]> git.karo-electronics.de Git - linux-beck.git/blob - block/blk-mq.c
67066ecc79c06c3c902319e8122081a52316d621
[linux-beck.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31                                            unsigned int cpu)
32 {
33         return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37  * This assumes per-cpu software queueing queues. They could be per-node
38  * as well, for instance. For now this is hardcoded as-is. Note that we don't
39  * care about preemption, since we know the ctx's are persistent. This does
40  * mean that we can't rely on ctx always matching the currently running CPU.
41  */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44         return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49         put_cpu();
50 }
51
52 /*
53  * Check if any of the ctx's have pending work in this hardware queue
54  */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57         unsigned int i;
58
59         for (i = 0; i < hctx->ctx_map.map_size; i++)
60                 if (hctx->ctx_map.map[i].word)
61                         return true;
62
63         return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67                                               struct blk_mq_ctx *ctx)
68 {
69         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx)   \
73         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96                                               struct blk_mq_ctx *ctx,
97                                               gfp_t gfp, bool reserved)
98 {
99         struct request *rq;
100         unsigned int tag;
101
102         tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103         if (tag != BLK_MQ_TAG_FAIL) {
104                 rq = hctx->tags->rqs[tag];
105
106                 rq->cmd_flags = 0;
107                 if (blk_mq_tag_busy(hctx)) {
108                         rq->cmd_flags = REQ_MQ_INFLIGHT;
109                         atomic_inc(&hctx->nr_active);
110                 }
111
112                 rq->tag = tag;
113                 return rq;
114         }
115
116         return NULL;
117 }
118
119 static int blk_mq_queue_enter(struct request_queue *q)
120 {
121         int ret;
122
123         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124         smp_wmb();
125         /* we have problems to freeze the queue if it's initializing */
126         if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127                 return 0;
128
129         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131         spin_lock_irq(q->queue_lock);
132         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133                 !blk_queue_bypass(q) || blk_queue_dying(q),
134                 *q->queue_lock);
135         /* inc usage with lock hold to avoid freeze_queue runs here */
136         if (!ret && !blk_queue_dying(q))
137                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138         else if (blk_queue_dying(q))
139                 ret = -ENODEV;
140         spin_unlock_irq(q->queue_lock);
141
142         return ret;
143 }
144
145 static void blk_mq_queue_exit(struct request_queue *q)
146 {
147         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148 }
149
150 static void __blk_mq_drain_queue(struct request_queue *q)
151 {
152         while (true) {
153                 s64 count;
154
155                 spin_lock_irq(q->queue_lock);
156                 count = percpu_counter_sum(&q->mq_usage_counter);
157                 spin_unlock_irq(q->queue_lock);
158
159                 if (count == 0)
160                         break;
161                 blk_mq_run_queues(q, false);
162                 msleep(10);
163         }
164 }
165
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 static void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         bool drain;
173
174         spin_lock_irq(q->queue_lock);
175         drain = !q->bypass_depth++;
176         queue_flag_set(QUEUE_FLAG_BYPASS, q);
177         spin_unlock_irq(q->queue_lock);
178
179         if (drain)
180                 __blk_mq_drain_queue(q);
181 }
182
183 void blk_mq_drain_queue(struct request_queue *q)
184 {
185         __blk_mq_drain_queue(q);
186 }
187
188 static void blk_mq_unfreeze_queue(struct request_queue *q)
189 {
190         bool wake = false;
191
192         spin_lock_irq(q->queue_lock);
193         if (!--q->bypass_depth) {
194                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195                 wake = true;
196         }
197         WARN_ON_ONCE(q->bypass_depth < 0);
198         spin_unlock_irq(q->queue_lock);
199         if (wake)
200                 wake_up_all(&q->mq_freeze_wq);
201 }
202
203 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204 {
205         return blk_mq_has_free_tags(hctx->tags);
206 }
207 EXPORT_SYMBOL(blk_mq_can_queue);
208
209 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210                                struct request *rq, unsigned int rw_flags)
211 {
212         if (blk_queue_io_stat(q))
213                 rw_flags |= REQ_IO_STAT;
214
215         INIT_LIST_HEAD(&rq->queuelist);
216         /* csd/requeue_work/fifo_time is initialized before use */
217         rq->q = q;
218         rq->mq_ctx = ctx;
219         rq->cmd_flags |= rw_flags;
220         rq->cmd_type = 0;
221         /* do not touch atomic flags, it needs atomic ops against the timer */
222         rq->cpu = -1;
223         rq->__data_len = 0;
224         rq->__sector = (sector_t) -1;
225         rq->bio = NULL;
226         rq->biotail = NULL;
227         INIT_HLIST_NODE(&rq->hash);
228         RB_CLEAR_NODE(&rq->rb_node);
229         memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230         rq->rq_disk = NULL;
231         rq->part = NULL;
232         rq->start_time = jiffies;
233 #ifdef CONFIG_BLK_CGROUP
234         rq->rl = NULL;
235         set_start_time_ns(rq);
236         rq->io_start_time_ns = 0;
237 #endif
238         rq->nr_phys_segments = 0;
239 #if defined(CONFIG_BLK_DEV_INTEGRITY)
240         rq->nr_integrity_segments = 0;
241 #endif
242         rq->ioprio = 0;
243         rq->special = NULL;
244         /* tag was already set */
245         rq->errors = 0;
246         memset(rq->__cmd, 0, sizeof(rq->__cmd));
247         rq->cmd = rq->__cmd;
248         rq->cmd_len = BLK_MAX_CDB;
249
250         rq->extra_len = 0;
251         rq->sense_len = 0;
252         rq->resid_len = 0;
253         rq->sense = NULL;
254
255         rq->deadline = 0;
256         INIT_LIST_HEAD(&rq->timeout_list);
257         rq->timeout = 0;
258         rq->retries = 0;
259         rq->end_io = NULL;
260         rq->end_io_data = NULL;
261         rq->next_rq = NULL;
262
263         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264 }
265
266 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267                                                    int rw, gfp_t gfp,
268                                                    bool reserved)
269 {
270         struct request *rq;
271
272         do {
273                 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274                 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
276                 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277                                                 reserved);
278                 if (rq) {
279                         blk_mq_rq_ctx_init(q, ctx, rq, rw);
280                         break;
281                 }
282
283                 if (gfp & __GFP_WAIT) {
284                         __blk_mq_run_hw_queue(hctx);
285                         blk_mq_put_ctx(ctx);
286                 } else {
287                         blk_mq_put_ctx(ctx);
288                         break;
289                 }
290
291                 blk_mq_wait_for_tags(hctx, reserved);
292         } while (1);
293
294         return rq;
295 }
296
297 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 {
299         struct request *rq;
300
301         if (blk_mq_queue_enter(q))
302                 return NULL;
303
304         rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305         if (rq)
306                 blk_mq_put_ctx(rq->mq_ctx);
307         return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312                                               gfp_t gfp)
313 {
314         struct request *rq;
315
316         if (blk_mq_queue_enter(q))
317                 return NULL;
318
319         rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320         if (rq)
321                 blk_mq_put_ctx(rq->mq_ctx);
322         return rq;
323 }
324 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
326 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327                                   struct blk_mq_ctx *ctx, struct request *rq)
328 {
329         const int tag = rq->tag;
330         struct request_queue *q = rq->q;
331
332         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333                 atomic_dec(&hctx->nr_active);
334
335         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337         blk_mq_queue_exit(q);
338 }
339
340 void blk_mq_free_request(struct request *rq)
341 {
342         struct blk_mq_ctx *ctx = rq->mq_ctx;
343         struct blk_mq_hw_ctx *hctx;
344         struct request_queue *q = rq->q;
345
346         ctx->rq_completed[rq_is_sync(rq)]++;
347
348         hctx = q->mq_ops->map_queue(q, ctx->cpu);
349         __blk_mq_free_request(hctx, ctx, rq);
350 }
351
352 /*
353  * Clone all relevant state from a request that has been put on hold in
354  * the flush state machine into the preallocated flush request that hangs
355  * off the request queue.
