]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/enlighten.c
xen/vcpu/pvhvm: Fix vcpu hotplugging hanging.
[karo-tx-linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/mwait.h>
66 #include <asm/pci_x86.h>
67 #include <asm/pat.h>
68
69 #ifdef CONFIG_ACPI
70 #include <linux/acpi.h>
71 #include <asm/acpi.h>
72 #include <acpi/pdc_intel.h>
73 #include <acpi/processor.h>
74 #include <xen/interface/platform.h>
75 #endif
76
77 #include "xen-ops.h"
78 #include "mmu.h"
79 #include "multicalls.h"
80
81 EXPORT_SYMBOL_GPL(hypercall_page);
82
83 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
84 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
85
86 enum xen_domain_type xen_domain_type = XEN_NATIVE;
87 EXPORT_SYMBOL_GPL(xen_domain_type);
88
89 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
90 EXPORT_SYMBOL(machine_to_phys_mapping);
91 unsigned long  machine_to_phys_nr;
92 EXPORT_SYMBOL(machine_to_phys_nr);
93
94 struct start_info *xen_start_info;
95 EXPORT_SYMBOL_GPL(xen_start_info);
96
97 struct shared_info xen_dummy_shared_info;
98
99 void *xen_initial_gdt;
100
101 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
102 __read_mostly int xen_have_vector_callback;
103 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
104
105 /*
106  * Point at some empty memory to start with. We map the real shared_info
107  * page as soon as fixmap is up and running.
108  */
109 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
110
111 /*
112  * Flag to determine whether vcpu info placement is available on all
113  * VCPUs.  We assume it is to start with, and then set it to zero on
114  * the first failure.  This is because it can succeed on some VCPUs
115  * and not others, since it can involve hypervisor memory allocation,
116  * or because the guest failed to guarantee all the appropriate
117  * constraints on all VCPUs (ie buffer can't cross a page boundary).
118  *
119  * Note that any particular CPU may be using a placed vcpu structure,
120  * but we can only optimise if the all are.
121  *
122  * 0: not available, 1: available
123  */
124 static int have_vcpu_info_placement = 1;
125
126 static void clamp_max_cpus(void)
127 {
128 #ifdef CONFIG_SMP
129         if (setup_max_cpus > MAX_VIRT_CPUS)
130                 setup_max_cpus = MAX_VIRT_CPUS;
131 #endif
132 }
133
134 static void xen_vcpu_setup(int cpu)
135 {
136         struct vcpu_register_vcpu_info info;
137         int err;
138         struct vcpu_info *vcpup;
139
140         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
141
142         /*
143          * This path is called twice on PVHVM - first during bootup via
144          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
145          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
146          * As we can only do the VCPUOP_register_vcpu_info once lets
147          * not over-write its result.
148          *
149          * For PV it is called during restore (xen_vcpu_restore) and bootup
150          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
151          * use this function.
152          */
153         if (xen_hvm_domain()) {
154                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
155                         return;
156         }
157         if (cpu < MAX_VIRT_CPUS)
158                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
159
160         if (!have_vcpu_info_placement) {
161                 if (cpu >= MAX_VIRT_CPUS)
162                         clamp_max_cpus();
163                 return;
164         }
165
166         vcpup = &per_cpu(xen_vcpu_info, cpu);
167         info.mfn = arbitrary_virt_to_mfn(vcpup);
168         info.offset = offset_in_page(vcpup);
169
170         /* Check to see if the hypervisor will put the vcpu_info
171            structure where we want it, which allows direct access via
172            a percpu-variable. */
173         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
174
175         if (err) {
176                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
177                 have_vcpu_info_placement = 0;
178                 clamp_max_cpus();
179         } else {
180                 /* This cpu is using the registered vcpu info, even if
181                    later ones fail to. */
182                 per_cpu(xen_vcpu, cpu) = vcpup;
183         }
184 }
185
186 /*
187  * On restore, set the vcpu placement up again.
188  * If it fails, then we're in a bad state, since
189  * we can't back out from using it...
190  */
191 void xen_vcpu_restore(void)
192 {
193         int cpu;
194
195         for_each_online_cpu(cpu) {
196                 bool other_cpu = (cpu != smp_processor_id());
197
198                 if (other_cpu &&
199                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
200                         BUG();
201
202                 xen_setup_runstate_info(cpu);
203
204                 if (have_vcpu_info_placement)
205                         xen_vcpu_setup(cpu);
206
207                 if (other_cpu &&
208                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
209                         BUG();
210         }
211 }
212
213 static void __init xen_banner(void)
214 {
215         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
216         struct xen_extraversion extra;
217         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
218
219         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
220                pv_info.name);
221         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
222                version >> 16, version & 0xffff, extra.extraversion,
223                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
224 }
225
226 #define CPUID_THERM_POWER_LEAF 6
227 #define APERFMPERF_PRESENT 0
228
229 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
230 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
231
232 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
233 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
234 static __read_mostly unsigned int cpuid_leaf5_edx_val;
235
236 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
237                       unsigned int *cx, unsigned int *dx)
238 {
239         unsigned maskebx = ~0;
240         unsigned maskecx = ~0;
241         unsigned maskedx = ~0;
242         unsigned setecx = 0;
243         /*
244          * Mask out inconvenient features, to try and disable as many
245          * unsupported kernel subsystems as possible.
