]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/xen/smp.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[karo-tx-linux.git] / arch / x86 / xen / smp.c
1 /*
2  * Xen SMP support
3  *
4  * This file implements the Xen versions of smp_ops.  SMP under Xen is
5  * very straightforward.  Bringing a CPU up is simply a matter of
6  * loading its initial context and setting it running.
7  *
8  * IPIs are handled through the Xen event mechanism.
9  *
10  * Because virtual CPUs can be scheduled onto any real CPU, there's no
11  * useful topology information for the kernel to make use of.  As a
12  * result, all CPUs are treated as if they're single-core and
13  * single-threaded.
14  */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21 #include <linux/nmi.h>
22
23 #include <asm/paravirt.h>
24 #include <asm/desc.h>
25 #include <asm/pgtable.h>
26 #include <asm/cpu.h>
27
28 #include <xen/interface/xen.h>
29 #include <xen/interface/vcpu.h>
30 #include <xen/interface/xenpmu.h>
31
32 #include <asm/xen/interface.h>
33 #include <asm/xen/hypercall.h>
34
35 #include <xen/xen.h>
36 #include <xen/page.h>
37 #include <xen/events.h>
38
39 #include <xen/hvc-console.h>
40 #include "xen-ops.h"
41 #include "mmu.h"
42 #include "smp.h"
43 #include "pmu.h"
44
45 cpumask_var_t xen_cpu_initialized_map;
46
47 struct xen_common_irq {
48         int irq;
49         char *name;
50 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
53 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
54 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
55 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
56 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
57
58 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
59 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
60 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
61
62 /*
63  * Reschedule call back.
64  */
65 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
66 {
67         inc_irq_stat(irq_resched_count);
68         scheduler_ipi();
69
70         return IRQ_HANDLED;
71 }
72
73 static void cpu_bringup(void)
74 {
75         int cpu;
76
77         cpu_init();
78         touch_softlockup_watchdog();
79         preempt_disable();
80
81         /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
82         if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
83                 xen_enable_sysenter();
84                 xen_enable_syscall();
85         }
86         cpu = smp_processor_id();
87         smp_store_cpu_info(cpu);
88         cpu_data(cpu).x86_max_cores = 1;
89         set_cpu_sibling_map(cpu);
90
91         xen_setup_cpu_clockevents();
92
93         notify_cpu_starting(cpu);
94
95         set_cpu_online(cpu, true);
96
97         cpu_set_state_online(cpu);  /* Implies full memory barrier. */
98
99         /* We can take interrupts now: we're officially "up". */
100         local_irq_enable();
101 }
102
103 asmlinkage __visible void cpu_bringup_and_idle(void)
104 {
105         cpu_bringup();
106         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
107 }
108
109 void xen_smp_intr_free(unsigned int cpu)
110 {
111         if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
112                 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
113                 per_cpu(xen_resched_irq, cpu).irq = -1;
114                 kfree(per_cpu(xen_resched_irq, cpu).name);
115                 per_cpu(xen_resched_irq, cpu).name = NULL;
116         }
117         if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
118                 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
119                 per_cpu(xen_callfunc_irq, cpu).irq = -1;
120                 kfree(per_cpu(xen_callfunc_irq, cpu).name);
121                 per_cpu(xen_callfunc_irq, cpu).name = NULL;
122         }
123         if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
124                 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
125                 per_cpu(xen_debug_irq, cpu).irq = -1;
126                 kfree(per_cpu(xen_debug_irq, cpu).name);
127                 per_cpu(xen_debug_irq, cpu).name = NULL;
128         }
129         if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
130                 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
131                                        NULL);
132                 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
133                 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
134                 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
135         }
136         if (xen_hvm_domain())
137                 return;
138
139         if (per_cpu(xen_irq_work, cpu).irq >= 0) {
140                 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
141                 per_cpu(xen_irq_work, cpu).irq = -1;
142                 kfree(per_cpu(xen_irq_work, cpu).name);
143                 per_cpu(xen_irq_work, cpu).name = NULL;
144         }
145
146         if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
147                 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
148                 per_cpu(xen_pmu_irq, cpu).irq = -1;
149                 kfree(per_cpu(xen_pmu_irq, cpu).name);
