]> git.karo-electronics.de Git - linux-beck.git/blob - block/blk-mq.c
6160128085fc8a533694bb69de7495c8c05e84e4
[linux-beck.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
37                                            unsigned int cpu)
38 {
39         return per_cpu_ptr(q->queue_ctx, cpu);
40 }
41
42 /*
43  * This assumes per-cpu software queueing queues. They could be per-node
44  * as well, for instance. For now this is hardcoded as-is. Note that we don't
45  * care about preemption, since we know the ctx's are persistent. This does
46  * mean that we can't rely on ctx always matching the currently running CPU.
47  */
48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
49 {
50         return __blk_mq_get_ctx(q, get_cpu());
51 }
52
53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
54 {
55         put_cpu();
56 }
57
58 /*
59  * Check if any of the ctx's have pending work in this hardware queue
60  */
61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63         unsigned int i;
64
65         for (i = 0; i < hctx->ctx_map.map_size; i++)
66                 if (hctx->ctx_map.map[i].word)
67                         return true;
68
69         return false;
70 }
71
72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
73                                               struct blk_mq_ctx *ctx)
74 {
75         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
76 }
77
78 #define CTX_TO_BIT(hctx, ctx)   \
79         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
80
81 /*
82  * Mark this ctx as having pending work in this hardware queue
83  */
84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
85                                      struct blk_mq_ctx *ctx)
86 {
87         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
88
89         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
90                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
91 }
92
93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
94                                       struct blk_mq_ctx *ctx)
95 {
96         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
97
98         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 }
100
101 static int blk_mq_queue_enter(struct request_queue *q)
102 {
103         int ret;
104
105         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
106         smp_wmb();
107         /* we have problems to freeze the queue if it's initializing */
108         if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
109                 return 0;
110
111         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
112
113         spin_lock_irq(q->queue_lock);
114         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115                 !blk_queue_bypass(q) || blk_queue_dying(q),
116                 *q->queue_lock);
117         /* inc usage with lock hold to avoid freeze_queue runs here */
118         if (!ret && !blk_queue_dying(q))
119                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120         else if (blk_queue_dying(q))
121                 ret = -ENODEV;
122         spin_unlock_irq(q->queue_lock);
123
124         return ret;
125 }
126
127 static void blk_mq_queue_exit(struct request_queue *q)
128 {
129         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130 }
131
132 static void __blk_mq_drain_queue(struct request_queue *q)
133 {
134         while (true) {
135                 s64 count;
136
137                 spin_lock_irq(q->queue_lock);
138                 count = percpu_counter_sum(&q->mq_usage_counter);
139                 spin_unlock_irq(q->queue_lock);
140
141                 if (count == 0)
142                         break;
143                 blk_mq_run_queues(q, false);
144                 msleep(10);
145         }
146 }
147
148 /*
149  * Guarantee no request is in use, so we can change any data structure of
150  * the queue afterward.
151  */
152 static void blk_mq_freeze_queue(struct request_queue *q)
153 {
154         bool drain;
155
156         spin_lock_irq(q->queue_lock);
157         drain = !q->bypass_depth++;
158         queue_flag_set(QUEUE_FLAG_BYPASS, q);
159         spin_unlock_irq(q->queue_lock);
160
161         if (drain)
162                 __blk_mq_drain_queue(q);
163 }
164
165 void blk_mq_drain_queue(struct request_queue *q)
166 {
167         __blk_mq_drain_queue(q);
168 }
169
170 static void blk_mq_unfreeze_queue(struct request_queue *q)
171 {
172         bool wake = false;
173
174         spin_lock_irq(q->queue_lock);
175         if (!--q->bypass_depth) {
176                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
177                 wake = true;
178         }
179         WARN_ON_ONCE(q->bypass_depth < 0);
180         spin_unlock_irq(q->queue_lock);
181         if (wake)
182                 wake_up_all(&q->mq_freeze_wq);
183 }
184
185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
186 {
187         return blk_mq_has_free_tags(hctx->tags);
188 }
189 EXPORT_SYMBOL(blk_mq_can_queue);
190
191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
192                                struct request *rq, unsigned int rw_flags)
193 {
194         if (blk_queue_io_stat(q))
195                 rw_flags |= REQ_IO_STAT;
196
197         INIT_LIST_HEAD(&rq->queuelist);
198         /* csd/requeue_work/fifo_time is initialized before use */
199         rq->q = q;
200         rq->mq_ctx = ctx;
201         rq->cmd_flags |= rw_flags;
202         /* do not touch atomic flags, it needs atomic ops against the timer */
203         rq->cpu = -1;
204         INIT_HLIST_NODE(&rq->hash);
205         RB_CLEAR_NODE(&rq->rb_node);
206         rq->rq_disk = NULL;
207         rq->part = NULL;
208 #ifdef CONFIG_BLK_CGROUP
209         rq->rl = NULL;
210         set_start_time_ns(rq);
211         rq->io_start_time_ns = 0;
212 #endif
213         rq->nr_phys_segments = 0;
214 #if defined(CONFIG_BLK_DEV_INTEGRITY)
215         rq->nr_integrity_segments = 0;
216 #endif
217         rq->special = NULL;
218         /* tag was already set */
219         rq->errors = 0;
220
221         rq->extra_len = 0;
222         rq->sense_len = 0;
223         rq->resid_len = 0;
224         rq->sense = NULL;
225
226         INIT_LIST_HEAD(&rq->timeout_list);
227         rq->end_io = NULL;
228         rq->end_io_data = NULL;
229         rq->next_rq = NULL;
230
231         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
232 }
233
234 static struct request *
235 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
236                 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
237 {
238         struct request *rq;
239         unsigned int tag;
240
241         tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
242         if (tag != BLK_MQ_TAG_FAIL) {
243                 rq = hctx->tags->rqs[tag];
244
245                 rq->cmd_flags = 0;
246                 if (blk_mq_tag_busy(hctx)) {
247                         rq->cmd_flags = REQ_MQ_INFLIGHT;
248                         atomic_inc(&hctx->nr_active);
249                 }
250
251                 rq->tag = tag;
252                 blk_mq_rq_ctx_init(q, ctx, rq, rw);
253                 return rq;
254         }
255
256         return NULL;
257 }
258
259 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
260                 bool reserved)
261 {
262         struct blk_mq_ctx *ctx;
263         struct blk_mq_hw_ctx *hctx;
264         struct request *rq;
265
266         if (blk_mq_queue_enter(q))
267                 return NULL;
268
269         ctx = blk_mq_get_ctx(q);
270         hctx = q->mq_ops->map_queue(q, ctx->cpu);
271
272         rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
273                                     reserved);
274         if (!rq && (gfp & __GFP_WAIT)) {
275                 __blk_mq_run_hw_queue(hctx);
276                 blk_mq_put_ctx(ctx);
277
278                 ctx = blk_mq_get_ctx(q);
279                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280                 rq =  __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
281         }
282         blk_mq_put_ctx(ctx);
283         return rq;
284 }
285 EXPORT_SYMBOL(blk_mq_alloc_request);
286
287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288                                   struct blk_mq_ctx *ctx, struct request *rq)
289 {
290         const int tag = rq->tag;
291         struct request_queue *q = rq->q;
292
293         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
294                 atomic_dec(&hctx->nr_active);
295
296         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
297         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
298         blk_mq_queue_exit(q);
299 }
300
301 void blk_mq_free_request(struct request *rq)
302 {
303         struct blk_mq_ctx *ctx = rq->mq_ctx;
304         struct blk_mq_hw_ctx *hctx;
305         struct request_queue *q = rq->q;
306
307         ctx->rq_completed[rq_is_sync(rq)]++;
308
309         hctx = q->mq_ops->map_queue(q, ctx->cpu);
310         __blk_mq_free_request(hctx, ctx, rq);
311 }
312
313 /*
314  * Clone all relevant state from a request that has been put on hold in
315  * the flush state machine into the preallocated flush request that hangs
316  * off the request queue.