356  *
357  * For a driver the flush request should be invisible, that's why we are
358  * impersonating the original request here.
359  */
360 void blk_mq_clone_flush_request(struct request *flush_rq,
361                 struct request *orig_rq)
362 {
363         struct blk_mq_hw_ctx *hctx =
364                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366         flush_rq->mq_ctx = orig_rq->mq_ctx;
367         flush_rq->tag = orig_rq->tag;
368         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369                 hctx->cmd_size);
370 }
371
372 inline void __blk_mq_end_io(struct request *rq, int error)
373 {
374         blk_account_io_done(rq);
375
376         if (rq->end_io) {
377                 rq->end_io(rq, error);
378         } else {
379                 if (unlikely(blk_bidi_rq(rq)))
380                         blk_mq_free_request(rq->next_rq);
381                 blk_mq_free_request(rq);
382         }
383 }
384 EXPORT_SYMBOL(__blk_mq_end_io);
385
386 void blk_mq_end_io(struct request *rq, int error)
387 {
388         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389                 BUG();
390         __blk_mq_end_io(rq, error);
391 }
392 EXPORT_SYMBOL(blk_mq_end_io);
393
394 static void __blk_mq_complete_request_remote(void *data)
395 {
396         struct request *rq = data;
397
398         rq->q->softirq_done_fn(rq);
399 }
400
401 void __blk_mq_complete_request(struct request *rq)
402 {
403         struct blk_mq_ctx *ctx = rq->mq_ctx;
404         bool shared = false;
405         int cpu;
406
407         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408                 rq->q->softirq_done_fn(rq);
409                 return;
410         }
411
412         cpu = get_cpu();
413         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414                 shared = cpus_share_cache(cpu, ctx->cpu);
415
416         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417                 rq->csd.func = __blk_mq_complete_request_remote;
418                 rq->csd.info = rq;
419                 rq->csd.flags = 0;
420                 smp_call_function_single_async(ctx->cpu, &rq->csd);
421         } else {
422                 rq->q->softirq_done_fn(rq);
423         }
424         put_cpu();
425 }
426
427 /**
428  * blk_mq_complete_request - end I/O on a request
429  * @rq:         the request being processed
430  *
431  * Description:
432  *      Ends all I/O on a request. It does not handle partial completions.
433  *      The actual completion happens out-of-order, through a IPI handler.
434  **/
435 void blk_mq_complete_request(struct request *rq)
436 {
437         struct request_queue *q = rq->q;
438
439         if (unlikely(blk_should_fake_timeout(q)))
440                 return;
441         if (!blk_mark_rq_complete(rq)) {
442                 if (q->softirq_done_fn)
443                         __blk_mq_complete_request(rq);
444                 else
445                         blk_mq_end_io(rq, rq->errors);
446         }
447 }
448 EXPORT_SYMBOL(blk_mq_complete_request);
449
450 static void blk_mq_start_request(struct request *rq, bool last)
451 {
452         struct request_queue *q = rq->q;
453
454         trace_block_rq_issue(q, rq);
455
456         rq->resid_len = blk_rq_bytes(rq);
457         if (unlikely(blk_bidi_rq(rq)))
458                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
459
460         /*
461          * Just mark start time and set the started bit. Due to memory
462          * ordering, we know we'll see the correct deadline as long as
463          * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
464          * unless one has been set in the request.
465          */
466         if (!rq->timeout)
467                 rq->deadline = jiffies + q->rq_timeout;
468         else
469                 rq->deadline = jiffies + rq->timeout;
470
471         /*
472          * Mark us as started and clear complete. Complete might have been
473          * set if requeue raced with timeout, which then marked it as
474          * complete. So be sure to clear complete again when we start
475          * the request, otherwise we'll ignore the completion event.
476          */
477         set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
479
480         if (q->dma_drain_size && blk_rq_bytes(rq)) {
481                 /*
482                  * Make sure space for the drain appears.  We know we can do
483                  * this because max_hw_segments has been adjusted to be one
484                  * fewer than the device can handle.
485                  */
486                 rq->nr_phys_segments++;
487         }
488
489         /*
490          * Flag the last request in the series so that drivers know when IO
491          * should be kicked off, if they don't do it on a per-request basis.
492          *
493          * Note: the flag isn't the only condition drivers should do kick off.
494          * If drive is busy, the last request might not have the bit set.
495          */
496         if (last)
497                 rq->cmd_flags |= REQ_END;
498 }
499
500 static void __blk_mq_requeue_request(struct request *rq)
501 {
502         struct request_queue *q = rq->q;
503
504         trace_block_rq_requeue(q, rq);
505         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506
507         rq->cmd_flags &= ~REQ_END;
508
509         if (q->dma_drain_size && blk_rq_bytes(rq))
510                 rq->nr_phys_segments--;
511 }
512
513 void blk_mq_requeue_request(struct request *rq)
514 {
515         __blk_mq_requeue_request(rq);
516         blk_clear_rq_complete(rq);
517
518         BUG_ON(blk_queued_rq(rq));
519         blk_mq_add_to_requeue_list(rq, true);
520 }
521 EXPORT_SYMBOL(blk_mq_requeue_request);
522
523 static void blk_mq_requeue_work(struct work_struct *work)
524 {
525         struct request_queue *q =
526                 container_of(work, struct request_queue, requeue_work);
527         LIST_HEAD(rq_list);
528         struct request *rq, *next;
529         unsigned long flags;
530
531         spin_lock_irqsave(&q->requeue_lock, flags);
532         list_splice_init(&q->requeue_list, &rq_list);
533         spin_unlock_irqrestore(&q->requeue_lock, flags);
534
535         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
536                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
537                         continue;
538
539                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
540                 list_del_init(&rq->queuelist);
541                 blk_mq_insert_request(rq, true, false, false);
542         }
543
544         while (!list_empty(&rq_list)) {
545                 rq = list_entry(rq_list.next, struct request, queuelist);
546                 list_del_init(&rq->queuelist);
547                 blk_mq_insert_request(rq, false, false, false);
548         }
549
550         blk_mq_run_queues(q, false);
551 }
552
553 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
554 {
555         struct request_queue *q = rq->q;
556         unsigned long flags;
557
558         /*
559          * We abuse this flag that is otherwise used by the I/O scheduler to
560          * request head insertation from the workqueue.