150                 per_cpu(xen_pmu_irq, cpu).name = NULL;
151         }
152 };
153 int xen_smp_intr_init(unsigned int cpu)
154 {
155         int rc;
156         char *resched_name, *callfunc_name, *debug_name, *pmu_name;
157
158         resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
159         rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
160                                     cpu,
161                                     xen_reschedule_interrupt,
162                                     IRQF_PERCPU|IRQF_NOBALANCING,
163                                     resched_name,
164                                     NULL);
165         if (rc < 0)
166                 goto fail;
167         per_cpu(xen_resched_irq, cpu).irq = rc;
168         per_cpu(xen_resched_irq, cpu).name = resched_name;
169
170         callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
171         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
172                                     cpu,
173                                     xen_call_function_interrupt,
174                                     IRQF_PERCPU|IRQF_NOBALANCING,
175                                     callfunc_name,
176                                     NULL);
177         if (rc < 0)
178                 goto fail;
179         per_cpu(xen_callfunc_irq, cpu).irq = rc;
180         per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
181
182         debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
183         rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
184                                      IRQF_PERCPU | IRQF_NOBALANCING,
185                                      debug_name, NULL);
186         if (rc < 0)
187                 goto fail;
188         per_cpu(xen_debug_irq, cpu).irq = rc;
189         per_cpu(xen_debug_irq, cpu).name = debug_name;
190
191         callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
192         rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
193                                     cpu,
194                                     xen_call_function_single_interrupt,
195                                     IRQF_PERCPU|IRQF_NOBALANCING,
196                                     callfunc_name,
197                                     NULL);
198         if (rc < 0)
199                 goto fail;
200         per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
201         per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
202
203         /*
204          * The IRQ worker on PVHVM goes through the native path and uses the
205          * IPI mechanism.
206          */
207         if (xen_hvm_domain())
208                 return 0;
209
210         callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
211         rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
212                                     cpu,
213                                     xen_irq_work_interrupt,
214                                     IRQF_PERCPU|IRQF_NOBALANCING,
215                                     callfunc_name,
216                                     NULL);
217         if (rc < 0)
218                 goto fail;
219         per_cpu(xen_irq_work, cpu).irq = rc;
220         per_cpu(xen_irq_work, cpu).name = callfunc_name;
221
222         if (is_xen_pmu(cpu)) {
223                 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
224                 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
225                                              xen_pmu_irq_handler,
226                                              IRQF_PERCPU|IRQF_NOBALANCING,
227                                              pmu_name, NULL);
228                 if (rc < 0)
229                         goto fail;
230                 per_cpu(xen_pmu_irq, cpu).irq = rc;
231                 per_cpu(xen_pmu_irq, cpu).name = pmu_name;
232         }
233
234         return 0;
235
236  fail:
237         xen_smp_intr_free(cpu);
238         return rc;
239 }
240
241 static void __init xen_fill_possible_map(void)
242 {
243         int i, rc;
244
245         if (xen_initial_domain())
246                 return;
247
248         for (i = 0; i < nr_cpu_ids; i++) {
249                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
250                 if (rc >= 0) {
251                         num_processors++;
252                         set_cpu_possible(i, true);
253                 }
254         }
255 }
256
257 static void __init xen_filter_cpu_maps(void)
258 {
259         int i, rc;
260         unsigned int subtract = 0;
261
262         if (!xen_initial_domain())
263                 return;
264
265         num_processors = 0;
266         disabled_cpus = 0;
267         for (i = 0; i < nr_cpu_ids; i++) {
268                 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
269                 if (rc >= 0) {
270                         num_processors++;
271                         set_cpu_possible(i, true);
272                 } else {
273                         set_cpu_possible(i, false);
274                         set_cpu_present(i, false);
275                         subtract++;
276                 }
277         }
278 #ifdef CONFIG_HOTPLUG_CPU
279         /* This is akin to using 'nr_cpus' on the Linux command line.