317  *
318  * For a driver the flush request should be invisible, that's why we are
319  * impersonating the original request here.
320  */
321 void blk_mq_clone_flush_request(struct request *flush_rq,
322                 struct request *orig_rq)
323 {
324         struct blk_mq_hw_ctx *hctx =
325                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
326
327         flush_rq->mq_ctx = orig_rq->mq_ctx;
328         flush_rq->tag = orig_rq->tag;
329         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
330                 hctx->cmd_size);
331 }
332
333 inline void __blk_mq_end_io(struct request *rq, int error)
334 {
335         blk_account_io_done(rq);
336
337         if (rq->end_io) {
338                 rq->end_io(rq, error);
339         } else {
340                 if (unlikely(blk_bidi_rq(rq)))
341                         blk_mq_free_request(rq->next_rq);
342                 blk_mq_free_request(rq);
343         }
344 }
345 EXPORT_SYMBOL(__blk_mq_end_io);
346
347 void blk_mq_end_io(struct request *rq, int error)
348 {
349         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
350                 BUG();
351         __blk_mq_end_io(rq, error);
352 }
353 EXPORT_SYMBOL(blk_mq_end_io);
354
355 static void __blk_mq_complete_request_remote(void *data)
356 {
357         struct request *rq = data;
358
359         rq->q->softirq_done_fn(rq);
360 }
361
362 void __blk_mq_complete_request(struct request *rq)
363 {
364         struct blk_mq_ctx *ctx = rq->mq_ctx;
365         bool shared = false;
366         int cpu;
367
368         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
369                 rq->q->softirq_done_fn(rq);
370                 return;
371         }
372
373         cpu = get_cpu();
374         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
375                 shared = cpus_share_cache(cpu, ctx->cpu);
376
377         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
378                 rq->csd.func = __blk_mq_complete_request_remote;
379                 rq->csd.info = rq;
380                 rq->csd.flags = 0;
381                 smp_call_function_single_async(ctx->cpu, &rq->csd);
382         } else {
383                 rq->q->softirq_done_fn(rq);
384         }
385         put_cpu();
386 }
387
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:         the request being processed
391  *
392  * Description:
393  *      Ends all I/O on a request. It does not handle partial completions.
394  *      The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398         struct request_queue *q = rq->q;
399
400         if (unlikely(blk_should_fake_timeout(q)))
401                 return;
402         if (!blk_mark_rq_complete(rq)) {
403                 if (q->softirq_done_fn)
404                         __blk_mq_complete_request(rq);
405                 else
406                         blk_mq_end_io(rq, rq->errors);
407         }
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410
411 static void blk_mq_start_request(struct request *rq, bool last)
412 {
413         struct request_queue *q = rq->q;
414
415         trace_block_rq_issue(q, rq);
416
417         rq->resid_len = blk_rq_bytes(rq);
418         if (unlikely(blk_bidi_rq(rq)))
419                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
420
421         /*
422          * Just mark start time and set the started bit. Due to memory
423          * ordering, we know we'll see the correct deadline as long as
424          * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
425          * unless one has been set in the request.
426          */
427         if (!rq->timeout)
428                 rq->deadline = jiffies + q->rq_timeout;
429         else
430                 rq->deadline = jiffies + rq->timeout;
431
432         /*
433          * Mark us as started and clear complete. Complete might have been
434          * set if requeue raced with timeout, which then marked it as
435          * complete. So be sure to clear complete again when we start
436          * the request, otherwise we'll ignore the completion event.
437          */
438         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
439                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
440         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
441                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442
443         if (q->dma_drain_size && blk_rq_bytes(rq)) {
444                 /*
445                  * Make sure space for the drain appears.  We know we can do
446                  * this because max_hw_segments has been adjusted to be one
447                  * fewer than the device can handle.
448                  */
449                 rq->nr_phys_segments++;
450         }
451
452         /*
453          * Flag the last request in the series so that drivers know when IO
454          * should be kicked off, if they don't do it on a per-request basis.
455          *
456          * Note: the flag isn't the only condition drivers should do kick off.
457          * If drive is busy, the last request might not have the bit set.
458          */
459         if (last)
460                 rq->cmd_flags |= REQ_END;
461 }
462
463 static void __blk_mq_requeue_request(struct request *rq)
464 {
465         struct request_queue *q = rq->q;
466
467         trace_block_rq_requeue(q, rq);
468         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
469
470         rq->cmd_flags &= ~REQ_END;
471
472         if (q->dma_drain_size && blk_rq_bytes(rq))
473                 rq->nr_phys_segments--;
474 }
475
476 void blk_mq_requeue_request(struct request *rq)
477 {
478         __blk_mq_requeue_request(rq);
479         blk_clear_rq_complete(rq);
480
481         BUG_ON(blk_queued_rq(rq));
482         blk_mq_add_to_requeue_list(rq, true);
483 }
484 EXPORT_SYMBOL(blk_mq_requeue_request);
485
486 static void blk_mq_requeue_work(struct work_struct *work)
487 {
488         struct request_queue *q =
489                 container_of(work, struct request_queue, requeue_work);
490         LIST_HEAD(rq_list);
491         struct request *rq, *next;
492         unsigned long flags;
493
494         spin_lock_irqsave(&q->requeue_lock, flags);
495         list_splice_init(&q->requeue_list, &rq_list);
496         spin_unlock_irqrestore(&q->requeue_lock, flags);
497
498         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
499                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
500                         continue;
501
502                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
503                 list_del_init(&rq->queuelist);
504                 blk_mq_insert_request(rq, true, false, false);
505         }
506
507         while (!list_empty(&rq_list)) {
508                 rq = list_entry(rq_list.next, struct request, queuelist);
509                 list_del_init(&rq->queuelist);
510                 blk_mq_insert_request(rq, false, false, false);
511         }
512
513         blk_mq_run_queues(q, false);
514 }
515
516 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
517 {
518         struct request_queue *q = rq->q;
519         unsigned long flags;
520
521         /*
522          * We abuse this flag that is otherwise used by the I/O scheduler to
523          * request head insertation from the workqueue.
524          */
525         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
526
527         spin_lock_irqsave(&q->requeue_lock, flags);
528         if (at_head) {
529                 rq->cmd_flags |= REQ_SOFTBARRIER;
530                 list_add(&rq->queuelist, &q->requeue_list);
531         } else {
532                 list_add_tail(&rq->queuelist, &q->requeue_list);
533         }
534         spin_unlock_irqrestore(&q->requeue_lock, flags);
535 }
536 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
537
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540         kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543
544 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
545 {
546         return tags->rqs[tag];
547 }
548 EXPORT_SYMBOL(blk_mq_tag_to_rq);
549
550 struct blk_mq_timeout_data {
551         struct blk_mq_hw_ctx *hctx;
552         unsigned long *next;
553         unsigned int *next_set;
554 };
555
556 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
557 {
558         struct blk_mq_timeout_data *data = __data;
559         struct blk_mq_hw_ctx *hctx = data->hctx;
560         unsigned int tag;
561
562          /* It may not be in flight yet (this is where
563          * the REQ_ATOMIC_STARTED flag comes in). The requests are
564          * statically allocated, so we know it's always safe to access the
565          * memory associated with a bit offset into ->rqs[].
