]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: simplify __blk_mq_complete_request
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_queue_exit(q);
328
329         if (!rq)
330                 return ERR_PTR(-EWOULDBLOCK);
331
332         return rq;
333 }
334 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337                              struct request *rq)
338 {
339         const int sched_tag = rq->internal_tag;
340         struct request_queue *q = rq->q;
341
342         if (rq->rq_flags & RQF_MQ_INFLIGHT)
343                 atomic_dec(&hctx->nr_active);
344
345         wbt_done(q->rq_wb, &rq->issue_stat);
346         rq->rq_flags = 0;
347
348         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350         if (rq->tag != -1)
351                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352         if (sched_tag != -1)
353                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
354         blk_mq_sched_restart(hctx);
355         blk_queue_exit(q);
356 }
357
358 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359                                      struct request *rq)
360 {
361         struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363         ctx->rq_completed[rq_is_sync(rq)]++;
364         __blk_mq_finish_request(hctx, ctx, rq);
365 }
366
367 void blk_mq_finish_request(struct request *rq)
368 {
369         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 }
371 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372
373 void blk_mq_free_request(struct request *rq)
374 {
375         blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381         blk_account_io_done(rq);
382
383         if (rq->end_io) {
384                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385                 rq->end_io(rq, error);
386         } else {
387                 if (unlikely(blk_bidi_rq(rq)))
388                         blk_mq_free_request(rq->next_rq);
389                 blk_mq_free_request(rq);
390         }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397                 BUG();
398         __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404         struct request *rq = data;
405
406         rq->q->softirq_done_fn(rq);
407 }
408
409 static void __blk_mq_complete_request(struct request *rq)
410 {
411         struct blk_mq_ctx *ctx = rq->mq_ctx;
412         bool shared = false;
413         int cpu;
414
415         if (rq->internal_tag != -1)
416                 blk_mq_sched_completed_request(rq);
417         if (rq->rq_flags & RQF_STATS) {
418                 blk_mq_poll_stats_start(rq->q);
419                 blk_stat_add(rq);
420         }
421
422         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
423                 rq->q->softirq_done_fn(rq);
424                 return;
425         }
426
427         cpu = get_cpu();
428         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
429                 shared = cpus_share_cache(cpu, ctx->cpu);
430
431         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
432                 rq->csd.func = __blk_mq_complete_request_remote;
433                 rq->csd.info = rq;
434                 rq->csd.flags = 0;
435                 smp_call_function_single_async(ctx->cpu, &rq->csd);
436         } else {
437                 rq->q->softirq_done_fn(rq);
438         }
439         put_cpu();
440 }
441
442 /**
443  * blk_mq_complete_request - end I/O on a request
444  * @rq:         the request being processed
445  *
446  * Description:
447  *      Ends all I/O on a request. It does not handle partial completions.
448  *      The actual completion happens out-of-order, through a IPI handler.
449  **/
450 void blk_mq_complete_request(struct request *rq)
451 {
452         struct request_queue *q = rq->q;
453
454         if (unlikely(blk_should_fake_timeout(q)))
455                 return;
456         if (!blk_mark_rq_complete(rq))
457                 __blk_mq_complete_request(rq);
458 }
459 EXPORT_SYMBOL(blk_mq_complete_request);
460
461 int blk_mq_request_started(struct request *rq)
462 {
463         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464 }
465 EXPORT_SYMBOL_GPL(blk_mq_request_started);
466
467 void blk_mq_start_request(struct request *rq)
468 {
469         struct request_queue *q = rq->q;
470
471         blk_mq_sched_started_request(rq);
472
473         trace_block_rq_issue(q, rq);
474
475         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
476                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
477                 rq->rq_flags |= RQF_STATS;
478                 wbt_issue(q->rq_wb, &rq->issue_stat);
479         }
480
481         blk_add_timer(rq);
482
483         /*
484          * Ensure that ->deadline is visible before set the started
485          * flag and clear the completed flag.
486          */
487         smp_mb__before_atomic();
488
489         /*
490          * Mark us as started and clear complete. Complete might have been
491          * set if requeue raced with timeout, which then marked it as
492          * complete. So be sure to clear complete again when we start
493          * the request, otherwise we'll ignore the completion event.
494          */
495         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
496                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
497         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
498                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499
500         if (q->dma_drain_size && blk_rq_bytes(rq)) {
501                 /*
502                  * Make sure space for the drain appears.  We know we can do
503                  * this because max_hw_segments has been adjusted to be one
504                  * fewer than the device can handle.
505                  */
506                 rq->nr_phys_segments++;
507         }
508 }
509 EXPORT_SYMBOL(blk_mq_start_request);
510
511 /*
512  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
513  * flag isn't set yet, so there may be race with timeout handler,
514  * but given rq->deadline is just set in .queue_rq() under
515  * this situation, the race won't be possible in reality because
516  * rq->timeout should be set as big enough to cover the window
517  * between blk_mq_start_request() called from .queue_rq() and
518  * clearing REQ_ATOM_STARTED here.
519  */
520 static void __blk_mq_requeue_request(struct request *rq)
521 {
522         struct request_queue *q = rq->q;
523
524         trace_block_rq_requeue(q, rq);
525         wbt_requeue(q->rq_wb, &rq->issue_stat);
526         blk_mq_sched_requeue_request(rq);
527
528         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529                 if (q->dma_drain_size && blk_rq_bytes(rq))
530                         rq->nr_phys_segments--;
531         }
532 }
533
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 {
536         __blk_mq_requeue_request(rq);
537
538         BUG_ON(blk_queued_rq(rq));
539         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 }
541 EXPORT_SYMBOL(blk_mq_requeue_request);
542
543 static void blk_mq_requeue_work(struct work_struct *work)
544 {
545         struct request_queue *q =
546                 container_of(work, struct request_queue, requeue_work.work);
547         LIST_HEAD(rq_list);
548         struct request *rq, *next;
549         unsigned long flags;
550
551         spin_lock_irqsave(&q->requeue_lock, flags);
552         list_splice_init(&q->requeue_list, &rq_list);
553         spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
557                         continue;
558
559                 rq->rq_flags &= ~RQF_SOFTBARRIER;
560                 list_del_init(&rq->queuelist);
561                 blk_mq_sched_insert_request(rq, true, false, false, true);
562         }
563
564         while (!list_empty(&rq_list)) {
565                 rq = list_entry(rq_list.next, struct request, queuelist);
566                 list_del_init(&rq->queuelist);
567                 blk_mq_sched_insert_request(rq, false, false, false, true);
568         }
569
570         blk_mq_run_hw_queues(q, false);
571 }
572
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574                                 bool kick_requeue_list)
575 {
576         struct request_queue *q = rq->q;
577         unsigned long flags;
578
579         /*
580          * We abuse this flag that is otherwise used by the I/O scheduler to
581          * request head insertation from the workqueue.
582          */
583         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584
585         spin_lock_irqsave(&q->requeue_lock, flags);
586         if (at_head) {
587                 rq->rq_flags |= RQF_SOFTBARRIER;
588                 list_add(&rq->queuelist, &q->requeue_list);
589         } else {
590                 list_add_tail(&rq->queuelist, &q->requeue_list);
591         }
592         spin_unlock_irqrestore(&q->requeue_lock, flags);
593
594         if (kick_requeue_list)
595                 blk_mq_kick_requeue_list(q);
596 }
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
598
599 void blk_mq_kick_requeue_list(struct request_queue *q)
600 {
601         kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 }
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
604
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606                                     unsigned long msecs)
607 {
608         kblockd_schedule_delayed_work(&q->requeue_work,
609                                       msecs_to_jiffies(msecs));
610 }
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
612
613 void blk_mq_abort_requeue_list(struct request_queue *q)
614 {
615         unsigned long flags;
616         LIST_HEAD(rq_list);
617
618         spin_lock_irqsave(&q->requeue_lock, flags);
619         list_splice_init(&q->requeue_list, &rq_list);
620         spin_unlock_irqrestore(&q->requeue_lock, flags);
621
622         while (!list_empty(&rq_list)) {
623                 struct request *rq;
624
625                 rq = list_first_entry(&rq_list, struct request, queuelist);
626                 list_del_init(&rq->queuelist);
627                 rq->errors = -EIO;
628                 blk_mq_end_request(rq, rq->errors);
629         }
630 }
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
632
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
634 {
635         if (tag < tags->nr_tags) {
636                 prefetch(tags->rqs[tag]);
637                 return tags->rqs[tag];
638         }
639
640         return NULL;
641 }
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
643
644 struct blk_mq_timeout_data {
645         unsigned long next;
646         unsigned int next_set;
647 };
648
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
650 {
651         const struct blk_mq_ops *ops = req->q->mq_ops;
652         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653
654         /*
655          * We know that complete is set at this point. If STARTED isn't set
656          * anymore, then the request isn't active and the "timeout" should
657          * just be ignored. This can happen due to the bitflag ordering.
658          * Timeout first checks if STARTED is set, and if it is, assumes
659          * the request is active. But if we race with completion, then
660          * both flags will get cleared. So check here again, and ignore
661          * a timeout event with a request that isn't active.
