]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/enlighten.c
xen64: Clear %fs on xen_load_tls()
[karo-tx-linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49 #include <asm/pgalloc.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Note about cr3 (pagetable base) values:
62  *
63  * xen_cr3 contains the current logical cr3 value; it contains the
64  * last set cr3.  This may not be the current effective cr3, because
65  * its update may be being lazily deferred.  However, a vcpu looking
66  * at its own cr3 can use this value knowing that it everything will
67  * be self-consistent.
68  *
69  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
70  * hypercall to set the vcpu cr3 is complete (so it may be a little
71  * out of date, but it will never be set early).  If one vcpu is
72  * looking at another vcpu's cr3 value, it should use this variable.
73  */
74 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
75 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 /*
83  * Point at some empty memory to start with. We map the real shared_info
84  * page as soon as fixmap is up and running.
85  */
86 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
87
88 /*
89  * Flag to determine whether vcpu info placement is available on all
90  * VCPUs.  We assume it is to start with, and then set it to zero on
91  * the first failure.  This is because it can succeed on some VCPUs
92  * and not others, since it can involve hypervisor memory allocation,
93  * or because the guest failed to guarantee all the appropriate
94  * constraints on all VCPUs (ie buffer can't cross a page boundary).
95  *
96  * Note that any particular CPU may be using a placed vcpu structure,
97  * but we can only optimise if the all are.
98  *
99  * 0: not available, 1: available
100  */
101 static int have_vcpu_info_placement = 1;
102
103 static void xen_vcpu_setup(int cpu)
104 {
105         struct vcpu_register_vcpu_info info;
106         int err;
107         struct vcpu_info *vcpup;
108
109         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
110         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
111
112         if (!have_vcpu_info_placement)
113                 return;         /* already tested, not available */
114
115         vcpup = &per_cpu(xen_vcpu_info, cpu);
116
117         info.mfn = virt_to_mfn(vcpup);
118         info.offset = offset_in_page(vcpup);
119
120         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
121                cpu, vcpup, info.mfn, info.offset);
122
123         /* Check to see if the hypervisor will put the vcpu_info
124            structure where we want it, which allows direct access via
125            a percpu-variable. */
126         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
127
128         if (err) {
129                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
130                 have_vcpu_info_placement = 0;
131         } else {
132                 /* This cpu is using the registered vcpu info, even if
133                    later ones fail to. */
134                 per_cpu(xen_vcpu, cpu) = vcpup;
135
136                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
137                        cpu, vcpup);
138         }
139 }
140
141 /*
142  * On restore, set the vcpu placement up again.
143  * If it fails, then we're in a bad state, since
144  * we can't back out from using it...
145  */
146 void xen_vcpu_restore(void)
147 {
148         if (have_vcpu_info_placement) {
149                 int cpu;
150
151                 for_each_online_cpu(cpu) {
152                         bool other_cpu = (cpu != smp_processor_id());
153
154                         if (other_cpu &&
155                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
156                                 BUG();
157
158                         xen_vcpu_setup(cpu);
159
160                         if (other_cpu &&
161                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
162                                 BUG();
163                 }
164
165                 BUG_ON(!have_vcpu_info_placement);
166         }
167 }
168
169 static void __init xen_banner(void)
170 {
171         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
172                pv_info.name);
173         printk(KERN_INFO "Hypervisor signature: %s%s\n",
174                xen_start_info->magic,
175                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
176 }
177
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179                       unsigned int *cx, unsigned int *dx)
180 {
181         unsigned maskedx = ~0;
182
183         /*
184          * Mask out inconvenient features, to try and disable as many
185          * unsupported kernel subsystems as possible.
186          */
187         if (*ax == 1)
188                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
189                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
190                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
191                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
192                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
193
194         asm(XEN_EMULATE_PREFIX "cpuid"
195                 : "=a" (*ax),
196                   "=b" (*bx),
197                   "=c" (*cx),
198                   "=d" (*dx)
199                 : "0" (*ax), "2" (*cx));
200         *dx &= maskedx;
201 }
202
203 static void xen_set_debugreg(int reg, unsigned long val)
204 {
205         HYPERVISOR_set_debugreg(reg, val);
206 }
207
208 static unsigned long xen_get_debugreg(int reg)
209 {
210         return HYPERVISOR_get_debugreg(reg);
211 }
212
213 static unsigned long xen_save_fl(void)
214 {
215         struct vcpu_info *vcpu;
216         unsigned long flags;
217
218         vcpu = x86_read_percpu(xen_vcpu);
219
220         /* flag has opposite sense of mask */
221         flags = !vcpu->evtchn_upcall_mask;
222
223         /* convert to IF type flag
224            -0 -> 0x00000000
225            -1 -> 0xffffffff
226         */
227         return (-flags) & X86_EFLAGS_IF;
228 }
229
230 static void xen_restore_fl(unsigned long flags)
231 {
232         struct vcpu_info *vcpu;
233
234         /* convert from IF type flag */
235         flags = !(flags & X86_EFLAGS_IF);
236
237         /* There's a one instruction preempt window here.  We need to
