4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/fixmap.h>
50 #include <asm/mmu_context.h>
51 #include <asm/setup.h>
52 #include <asm/paravirt.h>
53 #include <asm/linkage.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
59 #include <xen/interface/xen.h>
60 #include <xen/interface/version.h>
61 #include <xen/hvc-console.h>
63 #include "multicalls.h"
67 #define MMU_UPDATE_HISTO 30
69 #ifdef CONFIG_XEN_DEBUG_FS
73 u32 pgd_update_pinned;
74 u32 pgd_update_batched;
77 u32 pud_update_pinned;
78 u32 pud_update_batched;
81 u32 pmd_update_pinned;
82 u32 pmd_update_batched;
85 u32 pte_update_pinned;
86 u32 pte_update_batched;
89 u32 mmu_update_extended;
90 u32 mmu_update_histo[MMU_UPDATE_HISTO];
93 u32 prot_commit_batched;
96 u32 set_pte_at_batched;
97 u32 set_pte_at_pinned;
98 u32 set_pte_at_current;
99 u32 set_pte_at_kernel;
102 static u8 zero_stats;
104 static inline void check_zero(void)
106 if (unlikely(zero_stats)) {
107 memset(&mmu_stats, 0, sizeof(mmu_stats));
112 #define ADD_STATS(elem, val) \
113 do { check_zero(); mmu_stats.elem += (val); } while(0)
115 #else /* !CONFIG_XEN_DEBUG_FS */
117 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
119 #endif /* CONFIG_XEN_DEBUG_FS */
123 * Identity map, in addition to plain kernel map. This needs to be
124 * large enough to allocate page table pages to allocate the rest.
125 * Each page can map 2MB.
127 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
130 /* l3 pud for userspace vsyscall mapping */
131 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
132 #endif /* CONFIG_X86_64 */
135 * Note about cr3 (pagetable base) values:
137 * xen_cr3 contains the current logical cr3 value; it contains the
138 * last set cr3. This may not be the current effective cr3, because
139 * its update may be being lazily deferred. However, a vcpu looking
140 * at its own cr3 can use this value knowing that it everything will
141 * be self-consistent.
143 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
144 * hypercall to set the vcpu cr3 is complete (so it may be a little
145 * out of date, but it will never be set early). If one vcpu is
146 * looking at another vcpu's cr3 value, it should use this variable.
148 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
149 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
153 * Just beyond the highest usermode address. STACK_TOP_MAX has a
154 * redzone above it, so round it up to a PGD boundary.
156 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
159 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
160 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
162 /* Placeholder for holes in the address space */
163 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
164 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
166 /* Array of pointers to pages containing p2m entries */
167 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
168 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
170 /* Arrays of p2m arrays expressed in mfns used for save/restore */
171 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
173 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
176 static inline unsigned p2m_top_index(unsigned long pfn)
178 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
179 return pfn / P2M_ENTRIES_PER_PAGE;
182 static inline unsigned p2m_index(unsigned long pfn)
184 return pfn % P2M_ENTRIES_PER_PAGE;
187 /* Build the parallel p2m_top_mfn structures */
188 static void __init xen_build_mfn_list_list(void)
192 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
193 unsigned topidx = p2m_top_index(pfn);
195 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
198 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
199 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
200 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
204 void xen_setup_mfn_list_list(void)
206 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
208 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
209 virt_to_mfn(p2m_top_mfn_list);
210 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
213 /* Set up p2m_top to point to the domain-builder provided p2m pages */
214 void __init xen_build_dynamic_phys_to_machine(void)
216 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
217 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
220 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
221 unsigned topidx = p2m_top_index(pfn);
223 p2m_top[topidx] = &mfn_list[pfn];
226 xen_build_mfn_list_list();
229 unsigned long get_phys_to_machine(unsigned long pfn)
231 unsigned topidx, idx;
233 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
234 return INVALID_P2M_ENTRY;
236 topidx = p2m_top_index(pfn);
237 idx = p2m_index(pfn);
238 return p2m_top[topidx][idx];
240 EXPORT_SYMBOL_GPL(get_phys_to_machine);
242 /* install a new p2m_top page */
243 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
245 unsigned topidx = p2m_top_index(pfn);
246 unsigned long **pfnp, *mfnp;
249 pfnp = &p2m_top[topidx];
250 mfnp = &p2m_top_mfn[topidx];
252 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
253 p[i] = INVALID_P2M_ENTRY;
255 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