566          */
567         tag = 0;
568         do {
569                 struct request *rq;
570
571                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
572                 if (tag >= hctx->tags->nr_tags)
573                         break;
574
575                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
576                 if (rq->q != hctx->queue)
577                         continue;
578                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
579                         continue;
580
581                 blk_rq_check_expired(rq, data->next, data->next_set);
582         } while (1);
583 }
584
585 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
586                                         unsigned long *next,
587                                         unsigned int *next_set)
588 {
589         struct blk_mq_timeout_data data = {
590                 .hctx           = hctx,
591                 .next           = next,
592                 .next_set       = next_set,
593         };
594
595         /*
596          * Ask the tagging code to iterate busy requests, so we can
597          * check them for timeout.
598          */
599         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
600 }
601
602 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
603 {
604         struct request_queue *q = rq->q;
605
606         /*
607          * We know that complete is set at this point. If STARTED isn't set
608          * anymore, then the request isn't active and the "timeout" should
609          * just be ignored. This can happen due to the bitflag ordering.
610          * Timeout first checks if STARTED is set, and if it is, assumes
611          * the request is active. But if we race with completion, then
612          * we both flags will get cleared. So check here again, and ignore
613          * a timeout event with a request that isn't active.
614          */
615         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
616                 return BLK_EH_NOT_HANDLED;
617
618         if (!q->mq_ops->timeout)
619                 return BLK_EH_RESET_TIMER;
620
621         return q->mq_ops->timeout(rq);
622 }
623
624 static void blk_mq_rq_timer(unsigned long data)
625 {
626         struct request_queue *q = (struct request_queue *) data;
627         struct blk_mq_hw_ctx *hctx;
628         unsigned long next = 0;
629         int i, next_set = 0;
630
631         queue_for_each_hw_ctx(q, hctx, i) {
632                 /*
633                  * If not software queues are currently mapped to this
634                  * hardware queue, there's nothing to check
635                  */
636                 if (!hctx->nr_ctx || !hctx->tags)
637                         continue;
638
639                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
640         }
641
642         if (next_set) {
643                 next = blk_rq_timeout(round_jiffies_up(next));
644                 mod_timer(&q->timeout, next);
645         } else {
646                 queue_for_each_hw_ctx(q, hctx, i)
647                         blk_mq_tag_idle(hctx);
648         }
649 }
650
651 /*
652  * Reverse check our software queue for entries that we could potentially
653  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
654  * too much time checking for merges.
655  */
656 static bool blk_mq_attempt_merge(struct request_queue *q,
657                                  struct blk_mq_ctx *ctx, struct bio *bio)
658 {
659         struct request *rq;
660         int checked = 8;
661
662         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
663                 int el_ret;
664
665                 if (!checked--)
666                         break;
667
668                 if (!blk_rq_merge_ok(rq, bio))
669                         continue;
670
671                 el_ret = blk_try_merge(rq, bio);
672                 if (el_ret == ELEVATOR_BACK_MERGE) {
673                         if (bio_attempt_back_merge(q, rq, bio)) {
674                                 ctx->rq_merged++;
675                                 return true;
676                         }
677                         break;
678                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
679                         if (bio_attempt_front_merge(q, rq, bio)) {
680                                 ctx->rq_merged++;
681                                 return true;
682                         }
683                         break;
684                 }
685         }
686
687         return false;
688 }
689
690 /*
691  * Process software queues that have been marked busy, splicing them
692  * to the for-dispatch
693  */
694 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
695 {
696         struct blk_mq_ctx *ctx;
697         int i;
698
699         for (i = 0; i < hctx->ctx_map.map_size; i++) {
700                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
701                 unsigned int off, bit;
702
703                 if (!bm->word)
704                         continue;
705
706                 bit = 0;
707                 off = i * hctx->ctx_map.bits_per_word;
708                 do {
709                         bit = find_next_bit(&bm->word, bm->depth, bit);
710                         if (bit >= bm->depth)
711                                 break;
712
713                         ctx = hctx->ctxs[bit + off];
714                         clear_bit(bit, &bm->word);
715                         spin_lock(&ctx->lock);
716                         list_splice_tail_init(&ctx->rq_list, list);
717                         spin_unlock(&ctx->lock);
718
719                         bit++;
720                 } while (1);
721         }
722 }
723
724 /*
725  * Run this hardware queue, pulling any software queues mapped to it in.
726  * Note that this function currently has various problems around ordering
727  * of IO. In particular, we'd like FIFO behaviour on handling existing
728  * items on the hctx->dispatch list. Ignore that for now.
729  */
730 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
731 {
732         struct request_queue *q = hctx->queue;
733         struct request *rq;
734         LIST_HEAD(rq_list);
735         int queued;
736
737         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
738
739         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
740                 return;
741
742         hctx->run++;
743
744         /*
745          * Touch any software queue that has pending entries.
746          */
747         flush_busy_ctxs(hctx, &rq_list);
748
749         /*
750          * If we have previous entries on our dispatch list, grab them
751          * and stuff them at the front for more fair dispatch.
752          */
753         if (!list_empty_careful(&hctx->dispatch)) {
754                 spin_lock(&hctx->lock);
755                 if (!list_empty(&hctx->dispatch))
756                         list_splice_init(&hctx->dispatch, &rq_list);
757                 spin_unlock(&hctx->lock);
758         }
759
760         /*
761          * Now process all the entries, sending them to the driver.
762          */
763         queued = 0;
764         while (!list_empty(&rq_list)) {
765                 int ret;
766
767                 rq = list_first_entry(&rq_list, struct request, queuelist);
768                 list_del_init(&rq->queuelist);
769
770                 blk_mq_start_request(rq, list_empty(&rq_list));
771
772                 ret = q->mq_ops->queue_rq(hctx, rq);
773                 switch (ret) {
774                 case BLK_MQ_RQ_QUEUE_OK:
775                         queued++;
776                         continue;
777                 case BLK_MQ_RQ_QUEUE_BUSY:
778                         list_add(&rq->queuelist, &rq_list);
779                         __blk_mq_requeue_request(rq);
780                         break;
781                 default:
782                         pr_err("blk-mq: bad return on queue: %d\n", ret);
783                 case BLK_MQ_RQ_QUEUE_ERROR:
784                         rq->errors = -EIO;
785                         blk_mq_end_io(rq, rq->errors);
786                         break;
787                 }
788
789                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
790                         break;
791         }
792
793         if (!queued)
794                 hctx->dispatched[0]++;
795         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
796                 hctx->dispatched[ilog2(queued) + 1]++;
797
798         /*
799          * Any items that need requeuing? Stuff them into hctx->dispatch,
800          * that is where we will continue on next queue run.