238            make sure we're don't switch CPUs between getting the vcpu
239            pointer and updating the mask. */
240         preempt_disable();
241         vcpu = x86_read_percpu(xen_vcpu);
242         vcpu->evtchn_upcall_mask = flags;
243         preempt_enable_no_resched();
244
245         /* Doesn't matter if we get preempted here, because any
246            pending event will get dealt with anyway. */
247
248         if (flags == 0) {
249                 preempt_check_resched();
250                 barrier(); /* unmask then check (avoid races) */
251                 if (unlikely(vcpu->evtchn_upcall_pending))
252                         force_evtchn_callback();
253         }
254 }
255
256 static void xen_irq_disable(void)
257 {
258         /* There's a one instruction preempt window here.  We need to
259            make sure we're don't switch CPUs between getting the vcpu
260            pointer and updating the mask. */
261         preempt_disable();
262         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
263         preempt_enable_no_resched();
264 }
265
266 static void xen_irq_enable(void)
267 {
268         struct vcpu_info *vcpu;
269
270         /* We don't need to worry about being preempted here, since
271            either a) interrupts are disabled, so no preemption, or b)
272            the caller is confused and is trying to re-enable interrupts
273            on an indeterminate processor. */
274
275         vcpu = x86_read_percpu(xen_vcpu);
276         vcpu->evtchn_upcall_mask = 0;
277
278         /* Doesn't matter if we get preempted here, because any
279            pending event will get dealt with anyway. */
280
281         barrier(); /* unmask then check (avoid races) */
282         if (unlikely(vcpu->evtchn_upcall_pending))
283                 force_evtchn_callback();
284 }
285
286 static void xen_safe_halt(void)
287 {
288         /* Blocking includes an implicit local_irq_enable(). */
289         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
290                 BUG();
291 }
292
293 static void xen_halt(void)
294 {
295         if (irqs_disabled())
296                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
297         else
298                 xen_safe_halt();
299 }
300
301 static void xen_leave_lazy(void)
302 {
303         paravirt_leave_lazy(paravirt_get_lazy_mode());
304         xen_mc_flush();
305 }
306
307 static unsigned long xen_store_tr(void)
308 {
309         return 0;
310 }
311
312 static void xen_set_ldt(const void *addr, unsigned entries)
313 {
314         struct mmuext_op *op;
315         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
316
317         op = mcs.args;
318         op->cmd = MMUEXT_SET_LDT;
319         op->arg1.linear_addr = (unsigned long)addr;
320         op->arg2.nr_ents = entries;
321
322         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
323
324         xen_mc_issue(PARAVIRT_LAZY_CPU);
325 }
326
327 static void xen_load_gdt(const struct desc_ptr *dtr)
328 {
329         unsigned long *frames;
330         unsigned long va = dtr->address;
331         unsigned int size = dtr->size + 1;
332         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
333         int f;
334         struct multicall_space mcs;
335
336         /* A GDT can be up to 64k in size, which corresponds to 8192
337            8-byte entries, or 16 4k pages.. */
338
339         BUG_ON(size > 65536);
340         BUG_ON(va & ~PAGE_MASK);
341
342         mcs = xen_mc_entry(sizeof(*frames) * pages);
343         frames = mcs.args;
344
345         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
346                 frames[f] = virt_to_mfn(va);
347                 make_lowmem_page_readonly((void *)va);
348         }
349
350         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
351
352         xen_mc_issue(PARAVIRT_LAZY_CPU);
353 }
354
355 static void load_TLS_descriptor(struct thread_struct *t,
356                                 unsigned int cpu, unsigned int i)
357 {
358         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
359         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
360         struct multicall_space mc = __xen_mc_entry(0);
361
362         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
363 }
364
365 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
366 {
367         /*
368          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
369          * it means we're in a context switch, and %gs has just been
370          * saved.  This means we can zero it out to prevent faults on
371          * exit from the hypervisor if the next process has no %gs.
372          * Either way, it has been saved, and the new value will get
373          * loaded properly.  This will go away as soon as Xen has been
374          * modified to not save/restore %gs for normal hypercalls.
375          *
376          * On x86_64, this hack is not used for %gs, because gs points
377          * to KERNEL_GS_BASE (and uses it for PDA references), so we
378          * must not zero %gs on x86_64
379          *
380          * For x86_64, we need to zero %fs, otherwise we may get an
381          * exception between the new %fs descriptor being loaded and
382          * %fs being effectively cleared at __switch_to().
383          */
384         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
385 #ifdef CONFIG_X86_32
386                 loadsegment(gs, 0);
387 #else
388                 loadsegment(fs, 0);
389 #endif
390         }
391
392         xen_mc_batch();
393
394         load_TLS_descriptor(t, cpu, 0);
395         load_TLS_descriptor(t, cpu, 1);
396         load_TLS_descriptor(t, cpu, 2);
397
398         xen_mc_issue(PARAVIRT_LAZY_CPU);
399 }
400
401 #ifdef CONFIG_X86_64
402 static void xen_load_gs_index(unsigned int idx)
403 {
404         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
405                 BUG();
406 }
407 #endif
408
409 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
410                                 const void *ptr)
411 {
412         unsigned long lp = (unsigned long)&dt[entrynum];
413         xmaddr_t mach_lp = virt_to_machine(lp);
414         u64 entry = *(u64 *)ptr;
415
416         preempt_disable();
417
418         xen_mc_flush();
419         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