662          */
663         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664                 return;
665
666         if (ops->timeout)
667                 ret = ops->timeout(req, reserved);
668
669         switch (ret) {
670         case BLK_EH_HANDLED:
671                 __blk_mq_complete_request(req);
672                 break;
673         case BLK_EH_RESET_TIMER:
674                 blk_add_timer(req);
675                 blk_clear_rq_complete(req);
676                 break;
677         case BLK_EH_NOT_HANDLED:
678                 break;
679         default:
680                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
681                 break;
682         }
683 }
684
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686                 struct request *rq, void *priv, bool reserved)
687 {
688         struct blk_mq_timeout_data *data = priv;
689
690         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
691                 return;
692
693         /*
694          * The rq being checked may have been freed and reallocated
695          * out already here, we avoid this race by checking rq->deadline
696          * and REQ_ATOM_COMPLETE flag together:
697          *
698          * - if rq->deadline is observed as new value because of
699          *   reusing, the rq won't be timed out because of timing.
700          * - if rq->deadline is observed as previous value,
701          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
702          *   because we put a barrier between setting rq->deadline
703          *   and clearing the flag in blk_mq_start_request(), so
704          *   this rq won't be timed out too.
705          */
706         if (time_after_eq(jiffies, rq->deadline)) {
707                 if (!blk_mark_rq_complete(rq))
708                         blk_mq_rq_timed_out(rq, reserved);
709         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
710                 data->next = rq->deadline;
711                 data->next_set = 1;
712         }
713 }
714
715 static void blk_mq_timeout_work(struct work_struct *work)
716 {
717         struct request_queue *q =
718                 container_of(work, struct request_queue, timeout_work);
719         struct blk_mq_timeout_data data = {
720                 .next           = 0,
721                 .next_set       = 0,
722         };
723         int i;
724
725         /* A deadlock might occur if a request is stuck requiring a
726          * timeout at the same time a queue freeze is waiting
727          * completion, since the timeout code would not be able to
728          * acquire the queue reference here.
729          *
730          * That's why we don't use blk_queue_enter here; instead, we use
731          * percpu_ref_tryget directly, because we need to be able to
732          * obtain a reference even in the short window between the queue
733          * starting to freeze, by dropping the first reference in
734          * blk_freeze_queue_start, and the moment the last request is
735          * consumed, marked by the instant q_usage_counter reaches
736          * zero.
737          */
738         if (!percpu_ref_tryget(&q->q_usage_counter))
739                 return;
740
741         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
742
743         if (data.next_set) {
744                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
745                 mod_timer(&q->timeout, data.next);
746         } else {
747                 struct blk_mq_hw_ctx *hctx;
748
749                 queue_for_each_hw_ctx(q, hctx, i) {
750                         /* the hctx may be unmapped, so check it here */
751                         if (blk_mq_hw_queue_mapped(hctx))
752                                 blk_mq_tag_idle(hctx);
753                 }
754         }
755         blk_queue_exit(q);
756 }
757
758 /*
759  * Reverse check our software queue for entries that we could potentially
760  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
761  * too much time checking for merges.
762  */
763 static bool blk_mq_attempt_merge(struct request_queue *q,
764                                  struct blk_mq_ctx *ctx, struct bio *bio)
765 {
766         struct request *rq;
767         int checked = 8;
768
769         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
770                 bool merged = false;
771
772                 if (!checked--)
773                         break;
774
775                 if (!blk_rq_merge_ok(rq, bio))
776                         continue;
777
778                 switch (blk_try_merge(rq, bio)) {
779                 case ELEVATOR_BACK_MERGE:
780                         if (blk_mq_sched_allow_merge(q, rq, bio))
781                                 merged = bio_attempt_back_merge(q, rq, bio);
782                         break;
783                 case ELEVATOR_FRONT_MERGE:
784                         if (blk_mq_sched_allow_merge(q, rq, bio))
785                                 merged = bio_attempt_front_merge(q, rq, bio);
786                         break;
787                 case ELEVATOR_DISCARD_MERGE:
788                         merged = bio_attempt_discard_merge(q, rq, bio);
789                         break;
790                 default:
791                         continue;
792                 }
793
794                 if (merged)
795                         ctx->rq_merged++;
796                 return merged;
797         }
798
799         return false;
800 }
801
802 struct flush_busy_ctx_data {
803         struct blk_mq_hw_ctx *hctx;
804         struct list_head *list;
805 };
806
807 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
808 {
809         struct flush_busy_ctx_data *flush_data = data;
810         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
811         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
812
813         sbitmap_clear_bit(sb, bitnr);
814         spin_lock(&ctx->lock);
815         list_splice_tail_init(&ctx->rq_list, flush_data->list);
816         spin_unlock(&ctx->lock);
817         return true;
818 }
819
820 /*
821  * Process software queues that have been marked busy, splicing them
822  * to the for-dispatch
823  */
824 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
825 {
826         struct flush_busy_ctx_data data = {
827                 .hctx = hctx,
828                 .list = list,
829         };
830
831         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
832 }
833 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
834
835 static inline unsigned int queued_to_index(unsigned int queued)
836 {
837         if (!queued)
838                 return 0;
839
840         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
841 }
842
843 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
844                            bool wait)
845 {
846         struct blk_mq_alloc_data data = {
847                 .q = rq->q,
848                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
849                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
850         };
851
852         if (rq->tag != -1)
853                 goto done;
854
855         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
856                 data.flags |= BLK_MQ_REQ_RESERVED;
857
858         rq->tag = blk_mq_get_tag(&data);
859         if (rq->tag >= 0) {
860                 if (blk_mq_tag_busy(data.hctx)) {
861                         rq->rq_flags |= RQF_MQ_INFLIGHT;
862                         atomic_inc(&data.hctx->nr_active);
863                 }
864                 data.hctx->tags->rqs[rq->tag] = rq;
865         }
866
867 done:
868         if (hctx)
869                 *hctx = data.hctx;
870         return rq->tag != -1;
871 }
872
873 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
874                                     struct request *rq)
875 {
876         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
877         rq->tag = -1;
878
879         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
880                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
881                 atomic_dec(&hctx->nr_active);
882         }
883 }
884
885 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
886                                        struct request *rq)
887 {
888         if (rq->tag == -1 || rq->internal_tag == -1)
889                 return;
890
891         __blk_mq_put_driver_tag(hctx, rq);
892 }
893
894 static void blk_mq_put_driver_tag(struct request *rq)
895 {
896         struct blk_mq_hw_ctx *hctx;
897
898         if (rq->tag == -1 || rq->internal_tag == -1)
899                 return;
900
901         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
902         __blk_mq_put_driver_tag(hctx, rq);
903 }
904
905 /*
906  * If we fail getting a driver tag because all the driver tags are already
907  * assigned and on the dispatch list, BUT the first entry does not have a
908  * tag, then we could deadlock. For that case, move entries with assigned
909  * driver tags to the front, leaving the set of tagged requests in the
910  * same order, and the untagged set in the same order.
911  */
912 static bool reorder_tags_to_front(struct list_head *list)
913 {
914         struct request *rq, *tmp, *first = NULL;
915
916         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
917                 if (rq == first)
918                         break;
919                 if (rq->tag != -1) {
920                         list_move(&rq->queuelist, list);
921                         if (!first)
922                                 first = rq;
923                 }
924         }
925
926         return first != NULL;
927 }
928
929 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
930                                 void *key)
931 {
932         struct blk_mq_hw_ctx *hctx;
933
934         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
935
936         list_del(&wait->task_list);
937         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
938         blk_mq_run_hw_queue(hctx, true);
939         return 1;
940 }
941
942 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
943 {
944         struct sbq_wait_state *ws;
945
946         /*
947          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
948          * The thread which wins the race to grab this bit adds the hardware
949          * queue to the wait queue.
950          */
951         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
952             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
953                 return false;
954
955         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
956         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
957
958         /*
959          * As soon as this returns, it's no longer safe to fiddle with
960          * hctx->dispatch_wait, since a completion can wake up the wait queue
961          * and unlock the bit.
962          */
963         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
964         return true;
965 }
966
967 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
968 {
969         struct blk_mq_hw_ctx *hctx;
970         struct request *rq;
971         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
972
973         if (list_empty(list))
974                 return false;
975
976         /*
977          * Now process all the entries, sending them to the driver.
978          */
979         errors = queued = 0;
980         do {
981                 struct blk_mq_queue_data bd;
982
983                 rq = list_first_entry(list, struct request, queuelist);
984                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
985                         if (!queued && reorder_tags_to_front(list))
986                                 continue;
987
988                         /*
989                          * The initial allocation attempt failed, so we need to
990                          * rerun the hardware queue when a tag is freed.
991                          */
992                         if (!blk_mq_dispatch_wait_add(hctx))
993                                 break;
994
995                         /*
996                          * It's possible that a tag was freed in the window
997                          * between the allocation failure and adding the
998                          * hardware queue to the wait queue.