561          */
562         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
563
564         spin_lock_irqsave(&q->requeue_lock, flags);
565         if (at_head) {
566                 rq->cmd_flags |= REQ_SOFTBARRIER;
567                 list_add(&rq->queuelist, &q->requeue_list);
568         } else {
569                 list_add_tail(&rq->queuelist, &q->requeue_list);
570         }
571         spin_unlock_irqrestore(&q->requeue_lock, flags);
572 }
573 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
574
575 void blk_mq_kick_requeue_list(struct request_queue *q)
576 {
577         kblockd_schedule_work(&q->requeue_work);
578 }
579 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
580
581 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
582 {
583         return tags->rqs[tag];
584 }
585 EXPORT_SYMBOL(blk_mq_tag_to_rq);
586
587 struct blk_mq_timeout_data {
588         struct blk_mq_hw_ctx *hctx;
589         unsigned long *next;
590         unsigned int *next_set;
591 };
592
593 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
594 {
595         struct blk_mq_timeout_data *data = __data;
596         struct blk_mq_hw_ctx *hctx = data->hctx;
597         unsigned int tag;
598
599          /* It may not be in flight yet (this is where
600          * the REQ_ATOMIC_STARTED flag comes in). The requests are
601          * statically allocated, so we know it's always safe to access the
602          * memory associated with a bit offset into ->rqs[].
603          */
604         tag = 0;
605         do {
606                 struct request *rq;
607
608                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
609                 if (tag >= hctx->tags->nr_tags)
610                         break;
611
612                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
613                 if (rq->q != hctx->queue)
614                         continue;
615                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
616                         continue;
617
618                 blk_rq_check_expired(rq, data->next, data->next_set);
619         } while (1);
620 }
621
622 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
623                                         unsigned long *next,
624                                         unsigned int *next_set)
625 {
626         struct blk_mq_timeout_data data = {
627                 .hctx           = hctx,
628                 .next           = next,
629                 .next_set       = next_set,
630         };
631
632         /*
633          * Ask the tagging code to iterate busy requests, so we can
634          * check them for timeout.
635          */
636         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
637 }
638
639 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
640 {
641         struct request_queue *q = rq->q;
642
643         /*
644          * We know that complete is set at this point. If STARTED isn't set
645          * anymore, then the request isn't active and the "timeout" should
646          * just be ignored. This can happen due to the bitflag ordering.
647          * Timeout first checks if STARTED is set, and if it is, assumes
648          * the request is active. But if we race with completion, then
649          * we both flags will get cleared. So check here again, and ignore
650          * a timeout event with a request that isn't active.
651          */
652         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
653                 return BLK_EH_NOT_HANDLED;
654
655         if (!q->mq_ops->timeout)
656                 return BLK_EH_RESET_TIMER;
657
658         return q->mq_ops->timeout(rq);
659 }
660
661 static void blk_mq_rq_timer(unsigned long data)
662 {
663         struct request_queue *q = (struct request_queue *) data;
664         struct blk_mq_hw_ctx *hctx;
665         unsigned long next = 0;
666         int i, next_set = 0;
667
668         queue_for_each_hw_ctx(q, hctx, i) {
669                 /*
670                  * If not software queues are currently mapped to this
671                  * hardware queue, there's nothing to check
672                  */
673                 if (!hctx->nr_ctx || !hctx->tags)
674                         continue;
675
676                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
677         }
678
679         if (next_set) {
680                 next = blk_rq_timeout(round_jiffies_up(next));
681                 mod_timer(&q->timeout, next);
682         } else {
683                 queue_for_each_hw_ctx(q, hctx, i)
684                         blk_mq_tag_idle(hctx);
685         }
686 }
687
688 /*
689  * Reverse check our software queue for entries that we could potentially
690  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691  * too much time checking for merges.
692  */
693 static bool blk_mq_attempt_merge(struct request_queue *q,
694                                  struct blk_mq_ctx *ctx, struct bio *bio)
695 {
696         struct request *rq;
697         int checked = 8;
698
699         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700                 int el_ret;
701
702                 if (!checked--)
703                         break;
704
705                 if (!blk_rq_merge_ok(rq, bio))
706                         continue;
707
708                 el_ret = blk_try_merge(rq, bio);
709                 if (el_ret == ELEVATOR_BACK_MERGE) {
710                         if (bio_attempt_back_merge(q, rq, bio)) {
711                                 ctx->rq_merged++;
712                                 return true;
713                         }
714                         break;
715                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
716                         if (bio_attempt_front_merge(q, rq, bio)) {
717                                 ctx->rq_merged++;
718                                 return true;
719                         }
720                         break;
721                 }
722         }
723
724         return false;
725 }
726
727 /*
728  * Process software queues that have been marked busy, splicing them
729  * to the for-dispatch
730  */
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
732 {
733         struct blk_mq_ctx *ctx;
734         int i;
735
736         for (i = 0; i < hctx->ctx_map.map_size; i++) {
737                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738                 unsigned int off, bit;
739
740                 if (!bm->word)
741                         continue;
742
743                 bit = 0;
744                 off = i * hctx->ctx_map.bits_per_word;
745                 do {
746                         bit = find_next_bit(&bm->word, bm->depth, bit);
747                         if (bit >= bm->depth)
748                                 break;
749
750                         ctx = hctx->ctxs[bit + off];
751                         clear_bit(bit, &bm->word);
752                         spin_lock(&ctx->lock);
753                         list_splice_tail_init(&ctx->rq_list, list);
754                         spin_unlock(&ctx->lock);
755
756                         bit++;
757                 } while (1);
758         }
759 }
760
761 /*
762  * Run this hardware queue, pulling any software queues mapped to it in.
763  * Note that this function currently has various problems around ordering
764  * of IO. In particular, we'd like FIFO behaviour on handling existing
765  * items on the hctx->dispatch list. Ignore that for now.
766  */
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
768 {
769         struct request_queue *q = hctx->queue;
770         struct request *rq;
771         LIST_HEAD(rq_list);
772         int queued;
773
774         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
775
776         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
777                 return;
778
779         hctx->run++;
780
781         /*
782          * Touch any software queue that has pending entries.
783          */
784         flush_busy_ctxs(hctx, &rq_list);
785
786         /*
787          * If we have previous entries on our dispatch list, grab them
788          * and stuff them at the front for more fair dispatch.
789          */
790         if (!list_empty_careful(&hctx->dispatch)) {
791                 spin_lock(&hctx->lock);
792                 if (!list_empty(&hctx->dispatch))
793                         list_splice_init(&hctx->dispatch, &rq_list);
794                 spin_unlock(&hctx->lock);
795         }
796
797         /*
798          * Now process all the entries, sending them to the driver.
799          */
800         queued = 0;
801         while (!list_empty(&rq_list)) {
802                 int ret;
803
804                 rq = list_first_entry(&rq_list, struct request, queuelist);
805                 list_del_init(&rq->queuelist);
806
807                 blk_mq_start_request(rq, list_empty(&rq_list));
808
809                 ret = q->mq_ops->queue_rq(hctx, rq);
810                 switch (ret) {
811                 case BLK_MQ_RQ_QUEUE_OK:
812                         queued++;
813                         continue;
814                 case BLK_MQ_RQ_QUEUE_BUSY:
815                         list_add(&rq->queuelist, &rq_list);
816                         __blk_mq_requeue_request(rq);
817                         break;
818                 default:
819                         pr_err("blk-mq: bad return on queue: %d\n", ret);
820                 case BLK_MQ_RQ_QUEUE_ERROR:
821                         rq->errors = -EIO;
822                         blk_mq_end_io(rq, rq->errors);
823                         break;
824                 }
825
826                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
827                         break;
828         }
829
830         if (!queued)
831                 hctx->dispatched[0]++;
832         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
833                 hctx->dispatched[ilog2(queued) + 1]++;
834
835         /*
836          * Any items that need requeuing? Stuff them into hctx->dispatch,
837          * that is where we will continue on next queue run.