420                 BUG();
421
422         preempt_enable();
423 }
424
425 static int cvt_gate_to_trap(int vector, const gate_desc *val,
426                             struct trap_info *info)
427 {
428         if (val->type != 0xf && val->type != 0xe)
429                 return 0;
430
431         info->vector = vector;
432         info->address = gate_offset(*val);
433         info->cs = gate_segment(*val);
434         info->flags = val->dpl;
435         /* interrupt gates clear IF */
436         if (val->type == 0xe)
437                 info->flags |= 4;
438
439         return 1;
440 }
441
442 /* Locations of each CPU's IDT */
443 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
444
445 /* Set an IDT entry.  If the entry is part of the current IDT, then
446    also update Xen. */
447 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
448 {
449         unsigned long p = (unsigned long)&dt[entrynum];
450         unsigned long start, end;
451
452         preempt_disable();
453
454         start = __get_cpu_var(idt_desc).address;
455         end = start + __get_cpu_var(idt_desc).size + 1;
456
457         xen_mc_flush();
458
459         native_write_idt_entry(dt, entrynum, g);
460
461         if (p >= start && (p + 8) <= end) {
462                 struct trap_info info[2];
463
464                 info[1].address = 0;
465
466                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
467                         if (HYPERVISOR_set_trap_table(info))
468                                 BUG();
469         }
470
471         preempt_enable();
472 }
473
474 static void xen_convert_trap_info(const struct desc_ptr *desc,
475                                   struct trap_info *traps)
476 {
477         unsigned in, out, count;
478
479         count = (desc->size+1) / sizeof(gate_desc);
480         BUG_ON(count > 256);
481
482         for (in = out = 0; in < count; in++) {
483                 gate_desc *entry = (gate_desc*)(desc->address) + in;
484
485                 if (cvt_gate_to_trap(in, entry, &traps[out]))
486                         out++;
487         }
488         traps[out].address = 0;
489 }
490
491 void xen_copy_trap_info(struct trap_info *traps)
492 {
493         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
494
495         xen_convert_trap_info(desc, traps);
496 }
497
498 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
499    hold a spinlock to protect the static traps[] array (static because
500    it avoids allocation, and saves stack space). */
501 static void xen_load_idt(const struct desc_ptr *desc)
502 {
503         static DEFINE_SPINLOCK(lock);
504         static struct trap_info traps[257];
505
506         spin_lock(&lock);
507
508         __get_cpu_var(idt_desc) = *desc;
509
510         xen_convert_trap_info(desc, traps);
511
512         xen_mc_flush();
513         if (HYPERVISOR_set_trap_table(traps))
514                 BUG();
515
516         spin_unlock(&lock);
517 }
518
519 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
520    they're handled differently. */
521 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
522                                 const void *desc, int type)
523 {
524         preempt_disable();
525
526         switch (type) {
527         case DESC_LDT:
528         case DESC_TSS:
529                 /* ignore */
530                 break;
531
532         default: {
533                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
534
535                 xen_mc_flush();
536                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
537                         BUG();
538         }
539
540         }
541
542         preempt_enable();
543 }
544
545 static void xen_load_sp0(struct tss_struct *tss,
546                           struct thread_struct *thread)
547 {
548         struct multicall_space mcs = xen_mc_entry(0);
549         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
550         xen_mc_issue(PARAVIRT_LAZY_CPU);
551 }
552
553 static void xen_set_iopl_mask(unsigned mask)
554 {
555         struct physdev_set_iopl set_iopl;
556
557         /* Force the change at ring 0. */
558         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
559         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
560 }
561
562 static void xen_io_delay(void)
563 {
564 }
565
566 #ifdef CONFIG_X86_LOCAL_APIC
567 static u32 xen_apic_read(unsigned long reg)
568 {
569         return 0;
570 }
571
572 static void xen_apic_write(unsigned long reg, u32 val)
573 {
574         /* Warn to see if there's any stray references */
575         WARN_ON(1);
576 }
577 #endif
578
579 static void xen_flush_tlb(void)
580 {
581         struct mmuext_op *op;
582         struct multicall_space mcs;
583
584         preempt_disable();
585
586         mcs = xen_mc_entry(sizeof(*op));
587
588         op = mcs.args;
589         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
590         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
591
592         xen_mc_issue(PARAVIRT_LAZY_MMU);
593
594         preempt_enable();
595 }
596
597 static void xen_flush_tlb_single(unsigned long addr)
598 {
599         struct mmuext_op *op;
600         struct multicall_space mcs;
601
602         preempt_disable();
603
604         mcs = xen_mc_entry(sizeof(*op));
605         op = mcs.args;
606         op->cmd = MMUEXT_INVLPG_LOCAL;
607         op->arg1.linear_addr = addr & PAGE_MASK;
608         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
609
610         xen_mc_issue(PARAVIRT_LAZY_MMU);
611
612         preempt_enable();
613 }
614
615 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
616                                  unsigned long va)
617 {
618         struct {
619                 struct mmuext_op op;
620                 cpumask_t mask;
621         } *args;
622         cpumask_t cpumask = *cpus;
623         struct multicall_space mcs;
624
625         /*
626          * A couple of (to be removed) sanity checks:
627          *
628          * - current CPU must not be in mask
629          * - mask must exist :)
630          */
631         BUG_ON(cpus_empty(cpumask));
632         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
633         BUG_ON(!mm);
634
635         /* If a CPU which we ran on has gone down, OK. */
636         cpus_and(cpumask, cpumask, cpu_online_map);
637         if (cpus_empty(cpumask))