246          */
247         switch (*ax) {
248         case 1:
249                 maskecx = cpuid_leaf1_ecx_mask;
250                 setecx = cpuid_leaf1_ecx_set_mask;
251                 maskedx = cpuid_leaf1_edx_mask;
252                 break;
253
254         case CPUID_MWAIT_LEAF:
255                 /* Synthesize the values.. */
256                 *ax = 0;
257                 *bx = 0;
258                 *cx = cpuid_leaf5_ecx_val;
259                 *dx = cpuid_leaf5_edx_val;
260                 return;
261
262         case CPUID_THERM_POWER_LEAF:
263                 /* Disabling APERFMPERF for kernel usage */
264                 maskecx = ~(1 << APERFMPERF_PRESENT);
265                 break;
266
267         case 0xb:
268                 /* Suppress extended topology stuff */
269                 maskebx = 0;
270                 break;
271         }
272
273         asm(XEN_EMULATE_PREFIX "cpuid"
274                 : "=a" (*ax),
275                   "=b" (*bx),
276                   "=c" (*cx),
277                   "=d" (*dx)
278                 : "0" (*ax), "2" (*cx));
279
280         *bx &= maskebx;
281         *cx &= maskecx;
282         *cx |= setecx;
283         *dx &= maskedx;
284
285 }
286
287 static bool __init xen_check_mwait(void)
288 {
289 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
290         !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
291         struct xen_platform_op op = {
292                 .cmd                    = XENPF_set_processor_pminfo,
293                 .u.set_pminfo.id        = -1,
294                 .u.set_pminfo.type      = XEN_PM_PDC,
295         };
296         uint32_t buf[3];
297         unsigned int ax, bx, cx, dx;
298         unsigned int mwait_mask;
299
300         /* We need to determine whether it is OK to expose the MWAIT
301          * capability to the kernel to harvest deeper than C3 states from ACPI
302          * _CST using the processor_harvest_xen.c module. For this to work, we
303          * need to gather the MWAIT_LEAF values (which the cstate.c code
304          * checks against). The hypervisor won't expose the MWAIT flag because
305          * it would break backwards compatibility; so we will find out directly
306          * from the hardware and hypercall.
307          */
308         if (!xen_initial_domain())
309                 return false;
310
311         ax = 1;
312         cx = 0;
313
314         native_cpuid(&ax, &bx, &cx, &dx);
315
316         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
317                      (1 << (X86_FEATURE_MWAIT % 32));
318
319         if ((cx & mwait_mask) != mwait_mask)
320                 return false;
321
322         /* We need to emulate the MWAIT_LEAF and for that we need both
323          * ecx and edx. The hypercall provides only partial information.
324          */
325
326         ax = CPUID_MWAIT_LEAF;
327         bx = 0;
328         cx = 0;
329         dx = 0;
330
331         native_cpuid(&ax, &bx, &cx, &dx);
332
333         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
334          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
335          */
336         buf[0] = ACPI_PDC_REVISION_ID;
337         buf[1] = 1;
338         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
339
340         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
341
342         if ((HYPERVISOR_dom0_op(&op) == 0) &&
343             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
344                 cpuid_leaf5_ecx_val = cx;
345                 cpuid_leaf5_edx_val = dx;
346         }
347         return true;
348 #else
349         return false;
350 #endif
351 }
352 static void __init xen_init_cpuid_mask(void)
353 {
354         unsigned int ax, bx, cx, dx;
355         unsigned int xsave_mask;
356
357         cpuid_leaf1_edx_mask =
358                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
359                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
360                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
361                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
362
363         if (!xen_initial_domain())
364                 cpuid_leaf1_edx_mask &=
365                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
366                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
367         ax = 1;
368         cx = 0;
369         xen_cpuid(&ax, &bx, &cx, &dx);
370
371         xsave_mask =
372                 (1 << (X86_FEATURE_XSAVE % 32)) |
373                 (1 << (X86_FEATURE_OSXSAVE % 32));
374
375         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
376         if ((cx & xsave_mask) != xsave_mask)
377                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
378         if (xen_check_mwait())
379                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
380 }
381
382 static void xen_set_debugreg(int reg, unsigned long val)
383 {
384         HYPERVISOR_set_debugreg(reg, val);
385 }
386
387 static unsigned long xen_get_debugreg(int reg)
388 {
389         return HYPERVISOR_get_debugreg(reg);
390 }
391
392 static void xen_end_context_switch(struct task_struct *next)
393 {
394         xen_mc_flush();
395         paravirt_end_context_switch(next);
396 }
397
398 static unsigned long xen_store_tr(void)
399 {
400         return 0;
401 }
402
403 /*
404  * Set the page permissions for a particular virtual address.  If the
405  * address is a vmalloc mapping (or other non-linear mapping), then
406  * find the linear mapping of the page and also set its protections to
407  * match.
408  */
409 static void set_aliased_prot(void *v, pgprot_t prot)
410 {
411         int level;
412         pte_t *ptep;
413         pte_t pte;
414         unsigned long pfn;
415         struct page *page;
416
417         ptep = lookup_address((unsigned long)v, &level);
418         BUG_ON(ptep == NULL);
419
420         pfn = pte_pfn(*ptep);
421         page = pfn_to_page(pfn);
422
423         pte = pfn_pte(pfn, prot);
424
425         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
426                 BUG();
427
428         if (!PageHighMem(page)) {
429                 void *av = __va(PFN_PHYS(pfn));
430
431                 if (av != v)
432                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
433                                 BUG();
434         } else
435                 kmap_flush_unused();
436 }
437
438 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
439 {
440         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
441         int i;
442
443         for(i = 0; i < entries; i += entries_per_page)
444                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
445 }
446
447 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
448 {
449         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
450         int i;
451
452         for(i = 0; i < entries; i += entries_per_page)
453                 set_aliased_prot(ldt + i, PAGE_KERNEL);
454 }
455
456 static void xen_set_ldt(const void *addr, unsigned entries)
457 {
458         struct mmuext_op *op;
459         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
460
461         trace_xen_cpu_set_ldt(addr, entries);
462
463         op = mcs.args;
464         op->cmd = MMUEXT_SET_LDT;
465         op->arg1.linear_addr = (unsigned long)addr;
466         op->arg2.nr_ents = entries;
467
468         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
469
470         xen_mc_issue(PARAVIRT_LAZY_CPU);
471 }
472
473 static void xen_load_gdt(const struct desc_ptr *dtr)
474 {
475         unsigned long va = dtr->address;
476         unsigned int size = dtr->size + 1;
477         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
478         unsigned long frames[pages];
479         int f;
480
481         /*
482          * A GDT can be up to 64k in size, which corresponds to 8192
483          * 8-byte entries, or 16 4k pages..
