]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/smp.c
rt2x00: rt2800pci: use module_pci_driver macro
[karo-tx-linux.git] / arch / x86 / xen / smp.c
1 /*
2  * Xen SMP support
3  *
4  * This file implements the Xen versions of smp_ops.  SMP under Xen is
5  * very straightforward.  Bringing a CPU up is simply a matter of
6  * loading its initial context and setting it running.
7  *
8  * IPIs are handled through the Xen event mechanism.
9  *
10  * Because virtual CPUs can be scheduled onto any real CPU, there's no
11  * useful topology information for the kernel to make use of.  As a
12  * result, all CPUs are treated as if they're single-core and
13  * single-threaded.
14  */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29
30 #include <asm/xen/interface.h>
31 #include <asm/xen/hypercall.h>
32
33 #include <xen/xen.h>
34 #include <xen/page.h>
35 #include <xen/events.h>
36
37 #include <xen/hvc-console.h>
38 #include "xen-ops.h"
39 #include "mmu.h"
40
41 cpumask_var_t xen_cpu_initialized_map;
42
43 struct xen_common_irq {
44         int irq;
45         char *name;
46 };
47 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
48 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
52
53 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
54 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
56
57 /*
58  * Reschedule call back.
59  */
60 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
61 {
62         inc_irq_stat(irq_resched_count);
63         scheduler_ipi();
64
65         return IRQ_HANDLED;
66 }
67
68 static void cpu_bringup(void)
69 {
70         int cpu;
71
72         cpu_init();
73         touch_softlockup_watchdog();
74         preempt_disable();
75
76         xen_enable_sysenter();
77         xen_enable_syscall();
78
79         cpu = smp_processor_id();
80         smp_store_cpu_info(cpu);
81         cpu_data(cpu).x86_max_cores = 1;
82         set_cpu_sibling_map(cpu);
83
84         xen_setup_cpu_clockevents();
85
86         notify_cpu_starting(cpu);
87
88         set_cpu_online(cpu, true);
89
90         this_cpu_write(cpu_state, CPU_ONLINE);
91
92         wmb();
93
94         /* We can take interrupts now: we're officially "up". */
95         local_irq_enable();
96
97         wmb();                  /* make sure everything is out */
98 }
99
100 static void cpu_bringup_and_idle(void)
101 {
102         cpu_bringup();
103         cpu_startup_entry(CPUHP_ONLINE);
104 }
105
106 static void xen_smp_intr_free(unsigned int cpu)
107 {
108         if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
109                 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
110                 per_cpu(xen_resched_irq, cpu).irq = -1;
111                 kfree(per_cpu(xen_resched_irq, cpu).name);
112                 per_cpu(xen_resched_irq, cpu).name = NULL;
113         }
114         if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
115                 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
116                 per_cpu(xen_callfunc_irq, cpu).irq = -1;
117                 kfree(per_cpu(xen_callfunc_irq, cpu).name);
118                 per_cpu(xen_callfunc_irq, cpu).name = NULL;
119         }
120         if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
121                 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
122                 per_cpu(xen_debug_irq, cpu).irq = -1;
123                 kfree(per_cpu(xen_debug_irq, cpu).name);
124                 per_cpu(xen_debug_irq, cpu).name = NULL;
125         }
126         if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
127                 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
128                                        NULL);
129                 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
130                 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
131                 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
132         }
133         if (xen_hvm_domain())
134                 return;
135
136         if (per_cpu(xen_irq_work, cpu).irq >= 0) {
137                 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
138                 per_cpu(xen_irq_work, cpu).irq = -1;
139                 kfree(per_cpu(xen_irq_work, cpu).name);
140                 per_cpu(xen_irq_work, cpu).name = NULL;
141         }
142 };
143 static int xen_smp_intr_init(unsigned int cpu)
144 {
145         int rc;
146         char *resched_name, *callfunc_name, *debug_name;
147
148         resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
149         rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
150                                     cpu,
151                                     xen_reschedule_interrupt,
152                                     IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
153                                     resched_name,
154                                     NULL);
155         if (rc < 0)
156                 goto fail;
157         per_cpu(xen_resched_irq, cpu).irq = rc;
158         per_cpu(xen_resched_irq, cpu).name = resched_name;
159
160         callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
161         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
162                                     cpu,
163                                     xen_call_function_interrupt,
164                                     IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
165                                     callfunc_name,
166                                     NULL);
167         if (rc < 0)
168                 goto fail;
169         per_cpu(xen_callfunc_irq, cpu).irq = rc;
170         per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
171
172         debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
173         rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
174                                      IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
175                                      debug_name, NULL);
176         if (rc < 0)
177                 goto fail;
178         per_cpu(xen_debug_irq, cpu).irq = rc;
179         per_cpu(xen_debug_irq, cpu).name = debug_name;
180
181         callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
182         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
183                                     cpu,
184                                     xen_call_function_single_interrupt,
185                                     IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
186                                     callfunc_name,
187                                     NULL);
188         if (rc < 0)
189                 goto fail;
190         per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
191         per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
192
193         /*
194          * The IRQ worker on PVHVM goes through the native path and uses the
195          * IPI mechanism.
