]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
c496692ecc5b8e2b717d40bad71aebdb398ea17f
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_queue_exit(q);
328
329         if (!rq)
330                 return ERR_PTR(-EWOULDBLOCK);
331
332         return rq;
333 }
334 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337                              struct request *rq)
338 {
339         const int sched_tag = rq->internal_tag;
340         struct request_queue *q = rq->q;
341
342         if (rq->rq_flags & RQF_MQ_INFLIGHT)
343                 atomic_dec(&hctx->nr_active);
344
345         wbt_done(q->rq_wb, &rq->issue_stat);
346         rq->rq_flags = 0;
347
348         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350         if (rq->tag != -1)
351                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352         if (sched_tag != -1)
353                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
354         blk_mq_sched_restart(hctx);
355         blk_queue_exit(q);
356 }
357
358 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359                                      struct request *rq)
360 {
361         struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363         ctx->rq_completed[rq_is_sync(rq)]++;
364         __blk_mq_finish_request(hctx, ctx, rq);
365 }
366
367 void blk_mq_finish_request(struct request *rq)
368 {
369         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 }
371 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372
373 void blk_mq_free_request(struct request *rq)
374 {
375         blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381         blk_account_io_done(rq);
382
383         if (rq->end_io) {
384                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385                 rq->end_io(rq, error);
386         } else {
387                 if (unlikely(blk_bidi_rq(rq)))
388                         blk_mq_free_request(rq->next_rq);
389                 blk_mq_free_request(rq);
390         }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397                 BUG();
398         __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404         struct request *rq = data;
405
406         rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411         struct blk_mq_ctx *ctx = rq->mq_ctx;
412         bool shared = false;
413         int cpu;
414
415         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416                 rq->q->softirq_done_fn(rq);
417                 return;
418         }
419
420         cpu = get_cpu();
421         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422                 shared = cpus_share_cache(cpu, ctx->cpu);
423
424         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425                 rq->csd.func = __blk_mq_complete_request_remote;
426                 rq->csd.info = rq;
427                 rq->csd.flags = 0;
428                 smp_call_function_single_async(ctx->cpu, &rq->csd);
429         } else {
430                 rq->q->softirq_done_fn(rq);
431         }
432         put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437         if (rq->rq_flags & RQF_STATS) {
438                 blk_mq_poll_stats_start(rq->q);
439                 blk_stat_add(rq);
440         }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445         struct request_queue *q = rq->q;
446
447         if (rq->internal_tag != -1)
448                 blk_mq_sched_completed_request(rq);
449
450         blk_mq_stat_add(rq);
451
452         if (!q->softirq_done_fn)
453                 blk_mq_end_request(rq, rq->errors);
454         else
455                 blk_mq_ipi_complete_request(rq);
456 }
457
458 /**
459  * blk_mq_complete_request - end I/O on a request
460  * @rq:         the request being processed
461  *
462  * Description:
463  *      Ends all I/O on a request. It does not handle partial completions.
464  *      The actual completion happens out-of-order, through a IPI handler.
465  **/
466 void blk_mq_complete_request(struct request *rq, int error)
467 {
468         struct request_queue *q = rq->q;
469
470         if (unlikely(blk_should_fake_timeout(q)))
471                 return;
472         if (!blk_mark_rq_complete(rq)) {
473                 rq->errors = error;
474                 __blk_mq_complete_request(rq);
475         }
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487         struct request_queue *q = rq->q;
488
489         blk_mq_sched_started_request(rq);
490
491         trace_block_rq_issue(q, rq);
492
493         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495                 rq->rq_flags |= RQF_STATS;
496                 wbt_issue(q->rq_wb, &rq->issue_stat);
497         }
498
499         blk_add_timer(rq);
500
501         /*
502          * Ensure that ->deadline is visible before set the started
503          * flag and clear the completed flag.
504          */
505         smp_mb__before_atomic();
506
507         /*
508          * Mark us as started and clear complete. Complete might have been
509          * set if requeue raced with timeout, which then marked it as
510          * complete. So be sure to clear complete again when we start
511          * the request, otherwise we'll ignore the completion event.
512          */
513         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518         if (q->dma_drain_size && blk_rq_bytes(rq)) {
519                 /*
520                  * Make sure space for the drain appears.  We know we can do
521                  * this because max_hw_segments has been adjusted to be one
522                  * fewer than the device can handle.
523                  */
524                 rq->nr_phys_segments++;
525         }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540         struct request_queue *q = rq->q;
541
542         trace_block_rq_requeue(q, rq);
543         wbt_requeue(q->rq_wb, &rq->issue_stat);
544         blk_mq_sched_requeue_request(rq);
545
546         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547                 if (q->dma_drain_size && blk_rq_bytes(rq))
548                         rq->nr_phys_segments--;
549         }
550 }
551
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554         __blk_mq_requeue_request(rq);
555
556         BUG_ON(blk_queued_rq(rq));
557         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563         struct request_queue *q =
564                 container_of(work, struct request_queue, requeue_work.work);
565         LIST_HEAD(rq_list);
566         struct request *rq, *next;
567         unsigned long flags;
568
569         spin_lock_irqsave(&q->requeue_lock, flags);
570         list_splice_init(&q->requeue_list, &rq_list);
571         spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
575                         continue;
576
577                 rq->rq_flags &= ~RQF_SOFTBARRIER;
578                 list_del_init(&rq->queuelist);
579                 blk_mq_sched_insert_request(rq, true, false, false, true);
580         }
581
582         while (!list_empty(&rq_list)) {
583                 rq = list_entry(rq_list.next, struct request, queuelist);
584                 list_del_init(&rq->queuelist);
585                 blk_mq_sched_insert_request(rq, false, false, false, true);
586         }
587
588         blk_mq_run_hw_queues(q, false);
589 }
590
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592                                 bool kick_requeue_list)
593 {
594         struct request_queue *q = rq->q;
595         unsigned long flags;
596
597         /*
598          * We abuse this flag that is otherwise used by the I/O scheduler to
599          * request head insertation from the workqueue.
