]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: Drop explicit timeout sync in hotplug
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40  * Check if any of the ctx's have pending work in this hardware queue
41  */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44         return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48  * Mark this ctx as having pending work in this hardware queue
49  */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51                                      struct blk_mq_ctx *ctx)
52 {
53         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58                                       struct blk_mq_ctx *ctx)
59 {
60         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65         int freeze_depth;
66
67         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68         if (freeze_depth == 1) {
69                 percpu_ref_kill(&q->q_usage_counter);
70                 blk_mq_run_hw_queues(q, false);
71         }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81  * Guarantee no request is in use, so we can change any data structure of
82  * the queue afterward.
83  */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86         /*
87          * In the !blk_mq case we are only calling this to kill the
88          * q_usage_counter, otherwise this increases the freeze depth
89          * and waits for it to return to zero.  For this reason there is
90          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91          * exported to drivers as the only user for unfreeze is blk_mq.
92          */
93         blk_mq_freeze_queue_start(q);
94         blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99         /*
100          * ...just an alias to keep freeze and unfreeze actions balanced
101          * in the blk_mq_* namespace
102          */
103         blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109         int freeze_depth;
110
111         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112         WARN_ON_ONCE(freeze_depth < 0);
113         if (!freeze_depth) {
114                 percpu_ref_reinit(&q->q_usage_counter);
115                 wake_up_all(&q->mq_freeze_wq);
116         }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122  * @q: request queue.
123  *
124  * Note: this function does not prevent that the struct request end_io()
125  * callback function is invoked. Additionally, it is not prevented that
126  * new queue_rq() calls occur unless the queue has been stopped first.
127  */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130         struct blk_mq_hw_ctx *hctx;
131         unsigned int i;
132         bool rcu = false;
133
134         blk_mq_stop_hw_queues(q);
135
136         queue_for_each_hw_ctx(q, hctx, i) {
137                 if (hctx->flags & BLK_MQ_F_BLOCKING)
138                         synchronize_srcu(&hctx->queue_rq_srcu);
139                 else
140                         rcu = true;
141         }
142         if (rcu)
143                 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149         struct blk_mq_hw_ctx *hctx;
150         unsigned int i;
151
152         queue_for_each_hw_ctx(q, hctx, i)
153                 if (blk_mq_hw_queue_mapped(hctx))
154                         blk_mq_tag_wakeup_all(hctx->tags, true);
155
156         /*
157          * If we are called because the queue has now been marked as
158          * dying, we need to ensure that processes currently waiting on
159          * the queue are notified as well.
160          */
161         wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166         return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171                                struct request *rq, unsigned int op)
172 {
173         INIT_LIST_HEAD(&rq->queuelist);
174         /* csd/requeue_work/fifo_time is initialized before use */
175         rq->q = q;
176         rq->mq_ctx = ctx;
177         rq->cmd_flags = op;
178         if (blk_queue_io_stat(q))
179                 rq->rq_flags |= RQF_IO_STAT;
180         /* do not touch atomic flags, it needs atomic ops against the timer */
181         rq->cpu = -1;
182         INIT_HLIST_NODE(&rq->hash);
183         RB_CLEAR_NODE(&rq->rb_node);
184         rq->rq_disk = NULL;
185         rq->part = NULL;
186         rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188         rq->rl = NULL;
189         set_start_time_ns(rq);
190         rq->io_start_time_ns = 0;
191 #endif
192         rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194         rq->nr_integrity_segments = 0;
195 #endif
196         rq->special = NULL;
197         /* tag was already set */
198         rq->errors = 0;
199
200         rq->cmd = rq->__cmd;
201
202         rq->extra_len = 0;
203         rq->sense_len = 0;
204         rq->resid_len = 0;
205         rq->sense = NULL;
206
207         INIT_LIST_HEAD(&rq->timeout_list);
208         rq->timeout = 0;
209
210         rq->end_io = NULL;
211         rq->end_io_data = NULL;
212         rq->next_rq = NULL;
213
214         ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 {
220         struct request *rq;
221         unsigned int tag;
222
223         tag = blk_mq_get_tag(data);
224         if (tag != BLK_MQ_TAG_FAIL) {
225                 rq = data->hctx->tags->rqs[tag];
226
227                 if (blk_mq_tag_busy(data->hctx)) {
228                         rq->rq_flags = RQF_MQ_INFLIGHT;
229                         atomic_inc(&data->hctx->nr_active);
230                 }
231
232                 rq->tag = tag;
233                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234                 return rq;
235         }
236
237         return NULL;
238 }
239
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241                 unsigned int flags)
242 {
243         struct blk_mq_ctx *ctx;
244         struct blk_mq_hw_ctx *hctx;
245         struct request *rq;
246         struct blk_mq_alloc_data alloc_data;
247         int ret;
248
249         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250         if (ret)
251                 return ERR_PTR(ret);
252
253         ctx = blk_mq_get_ctx(q);
254         hctx = blk_mq_map_queue(q, ctx->cpu);
255         blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256         rq = __blk_mq_alloc_request(&alloc_data, rw);
257         blk_mq_put_ctx(ctx);
258
259         if (!rq) {
260                 blk_queue_exit(q);
261                 return ERR_PTR(-EWOULDBLOCK);
262         }
263
264         rq->__data_len = 0;
265         rq->__sector = (sector_t) -1;
266         rq->bio = rq->biotail = NULL;
267         return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272                 unsigned int flags, unsigned int hctx_idx)
273 {
274         struct blk_mq_hw_ctx *hctx;
275         struct blk_mq_ctx *ctx;
276         struct request *rq;
277         struct blk_mq_alloc_data alloc_data;
278         int ret;
279
280         /*
281          * If the tag allocator sleeps we could get an allocation for a
282          * different hardware context.  No need to complicate the low level
283          * allocator for this for the rare use case of a command tied to
284          * a specific queue.
285          */
286         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287                 return ERR_PTR(-EINVAL);
288
289         if (hctx_idx >= q->nr_hw_queues)
290                 return ERR_PTR(-EIO);
291
292         ret = blk_queue_enter(q, true);
293         if (ret)
294                 return ERR_PTR(ret);
295
296         /*
297          * Check if the hardware context is actually mapped to anything.
298          * If not tell the caller that it should skip this queue.
299          */
300         hctx = q->queue_hw_ctx[hctx_idx];
301         if (!blk_mq_hw_queue_mapped(hctx)) {
302                 ret = -EXDEV;
303                 goto out_queue_exit;
304         }
305         ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307         blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308         rq = __blk_mq_alloc_request(&alloc_data, rw);
309         if (!rq) {
310                 ret = -EWOULDBLOCK;
311                 goto out_queue_exit;
312         }
313
314         return rq;
315
316 out_queue_exit:
317         blk_queue_exit(q);
318         return ERR_PTR(ret);
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323                                   struct blk_mq_ctx *ctx, struct request *rq)
324 {
325         const int tag = rq->tag;
326         struct request_queue *q = rq->q;
327
328         if (rq->rq_flags & RQF_MQ_INFLIGHT)
329                 atomic_dec(&hctx->nr_active);
330
331         wbt_done(q->rq_wb, &rq->issue_stat);
332         rq->rq_flags = 0;
333
334         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336         blk_mq_put_tag(hctx, ctx, tag);
337         blk_queue_exit(q);
338 }
339
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 {
342         struct blk_mq_ctx *ctx = rq->mq_ctx;
343
344         ctx->rq_completed[rq_is_sync(rq)]++;
345         __blk_mq_free_request(hctx, ctx, rq);
346
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350 void blk_mq_free_request(struct request *rq)
351 {
352         blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
355
356 inline void __blk_mq_end_request(struct request *rq, int error)
357 {
358         blk_account_io_done(rq);
359
360         if (rq->end_io) {
361                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362                 rq->end_io(rq, error);
363         } else {
364                 if (unlikely(blk_bidi_rq(rq)))
365                         blk_mq_free_request(rq->next_rq);
366                 blk_mq_free_request(rq);
367         }
368 }
369 EXPORT_SYMBOL(__blk_mq_end_request);
370
371 void blk_mq_end_request(struct request *rq, int error)
372 {
373         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374                 BUG();
375         __blk_mq_end_request(rq, error);
376 }
377 EXPORT_SYMBOL(blk_mq_end_request);
378
379 static void __blk_mq_complete_request_remote(void *data)
380 {
381         struct request *rq = data;
382
383         rq->q->softirq_done_fn(rq);
384 }
385
386 static void blk_mq_ipi_complete_request(struct request *rq)
387 {
388         struct blk_mq_ctx *ctx = rq->mq_ctx;
389         bool shared = false;
390         int cpu;
391
392         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393                 rq->q->softirq_done_fn(rq);
394                 return;
395         }
396
397         cpu = get_cpu();
398         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399                 shared = cpus_share_cache(cpu, ctx->cpu);
400
401         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402                 rq->csd.func = __blk_mq_complete_request_remote;
403                 rq->csd.info = rq;
404                 rq->csd.flags = 0;
405                 smp_call_function_single_async(ctx->cpu, &rq->csd);
406         } else {
407                 rq->q->softirq_done_fn(rq);
408         }
409         put_cpu();
410 }
411
412 static void blk_mq_stat_add(struct request *rq)
413 {
414         if (rq->rq_flags & RQF_STATS) {
415                 /*
416                  * We could rq->mq_ctx here, but there's less of a risk
417                  * of races if we have the completion event add the stats
418                  * to the local software queue.