838          */
839         if (!list_empty(&rq_list)) {
840                 spin_lock(&hctx->lock);
841                 list_splice(&rq_list, &hctx->dispatch);
842                 spin_unlock(&hctx->lock);
843         }
844 }
845
846 /*
847  * It'd be great if the workqueue API had a way to pass
848  * in a mask and had some smarts for more clever placement.
849  * For now we just round-robin here, switching for every
850  * BLK_MQ_CPU_WORK_BATCH queued items.
851  */
852 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
853 {
854         int cpu = hctx->next_cpu;
855
856         if (--hctx->next_cpu_batch <= 0) {
857                 int next_cpu;
858
859                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
860                 if (next_cpu >= nr_cpu_ids)
861                         next_cpu = cpumask_first(hctx->cpumask);
862
863                 hctx->next_cpu = next_cpu;
864                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
865         }
866
867         return cpu;
868 }
869
870 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
871 {
872         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
873                 return;
874
875         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
876                 __blk_mq_run_hw_queue(hctx);
877         else if (hctx->queue->nr_hw_queues == 1)
878                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
879         else {
880                 unsigned int cpu;
881
882                 cpu = blk_mq_hctx_next_cpu(hctx);
883                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
884         }
885 }
886
887 void blk_mq_run_queues(struct request_queue *q, bool async)
888 {
889         struct blk_mq_hw_ctx *hctx;
890         int i;
891
892         queue_for_each_hw_ctx(q, hctx, i) {
893                 if ((!blk_mq_hctx_has_pending(hctx) &&
894                     list_empty_careful(&hctx->dispatch)) ||
895                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
896                         continue;
897
898                 preempt_disable();
899                 blk_mq_run_hw_queue(hctx, async);
900                 preempt_enable();
901         }
902 }
903 EXPORT_SYMBOL(blk_mq_run_queues);
904
905 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
906 {
907         cancel_delayed_work(&hctx->run_work);
908         cancel_delayed_work(&hctx->delay_work);
909         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
910 }
911 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
912
913 void blk_mq_stop_hw_queues(struct request_queue *q)
914 {
915         struct blk_mq_hw_ctx *hctx;
916         int i;
917
918         queue_for_each_hw_ctx(q, hctx, i)
919                 blk_mq_stop_hw_queue(hctx);
920 }
921 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
922
923 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
924 {
925         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
926
927         preempt_disable();
928         __blk_mq_run_hw_queue(hctx);
929         preempt_enable();
930 }
931 EXPORT_SYMBOL(blk_mq_start_hw_queue);
932
933 void blk_mq_start_hw_queues(struct request_queue *q)
934 {
935         struct blk_mq_hw_ctx *hctx;
936         int i;
937
938         queue_for_each_hw_ctx(q, hctx, i)
939                 blk_mq_start_hw_queue(hctx);
940 }
941 EXPORT_SYMBOL(blk_mq_start_hw_queues);
942
943
944 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
945 {
946         struct blk_mq_hw_ctx *hctx;
947         int i;
948
949         queue_for_each_hw_ctx(q, hctx, i) {
950                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
951                         continue;
952
953                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
954                 preempt_disable();
955                 blk_mq_run_hw_queue(hctx, async);
956                 preempt_enable();
957         }
958 }
959 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
960
961 static void blk_mq_run_work_fn(struct work_struct *work)
962 {
963         struct blk_mq_hw_ctx *hctx;
964
965         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
966
967         __blk_mq_run_hw_queue(hctx);
968 }
969
970 static void blk_mq_delay_work_fn(struct work_struct *work)
971 {
972         struct blk_mq_hw_ctx *hctx;
973
974         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
975
976         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
977                 __blk_mq_run_hw_queue(hctx);
978 }
979
980 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
981 {
982         unsigned long tmo = msecs_to_jiffies(msecs);
983
984         if (hctx->queue->nr_hw_queues == 1)
985                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
986         else {
987                 unsigned int cpu;
988
989                 cpu = blk_mq_hctx_next_cpu(hctx);
990                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
991         }
992 }
993 EXPORT_SYMBOL(blk_mq_delay_queue);
994
995 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
996                                     struct request *rq, bool at_head)
997 {
998         struct blk_mq_ctx *ctx = rq->mq_ctx;
999
1000         trace_block_rq_insert(hctx->queue, rq);
1001
1002         if (at_head)
1003                 list_add(&rq->queuelist, &ctx->rq_list);
1004         else
1005                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1006
1007         blk_mq_hctx_mark_pending(hctx, ctx);
1008
1009         /*
1010          * We do this early, to ensure we are on the right CPU.
1011          */
1012         blk_add_timer(rq);
1013 }
1014
1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1016                 bool async)
1017 {
1018         struct request_queue *q = rq->q;
1019         struct blk_mq_hw_ctx *hctx;
1020         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1021
1022         current_ctx = blk_mq_get_ctx(q);
1023         if (!cpu_online(ctx->cpu))
1024                 rq->mq_ctx = ctx = current_ctx;
1025
1026         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1027
1028         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1029             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1030                 blk_insert_flush(rq);
1031         } else {
1032                 spin_lock(&ctx->lock);
1033                 __blk_mq_insert_request(hctx, rq, at_head);
1034                 spin_unlock(&ctx->lock);
1035         }
1036
1037         if (run_queue)
1038                 blk_mq_run_hw_queue(hctx, async);
1039
1040         blk_mq_put_ctx(current_ctx);
1041 }
1042
1043 static void blk_mq_insert_requests(struct request_queue *q,
1044                                      struct blk_mq_ctx *ctx,
1045                                      struct list_head *list,
1046                                      int depth,
1047                                      bool from_schedule)
1048
1049 {
1050         struct blk_mq_hw_ctx *hctx;
1051         struct blk_mq_ctx *current_ctx;
1052
1053         trace_block_unplug(q, depth, !from_schedule);
1054
1055         current_ctx = blk_mq_get_ctx(q);
1056
1057         if (!cpu_online(ctx->cpu))
1058                 ctx = current_ctx;
1059         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1060
1061         /*
1062          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063          * offline now
1064          */
1065         spin_lock(&ctx->lock);
1066         while (!list_empty(list)) {
1067                 struct request *rq;
1068
1069                 rq = list_first_entry(list, struct request, queuelist);
1070                 list_del_init(&rq->queuelist);
1071                 rq->mq_ctx = ctx;
1072                 __blk_mq_insert_request(hctx, rq, false);
1073         }
1074         spin_unlock(&ctx->lock);
1075
1076         blk_mq_run_hw_queue(hctx, from_schedule);
1077         blk_mq_put_ctx(current_ctx);
1078 }
1079
1080 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1081 {
1082         struct request *rqa = container_of(a, struct request, queuelist);
1083         struct request *rqb = container_of(b, struct request, queuelist);
1084
1085         return !(rqa->mq_ctx < rqb->mq_ctx ||
1086                  (rqa->mq_ctx == rqb->mq_ctx &&
1087                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1088 }
1089
1090 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1091 {
1092         struct blk_mq_ctx *this_ctx;
1093         struct request_queue *this_q;
1094         struct request *rq;
1095         LIST_HEAD(list);
1096         LIST_HEAD(ctx_list);
1097         unsigned int depth;
1098
1099         list_splice_init(&plug->mq_list, &list);
1100
1101         list_sort(NULL, &list, plug_ctx_cmp);
1102
1103         this_q = NULL;
1104         this_ctx = NULL;
1105         depth = 0;
1106
1107         while (!list_empty(&list)) {
1108                 rq = list_entry_rq(list.next);
1109                 list_del_init(&rq->queuelist);
1110                 BUG_ON(!rq->q);
1111                 if (rq->mq_ctx != this_ctx) {
1112                         if (this_ctx) {
1113                                 blk_mq_insert_requests(this_q, this_ctx,
1114                                                         &ctx_list, depth,
1115                                                         from_schedule);
1116                         }
1117
1118                         this_ctx = rq->mq_ctx;
1119                         this_q = rq->q;
1120                         depth = 0;
1121                 }
1122
1123                 depth++;
1124                 list_add_tail(&rq->queuelist, &ctx_list);
1125         }
1126
1127         /*
1128          * If 'this_ctx' is set, we know we have entries to complete
1129          * on 'ctx_list'. Do those.
