]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: update ->init_request and ->exit_request prototypes
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = rq_data_dir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         !list_empty_careful(&hctx->dispatch) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83                                       struct blk_mq_ctx *ctx)
84 {
85         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 void blk_freeze_queue_start(struct request_queue *q)
89 {
90         int freeze_depth;
91
92         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
93         if (freeze_depth == 1) {
94                 percpu_ref_kill(&q->q_usage_counter);
95                 blk_mq_run_hw_queues(q, false);
96         }
97 }
98 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
99
100 void blk_mq_freeze_queue_wait(struct request_queue *q)
101 {
102         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
103 }
104 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
105
106 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
107                                      unsigned long timeout)
108 {
109         return wait_event_timeout(q->mq_freeze_wq,
110                                         percpu_ref_is_zero(&q->q_usage_counter),
111                                         timeout);
112 }
113 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114
115 /*
116  * Guarantee no request is in use, so we can change any data structure of
117  * the queue afterward.
118  */
119 void blk_freeze_queue(struct request_queue *q)
120 {
121         /*
122          * In the !blk_mq case we are only calling this to kill the
123          * q_usage_counter, otherwise this increases the freeze depth
124          * and waits for it to return to zero.  For this reason there is
125          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
126          * exported to drivers as the only user for unfreeze is blk_mq.
127          */
128         blk_freeze_queue_start(q);
129         blk_mq_freeze_queue_wait(q);
130 }
131
132 void blk_mq_freeze_queue(struct request_queue *q)
133 {
134         /*
135          * ...just an alias to keep freeze and unfreeze actions balanced
136          * in the blk_mq_* namespace
137          */
138         blk_freeze_queue(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144         int freeze_depth;
145
146         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147         WARN_ON_ONCE(freeze_depth < 0);
148         if (!freeze_depth) {
149                 percpu_ref_reinit(&q->q_usage_counter);
150                 wake_up_all(&q->mq_freeze_wq);
151         }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 /**
156  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
157  * @q: request queue.
158  *
159  * Note: this function does not prevent that the struct request end_io()
160  * callback function is invoked. Additionally, it is not prevented that
161  * new queue_rq() calls occur unless the queue has been stopped first.
162  */
163 void blk_mq_quiesce_queue(struct request_queue *q)
164 {
165         struct blk_mq_hw_ctx *hctx;
166         unsigned int i;
167         bool rcu = false;
168
169         blk_mq_stop_hw_queues(q);
170
171         queue_for_each_hw_ctx(q, hctx, i) {
172                 if (hctx->flags & BLK_MQ_F_BLOCKING)
173                         synchronize_srcu(&hctx->queue_rq_srcu);
174                 else
175                         rcu = true;
176         }
177         if (rcu)
178                 synchronize_rcu();
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
181
182 void blk_mq_wake_waiters(struct request_queue *q)
183 {
184         struct blk_mq_hw_ctx *hctx;
185         unsigned int i;
186
187         queue_for_each_hw_ctx(q, hctx, i)
188                 if (blk_mq_hw_queue_mapped(hctx))
189                         blk_mq_tag_wakeup_all(hctx->tags, true);
190
191         /*
192          * If we are called because the queue has now been marked as
193          * dying, we need to ensure that processes currently waiting on
194          * the queue are notified as well.
195          */
196         wake_up_all(&q->mq_freeze_wq);
197 }
198
199 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
200 {
201         return blk_mq_has_free_tags(hctx->tags);
202 }
203 EXPORT_SYMBOL(blk_mq_can_queue);
204
205 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
206                         struct request *rq, unsigned int op)
207 {
208         INIT_LIST_HEAD(&rq->queuelist);
209         /* csd/requeue_work/fifo_time is initialized before use */
210         rq->q = q;
211         rq->mq_ctx = ctx;
212         rq->cmd_flags = op;
213         if (blk_queue_io_stat(q))
214                 rq->rq_flags |= RQF_IO_STAT;
215         /* do not touch atomic flags, it needs atomic ops against the timer */
216         rq->cpu = -1;
217         INIT_HLIST_NODE(&rq->hash);
218         RB_CLEAR_NODE(&rq->rb_node);
219         rq->rq_disk = NULL;
220         rq->part = NULL;
221         rq->start_time = jiffies;
222 #ifdef CONFIG_BLK_CGROUP
223         rq->rl = NULL;
224         set_start_time_ns(rq);
225         rq->io_start_time_ns = 0;
226 #endif
227         rq->nr_phys_segments = 0;
228 #if defined(CONFIG_BLK_DEV_INTEGRITY)
229         rq->nr_integrity_segments = 0;
230 #endif
231         rq->special = NULL;
232         /* tag was already set */
233         rq->extra_len = 0;
234
235         INIT_LIST_HEAD(&rq->timeout_list);
236         rq->timeout = 0;
237
238         rq->end_io = NULL;
239         rq->end_io_data = NULL;
240         rq->next_rq = NULL;
241
242         ctx->rq_dispatched[op_is_sync(op)]++;
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
245
246 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
247                                        unsigned int op)
248 {
249         struct request *rq;
250         unsigned int tag;
251
252         tag = blk_mq_get_tag(data);
253         if (tag != BLK_MQ_TAG_FAIL) {
254                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
255
256                 rq = tags->static_rqs[tag];
257
258                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
259                         rq->tag = -1;
260                         rq->internal_tag = tag;
261                 } else {
262                         if (blk_mq_tag_busy(data->hctx)) {
263                                 rq->rq_flags = RQF_MQ_INFLIGHT;
264                                 atomic_inc(&data->hctx->nr_active);
265                         }
266                         rq->tag = tag;
267                         rq->internal_tag = -1;
268                         data->hctx->tags->rqs[rq->tag] = rq;
269                 }
270
271                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
272                 return rq;
273         }
274
275         return NULL;
276 }
277 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
280                 unsigned int flags)
281 {
282         struct blk_mq_alloc_data alloc_data = { .flags = flags };
283         struct request *rq;
284         int ret;
285
286         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
287         if (ret)
288                 return ERR_PTR(ret);
289
290         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
291
292         blk_mq_put_ctx(alloc_data.ctx);
293         blk_queue_exit(q);
294
295         if (!rq)
296                 return ERR_PTR(-EWOULDBLOCK);
297
298         rq->__data_len = 0;
299         rq->__sector = (sector_t) -1;
300         rq->bio = rq->biotail = NULL;
301         return rq;
302 }
303 EXPORT_SYMBOL(blk_mq_alloc_request);
304
305 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
306                 unsigned int flags, unsigned int hctx_idx)
307 {
308         struct blk_mq_alloc_data alloc_data = { .flags = flags };
309         struct request *rq;
310         unsigned int cpu;
311         int ret;
312
313         /*
314          * If the tag allocator sleeps we could get an allocation for a
315          * different hardware context.  No need to complicate the low level
316          * allocator for this for the rare use case of a command tied to
317          * a specific queue.
318          */
319         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
320                 return ERR_PTR(-EINVAL);
321
322         if (hctx_idx >= q->nr_hw_queues)
323                 return ERR_PTR(-EIO);
324
325         ret = blk_queue_enter(q, true);
326         if (ret)
327                 return ERR_PTR(ret);
328
329         /*
330          * Check if the hardware context is actually mapped to anything.
331          * If not tell the caller that it should skip this queue.
332          */
333         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
334         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
335                 blk_queue_exit(q);
336                 return ERR_PTR(-EXDEV);
337         }
338         cpu = cpumask_first(alloc_data.hctx->cpumask);
339         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
340
341         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
342
343         blk_queue_exit(q);
344
345         if (!rq)
346                 return ERR_PTR(-EWOULDBLOCK);
347
348         return rq;
349 }
350 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
351
352 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
353                              struct request *rq)
354 {
355         const int sched_tag = rq->internal_tag;
356         struct request_queue *q = rq->q;
357
358         if (rq->rq_flags & RQF_MQ_INFLIGHT)
359                 atomic_dec(&hctx->nr_active);
360
361         wbt_done(q->rq_wb, &rq->issue_stat);
362         rq->rq_flags = 0;
363
364         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
366         if (rq->tag != -1)
367                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
368         if (sched_tag != -1)
369                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
370         blk_mq_sched_restart(hctx);
371         blk_queue_exit(q);
372 }
373
374 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
375                                      struct request *rq)
376 {
377         struct blk_mq_ctx *ctx = rq->mq_ctx;
378
379         ctx->rq_completed[rq_is_sync(rq)]++;
380         __blk_mq_finish_request(hctx, ctx, rq);
381 }
382
383 void blk_mq_finish_request(struct request *rq)
384 {
385         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
386 }
387 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
388
389 void blk_mq_free_request(struct request *rq)
390 {
391         blk_mq_sched_put_request(rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_free_request);
394
395 inline void __blk_mq_end_request(struct request *rq, int error)
396 {
397         blk_account_io_done(rq);
398
399         if (rq->end_io) {
400                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
401                 rq->end_io(rq, error);
402         } else {
403                 if (unlikely(blk_bidi_rq(rq)))
404                         blk_mq_free_request(rq->next_rq);
405                 blk_mq_free_request(rq);
406         }
407 }
408 EXPORT_SYMBOL(__blk_mq_end_request);
409
410 void blk_mq_end_request(struct request *rq, int error)
411 {
412         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
413                 BUG();
414         __blk_mq_end_request(rq, error);
415 }
416 EXPORT_SYMBOL(blk_mq_end_request);
417
418 static void __blk_mq_complete_request_remote(void *data)
419 {
420         struct request *rq = data;
421
422         rq->q->softirq_done_fn(rq);
423 }
424
425 static void __blk_mq_complete_request(struct request *rq)
426 {
427         struct blk_mq_ctx *ctx = rq->mq_ctx;
428         bool shared = false;
429         int cpu;
430
431         if (rq->internal_tag != -1)
432                 blk_mq_sched_completed_request(rq);
433         if (rq->rq_flags & RQF_STATS) {
434                 blk_mq_poll_stats_start(rq->q);
435                 blk_stat_add(rq);
436         }
437
438         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
439                 rq->q->softirq_done_fn(rq);
440                 return;
441         }
442
443         cpu = get_cpu();
444         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
445                 shared = cpus_share_cache(cpu, ctx->cpu);
446
447         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
448                 rq->csd.func = __blk_mq_complete_request_remote;
449                 rq->csd.info = rq;
450                 rq->csd.flags = 0;
451                 smp_call_function_single_async(ctx->cpu, &rq->csd);
452         } else {
453                 rq->q->softirq_done_fn(rq);
454         }
455         put_cpu();
456 }
457
458 /**
459  * blk_mq_complete_request - end I/O on a request
460  * @rq:         the request being processed
461  *
462  * Description:
463  *      Ends all I/O on a request. It does not handle partial completions.