419                  */
420                 struct blk_mq_ctx *ctx;
421
422                 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423                 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424         }
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429         struct request_queue *q = rq->q;
430
431         blk_mq_stat_add(rq);
432
433         if (!q->softirq_done_fn)
434                 blk_mq_end_request(rq, rq->errors);
435         else
436                 blk_mq_ipi_complete_request(rq);
437 }
438
439 /**
440  * blk_mq_complete_request - end I/O on a request
441  * @rq:         the request being processed
442  *
443  * Description:
444  *      Ends all I/O on a request. It does not handle partial completions.
445  *      The actual completion happens out-of-order, through a IPI handler.
446  **/
447 void blk_mq_complete_request(struct request *rq, int error)
448 {
449         struct request_queue *q = rq->q;
450
451         if (unlikely(blk_should_fake_timeout(q)))
452                 return;
453         if (!blk_mark_rq_complete(rq)) {
454                 rq->errors = error;
455                 __blk_mq_complete_request(rq);
456         }
457 }
458 EXPORT_SYMBOL(blk_mq_complete_request);
459
460 int blk_mq_request_started(struct request *rq)
461 {
462         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
466 void blk_mq_start_request(struct request *rq)
467 {
468         struct request_queue *q = rq->q;
469
470         trace_block_rq_issue(q, rq);
471
472         rq->resid_len = blk_rq_bytes(rq);
473         if (unlikely(blk_bidi_rq(rq)))
474                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
475
476         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477                 blk_stat_set_issue_time(&rq->issue_stat);
478                 rq->rq_flags |= RQF_STATS;
479                 wbt_issue(q->rq_wb, &rq->issue_stat);
480         }
481
482         blk_add_timer(rq);
483
484         /*
485          * Ensure that ->deadline is visible before set the started
486          * flag and clear the completed flag.
487          */
488         smp_mb__before_atomic();
489
490         /*
491          * Mark us as started and clear complete. Complete might have been
492          * set if requeue raced with timeout, which then marked it as
493          * complete. So be sure to clear complete again when we start
494          * the request, otherwise we'll ignore the completion event.
495          */
496         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
500
501         if (q->dma_drain_size && blk_rq_bytes(rq)) {
502                 /*
503                  * Make sure space for the drain appears.  We know we can do
504                  * this because max_hw_segments has been adjusted to be one
505                  * fewer than the device can handle.
506                  */
507                 rq->nr_phys_segments++;
508         }
509 }
510 EXPORT_SYMBOL(blk_mq_start_request);
511
512 static void __blk_mq_requeue_request(struct request *rq)
513 {
514         struct request_queue *q = rq->q;
515
516         trace_block_rq_requeue(q, rq);
517         wbt_requeue(q->rq_wb, &rq->issue_stat);
518
519         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520                 if (q->dma_drain_size && blk_rq_bytes(rq))
521                         rq->nr_phys_segments--;
522         }
523 }
524
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
526 {
527         __blk_mq_requeue_request(rq);
528
529         BUG_ON(blk_queued_rq(rq));
530         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
531 }
532 EXPORT_SYMBOL(blk_mq_requeue_request);
533
534 static void blk_mq_requeue_work(struct work_struct *work)
535 {
536         struct request_queue *q =
537                 container_of(work, struct request_queue, requeue_work.work);
538         LIST_HEAD(rq_list);
539         struct request *rq, *next;
540         unsigned long flags;
541
542         spin_lock_irqsave(&q->requeue_lock, flags);
543         list_splice_init(&q->requeue_list, &rq_list);
544         spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548                         continue;
549
550                 rq->rq_flags &= ~RQF_SOFTBARRIER;
551                 list_del_init(&rq->queuelist);
552                 blk_mq_insert_request(rq, true, false, false);
553         }
554
555         while (!list_empty(&rq_list)) {
556                 rq = list_entry(rq_list.next, struct request, queuelist);
557                 list_del_init(&rq->queuelist);
558                 blk_mq_insert_request(rq, false, false, false);
559         }
560
561         blk_mq_run_hw_queues(q, false);
562 }
563
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565                                 bool kick_requeue_list)
566 {
567         struct request_queue *q = rq->q;
568         unsigned long flags;
569
570         /*
571          * We abuse this flag that is otherwise used by the I/O scheduler to
572          * request head insertation from the workqueue.
573          */
574         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
575
576         spin_lock_irqsave(&q->requeue_lock, flags);
577         if (at_head) {
578                 rq->rq_flags |= RQF_SOFTBARRIER;
579                 list_add(&rq->queuelist, &q->requeue_list);
580         } else {
581                 list_add_tail(&rq->queuelist, &q->requeue_list);
582         }
583         spin_unlock_irqrestore(&q->requeue_lock, flags);
584
585         if (kick_requeue_list)
586                 blk_mq_kick_requeue_list(q);
587 }
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590 void blk_mq_kick_requeue_list(struct request_queue *q)
591 {
592         kblockd_schedule_delayed_work(&q->requeue_work, 0);
593 }
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597                                     unsigned long msecs)
598 {
599         kblockd_schedule_delayed_work(&q->requeue_work,
600                                       msecs_to_jiffies(msecs));
601 }
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
604 void blk_mq_abort_requeue_list(struct request_queue *q)
605 {
606         unsigned long flags;
607         LIST_HEAD(rq_list);
608
609         spin_lock_irqsave(&q->requeue_lock, flags);
610         list_splice_init(&q->requeue_list, &rq_list);
611         spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613         while (!list_empty(&rq_list)) {
614                 struct request *rq;
615
616                 rq = list_first_entry(&rq_list, struct request, queuelist);
617                 list_del_init(&rq->queuelist);
618                 rq->errors = -EIO;
619                 blk_mq_end_request(rq, rq->errors);
620         }
621 }
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625 {
626         if (tag < tags->nr_tags) {
627                 prefetch(tags->rqs[tag]);
628                 return tags->rqs[tag];
629         }
630
631         return NULL;
632 }
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
635 struct blk_mq_timeout_data {
636         unsigned long next;
637         unsigned int next_set;
638 };
639
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
641 {
642         struct blk_mq_ops *ops = req->q->mq_ops;
643         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
644
645         /*
646          * We know that complete is set at this point. If STARTED isn't set
647          * anymore, then the request isn't active and the "timeout" should
648          * just be ignored. This can happen due to the bitflag ordering.
649          * Timeout first checks if STARTED is set, and if it is, assumes
650          * the request is active. But if we race with completion, then
651          * we both flags will get cleared. So check here again, and ignore
652          * a timeout event with a request that isn't active.
653          */
654         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655                 return;
656
657         if (ops->timeout)
658                 ret = ops->timeout(req, reserved);
659
660         switch (ret) {
661         case BLK_EH_HANDLED:
662                 __blk_mq_complete_request(req);
663                 break;
664         case BLK_EH_RESET_TIMER:
665                 blk_add_timer(req);
666                 blk_clear_rq_complete(req);
667                 break;
668         case BLK_EH_NOT_HANDLED:
669                 break;
670         default:
671                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672                 break;
673         }
674 }
675
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677                 struct request *rq, void *priv, bool reserved)
678 {
679         struct blk_mq_timeout_data *data = priv;
680
681         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
682                 /*
683                  * If a request wasn't started before the queue was
684                  * marked dying, kill it here or it'll go unnoticed.
685                  */
686                 if (unlikely(blk_queue_dying(rq->q))) {
687                         rq->errors = -EIO;
688                         blk_mq_end_request(rq, rq->errors);
689                 }
690                 return;
691         }
692
693         if (time_after_eq(jiffies, rq->deadline)) {
694                 if (!blk_mark_rq_complete(rq))
695                         blk_mq_rq_timed_out(rq, reserved);
696         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697                 data->next = rq->deadline;
698                 data->next_set = 1;
699         }
700 }
701
702 static void blk_mq_timeout_work(struct work_struct *work)
703 {
704         struct request_queue *q =
705                 container_of(work, struct request_queue, timeout_work);
706         struct blk_mq_timeout_data data = {
707                 .next           = 0,
708                 .next_set       = 0,
709         };
710         int i;
711
712         /* A deadlock might occur if a request is stuck requiring a
713          * timeout at the same time a queue freeze is waiting
714          * completion, since the timeout code would not be able to
715          * acquire the queue reference here.
716          *
717          * That's why we don't use blk_queue_enter here; instead, we use
718          * percpu_ref_tryget directly, because we need to be able to
719          * obtain a reference even in the short window between the queue
720          * starting to freeze, by dropping the first reference in
721          * blk_mq_freeze_queue_start, and the moment the last request is
722          * consumed, marked by the instant q_usage_counter reaches
723          * zero.
724          */
725         if (!percpu_ref_tryget(&q->q_usage_counter))
726                 return;
727
728         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
729
730         if (data.next_set) {
731                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732                 mod_timer(&q->timeout, data.next);
733         } else {
734                 struct blk_mq_hw_ctx *hctx;
735
736                 queue_for_each_hw_ctx(q, hctx, i) {
737                         /* the hctx may be unmapped, so check it here */
738                         if (blk_mq_hw_queue_mapped(hctx))
739                                 blk_mq_tag_idle(hctx);
740                 }
741         }
742         blk_queue_exit(q);
743 }
744
745 /*
746  * Reverse check our software queue for entries that we could potentially
747  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748  * too much time checking for merges.