1130          */
1131         if (this_ctx) {
1132                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133                                        from_schedule);
1134         }
1135 }
1136
1137 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1138 {
1139         init_request_from_bio(rq, bio);
1140         blk_account_io_start(rq, 1);
1141 }
1142
1143 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1144                                          struct blk_mq_ctx *ctx,
1145                                          struct request *rq, struct bio *bio)
1146 {
1147         struct request_queue *q = hctx->queue;
1148
1149         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1150                 blk_mq_bio_to_request(rq, bio);
1151                 spin_lock(&ctx->lock);
1152 insert_rq:
1153                 __blk_mq_insert_request(hctx, rq, false);
1154                 spin_unlock(&ctx->lock);
1155                 return false;
1156         } else {
1157                 spin_lock(&ctx->lock);
1158                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1159                         blk_mq_bio_to_request(rq, bio);
1160                         goto insert_rq;
1161                 }
1162
1163                 spin_unlock(&ctx->lock);
1164                 __blk_mq_free_request(hctx, ctx, rq);
1165                 return true;
1166         }
1167 }
1168
1169 struct blk_map_ctx {
1170         struct blk_mq_hw_ctx *hctx;
1171         struct blk_mq_ctx *ctx;
1172 };
1173
1174 static struct request *blk_mq_map_request(struct request_queue *q,
1175                                           struct bio *bio,
1176                                           struct blk_map_ctx *data)
1177 {
1178         struct blk_mq_hw_ctx *hctx;
1179         struct blk_mq_ctx *ctx;
1180         struct request *rq;
1181         int rw = bio_data_dir(bio);
1182
1183         if (unlikely(blk_mq_queue_enter(q))) {
1184                 bio_endio(bio, -EIO);
1185                 return NULL;
1186         }
1187
1188         ctx = blk_mq_get_ctx(q);
1189         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190
1191         if (rw_is_sync(bio->bi_rw))
1192                 rw |= REQ_SYNC;
1193
1194         trace_block_getrq(q, bio, rw);
1195         rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1196         if (likely(rq))
1197                 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1198         else {
1199                 blk_mq_put_ctx(ctx);
1200                 trace_block_sleeprq(q, bio, rw);
1201                 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1202                                                         false);
1203                 ctx = rq->mq_ctx;
1204                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1205         }
1206
1207         hctx->queued++;
1208         data->hctx = hctx;
1209         data->ctx = ctx;
1210         return rq;
1211 }
1212
1213 /*
1214  * Multiple hardware queue variant. This will not use per-process plugs,
1215  * but will attempt to bypass the hctx queueing if we can go straight to
1216  * hardware for SYNC IO.
1217  */
1218 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1219 {
1220         const int is_sync = rw_is_sync(bio->bi_rw);
1221         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1222         struct blk_map_ctx data;
1223         struct request *rq;
1224
1225         blk_queue_bounce(q, &bio);
1226
1227         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1228                 bio_endio(bio, -EIO);
1229                 return;
1230         }
1231
1232         rq = blk_mq_map_request(q, bio, &data);
1233         if (unlikely(!rq))
1234                 return;
1235
1236         if (unlikely(is_flush_fua)) {
1237                 blk_mq_bio_to_request(rq, bio);
1238                 blk_insert_flush(rq);
1239                 goto run_queue;
1240         }
1241
1242         if (is_sync) {
1243                 int ret;
1244
1245                 blk_mq_bio_to_request(rq, bio);
1246                 blk_mq_start_request(rq, true);
1247
1248                 /*
1249                  * For OK queue, we are done. For error, kill it. Any other
1250                  * error (busy), just add it to our list as we previously
1251                  * would have done
1252                  */
1253                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1254                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1255                         goto done;
1256                 else {
1257                         __blk_mq_requeue_request(rq);
1258
1259                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260                                 rq->errors = -EIO;
1261                                 blk_mq_end_io(rq, rq->errors);
1262                                 goto done;
1263                         }
1264                 }
1265         }
1266
1267         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1268                 /*
1269                  * For a SYNC request, send it to the hardware immediately. For
1270                  * an ASYNC request, just ensure that we run it later on. The
1271                  * latter allows for merging opportunities and more efficient
1272                  * dispatching.
1273                  */
1274 run_queue:
1275                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1276         }
1277 done:
1278         blk_mq_put_ctx(data.ctx);
1279 }
1280
1281 /*
1282  * Single hardware queue variant. This will attempt to use any per-process
1283  * plug for merging and IO deferral.
1284  */
1285 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1286 {
1287         const int is_sync = rw_is_sync(bio->bi_rw);
1288         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1289         unsigned int use_plug, request_count = 0;
1290         struct blk_map_ctx data;
1291         struct request *rq;
1292
1293         /*
1294          * If we have multiple hardware queues, just go directly to
1295          * one of those for sync IO.
1296          */
1297         use_plug = !is_flush_fua && !is_sync;
1298
1299         blk_queue_bounce(q, &bio);
1300
1301         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1302                 bio_endio(bio, -EIO);
1303                 return;
1304         }
1305
1306         if (use_plug && !blk_queue_nomerges(q) &&
1307             blk_attempt_plug_merge(q, bio, &request_count))
1308                 return;
1309
1310         rq = blk_mq_map_request(q, bio, &data);
1311
1312         if (unlikely(is_flush_fua)) {
1313                 blk_mq_bio_to_request(rq, bio);
1314                 blk_insert_flush(rq);
1315                 goto run_queue;
1316         }
1317
1318         /*
1319          * A task plug currently exists. Since this is completely lockless,
1320          * utilize that to temporarily store requests until the task is
1321          * either done or scheduled away.
1322          */
1323         if (use_plug) {
1324                 struct blk_plug *plug = current->plug;
1325
1326                 if (plug) {
1327                         blk_mq_bio_to_request(rq, bio);
1328                         if (list_empty(&plug->mq_list))
1329                                 trace_block_plug(q);
1330                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1331                                 blk_flush_plug_list(plug, false);
1332                                 trace_block_plug(q);
1333                         }
1334                         list_add_tail(&rq->queuelist, &plug->mq_list);
1335                         blk_mq_put_ctx(data.ctx);
1336                         return;
1337                 }
1338         }
1339
1340         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1341                 /*
1342                  * For a SYNC request, send it to the hardware immediately. For
1343                  * an ASYNC request, just ensure that we run it later on. The
1344                  * latter allows for merging opportunities and more efficient
1345                  * dispatching.