600          */
601         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602
603         spin_lock_irqsave(&q->requeue_lock, flags);
604         if (at_head) {
605                 rq->rq_flags |= RQF_SOFTBARRIER;
606                 list_add(&rq->queuelist, &q->requeue_list);
607         } else {
608                 list_add_tail(&rq->queuelist, &q->requeue_list);
609         }
610         spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612         if (kick_requeue_list)
613                 blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619         kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624                                     unsigned long msecs)
625 {
626         kblockd_schedule_delayed_work(&q->requeue_work,
627                                       msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
631 void blk_mq_abort_requeue_list(struct request_queue *q)
632 {
633         unsigned long flags;
634         LIST_HEAD(rq_list);
635
636         spin_lock_irqsave(&q->requeue_lock, flags);
637         list_splice_init(&q->requeue_list, &rq_list);
638         spin_unlock_irqrestore(&q->requeue_lock, flags);
639
640         while (!list_empty(&rq_list)) {
641                 struct request *rq;
642
643                 rq = list_first_entry(&rq_list, struct request, queuelist);
644                 list_del_init(&rq->queuelist);
645                 rq->errors = -EIO;
646                 blk_mq_end_request(rq, rq->errors);
647         }
648 }
649 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
650
651 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
652 {
653         if (tag < tags->nr_tags) {
654                 prefetch(tags->rqs[tag]);
655                 return tags->rqs[tag];
656         }
657
658         return NULL;
659 }
660 EXPORT_SYMBOL(blk_mq_tag_to_rq);
661
662 struct blk_mq_timeout_data {
663         unsigned long next;
664         unsigned int next_set;
665 };
666
667 void blk_mq_rq_timed_out(struct request *req, bool reserved)
668 {
669         const struct blk_mq_ops *ops = req->q->mq_ops;
670         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
671
672         /*
673          * We know that complete is set at this point. If STARTED isn't set
674          * anymore, then the request isn't active and the "timeout" should
675          * just be ignored. This can happen due to the bitflag ordering.
676          * Timeout first checks if STARTED is set, and if it is, assumes
677          * the request is active. But if we race with completion, then
678          * both flags will get cleared. So check here again, and ignore
679          * a timeout event with a request that isn't active.
680          */
681         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
682                 return;
683
684         if (ops->timeout)
685                 ret = ops->timeout(req, reserved);
686
687         switch (ret) {
688         case BLK_EH_HANDLED:
689                 __blk_mq_complete_request(req);
690                 break;
691         case BLK_EH_RESET_TIMER:
692                 blk_add_timer(req);
693                 blk_clear_rq_complete(req);
694                 break;
695         case BLK_EH_NOT_HANDLED:
696                 break;
697         default:
698                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
699                 break;
700         }
701 }
702
703 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
704                 struct request *rq, void *priv, bool reserved)
705 {
706         struct blk_mq_timeout_data *data = priv;
707
708         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
709                 return;
710
711         /*
712          * The rq being checked may have been freed and reallocated
713          * out already here, we avoid this race by checking rq->deadline
714          * and REQ_ATOM_COMPLETE flag together:
715          *
716          * - if rq->deadline is observed as new value because of
717          *   reusing, the rq won't be timed out because of timing.
718          * - if rq->deadline is observed as previous value,
719          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
720          *   because we put a barrier between setting rq->deadline
721          *   and clearing the flag in blk_mq_start_request(), so
722          *   this rq won't be timed out too.
723          */
724         if (time_after_eq(jiffies, rq->deadline)) {
725                 if (!blk_mark_rq_complete(rq))
726                         blk_mq_rq_timed_out(rq, reserved);
727         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
728                 data->next = rq->deadline;
729                 data->next_set = 1;
730         }
731 }
732
733 static void blk_mq_timeout_work(struct work_struct *work)
734 {
735         struct request_queue *q =
736                 container_of(work, struct request_queue, timeout_work);
737         struct blk_mq_timeout_data data = {
738                 .next           = 0,
739                 .next_set       = 0,
740         };
741         int i;
742
743         /* A deadlock might occur if a request is stuck requiring a
744          * timeout at the same time a queue freeze is waiting
745          * completion, since the timeout code would not be able to
746          * acquire the queue reference here.
747          *
748          * That's why we don't use blk_queue_enter here; instead, we use
749          * percpu_ref_tryget directly, because we need to be able to
750          * obtain a reference even in the short window between the queue
751          * starting to freeze, by dropping the first reference in
752          * blk_freeze_queue_start, and the moment the last request is
753          * consumed, marked by the instant q_usage_counter reaches
754          * zero.
755          */
756         if (!percpu_ref_tryget(&q->q_usage_counter))
757                 return;
758
759         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
760
761         if (data.next_set) {
762                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
763                 mod_timer(&q->timeout, data.next);
764         } else {
765                 struct blk_mq_hw_ctx *hctx;
766
767                 queue_for_each_hw_ctx(q, hctx, i) {
768                         /* the hctx may be unmapped, so check it here */
769                         if (blk_mq_hw_queue_mapped(hctx))
770                                 blk_mq_tag_idle(hctx);
771                 }
772         }
773         blk_queue_exit(q);
774 }
775
776 /*
777  * Reverse check our software queue for entries that we could potentially
778  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
779  * too much time checking for merges.