801          */
802         if (!list_empty(&rq_list)) {
803                 spin_lock(&hctx->lock);
804                 list_splice(&rq_list, &hctx->dispatch);
805                 spin_unlock(&hctx->lock);
806         }
807 }
808
809 /*
810  * It'd be great if the workqueue API had a way to pass
811  * in a mask and had some smarts for more clever placement.
812  * For now we just round-robin here, switching for every
813  * BLK_MQ_CPU_WORK_BATCH queued items.
814  */
815 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
816 {
817         int cpu = hctx->next_cpu;
818
819         if (--hctx->next_cpu_batch <= 0) {
820                 int next_cpu;
821
822                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
823                 if (next_cpu >= nr_cpu_ids)
824                         next_cpu = cpumask_first(hctx->cpumask);
825
826                 hctx->next_cpu = next_cpu;
827                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
828         }
829
830         return cpu;
831 }
832
833 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
834 {
835         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
836                 return;
837
838         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
839                 __blk_mq_run_hw_queue(hctx);
840         else if (hctx->queue->nr_hw_queues == 1)
841                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
842         else {
843                 unsigned int cpu;
844
845                 cpu = blk_mq_hctx_next_cpu(hctx);
846                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
847         }
848 }
849
850 void blk_mq_run_queues(struct request_queue *q, bool async)
851 {
852         struct blk_mq_hw_ctx *hctx;
853         int i;
854
855         queue_for_each_hw_ctx(q, hctx, i) {
856                 if ((!blk_mq_hctx_has_pending(hctx) &&
857                     list_empty_careful(&hctx->dispatch)) ||
858                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
859                         continue;
860
861                 preempt_disable();
862                 blk_mq_run_hw_queue(hctx, async);
863                 preempt_enable();
864         }
865 }
866 EXPORT_SYMBOL(blk_mq_run_queues);
867
868 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
869 {
870         cancel_delayed_work(&hctx->run_work);
871         cancel_delayed_work(&hctx->delay_work);
872         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
873 }
874 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
875
876 void blk_mq_stop_hw_queues(struct request_queue *q)
877 {
878         struct blk_mq_hw_ctx *hctx;
879         int i;
880
881         queue_for_each_hw_ctx(q, hctx, i)
882                 blk_mq_stop_hw_queue(hctx);
883 }
884 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
885
886 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
887 {
888         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
889
890         preempt_disable();
891         __blk_mq_run_hw_queue(hctx);
892         preempt_enable();
893 }
894 EXPORT_SYMBOL(blk_mq_start_hw_queue);
895
896 void blk_mq_start_hw_queues(struct request_queue *q)
897 {
898         struct blk_mq_hw_ctx *hctx;
899         int i;
900
901         queue_for_each_hw_ctx(q, hctx, i)
902                 blk_mq_start_hw_queue(hctx);
903 }
904 EXPORT_SYMBOL(blk_mq_start_hw_queues);
905
906
907 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
908 {
909         struct blk_mq_hw_ctx *hctx;
910         int i;
911
912         queue_for_each_hw_ctx(q, hctx, i) {
913                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
914                         continue;
915
916                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
917                 preempt_disable();
918                 blk_mq_run_hw_queue(hctx, async);
919                 preempt_enable();
920         }
921 }
922 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
923
924 static void blk_mq_run_work_fn(struct work_struct *work)
925 {
926         struct blk_mq_hw_ctx *hctx;
927
928         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
929
930         __blk_mq_run_hw_queue(hctx);
931 }
932
933 static void blk_mq_delay_work_fn(struct work_struct *work)
934 {
935         struct blk_mq_hw_ctx *hctx;
936
937         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
938
939         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
940                 __blk_mq_run_hw_queue(hctx);
941 }
942
943 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
944 {
945         unsigned long tmo = msecs_to_jiffies(msecs);
946
947         if (hctx->queue->nr_hw_queues == 1)
948                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
949         else {
950                 unsigned int cpu;
951
952                 cpu = blk_mq_hctx_next_cpu(hctx);
953                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
954         }
955 }
956 EXPORT_SYMBOL(blk_mq_delay_queue);
957
958 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
959                                     struct request *rq, bool at_head)
960 {
961         struct blk_mq_ctx *ctx = rq->mq_ctx;
962
963         trace_block_rq_insert(hctx->queue, rq);
964
965         if (at_head)
966                 list_add(&rq->queuelist, &ctx->rq_list);
967         else
968                 list_add_tail(&rq->queuelist, &ctx->rq_list);
969
970         blk_mq_hctx_mark_pending(hctx, ctx);
971
972         /*
973          * We do this early, to ensure we are on the right CPU.
974          */
975         blk_add_timer(rq);
976 }
977
978 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
979                 bool async)
980 {
981         struct request_queue *q = rq->q;
982         struct blk_mq_hw_ctx *hctx;
983         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
984
985         current_ctx = blk_mq_get_ctx(q);
986         if (!cpu_online(ctx->cpu))
987                 rq->mq_ctx = ctx = current_ctx;
988
989         hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
991         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
992             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
993                 blk_insert_flush(rq);
994         } else {
995                 spin_lock(&ctx->lock);
996                 __blk_mq_insert_request(hctx, rq, at_head);
997                 spin_unlock(&ctx->lock);
998         }
999
1000         if (run_queue)
1001                 blk_mq_run_hw_queue(hctx, async);
1002
1003         blk_mq_put_ctx(current_ctx);
1004 }
1005
1006 static void blk_mq_insert_requests(struct request_queue *q,
1007                                      struct blk_mq_ctx *ctx,
1008                                      struct list_head *list,
1009                                      int depth,
1010                                      bool from_schedule)
1011
1012 {
1013         struct blk_mq_hw_ctx *hctx;
1014         struct blk_mq_ctx *current_ctx;
1015
1016         trace_block_unplug(q, depth, !from_schedule);
1017
1018         current_ctx = blk_mq_get_ctx(q);
1019
1020         if (!cpu_online(ctx->cpu))
1021                 ctx = current_ctx;
1022         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1023
1024         /*
1025          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1026          * offline now
1027          */
1028         spin_lock(&ctx->lock);
1029         while (!list_empty(list)) {
1030                 struct request *rq;
1031
1032                 rq = list_first_entry(list, struct request, queuelist);
1033                 list_del_init(&rq->queuelist);
1034                 rq->mq_ctx = ctx;
1035                 __blk_mq_insert_request(hctx, rq, false);
1036         }
1037         spin_unlock(&ctx->lock);
1038
1039         blk_mq_run_hw_queue(hctx, from_schedule);
1040         blk_mq_put_ctx(current_ctx);
1041 }
1042
1043 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1044 {
1045         struct request *rqa = container_of(a, struct request, queuelist);
1046         struct request *rqb = container_of(b, struct request, queuelist);
1047
1048         return !(rqa->mq_ctx < rqb->mq_ctx ||
1049                  (rqa->mq_ctx == rqb->mq_ctx &&
1050                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1051 }
1052
1053 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1054 {
1055         struct blk_mq_ctx *this_ctx;
1056         struct request_queue *this_q;
1057         struct request *rq;
1058         LIST_HEAD(list);
1059         LIST_HEAD(ctx_list);
1060         unsigned int depth;
1061
1062         list_splice_init(&plug->mq_list, &list);
1063
1064         list_sort(NULL, &list, plug_ctx_cmp);
1065
1066         this_q = NULL;
1067         this_ctx = NULL;
1068         depth = 0;
1069
1070         while (!list_empty(&list)) {
1071                 rq = list_entry_rq(list.next);
1072                 list_del_init(&rq->queuelist);
1073                 BUG_ON(!rq->q);
1074                 if (rq->mq_ctx != this_ctx) {
1075                         if (this_ctx) {
1076                                 blk_mq_insert_requests(this_q, this_ctx,
1077                                                         &ctx_list, depth,
1078                                                         from_schedule);
1079                         }
1080
1081                         this_ctx = rq->mq_ctx;
1082                         this_q = rq->q;
1083                         depth = 0;
1084                 }
1085
1086                 depth++;
1087                 list_add_tail(&rq->queuelist, &ctx_list);
1088         }
1089
1090         /*
1091          * If 'this_ctx' is set, we know we have entries to complete
1092          * on 'ctx_list'. Do those.
