needed to
672  * update an entry as simply as possible.
673  */
674 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
675                                             const void *desc, int type)
676 {
677         switch (type) {
678         case DESC_LDT:
679         case DESC_TSS:
680                 /* ignore */
681                 break;
682
683         default: {
684                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
685
686                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
687                         dt[entry] = *(struct desc_struct *)desc;
688         }
689
690         }
691 }
692
693 static void xen_load_sp0(struct tss_struct *tss,
694                          struct thread_struct *thread)
695 {
696         struct multicall_space mcs = xen_mc_entry(0);
697         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
698         xen_mc_issue(PARAVIRT_LAZY_CPU);
699 }
700
701 static void xen_set_iopl_mask(unsigned mask)
702 {
703         struct physdev_set_iopl set_iopl;
704
705         /* Force the change at ring 0. */
706         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
707         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
708 }
709
710 static void xen_io_delay(void)
711 {
712 }
713
714 #ifdef CONFIG_X86_LOCAL_APIC
715 static u32 xen_apic_read(u32 reg)
716 {
717         return 0;
718 }
719
720 static void xen_apic_write(u32 reg, u32 val)
721 {
722         /* Warn to see if there's any stray references */
723         WARN_ON(1);
724 }
725
726 static u64 xen_apic_icr_read(void)
727 {
728         return 0;
729 }
730
731 static void xen_apic_icr_write(u32 low, u32 id)
732 {
733         /* Warn to see if there's any stray references */
734         WARN_ON(1);
735 }
736
737 static void xen_apic_wait_icr_idle(void)
738 {
739         return;
740 }
741
742 static u32 xen_safe_apic_wait_icr_idle(void)
743 {
744         return 0;
745 }
746
747 static void set_xen_basic_apic_ops(void)
748 {
749         apic->read = xen_apic_read;
750         apic->write = xen_apic_write;
751         apic->icr_read = xen_apic_icr_read;
752         apic->icr_write = xen_apic_icr_write;
753         apic->wait_icr_idle = xen_apic_wait_icr_idle;
754         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
755 }
756
757 #endif
758
759 static void xen_clts(void)
760 {
761         struct multicall_space mcs;
762
763         mcs = xen_mc_entry(0);
764
765         MULTI_fpu_taskswitch(mcs.mc, 0);
766
767         xen_mc_issue(PARAVIRT_LAZY_CPU);
768 }
769
770 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
771
772 static unsigned long xen_read_cr0(void)
773 {
774         unsigned long cr0 = percpu_read(xen_cr0_value);
775
776         if (unlikely(cr0 == 0)) {
777                 cr0 = native_read_cr0();
778                 percpu_write(xen_cr0_value, cr0);
779         }
780
781         return cr0;
782 }
783
784 static void xen_write_cr0(unsigned long cr0)
785 {
786         struct multicall_space mcs;
787
788         percpu_write(xen_cr0_value, cr0);
789
790         /* Only pay attention to cr0.TS; everything else is
791            ignored. */
792         mcs = xen_mc_entry(0);
793
794         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
795
796         xen_mc_issue(PARAVIRT_LAZY_CPU);
797 }
798
799 static void xen_write_cr4(unsigned long cr4)
800 {
801         cr4 &= ~X86_CR4_PGE;
802         cr4 &= ~X86_CR4_PSE;
803
804         native_write_cr4(cr4);
805 }
806
807 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
808 {
809         int ret;
810
811         ret = 0;
812
813         switch (msr) {
814 #ifdef CONFIG_X86_64
815                 unsigned which;
816                 u64 base;
817
818         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
819         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
820         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
821
822         set:
823                 base = ((u64)high << 32) | low;
824                 if (HYPERVISOR_set_segment_base(which, base) != 0)
825                         ret = -EIO;
826                 break;
827 #endif
828
829         case MSR_STAR:
830         case MSR_CSTAR:
831         case MSR_LSTAR:
832         case MSR_SYSCALL_MASK:
833         case MSR_IA32_SYSENTER_CS:
834         case MSR_IA32_SYSENTER_ESP:
835         case MSR_IA32_SYSENTER_EIP:
836                 /* Fast syscall setup is all done in hypercalls, so
837                    these are all ignored.  Stub them out here to stop
838                    Xen console noise. */
839                 break;
840
841         case MSR_IA32_CR_PAT:
842                 if (smp_processor_id() == 0)