780  */
781 static bool blk_mq_attempt_merge(struct request_queue *q,
782                                  struct blk_mq_ctx *ctx, struct bio *bio)
783 {
784         struct request *rq;
785         int checked = 8;
786
787         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
788                 bool merged = false;
789
790                 if (!checked--)
791                         break;
792
793                 if (!blk_rq_merge_ok(rq, bio))
794                         continue;
795
796                 switch (blk_try_merge(rq, bio)) {
797                 case ELEVATOR_BACK_MERGE:
798                         if (blk_mq_sched_allow_merge(q, rq, bio))
799                                 merged = bio_attempt_back_merge(q, rq, bio);
800                         break;
801                 case ELEVATOR_FRONT_MERGE:
802                         if (blk_mq_sched_allow_merge(q, rq, bio))
803                                 merged = bio_attempt_front_merge(q, rq, bio);
804                         break;
805                 case ELEVATOR_DISCARD_MERGE:
806                         merged = bio_attempt_discard_merge(q, rq, bio);
807                         break;
808                 default:
809                         continue;
810                 }
811
812                 if (merged)
813                         ctx->rq_merged++;
814                 return merged;
815         }
816
817         return false;
818 }
819
820 struct flush_busy_ctx_data {
821         struct blk_mq_hw_ctx *hctx;
822         struct list_head *list;
823 };
824
825 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
826 {
827         struct flush_busy_ctx_data *flush_data = data;
828         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
829         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
830
831         sbitmap_clear_bit(sb, bitnr);
832         spin_lock(&ctx->lock);
833         list_splice_tail_init(&ctx->rq_list, flush_data->list);
834         spin_unlock(&ctx->lock);
835         return true;
836 }
837
838 /*
839  * Process software queues that have been marked busy, splicing them
840  * to the for-dispatch
841  */
842 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
843 {
844         struct flush_busy_ctx_data data = {
845                 .hctx = hctx,
846                 .list = list,
847         };
848
849         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
850 }
851 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
852
853 static inline unsigned int queued_to_index(unsigned int queued)
854 {
855         if (!queued)
856                 return 0;
857
858         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
859 }
860
861 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
862                            bool wait)
863 {
864         struct blk_mq_alloc_data data = {
865                 .q = rq->q,
866                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
867                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
868         };
869
870         if (rq->tag != -1)
871                 goto done;
872
873         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
874                 data.flags |= BLK_MQ_REQ_RESERVED;
875
876         rq->tag = blk_mq_get_tag(&data);
877         if (rq->tag >= 0) {
878                 if (blk_mq_tag_busy(data.hctx)) {
879                         rq->rq_flags |= RQF_MQ_INFLIGHT;
880                         atomic_inc(&data.hctx->nr_active);
881                 }
882                 data.hctx->tags->rqs[rq->tag] = rq;
883         }
884
885 done:
886         if (hctx)
887                 *hctx = data.hctx;
888         return rq->tag != -1;
889 }
890
891 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
892                                     struct request *rq)
893 {
894         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
895         rq->tag = -1;
896
897         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
898                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
899                 atomic_dec(&hctx->nr_active);
900         }
901 }
902
903 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
904                                        struct request *rq)
905 {
906         if (rq->tag == -1 || rq->internal_tag == -1)
907                 return;
908
909         __blk_mq_put_driver_tag(hctx, rq);
910 }
911
912 static void blk_mq_put_driver_tag(struct request *rq)
913 {
914         struct blk_mq_hw_ctx *hctx;
915
916         if (rq->tag == -1 || rq->internal_tag == -1)
917                 return;
918
919         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
920         __blk_mq_put_driver_tag(hctx, rq);
921 }
922
923 /*
924  * If we fail getting a driver tag because all the driver tags are already
925  * assigned and on the dispatch list, BUT the first entry does not have a
926  * tag, then we could deadlock. For that case, move entries with assigned
927  * driver tags to the front, leaving the set of tagged requests in the
928  * same order, and the untagged set in the same order.
929  */
930 static bool reorder_tags_to_front(struct list_head *list)
931 {
932         struct request *rq, *tmp, *first = NULL;
933
934         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
935                 if (rq == first)
936                         break;
937                 if (rq->tag != -1) {
938                         list_move(&rq->queuelist, list);
939                         if (!first)
940                                 first = rq;
941                 }
942         }
943
944         return first != NULL;
945 }
946
947 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
948                                 void *key)
949 {
950         struct blk_mq_hw_ctx *hctx;
951
952         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
953
954         list_del(&wait->task_list);
955         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
956         blk_mq_run_hw_queue(hctx, true);
957         return 1;
958 }
959
960 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
961 {
962         struct sbq_wait_state *ws;
963
964         /*
965          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
966          * The thread which wins the race to grab this bit adds the hardware
967          * queue to the wait queue.
968          */
969         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
970             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
971                 return false;
972
973         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
974         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
975
976         /*
977          * As soon as this returns, it's no longer safe to fiddle with
978          * hctx->dispatch_wait, since a completion can wake up the wait queue
979          * and unlock the bit.
980          */
981         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
982         return true;
983 }
984
985 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
986 {
987         struct blk_mq_hw_ctx *hctx;
988         struct request *rq;
989         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
990
991         if (list_empty(list))
992                 return false;
993
994         /*
995          * Now process all the entries, sending them to the driver.
996          */
997         errors = queued = 0;
998         do {
999                 struct blk_mq_queue_data bd;
1000
1001                 rq = list_first_entry(list, struct request, queuelist);
1002                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1003                         if (!queued && reorder_tags_to_front(list))
1004                                 continue;
1005
1006                         /*
1007                          * The initial allocation attempt failed, so we need to
1008                          * rerun the hardware queue when a tag is freed.
1009                          */
1010                         if (!blk_mq_dispatch_wait_add(hctx))
1011                                 break;
1012
1013                         /*
1014                          * It's possible that a tag was freed in the window
1015                          * between the allocation failure and adding the
1016                          * hardware queue to the wait queue.
1017                          */
1018                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019                                 break;
1020                 }
1021
1022                 list_del_init(&rq->queuelist);
1023
1024                 bd.rq = rq;
1025
1026                 /*
1027                  * Flag last if we have no more requests, or if we have more
1028                  * but can't assign a driver tag to it.
1029                  */
1030                 if (list_empty(list))
1031                         bd.last = true;
1032                 else {
1033                         struct request *nxt;
1034
1035                         nxt = list_first_entry(list, struct request, queuelist);
1036                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1037                 }
1038
1039                 ret = q->mq_ops->queue_rq(hctx, &bd);
1040                 switch (ret) {
1041                 case BLK_MQ_RQ_QUEUE_OK:
1042                         queued++;
1043                         break;
1044                 case BLK_MQ_RQ_QUEUE_BUSY:
1045                         blk_mq_put_driver_tag_hctx(hctx, rq);
1046                         list_add(&rq->queuelist, list);
1047                         __blk_mq_requeue_request(rq);
1048                         break;
1049                 default:
1050                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1051                 case BLK_MQ_RQ_QUEUE_ERROR:
1052                         errors++;
1053                         rq->errors = -EIO;
1054                         blk_mq_end_request(rq, rq->errors);
1055                         break;
1056                 }
1057
1058                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1059                         break;
1060         } while (!list_empty(list));
1061
1062         hctx->dispatched[queued_to_index(queued)]++;
1063
1064         /*
1065          * Any items that need requeuing? Stuff them into hctx->dispatch,
1066          * that is where we will continue on next queue run.