749  */
750 static bool blk_mq_attempt_merge(struct request_queue *q,
751                                  struct blk_mq_ctx *ctx, struct bio *bio)
752 {
753         struct request *rq;
754         int checked = 8;
755
756         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757                 int el_ret;
758
759                 if (!checked--)
760                         break;
761
762                 if (!blk_rq_merge_ok(rq, bio))
763                         continue;
764
765                 el_ret = blk_try_merge(rq, bio);
766                 if (el_ret == ELEVATOR_BACK_MERGE) {
767                         if (bio_attempt_back_merge(q, rq, bio)) {
768                                 ctx->rq_merged++;
769                                 return true;
770                         }
771                         break;
772                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773                         if (bio_attempt_front_merge(q, rq, bio)) {
774                                 ctx->rq_merged++;
775                                 return true;
776                         }
777                         break;
778                 }
779         }
780
781         return false;
782 }
783
784 struct flush_busy_ctx_data {
785         struct blk_mq_hw_ctx *hctx;
786         struct list_head *list;
787 };
788
789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
790 {
791         struct flush_busy_ctx_data *flush_data = data;
792         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
794
795         sbitmap_clear_bit(sb, bitnr);
796         spin_lock(&ctx->lock);
797         list_splice_tail_init(&ctx->rq_list, flush_data->list);
798         spin_unlock(&ctx->lock);
799         return true;
800 }
801
802 /*
803  * Process software queues that have been marked busy, splicing them
804  * to the for-dispatch
805  */
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
807 {
808         struct flush_busy_ctx_data data = {
809                 .hctx = hctx,
810                 .list = list,
811         };
812
813         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
814 }
815
816 static inline unsigned int queued_to_index(unsigned int queued)
817 {
818         if (!queued)
819                 return 0;
820
821         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
822 }
823
824 /*
825  * Run this hardware queue, pulling any software queues mapped to it in.
826  * Note that this function currently has various problems around ordering
827  * of IO. In particular, we'd like FIFO behaviour on handling existing
828  * items on the hctx->dispatch list. Ignore that for now.
829  */
830 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
831 {
832         struct request_queue *q = hctx->queue;
833         struct request *rq;
834         LIST_HEAD(rq_list);
835         LIST_HEAD(driver_list);
836         struct list_head *dptr;
837         int queued;
838
839         if (unlikely(blk_mq_hctx_stopped(hctx)))
840                 return;
841
842         hctx->run++;
843
844         /*
845          * Touch any software queue that has pending entries.
846          */
847         flush_busy_ctxs(hctx, &rq_list);
848
849         /*
850          * If we have previous entries on our dispatch list, grab them
851          * and stuff them at the front for more fair dispatch.
852          */
853         if (!list_empty_careful(&hctx->dispatch)) {
854                 spin_lock(&hctx->lock);
855                 if (!list_empty(&hctx->dispatch))
856                         list_splice_init(&hctx->dispatch, &rq_list);
857                 spin_unlock(&hctx->lock);
858         }
859
860         /*
861          * Start off with dptr being NULL, so we start the first request
862          * immediately, even if we have more pending.
863          */
864         dptr = NULL;
865
866         /*
867          * Now process all the entries, sending them to the driver.
868          */
869         queued = 0;
870         while (!list_empty(&rq_list)) {
871                 struct blk_mq_queue_data bd;
872                 int ret;
873
874                 rq = list_first_entry(&rq_list, struct request, queuelist);
875                 list_del_init(&rq->queuelist);
876
877                 bd.rq = rq;
878                 bd.list = dptr;
879                 bd.last = list_empty(&rq_list);
880
881                 ret = q->mq_ops->queue_rq(hctx, &bd);
882                 switch (ret) {
883                 case BLK_MQ_RQ_QUEUE_OK:
884                         queued++;
885                         break;
886                 case BLK_MQ_RQ_QUEUE_BUSY:
887                         list_add(&rq->queuelist, &rq_list);
888                         __blk_mq_requeue_request(rq);
889                         break;
890                 default:
891                         pr_err("blk-mq: bad return on queue: %d\n", ret);
892                 case BLK_MQ_RQ_QUEUE_ERROR:
893                         rq->errors = -EIO;
894                         blk_mq_end_request(rq, rq->errors);
895                         break;
896                 }
897
898                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
899                         break;
900
901                 /*
902                  * We've done the first request. If we have more than 1
903                  * left in the list, set dptr to defer issue.
904                  */
905                 if (!dptr && rq_list.next != rq_list.prev)
906                         dptr = &driver_list;
907         }
908
909         hctx->dispatched[queued_to_index(queued)]++;
910
911         /*
912          * Any items that need requeuing? Stuff them into hctx->dispatch,
913          * that is where we will continue on next queue run.
914          */
915         if (!list_empty(&rq_list)) {
916                 spin_lock(&hctx->lock);
917                 list_splice(&rq_list, &hctx->dispatch);
918                 spin_unlock(&hctx->lock);
919                 /*
920                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
921                  * it's possible the queue is stopped and restarted again
922                  * before this. Queue restart will dispatch requests. And since
923                  * requests in rq_list aren't added into hctx->dispatch yet,
924                  * the requests in rq_list might get lost.
925                  *
926                  * blk_mq_run_hw_queue() already checks the STOPPED bit
927                  **/
928                 blk_mq_run_hw_queue(hctx, true);
929         }
930 }
931
932 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
933 {
934         int srcu_idx;
935
936         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
937                 cpu_online(hctx->next_cpu));
938
939         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
940                 rcu_read_lock();
941                 blk_mq_process_rq_list(hctx);
942                 rcu_read_unlock();
943         } else {
944                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
945                 blk_mq_process_rq_list(hctx);
946                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
947         }
948 }
949
950 /*
951  * It'd be great if the workqueue API had a way to pass
952  * in a mask and had some smarts for more clever placement.
953  * For now we just round-robin here, switching for every
954  * BLK_MQ_CPU_WORK_BATCH queued items.
955  */
956 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
957 {
958         if (hctx->queue->nr_hw_queues == 1)
959                 return WORK_CPU_UNBOUND;
960
961         if (--hctx->next_cpu_batch <= 0) {
962                 int next_cpu;
963
964                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
965                 if (next_cpu >= nr_cpu_ids)
966                         next_cpu = cpumask_first(hctx->cpumask);
967
968                 hctx->next_cpu = next_cpu;
969                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
970         }
971
972         return hctx->next_cpu;
973 }
974
975 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
976 {
977         if (unlikely(blk_mq_hctx_stopped(hctx) ||
978                      !blk_mq_hw_queue_mapped(hctx)))
979                 return;
980
981         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
982                 int cpu = get_cpu();
983                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
984                         __blk_mq_run_hw_queue(hctx);
985                         put_cpu();
986                         return;
987                 }
988
989                 put_cpu();
990         }
991
992         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
993 }
994
995 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
996 {
997         struct blk_mq_hw_ctx *hctx;
998         int i;
999
1000         queue_for_each_hw_ctx(q, hctx, i) {
1001                 if ((!blk_mq_hctx_has_pending(hctx) &&
1002                     list_empty_careful(&hctx->dispatch)) ||
1003                     blk_mq_hctx_stopped(hctx))
1004                         continue;
1005
1006                 blk_mq_run_hw_queue(hctx, async);
1007         }
1008 }
1009 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1010
1011 /**
1012  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1013  * @q: request queue.
1014  *
1015  * The caller is responsible for serializing this function against
1016  * blk_mq_{start,stop}_hw_queue().
