]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/enlighten.c
b9a227284149b4227904d6066dabc391822c7875
[karo-tx-linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/nmi.h>
44 #include <xen/interface/xen-mca.h>
45 #include <xen/features.h>
46 #include <xen/page.h>
47 #include <xen/hvm.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/pat.h>
74
75 #ifdef CONFIG_ACPI
76 #include <linux/acpi.h>
77 #include <asm/acpi.h>
78 #include <acpi/pdc_intel.h>
79 #include <acpi/processor.h>
80 #include <xen/interface/platform.h>
81 #endif
82
83 #include "xen-ops.h"
84 #include "mmu.h"
85 #include "smp.h"
86 #include "multicalls.h"
87
88 EXPORT_SYMBOL_GPL(hypercall_page);
89
90 /*
91  * Pointer to the xen_vcpu_info structure or
92  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
93  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
94  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
95  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
96  * acknowledge pending events.
97  * Also more subtly it is used by the patched version of irq enable/disable
98  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
99  *
100  * The desire to be able to do those mask/unmask operations as a single
101  * instruction by using the per-cpu offset held in %gs is the real reason
102  * vcpu info is in a per-cpu pointer and the original reason for this
103  * hypercall.
104  *
105  */
106 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
107
108 /*
109  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
110  * hypercall. This can be used both in PV and PVHVM mode. The structure
111  * overrides the default per_cpu(xen_vcpu, cpu) value.
112  */
113 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
114
115 enum xen_domain_type xen_domain_type = XEN_NATIVE;
116 EXPORT_SYMBOL_GPL(xen_domain_type);
117
118 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
119 EXPORT_SYMBOL(machine_to_phys_mapping);
120 unsigned long  machine_to_phys_nr;
121 EXPORT_SYMBOL(machine_to_phys_nr);
122
123 struct start_info *xen_start_info;
124 EXPORT_SYMBOL_GPL(xen_start_info);
125
126 struct shared_info xen_dummy_shared_info;
127
128 void *xen_initial_gdt;
129
130 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
131 __read_mostly int xen_have_vector_callback;
132 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
133
134 /*
135  * Point at some empty memory to start with. We map the real shared_info
136  * page as soon as fixmap is up and running.
137  */
138 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
139
140 /*
141  * Flag to determine whether vcpu info placement is available on all
142  * VCPUs.  We assume it is to start with, and then set it to zero on
143  * the first failure.  This is because it can succeed on some VCPUs
144  * and not others, since it can involve hypervisor memory allocation,
145  * or because the guest failed to guarantee all the appropriate
146  * constraints on all VCPUs (ie buffer can't cross a page boundary).
147  *
148  * Note that any particular CPU may be using a placed vcpu structure,
149  * but we can only optimise if the all are.
150  *
151  * 0: not available, 1: available
152  */
153 static int have_vcpu_info_placement = 1;
154
155 struct tls_descs {
156         struct desc_struct desc[3];
157 };
158
159 /*
160  * Updating the 3 TLS descriptors in the GDT on every task switch is
161  * surprisingly expensive so we avoid updating them if they haven't
162  * changed.  Since Xen writes different descriptors than the one
163  * passed in the update_descriptor hypercall we keep shadow copies to
164  * compare against.
165  */
166 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
167
168 static void clamp_max_cpus(void)
169 {
170 #ifdef CONFIG_SMP
171         if (setup_max_cpus > MAX_VIRT_CPUS)
172                 setup_max_cpus = MAX_VIRT_CPUS;
173 #endif
174 }
175
176 static void xen_vcpu_setup(int cpu)
177 {
178         struct vcpu_register_vcpu_info info;
179         int err;
180         struct vcpu_info *vcpup;
181
182         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
183
184         /*
185          * This path is called twice on PVHVM - first during bootup via
186          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
187          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
188          * As we can only do the VCPUOP_register_vcpu_info once lets
189          * not over-write its result.
190          *
191          * For PV it is called during restore (xen_vcpu_restore) and bootup
192          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
193          * use this function.
194          */
195         if (xen_hvm_domain()) {
196                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
197                         return;
198         }
199         if (cpu < MAX_VIRT_CPUS)
200                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
201
202         if (!have_vcpu_info_placement) {
203                 if (cpu >= MAX_VIRT_CPUS)
204                         clamp_max_cpus();
205                 return;
206         }
207
208         vcpup = &per_cpu(xen_vcpu_info, cpu);
209         info.mfn = arbitrary_virt_to_mfn(vcpup);
210         info.offset = offset_in_page(vcpup);
211
212         /* Check to see if the hypervisor will put the vcpu_info
213            structure where we want it, which allows direct access via
214            a percpu-variable.
215            N.B. This hypercall can _only_ be called once per CPU. Subsequent
216            calls will error out with -EINVAL. This is due to the fact that
217            hypervisor has no unregister variant and this hypercall does not
218            allow to over-write info.mfn and info.offset.
219          */
220         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
221
222         if (err) {
223                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
224                 have_vcpu_info_placement = 0;
225                 clamp_max_cpus();
226         } else {
227                 /* This cpu is using the registered vcpu info, even if
228                    later ones fail to. */
229                 per_cpu(xen_vcpu, cpu) = vcpup;
230         }
231 }
232
233 /*
234  * On restore, set the vcpu placement up again.
235  * If it fails, then we're in a bad state, since
236  * we can't back out from using it...
237  */
238 void xen_vcpu_restore(void)
239 {
240         int cpu;
241
242         for_each_possible_cpu(cpu) {
243                 bool other_cpu = (cpu != smp_processor_id());
244                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
245
246                 if (other_cpu && is_up &&
247                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
248                         BUG();
249
250                 xen_setup_runstate_info(cpu);
251
252                 if (have_vcpu_info_placement)
253                         xen_vcpu_setup(cpu);
254
255                 if (other_cpu && is_up &&
256                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
257                         BUG();
258         }
259 }
260
261 static void __init xen_banner(void)
262 {
263         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
264         struct xen_extraversion extra;
265         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
266
267         pr_info("Booting paravirtualized kernel %son %s\n",
268                 xen_feature(XENFEAT_auto_translated_physmap) ?