484          */
485
486         BUG_ON(size > 65536);
487         BUG_ON(va & ~PAGE_MASK);
488
489         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
490                 int level;
491                 pte_t *ptep;
492                 unsigned long pfn, mfn;
493                 void *virt;
494
495                 /*
496                  * The GDT is per-cpu and is in the percpu data area.
497                  * That can be virtually mapped, so we need to do a
498                  * page-walk to get the underlying MFN for the
499                  * hypercall.  The page can also be in the kernel's
500                  * linear range, so we need to RO that mapping too.
501                  */
502                 ptep = lookup_address(va, &level);
503                 BUG_ON(ptep == NULL);
504
505                 pfn = pte_pfn(*ptep);
506                 mfn = pfn_to_mfn(pfn);
507                 virt = __va(PFN_PHYS(pfn));
508
509                 frames[f] = mfn;
510
511                 make_lowmem_page_readonly((void *)va);
512                 make_lowmem_page_readonly(virt);
513         }
514
515         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
516                 BUG();
517 }
518
519 /*
520  * load_gdt for early boot, when the gdt is only mapped once
521  */
522 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
523 {
524         unsigned long va = dtr->address;
525         unsigned int size = dtr->size + 1;
526         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
527         unsigned long frames[pages];
528         int f;
529
530         /*
531          * A GDT can be up to 64k in size, which corresponds to 8192
532          * 8-byte entries, or 16 4k pages..
533          */
534
535         BUG_ON(size > 65536);
536         BUG_ON(va & ~PAGE_MASK);
537
538         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
539                 pte_t pte;
540                 unsigned long pfn, mfn;
541
542                 pfn = virt_to_pfn(va);
543                 mfn = pfn_to_mfn(pfn);
544
545                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
546
547                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
548                         BUG();
549
550                 frames[f] = mfn;
551         }
552
553         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
554                 BUG();
555 }
556
557 static void load_TLS_descriptor(struct thread_struct *t,
558                                 unsigned int cpu, unsigned int i)
559 {
560         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
561         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
562         struct multicall_space mc = __xen_mc_entry(0);
563
564         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
565 }
566
567 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
568 {
569         /*
570          * XXX sleazy hack: If we're being called in a lazy-cpu zone
571          * and lazy gs handling is enabled, it means we're in a
572          * context switch, and %gs has just been saved.  This means we
573          * can zero it out to prevent faults on exit from the
574          * hypervisor if the next process has no %gs.  Either way, it
575          * has been saved, and the new value will get loaded properly.
576          * This will go away as soon as Xen has been modified to not
577          * save/restore %gs for normal hypercalls.
578          *
579          * On x86_64, this hack is not used for %gs, because gs points
580          * to KERNEL_GS_BASE (and uses it for PDA references), so we
581          * must not zero %gs on x86_64
582          *
583          * For x86_64, we need to zero %fs, otherwise we may get an
584          * exception between the new %fs descriptor being loaded and
585          * %fs being effectively cleared at __switch_to().
586          */
587         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
588 #ifdef CONFIG_X86_32
589                 lazy_load_gs(0);
590 #else
591                 loadsegment(fs, 0);
592 #endif
593         }
594
595         xen_mc_batch();
596
597         load_TLS_descriptor(t, cpu, 0);
598         load_TLS_descriptor(t, cpu, 1);
599         load_TLS_descriptor(t, cpu, 2);
600
601         xen_mc_issue(PARAVIRT_LAZY_CPU);
602 }
603
604 #ifdef CONFIG_X86_64
605 static void xen_load_gs_index(unsigned int idx)
606 {
607         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
608                 BUG();
609 }
610 #endif
611
612 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
613                                 const void *ptr)
614 {
615         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
616         u64 entry = *(u64 *)ptr;
617
618         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
619
620         preempt_disable();
621
622         xen_mc_flush();
623         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
624                 BUG();
625
626         preempt_enable();
627 }
628
629 static int cvt_gate_to_trap(int vector, const gate_desc *val,
630                             struct trap_info *info)
631 {
632         unsigned long addr;
633
634         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
635                 return 0;
636
637         info->vector = vector;
638
639         addr = gate_offset(*val);
640 #ifdef CONFIG_X86_64
641         /*
642          * Look for known traps using IST, and substitute them
643          * appropriately.  The debugger ones are the only ones we care
644          * about.  Xen will handle faults like double_fault and
645          * machine_check, so we should never see them.  Warn if
646          * there's an unexpected IST-using fault handler.