464  *      The actual completion happens out-of-order, through a IPI handler.
465  **/
466 void blk_mq_complete_request(struct request *rq)
467 {
468         struct request_queue *q = rq->q;
469
470         if (unlikely(blk_should_fake_timeout(q)))
471                 return;
472         if (!blk_mark_rq_complete(rq))
473                 __blk_mq_complete_request(rq);
474 }
475 EXPORT_SYMBOL(blk_mq_complete_request);
476
477 int blk_mq_request_started(struct request *rq)
478 {
479         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_request_started);
482
483 void blk_mq_start_request(struct request *rq)
484 {
485         struct request_queue *q = rq->q;
486
487         blk_mq_sched_started_request(rq);
488
489         trace_block_rq_issue(q, rq);
490
491         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
492                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
493                 rq->rq_flags |= RQF_STATS;
494                 wbt_issue(q->rq_wb, &rq->issue_stat);
495         }
496
497         blk_add_timer(rq);
498
499         /*
500          * Ensure that ->deadline is visible before set the started
501          * flag and clear the completed flag.
502          */
503         smp_mb__before_atomic();
504
505         /*
506          * Mark us as started and clear complete. Complete might have been
507          * set if requeue raced with timeout, which then marked it as
508          * complete. So be sure to clear complete again when we start
509          * the request, otherwise we'll ignore the completion event.
510          */
511         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
512                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
513         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
514                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
515
516         if (q->dma_drain_size && blk_rq_bytes(rq)) {
517                 /*
518                  * Make sure space for the drain appears.  We know we can do
519                  * this because max_hw_segments has been adjusted to be one
520                  * fewer than the device can handle.
521                  */
522                 rq->nr_phys_segments++;
523         }
524 }
525 EXPORT_SYMBOL(blk_mq_start_request);
526
527 /*
528  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
529  * flag isn't set yet, so there may be race with timeout handler,
530  * but given rq->deadline is just set in .queue_rq() under
531  * this situation, the race won't be possible in reality because
532  * rq->timeout should be set as big enough to cover the window
533  * between blk_mq_start_request() called from .queue_rq() and
534  * clearing REQ_ATOM_STARTED here.
535  */
536 static void __blk_mq_requeue_request(struct request *rq)
537 {
538         struct request_queue *q = rq->q;
539
540         trace_block_rq_requeue(q, rq);
541         wbt_requeue(q->rq_wb, &rq->issue_stat);
542         blk_mq_sched_requeue_request(rq);
543
544         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
545                 if (q->dma_drain_size && blk_rq_bytes(rq))
546                         rq->nr_phys_segments--;
547         }
548 }
549
550 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
551 {
552         __blk_mq_requeue_request(rq);
553
554         BUG_ON(blk_queued_rq(rq));
555         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
556 }
557 EXPORT_SYMBOL(blk_mq_requeue_request);
558
559 static void blk_mq_requeue_work(struct work_struct *work)
560 {
561         struct request_queue *q =
562                 container_of(work, struct request_queue, requeue_work.work);
563         LIST_HEAD(rq_list);
564         struct request *rq, *next;
565         unsigned long flags;
566
567         spin_lock_irqsave(&q->requeue_lock, flags);
568         list_splice_init(&q->requeue_list, &rq_list);
569         spin_unlock_irqrestore(&q->requeue_lock, flags);
570
571         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
572                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
573                         continue;
574
575                 rq->rq_flags &= ~RQF_SOFTBARRIER;
576                 list_del_init(&rq->queuelist);
577                 blk_mq_sched_insert_request(rq, true, false, false, true);
578         }
579
580         while (!list_empty(&rq_list)) {
581                 rq = list_entry(rq_list.next, struct request, queuelist);
582                 list_del_init(&rq->queuelist);
583                 blk_mq_sched_insert_request(rq, false, false, false, true);
584         }
585
586         blk_mq_run_hw_queues(q, false);
587 }
588
589 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
590                                 bool kick_requeue_list)
591 {
592         struct request_queue *q = rq->q;
593         unsigned long flags;
594
595         /*
596          * We abuse this flag that is otherwise used by the I/O scheduler to
597          * request head insertation from the workqueue.
598          */
599         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
600
601         spin_lock_irqsave(&q->requeue_lock, flags);
602         if (at_head) {
603                 rq->rq_flags |= RQF_SOFTBARRIER;
604                 list_add(&rq->queuelist, &q->requeue_list);
605         } else {
606                 list_add_tail(&rq->queuelist, &q->requeue_list);
607         }
608         spin_unlock_irqrestore(&q->requeue_lock, flags);
609
610         if (kick_requeue_list)
611                 blk_mq_kick_requeue_list(q);
612 }
613 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
614
615 void blk_mq_kick_requeue_list(struct request_queue *q)
616 {
617         kblockd_schedule_delayed_work(&q->requeue_work, 0);
618 }
619 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
620
621 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
622                                     unsigned long msecs)
623 {
624         kblockd_schedule_delayed_work(&q->requeue_work,
625                                       msecs_to_jiffies(msecs));
626 }
627 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
628
629 void blk_mq_abort_requeue_list(struct request_queue *q)
630 {
631         unsigned long flags;
632         LIST_HEAD(rq_list);
633
634         spin_lock_irqsave(&q->requeue_lock, flags);
635         list_splice_init(&q->requeue_list, &rq_list);
636         spin_unlock_irqrestore(&q->requeue_lock, flags);
637
638         while (!list_empty(&rq_list)) {
639                 struct request *rq;
640
641                 rq = list_first_entry(&rq_list, struct request, queuelist);
642                 list_del_init(&rq->queuelist);
643                 blk_mq_end_request(rq, -EIO);
644         }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650         if (tag < tags->nr_tags) {
651                 prefetch(tags->rqs[tag]);
652                 return tags->rqs[tag];
653         }
654
655         return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660         unsigned long next;
661         unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666         const struct blk_mq_ops *ops = req->q->mq_ops;
667         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669         /*
670          * We know that complete is set at this point. If STARTED isn't set
671          * anymore, then the request isn't active and the "timeout" should
672          * just be ignored. This can happen due to the bitflag ordering.
673          * Timeout first checks if STARTED is set, and if it is, assumes
674          * the request is active. But if we race with completion, then
675          * both flags will get cleared. So check here again, and ignore
676          * a timeout event with a request that isn't active.
677          */
678         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679                 return;
680
681         if (ops->timeout)
682                 ret = ops->timeout(req, reserved);
683
684         switch (ret) {
685         case BLK_EH_HANDLED:
686                 __blk_mq_complete_request(req);
687                 break;
688         case BLK_EH_RESET_TIMER:
689                 blk_add_timer(req);
690                 blk_clear_rq_complete(req);
691                 break;
692         case BLK_EH_NOT_HANDLED:
693                 break;
694         default:
695                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696                 break;
697         }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701                 struct request *rq, void *priv, bool reserved)
702 {
703         struct blk_mq_timeout_data *data = priv;
704
705         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706                 return;
707
708         /*
709          * The rq being checked may have been freed and reallocated
710          * out already here, we avoid this race by checking rq->deadline
711          * and REQ_ATOM_COMPLETE flag together:
712          *
713          * - if rq->deadline is observed as new value because of
714          *   reusing, the rq won't be timed out because of timing.
715          * - if rq->deadline is observed as previous value,
716          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717          *   because we put a barrier between setting rq->deadline
718          *   and clearing the flag in blk_mq_start_request(), so
719          *   this rq won't be timed out too.
720          */
721         if (time_after_eq(jiffies, rq->deadline)) {
722                 if (!blk_mark_rq_complete(rq))
723                         blk_mq_rq_timed_out(rq, reserved);
724         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725                 data->next = rq->deadline;
726                 data->next_set = 1;
727         }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732         struct request_queue *q =
733                 container_of(work, struct request_queue, timeout_work);
734         struct blk_mq_timeout_data data = {
735                 .next           = 0,
736                 .next_set       = 0,
737         };
738         int i;
739
740         /* A deadlock might occur if a request is stuck requiring a
741          * timeout at the same time a queue freeze is waiting
742          * completion, since the timeout code would not be able to
743          * acquire the queue reference here.
744          *
745          * That's why we don't use blk_queue_enter here; instead, we use
746          * percpu_ref_tryget directly, because we need to be able to
747          * obtain a reference even in the short window between the queue
748          * starting to freeze, by dropping the first reference in
749          * blk_freeze_queue_start, and the moment the last request is
750          * consumed, marked by the instant q_usage_counter reaches
751          * zero.
752          */
753         if (!percpu_ref_tryget(&q->q_usage_counter))
754                 return;
755
756         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758         if (data.next_set) {
759                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760                 mod_timer(&q->timeout, data.next);
761         } else {
762                 struct blk_mq_hw_ctx *hctx;
763
764                 queue_for_each_hw_ctx(q, hctx, i) {
765                         /* the hctx may be unmapped, so check it here */
766                         if (blk_mq_hw_queue_mapped(hctx))
767                                 blk_mq_tag_idle(hctx);
768                 }
769         }
770         blk_queue_exit(q);
771 }
772
773 /*
774  * Reverse check our software queue for entries that we could potentially
775  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776  * too much time checking for merges.