269                         "with PVH extensions " : "", pv_info.name);
270         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
271                version >> 16, version & 0xffff, extra.extraversion,
272                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
273 }
274 /* Check if running on Xen version (major, minor) or later */
275 bool
276 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
277 {
278         unsigned int version;
279
280         if (!xen_domain())
281                 return false;
282
283         version = HYPERVISOR_xen_version(XENVER_version, NULL);
284         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
285                 ((version >> 16) > major))
286                 return true;
287         return false;
288 }
289
290 #define CPUID_THERM_POWER_LEAF 6
291 #define APERFMPERF_PRESENT 0
292
293 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
294 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
295
296 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
297 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
298 static __read_mostly unsigned int cpuid_leaf5_edx_val;
299
300 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
301                       unsigned int *cx, unsigned int *dx)
302 {
303         unsigned maskebx = ~0;
304         unsigned maskecx = ~0;
305         unsigned maskedx = ~0;
306         unsigned setecx = 0;
307         /*
308          * Mask out inconvenient features, to try and disable as many
309          * unsupported kernel subsystems as possible.
310          */
311         switch (*ax) {
312         case 1:
313                 maskecx = cpuid_leaf1_ecx_mask;
314                 setecx = cpuid_leaf1_ecx_set_mask;
315                 maskedx = cpuid_leaf1_edx_mask;
316                 break;
317
318         case CPUID_MWAIT_LEAF:
319                 /* Synthesize the values.. */
320                 *ax = 0;
321                 *bx = 0;
322                 *cx = cpuid_leaf5_ecx_val;
323                 *dx = cpuid_leaf5_edx_val;
324                 return;
325
326         case CPUID_THERM_POWER_LEAF:
327                 /* Disabling APERFMPERF for kernel usage */
328                 maskecx = ~(1 << APERFMPERF_PRESENT);
329                 break;
330
331         case 0xb:
332                 /* Suppress extended topology stuff */
333                 maskebx = 0;
334                 break;
335         }
336
337         asm(XEN_EMULATE_PREFIX "cpuid"
338                 : "=a" (*ax),
339                   "=b" (*bx),
340                   "=c" (*cx),
341                   "=d" (*dx)
342                 : "0" (*ax), "2" (*cx));
343
344         *bx &= maskebx;
345         *cx &= maskecx;
346         *cx |= setecx;
347         *dx &= maskedx;
348
349 }
350
351 static bool __init xen_check_mwait(void)
352 {
353 #ifdef CONFIG_ACPI
354         struct xen_platform_op op = {
355                 .cmd                    = XENPF_set_processor_pminfo,
356                 .u.set_pminfo.id        = -1,
357                 .u.set_pminfo.type      = XEN_PM_PDC,
358         };
359         uint32_t buf[3];
360         unsigned int ax, bx, cx, dx;
361         unsigned int mwait_mask;
362
363         /* We need to determine whether it is OK to expose the MWAIT
364          * capability to the kernel to harvest deeper than C3 states from ACPI
365          * _CST using the processor_harvest_xen.c module. For this to work, we
366          * need to gather the MWAIT_LEAF values (which the cstate.c code
367          * checks against). The hypervisor won't expose the MWAIT flag because
368          * it would break backwards compatibility; so we will find out directly
369          * from the hardware and hypercall.
370          */
371         if (!xen_initial_domain())
372                 return false;
373
374         /*
375          * When running under platform earlier than Xen4.2, do not expose
376          * mwait, to avoid the risk of loading native acpi pad driver
377          */
378         if (!xen_running_on_version_or_later(4, 2))
379                 return false;
380
381         ax = 1;
382         cx = 0;
383
384         native_cpuid(&ax, &bx, &cx, &dx);
385
386         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
387                      (1 << (X86_FEATURE_MWAIT % 32));
388
389         if ((cx & mwait_mask) != mwait_mask)
390                 return false;
391
392         /* We need to emulate the MWAIT_LEAF and for that we need both
393          * ecx and edx. The hypercall provides only partial information.
394          */
395
396         ax = CPUID_MWAIT_LEAF;
397         bx = 0;
398         cx = 0;
399         dx = 0;
400
401         native_cpuid(&ax, &bx, &cx, &dx);
402
403         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
404          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
405          */
406         buf[0] = ACPI_PDC_REVISION_ID;
407         buf[1] = 1;
408         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
409
410         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
411
412         if ((HYPERVISOR_dom0_op(&op) == 0) &&
413             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
414                 cpuid_leaf5_ecx_val = cx;
415                 cpuid_leaf5_edx_val = dx;
416         }
417         return true;
418 #else
419         return false;
420 #endif
421 }
422 static void __init xen_init_cpuid_mask(void)
423 {
424         unsigned int ax, bx, cx, dx;
425         unsigned int xsave_mask;
426
427         cpuid_leaf1_edx_mask =
428                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
429                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
430
431         if (!xen_initial_domain())
432                 cpuid_leaf1_edx_mask &=
433                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
434
435         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
436
437         ax = 1;
438         cx = 0;
439         cpuid(1, &ax, &bx, &cx, &dx);
440
441         xsave_mask =
442                 (1 << (X86_FEATURE_XSAVE % 32)) |
443                 (1 << (X86_FEATURE_OSXSAVE % 32));
444
445         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
446         if ((cx & xsave_mask) != xsave_mask)
447                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
448         if (xen_check_mwait())
449                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
450 }
451
452 static void xen_set_debugreg(int reg, unsigned long val)
453 {
454         HYPERVISOR_set_debugreg(reg, val);
455 }
456
457 static unsigned long xen_get_debugreg(int reg)
458 {
459         return HYPERVISOR_get_debugreg(reg);
460 }
461
462 static void xen_end_context_switch(struct task_struct *next)
463 {
464         xen_mc_flush();
465         paravirt_end_context_switch(next);
466 }
467
468 static unsigned long xen_store_tr(void)
469 {
470         return 0;
471 }
472
473 /*
474  * Set the page permissions for a particular virtual address.  If the
475  * address is a vmalloc mapping (or other non-linear mapping), then
476  * find the linear mapping of the page and also set its protections to
477  * match.