647          */
648         if (addr == (unsigned long)debug)
649                 addr = (unsigned long)xen_debug;
650         else if (addr == (unsigned long)int3)
651                 addr = (unsigned long)xen_int3;
652         else if (addr == (unsigned long)stack_segment)
653                 addr = (unsigned long)xen_stack_segment;
654         else if (addr == (unsigned long)double_fault ||
655                  addr == (unsigned long)nmi) {
656                 /* Don't need to handle these */
657                 return 0;
658 #ifdef CONFIG_X86_MCE
659         } else if (addr == (unsigned long)machine_check) {
660                 return 0;
661 #endif
662         } else {
663                 /* Some other trap using IST? */
664                 if (WARN_ON(val->ist != 0))
665                         return 0;
666         }
667 #endif  /* CONFIG_X86_64 */
668         info->address = addr;
669
670         info->cs = gate_segment(*val);
671         info->flags = val->dpl;
672         /* interrupt gates clear IF */
673         if (val->type == GATE_INTERRUPT)
674                 info->flags |= 1 << 2;
675
676         return 1;
677 }
678
679 /* Locations of each CPU's IDT */
680 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
681
682 /* Set an IDT entry.  If the entry is part of the current IDT, then
683    also update Xen. */
684 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
685 {
686         unsigned long p = (unsigned long)&dt[entrynum];
687         unsigned long start, end;
688
689         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
690
691         preempt_disable();
692
693         start = __this_cpu_read(idt_desc.address);
694         end = start + __this_cpu_read(idt_desc.size) + 1;
695
696         xen_mc_flush();
697
698         native_write_idt_entry(dt, entrynum, g);
699
700         if (p >= start && (p + 8) <= end) {
701                 struct trap_info info[2];
702
703                 info[1].address = 0;
704
705                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
706                         if (HYPERVISOR_set_trap_table(info))
707                                 BUG();
708         }
709
710         preempt_enable();
711 }
712
713 static void xen_convert_trap_info(const struct desc_ptr *desc,
714                                   struct trap_info *traps)
715 {
716         unsigned in, out, count;
717
718         count = (desc->size+1) / sizeof(gate_desc);
719         BUG_ON(count > 256);
720
721         for (in = out = 0; in < count; in++) {
722                 gate_desc *entry = (gate_desc*)(desc->address) + in;
723
724                 if (cvt_gate_to_trap(in, entry, &traps[out]))
725                         out++;
726         }
727         traps[out].address = 0;
728 }
729
730 void xen_copy_trap_info(struct trap_info *traps)
731 {
732         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
733
734         xen_convert_trap_info(desc, traps);
735 }
736
737 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
738    hold a spinlock to protect the static traps[] array (static because
739    it avoids allocation, and saves stack space). */
740 static void xen_load_idt(const struct desc_ptr *desc)
741 {
742         static DEFINE_SPINLOCK(lock);
743         static struct trap_info traps[257];
744
745         trace_xen_cpu_load_idt(desc);
746
747         spin_lock(&lock);
748
749         __get_cpu_var(idt_desc) = *desc;
750
751         xen_convert_trap_info(desc, traps);
752
753         xen_mc_flush();
754         if (HYPERVISOR_set_trap_table(traps))
755                 BUG();
756
757         spin_unlock(&lock);
758 }
759
760 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
761    they're handled differently. */
762 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
763                                 const void *desc, int type)
764 {
765         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
766
767         preempt_disable();
768
769         switch (type) {
770         case DESC_LDT:
771         case DESC_TSS:
772                 /* ignore */
773                 break;
774
775         default: {
776                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
777
778                 xen_mc_flush();
779                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
780                         BUG();
781         }
782
783         }
784
785         preempt_enable();
786 }
787
788 /*
789  * Version of write_gdt_entry for use at early boot-time needed to
790  * update an entry as simply as possible.
791  */
792 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
793                                             const void *desc, int type)
794 {
795         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
796
797         switch (type) {
798         case DESC_LDT:
799         case DESC_TSS:
800                 /* ignore */
801                 break;
802
803         default: {
804                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
805
806                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
807                         dt[entry] = *(struct desc_struct *)desc;
808         }
809
810         }
811 }
812
813 static void xen_load_sp0(struct tss_struct *tss,
814                          struct thread_struct *thread)
815 {
816         struct multicall_space mcs;
817
818         mcs = xen_mc_entry(0);
819         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
820         xen_mc_issue(PARAVIRT_LAZY_CPU);
821 }
822
823 static void xen_set_iopl_mask(unsigned mask)
824 {
825         struct physdev_set_iopl set_iopl;
826
827         /* Force the change at ring 0. */
828         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
829         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
830 }
831
832 static void xen_io_delay(void)
833 {
834 }
835
836 #ifdef CONFIG_X86_LOCAL_APIC
837 static unsigned long xen_set_apic_id(unsigned int x)
838 {
839         WARN_ON(1);
840         return x;
841 }
842 static unsigned int xen_get_apic_id(unsigned long x)
843 {
844         return ((x)>>24) & 0xFFu;
845 }
846 static u32 xen_apic_read(u32 reg)
847 {
848         struct xen_platform_op op = {
849                 .cmd = XENPF_get_cpuinfo,
850                 .interface_version = XENPF_INTERFACE_VERSION,
851                 .u.pcpu_info.xen_cpuid = 0,
852         };