843                         xen_set_pat(((u64)high << 32) | low);
844                 break;
845
846         default:
847                 ret = native_write_msr_safe(msr, low, high);
848         }
849
850         return ret;
851 }
852
853 void xen_setup_shared_info(void)
854 {
855         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
856                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
857                            xen_start_info->shared_info);
858
859                 HYPERVISOR_shared_info =
860                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
861         } else
862                 HYPERVISOR_shared_info =
863                         (struct shared_info *)__va(xen_start_info->shared_info);
864
865 #ifndef CONFIG_SMP
866         /* In UP this is as good a place as any to set up shared info */
867         xen_setup_vcpu_info_placement();
868 #endif
869
870         xen_setup_mfn_list_list();
871 }
872
873 /* This is called once we have the cpu_possible_map */
874 void xen_setup_vcpu_info_placement(void)
875 {
876         int cpu;
877
878         for_each_possible_cpu(cpu)
879                 xen_vcpu_setup(cpu);
880
881         /* xen_vcpu_setup managed to place the vcpu_info within the
882            percpu area for all cpus, so make use of it */
883         if (have_vcpu_info_placement) {
884                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
885                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
886                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
887                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
888                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
889         }
890 }
891
892 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
893                           unsigned long addr, unsigned len)
894 {
895         char *start, *end, *reloc;
896         unsigned ret;
897
898         start = end = reloc = NULL;
899
900 #define SITE(op, x)                                                     \
901         case PARAVIRT_PATCH(op.x):                                      \
902         if (have_vcpu_info_placement) {                                 \
903                 start = (char *)xen_##x##_direct;                       \
904                 end = xen_##x##_direct_end;                             \
905                 reloc = xen_##x##_direct_reloc;                         \
906         }                                                               \
907         goto patch_site
908
909         switch (type) {
910                 SITE(pv_irq_ops, irq_enable);
911                 SITE(pv_irq_ops, irq_disable);
912                 SITE(pv_irq_ops, save_fl);
913                 SITE(pv_irq_ops, restore_fl);
914 #undef SITE
915
916         patch_site:
917                 if (start == NULL || (end-start) > len)
918                         goto default_patch;
919
920                 ret = paravirt_patch_insns(insnbuf, len, start, end);
921
922                 /* Note: because reloc is assigned from something that
923                    appears to be an array, gcc assumes it's non-null,
924                    but doesn't know its relationship with start and
925                    end. */
926                 if (reloc > start && reloc < end) {
927                         int reloc_off = reloc - start;
928                         long *relocp = (long *)(insnbuf + reloc_off);
929                         long delta = start - (char *)addr;
930
931                         *relocp += delta;
932                 }
933                 break;
934
935         default_patch:
936         default:
937                 ret = paravirt_patch_default(type, clobbers, insnbuf,
938                                              addr, len);
939                 break;
940         }
941
942         return ret;
943 }
944
945 static const struct pv_info xen_info __initconst = {
946         .paravirt_enabled = 1,
947         .shared_kernel_pmd = 0,
948
949         .name = "Xen",
950 };
951
952 static const struct pv_init_ops xen_init_ops __initconst = {
953         .patch = xen_patch,
954 };
955
956 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
957         .cpuid = xen_cpuid,
958
959         .set_debugreg = xen_set_debugreg,
960         .get_debugreg = xen_get_debugreg,
961
962         .clts = xen_clts,
963
964         .read_cr0 = xen_read_cr0,
965         .write_cr0 = xen_write_cr0,
966
967         .read_cr4 = native_read_cr4,
968         .read_cr4_safe = native_read_cr4_safe,
969         .write_cr4 = xen_write_cr4,
970
971         .wbinvd = native_wbinvd,
972
973         .read_msr = native_read_msr_safe,