1017  */
1018 bool blk_mq_queue_stopped(struct request_queue *q)
1019 {
1020         struct blk_mq_hw_ctx *hctx;
1021         int i;
1022
1023         queue_for_each_hw_ctx(q, hctx, i)
1024                 if (blk_mq_hctx_stopped(hctx))
1025                         return true;
1026
1027         return false;
1028 }
1029 EXPORT_SYMBOL(blk_mq_queue_stopped);
1030
1031 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1032 {
1033         cancel_work(&hctx->run_work);
1034         cancel_delayed_work(&hctx->delay_work);
1035         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1036 }
1037 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1038
1039 void blk_mq_stop_hw_queues(struct request_queue *q)
1040 {
1041         struct blk_mq_hw_ctx *hctx;
1042         int i;
1043
1044         queue_for_each_hw_ctx(q, hctx, i)
1045                 blk_mq_stop_hw_queue(hctx);
1046 }
1047 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1048
1049 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1050 {
1051         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1052
1053         blk_mq_run_hw_queue(hctx, false);
1054 }
1055 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1056
1057 void blk_mq_start_hw_queues(struct request_queue *q)
1058 {
1059         struct blk_mq_hw_ctx *hctx;
1060         int i;
1061
1062         queue_for_each_hw_ctx(q, hctx, i)
1063                 blk_mq_start_hw_queue(hctx);
1064 }
1065 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1066
1067 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1068 {
1069         struct blk_mq_hw_ctx *hctx;
1070         int i;
1071
1072         queue_for_each_hw_ctx(q, hctx, i) {
1073                 if (!blk_mq_hctx_stopped(hctx))
1074                         continue;
1075
1076                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1077                 blk_mq_run_hw_queue(hctx, async);
1078         }
1079 }
1080 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1081
1082 static void blk_mq_run_work_fn(struct work_struct *work)
1083 {
1084         struct blk_mq_hw_ctx *hctx;
1085
1086         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1087
1088         __blk_mq_run_hw_queue(hctx);
1089 }
1090
1091 static void blk_mq_delay_work_fn(struct work_struct *work)
1092 {
1093         struct blk_mq_hw_ctx *hctx;
1094
1095         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1096
1097         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1098                 __blk_mq_run_hw_queue(hctx);
1099 }
1100
1101 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1102 {
1103         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1104                 return;
1105
1106         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1107                         &hctx->delay_work, msecs_to_jiffies(msecs));
1108 }
1109 EXPORT_SYMBOL(blk_mq_delay_queue);
1110
1111 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1112                                             struct request *rq,
1113                                             bool at_head)
1114 {
1115         struct blk_mq_ctx *ctx = rq->mq_ctx;
1116
1117         trace_block_rq_insert(hctx->queue, rq);
1118
1119         if (at_head)
1120                 list_add(&rq->queuelist, &ctx->rq_list);
1121         else
1122                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1123 }
1124
1125 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1126                                     struct request *rq, bool at_head)
1127 {
1128         struct blk_mq_ctx *ctx = rq->mq_ctx;
1129
1130         __blk_mq_insert_req_list(hctx, rq, at_head);
1131         blk_mq_hctx_mark_pending(hctx, ctx);
1132 }
1133
1134 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1135                            bool async)
1136 {
1137         struct blk_mq_ctx *ctx = rq->mq_ctx;
1138         struct request_queue *q = rq->q;
1139         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1140
1141         spin_lock(&ctx->lock);
1142         __blk_mq_insert_request(hctx, rq, at_head);
1143         spin_unlock(&ctx->lock);
1144
1145         if (run_queue)
1146                 blk_mq_run_hw_queue(hctx, async);
1147 }
1148
1149 static void blk_mq_insert_requests(struct request_queue *q,
1150                                      struct blk_mq_ctx *ctx,
1151                                      struct list_head *list,
1152                                      int depth,
1153                                      bool from_schedule)
1154
1155 {
1156         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1157
1158         trace_block_unplug(q, depth, !from_schedule);
1159
1160         /*
1161          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1162          * offline now
1163          */
1164         spin_lock(&ctx->lock);
1165         while (!list_empty(list)) {
1166                 struct request *rq;
1167
1168                 rq = list_first_entry(list, struct request, queuelist);
1169                 BUG_ON(rq->mq_ctx != ctx);
1170                 list_del_init(&rq->queuelist);
1171                 __blk_mq_insert_req_list(hctx, rq, false);
1172         }
1173         blk_mq_hctx_mark_pending(hctx, ctx);
1174         spin_unlock(&ctx->lock);
1175
1176         blk_mq_run_hw_queue(hctx, from_schedule);
1177 }
1178
1179 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1180 {
1181         struct request *rqa = container_of(a, struct request, queuelist);
1182         struct request *rqb = container_of(b, struct request, queuelist);
1183
1184         return !(rqa->mq_ctx < rqb->mq_ctx ||
1185                  (rqa->mq_ctx == rqb->mq_ctx &&
1186                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1187 }
1188
1189 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1190 {
1191         struct blk_mq_ctx *this_ctx;
1192         struct request_queue *this_q;
1193         struct request *rq;
1194         LIST_HEAD(list);
1195         LIST_HEAD(ctx_list);
1196         unsigned int depth;
1197
1198         list_splice_init(&plug->mq_list, &list);
1199
1200         list_sort(NULL, &list, plug_ctx_cmp);
1201
1202         this_q = NULL;
1203         this_ctx = NULL;
1204         depth = 0;
1205
1206         while (!list_empty(&list)) {
1207                 rq = list_entry_rq(list.next);
1208                 list_del_init(&rq->queuelist);
1209                 BUG_ON(!rq->q);
1210                 if (rq->mq_ctx != this_ctx) {
1211                         if (this_ctx) {
1212                                 blk_mq_insert_requests(this_q, this_ctx,
1213                                                         &ctx_list, depth,
1214                                                         from_schedule);
1215                         }
1216
1217                         this_ctx = rq->mq_ctx;
1218                         this_q = rq->q;
1219                         depth = 0;
1220                 }
1221
1222                 depth++;
1223                 list_add_tail(&rq->queuelist, &ctx_list);
1224         }
1225
1226         /*
1227          * If 'this_ctx' is set, we know we have entries to complete
1228          * on 'ctx_list'. Do those.
1229          */
1230         if (this_ctx) {
1231                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1232                                        from_schedule);
1233         }
1234 }
1235
1236 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1237 {
1238         init_request_from_bio(rq, bio);
1239
1240         blk_account_io_start(rq, 1);
1241 }
1242
1243 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1244 {
1245         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1246                 !blk_queue_nomerges(hctx->queue);
1247 }
1248
1249 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1250                                          struct blk_mq_ctx *ctx,
1251                                          struct request *rq, struct bio *bio)
1252 {
1253         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1254                 blk_mq_bio_to_request(rq, bio);
1255                 spin_lock(&ctx->lock);
1256 insert_rq:
1257                 __blk_mq_insert_request(hctx, rq, false);
1258                 spin_unlock(&ctx->lock);
1259                 return false;
1260         } else {
1261                 struct request_queue *q = hctx->queue;
1262
1263                 spin_lock(&ctx->lock);
1264                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1265                         blk_mq_bio_to_request(rq, bio);
1266                         goto insert_rq;
1267                 }
1268
1269                 spin_unlock(&ctx->lock);
1270                 __blk_mq_free_request(hctx, ctx, rq);
1271                 return true;
1272         }
1273 }
1274
1275 static struct request *blk_mq_map_request(struct request_queue *q,
1276                                           struct bio *bio,
1277                                           struct blk_mq_alloc_data *data)
1278 {
1279         struct blk_mq_hw_ctx *hctx;
1280         struct blk_mq_ctx *ctx;
1281         struct request *rq;
1282
1283         blk_queue_enter_live(q);
1284         ctx = blk_mq_get_ctx(q);
1285         hctx = blk_mq_map_queue(q, ctx->cpu);
1286
1287         trace_block_getrq(q, bio, bio->bi_opf);
1288         blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1289         rq = __blk_mq_alloc_request(data, bio->bi_opf);
1290
1291         data->hctx->queued++;
1292         return rq;
1293 }
1294
1295 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1296 {
1297         int ret;
1298         struct request_queue *q = rq->q;
1299         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1300         struct blk_mq_queue_data bd = {
1301                 .rq = rq,
1302                 .list = NULL,
1303                 .last = 1
1304         };
1305         blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1306
1307         if (blk_mq_hctx_stopped(hctx))
1308                 goto insert;
1309
1310         /*
1311          * For OK queue, we are done. For error, kill it. Any other
1312          * error (busy), just add it to our list as we previously
1313          * would have done
1314          */
1315         ret = q->mq_ops->queue_rq(hctx, &bd);
1316         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1317                 *cookie = new_cookie;
1318                 return;
1319         }
1320
1321         __blk_mq_requeue_request(rq);
1322
1323         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1324                 *cookie = BLK_QC_T_NONE;
1325                 rq->errors = -EIO;
1326                 blk_mq_end_request(rq, rq->errors);
1327                 return;
1328         }
1329
1330 insert:
1331         blk_mq_insert_request(rq, false, true, true);
1332 }
1333
1334 /*
1335  * Multiple hardware queue variant. This will not use per-process plugs,
1336  * but will attempt to bypass the hctx queueing if we can go straight to
1337  * hardware for SYNC IO.
1338  */
1339 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341         const int is_sync = op_is_sync(bio->bi_opf);
1342         const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1343         struct blk_mq_alloc_data data;
1344         struct request *rq;
1345         unsigned int request_count = 0, srcu_idx;
1346         struct blk_plug *plug;
1347         struct request *same_queue_rq = NULL;
1348         blk_qc_t cookie;
1349         unsigned int wb_acct;
1350
1351         blk_queue_bounce(q, &bio);
1352
1353         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1354                 bio_io_error(bio);
1355                 return BLK_QC_T_NONE;
1356         }
1357
1358         blk_queue_split(q, &bio, q->bio_split);
1359
1360         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1361             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1362                 return BLK_QC_T_NONE;
1363
1364         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1365
1366         rq = blk_mq_map_request(q, bio, &data);
1367         if (unlikely(!rq)) {
1368                 __wbt_done(q->rq_wb, wb_acct);
1369                 return BLK_QC_T_NONE;
1370         }
1371
1372         wbt_track(&rq->issue_stat, wb_acct);
1373
1374         cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1375
1376         if (unlikely(is_flush_fua)) {
1377                 blk_mq_bio_to_request(rq, bio);
1378                 blk_insert_flush(rq);
1379                 goto run_queue;
1380         }
1381
1382         plug = current->plug;
1383         /*
1384          * If the driver supports defer issued based on 'last', then
1385          * queue it up like normal since we can potentially save some
1386          * CPU this way.