256 *mfnp = virt_to_mfn(p);
263 static void alloc_p2m(unsigned long pfn)
267 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
270 if (!install_p2mtop_page(pfn, p))
271 free_page((unsigned long)p);
274 /* Try to install p2m mapping; fail if intermediate bits missing */
275 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
277 unsigned topidx, idx;
279 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
280 BUG_ON(mfn != INVALID_P2M_ENTRY);
284 topidx = p2m_top_index(pfn);
285 if (p2m_top[topidx] == p2m_missing) {
286 if (mfn == INVALID_P2M_ENTRY)
291 idx = p2m_index(pfn);
292 p2m_top[topidx][idx] = mfn;
297 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
299 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
300 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
304 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
307 if (!__set_phys_to_machine(pfn, mfn))
312 unsigned long arbitrary_virt_to_mfn(void *vaddr)
314 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
316 return PFN_DOWN(maddr.maddr);
319 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
321 unsigned long address = (unsigned long)vaddr;
327 * if the PFN is in the linear mapped vaddr range, we can just use
328 * the (quick) virt_to_machine() p2m lookup
330 if (virt_addr_valid(vaddr))
331 return virt_to_machine(vaddr);
333 /* otherwise we have to do a (slower) full page-table walk */
335 pte = lookup_address(address, &level);
337 offset = address & ~PAGE_MASK;
338 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
341 void make_lowmem_page_readonly(void *vaddr)
344 unsigned long address = (unsigned long)vaddr;
347 pte = lookup_address(address, &level);
350 ptev = pte_wrprotect(*pte);
352 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
356 void make_lowmem_page_readwrite(void *vaddr)
359 unsigned long address = (unsigned long)vaddr;
362 pte = lookup_address(address, &level);
365 ptev = pte_mkwrite(*pte);
367 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
372 static bool xen_page_pinned(void *ptr)
374 struct page *page = virt_to_page(ptr);
376 return PagePinned(page);
379 static void xen_extend_mmu_update(const struct mmu_update *update)
381 struct multicall_space mcs;
382 struct mmu_update *u;
384 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
386 if (mcs.mc != NULL) {
387 ADD_STATS(mmu_update_extended, 1);
388 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
392 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
393 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
395 ADD_STATS(mmu_update_histo[0], 1);
397 ADD_STATS(mmu_update, 1);
398 mcs = __xen_mc_entry(sizeof(*u));
399 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
400 ADD_STATS(mmu_update_histo[1], 1);
407 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
415 /* ptr may be ioremapped for 64-bit pagetable setup */
416 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
417 u.val = pmd_val_ma(val);
418 xen_extend_mmu_update(&u);
420 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
422 xen_mc_issue(PARAVIRT_LAZY_MMU);
427 void xen_set_pmd(pmd_t *ptr, pmd_t val)
429 ADD_STATS(pmd_update, 1);
431 /* If page is not pinned, we can just update the entry
433 if (!xen_page_pinned(ptr)) {
438 ADD_STATS(pmd_update_pinned, 1);
440 xen_set_pmd_hyper(ptr, val);
444 * Associate a virtual page frame with a given physical page frame
445 * and protection flags for that frame.
447 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
449 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
452 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
453 pte_t *ptep, pte_t pteval)
455 /* updates to init_mm may be done without lock */
459 ADD_STATS(set_pte_at, 1);
460 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
461 ADD_STATS(set_pte_at_current, mm == current->mm);
462 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
464 if (mm == current->mm || mm == &init_mm) {
465 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
466 struct multicall_space mcs;
467 mcs = xen_mc_entry(0);
469 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
470 ADD_STATS(set_pte_at_batched, 1);
471 xen_mc_issue(PARAVIRT_LAZY_MMU);
474 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
477 xen_set_pte(ptep, pteval);
484 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
485 unsigned long addr, pte_t *ptep)
487 /* Just return the pte as-is. We preserve the bits on commit */
491 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
492 pte_t *ptep, pte_t pte)
498 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
499 u.val = pte_val_ma(pte);
500 xen_extend_mmu_update(&u);
502 ADD_STATS(prot_commit, 1);
503 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
505 xen_mc_issue(PARAVIRT_LAZY_MMU);
508 /* Assume pteval_t is equivalent to all the other *val_t types. */
509 static pteval_t pte_mfn_to_pfn(pteval_t val)
511 if (val & _PAGE_PRESENT) {
512 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
513 pteval_t flags = val & PTE_FLAGS_MASK;
514 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
520 static pteval_t pte_pfn_to_mfn(pteval_t val)
522 if (val & _PAGE_PRESENT) {