196          */
197         if (xen_hvm_domain())
198                 return 0;
199
200         callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
201         rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
202                                     cpu,
203                                     xen_irq_work_interrupt,
204                                     IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
205                                     callfunc_name,
206                                     NULL);
207         if (rc < 0)
208                 goto fail;
209         per_cpu(xen_irq_work, cpu).irq = rc;
210         per_cpu(xen_irq_work, cpu).name = callfunc_name;
211
212         return 0;
213
214  fail:
215         xen_smp_intr_free(cpu);
216         return rc;
217 }
218
219 static void __init xen_fill_possible_map(void)
220 {
221         int i, rc;
222
223         if (xen_initial_domain())
224                 return;
225
226         for (i = 0; i < nr_cpu_ids; i++) {
227                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
228                 if (rc >= 0) {
229                         num_processors++;
230                         set_cpu_possible(i, true);
231                 }
232         }
233 }
234
235 static void __init xen_filter_cpu_maps(void)
236 {
237         int i, rc;
238         unsigned int subtract = 0;
239
240         if (!xen_initial_domain())
241                 return;
242
243         num_processors = 0;
244         disabled_cpus = 0;
245         for (i = 0; i < nr_cpu_ids; i++) {
246                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
247                 if (rc >= 0) {
248                         num_processors++;
249                         set_cpu_possible(i, true);
250                 } else {
251                         set_cpu_possible(i, false);
252                         set_cpu_present(i, false);
253                         subtract++;
254                 }
255         }
256 #ifdef CONFIG_HOTPLUG_CPU
257         /* This is akin to using 'nr_cpus' on the Linux command line.
258          * Which is OK as when we use 'dom0_max_vcpus=X' we can only
259          * have up to X, while nr_cpu_ids is greater than X. This
260          * normally is not a problem, except when CPU hotplugging
261          * is involved and then there might be more than X CPUs
262          * in the guest - which will not work as there is no
263          * hypercall to expand the max number of VCPUs an already
264          * running guest has. So cap it up to X. */
265         if (subtract)
266                 nr_cpu_ids = nr_cpu_ids - subtract;
267 #endif
268
269 }
270
271 static void __init xen_smp_prepare_boot_cpu(void)
272 {
273         BUG_ON(smp_processor_id() != 0);
274         native_smp_prepare_boot_cpu();
275
276         if (xen_pv_domain()) {
277                 /* We've switched to the "real" per-cpu gdt, so make sure the
278                    old memory can be recycled */
279                 make_lowmem_page_readwrite(xen_initial_gdt);
280
281                 xen_filter_cpu_maps();
282                 xen_setup_vcpu_info_placement();
283         }
284         /*
285          * The alternative logic (which patches the unlock/lock) runs before
286          * the smp bootup up code is activated. Hence we need to set this up
287          * the core kernel is being patched. Otherwise we will have only
288          * modules patched but not core code.
289          */
290         xen_init_spinlocks();
291 }
292
293 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
294 {
295         unsigned cpu;
296         unsigned int i;
297
298         if (skip_ioapic_setup) {
299                 char *m = (max_cpus == 0) ?