478  */
479 static void set_aliased_prot(void *v, pgprot_t prot)
480 {
481         int level;
482         pte_t *ptep;
483         pte_t pte;
484         unsigned long pfn;
485         struct page *page;
486
487         ptep = lookup_address((unsigned long)v, &level);
488         BUG_ON(ptep == NULL);
489
490         pfn = pte_pfn(*ptep);
491         page = pfn_to_page(pfn);
492
493         pte = pfn_pte(pfn, prot);
494
495         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
496                 BUG();
497
498         if (!PageHighMem(page)) {
499                 void *av = __va(PFN_PHYS(pfn));
500
501                 if (av != v)
502                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
503                                 BUG();
504         } else
505                 kmap_flush_unused();
506 }
507
508 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
509 {
510         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
511         int i;
512
513         for(i = 0; i < entries; i += entries_per_page)
514                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
515 }
516
517 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
518 {
519         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
520         int i;
521
522         for(i = 0; i < entries; i += entries_per_page)
523                 set_aliased_prot(ldt + i, PAGE_KERNEL);
524 }
525
526 static void xen_set_ldt(const void *addr, unsigned entries)
527 {
528         struct mmuext_op *op;
529         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
530
531         trace_xen_cpu_set_ldt(addr, entries);
532
533         op = mcs.args;
534         op->cmd = MMUEXT_SET_LDT;
535         op->arg1.linear_addr = (unsigned long)addr;
536         op->arg2.nr_ents = entries;
537
538         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
539
540         xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542
543 static void xen_load_gdt(const struct desc_ptr *dtr)
544 {
545         unsigned long va = dtr->address;
546         unsigned int size = dtr->size + 1;
547         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
548         unsigned long frames[pages];
549         int f;
550
551         /*
552          * A GDT can be up to 64k in size, which corresponds to 8192
553          * 8-byte entries, or 16 4k pages..
554          */
555
556         BUG_ON(size > 65536);
557         BUG_ON(va & ~PAGE_MASK);
558
559         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
560                 int level;
561                 pte_t *ptep;
562                 unsigned long pfn, mfn;
563                 void *virt;
564
565                 /*
566                  * The GDT is per-cpu and is in the percpu data area.
567                  * That can be virtually mapped, so we need to do a
568                  * page-walk to get the underlying MFN for the
569                  * hypercall.  The page can also be in the kernel's
570                  * linear range, so we need to RO that mapping too.
571                  */
572                 ptep = lookup_address(va, &level);
573                 BUG_ON(ptep == NULL);
574
575                 pfn = pte_pfn(*ptep);
576                 mfn = pfn_to_mfn(pfn);
577                 virt = __va(PFN_PHYS(pfn));
578
579                 frames[f] = mfn;
580
581                 make_lowmem_page_readonly((void *)va);
582                 make_lowmem_page_readonly(virt);
583         }
584
585         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
586                 BUG();
587 }
588
589 /*
590  * load_gdt for early boot, when the gdt is only mapped once
591  */
592 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
593 {
594         unsigned long va = dtr->address;
595         unsigned int size = dtr->size + 1;
596         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
597         unsigned long frames[pages];
598         int f;
599
600         /*
601          * A GDT can be up to 64k in size, which corresponds to 8192
602          * 8-byte entries, or 16 4k pages..
603          */
604
605         BUG_ON(size > 65536);
606         BUG_ON(va & ~PAGE_MASK);
607
608         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
609                 pte_t pte;
610                 unsigned long pfn, mfn;
611
612                 pfn = virt_to_pfn(va);
613                 mfn = pfn_to_mfn(pfn);
614
615                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
616
617                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
618                         BUG();
619
620                 frames[f] = mfn;
621         }
622
623         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
624                 BUG();
625 }
626
627 static inline bool desc_equal(const struct desc_struct *d1,
628                               const struct desc_struct *d2)
629 {
630         return d1->a == d2->a && d1->b == d2->b;
631 }
632
633 static void load_TLS_descriptor(struct thread_struct *t,
634                                 unsigned int cpu, unsigned int i)
635 {
636         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
637         struct desc_struct *gdt;
638         xmaddr_t maddr;
639         struct multicall_space mc;
640
641         if (desc_equal(shadow, &t->tls_array[i]))
642                 return;
643
644         *shadow = t->tls_array[i];
645
646         gdt = get_cpu_gdt_table(cpu);
647         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
648         mc = __xen_mc_entry(0);
649
650         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
651 }
652
653 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
654 {
655         /*
656          * XXX sleazy hack: If we're being called in a lazy-cpu zone
657          * and lazy gs handling is enabled, it means we're in a
658          * context switch, and %gs has just been saved.  This means we
659          * can zero it out to prevent faults on exit from the
660          * hypervisor if the next process has no %gs.  Either way, it
661          * has been saved, and the new value will get loaded properly.
662          * This will go away as soon as Xen has been modified to not
663          * save/restore %gs for normal hypercalls.
664          *
665          * On x86_64, this hack is not used for %gs, because gs points
666          * to KERNEL_GS_BASE (and uses it for PDA references), so we
667          * must not zero %gs on x86_64
668          *
669          * For x86_64, we need to zero %fs, otherwise we may get an
670          * exception between the new %fs descriptor being loaded and
671          * %fs being effectively cleared at __switch_to().
672          */
673         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
674 #ifdef CONFIG_X86_32
675                 lazy_load_gs(0);
676 #else
677                 loadsegment(fs, 0);
678 #endif
679         }
680
681         xen_mc_batch();
682
683         load_TLS_descriptor(t, cpu, 0);
684         load_TLS_descriptor(t, cpu, 1);
685         load_TLS_descriptor(t, cpu, 2);
686
687         xen_mc_issue(PARAVIRT_LAZY_CPU);
688 }
689
690 #ifdef CONFIG_X86_64
691 static void xen_load_gs_index(unsigned int idx)
692 {
693         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
694                 BUG();
695 }
696 #endif
697
698 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
699                                 const void *ptr)
700 {
701         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
702         u64 entry = *(u64 *)ptr;
703
704         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
705
706         preempt_disable();
707
708         xen_mc_flush();
709         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
710                 BUG();
711
712         preempt_enable();
713 }
714
715 static int cvt_gate_to_trap(int vector, const gate_desc *val,
716                             struct trap_info *info)
717 {
718         unsigned long addr;
719
720         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
721                 return 0;
722
723         info->vector = vector;
724
725         addr = gate_offset(*val);
726 #ifdef CONFIG_X86_64
727         /*
728          * Look for known traps using IST, and substitute them
729          * appropriately.  The debugger ones are the only ones we care
730          * about.  Xen will handle faults like double_fault,
731          * so we should never see them.  Warn if
732          * there's an unexpected IST-using fault handler.