1067          */
1068         if (!list_empty(list)) {
1069                 /*
1070                  * If an I/O scheduler has been configured and we got a driver
1071                  * tag for the next request already, free it again.
1072                  */
1073                 rq = list_first_entry(list, struct request, queuelist);
1074                 blk_mq_put_driver_tag(rq);
1075
1076                 spin_lock(&hctx->lock);
1077                 list_splice_init(list, &hctx->dispatch);
1078                 spin_unlock(&hctx->lock);
1079
1080                 /*
1081                  * If SCHED_RESTART was set by the caller of this function and
1082                  * it is no longer set that means that it was cleared by another
1083                  * thread and hence that a queue rerun is needed.
1084                  *
1085                  * If TAG_WAITING is set that means that an I/O scheduler has
1086                  * been configured and another thread is waiting for a driver
1087                  * tag. To guarantee fairness, do not rerun this hardware queue
1088                  * but let the other thread grab the driver tag.
1089                  *
1090                  * If no I/O scheduler has been configured it is possible that
1091                  * the hardware queue got stopped and restarted before requests
1092                  * were pushed back onto the dispatch list. Rerun the queue to
1093                  * avoid starvation. Notes:
1094                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1095                  *   been stopped before rerunning a queue.
1096                  * - Some but not all block drivers stop a queue before
1097                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1098                  *   and dm-rq.
1099                  */
1100                 if (!blk_mq_sched_needs_restart(hctx) &&
1101                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1102                         blk_mq_run_hw_queue(hctx, true);
1103         }
1104
1105         return (queued + errors) != 0;
1106 }
1107
1108 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1109 {
1110         int srcu_idx;
1111
1112         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1113                 cpu_online(hctx->next_cpu));
1114
1115         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116                 rcu_read_lock();
1117                 blk_mq_sched_dispatch_requests(hctx);
1118                 rcu_read_unlock();
1119         } else {
1120                 might_sleep();
1121
1122                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1123                 blk_mq_sched_dispatch_requests(hctx);
1124                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1125         }
1126 }
1127
1128 /*
1129  * It'd be great if the workqueue API had a way to pass
1130  * in a mask and had some smarts for more clever placement.
1131  * For now we just round-robin here, switching for every
1132  * BLK_MQ_CPU_WORK_BATCH queued items.
1133  */
1134 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1135 {
1136         if (hctx->queue->nr_hw_queues == 1)
1137                 return WORK_CPU_UNBOUND;
1138
1139         if (--hctx->next_cpu_batch <= 0) {
1140                 int next_cpu;
1141
1142                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1143                 if (next_cpu >= nr_cpu_ids)
1144                         next_cpu = cpumask_first(hctx->cpumask);
1145
1146                 hctx->next_cpu = next_cpu;
1147                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1148         }
1149
1150         return hctx->next_cpu;
1151 }
1152
1153 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1154                                         unsigned long msecs)
1155 {
1156         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1157                      !blk_mq_hw_queue_mapped(hctx)))
1158                 return;
1159
1160         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161                 int cpu = get_cpu();
1162                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163                         __blk_mq_run_hw_queue(hctx);
1164                         put_cpu();
1165                         return;
1166                 }
1167
1168                 put_cpu();
1169         }
1170
1171         if (msecs == 0)
1172                 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1173                                          &hctx->run_work);
1174         else
1175                 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1176                                                  &hctx->delayed_run_work,
1177                                                  msecs_to_jiffies(msecs));
1178 }
1179
1180 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1181 {
1182         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1183 }
1184 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1185
1186 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1187 {
1188         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1189 }
1190 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1191
1192 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1193 {
1194         struct blk_mq_hw_ctx *hctx;
1195         int i;
1196
1197         queue_for_each_hw_ctx(q, hctx, i) {
1198                 if (!blk_mq_hctx_has_pending(hctx) ||
1199                     blk_mq_hctx_stopped(hctx))
1200                         continue;
1201
1202                 blk_mq_run_hw_queue(hctx, async);
1203         }
1204 }
1205 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1206
1207 /**
1208  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1209  * @q: request queue.
1210  *
1211  * The caller is responsible for serializing this function against
1212  * blk_mq_{start,stop}_hw_queue().