300                         "The nosmp parameter is incompatible with Xen; " \
301                         "use Xen dom0_max_vcpus=1 parameter" :
302                         "The noapic parameter is incompatible with Xen";
303
304                 xen_raw_printk(m);
305                 panic(m);
306         }
307         xen_init_lock_cpu(0);
308
309         smp_store_boot_cpu_info();
310         cpu_data(0).x86_max_cores = 1;
311
312         for_each_possible_cpu(i) {
313                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
314                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
315                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
316         }
317         set_cpu_sibling_map(0);
318
319         if (xen_smp_intr_init(0))
320                 BUG();
321
322         if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
323                 panic("could not allocate xen_cpu_initialized_map\n");
324
325         cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
326
327         /* Restrict the possible_map according to max_cpus. */
328         while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
329                 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
330                         continue;
331                 set_cpu_possible(cpu, false);
332         }
333
334         for_each_possible_cpu(cpu)
335                 set_cpu_present(cpu, true);
336 }
337
338 static int
339 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
340 {
341         struct vcpu_guest_context *ctxt;
342         struct desc_struct *gdt;
343         unsigned long gdt_mfn;
344
345         if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
346                 return 0;
347
348         ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
349         if (ctxt == NULL)
350                 return -ENOMEM;
351
352         gdt = get_cpu_gdt_table(cpu);
353
354         ctxt->flags = VGCF_IN_KERNEL;
355         ctxt->user_regs.ss = __KERNEL_DS;
356 #ifdef CONFIG_X86_32
357         ctxt->user_regs.fs = __KERNEL_PERCPU;
358         ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
359 #else
360         ctxt->gs_base_kernel = per_cpu_offset(cpu);
361 #endif
362         ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
363
364         memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
365
366         {
367                 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
368                 ctxt->user_regs.ds = __USER_DS;
369                 ctxt->user_regs.es = __USER_DS;
370
371                 xen_copy_trap_info(ctxt->trap_ctxt);
372
373                 ctxt->ldt_ents = 0;
374
375                 BUG_ON((unsigned long)gdt & ~PAGE_MASK);
376
377                 gdt_mfn = arbitrary_virt_to_mfn(gdt);
378                 make_lowmem_page_readonly(gdt);
379                 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
380
381                 ctxt->gdt_frames[0] = gdt_mfn;
382                 ctxt->gdt_ents      = GDT_ENTRIES;
383
384                 ctxt->kernel_ss = __KERNEL_DS;
385                 ctxt->kernel_sp = idle->thread.sp0;
386
387 #ifdef CONFIG_X86_32
388                 ctxt->event_callback_cs     = __KERNEL_CS;
389                 ctxt->failsafe_callback_cs  = __KERNEL_CS;
390 #endif
391                 ctxt->event_callback_eip    =
392                                         (unsigned long)xen_hypervisor_callback;
393                 ctxt->failsafe_callback_eip =
394                                         (unsigned long)xen_failsafe_callback;
395         }
396         ctxt->user_regs.cs = __KERNEL_CS;
397         ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
398
399         per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
400         ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
401
402         if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
403                 BUG();
404
405         kfree(ctxt);
406         return 0;
407 }
408
409 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
410 {
411         int rc;
412
413         per_cpu(current_task, cpu) = idle;
414 #ifdef CONFIG_X86_32
415         irq_ctx_init(cpu);
416 #else
417         clear_tsk_thread_flag(idle, TIF_FORK);
418         per_cpu(kernel_stack, cpu) =
419                 (unsigned long)task_stack_page(idle) -
420                 KERNEL_STACK_OFFSET + THREAD_SIZE;
421 #endif
422         xen_setup_runstate_info(cpu);
423         xen_setup_timer(cpu);
424         xen_init_lock_cpu(cpu);
425
426         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
427
428         /* make sure interrupts start blocked */
429         per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
430
431         rc = cpu_initialize_context(cpu, idle);