523 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
524 pteval_t flags = val & PTE_FLAGS_MASK;
525 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
531 pteval_t xen_pte_val(pte_t pte)
533 return pte_mfn_to_pfn(pte.pte);
535 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
537 pgdval_t xen_pgd_val(pgd_t pgd)
539 return pte_mfn_to_pfn(pgd.pgd);
541 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
543 pte_t xen_make_pte(pteval_t pte)
545 pte = pte_pfn_to_mfn(pte);
546 return native_make_pte(pte);
548 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
550 pgd_t xen_make_pgd(pgdval_t pgd)
552 pgd = pte_pfn_to_mfn(pgd);
553 return native_make_pgd(pgd);
555 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
557 pmdval_t xen_pmd_val(pmd_t pmd)
559 return pte_mfn_to_pfn(pmd.pmd);
561 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
563 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
571 /* ptr may be ioremapped for 64-bit pagetable setup */
572 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
573 u.val = pud_val_ma(val);
574 xen_extend_mmu_update(&u);
576 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
578 xen_mc_issue(PARAVIRT_LAZY_MMU);
583 void xen_set_pud(pud_t *ptr, pud_t val)
585 ADD_STATS(pud_update, 1);
587 /* If page is not pinned, we can just update the entry
589 if (!xen_page_pinned(ptr)) {
594 ADD_STATS(pud_update_pinned, 1);
596 xen_set_pud_hyper(ptr, val);
599 void xen_set_pte(pte_t *ptep, pte_t pte)
601 ADD_STATS(pte_update, 1);
602 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
603 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
605 #ifdef CONFIG_X86_PAE
606 ptep->pte_high = pte.pte_high;
608 ptep->pte_low = pte.pte_low;
614 #ifdef CONFIG_X86_PAE
615 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
617 set_64bit((u64 *)ptep, native_pte_val(pte));
620 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
623 smp_wmb(); /* make sure low gets written first */
627 void xen_pmd_clear(pmd_t *pmdp)
629 set_pmd(pmdp, __pmd(0));
631 #endif /* CONFIG_X86_PAE */
633 pmd_t xen_make_pmd(pmdval_t pmd)
635 pmd = pte_pfn_to_mfn(pmd);
636 return native_make_pmd(pmd);
638 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
640 #if PAGETABLE_LEVELS == 4
641 pudval_t xen_pud_val(pud_t pud)
643 return pte_mfn_to_pfn(pud.pud);
645 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
647 pud_t xen_make_pud(pudval_t pud)
649 pud = pte_pfn_to_mfn(pud);
651 return native_make_pud(pud);
653 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
655 pgd_t *xen_get_user_pgd(pgd_t *pgd)
657 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
658 unsigned offset = pgd - pgd_page;
659 pgd_t *user_ptr = NULL;
661 if (offset < pgd_index(USER_LIMIT)) {
662 struct page *page = virt_to_page(pgd_page);
663 user_ptr = (pgd_t *)page->private;
671 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
675 u.ptr = virt_to_machine(ptr).maddr;
676 u.val = pgd_val_ma(val);
677 xen_extend_mmu_update(&u);
681 * Raw hypercall-based set_pgd, intended for in early boot before
682 * there's a page structure. This implies:
683 * 1. The only existing pagetable is the kernel's
684 * 2. It is always pinned
685 * 3. It has no user pagetable attached to it
687 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
693 __xen_set_pgd_hyper(ptr, val);
695 xen_mc_issue(PARAVIRT_LAZY_MMU);
700 void xen_set_pgd(pgd_t *ptr, pgd_t val)
702 pgd_t *user_ptr = xen_get_user_pgd(ptr);
704 ADD_STATS(pgd_update, 1);
706 /* If page is not pinned, we can just update the entry
708 if (!xen_page_pinned(ptr)) {
711 WARN_ON(xen_page_pinned(user_ptr));
717 ADD_STATS(pgd_update_pinned, 1);
718 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
720 /* If it's pinned, then we can at least batch the kernel and
721 user updates together. */
724 __xen_set_pgd_hyper(ptr, val);
726 __xen_set_pgd_hyper(user_ptr, val);
728 xen_mc_issue(PARAVIRT_LAZY_MMU);
730 #endif /* PAGETABLE_LEVELS == 4 */
733 * (Yet another) pagetable walker. This one is intended for pinning a
734 * pagetable. This means that it walks a pagetable and calls the
735 * callback function on each page it finds making up the page table,
736 * at every level. It walks the entire pagetable, but it only bothers
737 * pinning pte pages which are below limit. In the normal case this
738 * will be STACK_TOP_MAX, but at boot we need to pin up to
741 * For 32-bit the important bit is that we don't pin beyond there,
742 * because then we start getting into Xen's ptes.
744 * For 64-bit, we must skip the Xen hole in the middle of the address
745 * space, just after the big x86-64 virtual hole.
747 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
748 int (*func)(struct mm_struct *mm, struct page *,
753 unsigned hole_low, hole_high;
754 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
755 unsigned pgdidx, pudidx, pmdidx;
757 /* The limit is the last byte to be touched */
759 BUG_ON(limit >= FIXADDR_TOP);
761 if (xen_feature(XENFEAT_auto_translated_physmap))
765 * 64-bit has a great big hole in the middle of the address
766 * space, which contains the Xen mappings. On 32-bit these
767 * will end up making a zero-sized hole and so is a no-op.