999                          */
1000                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001                                 break;
1002                 }
1003
1004                 list_del_init(&rq->queuelist);
1005
1006                 bd.rq = rq;
1007
1008                 /*
1009                  * Flag last if we have no more requests, or if we have more
1010                  * but can't assign a driver tag to it.
1011                  */
1012                 if (list_empty(list))
1013                         bd.last = true;
1014                 else {
1015                         struct request *nxt;
1016
1017                         nxt = list_first_entry(list, struct request, queuelist);
1018                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1019                 }
1020
1021                 ret = q->mq_ops->queue_rq(hctx, &bd);
1022                 switch (ret) {
1023                 case BLK_MQ_RQ_QUEUE_OK:
1024                         queued++;
1025                         break;
1026                 case BLK_MQ_RQ_QUEUE_BUSY:
1027                         blk_mq_put_driver_tag_hctx(hctx, rq);
1028                         list_add(&rq->queuelist, list);
1029                         __blk_mq_requeue_request(rq);
1030                         break;
1031                 default:
1032                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1033                 case BLK_MQ_RQ_QUEUE_ERROR:
1034                         errors++;
1035                         rq->errors = -EIO;
1036                         blk_mq_end_request(rq, rq->errors);
1037                         break;
1038                 }
1039
1040                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1041                         break;
1042         } while (!list_empty(list));
1043
1044         hctx->dispatched[queued_to_index(queued)]++;
1045
1046         /*
1047          * Any items that need requeuing? Stuff them into hctx->dispatch,
1048          * that is where we will continue on next queue run.
1049          */
1050         if (!list_empty(list)) {
1051                 /*
1052                  * If an I/O scheduler has been configured and we got a driver
1053                  * tag for the next request already, free it again.
1054                  */
1055                 rq = list_first_entry(list, struct request, queuelist);
1056                 blk_mq_put_driver_tag(rq);
1057
1058                 spin_lock(&hctx->lock);
1059                 list_splice_init(list, &hctx->dispatch);
1060                 spin_unlock(&hctx->lock);
1061
1062                 /*
1063                  * If SCHED_RESTART was set by the caller of this function and
1064                  * it is no longer set that means that it was cleared by another
1065                  * thread and hence that a queue rerun is needed.
1066                  *
1067                  * If TAG_WAITING is set that means that an I/O scheduler has
1068                  * been configured and another thread is waiting for a driver
1069                  * tag. To guarantee fairness, do not rerun this hardware queue
1070                  * but let the other thread grab the driver tag.
1071                  *
1072                  * If no I/O scheduler has been configured it is possible that
1073                  * the hardware queue got stopped and restarted before requests
1074                  * were pushed back onto the dispatch list. Rerun the queue to
1075                  * avoid starvation. Notes:
1076                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1077                  *   been stopped before rerunning a queue.
1078                  * - Some but not all block drivers stop a queue before
1079                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1080                  *   and dm-rq.
1081                  */
1082                 if (!blk_mq_sched_needs_restart(hctx) &&
1083                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1084                         blk_mq_run_hw_queue(hctx, true);
1085         }
1086
1087         return (queued + errors) != 0;
1088 }
1089
1090 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1091 {
1092         int srcu_idx;
1093
1094         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1095                 cpu_online(hctx->next_cpu));
1096
1097         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1098                 rcu_read_lock();
1099                 blk_mq_sched_dispatch_requests(hctx);
1100                 rcu_read_unlock();
1101         } else {
1102                 might_sleep();
1103
1104                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1105                 blk_mq_sched_dispatch_requests(hctx);
1106                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1107         }
1108 }
1109
1110 /*
1111  * It'd be great if the workqueue API had a way to pass
1112  * in a mask and had some smarts for more clever placement.
1113  * For now we just round-robin here, switching for every
1114  * BLK_MQ_CPU_WORK_BATCH queued items.
1115  */
1116 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1117 {
1118         if (hctx->queue->nr_hw_queues == 1)
1119                 return WORK_CPU_UNBOUND;
1120
1121         if (--hctx->next_cpu_batch <= 0) {
1122                 int next_cpu;
1123
1124                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1125                 if (next_cpu >= nr_cpu_ids)
1126                         next_cpu = cpumask_first(hctx->cpumask);
1127
1128                 hctx->next_cpu = next_cpu;
1129                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1130         }
1131
1132         return hctx->next_cpu;
1133 }
1134
1135 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1136                                         unsigned long msecs)
1137 {
1138         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1139                      !blk_mq_hw_queue_mapped(hctx)))
1140                 return;
1141
1142         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1143                 int cpu = get_cpu();
1144                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1145                         __blk_mq_run_hw_queue(hctx);
1146                         put_cpu();
1147                         return;
1148                 }
1149
1150                 put_cpu();
1151         }
1152
1153         if (msecs == 0)
1154                 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1155                                          &hctx->run_work);
1156         else
1157                 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1158                                                  &hctx->delayed_run_work,
1159                                                  msecs_to_jiffies(msecs));
1160 }
1161
1162 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1163 {
1164         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1165 }
1166 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1167
1168 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1169 {
1170         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1171 }
1172 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1173
1174 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1175 {
1176         struct blk_mq_hw_ctx *hctx;
1177         int i;
1178
1179         queue_for_each_hw_ctx(q, hctx, i) {
1180                 if (!blk_mq_hctx_has_pending(hctx) ||
1181                     blk_mq_hctx_stopped(hctx))
1182                         continue;
1183
1184                 blk_mq_run_hw_queue(hctx, async);
1185         }
1186 }
1187 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1188
1189 /**
1190  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1191  * @q: request queue.
1192  *
1193  * The caller is responsible for serializing this function against
1194  * blk_mq_{start,stop}_hw_queue().
1195  */
1196 bool blk_mq_queue_stopped(struct request_queue *q)
1197 {
1198         struct blk_mq_hw_ctx *hctx;
1199         int i;
1200
1201         queue_for_each_hw_ctx(q, hctx, i)
1202                 if (blk_mq_hctx_stopped(hctx))
1203                         return true;
1204
1205         return false;
1206 }
1207 EXPORT_SYMBOL(blk_mq_queue_stopped);
1208
1209 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1210 {
1211         cancel_work(&hctx->run_work);
1212         cancel_delayed_work(&hctx->delay_work);
1213         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214 }
1215 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1216
1217 void blk_mq_stop_hw_queues(struct request_queue *q)
1218 {
1219         struct blk_mq_hw_ctx *hctx;
1220         int i;
1221
1222         queue_for_each_hw_ctx(q, hctx, i)
1223                 blk_mq_stop_hw_queue(hctx);
1224 }
1225 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1226
1227 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1228 {
1229         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1230
1231         blk_mq_run_hw_queue(hctx, false);
1232 }
1233 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1234
1235 void blk_mq_start_hw_queues(struct request_queue *q)
1236 {
1237         struct blk_mq_hw_ctx *hctx;
1238         int i;
1239
1240         queue_for_each_hw_ctx(q, hctx, i)
1241                 blk_mq_start_hw_queue(hctx);
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1244
1245 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1246 {
1247         if (!blk_mq_hctx_stopped(hctx))
1248                 return;
1249
1250         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1251         blk_mq_run_hw_queue(hctx, async);
1252 }
1253 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1254
1255 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1256 {
1257         struct blk_mq_hw_ctx *hctx;
1258         int i;
1259
1260         queue_for_each_hw_ctx(q, hctx, i)
1261                 blk_mq_start_stopped_hw_queue(hctx, async);
1262 }
1263 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1264
1265 static void blk_mq_run_work_fn(struct work_struct *work)
1266 {
1267         struct blk_mq_hw_ctx *hctx;
1268
1269         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1270
1271         __blk_mq_run_hw_queue(hctx);
1272 }
1273
1274 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1275 {
1276         struct blk_mq_hw_ctx *hctx;
1277
1278         hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1279
1280         __blk_mq_run_hw_queue(hctx);
1281 }
1282
1283 static void blk_mq_delay_work_fn(struct work_struct *work)
1284 {
1285         struct blk_mq_hw_ctx *hctx;
1286
1287         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1288
1289         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1290                 __blk_mq_run_hw_queue(hctx);
1291 }
1292
1293 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1294 {
1295         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1296                 return;
1297
1298         blk_mq_stop_hw_queue(hctx);
1299         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1300                         &hctx->delay_work, msecs_to_jiffies(msecs));
1301 }
1302 EXPORT_SYMBOL(blk_mq_delay_queue);
1303
1304 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1305                                             struct request *rq,
1306                                             bool at_head)
1307 {
1308         struct blk_mq_ctx *ctx = rq->mq_ctx;
1309
1310         trace_block_rq_insert(hctx->queue, rq);
1311
1312         if (at_head)
1313                 list_add(&rq->queuelist, &ctx->rq_list);
1314         else
1315                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1316 }
1317
1318 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1319                              bool at_head)
1320 {
1321         struct blk_mq_ctx *ctx = rq->mq_ctx;
1322
1323         __blk_mq_insert_req_list(hctx, rq, at_head);
1324         blk_mq_hctx_mark_pending(hctx, ctx);
1325 }
1326
1327 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1328                             struct list_head *list)
1329
1330 {
1331         /*
1332          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1333          * offline now
1334          */
1335         spin_lock(&ctx->lock);
1336         while (!list_empty(list)) {
1337                 struct request *rq;
1338
1339                 rq = list_first_entry(list, struct request, queuelist);
1340                 BUG_ON(rq->mq_ctx != ctx);
1341                 list_del_init(&rq->queuelist);
1342                 __blk_mq_insert_req_list(hctx, rq, false);
1343         }
1344         blk_mq_hctx_mark_pending(hctx, ctx);
1345         spin_unlock(&ctx->lock);
1346 }
1347
1348 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1349 {
1350         struct request *rqa = container_of(a, struct request, queuelist);
1351         struct request *rqb = container_of(b, struct request, queuelist);
1352
1353         return !(rqa->mq_ctx < rqb->mq_ctx ||
1354                  (rqa->mq_ctx == rqb->mq_ctx &&
1355                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1356 }
1357
1358 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1359 {
1360         struct blk_mq_ctx *this_ctx;
1361         struct request_queue *this_q;
1362         struct request *rq;
1363         LIST_HEAD(list);
1364         LIST_HEAD(ctx_list);
1365         unsigned int depth;
1366
1367         list_splice_init(&plug->mq_list, &list);
1368
1369         list_sort(NULL, &list, plug_ctx_cmp);
1370
1371         this_q = NULL;
1372         this_ctx = NULL;
1373         depth = 0;
1374
1375         while (!list_empty(&list)) {
1376                 rq = list_entry_rq(list.next);
1377                 list_del_init(&rq->queuelist);
1378                 BUG_ON(!rq->q);
1379                 if (rq->mq_ctx != this_ctx) {
1380                         if (this_ctx) {
1381                                 trace_block_unplug(this_q, depth, from_schedule);
1382                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1383                                                                 &ctx_list,
1384                                                                 from_schedule);
1385                         }
1386
1387                         this_ctx = rq->mq_ctx;
1388                         this_q = rq->q;
1389                         depth = 0;
1390                 }
1391
1392                 depth++;
1393                 list_add_tail(&rq->queuelist, &ctx_list);
1394         }
1395
1396         /*
1397          * If 'this_ctx' is set, we know we have entries to complete
1398          * on 'ctx_list'. Do those.