853         int ret = 0;
854
855         /* Shouldn't need this as APIC is turned off for PV, and we only
856          * get called on the bootup processor. But just in case. */
857         if (!xen_initial_domain() || smp_processor_id())
858                 return 0;
859
860         if (reg == APIC_LVR)
861                 return 0x10;
862
863         if (reg != APIC_ID)
864                 return 0;
865
866         ret = HYPERVISOR_dom0_op(&op);
867         if (ret)
868                 return 0;
869
870         return op.u.pcpu_info.apic_id << 24;
871 }
872
873 static void xen_apic_write(u32 reg, u32 val)
874 {
875         /* Warn to see if there's any stray references */
876         WARN_ON(1);
877 }
878
879 static u64 xen_apic_icr_read(void)
880 {
881         return 0;
882 }
883
884 static void xen_apic_icr_write(u32 low, u32 id)
885 {
886         /* Warn to see if there's any stray references */
887         WARN_ON(1);
888 }
889
890 static void xen_apic_wait_icr_idle(void)
891 {
892         return;
893 }
894
895 static u32 xen_safe_apic_wait_icr_idle(void)
896 {
897         return 0;
898 }
899
900 static void set_xen_basic_apic_ops(void)
901 {
902         apic->read = xen_apic_read;
903         apic->write = xen_apic_write;
904         apic->icr_read = xen_apic_icr_read;
905         apic->icr_write = xen_apic_icr_write;
906         apic->wait_icr_idle = xen_apic_wait_icr_idle;
907         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
908         apic->set_apic_id = xen_set_apic_id;
909         apic->get_apic_id = xen_get_apic_id;
910 }
911
912 #endif
913
914 static void xen_clts(void)
915 {
916         struct multicall_space mcs;
917
918         mcs = xen_mc_entry(0);
919
920         MULTI_fpu_taskswitch(mcs.mc, 0);
921
922         xen_mc_issue(PARAVIRT_LAZY_CPU);
923 }
924
925 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
926
927 static unsigned long xen_read_cr0(void)
928 {
929         unsigned long cr0 = this_cpu_read(xen_cr0_value);
930
931         if (unlikely(cr0 == 0)) {
932                 cr0 = native_read_cr0();
933                 this_cpu_write(xen_cr0_value, cr0);
934         }
935
936         return cr0;
937 }
938
939 static void xen_write_cr0(unsigned long cr0)
940 {
941         struct multicall_space mcs;
942
943         this_cpu_write(xen_cr0_value, cr0);
944
945         /* Only pay attention to cr0.TS; everything else is
946            ignored. */
947         mcs = xen_mc_entry(0);
948
949         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
950
951         xen_mc_issue(PARAVIRT_LAZY_CPU);
952 }
953
954 static void xen_write_cr4(unsigned long cr4)
955 {
956         cr4 &= ~X86_CR4_PGE;
957         cr4 &= ~X86_CR4_PSE;
958
959         native_write_cr4(cr4);
960 }
961 #ifdef CONFIG_X86_64
962 static inline unsigned long xen_read_cr8(void)
963 {
964         return 0;
965 }
966 static inline void xen_write_cr8(unsigned long val)
967 {
968         BUG_ON(val);
969 }
970 #endif
971 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
972 {
973         int ret;
974
975         ret = 0;
976
977         switch (msr) {
978 #ifdef CONFIG_X86_64
979                 unsigned which;
980                 u64 base;
981
982         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
983         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
984         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
985
986         set:
987                 base = ((u64)high << 32) | low;
988                 if (HYPERVISOR_set_segment_base(which, base) != 0)
989                         ret = -EIO;
990                 break;
991 #endif
992
993         case MSR_STAR:
994         case MSR_CSTAR:
995         case MSR_LSTAR:
996         case MSR_SYSCALL_MASK:
997         case MSR_IA32_SYSENTER_CS:
998         case MSR_IA32_SYSENTER_ESP:
999         case MSR_IA32_SYSENTER_EIP:
1000                 /* Fast syscall setup is all done in hypercalls, so
1001                    these are all ignored.  Stub them out here to stop
1002                    Xen console noise. */
1003                 break;
1004
1005         case MSR_IA32_CR_PAT:
1006                 if (smp_processor_id() == 0)
1007                         xen_set_pat(((u64)high << 32) | low);
1008                 break;
1009
1010         default:
1011                 ret = native_write_msr_safe(msr, low, high);
1012         }
1013
1014         return ret;
1015 }
1016
1017 void xen_setup_shared_info(void)
1018 {
1019         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1020                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1021                            xen_start_info->shared_info);
1022
1023                 HYPERVISOR_shared_info =
1024                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1025         } else
1026                 HYPERVISOR_shared_info =
1027                         (struct shared_info *)__va(xen_start_info->shared_info);
1028
1029 #ifndef CONFIG_SMP
1030         /* In UP this is as good a place as any to set up shared info */
1031         xen_setup_vcpu_info_placement();
1032 #endif
1033
1034         xen_setup_mfn_list_list();
1035 }
1036
1037 /* This is called once we have the cpu_possible_mask */
1038 void xen_setup_vcpu_info_placement(void)
1039 {
1040         int cpu;
1041
1042         for_each_possible_cpu(cpu)
1043                 xen_vcpu_setup(cpu);
1044
1045         /* xen_vcpu_setup managed to place the vcpu_info within the
1046            percpu area for all cpus, so make use of it */
1047         if (have_vcpu_info_placement) {
1048                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1049                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1050                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1051                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1052                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1053         }
1054 }
1055
1056 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1057                           unsigned long addr, unsigned len)
1058 {
1059         char *start, *end, *reloc;
1060         unsigned ret;
1061
1062         start = end = reloc = NULL;
1063
1064 #define SITE(op, x)                                                     \
1065         case PARAVIRT_PATCH(op.x):                                      \