280          * Which is OK as when we use 'dom0_max_vcpus=X' we can only
281          * have up to X, while nr_cpu_ids is greater than X. This
282          * normally is not a problem, except when CPU hotplugging
283          * is involved and then there might be more than X CPUs
284          * in the guest - which will not work as there is no
285          * hypercall to expand the max number of VCPUs an already
286          * running guest has. So cap it up to X. */
287         if (subtract)
288                 nr_cpu_ids = nr_cpu_ids - subtract;
289 #endif
290
291 }
292
293 static void __init xen_smp_prepare_boot_cpu(void)
294 {
295         BUG_ON(smp_processor_id() != 0);
296         native_smp_prepare_boot_cpu();
297
298         if (xen_pv_domain()) {
299                 if (!xen_feature(XENFEAT_writable_page_tables))
300                         /* We've switched to the "real" per-cpu gdt, so make
301                          * sure the old memory can be recycled. */
302                         make_lowmem_page_readwrite(xen_initial_gdt);
303
304 #ifdef CONFIG_X86_32
305                 /*
306                  * Xen starts us with XEN_FLAT_RING1_DS, but linux code
307                  * expects __USER_DS
308                  */
309                 loadsegment(ds, __USER_DS);
310                 loadsegment(es, __USER_DS);
311 #endif
312
313                 xen_filter_cpu_maps();
314                 xen_setup_vcpu_info_placement();
315         }
316
317         /*
318          * Setup vcpu_info for boot CPU.
319          */
320         if (xen_hvm_domain())
321                 xen_vcpu_setup(0);
322
323         /*
324          * The alternative logic (which patches the unlock/lock) runs before
325          * the smp bootup up code is activated. Hence we need to set this up
326          * the core kernel is being patched. Otherwise we will have only
327          * modules patched but not core code.
328          */
329         xen_init_spinlocks();
330 }
331
332 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
333 {
334         unsigned cpu;
335         unsigned int i;
336
337         if (skip_ioapic_setup) {
338                 char *m = (max_cpus == 0) ?
339                         "The nosmp parameter is incompatible with Xen; " \
340                         "use Xen dom0_max_vcpus=1 parameter" :
341                         "The noapic parameter is incompatible with Xen";
342
343                 xen_raw_printk(m);
344                 panic(m);
345         }
346         xen_init_lock_cpu(0);
347
348         smp_store_boot_cpu_info();
349         cpu_data(0).x86_max_cores = 1;
350
351         for_each_possible_cpu(i) {
352                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
353                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
354                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
355         }
356         set_cpu_sibling_map(0);
357
358         xen_pmu_init(0);
359
360         if (xen_smp_intr_init(0))
361                 BUG();
362
363         if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
364                 panic("could not allocate xen_cpu_initialized_map\n");
365
366         cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
367
368         /* Restrict the possible_map according to max_cpus. */
369         while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
370                 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
371                         continue;
372                 set_cpu_possible(cpu, false);
373         }
374
375         for_each_possible_cpu(cpu)
376                 set_cpu_present(cpu, true);
377 }
378
379 static int
380 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
381 {
382         struct vcpu_guest_context *ctxt;
383         struct desc_struct *gdt;
384         unsigned long gdt_mfn;
385
386         /* used to tell cpu_init() that it can proceed with initialization */
387         cpumask_set_cpu(cpu, cpu_callout_mask);
388         if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
389                 return 0;
390
391         ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
392         if (ctxt == NULL)
393                 return -ENOMEM;
394
395         gdt = get_cpu_gdt_table(cpu);
396
397 #ifdef CONFIG_X86_32
398         ctxt->user_regs.fs = __KERNEL_PERCPU;
399         ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
400 #endif
401         memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
402
403         ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
404         ctxt->flags = VGCF_IN_KERNEL;
405         ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
406         ctxt->user_regs.ds = __USER_DS;
407         ctxt->user_regs.es = __USER_DS;
408         ctxt->user_regs.ss = __KERNEL_DS;
409
410         xen_copy_trap_info(ctxt->trap_ctxt);
411
412         ctxt->ldt_ents = 0;
413
414         BUG_ON((unsigned long)gdt & ~PAGE_MASK);
415
416         gdt_mfn = arbitrary_virt_to_mfn(gdt);
417         make_lowmem_page_readonly(gdt);
418         make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
419
420         ctxt->gdt_frames[0] = gdt_mfn;
421         ctxt->gdt_ents      = GDT_ENTRIES;
422
423         ctxt->kernel_ss = __KERNEL_DS;
424         ctxt->kernel_sp = idle->thread.sp0;
425
426 #ifdef CONFIG_X86_32
427         ctxt->event_callback_cs     = __KERNEL_CS;
428         ctxt->failsafe_callback_cs  = __KERNEL_CS;
429 #else
430         ctxt->gs_base_kernel = per_cpu_offset(cpu);
431 #endif
432         ctxt->event_callback_eip    =
433                 (unsigned long)xen_hypervisor_callback;
434         ctxt->failsafe_callback_eip =
435                 (unsigned long)xen_failsafe_callback;
436         ctxt->user_regs.cs = __KERNEL_CS;
437         per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
438
439         ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
440         ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
441         if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt))
442                 BUG();
443
444         kfree(ctxt);
445         return 0;
446 }
447
448 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
449 {
450         int rc;
451
452         common_cpu_up(cpu, idle);
453
454         xen_setup_runstate_info(cpu);
455
456         /*
457          * PV VCPUs are always successfully taken down (see 'while' loop
458          * in xen_cpu_die()), so -EBUSY is an error.