777  */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779                                  struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781         struct request *rq;
782         int checked = 8;
783
784         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785                 bool merged = false;
786
787                 if (!checked--)
788                         break;
789
790                 if (!blk_rq_merge_ok(rq, bio))
791                         continue;
792
793                 switch (blk_try_merge(rq, bio)) {
794                 case ELEVATOR_BACK_MERGE:
795                         if (blk_mq_sched_allow_merge(q, rq, bio))
796                                 merged = bio_attempt_back_merge(q, rq, bio);
797                         break;
798                 case ELEVATOR_FRONT_MERGE:
799                         if (blk_mq_sched_allow_merge(q, rq, bio))
800                                 merged = bio_attempt_front_merge(q, rq, bio);
801                         break;
802                 case ELEVATOR_DISCARD_MERGE:
803                         merged = bio_attempt_discard_merge(q, rq, bio);
804                         break;
805                 default:
806                         continue;
807                 }
808
809                 if (merged)
810                         ctx->rq_merged++;
811                 return merged;
812         }
813
814         return false;
815 }
816
817 struct flush_busy_ctx_data {
818         struct blk_mq_hw_ctx *hctx;
819         struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824         struct flush_busy_ctx_data *flush_data = data;
825         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828         sbitmap_clear_bit(sb, bitnr);
829         spin_lock(&ctx->lock);
830         list_splice_tail_init(&ctx->rq_list, flush_data->list);
831         spin_unlock(&ctx->lock);
832         return true;
833 }
834
835 /*
836  * Process software queues that have been marked busy, splicing them
837  * to the for-dispatch
838  */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841         struct flush_busy_ctx_data data = {
842                 .hctx = hctx,
843                 .list = list,
844         };
845
846         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852         if (!queued)
853                 return 0;
854
855         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859                            bool wait)
860 {
861         struct blk_mq_alloc_data data = {
862                 .q = rq->q,
863                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865         };
866
867         might_sleep_if(wait);
868
869         if (rq->tag != -1)
870                 goto done;
871
872         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
873                 data.flags |= BLK_MQ_REQ_RESERVED;
874
875         rq->tag = blk_mq_get_tag(&data);
876         if (rq->tag >= 0) {
877                 if (blk_mq_tag_busy(data.hctx)) {
878                         rq->rq_flags |= RQF_MQ_INFLIGHT;
879                         atomic_inc(&data.hctx->nr_active);
880                 }
881                 data.hctx->tags->rqs[rq->tag] = rq;
882         }
883
884 done:
885         if (hctx)
886                 *hctx = data.hctx;
887         return rq->tag != -1;
888 }
889
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891                                     struct request *rq)
892 {
893         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894         rq->tag = -1;
895
896         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898                 atomic_dec(&hctx->nr_active);
899         }
900 }
901
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903                                        struct request *rq)
904 {
905         if (rq->tag == -1 || rq->internal_tag == -1)
906                 return;
907
908         __blk_mq_put_driver_tag(hctx, rq);
909 }
910
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913         struct blk_mq_hw_ctx *hctx;
914
915         if (rq->tag == -1 || rq->internal_tag == -1)
916                 return;
917
918         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919         __blk_mq_put_driver_tag(hctx, rq);
920 }
921
922 /*
923  * If we fail getting a driver tag because all the driver tags are already
924  * assigned and on the dispatch list, BUT the first entry does not have a
925  * tag, then we could deadlock. For that case, move entries with assigned
926  * driver tags to the front, leaving the set of tagged requests in the
927  * same order, and the untagged set in the same order.
928  */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931         struct request *rq, *tmp, *first = NULL;
932
933         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934                 if (rq == first)
935                         break;
936                 if (rq->tag != -1) {
937                         list_move(&rq->queuelist, list);
938                         if (!first)
939                                 first = rq;
940                 }
941         }
942
943         return first != NULL;
944 }
945
946 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947                                 void *key)
948 {
949         struct blk_mq_hw_ctx *hctx;
950
951         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953         list_del(&wait->task_list);
954         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955         blk_mq_run_hw_queue(hctx, true);
956         return 1;
957 }
958
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961         struct sbq_wait_state *ws;
962
963         /*
964          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965          * The thread which wins the race to grab this bit adds the hardware
966          * queue to the wait queue.
967          */
968         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970                 return false;
971
972         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975         /*
976          * As soon as this returns, it's no longer safe to fiddle with
977          * hctx->dispatch_wait, since a completion can wake up the wait queue
978          * and unlock the bit.
979          */
980         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981         return true;
982 }
983
984 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985 {
986         struct blk_mq_hw_ctx *hctx;
987         struct request *rq;
988         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
989
990         if (list_empty(list))
991                 return false;
992
993         /*
994          * Now process all the entries, sending them to the driver.
995          */
996         errors = queued = 0;
997         do {
998                 struct blk_mq_queue_data bd;
999
1000                 rq = list_first_entry(list, struct request, queuelist);
1001                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1002                         if (!queued && reorder_tags_to_front(list))
1003                                 continue;
1004
1005                         /*
1006                          * The initial allocation attempt failed, so we need to
1007                          * rerun the hardware queue when a tag is freed.
1008                          */
1009                         if (!blk_mq_dispatch_wait_add(hctx))
1010                                 break;
1011
1012                         /*
1013                          * It's possible that a tag was freed in the window
1014                          * between the allocation failure and adding the
1015                          * hardware queue to the wait queue.
1016                          */
1017                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1018                                 break;
1019                 }
1020
1021                 list_del_init(&rq->queuelist);
1022
1023                 bd.rq = rq;
1024
1025                 /*
1026                  * Flag last if we have no more requests, or if we have more
1027                  * but can't assign a driver tag to it.
1028                  */
1029                 if (list_empty(list))
1030                         bd.last = true;
1031                 else {
1032                         struct request *nxt;
1033
1034                         nxt = list_first_entry(list, struct request, queuelist);
1035                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1036                 }
1037
1038                 ret = q->mq_ops->queue_rq(hctx, &bd);
1039                 switch (ret) {
1040                 case BLK_MQ_RQ_QUEUE_OK:
1041                         queued++;
1042                         break;
1043                 case BLK_MQ_RQ_QUEUE_BUSY:
1044                         blk_mq_put_driver_tag_hctx(hctx, rq);
1045                         list_add(&rq->queuelist, list);
1046                         __blk_mq_requeue_request(rq);
1047                         break;
1048                 default:
1049                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1050                 case BLK_MQ_RQ_QUEUE_ERROR:
1051                         errors++;
1052                         blk_mq_end_request(rq, -EIO);
1053                         break;
1054                 }
1055
1056                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1057                         break;
1058         } while (!list_empty(list));
1059
1060         hctx->dispatched[queued_to_index(queued)]++;
1061
1062         /*
1063          * Any items that need requeuing? Stuff them into hctx->dispatch,
1064          * that is where we will continue on next queue run.
1065          */
1066         if (!list_empty(list)) {
1067                 /*
1068                  * If an I/O scheduler has been configured and we got a driver
1069                  * tag for the next request already, free it again.
1070                  */
1071                 rq = list_first_entry(list, struct request, queuelist);
1072                 blk_mq_put_driver_tag(rq);
1073
1074                 spin_lock(&hctx->lock);
1075                 list_splice_init(list, &hctx->dispatch);
1076                 spin_unlock(&hctx->lock);
1077
1078                 /*
1079                  * If SCHED_RESTART was set by the caller of this function and
1080                  * it is no longer set that means that it was cleared by another
1081                  * thread and hence that a queue rerun is needed.
1082                  *
1083                  * If TAG_WAITING is set that means that an I/O scheduler has
1084                  * been configured and another thread is waiting for a driver
1085                  * tag. To guarantee fairness, do not rerun this hardware queue
1086                  * but let the other thread grab the driver tag.
1087                  *
1088                  * If no I/O scheduler has been configured it is possible that
1089                  * the hardware queue got stopped and restarted before requests
1090                  * were pushed back onto the dispatch list. Rerun the queue to
1091                  * avoid starvation. Notes:
1092                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1093                  *   been stopped before rerunning a queue.
1094                  * - Some but not all block drivers stop a queue before
1095                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1096                  *   and dm-rq.
1097                  */
1098                 if (!blk_mq_sched_needs_restart(hctx) &&
1099                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1100                         blk_mq_run_hw_queue(hctx, true);
1101         }
1102
1103         return (queued + errors) != 0;
1104 }
1105
1106 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1107 {
1108         int srcu_idx;
1109
1110         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1111                 cpu_online(hctx->next_cpu));
1112
1113         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1114                 rcu_read_lock();
1115                 blk_mq_sched_dispatch_requests(hctx);
1116                 rcu_read_unlock();
1117         } else {
1118                 might_sleep();
1119
1120                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1121                 blk_mq_sched_dispatch_requests(hctx);
1122                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1123         }
1124 }
1125
1126 /*
1127  * It'd be great if the workqueue API had a way to pass
1128  * in a mask and had some smarts for more clever placement.
1129  * For now we just round-robin here, switching for every
1130  * BLK_MQ_CPU_WORK_BATCH queued items.