1346                  */
1347 run_queue:
1348                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1349         }
1350
1351         blk_mq_put_ctx(data.ctx);
1352 }
1353
1354 /*
1355  * Default mapping to a software queue, since we use one per CPU.
1356  */
1357 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1358 {
1359         return q->queue_hw_ctx[q->mq_map[cpu]];
1360 }
1361 EXPORT_SYMBOL(blk_mq_map_queue);
1362
1363 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1364                                                    unsigned int hctx_index,
1365                                                    int node)
1366 {
1367         return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
1368 }
1369 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1370
1371 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1372                                  unsigned int hctx_index)
1373 {
1374         kfree(hctx);
1375 }
1376 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1377
1378 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1379                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1380 {
1381         struct page *page;
1382
1383         if (tags->rqs && set->ops->exit_request) {
1384                 int i;
1385
1386                 for (i = 0; i < tags->nr_tags; i++) {
1387                         if (!tags->rqs[i])
1388                                 continue;
1389                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1390                                                 hctx_idx, i);
1391                 }
1392         }
1393
1394         while (!list_empty(&tags->page_list)) {
1395                 page = list_first_entry(&tags->page_list, struct page, lru);
1396                 list_del_init(&page->lru);
1397                 __free_pages(page, page->private);
1398         }
1399
1400         kfree(tags->rqs);
1401
1402         blk_mq_free_tags(tags);
1403 }
1404
1405 static size_t order_to_size(unsigned int order)
1406 {
1407         return (size_t)PAGE_SIZE << order;
1408 }
1409
1410 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1411                 unsigned int hctx_idx)
1412 {
1413         struct blk_mq_tags *tags;
1414         unsigned int i, j, entries_per_page, max_order = 4;
1415         size_t rq_size, left;
1416
1417         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1418                                 set->numa_node);
1419         if (!tags)
1420                 return NULL;
1421
1422         INIT_LIST_HEAD(&tags->page_list);
1423
1424         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1425                                         GFP_KERNEL, set->numa_node);
1426         if (!tags->rqs) {
1427                 blk_mq_free_tags(tags);
1428                 return NULL;
1429         }
1430
1431         /*
1432          * rq_size is the size of the request plus driver payload, rounded
1433          * to the cacheline size
1434          */
1435         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1436                                 cache_line_size());
1437         left = rq_size * set->queue_depth;
1438
1439         for (i = 0; i < set->queue_depth; ) {
1440                 int this_order = max_order;
1441                 struct page *page;
1442                 int to_do;
1443                 void *p;
1444
1445                 while (left < order_to_size(this_order - 1) && this_order)
1446                         this_order--;
1447
1448                 do {
1449                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1450                                                 this_order);
1451                         if (page)
1452                                 break;
1453                         if (!this_order--)
1454                                 break;
1455                         if (order_to_size(this_order) < rq_size)
1456                                 break;
1457                 } while (1);
1458
1459                 if (!page)
1460                         goto fail;
1461
1462                 page->private = this_order;
1463                 list_add_tail(&page->lru, &tags->page_list);
1464
1465                 p = page_address(page);
1466                 entries_per_page = order_to_size(this_order) / rq_size;
1467                 to_do = min(entries_per_page, set->queue_depth - i);
1468                 left -= to_do * rq_size;
1469                 for (j = 0; j < to_do; j++) {
1470                         tags->rqs[i] = p;
1471                         if (set->ops->init_request) {
1472                                 if (set->ops->init_request(set->driver_data,
1473                                                 tags->rqs[i], hctx_idx, i,
1474                                                 set->numa_node))
1475                                         goto fail;
1476                         }
1477
1478                         p += rq_size;
1479                         i++;
1480                 }
1481         }
1482
1483         return tags;
1484
1485 fail:
1486         pr_warn("%s: failed to allocate requests\n", __func__);
1487         blk_mq_free_rq_map(set, tags, hctx_idx);
1488         return NULL;
1489 }
1490
1491 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1492 {
1493         kfree(bitmap->map);
1494 }
1495
1496 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1497 {
1498         unsigned int bpw = 8, total, num_maps, i;
1499
1500         bitmap->bits_per_word = bpw;
1501
1502         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1503         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1504                                         GFP_KERNEL, node);
1505         if (!bitmap->map)
1506                 return -ENOMEM;
1507
1508         bitmap->map_size = num_maps;
1509
1510         total = nr_cpu_ids;
1511         for (i = 0; i < num_maps; i++) {
1512                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1513                 total -= bitmap->map[i].depth;
1514         }
1515
1516         return 0;
1517 }
1518
1519 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1520 {
1521         struct request_queue *q = hctx->queue;
1522         struct blk_mq_ctx *ctx;
1523         LIST_HEAD(tmp);
1524
1525         /*
1526          * Move ctx entries to new CPU, if this one is going away.
1527          */
1528         ctx = __blk_mq_get_ctx(q, cpu);
1529
1530         spin_lock(&ctx->lock);
1531         if (!list_empty(&ctx->rq_list)) {
1532                 list_splice_init(&ctx->rq_list, &tmp);
1533                 blk_mq_hctx_clear_pending(hctx, ctx);
1534         }
1535         spin_unlock(&ctx->lock);
1536
1537         if (list_empty(&tmp))
1538                 return NOTIFY_OK;
1539
1540         ctx = blk_mq_get_ctx(q);
1541         spin_lock(&ctx->lock);
1542
1543         while (!list_empty(&tmp)) {
1544                 struct request *rq;
1545
1546                 rq = list_first_entry(&tmp, struct request, queuelist);
1547                 rq->mq_ctx = ctx;
1548                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1549         }
1550
1551         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1552         blk_mq_hctx_mark_pending(hctx, ctx);
1553
1554         spin_unlock(&ctx->lock);
1555
1556         blk_mq_run_hw_queue(hctx, true);
1557         blk_mq_put_ctx(ctx);
1558         return NOTIFY_OK;
1559 }
1560
1561 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1562 {
1563         struct request_queue *q = hctx->queue;
1564         struct blk_mq_tag_set *set = q->tag_set;
1565
1566         if (set->tags[hctx->queue_num])
1567                 return NOTIFY_OK;
1568
1569         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1570         if (!set->tags[hctx->queue_num])
1571                 return NOTIFY_STOP;
1572
1573         hctx->tags = set->tags[hctx->queue_num];
1574         return NOTIFY_OK;
1575 }
1576
1577 static int blk_mq_hctx_notify(void *data, unsigned long action,
1578                               unsigned int cpu)
1579 {
1580         struct blk_mq_hw_ctx *hctx = data;
1581
1582         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1583                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1584         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1585                 return blk_mq_hctx_cpu_online(hctx, cpu);
1586
1587         return NOTIFY_OK;
1588 }
1589
1590 static void blk_mq_exit_hw_queues(struct request_queue *q,
1591                 struct blk_mq_tag_set *set, int nr_queue)
1592 {
1593         struct blk_mq_hw_ctx *hctx;
1594         unsigned int i;
1595
1596         queue_for_each_hw_ctx(q, hctx, i) {
1597                 if (i == nr_queue)
1598                         break;
1599
1600                 if (set->ops->exit_hctx)
1601                         set->ops->exit_hctx(hctx, i);
1602
1603                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1604                 kfree(hctx->ctxs);
1605                 blk_mq_free_bitmap(&hctx->ctx_map);
1606         }
1607
1608 }
1609
1610 static void blk_mq_free_hw_queues(struct request_queue *q,
1611                 struct blk_mq_tag_set *set)
1612 {
1613         struct blk_mq_hw_ctx *hctx;
1614         unsigned int i;
1615
1616         queue_for_each_hw_ctx(q, hctx, i) {
1617                 free_cpumask_var(hctx->cpumask);
1618                 set->ops->free_hctx(hctx, i);
1619         }
1620 }
1621