769 hole_low = pgd_index(USER_LIMIT);
770 hole_high = pgd_index(PAGE_OFFSET);
772 pgdidx_limit = pgd_index(limit);
774 pudidx_limit = pud_index(limit);
779 pmdidx_limit = pmd_index(limit);
784 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
787 if (pgdidx >= hole_low && pgdidx < hole_high)
790 if (!pgd_val(pgd[pgdidx]))
793 pud = pud_offset(&pgd[pgdidx], 0);
795 if (PTRS_PER_PUD > 1) /* not folded */
796 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
798 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
801 if (pgdidx == pgdidx_limit &&
802 pudidx > pudidx_limit)
805 if (pud_none(pud[pudidx]))
808 pmd = pmd_offset(&pud[pudidx], 0);
810 if (PTRS_PER_PMD > 1) /* not folded */
811 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
813 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
816 if (pgdidx == pgdidx_limit &&
817 pudidx == pudidx_limit &&
818 pmdidx > pmdidx_limit)
821 if (pmd_none(pmd[pmdidx]))
824 pte = pmd_page(pmd[pmdidx]);
825 flush |= (*func)(mm, pte, PT_PTE);
831 /* Do the top level last, so that the callbacks can use it as
832 a cue to do final things like tlb flushes. */
833 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
838 static int xen_pgd_walk(struct mm_struct *mm,
839 int (*func)(struct mm_struct *mm, struct page *,
843 return __xen_pgd_walk(mm, mm->pgd, func, limit);
846 /* If we're using split pte locks, then take the page's lock and
847 return a pointer to it. Otherwise return NULL. */
848 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
850 spinlock_t *ptl = NULL;
852 #if USE_SPLIT_PTLOCKS
853 ptl = __pte_lockptr(page);
854 spin_lock_nest_lock(ptl, &mm->page_table_lock);
860 static void xen_pte_unlock(void *v)
866 static void xen_do_pin(unsigned level, unsigned long pfn)
868 struct mmuext_op *op;
869 struct multicall_space mcs;
871 mcs = __xen_mc_entry(sizeof(*op));
874 op->arg1.mfn = pfn_to_mfn(pfn);
875 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
878 static int xen_pin_page(struct mm_struct *mm, struct page *page,
881 unsigned pgfl = TestSetPagePinned(page);
885 flush = 0; /* already pinned */
886 else if (PageHighMem(page))
887 /* kmaps need flushing if we found an unpinned
891 void *pt = lowmem_page_address(page);
892 unsigned long pfn = page_to_pfn(page);
893 struct multicall_space mcs = __xen_mc_entry(0);
899 * We need to hold the pagetable lock between the time
900 * we make the pagetable RO and when we actually pin
901 * it. If we don't, then other users may come in and
902 * attempt to update the pagetable by writing it,
903 * which will fail because the memory is RO but not
904 * pinned, so Xen won't do the trap'n'emulate.
906 * If we're using split pte locks, we can't hold the
907 * entire pagetable's worth of locks during the
908 * traverse, because we may wrap the preempt count (8
909 * bits). The solution is to mark RO and pin each PTE
910 * page while holding the lock. This means the number
911 * of locks we end up holding is never more than a
912 * batch size (~32 entries, at present).
914 * If we're not using split pte locks, we needn't pin
915 * the PTE pages independently, because we're
916 * protected by the overall pagetable lock.
920 ptl = xen_pte_lock(page, mm);
922 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
923 pfn_pte(pfn, PAGE_KERNEL_RO),
924 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
927 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
929 /* Queue a deferred unlock for when this batch
931 xen_mc_callback(xen_pte_unlock, ptl);
938 /* This is called just after a mm has been created, but it has not
939 been used yet. We need to make sure that its pagetable is all
940 read-only, and can be pinned. */
941 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
947 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
948 /* re-enable interrupts for flushing */
958 pgd_t *user_pgd = xen_get_user_pgd(pgd);
960 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
963 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
964 xen_do_pin(MMUEXT_PIN_L4_TABLE,
965 PFN_DOWN(__pa(user_pgd)));
968 #else /* CONFIG_X86_32 */
969 #ifdef CONFIG_X86_PAE
970 /* Need to make sure unshared kernel PMD is pinnable */
971 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
974 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
975 #endif /* CONFIG_X86_64 */
979 static void xen_pgd_pin(struct mm_struct *mm)
981 __xen_pgd_pin(mm, mm->pgd);
985 * On save, we need to pin all pagetables to make sure they get their
986 * mfns turned into pfns. Search the list for any unpinned pgds and pin
987 * them (unpinned pgds are not currently in use, probably because the
988 * process is under construction or destruction).
990 * Expected to be called in stop_machine() ("equivalent to taking
991 * every spinlock in the system"), so the locking doesn't really
992 * matter all that much.
994 void xen_mm_pin_all(void)
999 spin_lock_irqsave(&pgd_lock, flags);
1001 list_for_each_entry(page, &pgd_list, lru) {
1002 if (!PagePinned(page)) {
1003 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1004 SetPageSavePinned(page);
1008 spin_unlock_irqrestore(&pgd_lock, flags);
1012 * The init_mm pagetable is really pinned as soon as its created, but
1013 * that's before we have page structures to store the bits. So do all
1014 * the book-keeping now.
1016 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1017 enum pt_level level)
1019 SetPagePinned(page);
1023 static void __init xen_mark_init_mm_pinned(void)
1025 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1028 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1029 enum pt_level level)
1031 unsigned pgfl = TestClearPagePinned(page);
1033 if (pgfl && !PageHighMem(page)) {
1034 void *pt = lowmem_page_address(page);
1035 unsigned long pfn = page_to_pfn(page);
1036 spinlock_t *ptl = NULL;
1037 struct multicall_space mcs;
1040 * Do the converse to pin_page. If we're using split
1041 * pte locks, we must be holding the lock for while
1042 * the pte page is unpinned but still RO to prevent
1043 * concurrent updates from seeing it in this
1044 * partially-pinned state.
1046 if (level == PT_PTE) {
1047 ptl = xen_pte_lock(page, mm);
1050 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1053 mcs = __xen_mc_entry(0);
1055 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1056 pfn_pte(pfn, PAGE_KERNEL),
1057 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1060 /* unlock when batch completed */
1061 xen_mc_callback(xen_pte_unlock, ptl);
1065 return 0; /* never need to flush on unpin */
1068 /* Release a pagetables pages back as normal RW */
1069 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1073 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1075 #ifdef CONFIG_X86_64
1077 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1080 xen_do_pin(MMUEXT_UNPIN_TABLE,
1081 PFN_DOWN(__pa(user_pgd)));
1082 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1087 #ifdef CONFIG_X86_PAE
1088 /* Need to make sure unshared kernel PMD is unpinned */
1089 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1093 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1098 static void xen_pgd_unpin(struct mm_struct *mm)
1100 __xen_pgd_unpin(mm, mm->pgd);
1104 * On resume, undo any pinning done at save, so that the rest of the
1105 * kernel doesn't see any unexpected pinned pagetables.