1093          */
1094         if (this_ctx) {
1095                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1096                                        from_schedule);
1097         }
1098 }
1099
1100 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1101 {
1102         init_request_from_bio(rq, bio);
1103
1104         if (blk_do_io_stat(rq)) {
1105                 rq->start_time = jiffies;
1106                 blk_account_io_start(rq, 1);
1107         }
1108 }
1109
1110 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1111                                          struct blk_mq_ctx *ctx,
1112                                          struct request *rq, struct bio *bio)
1113 {
1114         struct request_queue *q = hctx->queue;
1115
1116         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1117                 blk_mq_bio_to_request(rq, bio);
1118                 spin_lock(&ctx->lock);
1119 insert_rq:
1120                 __blk_mq_insert_request(hctx, rq, false);
1121                 spin_unlock(&ctx->lock);
1122                 return false;
1123         } else {
1124                 spin_lock(&ctx->lock);
1125                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1126                         blk_mq_bio_to_request(rq, bio);
1127                         goto insert_rq;
1128                 }
1129
1130                 spin_unlock(&ctx->lock);
1131                 __blk_mq_free_request(hctx, ctx, rq);
1132                 return true;
1133         }
1134 }
1135
1136 struct blk_map_ctx {
1137         struct blk_mq_hw_ctx *hctx;
1138         struct blk_mq_ctx *ctx;
1139 };
1140
1141 static struct request *blk_mq_map_request(struct request_queue *q,
1142                                           struct bio *bio,
1143                                           struct blk_map_ctx *data)
1144 {
1145         struct blk_mq_hw_ctx *hctx;
1146         struct blk_mq_ctx *ctx;
1147         struct request *rq;
1148         int rw = bio_data_dir(bio);
1149
1150         if (unlikely(blk_mq_queue_enter(q))) {
1151                 bio_endio(bio, -EIO);
1152                 return NULL;
1153         }
1154
1155         ctx = blk_mq_get_ctx(q);
1156         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1157
1158         if (rw_is_sync(bio->bi_rw))
1159                 rw |= REQ_SYNC;
1160
1161         trace_block_getrq(q, bio, rw);
1162         rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1163         if (unlikely(!rq)) {
1164                 __blk_mq_run_hw_queue(hctx);
1165                 blk_mq_put_ctx(ctx);
1166                 trace_block_sleeprq(q, bio, rw);
1167
1168                 ctx = blk_mq_get_ctx(q);
1169                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1170                 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1171                                             __GFP_WAIT|GFP_ATOMIC, false);
1172         }
1173
1174         hctx->queued++;
1175         data->hctx = hctx;
1176         data->ctx = ctx;
1177         return rq;
1178 }
1179
1180 /*
1181  * Multiple hardware queue variant. This will not use per-process plugs,
1182  * but will attempt to bypass the hctx queueing if we can go straight to
1183  * hardware for SYNC IO.
1184  */
1185 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1186 {
1187         const int is_sync = rw_is_sync(bio->bi_rw);
1188         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1189         struct blk_map_ctx data;
1190         struct request *rq;
1191
1192         blk_queue_bounce(q, &bio);
1193
1194         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1195                 bio_endio(bio, -EIO);
1196                 return;
1197         }
1198
1199         rq = blk_mq_map_request(q, bio, &data);
1200         if (unlikely(!rq))
1201                 return;
1202
1203         if (unlikely(is_flush_fua)) {
1204                 blk_mq_bio_to_request(rq, bio);
1205                 blk_insert_flush(rq);
1206                 goto run_queue;
1207         }
1208
1209         if (is_sync) {
1210                 int ret;
1211
1212                 blk_mq_bio_to_request(rq, bio);
1213                 blk_mq_start_request(rq, true);
1214
1215                 /*
1216                  * For OK queue, we are done. For error, kill it. Any other
1217                  * error (busy), just add it to our list as we previously
1218                  * would have done
1219                  */
1220                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1221                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1222                         goto done;
1223                 else {
1224                         __blk_mq_requeue_request(rq);
1225
1226                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1227                                 rq->errors = -EIO;
1228                                 blk_mq_end_io(rq, rq->errors);
1229                                 goto done;
1230                         }
1231                 }
1232         }
1233
1234         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1235                 /*
1236                  * For a SYNC request, send it to the hardware immediately. For
1237                  * an ASYNC request, just ensure that we run it later on. The
1238                  * latter allows for merging opportunities and more efficient
1239                  * dispatching.
1240                  */
1241 run_queue:
1242                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1243         }
1244 done:
1245         blk_mq_put_ctx(data.ctx);
1246 }
1247
1248 /*
1249  * Single hardware queue variant. This will attempt to use any per-process
1250  * plug for merging and IO deferral.
1251  */
1252 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1253 {
1254         const int is_sync = rw_is_sync(bio->bi_rw);
1255         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1256         unsigned int use_plug, request_count = 0;
1257         struct blk_map_ctx data;
1258         struct request *rq;
1259
1260         /*
1261          * If we have multiple hardware queues, just go directly to
1262          * one of those for sync IO.
1263          */
1264         use_plug = !is_flush_fua && !is_sync;
1265
1266         blk_queue_bounce(q, &bio);
1267
1268         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1269                 bio_endio(bio, -EIO);
1270                 return;
1271         }
1272
1273         if (use_plug && !blk_queue_nomerges(q) &&
1274             blk_attempt_plug_merge(q, bio, &request_count))
1275                 return;
1276
1277         rq = blk_mq_map_request(q, bio, &data);
1278
1279         if (unlikely(is_flush_fua)) {
1280                 blk_mq_bio_to_request(rq, bio);
1281                 blk_insert_flush(rq);
1282                 goto run_queue;
1283         }
1284
1285         /*
1286          * A task plug currently exists. Since this is completely lockless,
1287          * utilize that to temporarily store requests until the task is
1288          * either done or scheduled away.
1289          */
1290         if (use_plug) {
1291                 struct blk_plug *plug = current->plug;
1292
1293                 if (plug) {
1294                         blk_mq_bio_to_request(rq, bio);
1295                         if (list_empty(&plug->mq_list))
1296                                 trace_block_plug(q);
1297                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1298                                 blk_flush_plug_list(plug, false);
1299                                 trace_block_plug(q);
1300                         }
1301                         list_add_tail(&rq->queuelist, &plug->mq_list);
1302                         blk_mq_put_ctx(data.ctx);
1303                         return;
1304                 }
1305         }
1306
1307         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1308                 /*
1309                  * For a SYNC request, send it to the hardware immediately. For
1310                  * an ASYNC request, just ensure that we run it later on. The
1311                  * latter allows for merging opportunities and more efficient
1312                  * dispatching.