1622 static int blk_mq_init_hw_queues(struct request_queue *q,
1623                 struct blk_mq_tag_set *set)
1624 {
1625         struct blk_mq_hw_ctx *hctx;
1626         unsigned int i;
1627
1628         /*
1629          * Initialize hardware queues
1630          */
1631         queue_for_each_hw_ctx(q, hctx, i) {
1632                 int node;
1633
1634                 node = hctx->numa_node;
1635                 if (node == NUMA_NO_NODE)
1636                         node = hctx->numa_node = set->numa_node;
1637
1638                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1639                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1640                 spin_lock_init(&hctx->lock);
1641                 INIT_LIST_HEAD(&hctx->dispatch);
1642                 hctx->queue = q;
1643                 hctx->queue_num = i;
1644                 hctx->flags = set->flags;
1645                 hctx->cmd_size = set->cmd_size;
1646
1647                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1648                                                 blk_mq_hctx_notify, hctx);
1649                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1650
1651                 hctx->tags = set->tags[i];
1652
1653                 /*
1654                  * Allocate space for all possible cpus to avoid allocation in
1655                  * runtime
1656                  */
1657                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1658                                                 GFP_KERNEL, node);
1659                 if (!hctx->ctxs)
1660                         break;
1661
1662                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1663                         break;
1664
1665                 hctx->nr_ctx = 0;
1666
1667                 if (set->ops->init_hctx &&
1668                     set->ops->init_hctx(hctx, set->driver_data, i))
1669                         break;
1670         }
1671
1672         if (i == q->nr_hw_queues)
1673                 return 0;
1674
1675         /*
1676          * Init failed
1677          */
1678         blk_mq_exit_hw_queues(q, set, i);
1679
1680         return 1;
1681 }
1682
1683 static void blk_mq_init_cpu_queues(struct request_queue *q,
1684                                    unsigned int nr_hw_queues)
1685 {
1686         unsigned int i;
1687
1688         for_each_possible_cpu(i) {
1689                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1690                 struct blk_mq_hw_ctx *hctx;
1691
1692                 memset(__ctx, 0, sizeof(*__ctx));
1693                 __ctx->cpu = i;
1694                 spin_lock_init(&__ctx->lock);
1695                 INIT_LIST_HEAD(&__ctx->rq_list);
1696                 __ctx->queue = q;
1697
1698                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1699                 if (!cpu_online(i))
1700                         continue;
1701
1702                 hctx = q->mq_ops->map_queue(q, i);
1703                 cpumask_set_cpu(i, hctx->cpumask);
1704                 hctx->nr_ctx++;
1705
1706                 /*
1707                  * Set local node, IFF we have more than one hw queue. If
1708                  * not, we remain on the home node of the device
1709                  */
1710                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1711                         hctx->numa_node = cpu_to_node(i);
1712         }
1713 }
1714
1715 static void blk_mq_map_swqueue(struct request_queue *q)
1716 {
1717         unsigned int i;
1718         struct blk_mq_hw_ctx *hctx;
1719         struct blk_mq_ctx *ctx;
1720
1721         queue_for_each_hw_ctx(q, hctx, i) {
1722                 cpumask_clear(hctx->cpumask);
1723                 hctx->nr_ctx = 0;
1724         }
1725
1726         /*
1727          * Map software to hardware queues
1728          */
1729         queue_for_each_ctx(q, ctx, i) {
1730                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1731                 if (!cpu_online(i))
1732                         continue;
1733
1734                 hctx = q->mq_ops->map_queue(q, i);
1735                 cpumask_set_cpu(i, hctx->cpumask);
1736                 ctx->index_hw = hctx->nr_ctx;
1737                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1738         }
1739
1740         queue_for_each_hw_ctx(q, hctx, i) {
1741                 /*
1742                  * If not software queues are mapped to this hardware queue,
1743                  * disable it and free the request entries
1744                  */
1745                 if (!hctx->nr_ctx) {
1746                         struct blk_mq_tag_set *set = q->tag_set;
1747
1748                         if (set->tags[i]) {
1749                                 blk_mq_free_rq_map(set, set->tags[i], i);
1750                                 set->tags[i] = NULL;
1751                                 hctx->tags = NULL;
1752                         }
1753                         continue;
1754                 }
1755
1756                 /*
1757                  * Initialize batch roundrobin counts
1758                  */
1759                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1760                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1761         }
1762 }
1763
1764 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1765 {
1766         struct blk_mq_hw_ctx *hctx;
1767         struct request_queue *q;
1768         bool shared;
1769         int i;
1770
1771         if (set->tag_list.next == set->tag_list.prev)
1772                 shared = false;
1773         else
1774                 shared = true;
1775
1776         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1777                 blk_mq_freeze_queue(q);
1778
1779                 queue_for_each_hw_ctx(q, hctx, i) {
1780                         if (shared)
1781                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1782                         else
1783                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1784                 }
1785                 blk_mq_unfreeze_queue(q);
1786         }
1787 }
1788
1789 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1790 {
1791         struct blk_mq_tag_set *set = q->tag_set;
1792
1793         blk_mq_freeze_queue(q);
1794
1795         mutex_lock(&set->tag_list_lock);
1796         list_del_init(&q->tag_set_list);
1797         blk_mq_update_tag_set_depth(set);
1798         mutex_unlock(&set->tag_list_lock);
1799
1800         blk_mq_unfreeze_queue(q);
1801 }
1802
1803 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1804                                      struct request_queue *q)
1805 {
1806         q->tag_set = set;
1807
1808         mutex_lock(&set->tag_list_lock);
1809         list_add_tail(&q->tag_set_list, &set->tag_list);
1810         blk_mq_update_tag_set_depth(set);
1811         mutex_unlock(&set->tag_list_lock);
1812 }
1813
1814 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1815 {
1816         struct blk_mq_hw_ctx **hctxs;
1817         struct blk_mq_ctx *ctx;
1818         struct request_queue *q;
1819         unsigned int *map;
1820         int i;
1821
1822         ctx = alloc_percpu(struct blk_mq_ctx);
1823         if (!ctx)
1824                 return ERR_PTR(-ENOMEM);
1825
1826         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1827                         set->numa_node);
1828
1829         if (!hctxs)
1830                 goto err_percpu;
1831
1832         map = blk_mq_make_queue_map(set);
1833         if (!map)
1834                 goto err_map;
1835
1836         for (i = 0; i < set->nr_hw_queues; i++) {
1837                 int node = blk_mq_hw_queue_to_node(map, i);
1838
1839                 hctxs[i] = set->ops->alloc_hctx(set, i, node);
1840                 if (!hctxs[i])
1841                         goto err_hctxs;
1842
1843                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1844                         goto err_hctxs;
1845
1846                 atomic_set(&hctxs[i]->nr_active, 0);
1847                 hctxs[i]->numa_node = node;
1848                 hctxs[i]->queue_num = i;
1849         }
1850
1851         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1852         if (!q)
1853                 goto err_hctxs;
1854
1855         if (percpu_counter_init(&q->mq_usage_counter, 0))
1856                 goto err_map;
1857
1858         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1859         blk_queue_rq_timeout(q, 30000);
1860
1861         q->nr_queues = nr_cpu_ids;
1862         q->nr_hw_queues = set->nr_hw_queues;
1863         q->mq_map = map;
1864
1865         q->queue_ctx = ctx;
1866         q->queue_hw_ctx = hctxs;
1867
1868         q->mq_ops = set->ops;
1869         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1870
1871         q->sg_reserved_size = INT_MAX;
1872
1873         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1874         INIT_LIST_HEAD(&q->requeue_list);
1875         spin_lock_init(&q->requeue_lock);
1876
1877         if (q->nr_hw_queues > 1)
1878                 blk_queue_make_request(q, blk_mq_make_request);
1879         else
1880                 blk_queue_make_request(q, blk_sq_make_request);
1881
1882         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1883         if (set->timeout)
1884                 blk_queue_rq_timeout(q, set->timeout);
1885
1886         /*
1887          * Do this after blk_queue_make_request() overrides it...