1131  */
1132 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1133 {
1134         if (hctx->queue->nr_hw_queues == 1)
1135                 return WORK_CPU_UNBOUND;
1136
1137         if (--hctx->next_cpu_batch <= 0) {
1138                 int next_cpu;
1139
1140                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141                 if (next_cpu >= nr_cpu_ids)
1142                         next_cpu = cpumask_first(hctx->cpumask);
1143
1144                 hctx->next_cpu = next_cpu;
1145                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1146         }
1147
1148         return hctx->next_cpu;
1149 }
1150
1151 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152                                         unsigned long msecs)
1153 {
1154         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1155                      !blk_mq_hw_queue_mapped(hctx)))
1156                 return;
1157
1158         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1159                 int cpu = get_cpu();
1160                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1161                         __blk_mq_run_hw_queue(hctx);
1162                         put_cpu();
1163                         return;
1164                 }
1165
1166                 put_cpu();
1167         }
1168
1169         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1170                                          &hctx->run_work,
1171                                          msecs_to_jiffies(msecs));
1172 }
1173
1174 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1175 {
1176         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1177 }
1178 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1179
1180 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1181 {
1182         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1183 }
1184 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1185
1186 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1187 {
1188         struct blk_mq_hw_ctx *hctx;
1189         int i;
1190
1191         queue_for_each_hw_ctx(q, hctx, i) {
1192                 if (!blk_mq_hctx_has_pending(hctx) ||
1193                     blk_mq_hctx_stopped(hctx))
1194                         continue;
1195
1196                 blk_mq_run_hw_queue(hctx, async);
1197         }
1198 }
1199 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1200
1201 /**
1202  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1203  * @q: request queue.
1204  *
1205  * The caller is responsible for serializing this function against
1206  * blk_mq_{start,stop}_hw_queue().
1207  */
1208 bool blk_mq_queue_stopped(struct request_queue *q)
1209 {
1210         struct blk_mq_hw_ctx *hctx;
1211         int i;
1212
1213         queue_for_each_hw_ctx(q, hctx, i)
1214                 if (blk_mq_hctx_stopped(hctx))
1215                         return true;
1216
1217         return false;
1218 }
1219 EXPORT_SYMBOL(blk_mq_queue_stopped);
1220
1221 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1222 {
1223         cancel_delayed_work_sync(&hctx->run_work);
1224         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1225 }
1226 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1227
1228 void blk_mq_stop_hw_queues(struct request_queue *q)
1229 {
1230         struct blk_mq_hw_ctx *hctx;
1231         int i;
1232
1233         queue_for_each_hw_ctx(q, hctx, i)
1234                 blk_mq_stop_hw_queue(hctx);
1235 }
1236 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1237
1238 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1239 {
1240         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1241
1242         blk_mq_run_hw_queue(hctx, false);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1245
1246 void blk_mq_start_hw_queues(struct request_queue *q)
1247 {
1248         struct blk_mq_hw_ctx *hctx;
1249         int i;
1250
1251         queue_for_each_hw_ctx(q, hctx, i)
1252                 blk_mq_start_hw_queue(hctx);
1253 }
1254 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1255
1256 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1257 {
1258         if (!blk_mq_hctx_stopped(hctx))
1259                 return;
1260
1261         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1262         blk_mq_run_hw_queue(hctx, async);
1263 }
1264 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1265
1266 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1267 {
1268         struct blk_mq_hw_ctx *hctx;
1269         int i;
1270
1271         queue_for_each_hw_ctx(q, hctx, i)
1272                 blk_mq_start_stopped_hw_queue(hctx, async);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1275
1276 static void blk_mq_run_work_fn(struct work_struct *work)
1277 {
1278         struct blk_mq_hw_ctx *hctx;
1279
1280         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1281
1282         /*
1283          * If we are stopped, don't run the queue. The exception is if
1284          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1285          * the STOPPED bit and run it.
1286          */
1287         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1288                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1289                         return;
1290
1291                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1292                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1293         }
1294
1295         __blk_mq_run_hw_queue(hctx);
1296 }
1297
1298
1299 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1300 {
1301         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1302                 return;
1303
1304         /*
1305          * Stop the hw queue, then modify currently delayed work.
1306          * This should prevent us from running the queue prematurely.
1307          * Mark the queue as auto-clearing STOPPED when it runs.
1308          */
1309         blk_mq_stop_hw_queue(hctx);
1310         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1311         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1312                                         &hctx->run_work,
1313                                         msecs_to_jiffies(msecs));
1314 }
1315 EXPORT_SYMBOL(blk_mq_delay_queue);
1316
1317 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1318                                             struct request *rq,
1319                                             bool at_head)
1320 {
1321         struct blk_mq_ctx *ctx = rq->mq_ctx;
1322
1323         trace_block_rq_insert(hctx->queue, rq);
1324
1325         if (at_head)
1326                 list_add(&rq->queuelist, &ctx->rq_list);
1327         else
1328                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1329 }
1330
1331 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1332                              bool at_head)
1333 {
1334         struct blk_mq_ctx *ctx = rq->mq_ctx;
1335
1336         __blk_mq_insert_req_list(hctx, rq, at_head);
1337         blk_mq_hctx_mark_pending(hctx, ctx);
1338 }
1339
1340 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1341                             struct list_head *list)
1342
1343 {
1344         /*
1345          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1346          * offline now
1347          */
1348         spin_lock(&ctx->lock);
1349         while (!list_empty(list)) {
1350                 struct request *rq;
1351
1352                 rq = list_first_entry(list, struct request, queuelist);
1353                 BUG_ON(rq->mq_ctx != ctx);
1354                 list_del_init(&rq->queuelist);
1355                 __blk_mq_insert_req_list(hctx, rq, false);
1356         }
1357         blk_mq_hctx_mark_pending(hctx, ctx);
1358         spin_unlock(&ctx->lock);
1359 }
1360
1361 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1362 {
1363         struct request *rqa = container_of(a, struct request, queuelist);
1364         struct request *rqb = container_of(b, struct request, queuelist);
1365
1366         return !(rqa->mq_ctx < rqb->mq_ctx ||
1367                  (rqa->mq_ctx == rqb->mq_ctx &&
1368                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1369 }
1370
1371 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1372 {
1373         struct blk_mq_ctx *this_ctx;
1374         struct request_queue *this_q;
1375         struct request *rq;
1376         LIST_HEAD(list);
1377         LIST_HEAD(ctx_list);
1378         unsigned int depth;
1379
1380         list_splice_init(&plug->mq_list, &list);
1381
1382         list_sort(NULL, &list, plug_ctx_cmp);
1383
1384         this_q = NULL;
1385         this_ctx = NULL;
1386         depth = 0;
1387
1388         while (!list_empty(&list)) {
1389                 rq = list_entry_rq(list.next);
1390                 list_del_init(&rq->queuelist);
1391                 BUG_ON(!rq->q);
1392                 if (rq->mq_ctx != this_ctx) {
1393                         if (this_ctx) {
1394                                 trace_block_unplug(this_q, depth, from_schedule);
1395                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1396                                                                 &ctx_list,
1397                                                                 from_schedule);
1398                         }
1399
1400                         this_ctx = rq->mq_ctx;
1401                         this_q = rq->q;
1402                         depth = 0;
1403                 }
1404
1405                 depth++;
1406                 list_add_tail(&rq->queuelist, &ctx_list);
1407         }
1408
1409         /*
1410          * If 'this_ctx' is set, we know we have entries to complete
1411          * on 'ctx_list'. Do those.
1412          */
1413         if (this_ctx) {
1414                 trace_block_unplug(this_q, depth, from_schedule);
1415                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1416                                                 from_schedule);
1417         }
1418 }
1419
1420 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1421 {
1422         blk_init_request_from_bio(rq, bio);
1423
1424         blk_account_io_start(rq, true);
1425 }
1426
1427 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1428 {
1429         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1430                 !blk_queue_nomerges(hctx->queue);
1431 }
1432
1433 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1434                                          struct blk_mq_ctx *ctx,
1435                                          struct request *rq, struct bio *bio)
1436 {
1437         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1438                 blk_mq_bio_to_request(rq, bio);
1439                 spin_lock(&ctx->lock);
1440 insert_rq:
1441                 __blk_mq_insert_request(hctx, rq, false);
1442                 spin_unlock(&ctx->lock);
1443                 return false;
1444         } else {
1445                 struct request_queue *q = hctx->queue;
1446
1447                 spin_lock(&ctx->lock);
1448                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1449                         blk_mq_bio_to_request(rq, bio);
1450                         goto insert_rq;
1451                 }
1452
1453                 spin_unlock(&ctx->lock);
1454                 __blk_mq_finish_request(hctx, ctx, rq);
1455                 return true;
1456         }
1457 }
1458
1459 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1460 {
1461         if (rq->tag != -1)
1462                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1463
1464         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1465 }
1466
1467 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1468                                       bool may_sleep)
1469 {
1470         struct request_queue *q = rq->q;
1471         struct blk_mq_queue_data bd = {
1472                 .rq = rq,
1473                 .last = true,
1474         };
1475         struct blk_mq_hw_ctx *hctx;
1476         blk_qc_t new_cookie;
1477         int ret;
1478
1479         if (q->elevator)
1480                 goto insert;
1481
1482         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1483                 goto insert;
1484
1485         new_cookie = request_to_qc_t(hctx, rq);
1486
1487         /*
1488          * For OK queue, we are done. For error, kill it. Any other
1489          * error (busy), just add it to our list as we previously
1490          * would have done
1491          */
1492         ret = q->mq_ops->queue_rq(hctx, &bd);
1493         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1494                 *cookie = new_cookie;
1495                 return;
1496         }
1497
1498         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1499                 *cookie = BLK_QC_T_NONE;
1500                 blk_mq_end_request(rq, -EIO);
1501                 return;
1502         }
1503
1504         __blk_mq_requeue_request(rq);
1505 insert:
1506         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1507 }
1508
1509 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1510                 struct request *rq, blk_qc_t *cookie)
1511 {
1512         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1513                 rcu_read_lock();
1514                 __blk_mq_try_issue_directly(rq, cookie, false);
1515                 rcu_read_unlock();
1516         } else {
1517                 unsigned int srcu_idx;
1518
1519                 might_sleep();
1520
1521                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1522                 __blk_mq_try_issue_directly(rq, cookie, true);
1523                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1524         }
1525 }
1526
1527 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529         const int is_sync = op_is_sync(bio->bi_opf);
1530         const int is_flush_fua = op_is_flush(bio->bi_opf);
1531         struct blk_mq_alloc_data data = { .flags = 0 };
1532         struct request *rq;
1533         unsigned int request_count = 0;
1534         struct blk_plug *plug;
1535         struct request *same_queue_rq = NULL;
1536         blk_qc_t cookie;
1537         unsigned int wb_acct;
1538
1539         blk_queue_bounce(q, &bio);
1540
1541         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1542                 bio_io_error(bio);
1543                 return BLK_QC_T_NONE;
1544         }
1545
1546         blk_queue_split(q, &bio, q->bio_split);
1547
1548         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1549             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1550                 return BLK_QC_T_NONE;
1551
1552         if (blk_mq_sched_bio_merge(q, bio))
1553                 return BLK_QC_T_NONE;
1554
1555         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1556
1557         trace_block_getrq(q, bio, bio->bi_opf);
1558
1559         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1560         if (unlikely(!rq)) {
1561                 __wbt_done(q->rq_wb, wb_acct);
1562                 return BLK_QC_T_NONE;
1563         }
1564
1565         wbt_track(&rq->issue_stat, wb_acct);
1566
1567         cookie = request_to_qc_t(data.hctx, rq);
1568
1569         plug = current->plug;
1570         if (unlikely(is_flush_fua)) {
1571                 blk_mq_put_ctx(data.ctx);
1572                 blk_mq_bio_to_request(rq, bio);
1573                 if (q->elevator) {
1574                         blk_mq_sched_insert_request(rq, false, true, true,
1575                                         true);
1576                 } else {
1577                         blk_insert_flush(rq);
1578                         blk_mq_run_hw_queue(data.hctx, true);
1579                 }
1580         } else if (plug && q->nr_hw_queues == 1) {
1581                 struct request *last = NULL;
1582
1583                 blk_mq_put_ctx(data.ctx);
1584                 blk_mq_bio_to_request(rq, bio);
1585
1586                 /*
1587                  * @request_count may become stale because of schedule
1588                  * out, so check the list again.