638                 return;
639
640         mcs = xen_mc_entry(sizeof(*args));
641         args = mcs.args;
642         args->mask = cpumask;
643         args->op.arg2.vcpumask = &args->mask;
644
645         if (va == TLB_FLUSH_ALL) {
646                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
647         } else {
648                 args->op.cmd = MMUEXT_INVLPG_MULTI;
649                 args->op.arg1.linear_addr = va;
650         }
651
652         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
653
654         xen_mc_issue(PARAVIRT_LAZY_MMU);
655 }
656
657 static void xen_clts(void)
658 {
659         struct multicall_space mcs;
660
661         mcs = xen_mc_entry(0);
662
663         MULTI_fpu_taskswitch(mcs.mc, 0);
664
665         xen_mc_issue(PARAVIRT_LAZY_CPU);
666 }
667
668 static void xen_write_cr0(unsigned long cr0)
669 {
670         struct multicall_space mcs;
671
672         /* Only pay attention to cr0.TS; everything else is
673            ignored. */
674         mcs = xen_mc_entry(0);
675
676         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
677
678         xen_mc_issue(PARAVIRT_LAZY_CPU);
679 }
680
681 static void xen_write_cr2(unsigned long cr2)
682 {
683         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
684 }
685
686 static unsigned long xen_read_cr2(void)
687 {
688         return x86_read_percpu(xen_vcpu)->arch.cr2;
689 }
690
691 static unsigned long xen_read_cr2_direct(void)
692 {
693         return x86_read_percpu(xen_vcpu_info.arch.cr2);
694 }
695
696 static void xen_write_cr4(unsigned long cr4)
697 {
698         cr4 &= ~X86_CR4_PGE;
699         cr4 &= ~X86_CR4_PSE;
700
701         native_write_cr4(cr4);
702 }
703
704 static unsigned long xen_read_cr3(void)
705 {
706         return x86_read_percpu(xen_cr3);
707 }
708
709 static void set_current_cr3(void *v)
710 {
711         x86_write_percpu(xen_current_cr3, (unsigned long)v);
712 }
713
714 static void xen_write_cr3(unsigned long cr3)
715 {
716         struct mmuext_op *op;
717         struct multicall_space mcs;
718         unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
719
720         BUG_ON(preemptible());
721
722         mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
723
724         /* Update while interrupts are disabled, so its atomic with
725            respect to ipis */
726         x86_write_percpu(xen_cr3, cr3);
727
728         op = mcs.args;
729         op->cmd = MMUEXT_NEW_BASEPTR;
730         op->arg1.mfn = mfn;
731
732         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
733
734         /* Update xen_update_cr3 once the batch has actually
735            been submitted. */
736         xen_mc_callback(set_current_cr3, (void *)cr3);
737
738         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
739 }
740
741 /* Early in boot, while setting up the initial pagetable, assume
742    everything is pinned. */
743 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
744 {
745 #ifdef CONFIG_FLATMEM
746         BUG_ON(mem_map);        /* should only be used early */
747 #endif
748         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
749 }
750
751 /* Early release_pte assumes that all pts are pinned, since there's
752    only init_mm and anything attached to that is pinned. */
753 static void xen_release_pte_init(u32 pfn)
754 {
755         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
756 }
757
758 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
759 {
760         struct mmuext_op op;
761         op.cmd = cmd;
762         op.arg1.mfn = pfn_to_mfn(pfn);
763         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
764                 BUG();
765 }
766
767 /* This needs to make sure the new pte page is pinned iff its being
768    attached to a pinned pagetable. */
769 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
770 {
771         struct page *page = pfn_to_page(pfn);
772
773         if (PagePinned(virt_to_page(mm->pgd))) {
774                 SetPagePinned(page);
775
776                 if (!PageHighMem(page)) {
777                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
778                         if (level == PT_PTE)
779                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
780                 } else
781                         /* make sure there are no stray mappings of
782                            this page */
783                         kmap_flush_unused();
784         }
785 }
786
787 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
788 {
789         xen_alloc_ptpage(mm, pfn, PT_PTE);
790 }
791
792 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
793 {
794         xen_alloc_ptpage(mm, pfn, PT_PMD);
795 }
796
797 /* This should never happen until we're OK to use struct page */
798 static void xen_release_ptpage(u32 pfn, unsigned level)
799 {
800         struct page *page = pfn_to_page(pfn);
801
802         if (PagePinned(page)) {
803                 if (!PageHighMem(page)) {
804                         if (level == PT_PTE)
805                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
806                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
807                 }
808                 ClearPagePinned(page);
809         }
810 }
811
812 static void xen_release_pte(u32 pfn)
813 {
814         xen_release_ptpage(pfn, PT_PTE);
815 }
816
817 static void xen_release_pmd(u32 pfn)
818 {
819         xen_release_ptpage(pfn, PT_PMD);
820 }
821
822 #if PAGETABLE_LEVELS == 4
823 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
824 {
825         xen_alloc_ptpage(mm, pfn, PT_PUD);
826 }
827
828 static void xen_release_pud(u32 pfn)
829 {
830         xen_release_ptpage(pfn, PT_PUD);
831 }
832 #endif
833
834 #ifdef CONFIG_HIGHPTE
835 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
836 {
837         pgprot_t prot = PAGE_KERNEL;
838
839         if (PagePinned(page))
840                 prot = PAGE_KERNEL_RO;
841
842         if (0 && PageHighMem(page))
843                 printk("mapping highpte %lx type %d prot %s\n",
844                        page_to_pfn(page), type,
845                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
846
847         return kmap_atomic_prot(page, type, prot);
848 }
849 #endif
850
851 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
852 {
853         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