1107 void xen_mm_unpin_all(void)
1109 unsigned long flags;
1112 spin_lock_irqsave(&pgd_lock, flags);
1114 list_for_each_entry(page, &pgd_list, lru) {
1115 if (PageSavePinned(page)) {
1116 BUG_ON(!PagePinned(page));
1117 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1118 ClearPageSavePinned(page);
1122 spin_unlock_irqrestore(&pgd_lock, flags);
1125 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1127 spin_lock(&next->page_table_lock);
1129 spin_unlock(&next->page_table_lock);
1132 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1134 spin_lock(&mm->page_table_lock);
1136 spin_unlock(&mm->page_table_lock);
1141 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1142 we need to repoint it somewhere else before we can unpin it. */
1143 static void drop_other_mm_ref(void *info)
1145 struct mm_struct *mm = info;
1146 struct mm_struct *active_mm;
1148 active_mm = percpu_read(cpu_tlbstate.active_mm);
1150 if (active_mm == mm)
1151 leave_mm(smp_processor_id());
1153 /* If this cpu still has a stale cr3 reference, then make sure
1154 it has been flushed. */
1155 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) {
1156 load_cr3(swapper_pg_dir);
1157 arch_flush_lazy_cpu_mode();
1161 static void xen_drop_mm_ref(struct mm_struct *mm)
1166 if (current->active_mm == mm) {
1167 if (current->mm == mm)
1168 load_cr3(swapper_pg_dir);
1170 leave_mm(smp_processor_id());
1171 arch_flush_lazy_cpu_mode();
1174 /* Get the "official" set of cpus referring to our pagetable. */
1175 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1176 for_each_online_cpu(cpu) {
1177 if (!cpumask_test_cpu(cpu, &mm->cpu_vm_mask)
1178 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1180 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1184 cpumask_copy(mask, &mm->cpu_vm_mask);
1186 /* It's possible that a vcpu may have a stale reference to our
1187 cr3, because its in lazy mode, and it hasn't yet flushed
1188 its set of pending hypercalls yet. In this case, we can
1189 look at its actual current cr3 value, and force it to flush
1191 for_each_online_cpu(cpu) {
1192 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1193 cpumask_set_cpu(cpu, mask);
1196 if (!cpumask_empty(mask))
1197 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1198 free_cpumask_var(mask);
1201 static void xen_drop_mm_ref(struct mm_struct *mm)
1203 if (current->active_mm == mm)
1204 load_cr3(swapper_pg_dir);
1209 * While a process runs, Xen pins its pagetables, which means that the
1210 * hypervisor forces it to be read-only, and it controls all updates
1211 * to it. This means that all pagetable updates have to go via the
1212 * hypervisor, which is moderately expensive.
1214 * Since we're pulling the pagetable down, we switch to use init_mm,
1215 * unpin old process pagetable and mark it all read-write, which
1216 * allows further operations on it to be simple memory accesses.
1218 * The only subtle point is that another CPU may be still using the
1219 * pagetable because of lazy tlb flushing. This means we need need to
1220 * switch all CPUs off this pagetable before we can unpin it.
1222 void xen_exit_mmap(struct mm_struct *mm)
1224 get_cpu(); /* make sure we don't move around */
1225 xen_drop_mm_ref(mm);
1228 spin_lock(&mm->page_table_lock);
1230 /* pgd may not be pinned in the error exit path of execve */
1231 if (xen_page_pinned(mm->pgd))
1234 spin_unlock(&mm->page_table_lock);
1237 static __init void xen_pagetable_setup_start(pgd_t *base)
1241 static __init void xen_pagetable_setup_done(pgd_t *base)
1243 xen_setup_shared_info();
1246 static void xen_write_cr2(unsigned long cr2)
1248 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1251 static unsigned long xen_read_cr2(void)
1253 return percpu_read(xen_vcpu)->arch.cr2;
1256 unsigned long xen_read_cr2_direct(void)
1258 return percpu_read(xen_vcpu_info.arch.cr2);
1261 static void xen_flush_tlb(void)
1263 struct mmuext_op *op;
1264 struct multicall_space mcs;
1268 mcs = xen_mc_entry(sizeof(*op));
1271 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1272 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1274 xen_mc_issue(PARAVIRT_LAZY_MMU);
1279 static void xen_flush_tlb_single(unsigned long addr)
1281 struct mmuext_op *op;
1282 struct multicall_space mcs;
1286 mcs = xen_mc_entry(sizeof(*op));
1288 op->cmd = MMUEXT_INVLPG_LOCAL;
1289 op->arg1.linear_addr = addr & PAGE_MASK;
1290 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1292 xen_mc_issue(PARAVIRT_LAZY_MMU);
1297 static void xen_flush_tlb_others(const struct cpumask *cpus,
1298 struct mm_struct *mm, unsigned long va)
1301 struct mmuext_op op;
1302 DECLARE_BITMAP(mask, NR_CPUS);
1304 struct multicall_space mcs;
1306 if (cpumask_empty(cpus))
1307 return; /* nothing to do */
1309 mcs = xen_mc_entry(sizeof(*args));
1311 args->op.arg2.vcpumask = to_cpumask(args->mask);
1313 /* Remove us, and any offline CPUS. */
1314 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1315 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1317 if (va == TLB_FLUSH_ALL) {
1318 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1320 args->op.cmd = MMUEXT_INVLPG_MULTI;
1321 args->op.arg1.linear_addr = va;
1324 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1326 xen_mc_issue(PARAVIRT_LAZY_MMU);
1329 static unsigned long xen_read_cr3(void)
1331 return percpu_read(xen_cr3);
1334 static void set_current_cr3(void *v)
1336 percpu_write(xen_current_cr3, (unsigned long)v);
1339 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1341 struct mmuext_op *op;
1342 struct multicall_space mcs;
1346 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1350 WARN_ON(mfn == 0 && kernel);