1213  */
1214 bool blk_mq_queue_stopped(struct request_queue *q)
1215 {
1216         struct blk_mq_hw_ctx *hctx;
1217         int i;
1218
1219         queue_for_each_hw_ctx(q, hctx, i)
1220                 if (blk_mq_hctx_stopped(hctx))
1221                         return true;
1222
1223         return false;
1224 }
1225 EXPORT_SYMBOL(blk_mq_queue_stopped);
1226
1227 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1228 {
1229         cancel_work(&hctx->run_work);
1230         cancel_delayed_work(&hctx->delay_work);
1231         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1232 }
1233 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1234
1235 void blk_mq_stop_hw_queues(struct request_queue *q)
1236 {
1237         struct blk_mq_hw_ctx *hctx;
1238         int i;
1239
1240         queue_for_each_hw_ctx(q, hctx, i)
1241                 blk_mq_stop_hw_queue(hctx);
1242 }
1243 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1244
1245 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1246 {
1247         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1248
1249         blk_mq_run_hw_queue(hctx, false);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1252
1253 void blk_mq_start_hw_queues(struct request_queue *q)
1254 {
1255         struct blk_mq_hw_ctx *hctx;
1256         int i;
1257
1258         queue_for_each_hw_ctx(q, hctx, i)
1259                 blk_mq_start_hw_queue(hctx);
1260 }
1261 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1262
1263 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1264 {
1265         if (!blk_mq_hctx_stopped(hctx))
1266                 return;
1267
1268         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1269         blk_mq_run_hw_queue(hctx, async);
1270 }
1271 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1272
1273 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1274 {
1275         struct blk_mq_hw_ctx *hctx;
1276         int i;
1277
1278         queue_for_each_hw_ctx(q, hctx, i)
1279                 blk_mq_start_stopped_hw_queue(hctx, async);
1280 }
1281 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1282
1283 static void blk_mq_run_work_fn(struct work_struct *work)
1284 {
1285         struct blk_mq_hw_ctx *hctx;
1286
1287         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1288
1289         __blk_mq_run_hw_queue(hctx);
1290 }
1291
1292 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1293 {
1294         struct blk_mq_hw_ctx *hctx;
1295
1296         hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1297
1298         __blk_mq_run_hw_queue(hctx);
1299 }
1300
1301 static void blk_mq_delay_work_fn(struct work_struct *work)
1302 {
1303         struct blk_mq_hw_ctx *hctx;
1304
1305         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1306
1307         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1308                 __blk_mq_run_hw_queue(hctx);
1309 }
1310
1311 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1312 {
1313         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1314                 return;
1315
1316         blk_mq_stop_hw_queue(hctx);
1317         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1318                         &hctx->delay_work, msecs_to_jiffies(msecs));
1319 }
1320 EXPORT_SYMBOL(blk_mq_delay_queue);
1321
1322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1323                                             struct request *rq,
1324                                             bool at_head)
1325 {
1326         struct blk_mq_ctx *ctx = rq->mq_ctx;
1327
1328         trace_block_rq_insert(hctx->queue, rq);
1329
1330         if (at_head)
1331                 list_add(&rq->queuelist, &ctx->rq_list);
1332         else
1333                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1334 }
1335
1336 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1337                              bool at_head)
1338 {
1339         struct blk_mq_ctx *ctx = rq->mq_ctx;
1340
1341         __blk_mq_insert_req_list(hctx, rq, at_head);
1342         blk_mq_hctx_mark_pending(hctx, ctx);
1343 }
1344
1345 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1346                             struct list_head *list)
1347
1348 {
1349         /*
1350          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1351          * offline now
1352          */
1353         spin_lock(&ctx->lock);
1354         while (!list_empty(list)) {
1355                 struct request *rq;
1356
1357                 rq = list_first_entry(list, struct request, queuelist);
1358                 BUG_ON(rq->mq_ctx != ctx);
1359                 list_del_init(&rq->queuelist);
1360                 __blk_mq_insert_req_list(hctx, rq, false);
1361         }
1362         blk_mq_hctx_mark_pending(hctx, ctx);
1363         spin_unlock(&ctx->lock);
1364 }
1365
1366 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1367 {
1368         struct request *rqa = container_of(a, struct request, queuelist);
1369         struct request *rqb = container_of(b, struct request, queuelist);
1370
1371         return !(rqa->mq_ctx < rqb->mq_ctx ||
1372                  (rqa->mq_ctx == rqb->mq_ctx &&
1373                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1374 }
1375
1376 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1377 {
1378         struct blk_mq_ctx *this_ctx;
1379         struct request_queue *this_q;
1380         struct request *rq;
1381         LIST_HEAD(list);
1382         LIST_HEAD(ctx_list);
1383         unsigned int depth;
1384
1385         list_splice_init(&plug->mq_list, &list);
1386
1387         list_sort(NULL, &list, plug_ctx_cmp);
1388
1389         this_q = NULL;
1390         this_ctx = NULL;
1391         depth = 0;
1392
1393         while (!list_empty(&list)) {
1394                 rq = list_entry_rq(list.next);
1395                 list_del_init(&rq->queuelist);
1396                 BUG_ON(!rq->q);
1397                 if (rq->mq_ctx != this_ctx) {
1398                         if (this_ctx) {
1399                                 trace_block_unplug(this_q, depth, from_schedule);
1400                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1401                                                                 &ctx_list,
1402                                                                 from_schedule);
1403                         }
1404
1405                         this_ctx = rq->mq_ctx;
1406                         this_q = rq->q;
1407                         depth = 0;
1408                 }
1409
1410                 depth++;
1411                 list_add_tail(&rq->queuelist, &ctx_list);
1412         }
1413
1414         /*
1415          * If 'this_ctx' is set, we know we have entries to complete
1416          * on 'ctx_list'. Do those.
1417          */
1418         if (this_ctx) {
1419                 trace_block_unplug(this_q, depth, from_schedule);
1420                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1421                                                 from_schedule);
1422         }
1423 }
1424
1425 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1426 {
1427         blk_init_request_from_bio(rq, bio);
1428
1429         blk_account_io_start(rq, true);
1430 }
1431
1432 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1433 {
1434         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1435                 !blk_queue_nomerges(hctx->queue);
1436 }
1437
1438 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1439                                          struct blk_mq_ctx *ctx,
1440                                          struct request *rq, struct bio *bio)
1441 {
1442         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1443                 blk_mq_bio_to_request(rq, bio);
1444                 spin_lock(&ctx->lock);
1445 insert_rq:
1446                 __blk_mq_insert_request(hctx, rq, false);
1447                 spin_unlock(&ctx->lock);
1448                 return false;
1449         } else {
1450                 struct request_queue *q = hctx->queue;
1451
1452                 spin_lock(&ctx->lock);
1453                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1454                         blk_mq_bio_to_request(rq, bio);
1455                         goto insert_rq;
1456                 }
1457
1458                 spin_unlock(&ctx->lock);