854         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
855                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
856                                pte_val_ma(pte));
857
858         return pte;
859 }
860
861 /* Init-time set_pte while constructing initial pagetables, which
862    doesn't allow RO pagetable pages to be remapped RW */
863 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
864 {
865         pte = mask_rw_pte(ptep, pte);
866
867         xen_set_pte(ptep, pte);
868 }
869
870 static __init void xen_pagetable_setup_start(pgd_t *base)
871 {
872 }
873
874 void xen_setup_shared_info(void)
875 {
876         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
877                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
878                            xen_start_info->shared_info);
879
880                 HYPERVISOR_shared_info =
881                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
882         } else
883                 HYPERVISOR_shared_info =
884                         (struct shared_info *)__va(xen_start_info->shared_info);
885
886 #ifndef CONFIG_SMP
887         /* In UP this is as good a place as any to set up shared info */
888         xen_setup_vcpu_info_placement();
889 #endif
890
891         xen_setup_mfn_list_list();
892 }
893
894 static __init void xen_pagetable_setup_done(pgd_t *base)
895 {
896         xen_setup_shared_info();
897 }
898
899 static __init void xen_post_allocator_init(void)
900 {
901         pv_mmu_ops.set_pte = xen_set_pte;
902         pv_mmu_ops.set_pmd = xen_set_pmd;
903         pv_mmu_ops.set_pud = xen_set_pud;
904 #if PAGETABLE_LEVELS == 4
905         pv_mmu_ops.set_pgd = xen_set_pgd;
906 #endif
907
908         /* This will work as long as patching hasn't happened yet
909            (which it hasn't) */
910         pv_mmu_ops.alloc_pte = xen_alloc_pte;
911         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
912         pv_mmu_ops.release_pte = xen_release_pte;
913         pv_mmu_ops.release_pmd = xen_release_pmd;
914 #if PAGETABLE_LEVELS == 4
915         pv_mmu_ops.alloc_pud = xen_alloc_pud;
916         pv_mmu_ops.release_pud = xen_release_pud;
917 #endif
918
919         xen_mark_init_mm_pinned();
920 }
921
922 /* This is called once we have the cpu_possible_map */
923 void xen_setup_vcpu_info_placement(void)
924 {
925         int cpu;
926
927         for_each_possible_cpu(cpu)
928                 xen_vcpu_setup(cpu);
929
930         /* xen_vcpu_setup managed to place the vcpu_info within the
931            percpu area for all cpus, so make use of it */
932 #ifdef CONFIG_X86_32
933         if (have_vcpu_info_placement) {
934                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
935
936                 pv_irq_ops.save_fl = xen_save_fl_direct;
937                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
938                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
939                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
940                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
941         }
942 #endif
943 }
944
945 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
946                           unsigned long addr, unsigned len)
947 {
948         char *start, *end, *reloc;
949         unsigned ret;
950
951         start = end = reloc = NULL;
952
953 #define SITE(op, x)                                                     \
954         case PARAVIRT_PATCH(op.x):                                      \
955         if (have_vcpu_info_placement) {                                 \
956                 start = (char *)xen_##x##_direct;                       \
957                 end = xen_##x##_direct_end;                             \
958                 reloc = xen_##x##_direct_reloc;                         \
959         }                                                               \
960         goto patch_site
961
962         switch (type) {
963 #ifdef CONFIG_X86_32
964                 SITE(pv_irq_ops, irq_enable);
965                 SITE(pv_irq_ops, irq_disable);
966                 SITE(pv_irq_ops, save_fl);
967                 SITE(pv_irq_ops, restore_fl);
968 #endif /* CONFIG_X86_32 */
969 #undef SITE
970
971         patch_site:
972                 if (start == NULL || (end-start) > len)
973                         goto default_patch;
974
975                 ret = paravirt_patch_insns(insnbuf, len, start, end);
976
977                 /* Note: because reloc is assigned from something that
978                    appears to be an array, gcc assumes it's non-null,
979                    but doesn't know its relationship with start and
980                    end. */
981                 if (reloc > start && reloc < end) {
982                         int reloc_off = reloc - start;
983                         long *relocp = (long *)(insnbuf + reloc_off);
984                         long delta = start - (char *)addr;
985
986                         *relocp += delta;
987                 }
988                 break;
989
990         default_patch:
991         default:
992                 ret = paravirt_patch_default(type, clobbers, insnbuf,
993                                              addr, len);
994                 break;
995         }
996
997         return ret;
998 }
999
1000 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1001 {
1002         pte_t pte;
1003
1004         phys >>= PAGE_SHIFT;
1005
1006         switch (idx) {
1007         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1008 #ifdef CONFIG_X86_F00F_BUG
1009         case FIX_F00F_IDT:
1010 #endif
1011 #ifdef CONFIG_X86_32
1012         case FIX_WP_TEST:
1013         case FIX_VDSO:
1014         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1015 #else
1016         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1017 #endif
1018 #ifdef CONFIG_X86_LOCAL_APIC
1019         case FIX_APIC_BASE:     /* maps dummy local APIC */
1020 #endif
1021                 pte = pfn_pte(phys, prot);
1022                 break;
1023
1024         default:
1025                 pte = mfn_pte(phys, prot);
1026                 break;
1027         }
1028
1029         __native_set_fixmap(idx, pte);
1030 }
1031
1032 static const struct pv_info xen_info __initdata = {
1033         .paravirt_enabled = 1,
1034         .shared_kernel_pmd = 0,
1035