1066         if (have_vcpu_info_placement) {                                 \
1067                 start = (char *)xen_##x##_direct;                       \
1068                 end = xen_##x##_direct_end;                             \
1069                 reloc = xen_##x##_direct_reloc;                         \
1070         }                                                               \
1071         goto patch_site
1072
1073         switch (type) {
1074                 SITE(pv_irq_ops, irq_enable);
1075                 SITE(pv_irq_ops, irq_disable);
1076                 SITE(pv_irq_ops, save_fl);
1077                 SITE(pv_irq_ops, restore_fl);
1078 #undef SITE
1079
1080         patch_site:
1081                 if (start == NULL || (end-start) > len)
1082                         goto default_patch;
1083
1084                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1085
1086                 /* Note: because reloc is assigned from something that
1087                    appears to be an array, gcc assumes it's non-null,
1088                    but doesn't know its relationship with start and
1089                    end. */
1090                 if (reloc > start && reloc < end) {
1091                         int reloc_off = reloc - start;
1092                         long *relocp = (long *)(insnbuf + reloc_off);
1093                         long delta = start - (char *)addr;
1094
1095                         *relocp += delta;
1096                 }
1097                 break;
1098
1099         default_patch:
1100         default:
1101                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1102                                              addr, len);
1103                 break;
1104         }
1105
1106         return ret;
1107 }
1108
1109 static const struct pv_info xen_info __initconst = {
1110         .paravirt_enabled = 1,
1111         .shared_kernel_pmd = 0,
1112
1113 #ifdef CONFIG_X86_64
1114         .extra_user_64bit_cs = FLAT_USER_CS64,
1115 #endif
1116
1117         .name = "Xen",
1118 };
1119
1120 static const struct pv_init_ops xen_init_ops __initconst = {
1121         .patch = xen_patch,
1122 };
1123
1124 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1125         .cpuid = xen_cpuid,
1126
1127         .set_debugreg = xen_set_debugreg,
1128         .get_debugreg = xen_get_debugreg,
1129
1130         .clts = xen_clts,
1131
1132         .read_cr0 = xen_read_cr0,
1133         .write_cr0 = xen_write_cr0,
1134
1135         .read_cr4 = native_read_cr4,
1136         .read_cr4_safe = native_read_cr4_safe,
1137         .write_cr4 = xen_write_cr4,
1138
1139 #ifdef CONFIG_X86_64
1140         .read_cr8 = xen_read_cr8,
1141         .write_cr8 = xen_write_cr8,
1142 #endif
1143
1144         .wbinvd = native_wbinvd,
1145
1146         .read_msr = native_read_msr_safe,
1147         .rdmsr_regs = native_rdmsr_safe_regs,
1148         .write_msr = xen_write_msr_safe,
1149         .wrmsr_regs = native_wrmsr_safe_regs,
1150
1151         .read_tsc = native_read_tsc,
1152         .read_pmc = native_read_pmc,
1153
1154         .read_tscp = native_read_tscp,
1155
1156         .iret = xen_iret,
1157         .irq_enable_sysexit = xen_sysexit,
1158 #ifdef CONFIG_X86_64
1159         .usergs_sysret32 = xen_sysret32,
1160         .usergs_sysret64 = xen_sysret64,
1161 #endif
1162
1163         .load_tr_desc = paravirt_nop,
1164         .set_ldt = xen_set_ldt,
1165         .load_gdt = xen_load_gdt,
1166         .load_idt = xen_load_idt,
1167         .load_tls = xen_load_tls,
1168 #ifdef CONFIG_X86_64
1169         .load_gs_index = xen_load_gs_index,
1170 #endif
1171
1172         .alloc_ldt = xen_alloc_ldt,
1173         .free_ldt = xen_free_ldt,
1174
1175         .store_gdt = native_store_gdt,
1176         .store_idt = native_store_idt,
1177         .store_tr = xen_store_tr,
1178
1179         .write_ldt_entry = xen_write_ldt_entry,
1180         .write_gdt_entry = xen_write_gdt_entry,
1181         .write_idt_entry = xen_write_idt_entry,
1182         .load_sp0 = xen_load_sp0,
1183
1184         .set_iopl_mask = xen_set_iopl_mask,
1185         .io_delay = xen_io_delay,
1186
1187         /* Xen takes care of %gs when switching to usermode for us */
1188         .swapgs = paravirt_nop,
1189
1190         .start_context_switch = paravirt_start_context_switch,
1191         .end_context_switch = xen_end_context_switch,
1192 };
1193
1194 static const struct pv_apic_ops xen_apic_ops __initconst = {
1195 #ifdef CONFIG_X86_LOCAL_APIC
1196         .startup_ipi_hook = paravirt_nop,
1197 #endif
1198 };
1199
1200 static void xen_reboot(int reason)
1201 {
1202         struct sched_shutdown r = { .reason = reason };
1203
1204         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1205                 BUG();
1206 }
1207
1208 static void xen_restart(char *msg)
1209 {
1210         xen_reboot(SHUTDOWN_reboot);
1211 }
1212
1213 static void xen_emergency_restart(void)
1214 {
1215         xen_reboot(SHUTDOWN_reboot);
1216 }
1217
1218 static void xen_machine_halt(void)
1219 {
1220         xen_reboot(SHUTDOWN_poweroff);
1221 }
1222
1223 static void xen_machine_power_off(void)
1224 {
1225         if (pm_power_off)
1226                 pm_power_off();
1227         xen_reboot(SHUTDOWN_poweroff);
1228 }
1229
1230 static void xen_crash_shutdown(struct pt_regs *regs)
1231 {
1232         xen_reboot(SHUTDOWN_crash);
1233 }
1234
1235 static int
1236 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1237 {
1238         xen_reboot(SHUTDOWN_crash);
1239         return NOTIFY_DONE;
1240 }
1241
1242 static struct notifier_block xen_panic_block = {
1243         .notifier_call= xen_panic_event,
1244 };
1245
1246 int xen_panic_handler_init(void)
1247 {
1248         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1249         return 0;
1250 }
1251
1252 static const struct machine_ops xen_machine_ops __initconst = {
1253         .restart = xen_restart,
1254         .halt = xen_machine_halt,
1255         .power_off = xen_machine_power_off,
1256         .shutdown = xen_machine_halt,
1257         .crash_shutdown = xen_crash_shutdown,
1258         .emergency_restart = xen_emergency_restart,
1259 };
1260
1261 /*
1262  * Set up the GDT and segment registers for -fstack-protector.  Until
1263  * we do this, we have to be careful not to call any stack-protected
1264  * function, which is most of the kernel.