432         if (rc)
433                 return rc;
434
435         if (num_online_cpus() == 1)
436                 /* Just in case we booted with a single CPU. */
437                 alternatives_enable_smp();
438
439         rc = xen_smp_intr_init(cpu);
440         if (rc)
441                 return rc;
442
443         rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
444         BUG_ON(rc);
445
446         while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
447                 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
448                 barrier();
449         }
450
451         return 0;
452 }
453
454 static void xen_smp_cpus_done(unsigned int max_cpus)
455 {
456 }
457
458 #ifdef CONFIG_HOTPLUG_CPU
459 static int xen_cpu_disable(void)
460 {
461         unsigned int cpu = smp_processor_id();
462         if (cpu == 0)
463                 return -EBUSY;
464
465         cpu_disable_common();
466
467         load_cr3(swapper_pg_dir);
468         return 0;
469 }
470
471 static void xen_cpu_die(unsigned int cpu)
472 {
473         while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
474                 current->state = TASK_UNINTERRUPTIBLE;
475                 schedule_timeout(HZ/10);
476         }
477         xen_smp_intr_free(cpu);
478         xen_uninit_lock_cpu(cpu);
479         xen_teardown_timer(cpu);
480 }
481
482 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
483 {
484         play_dead_common();
485         HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
486         cpu_bringup();
487         /*
488          * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
489          * clears certain data that the cpu_idle loop (which called us
490          * and that we return from) expects. The only way to get that
491          * data back is to call:
492          */
493         tick_nohz_idle_enter();
494 }
495
496 #else /* !CONFIG_HOTPLUG_CPU */
497 static int xen_cpu_disable(void)
498 {
499         return -ENOSYS;
500 }
501
502 static void xen_cpu_die(unsigned int cpu)
503 {
504         BUG();
505 }
506
507 static void xen_play_dead(void)
508 {
509         BUG();
510 }
511
512 #endif
513 static void stop_self(void *v)
514 {
515         int cpu = smp_processor_id();
516
517         /* make sure we're not pinning something down */
518         load_cr3(swapper_pg_dir);
519         /* should set up a minimal gdt */
520
521         set_cpu_online(cpu, false);
522
523         HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
524         BUG();
525 }
526
527 static void xen_stop_other_cpus(int wait)
528 {
529         smp_call_function(stop_self, NULL, wait);
530 }
531
532 static void xen_smp_send_reschedule(int cpu)
533 {
534         xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
535 }
536
537 static void __xen_send_IPI_mask(const struct cpumask *mask,
538                               int vector)
539 {
540         unsigned cpu;
541
542         for_each_cpu_and(cpu, mask, cpu_online_mask)
543                 xen_send_IPI_one(cpu, vector);
544 }
545
546 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
547 {
548         int cpu;
549
550         __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
551
552         /* Make sure other vcpus get a chance to run if they need to. */
553         for_each_cpu(cpu, mask) {
554                 if (xen_vcpu_stolen(cpu)) {
555                         HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
556                         break;
557                 }
558         }
559 }
560
561 static void xen_smp_send_call_function_single_ipi(int cpu)
562 {
563         __xen_send_IPI_mask(cpumask_of(cpu),
564                           XEN_CALL_FUNCTION_SINGLE_VECTOR);
565 }
566
567 static inline int xen_map_vector(int vector)
568 {
569         int xen_vector;
570
571         switch (vector) {
572         case RESCHEDULE_VECTOR:
573                 xen_vector = XEN_RESCHEDULE_VECTOR;
574                 break;
575         case CALL_FUNCTION_VECTOR:
576                 xen_vector = XEN_CALL_FUNCTION_VECTOR;
577                 break;
578         case CALL_FUNCTION_SINGLE_VECTOR:
579                 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
580                 break;
581         case IRQ_WORK_VECTOR:
582                 xen_vector = XEN_IRQ_WORK_VECTOR;
583                 break;
584 #ifdef CONFIG_X86_64
585         case NMI_VECTOR:
586         case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
587                 xen_vector = XEN_NMI_VECTOR;
588                 break;
589 #endif
590         default:
591                 xen_vector = -1;
592                 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
593                         vector);
594         }