1589                  */
1590                 if (list_empty(&plug->mq_list))
1591                         request_count = 0;
1592                 else if (blk_queue_nomerges(q))
1593                         request_count = blk_plug_queued_count(q);
1594
1595                 if (!request_count)
1596                         trace_block_plug(q);
1597                 else
1598                         last = list_entry_rq(plug->mq_list.prev);
1599
1600                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1601                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602                         blk_flush_plug_list(plug, false);
1603                         trace_block_plug(q);
1604                 }
1605
1606                 list_add_tail(&rq->queuelist, &plug->mq_list);
1607         } else if (plug && !blk_queue_nomerges(q)) {
1608                 blk_mq_bio_to_request(rq, bio);
1609
1610                 /*
1611                  * We do limited plugging. If the bio can be merged, do that.
1612                  * Otherwise the existing request in the plug list will be
1613                  * issued. So the plug list will have one request at most
1614                  * The plug list might get flushed before this. If that happens,
1615                  * the plug list is empty, and same_queue_rq is invalid.
1616                  */
1617                 if (list_empty(&plug->mq_list))
1618                         same_queue_rq = NULL;
1619                 if (same_queue_rq)
1620                         list_del_init(&same_queue_rq->queuelist);
1621                 list_add_tail(&rq->queuelist, &plug->mq_list);
1622
1623                 blk_mq_put_ctx(data.ctx);
1624
1625                 if (same_queue_rq)
1626                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1627                                         &cookie);
1628         } else if (q->nr_hw_queues > 1 && is_sync) {
1629                 blk_mq_put_ctx(data.ctx);
1630                 blk_mq_bio_to_request(rq, bio);
1631                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1632         } else if (q->elevator) {
1633                 blk_mq_put_ctx(data.ctx);
1634                 blk_mq_bio_to_request(rq, bio);
1635                 blk_mq_sched_insert_request(rq, false, true, true, true);
1636         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1637                 blk_mq_put_ctx(data.ctx);
1638                 blk_mq_run_hw_queue(data.hctx, true);
1639         } else
1640                 blk_mq_put_ctx(data.ctx);
1641
1642         return cookie;
1643 }
1644
1645 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646                      unsigned int hctx_idx)
1647 {
1648         struct page *page;
1649
1650         if (tags->rqs && set->ops->exit_request) {
1651                 int i;
1652
1653                 for (i = 0; i < tags->nr_tags; i++) {
1654                         struct request *rq = tags->static_rqs[i];
1655
1656                         if (!rq)
1657                                 continue;
1658                         set->ops->exit_request(set, rq, hctx_idx);
1659                         tags->static_rqs[i] = NULL;
1660                 }
1661         }
1662
1663         while (!list_empty(&tags->page_list)) {
1664                 page = list_first_entry(&tags->page_list, struct page, lru);
1665                 list_del_init(&page->lru);
1666                 /*
1667                  * Remove kmemleak object previously allocated in
1668                  * blk_mq_init_rq_map().
1669                  */
1670                 kmemleak_free(page_address(page));
1671                 __free_pages(page, page->private);
1672         }
1673 }
1674
1675 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1676 {
1677         kfree(tags->rqs);
1678         tags->rqs = NULL;
1679         kfree(tags->static_rqs);
1680         tags->static_rqs = NULL;
1681
1682         blk_mq_free_tags(tags);
1683 }
1684
1685 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1686                                         unsigned int hctx_idx,
1687                                         unsigned int nr_tags,
1688                                         unsigned int reserved_tags)
1689 {
1690         struct blk_mq_tags *tags;
1691         int node;
1692
1693         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1694         if (node == NUMA_NO_NODE)
1695                 node = set->numa_node;
1696
1697         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1698                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1699         if (!tags)
1700                 return NULL;
1701
1702         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1703                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1704                                  node);
1705         if (!tags->rqs) {
1706                 blk_mq_free_tags(tags);
1707                 return NULL;
1708         }
1709
1710         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1711                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1712                                  node);
1713         if (!tags->static_rqs) {
1714                 kfree(tags->rqs);
1715                 blk_mq_free_tags(tags);
1716                 return NULL;
1717         }
1718
1719         return tags;
1720 }
1721
1722 static size_t order_to_size(unsigned int order)
1723 {
1724         return (size_t)PAGE_SIZE << order;
1725 }
1726
1727 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1728                      unsigned int hctx_idx, unsigned int depth)
1729 {
1730         unsigned int i, j, entries_per_page, max_order = 4;
1731         size_t rq_size, left;
1732         int node;
1733
1734         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1735         if (node == NUMA_NO_NODE)
1736                 node = set->numa_node;
1737
1738         INIT_LIST_HEAD(&tags->page_list);
1739
1740         /*
1741          * rq_size is the size of the request plus driver payload, rounded
1742          * to the cacheline size
1743          */
1744         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1745                                 cache_line_size());
1746         left = rq_size * depth;
1747
1748         for (i = 0; i < depth; ) {
1749                 int this_order = max_order;
1750                 struct page *page;
1751                 int to_do;
1752                 void *p;
1753
1754                 while (this_order && left < order_to_size(this_order - 1))
1755                         this_order--;
1756
1757                 do {
1758                         page = alloc_pages_node(node,
1759                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1760                                 this_order);
1761                         if (page)
1762                                 break;
1763                         if (!this_order--)
1764                                 break;
1765                         if (order_to_size(this_order) < rq_size)
1766                                 break;
1767                 } while (1);
1768
1769                 if (!page)
1770                         goto fail;
1771
1772                 page->private = this_order;
1773                 list_add_tail(&page->lru, &tags->page_list);
1774
1775                 p = page_address(page);
1776                 /*
1777                  * Allow kmemleak to scan these pages as they contain pointers
1778                  * to additional allocations like via ops->init_request().
1779                  */
1780                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1781                 entries_per_page = order_to_size(this_order) / rq_size;
1782                 to_do = min(entries_per_page, depth - i);
1783                 left -= to_do * rq_size;
1784                 for (j = 0; j < to_do; j++) {
1785                         struct request *rq = p;
1786
1787                         tags->static_rqs[i] = rq;
1788                         if (set->ops->init_request) {
1789                                 if (set->ops->init_request(set, rq, hctx_idx,
1790                                                 node)) {
1791                                         tags->static_rqs[i] = NULL;
1792                                         goto fail;
1793                                 }
1794                         }
1795
1796                         p += rq_size;
1797                         i++;
1798                 }
1799         }
1800         return 0;
1801
1802 fail:
1803         blk_mq_free_rqs(set, tags, hctx_idx);
1804         return -ENOMEM;
1805 }
1806
1807 /*
1808  * 'cpu' is going away. splice any existing rq_list entries from this
1809  * software queue to the hw queue dispatch list, and ensure that it
1810  * gets run.