733          */
734         if (addr == (unsigned long)debug)
735                 addr = (unsigned long)xen_debug;
736         else if (addr == (unsigned long)int3)
737                 addr = (unsigned long)xen_int3;
738         else if (addr == (unsigned long)stack_segment)
739                 addr = (unsigned long)xen_stack_segment;
740         else if (addr == (unsigned long)double_fault) {
741                 /* Don't need to handle these */
742                 return 0;
743 #ifdef CONFIG_X86_MCE
744         } else if (addr == (unsigned long)machine_check) {
745                 /*
746                  * when xen hypervisor inject vMCE to guest,
747                  * use native mce handler to handle it
748                  */
749                 ;
750 #endif
751         } else if (addr == (unsigned long)nmi)
752                 /*
753                  * Use the native version as well.
754                  */
755                 ;
756         else {
757                 /* Some other trap using IST? */
758                 if (WARN_ON(val->ist != 0))
759                         return 0;
760         }
761 #endif  /* CONFIG_X86_64 */
762         info->address = addr;
763
764         info->cs = gate_segment(*val);
765         info->flags = val->dpl;
766         /* interrupt gates clear IF */
767         if (val->type == GATE_INTERRUPT)
768                 info->flags |= 1 << 2;
769
770         return 1;
771 }
772
773 /* Locations of each CPU's IDT */
774 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
775
776 /* Set an IDT entry.  If the entry is part of the current IDT, then
777    also update Xen. */
778 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
779 {
780         unsigned long p = (unsigned long)&dt[entrynum];
781         unsigned long start, end;
782
783         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
784
785         preempt_disable();
786
787         start = __this_cpu_read(idt_desc.address);
788         end = start + __this_cpu_read(idt_desc.size) + 1;
789
790         xen_mc_flush();
791
792         native_write_idt_entry(dt, entrynum, g);
793
794         if (p >= start && (p + 8) <= end) {
795                 struct trap_info info[2];
796
797                 info[1].address = 0;
798
799                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
800                         if (HYPERVISOR_set_trap_table(info))
801                                 BUG();
802         }
803
804         preempt_enable();
805 }
806
807 static void xen_convert_trap_info(const struct desc_ptr *desc,
808                                   struct trap_info *traps)
809 {
810         unsigned in, out, count;
811
812         count = (desc->size+1) / sizeof(gate_desc);
813         BUG_ON(count > 256);
814
815         for (in = out = 0; in < count; in++) {
816                 gate_desc *entry = (gate_desc*)(desc->address) + in;
817
818                 if (cvt_gate_to_trap(in, entry, &traps[out]))
819                         out++;
820         }
821         traps[out].address = 0;
822 }
823
824 void xen_copy_trap_info(struct trap_info *traps)
825 {
826         const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
827
828         xen_convert_trap_info(desc, traps);
829 }
830
831 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
832    hold a spinlock to protect the static traps[] array (static because
833    it avoids allocation, and saves stack space). */
834 static void xen_load_idt(const struct desc_ptr *desc)
835 {
836         static DEFINE_SPINLOCK(lock);
837         static struct trap_info traps[257];
838
839         trace_xen_cpu_load_idt(desc);
840
841         spin_lock(&lock);
842
843         memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
844
845         xen_convert_trap_info(desc, traps);
846
847         xen_mc_flush();
848         if (HYPERVISOR_set_trap_table(traps))
849                 BUG();
850
851         spin_unlock(&lock);
852 }
853
854 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
855    they're handled differently. */
856 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
857                                 const void *desc, int type)
858 {
859         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
860
861         preempt_disable();
862
863         switch (type) {
864         case DESC_LDT:
865         case DESC_TSS:
866                 /* ignore */
867                 break;
868
869         default: {
870                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
871
872                 xen_mc_flush();
873                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
874                         BUG();
875         }
876
877         }
878
879         preempt_enable();
880 }
881
882 /*
883  * Version of write_gdt_entry for use at early boot-time needed to
884  * update an entry as simply as possible.
885  */
886 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
887                                             const void *desc, int type)
888 {
889         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
890
891         switch (type) {
892         case DESC_LDT:
893         case DESC_TSS:
894                 /* ignore */
895                 break;
896
897         default: {
898                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
899
900                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
901                         dt[entry] = *(struct desc_struct *)desc;
902         }
903
904         }
905 }
906
907 static void xen_load_sp0(struct tss_struct *tss,
908                          struct thread_struct *thread)
909 {
910         struct multicall_space mcs;
911
912         mcs = xen_mc_entry(0);
913         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
914         xen_mc_issue(PARAVIRT_LAZY_CPU);
915 }
916
917 static void xen_set_iopl_mask(unsigned mask)
918 {
919         struct physdev_set_iopl set_iopl;
920
921         /* Force the change at ring 0. */
922         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
923         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
924 }
925
926 static void xen_io_delay(void)
927 {
928 }
929
930 static void xen_clts(void)
931 {
932         struct multicall_space mcs;
933
934         mcs = xen_mc_entry(0);
935
936         MULTI_fpu_taskswitch(mcs.mc, 0);
937
938         xen_mc_issue(PARAVIRT_LAZY_CPU);
939 }
940
941 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
942
943 static unsigned long xen_read_cr0(void)
944 {
945         unsigned long cr0 = this_cpu_read(xen_cr0_value);
946
947         if (unlikely(cr0 == 0)) {
948                 cr0 = native_read_cr0();
949                 this_cpu_write(xen_cr0_value, cr0);
950         }
951
952         return cr0;
953 }
954
955 static void xen_write_cr0(unsigned long cr0)
956 {
957         struct multicall_space mcs;
958
959         this_cpu_write(xen_cr0_value, cr0);
960
961         /* Only pay attention to cr0.TS; everything else is
962            ignored. */
963         mcs = xen_mc_entry(0);
964
965         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
966
967         xen_mc_issue(PARAVIRT_LAZY_CPU);
968 }
969