1036         .name = "Xen",
1037 };
1038
1039 static const struct pv_init_ops xen_init_ops __initdata = {
1040         .patch = xen_patch,
1041
1042         .banner = xen_banner,
1043         .memory_setup = xen_memory_setup,
1044         .arch_setup = xen_arch_setup,
1045         .post_allocator_init = xen_post_allocator_init,
1046 };
1047
1048 static const struct pv_time_ops xen_time_ops __initdata = {
1049         .time_init = xen_time_init,
1050
1051         .set_wallclock = xen_set_wallclock,
1052         .get_wallclock = xen_get_wallclock,
1053         .get_tsc_khz = xen_tsc_khz,
1054         .sched_clock = xen_sched_clock,
1055 };
1056
1057 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1058         .cpuid = xen_cpuid,
1059
1060         .set_debugreg = xen_set_debugreg,
1061         .get_debugreg = xen_get_debugreg,
1062
1063         .clts = xen_clts,
1064
1065         .read_cr0 = native_read_cr0,
1066         .write_cr0 = xen_write_cr0,
1067
1068         .read_cr4 = native_read_cr4,
1069         .read_cr4_safe = native_read_cr4_safe,
1070         .write_cr4 = xen_write_cr4,
1071
1072         .wbinvd = native_wbinvd,
1073
1074         .read_msr = native_read_msr_safe,
1075         .write_msr = native_write_msr_safe,
1076         .read_tsc = native_read_tsc,
1077         .read_pmc = native_read_pmc,
1078
1079         .iret = xen_iret,
1080         .irq_enable_sysexit = xen_sysexit,
1081
1082         .load_tr_desc = paravirt_nop,
1083         .set_ldt = xen_set_ldt,
1084         .load_gdt = xen_load_gdt,
1085         .load_idt = xen_load_idt,
1086         .load_tls = xen_load_tls,
1087 #ifdef CONFIG_X86_64
1088         .load_gs_index = xen_load_gs_index,
1089 #endif
1090
1091         .store_gdt = native_store_gdt,
1092         .store_idt = native_store_idt,
1093         .store_tr = xen_store_tr,
1094
1095         .write_ldt_entry = xen_write_ldt_entry,
1096         .write_gdt_entry = xen_write_gdt_entry,
1097         .write_idt_entry = xen_write_idt_entry,
1098         .load_sp0 = xen_load_sp0,
1099
1100         .set_iopl_mask = xen_set_iopl_mask,
1101         .io_delay = xen_io_delay,
1102
1103         /* Xen takes care of %gs when switching to usermode for us */
1104         .swapgs = paravirt_nop,
1105
1106         .lazy_mode = {
1107                 .enter = paravirt_enter_lazy_cpu,
1108                 .leave = xen_leave_lazy,
1109         },
1110 };
1111
1112 static void __init __xen_init_IRQ(void)
1113 {
1114 #ifdef CONFIG_X86_64
1115         int i;
1116
1117         /* Create identity vector->irq map */
1118         for(i = 0; i < NR_VECTORS; i++) {
1119                 int cpu;
1120
1121                 for_each_possible_cpu(cpu)
1122                         per_cpu(vector_irq, cpu)[i] = i;
1123         }
1124 #endif  /* CONFIG_X86_64 */
1125
1126         xen_init_IRQ();
1127 }
1128
1129 static const struct pv_irq_ops xen_irq_ops __initdata = {
1130         .init_IRQ = __xen_init_IRQ,
1131         .save_fl = xen_save_fl,
1132         .restore_fl = xen_restore_fl,
1133         .irq_disable = xen_irq_disable,
1134         .irq_enable = xen_irq_enable,
1135         .safe_halt = xen_safe_halt,
1136         .halt = xen_halt,
1137 #ifdef CONFIG_X86_64
1138         .adjust_exception_frame = xen_adjust_exception_frame,
1139 #endif
1140 };
1141
1142 static const struct pv_apic_ops xen_apic_ops __initdata = {
1143 #ifdef CONFIG_X86_LOCAL_APIC
1144         .apic_write = xen_apic_write,
1145         .apic_write_atomic = xen_apic_write,
1146         .apic_read = xen_apic_read,
1147         .setup_boot_clock = paravirt_nop,
1148         .setup_secondary_clock = paravirt_nop,
1149         .startup_ipi_hook = paravirt_nop,
1150 #endif
1151 };
1152
1153 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1154         .pagetable_setup_start = xen_pagetable_setup_start,
1155         .pagetable_setup_done = xen_pagetable_setup_done,
1156
1157         .read_cr2 = xen_read_cr2,
1158         .write_cr2 = xen_write_cr2,
1159
1160         .read_cr3 = xen_read_cr3,
1161         .write_cr3 = xen_write_cr3,
1162
1163         .flush_tlb_user = xen_flush_tlb,
1164         .flush_tlb_kernel = xen_flush_tlb,
1165         .flush_tlb_single = xen_flush_tlb_single,
1166         .flush_tlb_others = xen_flush_tlb_others,
1167
1168         .pte_update = paravirt_nop,
1169         .pte_update_defer = paravirt_nop,
1170
1171         .pgd_alloc = __paravirt_pgd_alloc,
1172         .pgd_free = paravirt_nop,
1173
1174         .alloc_pte = xen_alloc_pte_init,
1175         .release_pte = xen_release_pte_init,
1176         .alloc_pmd = xen_alloc_pte_init,
1177         .alloc_pmd_clone = paravirt_nop,
1178         .release_pmd = xen_release_pte_init,
1179
1180 #ifdef CONFIG_HIGHPTE
1181         .kmap_atomic_pte = xen_kmap_atomic_pte,
1182 #endif
1183
1184 #ifdef CONFIG_X86_64
1185         .set_pte = xen_set_pte,
1186 #else
1187         .set_pte = xen_set_pte_init,
1188 #endif
1189         .set_pte_at = xen_set_pte_at,
1190         .set_pmd = xen_set_pmd_hyper,
1191
1192         .ptep_modify_prot_start = __ptep_modify_prot_start,
1193         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1194
1195         .pte_val = xen_pte_val,
1196         .pte_flags = native_pte_val,
1197         .pgd_val = xen_pgd_val,
1198
1199         .make_pte = xen_make_pte,
1200         .make_pgd = xen_make_pgd,
1201
1202 #ifdef CONFIG_X86_PAE
1203         .set_pte_atomic = xen_set_pte_atomic,
1204         .set_pte_present = xen_set_pte_at,
1205         .pte_clear = xen_pte_clear,
1206         .pmd_clear = xen_pmd_clear,
1207 #endif  /* CONFIG_X86_PAE */
1208         .set_pud = xen_set_pud_hyper,
1209
1210         .make_pmd = xen_make_pmd,
1211         .pmd_val = xen_pmd_val,
1212
1213 #if PAGETABLE_LEVELS == 4
1214         .pud_val = xen_pud_val,
1215         .make_pud = xen_make_pud,
1216         .set_pgd = xen_set_pgd_hyper,
1217
1218         .alloc_pud = xen_alloc_pte_init,
1219         .release_pud = xen_release_pte_init,
1220 #endif  /* PAGETABLE_LEVELS == 4 */
1221
1222         .activate_mm = xen_activate_mm,
1223         .dup_mmap = xen_dup_mmap,
1224         .exit_mmap = xen_exit_mmap,
1225
1226         .lazy_mode = {
1227                 .enter = paravirt_enter_lazy_mmu,
1228                 .leave = xen_leave_lazy,
1229         },
1230
1231         .set_fixmap = xen_set_fixmap,
1232 };
1233