1459                 __blk_mq_finish_request(hctx, ctx, rq);
1460                 return true;
1461         }
1462 }
1463
1464 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1465 {
1466         if (rq->tag != -1)
1467                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1468
1469         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1470 }
1471
1472 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1473                                       bool may_sleep)
1474 {
1475         struct request_queue *q = rq->q;
1476         struct blk_mq_queue_data bd = {
1477                 .rq = rq,
1478                 .last = true,
1479         };
1480         struct blk_mq_hw_ctx *hctx;
1481         blk_qc_t new_cookie;
1482         int ret;
1483
1484         if (q->elevator)
1485                 goto insert;
1486
1487         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1488                 goto insert;
1489
1490         new_cookie = request_to_qc_t(hctx, rq);
1491
1492         /*
1493          * For OK queue, we are done. For error, kill it. Any other
1494          * error (busy), just add it to our list as we previously
1495          * would have done
1496          */
1497         ret = q->mq_ops->queue_rq(hctx, &bd);
1498         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1499                 *cookie = new_cookie;
1500                 return;
1501         }
1502
1503         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1504                 *cookie = BLK_QC_T_NONE;
1505                 rq->errors = -EIO;
1506                 blk_mq_end_request(rq, rq->errors);
1507                 return;
1508         }
1509
1510         __blk_mq_requeue_request(rq);
1511 insert:
1512         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1513 }
1514
1515 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1516                 struct request *rq, blk_qc_t *cookie)
1517 {
1518         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1519                 rcu_read_lock();
1520                 __blk_mq_try_issue_directly(rq, cookie, false);
1521                 rcu_read_unlock();
1522         } else {
1523                 unsigned int srcu_idx;
1524
1525                 might_sleep();
1526
1527                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1528                 __blk_mq_try_issue_directly(rq, cookie, true);
1529                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1530         }
1531 }
1532
1533 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1534 {
1535         const int is_sync = op_is_sync(bio->bi_opf);
1536         const int is_flush_fua = op_is_flush(bio->bi_opf);
1537         struct blk_mq_alloc_data data = { .flags = 0 };
1538         struct request *rq;
1539         unsigned int request_count = 0;
1540         struct blk_plug *plug;
1541         struct request *same_queue_rq = NULL;
1542         blk_qc_t cookie;
1543         unsigned int wb_acct;
1544
1545         blk_queue_bounce(q, &bio);
1546
1547         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1548                 bio_io_error(bio);
1549                 return BLK_QC_T_NONE;
1550         }
1551
1552         blk_queue_split(q, &bio, q->bio_split);
1553
1554         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1555             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1556                 return BLK_QC_T_NONE;
1557
1558         if (blk_mq_sched_bio_merge(q, bio))
1559                 return BLK_QC_T_NONE;
1560
1561         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1562
1563         trace_block_getrq(q, bio, bio->bi_opf);
1564
1565         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1566         if (unlikely(!rq)) {
1567                 __wbt_done(q->rq_wb, wb_acct);
1568                 return BLK_QC_T_NONE;
1569         }
1570
1571         wbt_track(&rq->issue_stat, wb_acct);
1572
1573         cookie = request_to_qc_t(data.hctx, rq);
1574
1575         plug = current->plug;
1576         if (unlikely(is_flush_fua)) {
1577                 blk_mq_bio_to_request(rq, bio);
1578                 if (q->elevator) {
1579                         blk_mq_sched_insert_request(rq, false, true, true,
1580                                         true);
1581                 } else {
1582                         blk_insert_flush(rq);
1583                         blk_mq_run_hw_queue(data.hctx, true);
1584                 }
1585         } else if (plug && q->nr_hw_queues == 1) {
1586                 struct request *last = NULL;
1587
1588                 blk_mq_bio_to_request(rq, bio);
1589
1590                 /*
1591                  * @request_count may become stale because of schedule
1592                  * out, so check the list again.
1593                  */
1594                 if (list_empty(&plug->mq_list))
1595                         request_count = 0;
1596                 else if (blk_queue_nomerges(q))
1597                         request_count = blk_plug_queued_count(q);
1598
1599                 if (!request_count)
1600                         trace_block_plug(q);
1601                 else
1602                         last = list_entry_rq(plug->mq_list.prev);
1603
1604                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1605                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1606                         blk_flush_plug_list(plug, false);
1607                         trace_block_plug(q);
1608                 }
1609
1610                 list_add_tail(&rq->queuelist, &plug->mq_list);
1611         } else if (plug && !blk_queue_nomerges(q)) {
1612                 blk_mq_bio_to_request(rq, bio);
1613
1614                 /*
1615                  * We do limited plugging. If the bio can be merged, do that.
1616                  * Otherwise the existing request in the plug list will be
1617                  * issued. So the plug list will have one request at most
1618                  * The plug list might get flushed before this. If that happens,
1619                  * the plug list is empty, and same_queue_rq is invalid.
1620                  */
1621                 if (list_empty(&plug->mq_list))
1622                         same_queue_rq = NULL;
1623                 if (same_queue_rq)
1624                         list_del_init(&same_queue_rq->queuelist);
1625                 list_add_tail(&rq->queuelist, &plug->mq_list);
1626
1627                 blk_mq_put_ctx(data.ctx);
1628
1629                 if (same_queue_rq)
1630                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1631                                         &cookie);
1632
1633                 return cookie;
1634         } else if (q->nr_hw_queues > 1 && is_sync) {
1635                 blk_mq_put_ctx(data.ctx);
1636                 blk_mq_bio_to_request(rq, bio);
1637                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1638                 return cookie;
1639         } else if (q->elevator) {
1640                 blk_mq_bio_to_request(rq, bio);
1641                 blk_mq_sched_insert_request(rq, false, true, true, true);
1642         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1643                 blk_mq_run_hw_queue(data.hctx, true);
1644
1645         blk_mq_put_ctx(data.ctx);
1646         return cookie;
1647 }
1648
1649 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1650                      unsigned int hctx_idx)
1651 {
1652         struct page *page;
1653
1654         if (tags->rqs && set->ops->exit_request) {
1655                 int i;
1656
1657                 for (i = 0; i < tags->nr_tags; i++) {
1658                         struct request *rq = tags->static_rqs[i];
1659
1660                         if (!rq)
1661                                 continue;
1662                         set->ops->exit_request(set->driver_data, rq,
1663                                                 hctx_idx, i);
1664                         tags->static_rqs[i] = NULL;
1665                 }
1666         }
1667
1668         while (!list_empty(&tags->page_list)) {
1669                 page = list_first_entry(&tags->page_list, struct page, lru);
1670                 list_del_init(&page->lru);
1671                 /*
1672                  * Remove kmemleak object previously allocated in
1673                  * blk_mq_init_rq_map().