970 static void xen_write_cr4(unsigned long cr4)
971 {
972         cr4 &= ~X86_CR4_PGE;
973         cr4 &= ~X86_CR4_PSE;
974
975         native_write_cr4(cr4);
976 }
977 #ifdef CONFIG_X86_64
978 static inline unsigned long xen_read_cr8(void)
979 {
980         return 0;
981 }
982 static inline void xen_write_cr8(unsigned long val)
983 {
984         BUG_ON(val);
985 }
986 #endif
987
988 static u64 xen_read_msr_safe(unsigned int msr, int *err)
989 {
990         u64 val;
991
992         val = native_read_msr_safe(msr, err);
993         switch (msr) {
994         case MSR_IA32_APICBASE:
995 #ifdef CONFIG_X86_X2APIC
996                 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
997 #endif
998                         val &= ~X2APIC_ENABLE;
999                 break;
1000         }
1001         return val;
1002 }
1003
1004 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1005 {
1006         int ret;
1007
1008         ret = 0;
1009
1010         switch (msr) {
1011 #ifdef CONFIG_X86_64
1012                 unsigned which;
1013                 u64 base;
1014
1015         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1016         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1017         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1018
1019         set:
1020                 base = ((u64)high << 32) | low;
1021                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1022                         ret = -EIO;
1023                 break;
1024 #endif
1025
1026         case MSR_STAR:
1027         case MSR_CSTAR:
1028         case MSR_LSTAR:
1029         case MSR_SYSCALL_MASK:
1030         case MSR_IA32_SYSENTER_CS:
1031         case MSR_IA32_SYSENTER_ESP:
1032         case MSR_IA32_SYSENTER_EIP:
1033                 /* Fast syscall setup is all done in hypercalls, so
1034                    these are all ignored.  Stub them out here to stop
1035                    Xen console noise. */
1036
1037         default:
1038                 ret = native_write_msr_safe(msr, low, high);
1039         }
1040
1041         return ret;
1042 }
1043
1044 void xen_setup_shared_info(void)
1045 {
1046         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1047                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1048                            xen_start_info->shared_info);
1049
1050                 HYPERVISOR_shared_info =
1051                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1052         } else
1053                 HYPERVISOR_shared_info =
1054                         (struct shared_info *)__va(xen_start_info->shared_info);
1055
1056 #ifndef CONFIG_SMP
1057         /* In UP this is as good a place as any to set up shared info */
1058         xen_setup_vcpu_info_placement();
1059 #endif
1060
1061         xen_setup_mfn_list_list();
1062 }
1063
1064 /* This is called once we have the cpu_possible_mask */
1065 void xen_setup_vcpu_info_placement(void)
1066 {
1067         int cpu;
1068
1069         for_each_possible_cpu(cpu)
1070                 xen_vcpu_setup(cpu);
1071
1072         /* xen_vcpu_setup managed to place the vcpu_info within the
1073          * percpu area for all cpus, so make use of it. Note that for
1074          * PVH we want to use native IRQ mechanism. */
1075         if (have_vcpu_info_placement && !xen_pvh_domain()) {
1076                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1077                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1078                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1079                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1080                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1081         }
1082 }
1083
1084 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1085                           unsigned long addr, unsigned len)
1086 {
1087         char *start, *end, *reloc;
1088         unsigned ret;
1089
1090         start = end = reloc = NULL;
1091
1092 #define SITE(op, x)                                                     \
1093         case PARAVIRT_PATCH(op.x):                                      \
1094         if (have_vcpu_info_placement) {                                 \
1095                 start = (char *)xen_##x##_direct;                       \
1096                 end = xen_##x##_direct_end;                             \
1097                 reloc = xen_##x##_direct_reloc;                         \
1098         }                                                               \
1099         goto patch_site
1100
1101         switch (type) {
1102                 SITE(pv_irq_ops, irq_enable);
1103                 SITE(pv_irq_ops, irq_disable);
1104                 SITE(pv_irq_ops, save_fl);
1105                 SITE(pv_irq_ops, restore_fl);
1106 #undef SITE
1107
1108         patch_site:
1109                 if (start == NULL || (end-start) > len)
1110                         goto default_patch;
1111
1112                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1113
1114                 /* Note: because reloc is assigned from something that
1115                    appears to be an array, gcc assumes it's non-null,
1116                    but doesn't know its relationship with start and
1117                    end. */
1118                 if (reloc > start && reloc < end) {
1119                         int reloc_off = reloc - start;
1120                         long *relocp = (long *)(insnbuf + reloc_off);
1121                         long delta = start - (char *)addr;
1122
1123                         *relocp += delta;
1124                 }
1125                 break;
1126
1127         default_patch:
1128         default:
1129                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1130                                              addr, len);
1131                 break;
1132         }
1133
1134         return ret;
1135 }
1136
1137 static const struct pv_info xen_info __initconst = {
1138         .paravirt_enabled = 1,
1139         .shared_kernel_pmd = 0,
1140
1141 #ifdef CONFIG_X86_64
1142         .extra_user_64bit_cs = FLAT_USER_CS64,
1143 #endif
1144
1145         .name = "Xen",
1146 };
1147
1148 static const struct pv_init_ops xen_init_ops __initconst = {
1149         .patch = xen_patch,
1150 };
1151
1152 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1153         .cpuid = xen_cpuid,
1154
1155         .set_debugreg = xen_set_debugreg,
1156         .get_debugreg = xen_get_debugreg,
1157
1158         .clts = xen_clts,
1159
1160         .read_cr0 = xen_read_cr0,
1161         .write_cr0 = xen_write_cr0,
1162
1163         .read_cr4 = native_read_cr4,
1164         .read_cr4_safe = native_read_cr4_safe,
1165         .write_cr4 = xen_write_cr4,
1166
1167 #ifdef CONFIG_X86_64
1168         .read_cr8 = xen_read_cr8,
1169         .write_cr8 = xen_write_cr8,
1170 #endif
1171
1172         .wbinvd = native_wbinvd,
1173
1174         .read_msr = xen_read_msr_safe,
1175         .write_msr = xen_write_msr_safe,
1176
1177         .read_tsc = native_read_tsc,
1178         .read_pmc = native_read_pmc,
1179
1180         .read_tscp = native_read_tscp,
1181