1234 static void xen_reboot(int reason)
1235 {
1236         struct sched_shutdown r = { .reason = reason };
1237
1238 #ifdef CONFIG_SMP
1239         smp_send_stop();
1240 #endif
1241
1242         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1243                 BUG();
1244 }
1245
1246 static void xen_restart(char *msg)
1247 {
1248         xen_reboot(SHUTDOWN_reboot);
1249 }
1250
1251 static void xen_emergency_restart(void)
1252 {
1253         xen_reboot(SHUTDOWN_reboot);
1254 }
1255
1256 static void xen_machine_halt(void)
1257 {
1258         xen_reboot(SHUTDOWN_poweroff);
1259 }
1260
1261 static void xen_crash_shutdown(struct pt_regs *regs)
1262 {
1263         xen_reboot(SHUTDOWN_crash);
1264 }
1265
1266 static const struct machine_ops __initdata xen_machine_ops = {
1267         .restart = xen_restart,
1268         .halt = xen_machine_halt,
1269         .power_off = xen_machine_halt,
1270         .shutdown = xen_machine_halt,
1271         .crash_shutdown = xen_crash_shutdown,
1272         .emergency_restart = xen_emergency_restart,
1273 };
1274
1275
1276 static void __init xen_reserve_top(void)
1277 {
1278 #ifdef CONFIG_X86_32
1279         unsigned long top = HYPERVISOR_VIRT_START;
1280         struct xen_platform_parameters pp;
1281
1282         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1283                 top = pp.virt_start;
1284
1285         reserve_top_address(-top + 2 * PAGE_SIZE);
1286 #endif  /* CONFIG_X86_32 */
1287 }
1288
1289 /*
1290  * Like __va(), but returns address in the kernel mapping (which is
1291  * all we have until the physical memory mapping has been set up.
1292  */
1293 static void *__ka(phys_addr_t paddr)
1294 {
1295 #ifdef CONFIG_X86_64
1296         return (void *)(paddr + __START_KERNEL_map);
1297 #else
1298         return __va(paddr);
1299 #endif
1300 }
1301
1302 /* Convert a machine address to physical address */
1303 static unsigned long m2p(phys_addr_t maddr)
1304 {
1305         phys_addr_t paddr;
1306
1307         maddr &= PTE_MASK;
1308         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1309
1310         return paddr;
1311 }
1312
1313 /* Convert a machine address to kernel virtual */
1314 static void *m2v(phys_addr_t maddr)
1315 {
1316         return __ka(m2p(maddr));
1317 }
1318
1319 #ifdef CONFIG_X86_64
1320 static void walk(pgd_t *pgd, unsigned long addr)
1321 {
1322         unsigned l4idx = pgd_index(addr);
1323         unsigned l3idx = pud_index(addr);
1324         unsigned l2idx = pmd_index(addr);
1325         unsigned l1idx = pte_index(addr);
1326         pgd_t l4;
1327         pud_t l3;
1328         pmd_t l2;
1329         pte_t l1;
1330
1331         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1332                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1333
1334         l4 = pgd[l4idx];
1335         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1336         xen_raw_printk("      %016lx\n", pgd_val(l4));
1337
1338         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1339         xen_raw_printk("  l3: %016lx\n", l3.pud);
1340         xen_raw_printk("      %016lx\n", pud_val(l3));
1341
1342         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1343         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1344         xen_raw_printk("      %016lx\n", pmd_val(l2));
1345
1346         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1347         xen_raw_printk("  l1: %016lx\n", l1.pte);
1348         xen_raw_printk("      %016lx\n", pte_val(l1));
1349 }
1350 #endif
1351
1352 static void set_page_prot(void *addr, pgprot_t prot)
1353 {
1354         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1355         pte_t pte = pfn_pte(pfn, prot);
1356
1357         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1358                        addr, pfn, get_phys_to_machine(pfn),
1359                        pgprot_val(prot), pte.pte);
1360
1361         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1362                 BUG();
1363 }
1364
1365 /*
1366  * Identity map, in addition to plain kernel map.  This needs to be
1367  * large enough to allocate page table pages to allocate the rest.
1368  * Each page can map 2MB.
1369  */
1370 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
1371
1372 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1373 {
1374         unsigned pmdidx, pteidx;
1375         unsigned ident_pte;
1376         unsigned long pfn;
1377
1378         ident_pte = 0;
1379         pfn = 0;
1380         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1381                 pte_t *pte_page;
1382
1383                 /* Reuse or allocate a page of ptes */
1384                 if (pmd_present(pmd[pmdidx]))
1385                         pte_page = m2v(pmd[pmdidx].pmd);
1386                 else {
1387                         /* Check for free pte pages */
1388                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1389                                 break;
1390
1391                         pte_page = &level1_ident_pgt[ident_pte];
1392                         ident_pte += PTRS_PER_PTE;
1393
1394                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1395                 }
1396
1397                 /* Install mappings */
1398                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1399                         pte_t pte;
1400
1401                         if (pfn > max_pfn_mapped)
1402                                 max_pfn_mapped = pfn;
1403
1404                         if (!pte_none(pte_page[pteidx]))
1405                                 continue;
1406
1407                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1408                         pte_page[pteidx] = pte;
1409                 }
1410         }
1411
1412         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1413                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1414
1415         set_page_prot(pmd, PAGE_KERNEL_RO);
1416 }
1417
1418 #ifdef CONFIG_X86_64
1419 static void convert_pfn_mfn(void *v)
1420 {
1421         pte_t *pte = v;
1422         int i;
1423
1424         /* All levels are converted the same way, so just treat them
1425            as ptes. */
1426         for(i = 0; i < PTRS_PER_PTE; i++)
1427                 pte[i] = xen_make_pte(pte[i].pte);
1428 }
1429
1430 /*
1431  * Set up the inital kernel pagetable.