1811  */
1812 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1813 {
1814         struct blk_mq_hw_ctx *hctx;
1815         struct blk_mq_ctx *ctx;
1816         LIST_HEAD(tmp);
1817
1818         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1819         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1820
1821         spin_lock(&ctx->lock);
1822         if (!list_empty(&ctx->rq_list)) {
1823                 list_splice_init(&ctx->rq_list, &tmp);
1824                 blk_mq_hctx_clear_pending(hctx, ctx);
1825         }
1826         spin_unlock(&ctx->lock);
1827
1828         if (list_empty(&tmp))
1829                 return 0;
1830
1831         spin_lock(&hctx->lock);
1832         list_splice_tail_init(&tmp, &hctx->dispatch);
1833         spin_unlock(&hctx->lock);
1834
1835         blk_mq_run_hw_queue(hctx, true);
1836         return 0;
1837 }
1838
1839 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1840 {
1841         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1842                                             &hctx->cpuhp_dead);
1843 }
1844
1845 /* hctx->ctxs will be freed in queue's release handler */
1846 static void blk_mq_exit_hctx(struct request_queue *q,
1847                 struct blk_mq_tag_set *set,
1848                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1849 {
1850         blk_mq_tag_idle(hctx);
1851
1852         if (set->ops->exit_request)
1853                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1854
1855         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1856
1857         if (set->ops->exit_hctx)
1858                 set->ops->exit_hctx(hctx, hctx_idx);
1859
1860         if (hctx->flags & BLK_MQ_F_BLOCKING)
1861                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1862
1863         blk_mq_remove_cpuhp(hctx);
1864         blk_free_flush_queue(hctx->fq);
1865         sbitmap_free(&hctx->ctx_map);
1866 }
1867
1868 static void blk_mq_exit_hw_queues(struct request_queue *q,
1869                 struct blk_mq_tag_set *set, int nr_queue)
1870 {
1871         struct blk_mq_hw_ctx *hctx;
1872         unsigned int i;
1873
1874         queue_for_each_hw_ctx(q, hctx, i) {
1875                 if (i == nr_queue)
1876                         break;
1877                 blk_mq_exit_hctx(q, set, hctx, i);
1878         }
1879 }
1880
1881 static int blk_mq_init_hctx(struct request_queue *q,
1882                 struct blk_mq_tag_set *set,
1883                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1884 {
1885         int node;
1886
1887         node = hctx->numa_node;
1888         if (node == NUMA_NO_NODE)
1889                 node = hctx->numa_node = set->numa_node;
1890
1891         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1892         spin_lock_init(&hctx->lock);
1893         INIT_LIST_HEAD(&hctx->dispatch);
1894         hctx->queue = q;
1895         hctx->queue_num = hctx_idx;
1896         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1897
1898         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1899
1900         hctx->tags = set->tags[hctx_idx];
1901
1902         /*
1903          * Allocate space for all possible cpus to avoid allocation at
1904          * runtime
1905          */
1906         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1907                                         GFP_KERNEL, node);
1908         if (!hctx->ctxs)
1909                 goto unregister_cpu_notifier;
1910
1911         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1912                               node))
1913                 goto free_ctxs;
1914
1915         hctx->nr_ctx = 0;
1916
1917         if (set->ops->init_hctx &&
1918             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1919                 goto free_bitmap;
1920
1921         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1922                 goto exit_hctx;
1923
1924         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1925         if (!hctx->fq)
1926                 goto sched_exit_hctx;
1927
1928         if (set->ops->init_request &&
1929             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1930                                    node))
1931                 goto free_fq;
1932
1933         if (hctx->flags & BLK_MQ_F_BLOCKING)
1934                 init_srcu_struct(&hctx->queue_rq_srcu);
1935
1936         return 0;
1937
1938  free_fq:
1939         kfree(hctx->fq);
1940  sched_exit_hctx:
1941         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1942  exit_hctx:
1943         if (set->ops->exit_hctx)
1944                 set->ops->exit_hctx(hctx, hctx_idx);
1945  free_bitmap:
1946         sbitmap_free(&hctx->ctx_map);
1947  free_ctxs:
1948         kfree(hctx->ctxs);
1949  unregister_cpu_notifier:
1950         blk_mq_remove_cpuhp(hctx);
1951         return -1;
1952 }
1953
1954 static void blk_mq_init_cpu_queues(struct request_queue *q,
1955                                    unsigned int nr_hw_queues)
1956 {
1957         unsigned int i;
1958
1959         for_each_possible_cpu(i) {
1960                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1961                 struct blk_mq_hw_ctx *hctx;
1962
1963                 __ctx->cpu = i;
1964                 spin_lock_init(&__ctx->lock);
1965                 INIT_LIST_HEAD(&__ctx->rq_list);
1966                 __ctx->queue = q;
1967
1968                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1969                 if (!cpu_online(i))
1970                         continue;
1971
1972                 hctx = blk_mq_map_queue(q, i);
1973
1974                 /*
1975                  * Set local node, IFF we have more than one hw queue. If
1976                  * not, we remain on the home node of the device
1977                  */
1978                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1979                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1980         }
1981 }
1982
1983 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1984 {
1985         int ret = 0;
1986
1987         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1988                                         set->queue_depth, set->reserved_tags);
1989         if (!set->tags[hctx_idx])
1990                 return false;
1991
1992         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1993                                 set->queue_depth);
1994         if (!ret)
1995                 return true;
1996
1997         blk_mq_free_rq_map(set->tags[hctx_idx]);
1998         set->tags[hctx_idx] = NULL;
1999         return false;
2000 }
2001
2002 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2003                                          unsigned int hctx_idx)
2004 {
2005         if (set->tags[hctx_idx]) {
2006                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2007                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2008                 set->tags[hctx_idx] = NULL;
2009         }
2010 }
2011
2012 static void blk_mq_map_swqueue(struct request_queue *q,
2013                                const struct cpumask *online_mask)
2014 {
2015         unsigned int i, hctx_idx;
2016         struct blk_mq_hw_ctx *hctx;
2017         struct blk_mq_ctx *ctx;
2018         struct blk_mq_tag_set *set = q->tag_set;
2019
2020         /*
2021          * Avoid others reading imcomplete hctx->cpumask through sysfs
2022          */
2023         mutex_lock(&q->sysfs_lock);
2024
2025         queue_for_each_hw_ctx(q, hctx, i) {
2026                 cpumask_clear(hctx->cpumask);
2027                 hctx->nr_ctx = 0;
2028         }
2029
2030         /*
2031          * Map software to hardware queues
2032          */
2033         for_each_possible_cpu(i) {
2034                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2035                 if (!cpumask_test_cpu(i, online_mask))
2036                         continue;
2037
2038                 hctx_idx = q->mq_map[i];
2039                 /* unmapped hw queue can be remapped after CPU topo changed */
2040                 if (!set->tags[hctx_idx] &&
2041                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2042                         /*
2043                          * If tags initialization fail for some hctx,
2044                          * that hctx won't be brought online.  In this
2045                          * case, remap the current ctx to hctx[0] which
2046                          * is guaranteed to always have tags allocated
2047                          */
2048                         q->mq_map[i] = 0;
2049                 }
2050
2051                 ctx = per_cpu_ptr(q->queue_ctx, i);
2052                 hctx = blk_mq_map_queue(q, i);
2053
2054                 cpumask_set_cpu(i, hctx->cpumask);
2055                 ctx->index_hw = hctx->nr_ctx;
2056                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2057         }
2058
2059         mutex_unlock(&q->sysfs_lock);
2060
2061         queue_for_each_hw_ctx(q, hctx, i) {
2062                 /*
2063                  * If no software queues are mapped to this hardware queue,
2064                  * disable it and free the request entries.
2065                  */
2066                 if (!hctx->nr_ctx) {
2067                         /* Never unmap queue 0.  We need it as a
2068                          * fallback in case of a new remap fails
2069                          * allocation
2070                          */
2071                         if (i && set->tags[i])
2072                                 blk_mq_free_map_and_requests(set, i);
2073
2074                         hctx->tags = NULL;
2075                         continue;
2076                 }
2077
2078                 hctx->tags = set->tags[i];
2079                 WARN_ON(!hctx->tags);
2080
2081                 /*
2082                  * Set the map size to the number of mapped software queues.
2083                  * This is more accurate and more efficient than looping
2084                  * over all possibly mapped software queues.
2085                  */
2086                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2087
2088                 /*
2089                  * Initialize batch roundrobin counts
2090                  */
2091                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2092                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2093         }
2094 }
2095
2096 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2097 {
2098         struct blk_mq_hw_ctx *hctx;
2099         int i;
2100
2101         queue_for_each_hw_ctx(q, hctx, i) {
2102                 if (shared)
2103                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2104                 else
2105                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2106         }
2107 }
2108
2109 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2110 {
2111         struct request_queue *q;
2112
2113         lockdep_assert_held(&set->tag_list_lock);
2114
2115         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2116                 blk_mq_freeze_queue(q);
2117                 queue_set_hctx_shared(q, shared);
2118                 blk_mq_unfreeze_queue(q);
2119         }
2120 }
2121
2122 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2123 {
2124         struct blk_mq_tag_set *set = q->tag_set;
2125
2126         mutex_lock(&set->tag_list_lock);
2127         list_del_rcu(&q->tag_set_list);
2128         INIT_LIST_HEAD(&q->tag_set_list);
2129         if (list_is_singular(&set->tag_list)) {
2130                 /* just transitioned to unshared */
2131                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2132                 /* update existing queue */
2133                 blk_mq_update_tag_set_depth(set, false);
2134         }
2135         mutex_unlock(&set->tag_list_lock);
2136
2137         synchronize_rcu();
2138 }
2139
2140 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2141                                      struct request_queue *q)
2142 {
2143         q->tag_set = set;
2144
2145         mutex_lock(&set->tag_list_lock);
2146
2147         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2148         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2149                 set->flags |= BLK_MQ_F_TAG_SHARED;
2150                 /* update existing queue */
2151                 blk_mq_update_tag_set_depth(set, true);
2152         }
2153         if (set->flags & BLK_MQ_F_TAG_SHARED)
2154                 queue_set_hctx_shared(q, true);
2155         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2156
2157         mutex_unlock(&set->tag_list_lock);
2158 }
2159
2160 /*
2161  * It is the actual release handler for mq, but we do it from
2162  * request queue's release handler for avoiding use-after-free
2163  * and headache because q->mq_kobj shouldn't have been introduced,
2164  * but we can't group ctx/kctx kobj without it.
2165  */
2166 void blk_mq_release(struct request_queue *q)
2167 {
2168         struct blk_mq_hw_ctx *hctx;
2169         unsigned int i;
2170
2171         /* hctx kobj stays in hctx */
2172         queue_for_each_hw_ctx(q, hctx, i) {
2173                 if (!hctx)
2174                         continue;
2175                 kobject_put(&hctx->kobj);
2176         }
2177
2178         q->mq_map = NULL;
2179
2180         kfree(q->queue_hw_ctx);
2181
2182         /*
2183          * release .mq_kobj and sw queue's kobject now because
2184          * both share lifetime with request queue.