1182         .iret = xen_iret,
1183         .irq_enable_sysexit = xen_sysexit,
1184 #ifdef CONFIG_X86_64
1185         .usergs_sysret32 = xen_sysret32,
1186         .usergs_sysret64 = xen_sysret64,
1187 #endif
1188
1189         .load_tr_desc = paravirt_nop,
1190         .set_ldt = xen_set_ldt,
1191         .load_gdt = xen_load_gdt,
1192         .load_idt = xen_load_idt,
1193         .load_tls = xen_load_tls,
1194 #ifdef CONFIG_X86_64
1195         .load_gs_index = xen_load_gs_index,
1196 #endif
1197
1198         .alloc_ldt = xen_alloc_ldt,
1199         .free_ldt = xen_free_ldt,
1200
1201         .store_idt = native_store_idt,
1202         .store_tr = xen_store_tr,
1203
1204         .write_ldt_entry = xen_write_ldt_entry,
1205         .write_gdt_entry = xen_write_gdt_entry,
1206         .write_idt_entry = xen_write_idt_entry,
1207         .load_sp0 = xen_load_sp0,
1208
1209         .set_iopl_mask = xen_set_iopl_mask,
1210         .io_delay = xen_io_delay,
1211
1212         /* Xen takes care of %gs when switching to usermode for us */
1213         .swapgs = paravirt_nop,
1214
1215         .start_context_switch = paravirt_start_context_switch,
1216         .end_context_switch = xen_end_context_switch,
1217 };
1218
1219 static const struct pv_apic_ops xen_apic_ops __initconst = {
1220 #ifdef CONFIG_X86_LOCAL_APIC
1221         .startup_ipi_hook = paravirt_nop,
1222 #endif
1223 };
1224
1225 static void xen_reboot(int reason)
1226 {
1227         struct sched_shutdown r = { .reason = reason };
1228
1229         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1230                 BUG();
1231 }
1232
1233 static void xen_restart(char *msg)
1234 {
1235         xen_reboot(SHUTDOWN_reboot);
1236 }
1237
1238 static void xen_emergency_restart(void)
1239 {
1240         xen_reboot(SHUTDOWN_reboot);
1241 }
1242
1243 static void xen_machine_halt(void)
1244 {
1245         xen_reboot(SHUTDOWN_poweroff);
1246 }
1247
1248 static void xen_machine_power_off(void)
1249 {
1250         if (pm_power_off)
1251                 pm_power_off();
1252         xen_reboot(SHUTDOWN_poweroff);
1253 }
1254
1255 static void xen_crash_shutdown(struct pt_regs *regs)
1256 {
1257         xen_reboot(SHUTDOWN_crash);
1258 }
1259
1260 static int
1261 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1262 {
1263         xen_reboot(SHUTDOWN_crash);
1264         return NOTIFY_DONE;
1265 }
1266
1267 static struct notifier_block xen_panic_block = {
1268         .notifier_call= xen_panic_event,
1269         .priority = INT_MIN
1270 };
1271
1272 int xen_panic_handler_init(void)
1273 {
1274         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1275         return 0;
1276 }
1277
1278 static const struct machine_ops xen_machine_ops __initconst = {
1279         .restart = xen_restart,
1280         .halt = xen_machine_halt,
1281         .power_off = xen_machine_power_off,
1282         .shutdown = xen_machine_halt,
1283         .crash_shutdown = xen_crash_shutdown,
1284         .emergency_restart = xen_emergency_restart,
1285 };
1286
1287 static unsigned char xen_get_nmi_reason(void)
1288 {
1289         unsigned char reason = 0;
1290
1291         /* Construct a value which looks like it came from port 0x61. */
1292         if (test_bit(_XEN_NMIREASON_io_error,
1293                      &HYPERVISOR_shared_info->arch.nmi_reason))
1294                 reason |= NMI_REASON_IOCHK;
1295         if (test_bit(_XEN_NMIREASON_pci_serr,
1296                      &HYPERVISOR_shared_info->arch.nmi_reason))
1297                 reason |= NMI_REASON_SERR;
1298
1299         return reason;
1300 }
1301
1302 static void __init xen_boot_params_init_edd(void)
1303 {
1304 #if IS_ENABLED(CONFIG_EDD)
1305         struct xen_platform_op op;
1306         struct edd_info *edd_info;
1307         u32 *mbr_signature;
1308         unsigned nr;
1309         int ret;
1310
1311         edd_info = boot_params.eddbuf;
1312         mbr_signature = boot_params.edd_mbr_sig_buffer;
1313
1314         op.cmd = XENPF_firmware_info;
1315
1316         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1317         for (nr = 0; nr < EDDMAXNR; nr++) {
1318                 struct edd_info *info = edd_info + nr;
1319
1320                 op.u.firmware_info.index = nr;
1321                 info->params.length = sizeof(info->params);
1322                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1323                                      &info->params);
1324                 ret = HYPERVISOR_dom0_op(&op);
1325                 if (ret)
1326                         break;
1327
1328 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1329                 C(device);
1330                 C(version);
1331                 C(interface_support);
1332                 C(legacy_max_cylinder);
1333                 C(legacy_max_head);
1334                 C(legacy_sectors_per_track);
1335 #undef C
1336         }
1337         boot_params.eddbuf_entries = nr;
1338
1339         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1340         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1341                 op.u.firmware_info.index = nr;
1342                 ret = HYPERVISOR_dom0_op(&op);
1343                 if (ret)
1344                         break;
1345                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1346         }
1347         boot_params.edd_mbr_sig_buf_entries = nr;
1348 #endif
1349 }
1350
1351 /*
1352  * Set up the GDT and segment registers for -fstack-protector.  Until
1353  * we do this, we have to be careful not to call any stack-protected
1354  * function, which is most of the kernel.
1355  *
1356  * Note, that it is __ref because the only caller of this after init
1357  * is PVH which is not going to use xen_load_gdt_boot or other
1358  * __init functions.
1359  */
1360 static void __ref xen_setup_gdt(int cpu)
1361 {
1362         if (xen_feature(XENFEAT_auto_translated_physmap)) {
1363 #ifdef CONFIG_X86_64
1364                 unsigned long dummy;
1365
1366                 load_percpu_segment(cpu); /* We need to access per-cpu area */
1367                 switch_to_new_gdt(cpu); /* GDT and GS set */
1368
1369                 /* We are switching of the Xen provided GDT to our HVM mode
1370                  * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1371                  * and we are jumping to reload it.
1372                  */
1373                 asm volatile ("pushq %0\n"
1374                               "leaq 1f(%%rip),%0\n"
1375                               "pushq %0\n"
1376                               "lretq\n"
1377                               "1:\n"
1378                               : "=&r" (dummy) : "0" (__KERNEL_CS));
1379
1380                 /*
1381                  * While not needed, we also set the %es, %ds, and %fs
1382                  * to zero. We don't care about %ss as it is NULL.
1383                  * Strictly speaking this is not needed as Xen zeros those
1384                  * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1385                  *
1386                  * Linux zeros them in cpu_init() and in secondary_startup_64
1387                  * (for BSP).