1352 mcs = __xen_mc_entry(sizeof(*op));
1355 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1358 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1361 percpu_write(xen_cr3, cr3);
1363 /* Update xen_current_cr3 once the batch has actually
1365 xen_mc_callback(set_current_cr3, (void *)cr3);
1369 static void xen_write_cr3(unsigned long cr3)
1371 BUG_ON(preemptible());
1373 xen_mc_batch(); /* disables interrupts */
1375 /* Update while interrupts are disabled, so its atomic with
1377 percpu_write(xen_cr3, cr3);
1379 __xen_write_cr3(true, cr3);
1381 #ifdef CONFIG_X86_64
1383 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1385 __xen_write_cr3(false, __pa(user_pgd));
1387 __xen_write_cr3(false, 0);
1391 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1394 static int xen_pgd_alloc(struct mm_struct *mm)
1396 pgd_t *pgd = mm->pgd;
1399 BUG_ON(PagePinned(virt_to_page(pgd)));
1401 #ifdef CONFIG_X86_64
1403 struct page *page = virt_to_page(pgd);
1406 BUG_ON(page->private != 0);
1410 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1411 page->private = (unsigned long)user_pgd;
1413 if (user_pgd != NULL) {
1414 user_pgd[pgd_index(VSYSCALL_START)] =
1415 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1419 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1426 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1428 #ifdef CONFIG_X86_64
1429 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1432 free_page((unsigned long)user_pgd);
1436 #ifdef CONFIG_HIGHPTE
1437 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1439 pgprot_t prot = PAGE_KERNEL;
1441 if (PagePinned(page))
1442 prot = PAGE_KERNEL_RO;
1444 if (0 && PageHighMem(page))
1445 printk("mapping highpte %lx type %d prot %s\n",
1446 page_to_pfn(page), type,
1447 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1449 return kmap_atomic_prot(page, type, prot);
1453 #ifdef CONFIG_X86_32
1454 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1456 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1457 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1458 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1464 /* Init-time set_pte while constructing initial pagetables, which
1465 doesn't allow RO pagetable pages to be remapped RW */
1466 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1468 pte = mask_rw_pte(ptep, pte);
1470 xen_set_pte(ptep, pte);
1474 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1476 struct mmuext_op op;
1478 op.arg1.mfn = pfn_to_mfn(pfn);
1479 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1483 /* Early in boot, while setting up the initial pagetable, assume
1484 everything is pinned. */
1485 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1487 #ifdef CONFIG_FLATMEM
1488 BUG_ON(mem_map); /* should only be used early */
1490 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1491 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1494 /* Used for pmd and pud */
1495 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1497 #ifdef CONFIG_FLATMEM
1498 BUG_ON(mem_map); /* should only be used early */
1500 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1503 /* Early release_pte assumes that all pts are pinned, since there's
1504 only init_mm and anything attached to that is pinned. */
1505 static __init void xen_release_pte_init(unsigned long pfn)
1507 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1508 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1511 static __init void xen_release_pmd_init(unsigned long pfn)
1513 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1516 /* This needs to make sure the new pte page is pinned iff its being
1517 attached to a pinned pagetable. */
1518 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1520 struct page *page = pfn_to_page(pfn);
1522 if (PagePinned(virt_to_page(mm->pgd))) {
1523 SetPagePinned(page);
1526 if (!PageHighMem(page)) {
1527 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1528 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1529 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1531 /* make sure there are no stray mappings of
1533 kmap_flush_unused();
1538 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1540 xen_alloc_ptpage(mm, pfn, PT_PTE);
1543 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1545 xen_alloc_ptpage(mm, pfn, PT_PMD);
1548 /* This should never happen until we're OK to use struct page */
1549 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1551 struct page *page = pfn_to_page(pfn);
1553 if (PagePinned(page)) {
1554 if (!PageHighMem(page)) {
1555 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1556 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1557 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1559 ClearPagePinned(page);
1563 static void xen_release_pte(unsigned long pfn)
1565 xen_release_ptpage(pfn, PT_PTE);
1568 static void xen_release_pmd(unsigned long pfn)
1570 xen_release_ptpage(pfn, PT_PMD);
1573 #if PAGETABLE_LEVELS == 4
1574 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1576 xen_alloc_ptpage(mm, pfn, PT_PUD);
1579 static void xen_release_pud(unsigned long pfn)
1581 xen_release_ptpage(pfn, PT_PUD);
1585 void __init xen_reserve_top(void)
1587 #ifdef CONFIG_X86_32
1588 unsigned long top = HYPERVISOR_VIRT_START;
1589 struct xen_platform_parameters pp;
1591 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1592 top = pp.virt_start;
1594 reserve_top_address(-top);
1595 #endif /* CONFIG_X86_32 */
1599 * Like __va(), but returns address in the kernel mapping (which is
1600 * all we have until the physical memory mapping has been set up.