1399          */
1400         if (this_ctx) {
1401                 trace_block_unplug(this_q, depth, from_schedule);
1402                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1403                                                 from_schedule);
1404         }
1405 }
1406
1407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1408 {
1409         blk_init_request_from_bio(rq, bio);
1410
1411         blk_account_io_start(rq, true);
1412 }
1413
1414 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1415 {
1416         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1417                 !blk_queue_nomerges(hctx->queue);
1418 }
1419
1420 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1421                                          struct blk_mq_ctx *ctx,
1422                                          struct request *rq, struct bio *bio)
1423 {
1424         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1425                 blk_mq_bio_to_request(rq, bio);
1426                 spin_lock(&ctx->lock);
1427 insert_rq:
1428                 __blk_mq_insert_request(hctx, rq, false);
1429                 spin_unlock(&ctx->lock);
1430                 return false;
1431         } else {
1432                 struct request_queue *q = hctx->queue;
1433
1434                 spin_lock(&ctx->lock);
1435                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1436                         blk_mq_bio_to_request(rq, bio);
1437                         goto insert_rq;
1438                 }
1439
1440                 spin_unlock(&ctx->lock);
1441                 __blk_mq_finish_request(hctx, ctx, rq);
1442                 return true;
1443         }
1444 }
1445
1446 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1447 {
1448         if (rq->tag != -1)
1449                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1450
1451         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1452 }
1453
1454 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1455                                       bool may_sleep)
1456 {
1457         struct request_queue *q = rq->q;
1458         struct blk_mq_queue_data bd = {
1459                 .rq = rq,
1460                 .last = true,
1461         };
1462         struct blk_mq_hw_ctx *hctx;
1463         blk_qc_t new_cookie;
1464         int ret;
1465
1466         if (q->elevator)
1467                 goto insert;
1468
1469         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1470                 goto insert;
1471
1472         new_cookie = request_to_qc_t(hctx, rq);
1473
1474         /*
1475          * For OK queue, we are done. For error, kill it. Any other
1476          * error (busy), just add it to our list as we previously
1477          * would have done
1478          */
1479         ret = q->mq_ops->queue_rq(hctx, &bd);
1480         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1481                 *cookie = new_cookie;
1482                 return;
1483         }
1484
1485         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1486                 *cookie = BLK_QC_T_NONE;
1487                 rq->errors = -EIO;
1488                 blk_mq_end_request(rq, rq->errors);
1489                 return;
1490         }
1491
1492         __blk_mq_requeue_request(rq);
1493 insert:
1494         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1495 }
1496
1497 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1498                 struct request *rq, blk_qc_t *cookie)
1499 {
1500         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1501                 rcu_read_lock();
1502                 __blk_mq_try_issue_directly(rq, cookie, false);
1503                 rcu_read_unlock();
1504         } else {
1505                 unsigned int srcu_idx;
1506
1507                 might_sleep();
1508
1509                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1510                 __blk_mq_try_issue_directly(rq, cookie, true);
1511                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1512         }
1513 }
1514
1515 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1516 {
1517         const int is_sync = op_is_sync(bio->bi_opf);
1518         const int is_flush_fua = op_is_flush(bio->bi_opf);
1519         struct blk_mq_alloc_data data = { .flags = 0 };
1520         struct request *rq;
1521         unsigned int request_count = 0;
1522         struct blk_plug *plug;
1523         struct request *same_queue_rq = NULL;
1524         blk_qc_t cookie;
1525         unsigned int wb_acct;
1526
1527         blk_queue_bounce(q, &bio);
1528
1529         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1530                 bio_io_error(bio);
1531                 return BLK_QC_T_NONE;
1532         }
1533
1534         blk_queue_split(q, &bio, q->bio_split);
1535
1536         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1537             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1538                 return BLK_QC_T_NONE;
1539
1540         if (blk_mq_sched_bio_merge(q, bio))
1541                 return BLK_QC_T_NONE;
1542
1543         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1544
1545         trace_block_getrq(q, bio, bio->bi_opf);
1546
1547         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1548         if (unlikely(!rq)) {
1549                 __wbt_done(q->rq_wb, wb_acct);
1550                 return BLK_QC_T_NONE;
1551         }
1552
1553         wbt_track(&rq->issue_stat, wb_acct);
1554
1555         cookie = request_to_qc_t(data.hctx, rq);
1556
1557         plug = current->plug;
1558         if (unlikely(is_flush_fua)) {
1559                 blk_mq_bio_to_request(rq, bio);
1560                 if (q->elevator) {
1561                         blk_mq_sched_insert_request(rq, false, true, true,
1562                                         true);
1563                 } else {
1564                         blk_insert_flush(rq);
1565                         blk_mq_run_hw_queue(data.hctx, true);
1566                 }
1567         } else if (plug && q->nr_hw_queues == 1) {
1568                 struct request *last = NULL;
1569
1570                 blk_mq_bio_to_request(rq, bio);
1571
1572                 /*
1573                  * @request_count may become stale because of schedule
1574                  * out, so check the list again.
1575                  */
1576                 if (list_empty(&plug->mq_list))
1577                         request_count = 0;
1578                 else if (blk_queue_nomerges(q))
1579                         request_count = blk_plug_queued_count(q);
1580
1581                 if (!request_count)
1582                         trace_block_plug(q);
1583                 else
1584                         last = list_entry_rq(plug->mq_list.prev);
1585
1586                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1587                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1588                         blk_flush_plug_list(plug, false);
1589                         trace_block_plug(q);
1590                 }
1591
1592                 list_add_tail(&rq->queuelist, &plug->mq_list);
1593         } else if (plug && !blk_queue_nomerges(q)) {
1594                 blk_mq_bio_to_request(rq, bio);
1595
1596                 /*
1597                  * We do limited plugging. If the bio can be merged, do that.
1598                  * Otherwise the existing request in the plug list will be
1599                  * issued. So the plug list will have one request at most
1600                  * The plug list might get flushed before this. If that happens,
1601                  * the plug list is empty, and same_queue_rq is invalid.