974         .write_msr = xen_write_msr_safe,
975         .read_tsc = native_read_tsc,
976         .read_pmc = native_read_pmc,
977
978         .iret = xen_iret,
979         .irq_enable_sysexit = xen_sysexit,
980 #ifdef CONFIG_X86_64
981         .usergs_sysret32 = xen_sysret32,
982         .usergs_sysret64 = xen_sysret64,
983 #endif
984
985         .load_tr_desc = paravirt_nop,
986         .set_ldt = xen_set_ldt,
987         .load_gdt = xen_load_gdt,
988         .load_idt = xen_load_idt,
989         .load_tls = xen_load_tls,
990 #ifdef CONFIG_X86_64
991         .load_gs_index = xen_load_gs_index,
992 #endif
993
994         .alloc_ldt = xen_alloc_ldt,
995         .free_ldt = xen_free_ldt,
996
997         .store_gdt = native_store_gdt,
998         .store_idt = native_store_idt,
999         .store_tr = xen_store_tr,
1000
1001         .write_ldt_entry = xen_write_ldt_entry,
1002         .write_gdt_entry = xen_write_gdt_entry,
1003         .write_idt_entry = xen_write_idt_entry,
1004         .load_sp0 = xen_load_sp0,
1005
1006         .set_iopl_mask = xen_set_iopl_mask,
1007         .io_delay = xen_io_delay,
1008
1009         /* Xen takes care of %gs when switching to usermode for us */
1010         .swapgs = paravirt_nop,
1011
1012         .start_context_switch = paravirt_start_context_switch,
1013         .end_context_switch = xen_end_context_switch,
1014 };
1015
1016 static const struct pv_apic_ops xen_apic_ops __initconst = {
1017 #ifdef CONFIG_X86_LOCAL_APIC
1018         .startup_ipi_hook = paravirt_nop,
1019 #endif
1020 };
1021
1022 static void xen_reboot(int reason)
1023 {
1024         struct sched_shutdown r = { .reason = reason };
1025
1026         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1027                 BUG();
1028 }
1029
1030 static void xen_restart(char *msg)
1031 {
1032         xen_reboot(SHUTDOWN_reboot);
1033 }
1034
1035 static void xen_emergency_restart(void)
1036 {
1037         xen_reboot(SHUTDOWN_reboot);
1038 }
1039
1040 static void xen_machine_halt(void)
1041 {
1042         xen_reboot(SHUTDOWN_poweroff);
1043 }
1044
1045 static void xen_machine_power_off(void)
1046 {
1047         if (pm_power_off)
1048                 pm_power_off();
1049         xen_reboot(SHUTDOWN_poweroff);
1050 }
1051
1052 static void xen_crash_shutdown(struct pt_regs *regs)
1053 {
1054         xen_reboot(SHUTDOWN_crash);
1055 }
1056
1057 static int
1058 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1059 {
1060         xen_reboot(SHUTDOWN_crash);
1061         return NOTIFY_DONE;
1062 }
1063
1064 static struct notifier_block xen_panic_block = {
1065         .notifier_call= xen_panic_event,
1066 };
1067
1068 int xen_panic_handler_init(void)
1069 {
1070         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1071         return 0;
1072 }
1073
1074 static const struct machine_ops xen_machine_ops __initconst = {
1075         .restart = xen_restart,
1076         .halt = xen_machine_halt,
1077         .power_off = xen_machine_power_off,
1078         .shutdown = xen_machine_halt,
1079         .crash_shutdown = xen_crash_shutdown,
1080         .emergency_restart = xen_emergency_restart,
1081 };
1082
1083 /*
1084  * Set up the GDT and segment registers for -fstack-protector.  Until
1085  * we do this, we have to be careful not to call any stack-protected
1086  * function, which is most of the kernel.
1087  */
1088 static void __init xen_setup_stackprotector(void)
1089 {
1090         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1091         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1092
1093         setup_stack_canary_segment(0);
1094         switch_to_new_gdt(0);
1095
1096         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1097         pv_cpu_ops.load_gdt = xen_load_gdt;
1098 }
1099
1100 /* First C function to be called on Xen boot */
1101 asmlinkage void __init xen_start_kernel(void)
1102 {
1103         struct physdev_set_iopl set_iopl;
1104         int rc;
1105         pgd_t *pgd;
1106
1107         if (!xen_start_info)
1108                 return;
1109
1110         xen_domain_type = XEN_PV_DOMAIN;
1111
1112         xen_setup_machphys_mapping();
1113
1114         /* Install Xen paravirt ops */
1115         pv_info = xen_info;
1116         pv_init_ops = xen_init_ops;
1117         pv_cpu_ops = xen_cpu_ops;
1118         pv_apic_ops = xen_apic_ops;
1119
1120         x86_init.resources.memory_setup = xen_memory_setup;
1121         x86_init.oem.arch_setup = xen_arch_setup;
1122         x86_init.oem.banner = xen_banner;
1123
1124         xen_init_time_ops();
1125
1126         /*
1127          * Set up some pagetable state before starting to set any ptes.