459          */
460         rc = cpu_check_up_prepare(cpu);
461         if (rc)
462                 return rc;
463
464         /* make sure interrupts start blocked */
465         per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
466
467         rc = cpu_initialize_context(cpu, idle);
468         if (rc)
469                 return rc;
470
471         xen_pmu_init(cpu);
472
473         rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL);
474         BUG_ON(rc);
475
476         while (cpu_report_state(cpu) != CPU_ONLINE)
477                 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
478
479         return 0;
480 }
481
482 static void xen_smp_cpus_done(unsigned int max_cpus)
483 {
484 }
485
486 #ifdef CONFIG_HOTPLUG_CPU
487 static int xen_cpu_disable(void)
488 {
489         unsigned int cpu = smp_processor_id();
490         if (cpu == 0)
491                 return -EBUSY;
492
493         cpu_disable_common();
494
495         load_cr3(swapper_pg_dir);
496         return 0;
497 }
498
499 static void xen_cpu_die(unsigned int cpu)
500 {
501         while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up,
502                                                      xen_vcpu_nr(cpu), NULL)) {
503                 __set_current_state(TASK_UNINTERRUPTIBLE);
504                 schedule_timeout(HZ/10);
505         }
506
507         if (common_cpu_die(cpu) == 0) {
508                 xen_smp_intr_free(cpu);
509                 xen_uninit_lock_cpu(cpu);
510                 xen_teardown_timer(cpu);
511                 xen_pmu_finish(cpu);
512         }
513 }
514
515 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
516 {
517         play_dead_common();
518         HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL);
519         cpu_bringup();
520         /*
521          * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
522          * clears certain data that the cpu_idle loop (which called us
523          * and that we return from) expects. The only way to get that
524          * data back is to call:
525          */
526         tick_nohz_idle_enter();
527
528         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
529 }
530
531 #else /* !CONFIG_HOTPLUG_CPU */
532 static int xen_cpu_disable(void)
533 {
534         return -ENOSYS;
535 }
536
537 static void xen_cpu_die(unsigned int cpu)
538 {
539         BUG();
540 }
541
542 static void xen_play_dead(void)
543 {
544         BUG();
545 }
546
547 #endif
548 static void stop_self(void *v)
549 {
550         int cpu = smp_processor_id();
551
552         /* make sure we're not pinning something down */
553         load_cr3(swapper_pg_dir);
554         /* should set up a minimal gdt */
555
556         set_cpu_online(cpu, false);
557
558         HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL);
559         BUG();
560 }
561
562 static void xen_stop_other_cpus(int wait)
563 {
564         smp_call_function(stop_self, NULL, wait);
565 }
566
567 static void xen_smp_send_reschedule(int cpu)
568 {
569         xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
570 }
571
572 static void __xen_send_IPI_mask(const struct cpumask *mask,
573                               int vector)
574 {
575         unsigned cpu;
576
577         for_each_cpu_and(cpu, mask, cpu_online_mask)
578                 xen_send_IPI_one(cpu, vector);
579 }
580
581 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
582 {
583         int cpu;
584
585         __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
586
587         /* Make sure other vcpus get a chance to run if they need to. */
588         for_each_cpu(cpu, mask) {
589                 if (xen_vcpu_stolen(cpu)) {
590                         HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
591                         break;
592                 }
593         }
594 }
595
596 static void xen_smp_send_call_function_single_ipi(int cpu)
597 {
598         __xen_send_IPI_mask(cpumask_of(cpu),
599                           XEN_CALL_FUNCTION_SINGLE_VECTOR);
600 }
601
602 static inline int xen_map_vector(int vector)
603 {
604         int xen_vector;
605
606         switch (vector) {
607         case RESCHEDULE_VECTOR:
608                 xen_vector = XEN_RESCHEDULE_VECTOR;
609                 break;
610         case CALL_FUNCTION_VECTOR:
611                 xen_vector = XEN_CALL_FUNCTION_VECTOR;
612                 break;
613         case CALL_FUNCTION_SINGLE_VECTOR:
614                 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
615                 break;
616         case IRQ_WORK_VECTOR:
617                 xen_vector = XEN_IRQ_WORK_VECTOR;
618                 break;
619 #ifdef CONFIG_X86_64
620         case NMI_VECTOR:
621         case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
622                 xen_vector = XEN_NMI_VECTOR;
623                 break;
624 #endif
625         default:
626                 xen_vector = -1;
627                 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
628                         vector);
629         }
630
631         return xen_vector;
632 }
633
634 void xen_send_IPI_mask(const struct cpumask *mask,
635                               int vector)
636 {
637         int xen_vector = xen_map_vector(vector);
638
639         if (xen_vector >= 0)
640                 __xen_send_IPI_mask(mask, xen_vector);
641 }
642
643 void xen_send_IPI_all(int vector)
644 {
645         int xen_vector = xen_map_vector(vector);
646
647         if (xen_vector >= 0)
648                 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
649 }
650
651 void xen_send_IPI_self(int vector)
652 {
653         int xen_vector = xen_map_vector(vector);
654
655         if (xen_vector >= 0)
656                 xen_send_IPI_one(smp_processor_id(), xen_vector);
657 }
658
659 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
660                                 int vector)
661 {
662         unsigned cpu;
663         unsigned int this_cpu = smp_processor_id();
664         int xen_vector = xen_map_vector(vector);
665
666         if (!(num_online_cpus() > 1) || (xen_vector < 0))
667                 return;
668
669         for_each_cpu_and(cpu, mask, cpu_online_mask) {
670                 if (this_cpu == cpu)
671                         continue;
672
673                 xen_send_IPI_one(cpu, xen_vector);
674         }
675 }
676
677 void xen_send_IPI_allbutself(int vector)
678 {
679         xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
680 }
681
682 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
683 {
684         irq_enter();
685         generic_smp_call_function_interrupt();
686         inc_irq_stat(irq_call_count);
687         irq_exit();
688
689         return IRQ_HANDLED;
690 }
691
692 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
693 {
694         irq_enter();
695         generic_smp_call_function_single_interrupt();
696         inc_irq_stat(irq_call_count);
697         irq_exit();
698
699         return IRQ_HANDLED;
700 }
701
702 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
703 {
704         irq_enter();
705         irq_work_run();
706         inc_irq_stat(apic_irq_work_irqs);
707         irq_exit();
708
709         return IRQ_HANDLED;
710 }
711
712 static const struct smp_ops xen_smp_ops __initconst = {
713         .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
714         .smp_prepare_cpus = xen_smp_prepare_cpus,
715         .smp_cpus_done = xen_smp_cpus_done,
716
717         .cpu_up = xen_cpu_up,
718         .cpu_die = xen_cpu_die,
719         .cpu_disable = xen_cpu_disable,
720         .play_dead = xen_play_dead,
721
722         .stop_other_cpus = xen_stop_other_cpus,
723         .smp_send_reschedule = xen_smp_send_reschedule,
724
725         .send_call_func_ipi = xen_smp_send_call_function_ipi,
726         .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
727 };
728
729 void __init xen_smp_init(void)
730 {
731         smp_ops = xen_smp_ops;
732         xen_fill_possible_map();
733 }
734
735 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
736 {
737         native_smp_prepare_cpus(max_cpus);
738         WARN_ON(xen_smp_intr_init(0));
739
740         xen_init_lock_cpu(0);
741 }
742
743 void __init xen_hvm_smp_init(void)
744 {
745         smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
746         smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
747         smp_ops.cpu_die = xen_cpu_die;
748         smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
749         smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
750         smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
751 }