1674                  */
1675                 kmemleak_free(page_address(page));
1676                 __free_pages(page, page->private);
1677         }
1678 }
1679
1680 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1681 {
1682         kfree(tags->rqs);
1683         tags->rqs = NULL;
1684         kfree(tags->static_rqs);
1685         tags->static_rqs = NULL;
1686
1687         blk_mq_free_tags(tags);
1688 }
1689
1690 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1691                                         unsigned int hctx_idx,
1692                                         unsigned int nr_tags,
1693                                         unsigned int reserved_tags)
1694 {
1695         struct blk_mq_tags *tags;
1696         int node;
1697
1698         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1699         if (node == NUMA_NO_NODE)
1700                 node = set->numa_node;
1701
1702         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1703                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1704         if (!tags)
1705                 return NULL;
1706
1707         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1708                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1709                                  node);
1710         if (!tags->rqs) {
1711                 blk_mq_free_tags(tags);
1712                 return NULL;
1713         }
1714
1715         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1716                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1717                                  node);
1718         if (!tags->static_rqs) {
1719                 kfree(tags->rqs);
1720                 blk_mq_free_tags(tags);
1721                 return NULL;
1722         }
1723
1724         return tags;
1725 }
1726
1727 static size_t order_to_size(unsigned int order)
1728 {
1729         return (size_t)PAGE_SIZE << order;
1730 }
1731
1732 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1733                      unsigned int hctx_idx, unsigned int depth)
1734 {
1735         unsigned int i, j, entries_per_page, max_order = 4;
1736         size_t rq_size, left;
1737         int node;
1738
1739         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1740         if (node == NUMA_NO_NODE)
1741                 node = set->numa_node;
1742
1743         INIT_LIST_HEAD(&tags->page_list);
1744
1745         /*
1746          * rq_size is the size of the request plus driver payload, rounded
1747          * to the cacheline size
1748          */
1749         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1750                                 cache_line_size());
1751         left = rq_size * depth;
1752
1753         for (i = 0; i < depth; ) {
1754                 int this_order = max_order;
1755                 struct page *page;
1756                 int to_do;
1757                 void *p;
1758
1759                 while (this_order && left < order_to_size(this_order - 1))
1760                         this_order--;
1761
1762                 do {
1763                         page = alloc_pages_node(node,
1764                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1765                                 this_order);
1766                         if (page)
1767                                 break;
1768                         if (!this_order--)
1769                                 break;
1770                         if (order_to_size(this_order) < rq_size)
1771                                 break;
1772                 } while (1);
1773
1774                 if (!page)
1775                         goto fail;
1776
1777                 page->private = this_order;
1778                 list_add_tail(&page->lru, &tags->page_list);
1779
1780                 p = page_address(page);
1781                 /*
1782                  * Allow kmemleak to scan these pages as they contain pointers
1783                  * to additional allocations like via ops->init_request().
1784                  */
1785                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1786                 entries_per_page = order_to_size(this_order) / rq_size;
1787                 to_do = min(entries_per_page, depth - i);
1788                 left -= to_do * rq_size;
1789                 for (j = 0; j < to_do; j++) {
1790                         struct request *rq = p;
1791
1792                         tags->static_rqs[i] = rq;
1793                         if (set->ops->init_request) {
1794                                 if (set->ops->init_request(set->driver_data,
1795                                                 rq, hctx_idx, i,
1796                                                 node)) {
1797                                         tags->static_rqs[i] = NULL;
1798                                         goto fail;
1799                                 }
1800                         }
1801
1802                         p += rq_size;
1803                         i++;
1804                 }
1805         }
1806         return 0;
1807
1808 fail:
1809         blk_mq_free_rqs(set, tags, hctx_idx);
1810         return -ENOMEM;
1811 }
1812
1813 /*
1814  * 'cpu' is going away. splice any existing rq_list entries from this
1815  * software queue to the hw queue dispatch list, and ensure that it
1816  * gets run.
1817  */
1818 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1819 {
1820         struct blk_mq_hw_ctx *hctx;
1821         struct blk_mq_ctx *ctx;
1822         LIST_HEAD(tmp);
1823
1824         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1825         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1826
1827         spin_lock(&ctx->lock);
1828         if (!list_empty(&ctx->rq_list)) {
1829                 list_splice_init(&ctx->rq_list, &tmp);
1830                 blk_mq_hctx_clear_pending(hctx, ctx);
1831         }
1832         spin_unlock(&ctx->lock);
1833
1834         if (list_empty(&tmp))
1835                 return 0;
1836
1837         spin_lock(&hctx->lock);
1838         list_splice_tail_init(&tmp, &hctx->dispatch);
1839         spin_unlock(&hctx->lock);
1840
1841         blk_mq_run_hw_queue(hctx, true);
1842         return 0;
1843 }
1844
1845 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1846 {
1847         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1848                                             &hctx->cpuhp_dead);
1849 }
1850
1851 /* hctx->ctxs will be freed in queue's release handler */
1852 static void blk_mq_exit_hctx(struct request_queue *q,
1853                 struct blk_mq_tag_set *set,
1854                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1855 {
1856         unsigned flush_start_tag = set->queue_depth;
1857
1858         blk_mq_tag_idle(hctx);
1859
1860         if (set->ops->exit_request)
1861                 set->ops->exit_request(set->driver_data,
1862                                        hctx->fq->flush_rq, hctx_idx,
1863                                        flush_start_tag + hctx_idx);
1864
1865         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1866
1867         if (set->ops->exit_hctx)
1868                 set->ops->exit_hctx(hctx, hctx_idx);
1869
1870         if (hctx->flags & BLK_MQ_F_BLOCKING)
1871                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1872
1873         blk_mq_remove_cpuhp(hctx);
1874         blk_free_flush_queue(hctx->fq);
1875         sbitmap_free(&hctx->ctx_map);
1876 }
1877
1878 static void blk_mq_exit_hw_queues(struct request_queue *q,
1879                 struct blk_mq_tag_set *set, int nr_queue)
1880 {
1881         struct blk_mq_hw_ctx *hctx;
1882         unsigned int i;
1883
1884         queue_for_each_hw_ctx(q, hctx, i) {
1885                 if (i == nr_queue)
1886                         break;
1887                 blk_mq_exit_hctx(q, set, hctx, i);
1888         }
1889 }
1890
1891 static int blk_mq_init_hctx(struct request_queue *q,
1892                 struct blk_mq_tag_set *set,
1893                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1894 {