1313                  */
1314 run_queue:
1315                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1316         }
1317
1318         blk_mq_put_ctx(data.ctx);
1319 }
1320
1321 /*
1322  * Default mapping to a software queue, since we use one per CPU.
1323  */
1324 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1325 {
1326         return q->queue_hw_ctx[q->mq_map[cpu]];
1327 }
1328 EXPORT_SYMBOL(blk_mq_map_queue);
1329
1330 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1331                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1332 {
1333         struct page *page;
1334
1335         if (tags->rqs && set->ops->exit_request) {
1336                 int i;
1337
1338                 for (i = 0; i < tags->nr_tags; i++) {
1339                         if (!tags->rqs[i])
1340                                 continue;
1341                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1342                                                 hctx_idx, i);
1343                 }
1344         }
1345
1346         while (!list_empty(&tags->page_list)) {
1347                 page = list_first_entry(&tags->page_list, struct page, lru);
1348                 list_del_init(&page->lru);
1349                 __free_pages(page, page->private);
1350         }
1351
1352         kfree(tags->rqs);
1353
1354         blk_mq_free_tags(tags);
1355 }
1356
1357 static size_t order_to_size(unsigned int order)
1358 {
1359         return (size_t)PAGE_SIZE << order;
1360 }
1361
1362 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1363                 unsigned int hctx_idx)
1364 {
1365         struct blk_mq_tags *tags;
1366         unsigned int i, j, entries_per_page, max_order = 4;
1367         size_t rq_size, left;
1368
1369         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1370                                 set->numa_node);
1371         if (!tags)
1372                 return NULL;
1373
1374         INIT_LIST_HEAD(&tags->page_list);
1375
1376         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1377                                         GFP_KERNEL, set->numa_node);
1378         if (!tags->rqs) {
1379                 blk_mq_free_tags(tags);
1380                 return NULL;
1381         }
1382
1383         /*
1384          * rq_size is the size of the request plus driver payload, rounded
1385          * to the cacheline size
1386          */
1387         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1388                                 cache_line_size());
1389         left = rq_size * set->queue_depth;
1390
1391         for (i = 0; i < set->queue_depth; ) {
1392                 int this_order = max_order;
1393                 struct page *page;
1394                 int to_do;
1395                 void *p;
1396
1397                 while (left < order_to_size(this_order - 1) && this_order)
1398                         this_order--;
1399
1400                 do {
1401                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1402                                                 this_order);
1403                         if (page)
1404                                 break;
1405                         if (!this_order--)
1406                                 break;
1407                         if (order_to_size(this_order) < rq_size)
1408                                 break;
1409                 } while (1);
1410
1411                 if (!page)
1412                         goto fail;
1413
1414                 page->private = this_order;
1415                 list_add_tail(&page->lru, &tags->page_list);
1416
1417                 p = page_address(page);
1418                 entries_per_page = order_to_size(this_order) / rq_size;
1419                 to_do = min(entries_per_page, set->queue_depth - i);
1420                 left -= to_do * rq_size;
1421                 for (j = 0; j < to_do; j++) {
1422                         tags->rqs[i] = p;
1423                         if (set->ops->init_request) {
1424                                 if (set->ops->init_request(set->driver_data,
1425                                                 tags->rqs[i], hctx_idx, i,
1426                                                 set->numa_node))
1427                                         goto fail;
1428                         }
1429
1430                         p += rq_size;
1431                         i++;
1432                 }
1433         }
1434
1435         return tags;
1436
1437 fail:
1438         pr_warn("%s: failed to allocate requests\n", __func__);
1439         blk_mq_free_rq_map(set, tags, hctx_idx);
1440         return NULL;
1441 }
1442
1443 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1444 {
1445         kfree(bitmap->map);
1446 }
1447
1448 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1449 {
1450         unsigned int bpw = 8, total, num_maps, i;
1451
1452         bitmap->bits_per_word = bpw;
1453
1454         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1455         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1456                                         GFP_KERNEL, node);
1457         if (!bitmap->map)
1458                 return -ENOMEM;
1459
1460         bitmap->map_size = num_maps;
1461
1462         total = nr_cpu_ids;
1463         for (i = 0; i < num_maps; i++) {
1464                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1465                 total -= bitmap->map[i].depth;
1466         }
1467
1468         return 0;
1469 }
1470
1471 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1472 {
1473         struct request_queue *q = hctx->queue;
1474         struct blk_mq_ctx *ctx;
1475         LIST_HEAD(tmp);
1476
1477         /*
1478          * Move ctx entries to new CPU, if this one is going away.
1479          */
1480         ctx = __blk_mq_get_ctx(q, cpu);
1481
1482         spin_lock(&ctx->lock);
1483         if (!list_empty(&ctx->rq_list)) {
1484                 list_splice_init(&ctx->rq_list, &tmp);
1485                 blk_mq_hctx_clear_pending(hctx, ctx);
1486         }
1487         spin_unlock(&ctx->lock);
1488
1489         if (list_empty(&tmp))
1490                 return NOTIFY_OK;
1491
1492         ctx = blk_mq_get_ctx(q);
1493         spin_lock(&ctx->lock);
1494
1495         while (!list_empty(&tmp)) {
1496                 struct request *rq;
1497
1498                 rq = list_first_entry(&tmp, struct request, queuelist);
1499                 rq->mq_ctx = ctx;
1500                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1501         }
1502
1503         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1504         blk_mq_hctx_mark_pending(hctx, ctx);
1505
1506         spin_unlock(&ctx->lock);
1507
1508         blk_mq_run_hw_queue(hctx, true);
1509         blk_mq_put_ctx(ctx);
1510         return NOTIFY_OK;
1511 }
1512
1513 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1514 {
1515         struct request_queue *q = hctx->queue;
1516         struct blk_mq_tag_set *set = q->tag_set;
1517
1518         if (set->tags[hctx->queue_num])
1519                 return NOTIFY_OK;
1520
1521         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1522         if (!set->tags[hctx->queue_num])
1523                 return NOTIFY_STOP;
1524
1525         hctx->tags = set->tags[hctx->queue_num];
1526         return NOTIFY_OK;
1527 }
1528
1529 static int blk_mq_hctx_notify(void *data, unsigned long action,
1530                               unsigned int cpu)
1531 {
1532         struct blk_mq_hw_ctx *hctx = data;
1533
1534         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1535                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1536         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1537                 return blk_mq_hctx_cpu_online(hctx, cpu);
1538
1539         return NOTIFY_OK;
1540 }
1541
1542 static void blk_mq_exit_hw_queues(struct request_queue *q,
1543                 struct blk_mq_tag_set *set, int nr_queue)
1544 {
1545         struct blk_mq_hw_ctx *hctx;
1546         unsigned int i;
1547
1548         queue_for_each_hw_ctx(q, hctx, i) {
1549                 if (i == nr_queue)
1550                         break;
1551
1552                 if (set->ops->exit_hctx)
1553                         set->ops->exit_hctx(hctx, i);
1554
1555                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1556                 kfree(hctx->ctxs);
1557                 blk_mq_free_bitmap(&hctx->ctx_map);
1558         }
1559
1560 }
1561
1562 static void blk_mq_free_hw_queues(struct request_queue *q,
1563                 struct blk_mq_tag_set *set)
1564 {
1565         struct blk_mq_hw_ctx *hctx;
1566         unsigned int i;
1567
1568         queue_for_each_hw_ctx(q, hctx, i) {
1569                 free_cpumask_var(hctx->cpumask);
1570                 kfree(hctx);
1571         }
1572 }
1573
1574 static int blk_mq_init_hw_queues(struct request_queue *q,
1575                 struct blk_mq_tag_set *set)
1576 {
1577         struct blk_mq_hw_ctx *hctx;
1578         unsigned int i;
1579
1580         /*
1581          * Initialize hardware queues
1582          */
1583         queue_for_each_hw_ctx(q, hctx, i) {
1584                 int node;
1585
1586                 node = hctx->numa_node;