1432  *
1433  * We can construct this by grafting the Xen provided pagetable into
1434  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1435  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1436  * means that only the kernel has a physical mapping to start with -
1437  * but that's enough to get __va working.  We need to fill in the rest
1438  * of the physical mapping once some sort of allocator has been set
1439  * up.
1440  */
1441 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1442 {
1443         pud_t *l3;
1444         pmd_t *l2;
1445
1446         /* Zap identity mapping */
1447         init_level4_pgt[0] = __pgd(0);
1448
1449         /* Pre-constructed entries are in pfn, so convert to mfn */
1450         convert_pfn_mfn(init_level4_pgt);
1451         convert_pfn_mfn(level3_ident_pgt);
1452         convert_pfn_mfn(level3_kernel_pgt);
1453
1454         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1455         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1456
1457         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1458         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1459
1460         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1461         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1462         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1463
1464         /* Set up identity map */
1465         xen_map_identity_early(level2_ident_pgt, max_pfn);
1466
1467         /* Make pagetable pieces RO */
1468         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1469         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1470         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1471         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1472         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1473
1474         /* Pin down new L4 */
1475         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1476                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1477
1478         /* Unpin Xen-provided one */
1479         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1480
1481         /* Switch over */
1482         pgd = init_level4_pgt;
1483         xen_write_cr3(__pa(pgd));
1484
1485         reserve_early(__pa(xen_start_info->pt_base),
1486                       __pa(xen_start_info->pt_base +
1487                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1488                       "XEN PAGETABLES");
1489
1490         return pgd;
1491 }
1492 #else   /* !CONFIG_X86_64 */
1493 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1494
1495 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1496 {
1497         pmd_t *kernel_pmd;
1498
1499         init_pg_tables_start = __pa(pgd);
1500         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1501         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1502
1503         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1504         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1505
1506         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1507
1508         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1509         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1510                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1511
1512         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1513         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1514         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1515
1516         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1517
1518         xen_write_cr3(__pa(swapper_pg_dir));
1519
1520         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1521
1522         return swapper_pg_dir;
1523 }
1524 #endif  /* CONFIG_X86_64 */
1525
1526 /* First C function to be called on Xen boot */
1527 asmlinkage void __init xen_start_kernel(void)
1528 {
1529         pgd_t *pgd;
1530
1531         if (!xen_start_info)
1532                 return;
1533
1534         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1535
1536         xen_setup_features();
1537
1538         /* Install Xen paravirt ops */
1539         pv_info = xen_info;
1540         pv_init_ops = xen_init_ops;
1541         pv_time_ops = xen_time_ops;
1542         pv_cpu_ops = xen_cpu_ops;
1543         pv_irq_ops = xen_irq_ops;
1544         pv_apic_ops = xen_apic_ops;
1545         pv_mmu_ops = xen_mmu_ops;
1546
1547         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1548                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1549                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1550         }
1551
1552         machine_ops = xen_machine_ops;
1553
1554 #ifdef CONFIG_X86_64
1555         /* Disable until direct per-cpu data access. */
1556         have_vcpu_info_placement = 0;
1557         x86_64_init_pda();
1558 #endif
1559
1560         xen_smp_init();
1561
1562         /* Get mfn list */
1563         if (!xen_feature(XENFEAT_auto_translated_physmap))
1564                 xen_build_dynamic_phys_to_machine();
1565
1566         pgd = (pgd_t *)xen_start_info->pt_base;
1567
1568         /* Prevent unwanted bits from being set in PTEs. */
1569         __supported_pte_mask &= ~_PAGE_GLOBAL;
1570         if (!is_initial_xendomain())
1571                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1572
1573         /* Don't do the full vcpu_info placement stuff until we have a
1574            possible map and a non-dummy shared_info. */
1575         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1576
1577         xen_raw_console_write("mapping kernel into physical memory\n");
1578         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1579
1580         init_mm.pgd = pgd;
1581
1582         /* keep using Xen gdt for now; no urgent need to change it */
1583
1584         pv_info.kernel_rpl = 1;
1585         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1586                 pv_info.kernel_rpl = 0;
1587
1588         /* set the limit of our address space */
1589         xen_reserve_top();
1590
1591 #ifdef CONFIG_X86_32
1592         /* set up basic CPUID stuff */
1593         cpu_detect(&new_cpu_data);
1594         new_cpu_data.hard_math = 1;
1595         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1596 #endif
1597
1598         /* Poke various useful things into boot_params */
1599         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1600         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1601                 ? __pa(xen_start_info->mod_start) : 0;
1602         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1603         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1604
1605         if (!is_initial_xendomain()) {
1606                 add_preferred_console("xenboot", 0, NULL);
1607                 add_preferred_console("tty", 0, NULL);
1608                 add_preferred_console("hvc", 0, NULL);
1609         }
1610
1611         xen_raw_console_write("about to get started...\n");
1612
1613 #if 0
1614         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1615                        &boot_params, __pa_symbol(&boot_params),
1616                        __va(__pa_symbol(&boot_params)));
1617
1618         walk(pgd, &boot_params);
1619         walk(pgd, __va(__pa(&boot_params)));
1620 #endif
1621
1622         /* Start the world */
1623 #ifdef CONFIG_X86_32
1624         i386_start_kernel();
1625 #else
1626         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1627 #endif
1628 }