1265  */
1266 static void __init xen_setup_stackprotector(void)
1267 {
1268         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1269         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1270
1271         setup_stack_canary_segment(0);
1272         switch_to_new_gdt(0);
1273
1274         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1275         pv_cpu_ops.load_gdt = xen_load_gdt;
1276 }
1277
1278 /* First C function to be called on Xen boot */
1279 asmlinkage void __init xen_start_kernel(void)
1280 {
1281         struct physdev_set_iopl set_iopl;
1282         int rc;
1283         pgd_t *pgd;
1284
1285         if (!xen_start_info)
1286                 return;
1287
1288         xen_domain_type = XEN_PV_DOMAIN;
1289
1290         xen_setup_machphys_mapping();
1291
1292         /* Install Xen paravirt ops */
1293         pv_info = xen_info;
1294         pv_init_ops = xen_init_ops;
1295         pv_cpu_ops = xen_cpu_ops;
1296         pv_apic_ops = xen_apic_ops;
1297
1298         x86_init.resources.memory_setup = xen_memory_setup;
1299         x86_init.oem.arch_setup = xen_arch_setup;
1300         x86_init.oem.banner = xen_banner;
1301
1302         xen_init_time_ops();
1303
1304         /*
1305          * Set up some pagetable state before starting to set any ptes.
1306          */
1307
1308         xen_init_mmu_ops();
1309
1310         /* Prevent unwanted bits from being set in PTEs. */
1311         __supported_pte_mask &= ~_PAGE_GLOBAL;
1312 #if 0
1313         if (!xen_initial_domain())
1314 #endif
1315                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1316
1317         __supported_pte_mask |= _PAGE_IOMAP;
1318
1319         /*
1320          * Prevent page tables from being allocated in highmem, even
1321          * if CONFIG_HIGHPTE is enabled.
1322          */
1323         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1324
1325         /* Work out if we support NX */
1326         x86_configure_nx();
1327
1328         xen_setup_features();
1329
1330         /* Get mfn list */
1331         if (!xen_feature(XENFEAT_auto_translated_physmap))
1332                 xen_build_dynamic_phys_to_machine();
1333
1334         /*
1335          * Set up kernel GDT and segment registers, mainly so that
1336          * -fstack-protector code can be executed.
1337          */
1338         xen_setup_stackprotector();
1339
1340         xen_init_irq_ops();
1341         xen_init_cpuid_mask();
1342
1343 #ifdef CONFIG_X86_LOCAL_APIC
1344         /*
1345          * set up the basic apic ops.
1346          */
1347         set_xen_basic_apic_ops();
1348 #endif
1349
1350         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1351                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1352                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1353         }
1354
1355         machine_ops = xen_machine_ops;
1356
1357         /*
1358          * The only reliable way to retain the initial address of the
1359          * percpu gdt_page is to remember it here, so we can go and
1360          * mark it RW later, when the initial percpu area is freed.
1361          */
1362         xen_initial_gdt = &per_cpu(gdt_page, 0);
1363
1364         xen_smp_init();
1365
1366 #ifdef CONFIG_ACPI_NUMA
1367         /*
1368          * The pages we from Xen are not related to machine pages, so
1369          * any NUMA information the kernel tries to get from ACPI will
1370          * be meaningless.  Prevent it from trying.
1371          */
1372         acpi_numa = -1;
1373 #endif
1374 #ifdef CONFIG_X86_PAT
1375         /*
1376          * For right now disable the PAT. We should remove this once
1377          * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1378          * (xen/pat: Disable PAT support for now) is reverted.
1379          */
1380         pat_enabled = 0;
1381 #endif
1382         pgd = (pgd_t *)xen_start_info->pt_base;
1383
1384         /* Don't do the full vcpu_info placement stuff until we have a
1385            possible map and a non-dummy shared_info. */
1386         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1387
1388         local_irq_disable();
1389         early_boot_irqs_disabled = true;
1390
1391         xen_raw_console_write("mapping kernel into physical memory\n");
1392         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1393         xen_ident_map_ISA();
1394
1395         /* Allocate and initialize top and mid mfn levels for p2m structure */
1396         xen_build_mfn_list_list();
1397
1398         /* keep using Xen gdt for now; no urgent need to change it */
1399
1400 #ifdef CONFIG_X86_32
1401         pv_info.kernel_rpl = 1;
1402         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1403                 pv_info.kernel_rpl = 0;
1404 #else
1405         pv_info.kernel_rpl = 0;
1406 #endif
1407         /* set the limit of our address space */
1408         xen_reserve_top();
1409
1410         /* We used to do this in xen_arch_setup, but that is too late on AMD
1411          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1412          * which pokes 0xcf8 port.