595
596         return xen_vector;
597 }
598
599 void xen_send_IPI_mask(const struct cpumask *mask,
600                               int vector)
601 {
602         int xen_vector = xen_map_vector(vector);
603
604         if (xen_vector >= 0)
605                 __xen_send_IPI_mask(mask, xen_vector);
606 }
607
608 void xen_send_IPI_all(int vector)
609 {
610         int xen_vector = xen_map_vector(vector);
611
612         if (xen_vector >= 0)
613                 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
614 }
615
616 void xen_send_IPI_self(int vector)
617 {
618         int xen_vector = xen_map_vector(vector);
619
620         if (xen_vector >= 0)
621                 xen_send_IPI_one(smp_processor_id(), xen_vector);
622 }
623
624 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
625                                 int vector)
626 {
627         unsigned cpu;
628         unsigned int this_cpu = smp_processor_id();
629         int xen_vector = xen_map_vector(vector);
630
631         if (!(num_online_cpus() > 1) || (xen_vector < 0))
632                 return;
633
634         for_each_cpu_and(cpu, mask, cpu_online_mask) {
635                 if (this_cpu == cpu)
636                         continue;
637
638                 xen_send_IPI_one(cpu, xen_vector);
639         }
640 }
641
642 void xen_send_IPI_allbutself(int vector)
643 {
644         xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
645 }
646
647 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
648 {
649         irq_enter();
650         generic_smp_call_function_interrupt();
651         inc_irq_stat(irq_call_count);
652         irq_exit();
653
654         return IRQ_HANDLED;
655 }
656
657 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
658 {
659         irq_enter();
660         generic_smp_call_function_single_interrupt();
661         inc_irq_stat(irq_call_count);
662         irq_exit();
663
664         return IRQ_HANDLED;
665 }
666
667 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
668 {
669         irq_enter();
670         irq_work_run();
671         inc_irq_stat(apic_irq_work_irqs);
672         irq_exit();
673
674         return IRQ_HANDLED;
675 }
676
677 static const struct smp_ops xen_smp_ops __initconst = {
678         .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
679         .smp_prepare_cpus = xen_smp_prepare_cpus,
680         .smp_cpus_done = xen_smp_cpus_done,
681
682         .cpu_up = xen_cpu_up,
683         .cpu_die = xen_cpu_die,
684         .cpu_disable = xen_cpu_disable,
685         .play_dead = xen_play_dead,
686
687         .stop_other_cpus = xen_stop_other_cpus,
688         .smp_send_reschedule = xen_smp_send_reschedule,
689
690         .send_call_func_ipi = xen_smp_send_call_function_ipi,
691         .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
692 };
693
694 void __init xen_smp_init(void)
695 {
696         smp_ops = xen_smp_ops;
697         xen_fill_possible_map();
698 }
699
700 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
701 {
702         native_smp_prepare_cpus(max_cpus);
703         WARN_ON(xen_smp_intr_init(0));
704
705         xen_init_lock_cpu(0);
706 }
707
708 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
709 {
710         int rc;
711         /*
712          * xen_smp_intr_init() needs to run before native_cpu_up()
713          * so that IPI vectors are set up on the booting CPU before
714          * it is marked online in native_cpu_up().
715         */
716         rc = xen_smp_intr_init(cpu);
717         WARN_ON(rc);
718         if (!rc)
719                 rc =  native_cpu_up(cpu, tidle);
720
721         /*
722          * We must initialize the slowpath CPU kicker _after_ the native
723          * path has executed. If we initialized it before none of the
724          * unlocker IPI kicks would reach the booting CPU as the booting
725          * CPU had not set itself 'online' in cpu_online_mask. That mask
726          * is checked when IPIs are sent (on HVM at least).
727          */
728         xen_init_lock_cpu(cpu);
729         return rc;
730 }
731
732 static void xen_hvm_cpu_die(unsigned int cpu)
733 {
734         xen_cpu_die(cpu);
735         native_cpu_die(cpu);
736 }
737
738 void __init xen_hvm_smp_init(void)
739 {
740         if (!xen_have_vector_callback)
741                 return;
742         smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
743         smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
744         smp_ops.cpu_up = xen_hvm_cpu_up;
745         smp_ops.cpu_die = xen_hvm_cpu_die;
746         smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
747         smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
748         smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
749 }