1388                  */
1389                 loadsegment(es, 0);
1390                 loadsegment(ds, 0);
1391                 loadsegment(fs, 0);
1392 #else
1393                 /* PVH: TODO Implement. */
1394                 BUG();
1395 #endif
1396                 return; /* PVH does not need any PV GDT ops. */
1397         }
1398         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1399         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1400
1401         setup_stack_canary_segment(0);
1402         switch_to_new_gdt(0);
1403
1404         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1405         pv_cpu_ops.load_gdt = xen_load_gdt;
1406 }
1407
1408 #ifdef CONFIG_XEN_PVH
1409 /*
1410  * A PV guest starts with default flags that are not set for PVH, set them
1411  * here asap.
1412  */
1413 static void xen_pvh_set_cr_flags(int cpu)
1414 {
1415
1416         /* Some of these are setup in 'secondary_startup_64'. The others:
1417          * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1418          * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1419         write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1420
1421         if (!cpu)
1422                 return;
1423         /*
1424          * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1425          * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1426         */
1427         if (cpu_has_pse)
1428                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1429
1430         if (cpu_has_pge)
1431                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1432 }
1433
1434 /*
1435  * Note, that it is ref - because the only caller of this after init
1436  * is PVH which is not going to use xen_load_gdt_boot or other
1437  * __init functions.
1438  */
1439 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1440 {
1441         xen_setup_gdt(cpu);
1442         xen_pvh_set_cr_flags(cpu);
1443 }
1444
1445 static void __init xen_pvh_early_guest_init(void)
1446 {
1447         if (!xen_feature(XENFEAT_auto_translated_physmap))
1448                 return;
1449
1450         if (!xen_feature(XENFEAT_hvm_callback_vector))
1451                 return;
1452
1453         xen_have_vector_callback = 1;
1454
1455         xen_pvh_early_cpu_init(0, false);
1456         xen_pvh_set_cr_flags(0);
1457
1458 #ifdef CONFIG_X86_32
1459         BUG(); /* PVH: Implement proper support. */
1460 #endif
1461 }
1462 #endif    /* CONFIG_XEN_PVH */
1463
1464 /* First C function to be called on Xen boot */
1465 asmlinkage __visible void __init xen_start_kernel(void)
1466 {
1467         struct physdev_set_iopl set_iopl;
1468         unsigned long initrd_start = 0;
1469         int rc;
1470
1471         if (!xen_start_info)
1472                 return;
1473
1474         xen_domain_type = XEN_PV_DOMAIN;
1475
1476         xen_setup_features();
1477 #ifdef CONFIG_XEN_PVH
1478         xen_pvh_early_guest_init();
1479 #endif
1480         xen_setup_machphys_mapping();
1481
1482         /* Install Xen paravirt ops */
1483         pv_info = xen_info;
1484         pv_init_ops = xen_init_ops;
1485         pv_apic_ops = xen_apic_ops;
1486         if (!xen_pvh_domain()) {
1487                 pv_cpu_ops = xen_cpu_ops;
1488
1489                 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1490         }
1491
1492         if (xen_feature(XENFEAT_auto_translated_physmap))
1493                 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1494         else
1495                 x86_init.resources.memory_setup = xen_memory_setup;
1496         x86_init.oem.arch_setup = xen_arch_setup;
1497         x86_init.oem.banner = xen_banner;
1498
1499         xen_init_time_ops();
1500
1501         /*
1502          * Set up some pagetable state before starting to set any ptes.
1503          */
1504
1505         xen_init_mmu_ops();
1506
1507         /* Prevent unwanted bits from being set in PTEs. */
1508         __supported_pte_mask &= ~_PAGE_GLOBAL;
1509
1510         /*
1511          * Prevent page tables from being allocated in highmem, even
1512          * if CONFIG_HIGHPTE is enabled.
1513          */
1514         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1515
1516         /* Work out if we support NX */
1517         x86_configure_nx();
1518
1519         /* Get mfn list */
1520         xen_build_dynamic_phys_to_machine();
1521
1522         /*
1523          * Set up kernel GDT and segment registers, mainly so that
1524          * -fstack-protector code can be executed.
1525          */
1526         xen_setup_gdt(0);
1527
1528         xen_init_irq_ops();
1529         xen_init_cpuid_mask();
1530
1531 #ifdef CONFIG_X86_LOCAL_APIC
1532         /*
1533          * set up the basic apic ops.
1534          */
1535         xen_init_apic();
1536 #endif
1537
1538         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1539                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1540                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1541         }
1542
1543         machine_ops = xen_machine_ops;
1544
1545         /*
1546          * The only reliable way to retain the initial address of the
1547          * percpu gdt_page is to remember it here, so we can go and
1548          * mark it RW later, when the initial percpu area is freed.
1549          */
1550         xen_initial_gdt = &per_cpu(gdt_page, 0);
1551
1552         xen_smp_init();
1553
1554 #ifdef CONFIG_ACPI_NUMA
1555         /*
1556          * The pages we from Xen are not related to machine pages, so
1557          * any NUMA information the kernel tries to get from ACPI will
1558          * be meaningless.  Prevent it from trying.
1559          */
1560         acpi_numa = -1;
1561 #endif
1562         /* Don't do the full vcpu_info placement stuff until we have a
1563            possible map and a non-dummy shared_info. */
1564         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1565
1566         local_irq_disable();
1567         early_boot_irqs_disabled = true;
1568
1569         xen_raw_console_write("mapping kernel into physical memory\n");
1570         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1571
1572         /*
1573          * Modify the cache mode translation tables to match Xen's PAT
1574          * configuration.
1575          */
1576
1577         pat_init_cache_modes();
1578
1579         /* keep using Xen gdt for now; no urgent need to change it */
1580
1581 #ifdef CONFIG_X86_32
1582         pv_info.kernel_rpl = 1;
1583         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1584                 pv_info.kernel_rpl = 0;
1585 #else
1586         pv_info.kernel_rpl = 0;
1587 #endif
1588         /* set the limit of our address space */
1589         xen_reserve_top();
1590
1591         /* PVH: runs at default kernel iopl of 0 */
1592         if (!xen_pvh_domain()) {
1593                 /*
1594                  * We used to do this in xen_arch_setup, but that is too late
1595                  * on AMD were early_cpu_init (run before ->arch_setup()) calls
1596                  * early_amd_init which pokes 0xcf8 port.