1128          */
1129
1130         xen_init_mmu_ops();
1131
1132         /* Prevent unwanted bits from being set in PTEs. */
1133         __supported_pte_mask &= ~_PAGE_GLOBAL;
1134         if (!xen_initial_domain())
1135                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1136
1137         __supported_pte_mask |= _PAGE_IOMAP;
1138
1139         /*
1140          * Prevent page tables from being allocated in highmem, even
1141          * if CONFIG_HIGHPTE is enabled.
1142          */
1143         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1144
1145         /* Work out if we support NX */
1146         x86_configure_nx();
1147
1148         xen_setup_features();
1149
1150         /* Get mfn list */
1151         if (!xen_feature(XENFEAT_auto_translated_physmap))
1152                 xen_build_dynamic_phys_to_machine();
1153
1154         /*
1155          * Set up kernel GDT and segment registers, mainly so that
1156          * -fstack-protector code can be executed.
1157          */
1158         xen_setup_stackprotector();
1159
1160         xen_init_irq_ops();
1161         xen_init_cpuid_mask();
1162
1163 #ifdef CONFIG_X86_LOCAL_APIC
1164         /*
1165          * set up the basic apic ops.
1166          */
1167         set_xen_basic_apic_ops();
1168 #endif
1169
1170         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1171                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1172                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1173         }
1174
1175         machine_ops = xen_machine_ops;
1176
1177         /*
1178          * The only reliable way to retain the initial address of the
1179          * percpu gdt_page is to remember it here, so we can go and
1180          * mark it RW later, when the initial percpu area is freed.
1181          */
1182         xen_initial_gdt = &per_cpu(gdt_page, 0);
1183
1184         xen_smp_init();
1185
1186 #ifdef CONFIG_ACPI_NUMA
1187         /*
1188          * The pages we from Xen are not related to machine pages, so
1189          * any NUMA information the kernel tries to get from ACPI will
1190          * be meaningless.  Prevent it from trying.
1191          */
1192         acpi_numa = -1;
1193 #endif
1194
1195         pgd = (pgd_t *)xen_start_info->pt_base;
1196
1197         if (!xen_initial_domain())
1198                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1199
1200         __supported_pte_mask |= _PAGE_IOMAP;
1201         /* Don't do the full vcpu_info placement stuff until we have a
1202            possible map and a non-dummy shared_info. */
1203         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1204
1205         local_irq_disable();
1206         early_boot_irqs_disabled = true;
1207
1208         memblock_init();
1209
1210         xen_raw_console_write("mapping kernel into physical memory\n");
1211         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1212         xen_ident_map_ISA();
1213
1214         /* Allocate and initialize top and mid mfn levels for p2m structure */
1215         xen_build_mfn_list_list();
1216
1217         /* keep using Xen gdt for now; no urgent need to change it */
1218
1219 #ifdef CONFIG_X86_32
1220         pv_info.kernel_rpl = 1;
1221         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1222                 pv_info.kernel_rpl = 0;
1223 #else
1224         pv_info.kernel_rpl = 0;
1225 #endif
1226         /* set the limit of our address space */
1227         xen_reserve_top();
1228
1229         /* We used to do this in xen_arch_setup, but that is too late on AMD
1230          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1231          * which pokes 0xcf8 port.