1387          */
1388         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1389             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1390                 struct request *old_rq = NULL;
1391
1392                 blk_mq_bio_to_request(rq, bio);
1393
1394                 /*
1395                  * We do limited plugging. If the bio can be merged, do that.
1396                  * Otherwise the existing request in the plug list will be
1397                  * issued. So the plug list will have one request at most
1398                  */
1399                 if (plug) {
1400                         /*
1401                          * The plug list might get flushed before this. If that
1402                          * happens, same_queue_rq is invalid and plug list is
1403                          * empty
1404                          */
1405                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1406                                 old_rq = same_queue_rq;
1407                                 list_del_init(&old_rq->queuelist);
1408                         }
1409                         list_add_tail(&rq->queuelist, &plug->mq_list);
1410                 } else /* is_sync */
1411                         old_rq = rq;
1412                 blk_mq_put_ctx(data.ctx);
1413                 if (!old_rq)
1414                         goto done;
1415
1416                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1417                         rcu_read_lock();
1418                         blk_mq_try_issue_directly(old_rq, &cookie);
1419                         rcu_read_unlock();
1420                 } else {
1421                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1422                         blk_mq_try_issue_directly(old_rq, &cookie);
1423                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1424                 }
1425                 goto done;
1426         }
1427
1428         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1429                 /*
1430                  * For a SYNC request, send it to the hardware immediately. For
1431                  * an ASYNC request, just ensure that we run it later on. The
1432                  * latter allows for merging opportunities and more efficient
1433                  * dispatching.
1434                  */
1435 run_queue:
1436                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1437         }
1438         blk_mq_put_ctx(data.ctx);
1439 done:
1440         return cookie;
1441 }
1442
1443 /*
1444  * Single hardware queue variant. This will attempt to use any per-process
1445  * plug for merging and IO deferral.
1446  */
1447 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1448 {
1449         const int is_sync = op_is_sync(bio->bi_opf);
1450         const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1451         struct blk_plug *plug;
1452         unsigned int request_count = 0;
1453         struct blk_mq_alloc_data data;
1454         struct request *rq;
1455         blk_qc_t cookie;
1456         unsigned int wb_acct;
1457
1458         blk_queue_bounce(q, &bio);
1459
1460         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1461                 bio_io_error(bio);
1462                 return BLK_QC_T_NONE;
1463         }
1464
1465         blk_queue_split(q, &bio, q->bio_split);
1466
1467         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1468                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1469                         return BLK_QC_T_NONE;
1470         } else
1471                 request_count = blk_plug_queued_count(q);
1472
1473         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1474
1475         rq = blk_mq_map_request(q, bio, &data);
1476         if (unlikely(!rq)) {
1477                 __wbt_done(q->rq_wb, wb_acct);
1478                 return BLK_QC_T_NONE;
1479         }
1480
1481         wbt_track(&rq->issue_stat, wb_acct);
1482
1483         cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1484
1485         if (unlikely(is_flush_fua)) {
1486                 blk_mq_bio_to_request(rq, bio);
1487                 blk_insert_flush(rq);
1488                 goto run_queue;
1489         }
1490
1491         /*
1492          * A task plug currently exists. Since this is completely lockless,
1493          * utilize that to temporarily store requests until the task is
1494          * either done or scheduled away.
1495          */
1496         plug = current->plug;
1497         if (plug) {
1498                 struct request *last = NULL;
1499
1500                 blk_mq_bio_to_request(rq, bio);
1501
1502                 /*
1503                  * @request_count may become stale because of schedule
1504                  * out, so check the list again.
1505                  */
1506                 if (list_empty(&plug->mq_list))
1507                         request_count = 0;
1508                 if (!request_count)
1509                         trace_block_plug(q);
1510                 else
1511                         last = list_entry_rq(plug->mq_list.prev);
1512
1513                 blk_mq_put_ctx(data.ctx);
1514
1515                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1516                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1517                         blk_flush_plug_list(plug, false);
1518                         trace_block_plug(q);
1519                 }
1520
1521                 list_add_tail(&rq->queuelist, &plug->mq_list);
1522                 return cookie;
1523         }
1524
1525         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1526                 /*
1527                  * For a SYNC request, send it to the hardware immediately. For
1528                  * an ASYNC request, just ensure that we run it later on. The
1529                  * latter allows for merging opportunities and more efficient
1530                  * dispatching.
1531                  */
1532 run_queue:
1533                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1534         }
1535
1536         blk_mq_put_ctx(data.ctx);
1537         return cookie;
1538 }
1539
1540 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1541                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1542 {
1543         struct page *page;
1544
1545         if (tags->rqs && set->ops->exit_request) {
1546                 int i;
1547
1548                 for (i = 0; i < tags->nr_tags; i++) {
1549                         if (!tags->rqs[i])
1550                                 continue;
1551                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1552                                                 hctx_idx, i);
1553                         tags->rqs[i] = NULL;
1554                 }
1555         }
1556
1557         while (!list_empty(&tags->page_list)) {
1558                 page = list_first_entry(&tags->page_list, struct page, lru);
1559                 list_del_init(&page->lru);
1560                 /*
1561                  * Remove kmemleak object previously allocated in
1562                  * blk_mq_init_rq_map().
1563                  */
1564                 kmemleak_free(page_address(page));
1565                 __free_pages(page, page->private);
1566         }
1567
1568         kfree(tags->rqs);
1569
1570         blk_mq_free_tags(tags);
1571 }
1572
1573 static size_t order_to_size(unsigned int order)
1574 {
1575         return (size_t)PAGE_SIZE << order;
1576 }
1577
1578 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1579                 unsigned int hctx_idx)
1580 {
1581         struct blk_mq_tags *tags;
1582         unsigned int i, j, entries_per_page, max_order = 4;
1583         size_t rq_size, left;
1584
1585         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1586                                 set->numa_node,
1587                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1588         if (!tags)
1589                 return NULL;
1590
1591         INIT_LIST_HEAD(&tags->page_list);
1592
1593         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1594                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1595                                  set->numa_node);
1596         if (!tags->rqs) {
1597                 blk_mq_free_tags(tags);
1598                 return NULL;
1599         }
1600
1601         /*
1602          * rq_size is the size of the request plus driver payload, rounded
1603          * to the cacheline size
1604          */
1605         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1606                                 cache_line_size());
1607         left = rq_size * set->queue_depth;
1608
1609         for (i = 0; i < set->queue_depth; ) {
1610                 int this_order = max_order;
1611                 struct page *page;
1612                 int to_do;
1613                 void *p;
1614
1615                 while (this_order && left < order_to_size(this_order - 1))
1616                         this_order--;
1617
1618                 do {
1619                         page = alloc_pages_node(set->numa_node,
1620                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1621                                 this_order);
1622                         if (page)
1623                                 break;
1624                         if (!this_order--)
1625                                 break;
1626                         if (order_to_size(this_order) < rq_size)
1627                                 break;
1628                 } while (1);
1629
1630                 if (!page)
1631                         goto fail;
1632
1633                 page->private = this_order;
1634                 list_add_tail(&page->lru, &tags->page_list);
1635
1636                 p = page_address(page);
1637                 /*
1638                  * Allow kmemleak to scan these pages as they contain pointers
1639                  * to additional allocations like via ops->init_request().
1640                  */
1641                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1642                 entries_per_page = order_to_size(this_order) / rq_size;
1643                 to_do = min(entries_per_page, set->queue_depth - i);
1644                 left -= to_do * rq_size;
1645                 for (j = 0; j < to_do; j++) {
1646                         tags->rqs[i] = p;
1647                         if (set->ops->init_request) {
1648                                 if (set->ops->init_request(set->driver_data,
1649                                                 tags->rqs[i], hctx_idx, i,
1650                                                 set->numa_node)) {
1651                                         tags->rqs[i] = NULL;
1652                                         goto fail;
1653                                 }
1654                         }
1655
1656                         p += rq_size;
1657                         i++;
1658                 }
1659         }
1660         return tags;
1661
1662 fail:
1663         blk_mq_free_rq_map(set, tags, hctx_idx);
1664         return NULL;
1665 }
1666
1667 /*
1668  * 'cpu' is going away. splice any existing rq_list entries from this
1669  * software queue to the hw queue dispatch list, and ensure that it
1670  * gets run.