1602                  */
1603                 if (list_empty(&plug->mq_list))
1604                         same_queue_rq = NULL;
1605                 if (same_queue_rq)
1606                         list_del_init(&same_queue_rq->queuelist);
1607                 list_add_tail(&rq->queuelist, &plug->mq_list);
1608
1609                 blk_mq_put_ctx(data.ctx);
1610
1611                 if (same_queue_rq)
1612                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1613                                         &cookie);
1614
1615                 return cookie;
1616         } else if (q->nr_hw_queues > 1 && is_sync) {
1617                 blk_mq_put_ctx(data.ctx);
1618                 blk_mq_bio_to_request(rq, bio);
1619                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1620                 return cookie;
1621         } else if (q->elevator) {
1622                 blk_mq_bio_to_request(rq, bio);
1623                 blk_mq_sched_insert_request(rq, false, true, true, true);
1624         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1625                 blk_mq_run_hw_queue(data.hctx, true);
1626
1627         blk_mq_put_ctx(data.ctx);
1628         return cookie;
1629 }
1630
1631 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1632                      unsigned int hctx_idx)
1633 {
1634         struct page *page;
1635
1636         if (tags->rqs && set->ops->exit_request) {
1637                 int i;
1638
1639                 for (i = 0; i < tags->nr_tags; i++) {
1640                         struct request *rq = tags->static_rqs[i];
1641
1642                         if (!rq)
1643                                 continue;
1644                         set->ops->exit_request(set->driver_data, rq,
1645                                                 hctx_idx, i);
1646                         tags->static_rqs[i] = NULL;
1647                 }
1648         }
1649
1650         while (!list_empty(&tags->page_list)) {
1651                 page = list_first_entry(&tags->page_list, struct page, lru);
1652                 list_del_init(&page->lru);
1653                 /*
1654                  * Remove kmemleak object previously allocated in
1655                  * blk_mq_init_rq_map().
1656                  */
1657                 kmemleak_free(page_address(page));
1658                 __free_pages(page, page->private);
1659         }
1660 }
1661
1662 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1663 {
1664         kfree(tags->rqs);
1665         tags->rqs = NULL;
1666         kfree(tags->static_rqs);
1667         tags->static_rqs = NULL;
1668
1669         blk_mq_free_tags(tags);
1670 }
1671
1672 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1673                                         unsigned int hctx_idx,
1674                                         unsigned int nr_tags,
1675                                         unsigned int reserved_tags)
1676 {
1677         struct blk_mq_tags *tags;
1678         int node;
1679
1680         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1681         if (node == NUMA_NO_NODE)
1682                 node = set->numa_node;
1683
1684         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1685                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1686         if (!tags)
1687                 return NULL;
1688
1689         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1690                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1691                                  node);
1692         if (!tags->rqs) {
1693                 blk_mq_free_tags(tags);
1694                 return NULL;
1695         }
1696
1697         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1698                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1699                                  node);
1700         if (!tags->static_rqs) {
1701                 kfree(tags->rqs);
1702                 blk_mq_free_tags(tags);
1703                 return NULL;
1704         }
1705
1706         return tags;
1707 }
1708
1709 static size_t order_to_size(unsigned int order)
1710 {
1711         return (size_t)PAGE_SIZE << order;
1712 }
1713
1714 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1715                      unsigned int hctx_idx, unsigned int depth)
1716 {
1717         unsigned int i, j, entries_per_page, max_order = 4;
1718         size_t rq_size, left;
1719         int node;
1720
1721         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1722         if (node == NUMA_NO_NODE)
1723                 node = set->numa_node;
1724
1725         INIT_LIST_HEAD(&tags->page_list);
1726
1727         /*
1728          * rq_size is the size of the request plus driver payload, rounded
1729          * to the cacheline size
1730          */
1731         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1732                                 cache_line_size());
1733         left = rq_size * depth;
1734
1735         for (i = 0; i < depth; ) {
1736                 int this_order = max_order;
1737                 struct page *page;
1738                 int to_do;
1739                 void *p;
1740
1741                 while (this_order && left < order_to_size(this_order - 1))
1742                         this_order--;
1743
1744                 do {
1745                         page = alloc_pages_node(node,
1746                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1747                                 this_order);
1748                         if (page)
1749                                 break;
1750                         if (!this_order--)
1751                                 break;
1752                         if (order_to_size(this_order) < rq_size)
1753                                 break;
1754                 } while (1);
1755
1756                 if (!page)
1757                         goto fail;
1758
1759                 page->private = this_order;
1760                 list_add_tail(&page->lru, &tags->page_list);
1761
1762                 p = page_address(page);
1763                 /*
1764                  * Allow kmemleak to scan these pages as they contain pointers
1765                  * to additional allocations like via ops->init_request().
1766                  */
1767                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1768                 entries_per_page = order_to_size(this_order) / rq_size;
1769                 to_do = min(entries_per_page, depth - i);
1770                 left -= to_do * rq_size;
1771                 for (j = 0; j < to_do; j++) {
1772                         struct request *rq = p;
1773
1774                         tags->static_rqs[i] = rq;
1775                         if (set->ops->init_request) {
1776                                 if (set->ops->init_request(set->driver_data,
1777                                                 rq, hctx_idx, i,
1778                                                 node)) {
1779                                         tags->static_rqs[i] = NULL;
1780                                         goto fail;
1781                                 }
1782                         }
1783
1784                         p += rq_size;
1785                         i++;
1786                 }
1787         }
1788         return 0;
1789
1790 fail:
1791         blk_mq_free_rqs(set, tags, hctx_idx);
1792         return -ENOMEM;
1793 }
1794
1795 /*
1796  * 'cpu' is going away. splice any existing rq_list entries from this
1797  * software queue to the hw queue dispatch list, and ensure that it
1798  * gets run.
1799  */
1800 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803         struct blk_mq_ctx *ctx;
1804         LIST_HEAD(tmp);
1805
1806         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1807         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1808
1809         spin_lock(&ctx->lock);
1810         if (!list_empty(&ctx->rq_list)) {
1811                 list_splice_init(&ctx->rq_list, &tmp);
1812                 blk_mq_hctx_clear_pending(hctx, ctx);
1813         }
1814         spin_unlock(&ctx->lock);
1815
1816         if (list_empty(&tmp))
1817                 return 0;
1818
1819         spin_lock(&hctx->lock);
1820         list_splice_tail_init(&tmp, &hctx->dispatch);
1821         spin_unlock(&hctx->lock);
1822
1823         blk_mq_run_hw_queue(hctx, true);
1824         return 0;
1825 }
1826
1827 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1828 {
1829         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1830                                             &hctx->cpuhp_dead);
1831 }
1832
1833 /* hctx->ctxs will be freed in queue's release handler */
1834 static void blk_mq_exit_hctx(struct request_queue *q,
1835                 struct blk_mq_tag_set *set,
1836                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1837 {
1838         unsigned flush_start_tag = set->queue_depth;
1839
1840         blk_mq_tag_idle(hctx);
1841
1842         if (set->ops->exit_request)
1843                 set->ops->exit_request(set->driver_data,
1844                                        hctx->fq->flush_rq, hctx_idx,
1845                                        flush_start_tag + hctx_idx);
1846
1847         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1848
1849         if (set->ops->exit_hctx)
1850                 set->ops->exit_hctx(hctx, hctx_idx);
1851
1852         if (hctx->flags & BLK_MQ_F_BLOCKING)
1853                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1854
1855         blk_mq_remove_cpuhp(hctx);
1856         blk_free_flush_queue(hctx->fq);
1857         sbitmap_free(&hctx->ctx_map);
1858 }
1859
1860 static void blk_mq_exit_hw_queues(struct request_queue *q,
1861                 struct blk_mq_tag_set *set, int nr_queue)
1862 {
1863         struct blk_mq_hw_ctx *hctx;
1864         unsigned int i;
1865
1866         queue_for_each_hw_ctx(q, hctx, i) {
1867                 if (i == nr_queue)
1868                         break;
1869                 blk_mq_exit_hctx(q, set, hctx, i);
1870         }
1871 }
1872
1873 static int blk_mq_init_hctx(struct request_queue *q,
1874                 struct blk_mq_tag_set *set,
1875                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1876 {
1877         int node;
1878         unsigned flush_start_tag = set->queue_depth;
1879
1880         node = hctx->numa_node;
1881         if (node == NUMA_NO_NODE)
1882                 node = hctx->numa_node = set->numa_node;
1883
1884         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1885         INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1886         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1887         spin_lock_init(&hctx->lock);
1888         INIT_LIST_HEAD(&hctx->dispatch);