2185          */
2186         blk_mq_sysfs_deinit(q);
2187
2188         free_percpu(q->queue_ctx);
2189 }
2190
2191 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2192 {
2193         struct request_queue *uninit_q, *q;
2194
2195         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2196         if (!uninit_q)
2197                 return ERR_PTR(-ENOMEM);
2198
2199         q = blk_mq_init_allocated_queue(set, uninit_q);
2200         if (IS_ERR(q))
2201                 blk_cleanup_queue(uninit_q);
2202
2203         return q;
2204 }
2205 EXPORT_SYMBOL(blk_mq_init_queue);
2206
2207 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2208                                                 struct request_queue *q)
2209 {
2210         int i, j;
2211         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2212
2213         blk_mq_sysfs_unregister(q);
2214         for (i = 0; i < set->nr_hw_queues; i++) {
2215                 int node;
2216
2217                 if (hctxs[i])
2218                         continue;
2219
2220                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2221                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2222                                         GFP_KERNEL, node);
2223                 if (!hctxs[i])
2224                         break;
2225
2226                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2227                                                 node)) {
2228                         kfree(hctxs[i]);
2229                         hctxs[i] = NULL;
2230                         break;
2231                 }
2232
2233                 atomic_set(&hctxs[i]->nr_active, 0);
2234                 hctxs[i]->numa_node = node;
2235                 hctxs[i]->queue_num = i;
2236
2237                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2238                         free_cpumask_var(hctxs[i]->cpumask);
2239                         kfree(hctxs[i]);
2240                         hctxs[i] = NULL;
2241                         break;
2242                 }
2243                 blk_mq_hctx_kobj_init(hctxs[i]);
2244         }
2245         for (j = i; j < q->nr_hw_queues; j++) {
2246                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2247
2248                 if (hctx) {
2249                         if (hctx->tags)
2250                                 blk_mq_free_map_and_requests(set, j);
2251                         blk_mq_exit_hctx(q, set, hctx, j);
2252                         kobject_put(&hctx->kobj);
2253                         hctxs[j] = NULL;
2254
2255                 }
2256         }
2257         q->nr_hw_queues = i;
2258         blk_mq_sysfs_register(q);
2259 }
2260
2261 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2262                                                   struct request_queue *q)
2263 {
2264         /* mark the queue as mq asap */
2265         q->mq_ops = set->ops;
2266
2267         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2268                                              blk_mq_poll_stats_bkt,
2269                                              BLK_MQ_POLL_STATS_BKTS, q);
2270         if (!q->poll_cb)
2271                 goto err_exit;
2272
2273         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2274         if (!q->queue_ctx)
2275                 goto err_exit;
2276
2277         /* init q->mq_kobj and sw queues' kobjects */
2278         blk_mq_sysfs_init(q);
2279
2280         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2281                                                 GFP_KERNEL, set->numa_node);
2282         if (!q->queue_hw_ctx)
2283                 goto err_percpu;
2284
2285         q->mq_map = set->mq_map;
2286
2287         blk_mq_realloc_hw_ctxs(set, q);
2288         if (!q->nr_hw_queues)
2289                 goto err_hctxs;
2290
2291         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2292         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2293
2294         q->nr_queues = nr_cpu_ids;
2295
2296         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2297
2298         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2299                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2300
2301         q->sg_reserved_size = INT_MAX;
2302
2303         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2304         INIT_LIST_HEAD(&q->requeue_list);
2305         spin_lock_init(&q->requeue_lock);
2306
2307         blk_queue_make_request(q, blk_mq_make_request);
2308
2309         /*
2310          * Do this after blk_queue_make_request() overrides it...
2311          */
2312         q->nr_requests = set->queue_depth;
2313
2314         /*
2315          * Default to classic polling
2316          */
2317         q->poll_nsec = -1;
2318
2319         if (set->ops->complete)
2320                 blk_queue_softirq_done(q, set->ops->complete);
2321
2322         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2323
2324         get_online_cpus();
2325         mutex_lock(&all_q_mutex);
2326
2327         list_add_tail(&q->all_q_node, &all_q_list);
2328         blk_mq_add_queue_tag_set(set, q);
2329         blk_mq_map_swqueue(q, cpu_online_mask);
2330
2331         mutex_unlock(&all_q_mutex);
2332         put_online_cpus();
2333
2334         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2335                 int ret;
2336
2337                 ret = blk_mq_sched_init(q);
2338                 if (ret)
2339                         return ERR_PTR(ret);
2340         }
2341
2342         return q;
2343
2344 err_hctxs:
2345         kfree(q->queue_hw_ctx);
2346 err_percpu:
2347         free_percpu(q->queue_ctx);
2348 err_exit:
2349         q->mq_ops = NULL;
2350         return ERR_PTR(-ENOMEM);
2351 }
2352 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2353
2354 void blk_mq_free_queue(struct request_queue *q)
2355 {
2356         struct blk_mq_tag_set   *set = q->tag_set;
2357
2358         mutex_lock(&all_q_mutex);
2359         list_del_init(&q->all_q_node);
2360         mutex_unlock(&all_q_mutex);
2361
2362         blk_mq_del_queue_tag_set(q);
2363
2364         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2365 }
2366
2367 /* Basically redo blk_mq_init_queue with queue frozen */
2368 static void blk_mq_queue_reinit(struct request_queue *q,
2369                                 const struct cpumask *online_mask)
2370 {
2371         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2372
2373         blk_mq_sysfs_unregister(q);
2374
2375         /*
2376          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2377          * we should change hctx numa_node according to new topology (this
2378          * involves free and re-allocate memory, worthy doing?)
2379          */
2380
2381         blk_mq_map_swqueue(q, online_mask);
2382
2383         blk_mq_sysfs_register(q);
2384 }
2385
2386 /*
2387  * New online cpumask which is going to be set in this hotplug event.
2388  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2389  * one-by-one and dynamically allocating this could result in a failure.
2390  */
2391 static struct cpumask cpuhp_online_new;
2392
2393 static void blk_mq_queue_reinit_work(void)
2394 {
2395         struct request_queue *q;
2396
2397         mutex_lock(&all_q_mutex);
2398         /*
2399          * We need to freeze and reinit all existing queues.  Freezing
2400          * involves synchronous wait for an RCU grace period and doing it
2401          * one by one may take a long time.  Start freezing all queues in
2402          * one swoop and then wait for the completions so that freezing can
2403          * take place in parallel.
2404          */
2405         list_for_each_entry(q, &all_q_list, all_q_node)
2406                 blk_freeze_queue_start(q);
2407         list_for_each_entry(q, &all_q_list, all_q_node)
2408                 blk_mq_freeze_queue_wait(q);
2409
2410         list_for_each_entry(q, &all_q_list, all_q_node)
2411                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2412
2413         list_for_each_entry(q, &all_q_list, all_q_node)
2414                 blk_mq_unfreeze_queue(q);
2415
2416         mutex_unlock(&all_q_mutex);
2417 }
2418
2419 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2420 {
2421         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2422         blk_mq_queue_reinit_work();
2423         return 0;
2424 }
2425
2426 /*
2427  * Before hotadded cpu starts handling requests, new mappings must be
2428  * established.  Otherwise, these requests in hw queue might never be
2429  * dispatched.
2430  *
2431  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2432  * for CPU0, and ctx1 for CPU1).
2433  *
2434  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2435  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2436  *
2437  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2438  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2439  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2440  * ignored.
2441  */
2442 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2443 {
2444         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2445         cpumask_set_cpu(cpu, &cpuhp_online_new);
2446         blk_mq_queue_reinit_work();
2447         return 0;
2448 }
2449
2450 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2451 {
2452         int i;
2453
2454         for (i = 0; i < set->nr_hw_queues; i++)
2455                 if (!__blk_mq_alloc_rq_map(set, i))
2456                         goto out_unwind;
2457
2458         return 0;
2459
2460 out_unwind:
2461         while (--i >= 0)
2462                 blk_mq_free_rq_map(set->tags[i]);
2463
2464         return -ENOMEM;
2465 }
2466
2467 /*
2468  * Allocate the request maps associated with this tag_set. Note that this
2469  * may reduce the depth asked for, if memory is tight. set->queue_depth
2470  * will be updated to reflect the allocated depth.
2471  */
2472 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2473 {
2474         unsigned int depth;
2475         int err;
2476
2477         depth = set->queue_depth;
2478         do {
2479                 err = __blk_mq_alloc_rq_maps(set);
2480                 if (!err)
2481                         break;
2482
2483                 set->queue_depth >>= 1;
2484                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2485                         err = -ENOMEM;
2486                         break;
2487                 }
2488         } while (set->queue_depth);
2489
2490         if (!set->queue_depth || err) {
2491                 pr_err("blk-mq: failed to allocate request map\n");
2492                 return -ENOMEM;
2493         }
2494
2495         if (depth != set->queue_depth)
2496                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2497                                                 depth, set->queue_depth);
2498
2499         return 0;
2500 }
2501
2502 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2503 {
2504         if (set->ops->map_queues)
2505                 return set->ops->map_queues(set);
2506         else
2507                 return blk_mq_map_queues(set);
2508 }
2509
2510 /*
2511  * Alloc a tag set to be associated with one or more request queues.
2512  * May fail with EINVAL for various error conditions. May adjust the
2513  * requested depth down, if if it too large. In that case, the set
2514  * value will be stored in set->queue_depth.
2515  */
2516 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2517 {
2518         int ret;
2519
2520         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2521
2522         if (!set->nr_hw_queues)
2523                 return -EINVAL;
2524         if (!set->queue_depth)
2525                 return -EINVAL;
2526         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2527                 return -EINVAL;
2528
2529         if (!set->ops->queue_rq)
2530                 return -EINVAL;
2531
2532         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2533                 pr_info("blk-mq: reduced tag depth to %u\n",
2534                         BLK_MQ_MAX_DEPTH);
2535                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2536         }
2537
2538         /*
2539          * If a crashdump is active, then we are potentially in a very
2540          * memory constrained environment. Limit us to 1 queue and
2541          * 64 tags to prevent using too much memory.