1602 static void *__ka(phys_addr_t paddr)
1604 #ifdef CONFIG_X86_64
1605 return (void *)(paddr + __START_KERNEL_map);
1611 /* Convert a machine address to physical address */
1612 static unsigned long m2p(phys_addr_t maddr)
1616 maddr &= PTE_PFN_MASK;
1617 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1622 /* Convert a machine address to kernel virtual */
1623 static void *m2v(phys_addr_t maddr)
1625 return __ka(m2p(maddr));
1628 static void set_page_prot(void *addr, pgprot_t prot)
1630 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1631 pte_t pte = pfn_pte(pfn, prot);
1633 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1637 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1639 unsigned pmdidx, pteidx;
1645 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1648 /* Reuse or allocate a page of ptes */
1649 if (pmd_present(pmd[pmdidx]))
1650 pte_page = m2v(pmd[pmdidx].pmd);
1652 /* Check for free pte pages */
1653 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1656 pte_page = &level1_ident_pgt[ident_pte];
1657 ident_pte += PTRS_PER_PTE;
1659 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1662 /* Install mappings */
1663 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1666 if (pfn > max_pfn_mapped)
1667 max_pfn_mapped = pfn;
1669 if (!pte_none(pte_page[pteidx]))
1672 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1673 pte_page[pteidx] = pte;
1677 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1678 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1680 set_page_prot(pmd, PAGE_KERNEL_RO);
1683 #ifdef CONFIG_X86_64
1684 static void convert_pfn_mfn(void *v)
1689 /* All levels are converted the same way, so just treat them
1691 for (i = 0; i < PTRS_PER_PTE; i++)
1692 pte[i] = xen_make_pte(pte[i].pte);
1696 * Set up the inital kernel pagetable.
1698 * We can construct this by grafting the Xen provided pagetable into
1699 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1700 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1701 * means that only the kernel has a physical mapping to start with -
1702 * but that's enough to get __va working. We need to fill in the rest
1703 * of the physical mapping once some sort of allocator has been set
1706 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1707 unsigned long max_pfn)
1712 /* Zap identity mapping */
1713 init_level4_pgt[0] = __pgd(0);
1715 /* Pre-constructed entries are in pfn, so convert to mfn */
1716 convert_pfn_mfn(init_level4_pgt);
1717 convert_pfn_mfn(level3_ident_pgt);
1718 convert_pfn_mfn(level3_kernel_pgt);
1720 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1721 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1723 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1724 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1726 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1727 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1728 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1730 /* Set up identity map */
1731 xen_map_identity_early(level2_ident_pgt, max_pfn);
1733 /* Make pagetable pieces RO */
1734 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1735 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1736 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1737 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1738 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1739 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1741 /* Pin down new L4 */
1742 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1743 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1745 /* Unpin Xen-provided one */
1746 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1749 pgd = init_level4_pgt;
1752 * At this stage there can be no user pgd, and no page
1753 * structure to attach it to, so make sure we just set kernel
1757 __xen_write_cr3(true, __pa(pgd));
1758 xen_mc_issue(PARAVIRT_LAZY_CPU);
1760 reserve_early(__pa(xen_start_info->pt_base),
1761 __pa(xen_start_info->pt_base +
1762 xen_start_info->nr_pt_frames * PAGE_SIZE),
1767 #else /* !CONFIG_X86_64 */
1768 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1770 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1771 unsigned long max_pfn)
1775 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1776 xen_start_info->nr_pt_frames * PAGE_SIZE +
1779 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1780 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1782 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1784 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1785 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1786 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1788 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1789 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1790 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1794 xen_write_cr3(__pa(swapper_pg_dir));
1796 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1798 reserve_early(__pa(xen_start_info->pt_base),
1799 __pa(xen_start_info->pt_base +
1800 xen_start_info->nr_pt_frames * PAGE_SIZE),
1803 return swapper_pg_dir;
1805 #endif /* CONFIG_X86_64 */
1807 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1811 phys >>= PAGE_SHIFT;
1814 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1815 #ifdef CONFIG_X86_F00F_BUG
1818 #ifdef CONFIG_X86_32
1821 # ifdef CONFIG_HIGHMEM
1822 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1825 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1827 #ifdef CONFIG_X86_LOCAL_APIC
1828 case FIX_APIC_BASE: /* maps dummy local APIC */