1889         hctx->queue = q;
1890         hctx->queue_num = hctx_idx;
1891         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892
1893         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894
1895         hctx->tags = set->tags[hctx_idx];
1896
1897         /*
1898          * Allocate space for all possible cpus to avoid allocation at
1899          * runtime
1900          */
1901         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1902                                         GFP_KERNEL, node);
1903         if (!hctx->ctxs)
1904                 goto unregister_cpu_notifier;
1905
1906         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1907                               node))
1908                 goto free_ctxs;
1909
1910         hctx->nr_ctx = 0;
1911
1912         if (set->ops->init_hctx &&
1913             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1914                 goto free_bitmap;
1915
1916         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1917                 goto exit_hctx;
1918
1919         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1920         if (!hctx->fq)
1921                 goto sched_exit_hctx;
1922
1923         if (set->ops->init_request &&
1924             set->ops->init_request(set->driver_data,
1925                                    hctx->fq->flush_rq, hctx_idx,
1926                                    flush_start_tag + hctx_idx, node))
1927                 goto free_fq;
1928
1929         if (hctx->flags & BLK_MQ_F_BLOCKING)
1930                 init_srcu_struct(&hctx->queue_rq_srcu);
1931
1932         return 0;
1933
1934  free_fq:
1935         kfree(hctx->fq);
1936  sched_exit_hctx:
1937         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1938  exit_hctx:
1939         if (set->ops->exit_hctx)
1940                 set->ops->exit_hctx(hctx, hctx_idx);
1941  free_bitmap:
1942         sbitmap_free(&hctx->ctx_map);
1943  free_ctxs:
1944         kfree(hctx->ctxs);
1945  unregister_cpu_notifier:
1946         blk_mq_remove_cpuhp(hctx);
1947         return -1;
1948 }
1949
1950 static void blk_mq_init_cpu_queues(struct request_queue *q,
1951                                    unsigned int nr_hw_queues)
1952 {
1953         unsigned int i;
1954
1955         for_each_possible_cpu(i) {
1956                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1957                 struct blk_mq_hw_ctx *hctx;
1958
1959                 __ctx->cpu = i;
1960                 spin_lock_init(&__ctx->lock);
1961                 INIT_LIST_HEAD(&__ctx->rq_list);
1962                 __ctx->queue = q;
1963
1964                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1965                 if (!cpu_online(i))
1966                         continue;
1967
1968                 hctx = blk_mq_map_queue(q, i);
1969
1970                 /*
1971                  * Set local node, IFF we have more than one hw queue. If
1972                  * not, we remain on the home node of the device
1973                  */
1974                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1975                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1976         }
1977 }
1978
1979 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1980 {
1981         int ret = 0;
1982
1983         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1984                                         set->queue_depth, set->reserved_tags);
1985         if (!set->tags[hctx_idx])
1986                 return false;
1987
1988         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1989                                 set->queue_depth);
1990         if (!ret)
1991                 return true;
1992
1993         blk_mq_free_rq_map(set->tags[hctx_idx]);
1994         set->tags[hctx_idx] = NULL;
1995         return false;
1996 }
1997
1998 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1999                                          unsigned int hctx_idx)
2000 {
2001         if (set->tags[hctx_idx]) {
2002                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2003                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2004                 set->tags[hctx_idx] = NULL;
2005         }
2006 }
2007
2008 static void blk_mq_map_swqueue(struct request_queue *q,
2009                                const struct cpumask *online_mask)
2010 {
2011         unsigned int i, hctx_idx;
2012         struct blk_mq_hw_ctx *hctx;
2013         struct blk_mq_ctx *ctx;
2014         struct blk_mq_tag_set *set = q->tag_set;
2015
2016         /*
2017          * Avoid others reading imcomplete hctx->cpumask through sysfs
2018          */
2019         mutex_lock(&q->sysfs_lock);
2020
2021         queue_for_each_hw_ctx(q, hctx, i) {
2022                 cpumask_clear(hctx->cpumask);
2023                 hctx->nr_ctx = 0;
2024         }
2025
2026         /*
2027          * Map software to hardware queues
2028          */
2029         for_each_possible_cpu(i) {
2030                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2031                 if (!cpumask_test_cpu(i, online_mask))
2032                         continue;
2033
2034                 hctx_idx = q->mq_map[i];
2035                 /* unmapped hw queue can be remapped after CPU topo changed */
2036                 if (!set->tags[hctx_idx] &&
2037                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2038                         /*
2039                          * If tags initialization fail for some hctx,
2040                          * that hctx won't be brought online.  In this
2041                          * case, remap the current ctx to hctx[0] which
2042                          * is guaranteed to always have tags allocated
2043                          */
2044                         q->mq_map[i] = 0;
2045                 }
2046
2047                 ctx = per_cpu_ptr(q->queue_ctx, i);
2048                 hctx = blk_mq_map_queue(q, i);
2049
2050                 cpumask_set_cpu(i, hctx->cpumask);
2051                 ctx->index_hw = hctx->nr_ctx;
2052                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2053         }
2054
2055         mutex_unlock(&q->sysfs_lock);
2056
2057         queue_for_each_hw_ctx(q, hctx, i) {
2058                 /*
2059                  * If no software queues are mapped to this hardware queue,
2060                  * disable it and free the request entries.
2061                  */
2062                 if (!hctx->nr_ctx) {
2063                         /* Never unmap queue 0.  We need it as a
2064                          * fallback in case of a new remap fails
2065                          * allocation
2066                          */
2067                         if (i && set->tags[i])
2068                                 blk_mq_free_map_and_requests(set, i);
2069
2070                         hctx->tags = NULL;
2071                         continue;
2072                 }
2073
2074                 hctx->tags = set->tags[i];
2075                 WARN_ON(!hctx->tags);
2076
2077                 /*
2078                  * Set the map size to the number of mapped software queues.
2079                  * This is more accurate and more efficient than looping
2080                  * over all possibly mapped software queues.
2081                  */
2082                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2083
2084                 /*
2085                  * Initialize batch roundrobin counts
2086                  */
2087                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2088                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2089         }
2090 }
2091
2092 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2093 {
2094         struct blk_mq_hw_ctx *hctx;
2095         int i;
2096
2097         queue_for_each_hw_ctx(q, hctx, i) {
2098                 if (shared)
2099                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2100                 else
2101                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2102         }
2103 }
2104
2105 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2106 {
2107         struct request_queue *q;
2108
2109         lockdep_assert_held(&set->tag_list_lock);
2110
2111         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2112                 blk_mq_freeze_queue(q);
2113                 queue_set_hctx_shared(q, shared);
2114                 blk_mq_unfreeze_queue(q);
2115         }
2116 }
2117
2118 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2119 {
2120         struct blk_mq_tag_set *set = q->tag_set;
2121
2122         mutex_lock(&set->tag_list_lock);
2123         list_del_rcu(&q->tag_set_list);
2124         INIT_LIST_HEAD(&q->tag_set_list);
2125         if (list_is_singular(&set->tag_list)) {
2126                 /* just transitioned to unshared */
2127                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2128                 /* update existing queue */
2129                 blk_mq_update_tag_set_depth(set, false);
2130         }
2131         mutex_unlock(&set->tag_list_lock);
2132
2133         synchronize_rcu();
2134 }
2135
2136 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2137                                      struct request_queue *q)
2138 {
2139         q->tag_set = set;
2140
2141         mutex_lock(&set->tag_list_lock);
2142
2143         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2144         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2145                 set->flags |= BLK_MQ_F_TAG_SHARED;
2146                 /* update existing queue */
2147                 blk_mq_update_tag_set_depth(set, true);
2148         }
2149         if (set->flags & BLK_MQ_F_TAG_SHARED)
2150                 queue_set_hctx_shared(q, true);
2151         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2152
2153         mutex_unlock(&set->tag_list_lock);
2154 }
2155
2156 /*
2157  * It is the actual release handler for mq, but we do it from
2158  * request queue's release handler for avoiding use-after-free
2159  * and headache because q->mq_kobj shouldn't have been introduced,
2160  * but we can't group ctx/kctx kobj without it.
2161  */
2162 void blk_mq_release(struct request_queue *q)
2163 {
2164         struct blk_mq_hw_ctx *hctx;
2165         unsigned int i;
2166
2167         /* hctx kobj stays in hctx */
2168         queue_for_each_hw_ctx(q, hctx, i) {
2169                 if (!hctx)
2170                         continue;
2171                 kobject_put(&hctx->kobj);
2172         }
2173
2174         q->mq_map = NULL;
2175
2176         kfree(q->queue_hw_ctx);
2177
2178         /*
2179          * release .mq_kobj and sw queue's kobject now because
2180          * both share lifetime with request queue.