1587                 if (node == NUMA_NO_NODE)
1588                         node = hctx->numa_node = set->numa_node;
1589
1590                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1591                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1592                 spin_lock_init(&hctx->lock);
1593                 INIT_LIST_HEAD(&hctx->dispatch);
1594                 hctx->queue = q;
1595                 hctx->queue_num = i;
1596                 hctx->flags = set->flags;
1597                 hctx->cmd_size = set->cmd_size;
1598
1599                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1600                                                 blk_mq_hctx_notify, hctx);
1601                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1602
1603                 hctx->tags = set->tags[i];
1604
1605                 /*
1606                  * Allocate space for all possible cpus to avoid allocation in
1607                  * runtime
1608                  */
1609                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1610                                                 GFP_KERNEL, node);
1611                 if (!hctx->ctxs)
1612                         break;
1613
1614                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1615                         break;
1616
1617                 hctx->nr_ctx = 0;
1618
1619                 if (set->ops->init_hctx &&
1620                     set->ops->init_hctx(hctx, set->driver_data, i))
1621                         break;
1622         }
1623
1624         if (i == q->nr_hw_queues)
1625                 return 0;
1626
1627         /*
1628          * Init failed
1629          */
1630         blk_mq_exit_hw_queues(q, set, i);
1631
1632         return 1;
1633 }
1634
1635 static void blk_mq_init_cpu_queues(struct request_queue *q,
1636                                    unsigned int nr_hw_queues)
1637 {
1638         unsigned int i;
1639
1640         for_each_possible_cpu(i) {
1641                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1642                 struct blk_mq_hw_ctx *hctx;
1643
1644                 memset(__ctx, 0, sizeof(*__ctx));
1645                 __ctx->cpu = i;
1646                 spin_lock_init(&__ctx->lock);
1647                 INIT_LIST_HEAD(&__ctx->rq_list);
1648                 __ctx->queue = q;
1649
1650                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1651                 if (!cpu_online(i))
1652                         continue;
1653
1654                 hctx = q->mq_ops->map_queue(q, i);
1655                 cpumask_set_cpu(i, hctx->cpumask);
1656                 hctx->nr_ctx++;
1657
1658                 /*
1659                  * Set local node, IFF we have more than one hw queue. If
1660                  * not, we remain on the home node of the device
1661                  */
1662                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1663                         hctx->numa_node = cpu_to_node(i);
1664         }
1665 }
1666
1667 static void blk_mq_map_swqueue(struct request_queue *q)
1668 {
1669         unsigned int i;
1670         struct blk_mq_hw_ctx *hctx;
1671         struct blk_mq_ctx *ctx;
1672
1673         queue_for_each_hw_ctx(q, hctx, i) {
1674                 cpumask_clear(hctx->cpumask);
1675                 hctx->nr_ctx = 0;
1676         }
1677
1678         /*
1679          * Map software to hardware queues
1680          */
1681         queue_for_each_ctx(q, ctx, i) {
1682                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1683                 if (!cpu_online(i))
1684                         continue;
1685
1686                 hctx = q->mq_ops->map_queue(q, i);
1687                 cpumask_set_cpu(i, hctx->cpumask);
1688                 ctx->index_hw = hctx->nr_ctx;
1689                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1690         }
1691
1692         queue_for_each_hw_ctx(q, hctx, i) {
1693                 /*
1694                  * If not software queues are mapped to this hardware queue,
1695                  * disable it and free the request entries
1696                  */
1697                 if (!hctx->nr_ctx) {
1698                         struct blk_mq_tag_set *set = q->tag_set;
1699
1700                         if (set->tags[i]) {
1701                                 blk_mq_free_rq_map(set, set->tags[i], i);
1702                                 set->tags[i] = NULL;
1703                                 hctx->tags = NULL;
1704                         }
1705                         continue;
1706                 }
1707
1708                 /*
1709                  * Initialize batch roundrobin counts
1710                  */
1711                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1712                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1713         }
1714 }
1715
1716 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1717 {
1718         struct blk_mq_hw_ctx *hctx;
1719         struct request_queue *q;
1720         bool shared;
1721         int i;
1722
1723         if (set->tag_list.next == set->tag_list.prev)
1724                 shared = false;
1725         else
1726                 shared = true;
1727
1728         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1729                 blk_mq_freeze_queue(q);
1730
1731                 queue_for_each_hw_ctx(q, hctx, i) {
1732                         if (shared)
1733                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1734                         else
1735                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1736                 }
1737                 blk_mq_unfreeze_queue(q);
1738         }
1739 }
1740
1741 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1742 {
1743         struct blk_mq_tag_set *set = q->tag_set;
1744
1745         blk_mq_freeze_queue(q);
1746
1747         mutex_lock(&set->tag_list_lock);
1748         list_del_init(&q->tag_set_list);
1749         blk_mq_update_tag_set_depth(set);
1750         mutex_unlock(&set->tag_list_lock);
1751
1752         blk_mq_unfreeze_queue(q);
1753 }
1754
1755 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1756                                      struct request_queue *q)
1757 {
1758         q->tag_set = set;
1759
1760         mutex_lock(&set->tag_list_lock);
1761         list_add_tail(&q->tag_set_list, &set->tag_list);
1762         blk_mq_update_tag_set_depth(set);
1763         mutex_unlock(&set->tag_list_lock);
1764 }
1765
1766 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1767 {
1768         struct blk_mq_hw_ctx **hctxs;
1769         struct blk_mq_ctx *ctx;
1770         struct request_queue *q;
1771         unsigned int *map;
1772         int i;
1773
1774         ctx = alloc_percpu(struct blk_mq_ctx);
1775         if (!ctx)
1776                 return ERR_PTR(-ENOMEM);
1777
1778         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1779                         set->numa_node);
1780
1781         if (!hctxs)
1782                 goto err_percpu;
1783
1784         map = blk_mq_make_queue_map(set);
1785         if (!map)
1786                 goto err_map;
1787
1788         for (i = 0; i < set->nr_hw_queues; i++) {
1789                 int node = blk_mq_hw_queue_to_node(map, i);
1790
1791                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1792                                         GFP_KERNEL, node);
1793                 if (!hctxs[i])
1794                         goto err_hctxs;
1795
1796                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1797                         goto err_hctxs;
1798
1799                 atomic_set(&hctxs[i]->nr_active, 0);
1800                 hctxs[i]->numa_node = node;
1801                 hctxs[i]->queue_num = i;
1802         }
1803
1804         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1805         if (!q)
1806                 goto err_hctxs;
1807
1808         if (percpu_counter_init(&q->mq_usage_counter, 0))
1809                 goto err_map;
1810
1811         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1812         blk_queue_rq_timeout(q, 30000);
1813
1814         q->nr_queues = nr_cpu_ids;
1815         q->nr_hw_queues = set->nr_hw_queues;
1816         q->mq_map = map;
1817
1818         q->queue_ctx = ctx;
1819         q->queue_hw_ctx = hctxs;
1820
1821         q->mq_ops = set->ops;
1822         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1823
1824         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1825                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1826
1827         q->sg_reserved_size = INT_MAX;
1828
1829         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1830         INIT_LIST_HEAD(&q->requeue_list);
1831         spin_lock_init(&q->requeue_lock);
1832
1833         if (q->nr_hw_queues > 1)
1834                 blk_queue_make_request(q, blk_mq_make_request);
1835         else
1836                 blk_queue_make_request(q, blk_sq_make_request);
1837
1838         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1839         if (set->timeout)
1840                 blk_queue_rq_timeout(q, set->timeout);
1841
1842         /*
1843          * Do this after blk_queue_make_request() overrides it...