1232          */
1233         set_iopl.iopl = 1;
1234         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1235         if (rc != 0)
1236                 xen_raw_printk("physdev_op failed %d\n", rc);
1237
1238 #ifdef CONFIG_X86_32
1239         /* set up basic CPUID stuff */
1240         cpu_detect(&new_cpu_data);
1241         new_cpu_data.hard_math = 1;
1242         new_cpu_data.wp_works_ok = 1;
1243         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1244 #endif
1245
1246         /* Poke various useful things into boot_params */
1247         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1248         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1249                 ? __pa(xen_start_info->mod_start) : 0;
1250         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1251         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1252
1253         if (!xen_initial_domain()) {
1254                 add_preferred_console("xenboot", 0, NULL);
1255                 add_preferred_console("tty", 0, NULL);
1256                 add_preferred_console("hvc", 0, NULL);
1257                 if (pci_xen)
1258                         x86_init.pci.arch_init = pci_xen_init;
1259         } else {
1260                 const struct dom0_vga_console_info *info =
1261                         (void *)((char *)xen_start_info +
1262                                  xen_start_info->console.dom0.info_off);
1263
1264                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1265                 xen_start_info->console.domU.mfn = 0;
1266                 xen_start_info->console.domU.evtchn = 0;
1267
1268                 /* Make sure ACS will be enabled */
1269                 pci_request_acs();
1270         }
1271 #ifdef CONFIG_PCI
1272         /* PCI BIOS service won't work from a PV guest. */
1273         pci_probe &= ~PCI_PROBE_BIOS;
1274 #endif
1275         xen_raw_console_write("about to get started...\n");
1276
1277         xen_setup_runstate_info(0);
1278
1279         /* Start the world */
1280 #ifdef CONFIG_X86_32
1281         i386_start_kernel();
1282 #else
1283         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1284 #endif
1285 }
1286
1287 static int init_hvm_pv_info(int *major, int *minor)
1288 {
1289         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1290         u64 pfn;
1291
1292         base = xen_cpuid_base();
1293         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1294
1295         *major = eax >> 16;
1296         *minor = eax & 0xffff;
1297         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1298
1299         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1300
1301         pfn = __pa(hypercall_page);
1302         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1303
1304         xen_setup_features();
1305
1306         pv_info.name = "Xen HVM";
1307
1308         xen_domain_type = XEN_HVM_DOMAIN;
1309
1310         return 0;
1311 }
1312
1313 void __ref xen_hvm_init_shared_info(void)
1314 {
1315         int cpu;
1316         struct xen_add_to_physmap xatp;
1317         static struct shared_info *shared_info_page = 0;
1318
1319         if (!shared_info_page)
1320                 shared_info_page = (struct shared_info *)
1321                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1322         xatp.domid = DOMID_SELF;
1323         xatp.idx = 0;
1324         xatp.space = XENMAPSPACE_shared_info;
1325         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1326         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1327                 BUG();
1328
1329         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1330
1331         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1332          * page, we use it in the event channel upcall and in some pvclock
1333          * related functions. We don't need the vcpu_info placement
1334          * optimizations because we don't use any pv_mmu or pv_irq op on
1335          * HVM.
1336          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1337          * online but xen_hvm_init_shared_info is run at resume time too and
1338          * in that case multiple vcpus might be online. */
1339         for_each_online_cpu(cpu) {
1340                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1341         }
1342 }
1343
1344 #ifdef CONFIG_XEN_PVHVM
1345 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1346                                     unsigned long action, void *hcpu)
1347 {
1348         int cpu = (long)hcpu;
1349         switch (action) {
1350         case CPU_UP_PREPARE:
1351                 xen_vcpu_setup(cpu);
1352                 if (xen_have_vector_callback)
1353                         xen_init_lock_cpu(cpu);
1354                 break;
1355         default:
1356                 break;
1357         }
1358         return NOTIFY_OK;
1359 }
1360
1361 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1362         .notifier_call  = xen_hvm_cpu_notify,
1363 };
1364
1365 static void __init xen_hvm_guest_init(void)
1366 {
1367         int r;
1368         int major, minor;
1369
1370         r = init_hvm_pv_info(&major, &minor);
1371         if (r < 0)
1372                 return;
1373
1374         xen_hvm_init_shared_info();
1375
1376         if (xen_feature(XENFEAT_hvm_callback_vector))
1377                 xen_have_vector_callback = 1;
1378         xen_hvm_smp_init();
1379         register_cpu_notifier(&xen_hvm_cpu_notifier);
1380         xen_unplug_emulated_devices();
1381         x86_init.irqs.intr_init = xen_init_IRQ;
1382         xen_hvm_init_time_ops();
1383         xen_hvm_init_mmu_ops();
1384 }
1385
1386 static bool __init xen_hvm_platform(void)
1387 {
1388         if (xen_pv_domain())
1389                 return false;
1390
1391         if (!xen_cpuid_base())
1392                 return false;
1393
1394         return true;
1395 }
1396
1397 bool xen_hvm_need_lapic(void)
1398 {
1399         if (xen_pv_domain())
1400                 return false;
1401         if (!xen_hvm_domain())
1402                 return false;
1403         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1404                 return false;
1405         return true;
1406 }
1407 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1408
1409 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1410         .name                   = "Xen HVM",
1411         .detect                 = xen_hvm_platform,
1412         .init_platform          = xen_hvm_guest_init,
1413 };
1414 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1415 #endif