2181          */
2182         blk_mq_sysfs_deinit(q);
2183
2184         free_percpu(q->queue_ctx);
2185 }
2186
2187 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2188 {
2189         struct request_queue *uninit_q, *q;
2190
2191         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2192         if (!uninit_q)
2193                 return ERR_PTR(-ENOMEM);
2194
2195         q = blk_mq_init_allocated_queue(set, uninit_q);
2196         if (IS_ERR(q))
2197                 blk_cleanup_queue(uninit_q);
2198
2199         return q;
2200 }
2201 EXPORT_SYMBOL(blk_mq_init_queue);
2202
2203 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2204                                                 struct request_queue *q)
2205 {
2206         int i, j;
2207         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2208
2209         blk_mq_sysfs_unregister(q);
2210         for (i = 0; i < set->nr_hw_queues; i++) {
2211                 int node;
2212
2213                 if (hctxs[i])
2214                         continue;
2215
2216                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2217                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2218                                         GFP_KERNEL, node);
2219                 if (!hctxs[i])
2220                         break;
2221
2222                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2223                                                 node)) {
2224                         kfree(hctxs[i]);
2225                         hctxs[i] = NULL;
2226                         break;
2227                 }
2228
2229                 atomic_set(&hctxs[i]->nr_active, 0);
2230                 hctxs[i]->numa_node = node;
2231                 hctxs[i]->queue_num = i;
2232
2233                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2234                         free_cpumask_var(hctxs[i]->cpumask);
2235                         kfree(hctxs[i]);
2236                         hctxs[i] = NULL;
2237                         break;
2238                 }
2239                 blk_mq_hctx_kobj_init(hctxs[i]);
2240         }
2241         for (j = i; j < q->nr_hw_queues; j++) {
2242                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2243
2244                 if (hctx) {
2245                         if (hctx->tags)
2246                                 blk_mq_free_map_and_requests(set, j);
2247                         blk_mq_exit_hctx(q, set, hctx, j);
2248                         kobject_put(&hctx->kobj);
2249                         hctxs[j] = NULL;
2250
2251                 }
2252         }
2253         q->nr_hw_queues = i;
2254         blk_mq_sysfs_register(q);
2255 }
2256
2257 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2258                                                   struct request_queue *q)
2259 {
2260         /* mark the queue as mq asap */
2261         q->mq_ops = set->ops;
2262
2263         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2264                                              blk_stat_rq_ddir, 2, q);
2265         if (!q->poll_cb)
2266                 goto err_exit;
2267
2268         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2269         if (!q->queue_ctx)
2270                 goto err_exit;
2271
2272         /* init q->mq_kobj and sw queues' kobjects */
2273         blk_mq_sysfs_init(q);
2274
2275         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2276                                                 GFP_KERNEL, set->numa_node);
2277         if (!q->queue_hw_ctx)
2278                 goto err_percpu;
2279
2280         q->mq_map = set->mq_map;
2281
2282         blk_mq_realloc_hw_ctxs(set, q);
2283         if (!q->nr_hw_queues)
2284                 goto err_hctxs;
2285
2286         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2287         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2288
2289         q->nr_queues = nr_cpu_ids;
2290
2291         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2292
2293         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2294                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2295
2296         q->sg_reserved_size = INT_MAX;
2297
2298         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2299         INIT_LIST_HEAD(&q->requeue_list);
2300         spin_lock_init(&q->requeue_lock);
2301
2302         blk_queue_make_request(q, blk_mq_make_request);
2303
2304         /*
2305          * Do this after blk_queue_make_request() overrides it...
2306          */
2307         q->nr_requests = set->queue_depth;
2308
2309         /*
2310          * Default to classic polling
2311          */
2312         q->poll_nsec = -1;
2313
2314         if (set->ops->complete)
2315                 blk_queue_softirq_done(q, set->ops->complete);
2316
2317         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2318
2319         get_online_cpus();
2320         mutex_lock(&all_q_mutex);
2321
2322         list_add_tail(&q->all_q_node, &all_q_list);
2323         blk_mq_add_queue_tag_set(set, q);
2324         blk_mq_map_swqueue(q, cpu_online_mask);
2325
2326         mutex_unlock(&all_q_mutex);
2327         put_online_cpus();
2328
2329         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2330                 int ret;
2331
2332                 ret = blk_mq_sched_init(q);
2333                 if (ret)
2334                         return ERR_PTR(ret);
2335         }
2336
2337         return q;
2338
2339 err_hctxs:
2340         kfree(q->queue_hw_ctx);
2341 err_percpu:
2342         free_percpu(q->queue_ctx);
2343 err_exit:
2344         q->mq_ops = NULL;
2345         return ERR_PTR(-ENOMEM);
2346 }
2347 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2348
2349 void blk_mq_free_queue(struct request_queue *q)
2350 {
2351         struct blk_mq_tag_set   *set = q->tag_set;
2352
2353         mutex_lock(&all_q_mutex);
2354         list_del_init(&q->all_q_node);
2355         mutex_unlock(&all_q_mutex);
2356
2357         blk_mq_del_queue_tag_set(q);
2358
2359         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2360 }
2361
2362 /* Basically redo blk_mq_init_queue with queue frozen */
2363 static void blk_mq_queue_reinit(struct request_queue *q,
2364                                 const struct cpumask *online_mask)
2365 {
2366         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2367
2368         blk_mq_sysfs_unregister(q);
2369
2370         /*
2371          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2372          * we should change hctx numa_node according to new topology (this
2373          * involves free and re-allocate memory, worthy doing?)
2374          */
2375
2376         blk_mq_map_swqueue(q, online_mask);
2377
2378         blk_mq_sysfs_register(q);
2379 }
2380
2381 /*
2382  * New online cpumask which is going to be set in this hotplug event.
2383  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2384  * one-by-one and dynamically allocating this could result in a failure.
2385  */
2386 static struct cpumask cpuhp_online_new;
2387
2388 static void blk_mq_queue_reinit_work(void)
2389 {
2390         struct request_queue *q;
2391
2392         mutex_lock(&all_q_mutex);
2393         /*
2394          * We need to freeze and reinit all existing queues.  Freezing
2395          * involves synchronous wait for an RCU grace period and doing it
2396          * one by one may take a long time.  Start freezing all queues in
2397          * one swoop and then wait for the completions so that freezing can
2398          * take place in parallel.
2399          */
2400         list_for_each_entry(q, &all_q_list, all_q_node)
2401                 blk_freeze_queue_start(q);
2402         list_for_each_entry(q, &all_q_list, all_q_node)
2403                 blk_mq_freeze_queue_wait(q);
2404
2405         list_for_each_entry(q, &all_q_list, all_q_node)
2406                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2407
2408         list_for_each_entry(q, &all_q_list, all_q_node)
2409                 blk_mq_unfreeze_queue(q);
2410
2411         mutex_unlock(&all_q_mutex);
2412 }
2413
2414 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2415 {
2416         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2417         blk_mq_queue_reinit_work();
2418         return 0;
2419 }
2420
2421 /*
2422  * Before hotadded cpu starts handling requests, new mappings must be
2423  * established.  Otherwise, these requests in hw queue might never be
2424  * dispatched.
2425  *
2426  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2427  * for CPU0, and ctx1 for CPU1).
2428  *
2429  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2430  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2431  *
2432  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2433  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2434  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2435  * ignored.
2436  */
2437 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2438 {
2439         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2440         cpumask_set_cpu(cpu, &cpuhp_online_new);
2441         blk_mq_queue_reinit_work();
2442         return 0;
2443 }
2444
2445 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2446 {
2447         int i;
2448
2449         for (i = 0; i < set->nr_hw_queues; i++)
2450                 if (!__blk_mq_alloc_rq_map(set, i))
2451                         goto out_unwind;
2452
2453         return 0;
2454
2455 out_unwind:
2456         while (--i >= 0)
2457                 blk_mq_free_rq_map(set->tags[i]);
2458
2459         return -ENOMEM;
2460 }
2461
2462 /*
2463  * Allocate the request maps associated with this tag_set. Note that this
2464  * may reduce the depth asked for, if memory is tight. set->queue_depth
2465  * will be updated to reflect the allocated depth.
2466  */
2467 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2468 {
2469         unsigned int depth;
2470         int err;
2471
2472         depth = set->queue_depth;
2473         do {
2474                 err = __blk_mq_alloc_rq_maps(set);
2475                 if (!err)
2476                         break;
2477
2478                 set->queue_depth >>= 1;
2479                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2480                         err = -ENOMEM;
2481                         break;
2482                 }
2483         } while (set->queue_depth);
2484
2485         if (!set->queue_depth || err) {
2486                 pr_err("blk-mq: failed to allocate request map\n");
2487                 return -ENOMEM;
2488         }
2489
2490         if (depth != set->queue_depth)
2491                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2492                                                 depth, set->queue_depth);
2493
2494         return 0;
2495 }
2496
2497 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2498 {
2499         if (set->ops->map_queues)
2500                 return set->ops->map_queues(set);
2501         else
2502                 return blk_mq_map_queues(set);
2503 }
2504
2505 /*
2506  * Alloc a tag set to be associated with one or more request queues.
2507  * May fail with EINVAL for various error conditions. May adjust the
2508  * requested depth down, if if it too large. In that case, the set
2509  * value will be stored in set->queue_depth.
2510  */
2511 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2512 {
2513         int ret;
2514
2515         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2516
2517         if (!set->nr_hw_queues)
2518                 return -EINVAL;
2519         if (!set->queue_depth)
2520                 return -EINVAL;
2521         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2522                 return -EINVAL;
2523
2524         if (!set->ops->queue_rq)
2525                 return -EINVAL;
2526
2527         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2528                 pr_info("blk-mq: reduced tag depth to %u\n",
2529                         BLK_MQ_MAX_DEPTH);
2530                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2531         }
2532
2533         /*
2534          * If a crashdump is active, then we are potentially in a very
2535          * memory constrained environment. Limit us to 1 queue and
2536          * 64 tags to prevent using too much memory.
2537          */
2538         if (is_kdump_kernel()) {
2539                 set->nr_hw_queues = 1;
2540                 set->queue_depth = min(64U, set->queue_depth);
2541         }
2542         /*
2543          * There is no use for more h/w queues than cpus.