2542          */
2543         if (is_kdump_kernel()) {
2544                 set->nr_hw_queues = 1;
2545                 set->queue_depth = min(64U, set->queue_depth);
2546         }
2547         /*
2548          * There is no use for more h/w queues than cpus.
2549          */
2550         if (set->nr_hw_queues > nr_cpu_ids)
2551                 set->nr_hw_queues = nr_cpu_ids;
2552
2553         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2554                                  GFP_KERNEL, set->numa_node);
2555         if (!set->tags)
2556                 return -ENOMEM;
2557
2558         ret = -ENOMEM;
2559         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2560                         GFP_KERNEL, set->numa_node);
2561         if (!set->mq_map)
2562                 goto out_free_tags;
2563
2564         ret = blk_mq_update_queue_map(set);
2565         if (ret)
2566                 goto out_free_mq_map;
2567
2568         ret = blk_mq_alloc_rq_maps(set);
2569         if (ret)
2570                 goto out_free_mq_map;
2571
2572         mutex_init(&set->tag_list_lock);
2573         INIT_LIST_HEAD(&set->tag_list);
2574
2575         return 0;
2576
2577 out_free_mq_map:
2578         kfree(set->mq_map);
2579         set->mq_map = NULL;
2580 out_free_tags:
2581         kfree(set->tags);
2582         set->tags = NULL;
2583         return ret;
2584 }
2585 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2586
2587 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2588 {
2589         int i;
2590
2591         for (i = 0; i < nr_cpu_ids; i++)
2592                 blk_mq_free_map_and_requests(set, i);
2593
2594         kfree(set->mq_map);
2595         set->mq_map = NULL;
2596
2597         kfree(set->tags);
2598         set->tags = NULL;
2599 }
2600 EXPORT_SYMBOL(blk_mq_free_tag_set);
2601
2602 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2603 {
2604         struct blk_mq_tag_set *set = q->tag_set;
2605         struct blk_mq_hw_ctx *hctx;
2606         int i, ret;
2607
2608         if (!set)
2609                 return -EINVAL;
2610
2611         blk_mq_freeze_queue(q);
2612         blk_mq_quiesce_queue(q);
2613
2614         ret = 0;
2615         queue_for_each_hw_ctx(q, hctx, i) {
2616                 if (!hctx->tags)
2617                         continue;
2618                 /*
2619                  * If we're using an MQ scheduler, just update the scheduler
2620                  * queue depth. This is similar to what the old code would do.
2621                  */
2622                 if (!hctx->sched_tags) {
2623                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2624                                                         min(nr, set->queue_depth),
2625                                                         false);
2626                 } else {
2627                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2628                                                         nr, true);
2629                 }
2630                 if (ret)
2631                         break;
2632         }
2633
2634         if (!ret)
2635                 q->nr_requests = nr;
2636
2637         blk_mq_unfreeze_queue(q);
2638         blk_mq_start_stopped_hw_queues(q, true);
2639
2640         return ret;
2641 }
2642
2643 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2644 {
2645         struct request_queue *q;
2646
2647         lockdep_assert_held(&set->tag_list_lock);
2648
2649         if (nr_hw_queues > nr_cpu_ids)
2650                 nr_hw_queues = nr_cpu_ids;
2651         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2652                 return;
2653
2654         list_for_each_entry(q, &set->tag_list, tag_set_list)
2655                 blk_mq_freeze_queue(q);
2656
2657         set->nr_hw_queues = nr_hw_queues;
2658         blk_mq_update_queue_map(set);
2659         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2660                 blk_mq_realloc_hw_ctxs(set, q);
2661                 blk_mq_queue_reinit(q, cpu_online_mask);
2662         }
2663
2664         list_for_each_entry(q, &set->tag_list, tag_set_list)
2665                 blk_mq_unfreeze_queue(q);
2666 }
2667 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2668
2669 /* Enable polling stats and return whether they were already enabled. */
2670 static bool blk_poll_stats_enable(struct request_queue *q)
2671 {
2672         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2673             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2674                 return true;
2675         blk_stat_add_callback(q, q->poll_cb);
2676         return false;
2677 }
2678
2679 static void blk_mq_poll_stats_start(struct request_queue *q)
2680 {
2681         /*
2682          * We don't arm the callback if polling stats are not enabled or the
2683          * callback is already active.
2684          */
2685         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2686             blk_stat_is_active(q->poll_cb))
2687                 return;
2688
2689         blk_stat_activate_msecs(q->poll_cb, 100);
2690 }
2691
2692 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2693 {
2694         struct request_queue *q = cb->data;
2695         int bucket;
2696
2697         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2698                 if (cb->stat[bucket].nr_samples)
2699                         q->poll_stat[bucket] = cb->stat[bucket];
2700         }
2701 }
2702
2703 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2704                                        struct blk_mq_hw_ctx *hctx,
2705                                        struct request *rq)
2706 {
2707         unsigned long ret = 0;
2708         int bucket;
2709
2710         /*
2711          * If stats collection isn't on, don't sleep but turn it on for
2712          * future users
2713          */
2714         if (!blk_poll_stats_enable(q))
2715                 return 0;
2716
2717         /*
2718          * As an optimistic guess, use half of the mean service time
2719          * for this type of request. We can (and should) make this smarter.
2720          * For instance, if the completion latencies are tight, we can
2721          * get closer than just half the mean. This is especially
2722          * important on devices where the completion latencies are longer
2723          * than ~10 usec. We do use the stats for the relevant IO size
2724          * if available which does lead to better estimates.
2725          */
2726         bucket = blk_mq_poll_stats_bkt(rq);
2727         if (bucket < 0)
2728                 return ret;
2729
2730         if (q->poll_stat[bucket].nr_samples)
2731                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2732
2733         return ret;
2734 }
2735
2736 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2737                                      struct blk_mq_hw_ctx *hctx,
2738                                      struct request *rq)
2739 {
2740         struct hrtimer_sleeper hs;
2741         enum hrtimer_mode mode;
2742         unsigned int nsecs;
2743         ktime_t kt;
2744
2745         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2746                 return false;
2747
2748         /*
2749          * poll_nsec can be:
2750          *
2751          * -1:  don't ever hybrid sleep
2752          *  0:  use half of prev avg
2753          * >0:  use this specific value
2754          */
2755         if (q->poll_nsec == -1)
2756                 return false;
2757         else if (q->poll_nsec > 0)
2758                 nsecs = q->poll_nsec;
2759         else
2760                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2761
2762         if (!nsecs)
2763                 return false;
2764
2765         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2766
2767         /*
2768          * This will be replaced with the stats tracking code, using
2769          * 'avg_completion_time / 2' as the pre-sleep target.
2770          */
2771         kt = nsecs;
2772
2773         mode = HRTIMER_MODE_REL;
2774         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2775         hrtimer_set_expires(&hs.timer, kt);
2776
2777         hrtimer_init_sleeper(&hs, current);
2778         do {
2779                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2780                         break;
2781                 set_current_state(TASK_UNINTERRUPTIBLE);
2782                 hrtimer_start_expires(&hs.timer, mode);
2783                 if (hs.task)
2784                         io_schedule();
2785                 hrtimer_cancel(&hs.timer);
2786                 mode = HRTIMER_MODE_ABS;
2787         } while (hs.task && !signal_pending(current));
2788
2789         __set_current_state(TASK_RUNNING);
2790         destroy_hrtimer_on_stack(&hs.timer);
2791         return true;
2792 }
2793
2794 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2795 {
2796         struct request_queue *q = hctx->queue;
2797         long state;
2798
2799         /*
2800          * If we sleep, have the caller restart the poll loop to reset
2801          * the state. Like for the other success return cases, the
2802          * caller is responsible for checking if the IO completed. If
2803          * the IO isn't complete, we'll get called again and will go
2804          * straight to the busy poll loop.
2805          */
2806         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2807                 return true;
2808
2809         hctx->poll_considered++;
2810
2811         state = current->state;
2812         while (!need_resched()) {
2813                 int ret;
2814
2815                 hctx->poll_invoked++;
2816
2817                 ret = q->mq_ops->poll(hctx, rq->tag);
2818                 if (ret > 0) {
2819                         hctx->poll_success++;
2820                         set_current_state(TASK_RUNNING);
2821                         return true;
2822                 }
2823
2824                 if (signal_pending_state(state, current))
2825                         set_current_state(TASK_RUNNING);
2826
2827                 if (current->state == TASK_RUNNING)
2828                         return true;
2829                 if (ret < 0)
2830                         break;
2831                 cpu_relax();
2832         }
2833
2834         return false;
2835 }
2836
2837 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2838 {
2839         struct blk_mq_hw_ctx *hctx;
2840         struct blk_plug *plug;
2841         struct request *rq;
2842
2843         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2844             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2845                 return false;
2846
2847         plug = current->plug;
2848         if (plug)
2849                 blk_flush_plug_list(plug, false);
2850
2851         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2852         if (!blk_qc_t_is_internal(cookie))
2853                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2854         else {
2855                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2856                 /*
2857                  * With scheduling, if the request has completed, we'll
2858                  * get a NULL return here, as we clear the sched tag when
2859                  * that happens. The request still remains valid, like always,
2860                  * so we should be safe with just the NULL check.
2861                  */
2862                 if (!rq)
2863                         return false;
2864         }
2865
2866         return __blk_mq_poll(hctx, rq);
2867 }
2868 EXPORT_SYMBOL_GPL(blk_mq_poll);
2869
2870 void blk_mq_disable_hotplug(void)
2871 {
2872         mutex_lock(&all_q_mutex);
2873 }
2874
2875 void blk_mq_enable_hotplug(void)
2876 {
2877         mutex_unlock(&all_q_mutex);
2878 }
2879
2880 static int __init blk_mq_init(void)
2881 {
2882         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2883                                 blk_mq_hctx_notify_dead);
2884
2885         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2886                                   blk_mq_queue_reinit_prepare,
2887                                   blk_mq_queue_reinit_dead);
2888         return 0;
2889 }
2890 subsys_initcall(blk_mq_init);