1830 case FIX_TEXT_POKE0:
1831 case FIX_TEXT_POKE1:
1832 /* All local page mappings */
1833 pte = pfn_pte(phys, prot);
1837 pte = mfn_pte(phys, prot);
1841 __native_set_fixmap(idx, pte);
1843 #ifdef CONFIG_X86_64
1844 /* Replicate changes to map the vsyscall page into the user
1845 pagetable vsyscall mapping. */
1846 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1847 unsigned long vaddr = __fix_to_virt(idx);
1848 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1853 __init void xen_post_allocator_init(void)
1855 pv_mmu_ops.set_pte = xen_set_pte;
1856 pv_mmu_ops.set_pmd = xen_set_pmd;
1857 pv_mmu_ops.set_pud = xen_set_pud;
1858 #if PAGETABLE_LEVELS == 4
1859 pv_mmu_ops.set_pgd = xen_set_pgd;
1862 /* This will work as long as patching hasn't happened yet
1863 (which it hasn't) */
1864 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1865 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1866 pv_mmu_ops.release_pte = xen_release_pte;
1867 pv_mmu_ops.release_pmd = xen_release_pmd;
1868 #if PAGETABLE_LEVELS == 4
1869 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1870 pv_mmu_ops.release_pud = xen_release_pud;
1873 #ifdef CONFIG_X86_64
1874 SetPagePinned(virt_to_page(level3_user_vsyscall));
1876 xen_mark_init_mm_pinned();
1879 const struct pv_mmu_ops xen_mmu_ops __initdata = {
1880 .pagetable_setup_start = xen_pagetable_setup_start,
1881 .pagetable_setup_done = xen_pagetable_setup_done,
1883 .read_cr2 = xen_read_cr2,
1884 .write_cr2 = xen_write_cr2,
1886 .read_cr3 = xen_read_cr3,
1887 .write_cr3 = xen_write_cr3,
1889 .flush_tlb_user = xen_flush_tlb,
1890 .flush_tlb_kernel = xen_flush_tlb,
1891 .flush_tlb_single = xen_flush_tlb_single,
1892 .flush_tlb_others = xen_flush_tlb_others,
1894 .pte_update = paravirt_nop,
1895 .pte_update_defer = paravirt_nop,
1897 .pgd_alloc = xen_pgd_alloc,
1898 .pgd_free = xen_pgd_free,
1900 .alloc_pte = xen_alloc_pte_init,
1901 .release_pte = xen_release_pte_init,
1902 .alloc_pmd = xen_alloc_pmd_init,
1903 .alloc_pmd_clone = paravirt_nop,
1904 .release_pmd = xen_release_pmd_init,
1906 #ifdef CONFIG_HIGHPTE
1907 .kmap_atomic_pte = xen_kmap_atomic_pte,
1910 #ifdef CONFIG_X86_64
1911 .set_pte = xen_set_pte,
1913 .set_pte = xen_set_pte_init,
1915 .set_pte_at = xen_set_pte_at,
1916 .set_pmd = xen_set_pmd_hyper,
1918 .ptep_modify_prot_start = __ptep_modify_prot_start,
1919 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1921 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1922 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1924 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1925 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1927 #ifdef CONFIG_X86_PAE
1928 .set_pte_atomic = xen_set_pte_atomic,
1929 .pte_clear = xen_pte_clear,
1930 .pmd_clear = xen_pmd_clear,
1931 #endif /* CONFIG_X86_PAE */
1932 .set_pud = xen_set_pud_hyper,
1934 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1935 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1937 #if PAGETABLE_LEVELS == 4
1938 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1939 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1940 .set_pgd = xen_set_pgd_hyper,
1942 .alloc_pud = xen_alloc_pmd_init,
1943 .release_pud = xen_release_pmd_init,
1944 #endif /* PAGETABLE_LEVELS == 4 */
1946 .activate_mm = xen_activate_mm,
1947 .dup_mmap = xen_dup_mmap,
1948 .exit_mmap = xen_exit_mmap,
1951 .enter = paravirt_enter_lazy_mmu,
1952 .leave = xen_leave_lazy,
1955 .set_fixmap = xen_set_fixmap,
1959 #ifdef CONFIG_XEN_DEBUG_FS
1961 static struct dentry *d_mmu_debug;
1963 static int __init xen_mmu_debugfs(void)
1965 struct dentry *d_xen = xen_init_debugfs();
1970 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1972 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1974 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1975 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1976 &mmu_stats.pgd_update_pinned);
1977 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1978 &mmu_stats.pgd_update_pinned);
1980 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1981 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1982 &mmu_stats.pud_update_pinned);
1983 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1984 &mmu_stats.pud_update_pinned);
1986 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1987 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1988 &mmu_stats.pmd_update_pinned);
1989 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1990 &mmu_stats.pmd_update_pinned);
1992 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1993 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1994 // &mmu_stats.pte_update_pinned);
1995 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1996 &mmu_stats.pte_update_pinned);
1998 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1999 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2000 &mmu_stats.mmu_update_extended);
2001 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2002 mmu_stats.mmu_update_histo, 20);
2004 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2005 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2006 &mmu_stats.set_pte_at_batched);
2007 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2008 &mmu_stats.set_pte_at_current);
2009 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2010 &mmu_stats.set_pte_at_kernel);
2012 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2013 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2014 &mmu_stats.prot_commit_batched);
2018 fs_initcall(xen_mmu_debugfs);
2020 #endif /* CONFIG_XEN_DEBUG_FS */