1413          */
1414         set_iopl.iopl = 1;
1415         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1416         if (rc != 0)
1417                 xen_raw_printk("physdev_op failed %d\n", rc);
1418
1419 #ifdef CONFIG_X86_32
1420         /* set up basic CPUID stuff */
1421         cpu_detect(&new_cpu_data);
1422         new_cpu_data.hard_math = 1;
1423         new_cpu_data.wp_works_ok = 1;
1424         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1425 #endif
1426
1427         /* Poke various useful things into boot_params */
1428         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1429         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1430                 ? __pa(xen_start_info->mod_start) : 0;
1431         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1432         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1433
1434         if (!xen_initial_domain()) {
1435                 add_preferred_console("xenboot", 0, NULL);
1436                 add_preferred_console("tty", 0, NULL);
1437                 add_preferred_console("hvc", 0, NULL);
1438                 if (pci_xen)
1439                         x86_init.pci.arch_init = pci_xen_init;
1440         } else {
1441                 const struct dom0_vga_console_info *info =
1442                         (void *)((char *)xen_start_info +
1443                                  xen_start_info->console.dom0.info_off);
1444
1445                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1446                 xen_start_info->console.domU.mfn = 0;
1447                 xen_start_info->console.domU.evtchn = 0;
1448
1449                 /* Make sure ACS will be enabled */
1450                 pci_request_acs();
1451         }
1452 #ifdef CONFIG_PCI
1453         /* PCI BIOS service won't work from a PV guest. */
1454         pci_probe &= ~PCI_PROBE_BIOS;
1455 #endif
1456         xen_raw_console_write("about to get started...\n");
1457
1458         xen_setup_runstate_info(0);
1459
1460         /* Start the world */
1461 #ifdef CONFIG_X86_32
1462         i386_start_kernel();
1463 #else
1464         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1465 #endif
1466 }
1467
1468 static int init_hvm_pv_info(int *major, int *minor)
1469 {
1470         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1471         u64 pfn;
1472
1473         base = xen_cpuid_base();
1474         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1475
1476         *major = eax >> 16;
1477         *minor = eax & 0xffff;
1478         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1479
1480         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1481
1482         pfn = __pa(hypercall_page);
1483         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1484
1485         xen_setup_features();
1486
1487         pv_info.name = "Xen HVM";
1488
1489         xen_domain_type = XEN_HVM_DOMAIN;
1490
1491         return 0;
1492 }
1493
1494 void __ref xen_hvm_init_shared_info(void)
1495 {
1496         int cpu;
1497         struct xen_add_to_physmap xatp;
1498         static struct shared_info *shared_info_page = 0;
1499
1500         if (!shared_info_page)
1501                 shared_info_page = (struct shared_info *)
1502                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1503         xatp.domid = DOMID_SELF;
1504         xatp.idx = 0;
1505         xatp.space = XENMAPSPACE_shared_info;
1506         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1507         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1508                 BUG();
1509
1510         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1511
1512         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1513          * page, we use it in the event channel upcall and in some pvclock
1514          * related functions. We don't need the vcpu_info placement
1515          * optimizations because we don't use any pv_mmu or pv_irq op on
1516          * HVM.
1517          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1518          * online but xen_hvm_init_shared_info is run at resume time too and
1519          * in that case multiple vcpus might be online. */
1520         for_each_online_cpu(cpu) {
1521                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1522         }
1523 }
1524
1525 #ifdef CONFIG_XEN_PVHVM
1526 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1527                                     unsigned long action, void *hcpu)
1528 {
1529         int cpu = (long)hcpu;
1530         switch (action) {
1531         case CPU_UP_PREPARE:
1532                 xen_vcpu_setup(cpu);
1533                 if (xen_have_vector_callback) {
1534                         xen_init_lock_cpu(cpu);
1535                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1536                                 xen_setup_timer(cpu);
1537                 }
1538                 break;
1539         default:
1540                 break;
1541         }
1542         return NOTIFY_OK;
1543 }
1544
1545 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1546         .notifier_call  = xen_hvm_cpu_notify,
1547 };
1548
1549 static void __init xen_hvm_guest_init(void)
1550 {
1551         int r;
1552         int major, minor;
1553
1554         r = init_hvm_pv_info(&major, &minor);
1555         if (r < 0)
1556                 return;
1557
1558         xen_hvm_init_shared_info();
1559
1560         if (xen_feature(XENFEAT_hvm_callback_vector))
1561                 xen_have_vector_callback = 1;
1562         xen_hvm_smp_init();
1563         register_cpu_notifier(&xen_hvm_cpu_notifier);
1564         xen_unplug_emulated_devices();
1565         x86_init.irqs.intr_init = xen_init_IRQ;
1566         xen_hvm_init_time_ops();
1567         xen_hvm_init_mmu_ops();
1568 }
1569
1570 static bool __init xen_hvm_platform(void)
1571 {
1572         if (xen_pv_domain())
1573                 return false;
1574
1575         if (!xen_cpuid_base())
1576                 return false;
1577
1578         return true;
1579 }
1580
1581 bool xen_hvm_need_lapic(void)
1582 {
1583         if (xen_pv_domain())
1584                 return false;
1585         if (!xen_hvm_domain())
1586                 return false;
1587         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1588                 return false;
1589         return true;
1590 }
1591 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1592
1593 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1594         .name                   = "Xen HVM",
1595         .detect                 = xen_hvm_platform,
1596         .init_platform          = xen_hvm_guest_init,
1597 };
1598 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1599 #endif