2544          */
2545         if (set->nr_hw_queues > nr_cpu_ids)
2546                 set->nr_hw_queues = nr_cpu_ids;
2547
2548         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2549                                  GFP_KERNEL, set->numa_node);
2550         if (!set->tags)
2551                 return -ENOMEM;
2552
2553         ret = -ENOMEM;
2554         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2555                         GFP_KERNEL, set->numa_node);
2556         if (!set->mq_map)
2557                 goto out_free_tags;
2558
2559         ret = blk_mq_update_queue_map(set);
2560         if (ret)
2561                 goto out_free_mq_map;
2562
2563         ret = blk_mq_alloc_rq_maps(set);
2564         if (ret)
2565                 goto out_free_mq_map;
2566
2567         mutex_init(&set->tag_list_lock);
2568         INIT_LIST_HEAD(&set->tag_list);
2569
2570         return 0;
2571
2572 out_free_mq_map:
2573         kfree(set->mq_map);
2574         set->mq_map = NULL;
2575 out_free_tags:
2576         kfree(set->tags);
2577         set->tags = NULL;
2578         return ret;
2579 }
2580 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2581
2582 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2583 {
2584         int i;
2585
2586         for (i = 0; i < nr_cpu_ids; i++)
2587                 blk_mq_free_map_and_requests(set, i);
2588
2589         kfree(set->mq_map);
2590         set->mq_map = NULL;
2591
2592         kfree(set->tags);
2593         set->tags = NULL;
2594 }
2595 EXPORT_SYMBOL(blk_mq_free_tag_set);
2596
2597 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2598 {
2599         struct blk_mq_tag_set *set = q->tag_set;
2600         struct blk_mq_hw_ctx *hctx;
2601         int i, ret;
2602
2603         if (!set)
2604                 return -EINVAL;
2605
2606         blk_mq_freeze_queue(q);
2607         blk_mq_quiesce_queue(q);
2608
2609         ret = 0;
2610         queue_for_each_hw_ctx(q, hctx, i) {
2611                 if (!hctx->tags)
2612                         continue;
2613                 /*
2614                  * If we're using an MQ scheduler, just update the scheduler
2615                  * queue depth. This is similar to what the old code would do.
2616                  */
2617                 if (!hctx->sched_tags) {
2618                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2619                                                         min(nr, set->queue_depth),
2620                                                         false);
2621                 } else {
2622                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2623                                                         nr, true);
2624                 }
2625                 if (ret)
2626                         break;
2627         }
2628
2629         if (!ret)
2630                 q->nr_requests = nr;
2631
2632         blk_mq_unfreeze_queue(q);
2633         blk_mq_start_stopped_hw_queues(q, true);
2634
2635         return ret;
2636 }
2637
2638 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2639 {
2640         struct request_queue *q;
2641
2642         lockdep_assert_held(&set->tag_list_lock);
2643
2644         if (nr_hw_queues > nr_cpu_ids)
2645                 nr_hw_queues = nr_cpu_ids;
2646         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2647                 return;
2648
2649         list_for_each_entry(q, &set->tag_list, tag_set_list)
2650                 blk_mq_freeze_queue(q);
2651
2652         set->nr_hw_queues = nr_hw_queues;
2653         blk_mq_update_queue_map(set);
2654         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2655                 blk_mq_realloc_hw_ctxs(set, q);
2656                 blk_mq_queue_reinit(q, cpu_online_mask);
2657         }
2658
2659         list_for_each_entry(q, &set->tag_list, tag_set_list)
2660                 blk_mq_unfreeze_queue(q);
2661 }
2662 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2663
2664 /* Enable polling stats and return whether they were already enabled. */
2665 static bool blk_poll_stats_enable(struct request_queue *q)
2666 {
2667         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2668             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2669                 return true;
2670         blk_stat_add_callback(q, q->poll_cb);
2671         return false;
2672 }
2673
2674 static void blk_mq_poll_stats_start(struct request_queue *q)
2675 {
2676         /*
2677          * We don't arm the callback if polling stats are not enabled or the
2678          * callback is already active.
2679          */
2680         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2681             blk_stat_is_active(q->poll_cb))
2682                 return;
2683
2684         blk_stat_activate_msecs(q->poll_cb, 100);
2685 }
2686
2687 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2688 {
2689         struct request_queue *q = cb->data;
2690
2691         if (cb->stat[READ].nr_samples)
2692                 q->poll_stat[READ] = cb->stat[READ];
2693         if (cb->stat[WRITE].nr_samples)
2694                 q->poll_stat[WRITE] = cb->stat[WRITE];
2695 }
2696
2697 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2698                                        struct blk_mq_hw_ctx *hctx,
2699                                        struct request *rq)
2700 {
2701         unsigned long ret = 0;
2702
2703         /*
2704          * If stats collection isn't on, don't sleep but turn it on for
2705          * future users
2706          */
2707         if (!blk_poll_stats_enable(q))
2708                 return 0;
2709
2710         /*
2711          * As an optimistic guess, use half of the mean service time
2712          * for this type of request. We can (and should) make this smarter.
2713          * For instance, if the completion latencies are tight, we can
2714          * get closer than just half the mean. This is especially
2715          * important on devices where the completion latencies are longer
2716          * than ~10 usec.
2717          */
2718         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2719                 ret = (q->poll_stat[READ].mean + 1) / 2;
2720         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2721                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2722
2723         return ret;
2724 }
2725
2726 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2727                                      struct blk_mq_hw_ctx *hctx,
2728                                      struct request *rq)
2729 {
2730         struct hrtimer_sleeper hs;
2731         enum hrtimer_mode mode;
2732         unsigned int nsecs;
2733         ktime_t kt;
2734
2735         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2736                 return false;
2737
2738         /*
2739          * poll_nsec can be:
2740          *
2741          * -1:  don't ever hybrid sleep
2742          *  0:  use half of prev avg
2743          * >0:  use this specific value
2744          */
2745         if (q->poll_nsec == -1)
2746                 return false;
2747         else if (q->poll_nsec > 0)
2748                 nsecs = q->poll_nsec;
2749         else
2750                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2751
2752         if (!nsecs)
2753                 return false;
2754
2755         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2756
2757         /*
2758          * This will be replaced with the stats tracking code, using
2759          * 'avg_completion_time / 2' as the pre-sleep target.
2760          */
2761         kt = nsecs;
2762
2763         mode = HRTIMER_MODE_REL;
2764         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2765         hrtimer_set_expires(&hs.timer, kt);
2766
2767         hrtimer_init_sleeper(&hs, current);
2768         do {
2769                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2770                         break;
2771                 set_current_state(TASK_UNINTERRUPTIBLE);
2772                 hrtimer_start_expires(&hs.timer, mode);
2773                 if (hs.task)
2774                         io_schedule();
2775                 hrtimer_cancel(&hs.timer);
2776                 mode = HRTIMER_MODE_ABS;
2777         } while (hs.task && !signal_pending(current));
2778
2779         __set_current_state(TASK_RUNNING);
2780         destroy_hrtimer_on_stack(&hs.timer);
2781         return true;
2782 }
2783
2784 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2785 {
2786         struct request_queue *q = hctx->queue;
2787         long state;
2788
2789         /*
2790          * If we sleep, have the caller restart the poll loop to reset
2791          * the state. Like for the other success return cases, the
2792          * caller is responsible for checking if the IO completed. If
2793          * the IO isn't complete, we'll get called again and will go
2794          * straight to the busy poll loop.
2795          */
2796         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2797                 return true;
2798
2799         hctx->poll_considered++;
2800
2801         state = current->state;
2802         while (!need_resched()) {
2803                 int ret;
2804
2805                 hctx->poll_invoked++;
2806
2807                 ret = q->mq_ops->poll(hctx, rq->tag);
2808                 if (ret > 0) {
2809                         hctx->poll_success++;
2810                         set_current_state(TASK_RUNNING);
2811                         return true;
2812                 }
2813
2814                 if (signal_pending_state(state, current))
2815                         set_current_state(TASK_RUNNING);
2816
2817                 if (current->state == TASK_RUNNING)
2818                         return true;
2819                 if (ret < 0)
2820                         break;
2821                 cpu_relax();
2822         }
2823
2824         return false;
2825 }
2826
2827 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2828 {
2829         struct blk_mq_hw_ctx *hctx;
2830         struct blk_plug *plug;
2831         struct request *rq;
2832
2833         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2834             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2835                 return false;
2836
2837         plug = current->plug;
2838         if (plug)
2839                 blk_flush_plug_list(plug, false);
2840
2841         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2842         if (!blk_qc_t_is_internal(cookie))
2843                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2844         else
2845                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2846
2847         return __blk_mq_poll(hctx, rq);
2848 }
2849 EXPORT_SYMBOL_GPL(blk_mq_poll);
2850
2851 void blk_mq_disable_hotplug(void)
2852 {
2853         mutex_lock(&all_q_mutex);
2854 }
2855
2856 void blk_mq_enable_hotplug(void)
2857 {
2858         mutex_unlock(&all_q_mutex);
2859 }
2860
2861 static int __init blk_mq_init(void)
2862 {
2863         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2864                                 blk_mq_hctx_notify_dead);
2865
2866         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2867                                   blk_mq_queue_reinit_prepare,
2868                                   blk_mq_queue_reinit_dead);
2869         return 0;
2870 }
2871 subsys_initcall(blk_mq_init);