1888          */
1889         q->nr_requests = set->queue_depth;
1890
1891         if (set->ops->complete)
1892                 blk_queue_softirq_done(q, set->ops->complete);
1893
1894         blk_mq_init_flush(q);
1895         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1896
1897         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1898                                 set->cmd_size, cache_line_size()),
1899                                 GFP_KERNEL);
1900         if (!q->flush_rq)
1901                 goto err_hw;
1902
1903         if (blk_mq_init_hw_queues(q, set))
1904                 goto err_flush_rq;
1905
1906         mutex_lock(&all_q_mutex);
1907         list_add_tail(&q->all_q_node, &all_q_list);
1908         mutex_unlock(&all_q_mutex);
1909
1910         blk_mq_add_queue_tag_set(set, q);
1911
1912         blk_mq_map_swqueue(q);
1913
1914         return q;
1915
1916 err_flush_rq:
1917         kfree(q->flush_rq);
1918 err_hw:
1919         blk_cleanup_queue(q);
1920 err_hctxs:
1921         kfree(map);
1922         for (i = 0; i < set->nr_hw_queues; i++) {
1923                 if (!hctxs[i])
1924                         break;
1925                 free_cpumask_var(hctxs[i]->cpumask);
1926                 set->ops->free_hctx(hctxs[i], i);
1927         }
1928 err_map:
1929         kfree(hctxs);
1930 err_percpu:
1931         free_percpu(ctx);
1932         return ERR_PTR(-ENOMEM);
1933 }
1934 EXPORT_SYMBOL(blk_mq_init_queue);
1935
1936 void blk_mq_free_queue(struct request_queue *q)
1937 {
1938         struct blk_mq_tag_set   *set = q->tag_set;
1939
1940         blk_mq_del_queue_tag_set(q);
1941
1942         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1943         blk_mq_free_hw_queues(q, set);
1944
1945         percpu_counter_destroy(&q->mq_usage_counter);
1946
1947         free_percpu(q->queue_ctx);
1948         kfree(q->queue_hw_ctx);
1949         kfree(q->mq_map);
1950
1951         q->queue_ctx = NULL;
1952         q->queue_hw_ctx = NULL;
1953         q->mq_map = NULL;
1954
1955         mutex_lock(&all_q_mutex);
1956         list_del_init(&q->all_q_node);
1957         mutex_unlock(&all_q_mutex);
1958 }
1959
1960 /* Basically redo blk_mq_init_queue with queue frozen */
1961 static void blk_mq_queue_reinit(struct request_queue *q)
1962 {
1963         blk_mq_freeze_queue(q);
1964
1965         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1966
1967         /*
1968          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1969          * we should change hctx numa_node according to new topology (this
1970          * involves free and re-allocate memory, worthy doing?)
1971          */
1972
1973         blk_mq_map_swqueue(q);
1974
1975         blk_mq_unfreeze_queue(q);
1976 }
1977
1978 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1979                                       unsigned long action, void *hcpu)
1980 {
1981         struct request_queue *q;
1982
1983         /*
1984          * Before new mappings are established, hotadded cpu might already
1985          * start handling requests. This doesn't break anything as we map
1986          * offline CPUs to first hardware queue. We will re-init the queue
1987          * below to get optimal settings.
1988          */
1989         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1990             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1991                 return NOTIFY_OK;
1992
1993         mutex_lock(&all_q_mutex);
1994         list_for_each_entry(q, &all_q_list, all_q_node)
1995                 blk_mq_queue_reinit(q);
1996         mutex_unlock(&all_q_mutex);
1997         return NOTIFY_OK;
1998 }
1999
2000 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2001 {
2002         int i;
2003
2004         if (!set->nr_hw_queues)
2005                 return -EINVAL;
2006         if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
2007                 return -EINVAL;
2008         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2009                 return -EINVAL;
2010
2011         if (!set->nr_hw_queues ||
2012             !set->ops->queue_rq || !set->ops->map_queue ||
2013             !set->ops->alloc_hctx || !set->ops->free_hctx)
2014                 return -EINVAL;
2015
2016
2017         set->tags = kmalloc_node(set->nr_hw_queues *
2018                                  sizeof(struct blk_mq_tags *),
2019                                  GFP_KERNEL, set->numa_node);
2020         if (!set->tags)
2021                 goto out;
2022
2023         for (i = 0; i < set->nr_hw_queues; i++) {
2024                 set->tags[i] = blk_mq_init_rq_map(set, i);
2025                 if (!set->tags[i])
2026                         goto out_unwind;
2027         }
2028
2029         mutex_init(&set->tag_list_lock);
2030         INIT_LIST_HEAD(&set->tag_list);
2031
2032         return 0;
2033
2034 out_unwind:
2035         while (--i >= 0)
2036                 blk_mq_free_rq_map(set, set->tags[i], i);
2037 out:
2038         return -ENOMEM;
2039 }
2040 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2041
2042 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2043 {
2044         int i;
2045
2046         for (i = 0; i < set->nr_hw_queues; i++) {
2047                 if (set->tags[i])
2048                         blk_mq_free_rq_map(set, set->tags[i], i);
2049         }
2050
2051         kfree(set->tags);
2052 }
2053 EXPORT_SYMBOL(blk_mq_free_tag_set);
2054
2055 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2056 {
2057         struct blk_mq_tag_set *set = q->tag_set;
2058         struct blk_mq_hw_ctx *hctx;
2059         int i, ret;
2060
2061         if (!set || nr > set->queue_depth)
2062                 return -EINVAL;
2063
2064         ret = 0;
2065         queue_for_each_hw_ctx(q, hctx, i) {
2066                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2067                 if (ret)
2068                         break;
2069         }
2070
2071         if (!ret)
2072                 q->nr_requests = nr;
2073
2074         return ret;
2075 }
2076
2077 void blk_mq_disable_hotplug(void)
2078 {
2079         mutex_lock(&all_q_mutex);
2080 }
2081
2082 void blk_mq_enable_hotplug(void)
2083 {
2084         mutex_unlock(&all_q_mutex);
2085 }
2086
2087 static int __init blk_mq_init(void)
2088 {
2089         blk_mq_cpu_init();
2090
2091         /* Must be called after percpu_counter_hotcpu_callback() */
2092         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2093
2094         return 0;
2095 }
2096 subsys_initcall(blk_mq_init);