1597                  */
1598                 set_iopl.iopl = 1;
1599                 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1600                 if (rc != 0)
1601                         xen_raw_printk("physdev_op failed %d\n", rc);
1602         }
1603
1604 #ifdef CONFIG_X86_32
1605         /* set up basic CPUID stuff */
1606         cpu_detect(&new_cpu_data);
1607         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1608         new_cpu_data.wp_works_ok = 1;
1609         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1610 #endif
1611
1612         if (xen_start_info->mod_start) {
1613             if (xen_start_info->flags & SIF_MOD_START_PFN)
1614                 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1615             else
1616                 initrd_start = __pa(xen_start_info->mod_start);
1617         }
1618
1619         /* Poke various useful things into boot_params */
1620         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1621         boot_params.hdr.ramdisk_image = initrd_start;
1622         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1623         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1624
1625         if (!xen_initial_domain()) {
1626                 add_preferred_console("xenboot", 0, NULL);
1627                 add_preferred_console("tty", 0, NULL);
1628                 add_preferred_console("hvc", 0, NULL);
1629                 if (pci_xen)
1630                         x86_init.pci.arch_init = pci_xen_init;
1631         } else {
1632                 const struct dom0_vga_console_info *info =
1633                         (void *)((char *)xen_start_info +
1634                                  xen_start_info->console.dom0.info_off);
1635                 struct xen_platform_op op = {
1636                         .cmd = XENPF_firmware_info,
1637                         .interface_version = XENPF_INTERFACE_VERSION,
1638                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1639                 };
1640
1641                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1642                 xen_start_info->console.domU.mfn = 0;
1643                 xen_start_info->console.domU.evtchn = 0;
1644
1645                 if (HYPERVISOR_dom0_op(&op) == 0)
1646                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1647
1648                 /* Make sure ACS will be enabled */
1649                 pci_request_acs();
1650
1651                 xen_acpi_sleep_register();
1652
1653                 /* Avoid searching for BIOS MP tables */
1654                 x86_init.mpparse.find_smp_config = x86_init_noop;
1655                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1656
1657                 xen_boot_params_init_edd();
1658         }
1659 #ifdef CONFIG_PCI
1660         /* PCI BIOS service won't work from a PV guest. */
1661         pci_probe &= ~PCI_PROBE_BIOS;
1662 #endif
1663         xen_raw_console_write("about to get started...\n");
1664
1665         xen_setup_runstate_info(0);
1666
1667         xen_efi_init();
1668
1669         /* Start the world */
1670 #ifdef CONFIG_X86_32
1671         i386_start_kernel();
1672 #else
1673         cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1674         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1675 #endif
1676 }
1677
1678 void __ref xen_hvm_init_shared_info(void)
1679 {
1680         int cpu;
1681         struct xen_add_to_physmap xatp;
1682         static struct shared_info *shared_info_page = 0;
1683
1684         if (!shared_info_page)
1685                 shared_info_page = (struct shared_info *)
1686                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1687         xatp.domid = DOMID_SELF;
1688         xatp.idx = 0;
1689         xatp.space = XENMAPSPACE_shared_info;
1690         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1691         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1692                 BUG();
1693
1694         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1695
1696         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1697          * page, we use it in the event channel upcall and in some pvclock
1698          * related functions. We don't need the vcpu_info placement
1699          * optimizations because we don't use any pv_mmu or pv_irq op on
1700          * HVM.
1701          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1702          * online but xen_hvm_init_shared_info is run at resume time too and
1703          * in that case multiple vcpus might be online. */
1704         for_each_online_cpu(cpu) {
1705                 /* Leave it to be NULL. */
1706                 if (cpu >= MAX_VIRT_CPUS)
1707                         continue;
1708                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1709         }
1710 }
1711
1712 #ifdef CONFIG_XEN_PVHVM
1713 static void __init init_hvm_pv_info(void)
1714 {
1715         int major, minor;
1716         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1717         u64 pfn;
1718
1719         base = xen_cpuid_base();
1720         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1721
1722         major = eax >> 16;
1723         minor = eax & 0xffff;
1724         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1725
1726         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1727
1728         pfn = __pa(hypercall_page);
1729         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1730
1731         xen_setup_features();
1732
1733         pv_info.name = "Xen HVM";
1734
1735         xen_domain_type = XEN_HVM_DOMAIN;
1736 }
1737
1738 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1739                               void *hcpu)
1740 {
1741         int cpu = (long)hcpu;
1742         switch (action) {
1743         case CPU_UP_PREPARE:
1744                 xen_vcpu_setup(cpu);
1745                 if (xen_have_vector_callback) {
1746                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1747                                 xen_setup_timer(cpu);
1748                 }
1749                 break;
1750         default:
1751                 break;
1752         }
1753         return NOTIFY_OK;
1754 }
1755
1756 static struct notifier_block xen_hvm_cpu_notifier = {
1757         .notifier_call  = xen_hvm_cpu_notify,
1758 };
1759
1760 static void __init xen_hvm_guest_init(void)
1761 {
1762         init_hvm_pv_info();
1763
1764         xen_hvm_init_shared_info();
1765
1766         xen_panic_handler_init();
1767
1768         if (xen_feature(XENFEAT_hvm_callback_vector))
1769                 xen_have_vector_callback = 1;
1770         xen_hvm_smp_init();
1771         register_cpu_notifier(&xen_hvm_cpu_notifier);
1772         xen_unplug_emulated_devices();
1773         x86_init.irqs.intr_init = xen_init_IRQ;
1774         xen_hvm_init_time_ops();
1775         xen_hvm_init_mmu_ops();
1776 }
1777
1778 static bool xen_nopv = false;
1779 static __init int xen_parse_nopv(char *arg)
1780 {
1781        xen_nopv = true;
1782        return 0;
1783 }
1784 early_param("xen_nopv", xen_parse_nopv);
1785
1786 static uint32_t __init xen_hvm_platform(void)
1787 {
1788         if (xen_nopv)
1789                 return 0;
1790
1791         if (xen_pv_domain())
1792                 return 0;
1793
1794         return xen_cpuid_base();
1795 }
1796
1797 bool xen_hvm_need_lapic(void)
1798 {
1799         if (xen_nopv)
1800                 return false;
1801         if (xen_pv_domain())
1802                 return false;
1803         if (!xen_hvm_domain())
1804                 return false;
1805         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1806                 return false;
1807         return true;
1808 }
1809 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1810
1811 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1812         .name                   = "Xen HVM",
1813         .detect                 = xen_hvm_platform,
1814         .init_platform          = xen_hvm_guest_init,
1815         .x2apic_available       = xen_x2apic_para_available,
1816 };
1817 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1818 #endif