1844          */
1845         q->nr_requests = set->queue_depth;
1846
1847         if (set->ops->complete)
1848                 blk_queue_softirq_done(q, set->ops->complete);
1849
1850         blk_mq_init_flush(q);
1851         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1852
1853         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1854                                 set->cmd_size, cache_line_size()),
1855                                 GFP_KERNEL);
1856         if (!q->flush_rq)
1857                 goto err_hw;
1858
1859         if (blk_mq_init_hw_queues(q, set))
1860                 goto err_flush_rq;
1861
1862         mutex_lock(&all_q_mutex);
1863         list_add_tail(&q->all_q_node, &all_q_list);
1864         mutex_unlock(&all_q_mutex);
1865
1866         blk_mq_add_queue_tag_set(set, q);
1867
1868         blk_mq_map_swqueue(q);
1869
1870         return q;
1871
1872 err_flush_rq:
1873         kfree(q->flush_rq);
1874 err_hw:
1875         blk_cleanup_queue(q);
1876 err_hctxs:
1877         kfree(map);
1878         for (i = 0; i < set->nr_hw_queues; i++) {
1879                 if (!hctxs[i])
1880                         break;
1881                 free_cpumask_var(hctxs[i]->cpumask);
1882                 kfree(hctxs[i]);
1883         }
1884 err_map:
1885         kfree(hctxs);
1886 err_percpu:
1887         free_percpu(ctx);
1888         return ERR_PTR(-ENOMEM);
1889 }
1890 EXPORT_SYMBOL(blk_mq_init_queue);
1891
1892 void blk_mq_free_queue(struct request_queue *q)
1893 {
1894         struct blk_mq_tag_set   *set = q->tag_set;
1895
1896         blk_mq_del_queue_tag_set(q);
1897
1898         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1899         blk_mq_free_hw_queues(q, set);
1900
1901         percpu_counter_destroy(&q->mq_usage_counter);
1902
1903         free_percpu(q->queue_ctx);
1904         kfree(q->queue_hw_ctx);
1905         kfree(q->mq_map);
1906
1907         q->queue_ctx = NULL;
1908         q->queue_hw_ctx = NULL;
1909         q->mq_map = NULL;
1910
1911         mutex_lock(&all_q_mutex);
1912         list_del_init(&q->all_q_node);
1913         mutex_unlock(&all_q_mutex);
1914 }
1915
1916 /* Basically redo blk_mq_init_queue with queue frozen */
1917 static void blk_mq_queue_reinit(struct request_queue *q)
1918 {
1919         blk_mq_freeze_queue(q);
1920
1921         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1922
1923         /*
1924          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1925          * we should change hctx numa_node according to new topology (this
1926          * involves free and re-allocate memory, worthy doing?)
1927          */
1928
1929         blk_mq_map_swqueue(q);
1930
1931         blk_mq_unfreeze_queue(q);
1932 }
1933
1934 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1935                                       unsigned long action, void *hcpu)
1936 {
1937         struct request_queue *q;
1938
1939         /*
1940          * Before new mappings are established, hotadded cpu might already
1941          * start handling requests. This doesn't break anything as we map
1942          * offline CPUs to first hardware queue. We will re-init the queue
1943          * below to get optimal settings.
1944          */
1945         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1946             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1947                 return NOTIFY_OK;
1948
1949         mutex_lock(&all_q_mutex);
1950         list_for_each_entry(q, &all_q_list, all_q_node)
1951                 blk_mq_queue_reinit(q);
1952         mutex_unlock(&all_q_mutex);
1953         return NOTIFY_OK;
1954 }
1955
1956 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1957 {
1958         int i;
1959
1960         if (!set->nr_hw_queues)
1961                 return -EINVAL;
1962         if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1963                 return -EINVAL;
1964         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1965                 return -EINVAL;
1966
1967         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1968                 return -EINVAL;
1969
1970
1971         set->tags = kmalloc_node(set->nr_hw_queues *
1972                                  sizeof(struct blk_mq_tags *),
1973                                  GFP_KERNEL, set->numa_node);
1974         if (!set->tags)
1975                 goto out;
1976
1977         for (i = 0; i < set->nr_hw_queues; i++) {
1978                 set->tags[i] = blk_mq_init_rq_map(set, i);
1979                 if (!set->tags[i])
1980                         goto out_unwind;
1981         }
1982
1983         mutex_init(&set->tag_list_lock);
1984         INIT_LIST_HEAD(&set->tag_list);
1985
1986         return 0;
1987
1988 out_unwind:
1989         while (--i >= 0)
1990                 blk_mq_free_rq_map(set, set->tags[i], i);
1991 out:
1992         return -ENOMEM;
1993 }
1994 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1995
1996 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1997 {
1998         int i;
1999
2000         for (i = 0; i < set->nr_hw_queues; i++) {
2001                 if (set->tags[i])
2002                         blk_mq_free_rq_map(set, set->tags[i], i);
2003         }
2004
2005         kfree(set->tags);
2006 }
2007 EXPORT_SYMBOL(blk_mq_free_tag_set);
2008
2009 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2010 {
2011         struct blk_mq_tag_set *set = q->tag_set;
2012         struct blk_mq_hw_ctx *hctx;
2013         int i, ret;
2014
2015         if (!set || nr > set->queue_depth)
2016                 return -EINVAL;
2017
2018         ret = 0;
2019         queue_for_each_hw_ctx(q, hctx, i) {
2020                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2021                 if (ret)
2022                         break;
2023         }
2024
2025         if (!ret)
2026                 q->nr_requests = nr;
2027
2028         return ret;
2029 }
2030
2031 void blk_mq_disable_hotplug(void)
2032 {
2033         mutex_lock(&all_q_mutex);
2034 }
2035
2036 void blk_mq_enable_hotplug(void)
2037 {
2038         mutex_unlock(&all_q_mutex);
2039 }
2040
2041 static int __init blk_mq_init(void)
2042 {
2043         blk_mq_cpu_init();
2044
2045         /* Must be called after percpu_counter_hotcpu_callback() */
2046         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2047
2048         return 0;
2049 }
2050 subsys_initcall(blk_mq_init);