1671  */
1672 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1673 {
1674         struct blk_mq_hw_ctx *hctx;
1675         struct blk_mq_ctx *ctx;
1676         LIST_HEAD(tmp);
1677
1678         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1679         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1680
1681         spin_lock(&ctx->lock);
1682         if (!list_empty(&ctx->rq_list)) {
1683                 list_splice_init(&ctx->rq_list, &tmp);
1684                 blk_mq_hctx_clear_pending(hctx, ctx);
1685         }
1686         spin_unlock(&ctx->lock);
1687
1688         if (list_empty(&tmp))
1689                 return 0;
1690
1691         spin_lock(&hctx->lock);
1692         list_splice_tail_init(&tmp, &hctx->dispatch);
1693         spin_unlock(&hctx->lock);
1694
1695         blk_mq_run_hw_queue(hctx, true);
1696         return 0;
1697 }
1698
1699 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1700 {
1701         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1702                                             &hctx->cpuhp_dead);
1703 }
1704
1705 /* hctx->ctxs will be freed in queue's release handler */
1706 static void blk_mq_exit_hctx(struct request_queue *q,
1707                 struct blk_mq_tag_set *set,
1708                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1709 {
1710         unsigned flush_start_tag = set->queue_depth;
1711
1712         blk_mq_tag_idle(hctx);
1713
1714         if (set->ops->exit_request)
1715                 set->ops->exit_request(set->driver_data,
1716                                        hctx->fq->flush_rq, hctx_idx,
1717                                        flush_start_tag + hctx_idx);
1718
1719         if (set->ops->exit_hctx)
1720                 set->ops->exit_hctx(hctx, hctx_idx);
1721
1722         if (hctx->flags & BLK_MQ_F_BLOCKING)
1723                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1724
1725         blk_mq_remove_cpuhp(hctx);
1726         blk_free_flush_queue(hctx->fq);
1727         sbitmap_free(&hctx->ctx_map);
1728 }
1729
1730 static void blk_mq_exit_hw_queues(struct request_queue *q,
1731                 struct blk_mq_tag_set *set, int nr_queue)
1732 {
1733         struct blk_mq_hw_ctx *hctx;
1734         unsigned int i;
1735
1736         queue_for_each_hw_ctx(q, hctx, i) {
1737                 if (i == nr_queue)
1738                         break;
1739                 blk_mq_exit_hctx(q, set, hctx, i);
1740         }
1741 }
1742
1743 static void blk_mq_free_hw_queues(struct request_queue *q,
1744                 struct blk_mq_tag_set *set)
1745 {
1746         struct blk_mq_hw_ctx *hctx;
1747         unsigned int i;
1748
1749         queue_for_each_hw_ctx(q, hctx, i)
1750                 free_cpumask_var(hctx->cpumask);
1751 }
1752
1753 static int blk_mq_init_hctx(struct request_queue *q,
1754                 struct blk_mq_tag_set *set,
1755                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1756 {
1757         int node;
1758         unsigned flush_start_tag = set->queue_depth;
1759
1760         node = hctx->numa_node;
1761         if (node == NUMA_NO_NODE)
1762                 node = hctx->numa_node = set->numa_node;
1763
1764         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1765         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1766         spin_lock_init(&hctx->lock);
1767         INIT_LIST_HEAD(&hctx->dispatch);
1768         hctx->queue = q;
1769         hctx->queue_num = hctx_idx;
1770         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1771
1772         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1773
1774         hctx->tags = set->tags[hctx_idx];
1775
1776         /*
1777          * Allocate space for all possible cpus to avoid allocation at
1778          * runtime
1779          */
1780         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1781                                         GFP_KERNEL, node);
1782         if (!hctx->ctxs)
1783                 goto unregister_cpu_notifier;
1784
1785         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1786                               node))
1787                 goto free_ctxs;
1788
1789         hctx->nr_ctx = 0;
1790
1791         if (set->ops->init_hctx &&
1792             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1793                 goto free_bitmap;
1794
1795         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1796         if (!hctx->fq)
1797                 goto exit_hctx;
1798
1799         if (set->ops->init_request &&
1800             set->ops->init_request(set->driver_data,
1801                                    hctx->fq->flush_rq, hctx_idx,
1802                                    flush_start_tag + hctx_idx, node))
1803                 goto free_fq;
1804
1805         if (hctx->flags & BLK_MQ_F_BLOCKING)
1806                 init_srcu_struct(&hctx->queue_rq_srcu);
1807
1808         return 0;
1809
1810  free_fq:
1811         kfree(hctx->fq);
1812  exit_hctx:
1813         if (set->ops->exit_hctx)
1814                 set->ops->exit_hctx(hctx, hctx_idx);
1815  free_bitmap:
1816         sbitmap_free(&hctx->ctx_map);
1817  free_ctxs:
1818         kfree(hctx->ctxs);
1819  unregister_cpu_notifier:
1820         blk_mq_remove_cpuhp(hctx);
1821         return -1;
1822 }
1823
1824 static void blk_mq_init_cpu_queues(struct request_queue *q,
1825                                    unsigned int nr_hw_queues)
1826 {
1827         unsigned int i;
1828
1829         for_each_possible_cpu(i) {
1830                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1831                 struct blk_mq_hw_ctx *hctx;
1832
1833                 memset(__ctx, 0, sizeof(*__ctx));
1834                 __ctx->cpu = i;
1835                 spin_lock_init(&__ctx->lock);
1836                 INIT_LIST_HEAD(&__ctx->rq_list);
1837                 __ctx->queue = q;
1838                 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1839                 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1840
1841                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1842                 if (!cpu_online(i))
1843                         continue;
1844
1845                 hctx = blk_mq_map_queue(q, i);
1846
1847                 /*
1848                  * Set local node, IFF we have more than one hw queue. If
1849                  * not, we remain on the home node of the device
1850                  */
1851                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1852                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1853         }
1854 }
1855
1856 static void blk_mq_map_swqueue(struct request_queue *q,
1857                                const struct cpumask *online_mask)
1858 {
1859         unsigned int i;
1860         struct blk_mq_hw_ctx *hctx;
1861         struct blk_mq_ctx *ctx;
1862         struct blk_mq_tag_set *set = q->tag_set;
1863
1864         /*
1865          * Avoid others reading imcomplete hctx->cpumask through sysfs
1866          */
1867         mutex_lock(&q->sysfs_lock);
1868
1869         queue_for_each_hw_ctx(q, hctx, i) {
1870                 cpumask_clear(hctx->cpumask);
1871                 hctx->nr_ctx = 0;
1872         }
1873
1874         /*
1875          * Map software to hardware queues
1876          */
1877         for_each_possible_cpu(i) {
1878                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1879                 if (!cpumask_test_cpu(i, online_mask))
1880                         continue;
1881
1882                 ctx = per_cpu_ptr(q->queue_ctx, i);
1883                 hctx = blk_mq_map_queue(q, i);
1884
1885                 cpumask_set_cpu(i, hctx->cpumask);
1886                 ctx->index_hw = hctx->nr_ctx;
1887                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1888         }
1889
1890         mutex_unlock(&q->sysfs_lock);
1891
1892         queue_for_each_hw_ctx(q, hctx, i) {
1893                 /*
1894                  * If no software queues are mapped to this hardware queue,
1895                  * disable it and free the request entries.
1896                  */
1897                 if (!hctx->nr_ctx) {
1898                         if (set->tags[i]) {
1899                                 blk_mq_free_rq_map(set, set->tags[i], i);
1900                                 set->tags[i] = NULL;
1901                         }
1902                         hctx->tags = NULL;
1903                         continue;
1904                 }
1905
1906                 /* unmapped hw queue can be remapped after CPU topo changed */
1907                 if (!set->tags[i])
1908                         set->tags[i] = blk_mq_init_rq_map(set, i);
1909                 hctx->tags = set->tags[i];
1910                 WARN_ON(!hctx->tags);
1911
1912                 /*
1913                  * Set the map size to the number of mapped software queues.
1914                  * This is more accurate and more efficient than looping
1915                  * over all possibly mapped software queues.
1916                  */
1917                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1918
1919                 /*
1920                  * Initialize batch roundrobin counts
1921                  */
1922                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1923                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1924         }
1925 }
1926
1927 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1928 {
1929         struct blk_mq_hw_ctx *hctx;
1930         int i;
1931
1932         queue_for_each_hw_ctx(q, hctx, i) {
1933                 if (shared)
1934                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
1935                 else
1936                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1937         }
1938 }
1939
1940 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1941 {
1942         struct request_queue *q;
1943
1944         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1945                 blk_mq_freeze_queue(q);
1946                 queue_set_hctx_shared(q, shared);
1947                 blk_mq_unfreeze_queue(q);
1948         }
1949 }
1950
1951 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1952 {
1953         struct blk_mq_tag_set *set = q->tag_set;
1954
1955         mutex_lock(&set->tag_list_lock);
1956         list_del_init(&q->tag_set_list);
1957         if (list_is_singular(&set->tag_list)) {
1958                 /* just transitioned to unshared */
1959                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1960                 /* update existing queue */
1961                 blk_mq_update_tag_set_depth(set, false);
1962         }
1963         mutex_unlock(&set->tag_list_lock);
1964 }
1965
1966 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1967                                      struct request_queue *q)
1968 {
1969         q->tag_set = set;
1970
1971         mutex_lock(&set->tag_list_lock);
1972
1973         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1974         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1975                 set->flags |= BLK_MQ_F_TAG_SHARED;
1976                 /* update existing queue */
1977                 blk_mq_update_tag_set_depth(set, true);
1978         }
1979         if (set->flags & BLK_MQ_F_TAG_SHARED)
1980                 queue_set_hctx_shared(q, true);
1981         list_add_tail(&q->tag_set_list, &set->tag_list);
1982
1983         mutex_unlock(&set->tag_list_lock);
1984 }
1985
1986 /*
1987  * It is the actual release handler for mq, but we do it from
1988  * request queue's release handler for avoiding use-after-free
1989  * and headache because q->mq_kobj shouldn't have been introduced,
1990  * but we can't group ctx/kctx kobj without it.
1991  */
1992 void blk_mq_release(struct request_queue *q)
1993 {
1994         struct blk_mq_hw_ctx *hctx;
1995         unsigned int i;
1996
1997         /* hctx kobj stays in hctx */
1998         queue_for_each_hw_ctx(q, hctx, i) {
1999                 if (!hctx)
2000                         continue;
2001                 kfree(hctx->ctxs);
2002                 kfree(hctx);
2003         }
2004
2005         q->mq_map = NULL;
2006
2007         kfree(q->queue_hw_ctx);
2008
2009         /* ctx kobj stays in queue_ctx */
2010         free_percpu(q->queue_ctx);
2011 }
2012
2013 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2014 {
2015         struct request_queue *uninit_q, *q;
2016
2017         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2018         if (!uninit_q)
2019                 return ERR_PTR(-ENOMEM);
2020
2021         q = blk_mq_init_allocated_queue(set, uninit_q);
2022         if (IS_ERR(q))
2023                 blk_cleanup_queue(uninit_q);
2024
2025         return q;
2026 }
2027 EXPORT_SYMBOL(blk_mq_init_queue);
2028
2029 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2030                                                 struct request_queue *q)
2031 {
2032         int i, j;
2033         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2034
2035         blk_mq_sysfs_unregister(q);
2036         for (i = 0; i < set->nr_hw_queues; i++) {
2037                 int node;
2038
2039                 if (hctxs[i])
2040                         continue;
2041
2042                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2043                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2044                                         GFP_KERNEL, node);
2045                 if (!hctxs[i])
2046                         break;
2047
2048                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2049                                                 node)) {
2050                         kfree(hctxs[i]);
2051                         hctxs[i] = NULL;
2052                         break;
2053                 }
2054
2055                 atomic_set(&hctxs[i]->nr_active, 0);
2056                 hctxs[i]->numa_node = node;
2057                 hctxs[i]->queue_num = i;
2058
2059                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2060                         free_cpumask_var(hctxs[i]->cpumask);
2061                         kfree(hctxs[i]);
2062                         hctxs[i] = NULL;
2063                         break;
2064                 }
2065                 blk_mq_hctx_kobj_init(hctxs[i]);
2066         }
2067         for (j = i; j < q->nr_hw_queues; j++) {
2068                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2069
2070                 if (hctx) {
2071                         if (hctx->tags) {
2072                                 blk_mq_free_rq_map(set, hctx->tags, j);
2073                                 set->tags[j] = NULL;
2074                         }
2075                         blk_mq_exit_hctx(q, set, hctx, j);
2076                         free_cpumask_var(hctx->cpumask);
2077                         kobject_put(&hctx->kobj);
2078                         kfree(hctx->ctxs);
2079                         kfree(hctx);
2080                         hctxs[j] = NULL;
2081
2082                 }
2083         }
2084         q->nr_hw_queues = i;
2085         blk_mq_sysfs_register(q);
2086 }
2087
2088 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2089                                                   struct request_queue *q)
2090 {
2091         /* mark the queue as mq asap */
2092         q->mq_ops = set->ops;
2093
2094         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2095         if (!q->queue_ctx)
2096                 goto err_exit;
2097
2098         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2099                                                 GFP_KERNEL, set->numa_node);
2100         if (!q->queue_hw_ctx)
2101                 goto err_percpu;
2102
2103         q->mq_map = set->mq_map;
2104
2105         blk_mq_realloc_hw_ctxs(set, q);
2106         if (!q->nr_hw_queues)
2107                 goto err_hctxs;
2108
2109         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2110         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2111
2112         q->nr_queues = nr_cpu_ids;
2113
2114         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2115
2116         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2117                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2118
2119         q->sg_reserved_size = INT_MAX;
2120
2121         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2122         INIT_LIST_HEAD(&q->requeue_list);
2123         spin_lock_init(&q->requeue_lock);
2124
2125         if (q->nr_hw_queues > 1)
2126                 blk_queue_make_request(q, blk_mq_make_request);
2127         else
2128                 blk_queue_make_request(q, blk_sq_make_request);
2129
2130         /*
2131          * Do this after blk_queue_make_request() overrides it...
2132          */
2133         q->nr_requests = set->queue_depth;
2134
2135         /*
2136          * Default to classic polling
2137          */
2138         q->poll_nsec = -1;
2139
2140         if (set->ops->complete)
2141                 blk_queue_softirq_done(q, set->ops->complete);
2142
2143         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2144
2145         get_online_cpus();
2146         mutex_lock(&all_q_mutex);
2147
2148         list_add_tail(&q->all_q_node, &all_q_list);
2149         blk_mq_add_queue_tag_set(set, q);
2150         blk_mq_map_swqueue(q, cpu_online_mask);
2151
2152         mutex_unlock(&all_q_mutex);
2153         put_online_cpus();
2154
2155         return q;
2156
2157 err_hctxs:
2158         kfree(q->queue_hw_ctx);
2159 err_percpu:
2160         free_percpu(q->queue_ctx);
2161 err_exit:
2162         q->mq_ops = NULL;
2163         return ERR_PTR(-ENOMEM);
2164 }
2165 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2166
2167 void blk_mq_free_queue(struct request_queue *q)
2168 {
2169         struct blk_mq_tag_set   *set = q->tag_set;
2170
2171         mutex_lock(&all_q_mutex);
2172         list_del_init(&q->all_q_node);
2173         mutex_unlock(&all_q_mutex);
2174
2175         wbt_exit(q);
2176
2177         blk_mq_del_queue_tag_set(q);
2178
2179         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2180         blk_mq_free_hw_queues(q, set);
2181 }
2182
2183 /* Basically redo blk_mq_init_queue with queue frozen */
2184 static void blk_mq_queue_reinit(struct request_queue *q,
2185                                 const struct cpumask *online_mask)
2186 {
2187         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2188
2189         blk_mq_sysfs_unregister(q);
2190
2191         /*
2192          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2193          * we should change hctx numa_node according to new topology (this
2194          * involves free and re-allocate memory, worthy doing?)
2195          */
2196
2197         blk_mq_map_swqueue(q, online_mask);
2198
2199         blk_mq_sysfs_register(q);
2200 }
2201
2202 /*
2203  * New online cpumask which is going to be set in this hotplug event.
2204  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2205  * one-by-one and dynamically allocating this could result in a failure.
2206  */
2207 static struct cpumask cpuhp_online_new;
2208
2209 static void blk_mq_queue_reinit_work(void)
2210 {
2211         struct request_queue *q;
2212
2213         mutex_lock(&all_q_mutex);
2214         /*
2215          * We need to freeze and reinit all existing queues.  Freezing
2216          * involves synchronous wait for an RCU grace period and doing it
2217          * one by one may take a long time.  Start freezing all queues in
2218          * one swoop and then wait for the completions so that freezing can
2219          * take place in parallel.
2220          */
2221         list_for_each_entry(q, &all_q_list, all_q_node)
2222                 blk_mq_freeze_queue_start(q);
2223         list_for_each_entry(q, &all_q_list, all_q_node)
2224                 blk_mq_freeze_queue_wait(q);
2225
2226         list_for_each_entry(q, &all_q_list, all_q_node)
2227                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2228
2229         list_for_each_entry(q, &all_q_list, all_q_node)
2230                 blk_mq_unfreeze_queue(q);
2231
2232         mutex_unlock(&all_q_mutex);
2233 }
2234
2235 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2236 {
2237         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2238         blk_mq_queue_reinit_work();
2239         return 0;
2240 }
2241
2242 /*
2243  * Before hotadded cpu starts handling requests, new mappings must be
2244  * established.  Otherwise, these requests in hw queue might never be
2245  * dispatched.
2246  *
2247  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2248  * for CPU0, and ctx1 for CPU1).
2249  *
2250  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2251  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2252  *
2253  * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2254  * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2255  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2256  * is ignored.
2257  */
2258 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2259 {
2260         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2261         cpumask_set_cpu(cpu, &cpuhp_online_new);
2262         blk_mq_queue_reinit_work();
2263         return 0;
2264 }
2265
2266 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2267 {
2268         int i;
2269
2270         for (i = 0; i < set->nr_hw_queues; i++) {
2271                 set->tags[i] = blk_mq_init_rq_map(set, i);
2272                 if (!set->tags[i])
2273                         goto out_unwind;
2274         }
2275
2276         return 0;
2277
2278 out_unwind:
2279         while (--i >= 0)
2280                 blk_mq_free_rq_map(set, set->tags[i], i);
2281
2282         return -ENOMEM;
2283 }
2284
2285 /*
2286  * Allocate the request maps associated with this tag_set. Note that this
2287  * may reduce the depth asked for, if memory is tight. set->queue_depth
2288  * will be updated to reflect the allocated depth.
2289  */
2290 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2291 {
2292         unsigned int depth;
2293         int err;
2294
2295         depth = set->queue_depth;
2296         do {
2297                 err = __blk_mq_alloc_rq_maps(set);
2298                 if (!err)
2299                         break;
2300
2301                 set->queue_depth >>= 1;
2302                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2303                         err = -ENOMEM;
2304                         break;
2305                 }
2306         } while (set->queue_depth);
2307
2308         if (!set->queue_depth || err) {
2309                 pr_err("blk-mq: failed to allocate request map\n");
2310                 return -ENOMEM;
2311         }
2312
2313         if (depth != set->queue_depth)
2314                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2315                                                 depth, set->queue_depth);
2316
2317         return 0;
2318 }
2319
2320 /*
2321  * Alloc a tag set to be associated with one or more request queues.
2322  * May fail with EINVAL for various error conditions. May adjust the
2323  * requested depth down, if if it too large. In that case, the set
2324  * value will be stored in set->queue_depth.
2325  */
2326 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2327 {
2328         int ret;
2329
2330         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2331
2332         if (!set->nr_hw_queues)
2333                 return -EINVAL;
2334         if (!set->queue_depth)
2335                 return -EINVAL;
2336         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2337                 return -EINVAL;
2338
2339         if (!set->ops->queue_rq)
2340                 return -EINVAL;
2341
2342         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2343                 pr_info("blk-mq: reduced tag depth to %u\n",
2344                         BLK_MQ_MAX_DEPTH);
2345                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2346         }
2347
2348         /*
2349          * If a crashdump is active, then we are potentially in a very
2350          * memory constrained environment. Limit us to 1 queue and
2351          * 64 tags to prevent using too much memory.
2352          */
2353         if (is_kdump_kernel()) {
2354                 set->nr_hw_queues = 1;
2355                 set->queue_depth = min(64U, set->queue_depth);
2356         }
2357         /*
2358          * There is no use for more h/w queues than cpus.
2359          */
2360         if (set->nr_hw_queues > nr_cpu_ids)
2361                 set->nr_hw_queues = nr_cpu_ids;
2362
2363         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2364                                  GFP_KERNEL, set->numa_node);
2365         if (!set->tags)
2366                 return -ENOMEM;
2367
2368         ret = -ENOMEM;
2369         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2370                         GFP_KERNEL, set->numa_node);
2371         if (!set->mq_map)
2372                 goto out_free_tags;
2373
2374         if (set->ops->map_queues)
2375                 ret = set->ops->map_queues(set);
2376         else
2377                 ret = blk_mq_map_queues(set);
2378         if (ret)
2379                 goto out_free_mq_map;
2380
2381         ret = blk_mq_alloc_rq_maps(set);
2382         if (ret)
2383                 goto out_free_mq_map;
2384
2385         mutex_init(&set->tag_list_lock);
2386         INIT_LIST_HEAD(&set->tag_list);
2387
2388         return 0;
2389
2390 out_free_mq_map:
2391         kfree(set->mq_map);
2392         set->mq_map = NULL;
2393 out_free_tags:
2394         kfree(set->tags);
2395         set->tags = NULL;
2396         return ret;
2397 }
2398 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2399
2400 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2401 {
2402         int i;
2403
2404         for (i = 0; i < nr_cpu_ids; i++) {
2405                 if (set->tags[i])
2406                         blk_mq_free_rq_map(set, set->tags[i], i);
2407         }
2408
2409         kfree(set->mq_map);
2410         set->mq_map = NULL;
2411
2412         kfree(set->tags);
2413         set->tags = NULL;
2414 }
2415 EXPORT_SYMBOL(blk_mq_free_tag_set);
2416
2417 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2418 {
2419         struct blk_mq_tag_set *set = q->tag_set;
2420         struct blk_mq_hw_ctx *hctx;
2421         int i, ret;
2422
2423         if (!set || nr > set->queue_depth)
2424                 return -EINVAL;
2425
2426         ret = 0;
2427         queue_for_each_hw_ctx(q, hctx, i) {
2428                 if (!hctx->tags)
2429                         continue;
2430                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2431                 if (ret)
2432                         break;
2433         }
2434
2435         if (!ret)
2436                 q->nr_requests = nr;
2437
2438         return ret;
2439 }
2440
2441 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2442 {
2443         struct request_queue *q;
2444
2445         if (nr_hw_queues > nr_cpu_ids)
2446                 nr_hw_queues = nr_cpu_ids;
2447         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2448                 return;
2449
2450         list_for_each_entry(q, &set->tag_list, tag_set_list)
2451                 blk_mq_freeze_queue(q);
2452
2453         set->nr_hw_queues = nr_hw_queues;
2454         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2455                 blk_mq_realloc_hw_ctxs(set, q);
2456
2457                 if (q->nr_hw_queues > 1)
2458                         blk_queue_make_request(q, blk_mq_make_request);
2459                 else
2460                         blk_queue_make_request(q, blk_sq_make_request);
2461
2462                 blk_mq_queue_reinit(q, cpu_online_mask);
2463         }
2464
2465         list_for_each_entry(q, &set->tag_list, tag_set_list)
2466                 blk_mq_unfreeze_queue(q);
2467 }
2468 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2469
2470 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2471                                        struct blk_mq_hw_ctx *hctx,
2472                                        struct request *rq)
2473 {
2474         struct blk_rq_stat stat[2];
2475         unsigned long ret = 0;
2476
2477         /*
2478          * If stats collection isn't on, don't sleep but turn it on for
2479          * future users
2480          */
2481         if (!blk_stat_enable(q))
2482                 return 0;
2483
2484         /*
2485          * We don't have to do this once per IO, should optimize this
2486          * to just use the current window of stats until it changes
2487          */
2488         memset(&stat, 0, sizeof(stat));
2489         blk_hctx_stat_get(hctx, stat);
2490
2491         /*
2492          * As an optimistic guess, use half of the mean service time
2493          * for this type of request. We can (and should) make this smarter.
2494          * For instance, if the completion latencies are tight, we can
2495          * get closer than just half the mean. This is especially
2496          * important on devices where the completion latencies are longer
2497          * than ~10 usec.
2498          */
2499         if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2500                 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2501         else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2502                 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2503
2504         return ret;
2505 }
2506
2507 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2508                                      struct blk_mq_hw_ctx *hctx,
2509                                      struct request *rq)
2510 {
2511         struct hrtimer_sleeper hs;
2512         enum hrtimer_mode mode;
2513         unsigned int nsecs;
2514         ktime_t kt;
2515
2516         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2517                 return false;
2518
2519         /*
2520          * poll_nsec can be:
2521          *
2522          * -1:  don't ever hybrid sleep
2523          *  0:  use half of prev avg
2524          * >0:  use this specific value
2525          */
2526         if (q->poll_nsec == -1)
2527                 return false;
2528         else if (q->poll_nsec > 0)
2529                 nsecs = q->poll_nsec;
2530         else
2531                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2532
2533         if (!nsecs)
2534                 return false;
2535
2536         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2537
2538         /*
2539          * This will be replaced with the stats tracking code, using
2540          * 'avg_completion_time / 2' as the pre-sleep target.
2541          */
2542         kt = ktime_set(0, nsecs);
2543
2544         mode = HRTIMER_MODE_REL;
2545         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2546         hrtimer_set_expires(&hs.timer, kt);
2547
2548         hrtimer_init_sleeper(&hs, current);
2549         do {
2550                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2551                         break;
2552                 set_current_state(TASK_UNINTERRUPTIBLE);
2553                 hrtimer_start_expires(&hs.timer, mode);
2554                 if (hs.task)
2555                         io_schedule();
2556                 hrtimer_cancel(&hs.timer);
2557                 mode = HRTIMER_MODE_ABS;
2558         } while (hs.task && !signal_pending(current));
2559
2560         __set_current_state(TASK_RUNNING);
2561         destroy_hrtimer_on_stack(&hs.timer);
2562         return true;
2563 }
2564
2565 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2566 {
2567         struct request_queue *q = hctx->queue;
2568         long state;
2569
2570         /*
2571          * If we sleep, have the caller restart the poll loop to reset
2572          * the state. Like for the other success return cases, the
2573          * caller is responsible for checking if the IO completed. If
2574          * the IO isn't complete, we'll get called again and will go
2575          * straight to the busy poll loop.
2576          */
2577         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2578                 return true;
2579
2580         hctx->poll_considered++;
2581
2582         state = current->state;
2583         while (!need_resched()) {
2584                 int ret;
2585
2586                 hctx->poll_invoked++;
2587
2588                 ret = q->mq_ops->poll(hctx, rq->tag);
2589                 if (ret > 0) {
2590                         hctx->poll_success++;
2591                         set_current_state(TASK_RUNNING);
2592                         return true;
2593                 }
2594
2595                 if (signal_pending_state(state, current))
2596                         set_current_state(TASK_RUNNING);
2597
2598                 if (current->state == TASK_RUNNING)
2599                         return true;
2600                 if (ret < 0)
2601                         break;
2602                 cpu_relax();
2603         }
2604
2605         return false;
2606 }
2607
2608 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2609 {
2610         struct blk_mq_hw_ctx *hctx;
2611         struct blk_plug *plug;
2612         struct request *rq;
2613
2614         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2615             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2616                 return false;
2617
2618         plug = current->plug;
2619         if (plug)
2620                 blk_flush_plug_list(plug, false);
2621
2622         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2623         rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2624
2625         return __blk_mq_poll(hctx, rq);
2626 }
2627 EXPORT_SYMBOL_GPL(blk_mq_poll);
2628
2629 void blk_mq_disable_hotplug(void)
2630 {
2631         mutex_lock(&all_q_mutex);
2632 }
2633
2634 void blk_mq_enable_hotplug(void)
2635 {
2636         mutex_unlock(&all_q_mutex);
2637 }
2638
2639 static int __init blk_mq_init(void)
2640 {
2641         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2642                                 blk_mq_hctx_notify_dead);
2643
2644         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2645                                   blk_mq_queue_reinit_prepare,
2646                                   blk_mq_queue_reinit_dead);
2647         return 0;
2648 }
2649 subsys_initcall(blk_mq_init);