1895         int node;
1896         unsigned flush_start_tag = set->queue_depth;
1897
1898         node = hctx->numa_node;
1899         if (node == NUMA_NO_NODE)
1900                 node = hctx->numa_node = set->numa_node;
1901
1902         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1903         INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1904         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1905         spin_lock_init(&hctx->lock);
1906         INIT_LIST_HEAD(&hctx->dispatch);
1907         hctx->queue = q;
1908         hctx->queue_num = hctx_idx;
1909         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1910
1911         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1912
1913         hctx->tags = set->tags[hctx_idx];
1914
1915         /*
1916          * Allocate space for all possible cpus to avoid allocation at
1917          * runtime
1918          */
1919         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1920                                         GFP_KERNEL, node);
1921         if (!hctx->ctxs)
1922                 goto unregister_cpu_notifier;
1923
1924         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1925                               node))
1926                 goto free_ctxs;
1927
1928         hctx->nr_ctx = 0;
1929
1930         if (set->ops->init_hctx &&
1931             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1932                 goto free_bitmap;
1933
1934         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1935                 goto exit_hctx;
1936
1937         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1938         if (!hctx->fq)
1939                 goto sched_exit_hctx;
1940
1941         if (set->ops->init_request &&
1942             set->ops->init_request(set->driver_data,
1943                                    hctx->fq->flush_rq, hctx_idx,
1944                                    flush_start_tag + hctx_idx, node))
1945                 goto free_fq;
1946
1947         if (hctx->flags & BLK_MQ_F_BLOCKING)
1948                 init_srcu_struct(&hctx->queue_rq_srcu);
1949
1950         return 0;
1951
1952  free_fq:
1953         kfree(hctx->fq);
1954  sched_exit_hctx:
1955         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1956  exit_hctx:
1957         if (set->ops->exit_hctx)
1958                 set->ops->exit_hctx(hctx, hctx_idx);
1959  free_bitmap:
1960         sbitmap_free(&hctx->ctx_map);
1961  free_ctxs:
1962         kfree(hctx->ctxs);
1963  unregister_cpu_notifier:
1964         blk_mq_remove_cpuhp(hctx);
1965         return -1;
1966 }
1967
1968 static void blk_mq_init_cpu_queues(struct request_queue *q,
1969                                    unsigned int nr_hw_queues)
1970 {
1971         unsigned int i;
1972
1973         for_each_possible_cpu(i) {
1974                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1975                 struct blk_mq_hw_ctx *hctx;
1976
1977                 __ctx->cpu = i;
1978                 spin_lock_init(&__ctx->lock);
1979                 INIT_LIST_HEAD(&__ctx->rq_list);
1980                 __ctx->queue = q;
1981
1982                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1983                 if (!cpu_online(i))
1984                         continue;
1985
1986                 hctx = blk_mq_map_queue(q, i);
1987
1988                 /*
1989                  * Set local node, IFF we have more than one hw queue. If
1990                  * not, we remain on the home node of the device
1991                  */
1992                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1993                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1994         }
1995 }
1996
1997 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1998 {
1999         int ret = 0;
2000
2001         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2002                                         set->queue_depth, set->reserved_tags);
2003         if (!set->tags[hctx_idx])
2004                 return false;
2005
2006         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2007                                 set->queue_depth);
2008         if (!ret)
2009                 return true;
2010
2011         blk_mq_free_rq_map(set->tags[hctx_idx]);
2012         set->tags[hctx_idx] = NULL;
2013         return false;
2014 }
2015
2016 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2017                                          unsigned int hctx_idx)
2018 {
2019         if (set->tags[hctx_idx]) {
2020                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2021                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2022                 set->tags[hctx_idx] = NULL;
2023         }
2024 }
2025
2026 static void blk_mq_map_swqueue(struct request_queue *q,
2027                                const struct cpumask *online_mask)
2028 {
2029         unsigned int i, hctx_idx;
2030         struct blk_mq_hw_ctx *hctx;
2031         struct blk_mq_ctx *ctx;
2032         struct blk_mq_tag_set *set = q->tag_set;
2033
2034         /*
2035          * Avoid others reading imcomplete hctx->cpumask through sysfs
2036          */
2037         mutex_lock(&q->sysfs_lock);
2038
2039         queue_for_each_hw_ctx(q, hctx, i) {
2040                 cpumask_clear(hctx->cpumask);
2041                 hctx->nr_ctx = 0;
2042         }
2043
2044         /*
2045          * Map software to hardware queues
2046          */
2047         for_each_possible_cpu(i) {
2048                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2049                 if (!cpumask_test_cpu(i, online_mask))
2050                         continue;
2051
2052                 hctx_idx = q->mq_map[i];
2053                 /* unmapped hw queue can be remapped after CPU topo changed */
2054                 if (!set->tags[hctx_idx] &&
2055                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2056                         /*
2057                          * If tags initialization fail for some hctx,
2058                          * that hctx won't be brought online.  In this
2059                          * case, remap the current ctx to hctx[0] which
2060                          * is guaranteed to always have tags allocated
2061                          */
2062                         q->mq_map[i] = 0;
2063                 }
2064
2065                 ctx = per_cpu_ptr(q->queue_ctx, i);
2066                 hctx = blk_mq_map_queue(q, i);
2067
2068                 cpumask_set_cpu(i, hctx->cpumask);
2069                 ctx->index_hw = hctx->nr_ctx;
2070                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2071         }
2072
2073         mutex_unlock(&q->sysfs_lock);
2074
2075         queue_for_each_hw_ctx(q, hctx, i) {
2076                 /*
2077                  * If no software queues are mapped to this hardware queue,
2078                  * disable it and free the request entries.
2079                  */
2080                 if (!hctx->nr_ctx) {
2081                         /* Never unmap queue 0.  We need it as a
2082                          * fallback in case of a new remap fails
2083                          * allocation
2084                          */
2085                         if (i && set->tags[i])
2086                                 blk_mq_free_map_and_requests(set, i);
2087
2088                         hctx->tags = NULL;
2089                         continue;
2090                 }
2091
2092                 hctx->tags = set->tags[i];
2093                 WARN_ON(!hctx->tags);
2094
2095                 /*
2096                  * Set the map size to the number of mapped software queues.
2097                  * This is more accurate and more efficient than looping
2098                  * over all possibly mapped software queues.
2099                  */
2100                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2101
2102                 /*
2103                  * Initialize batch roundrobin counts
2104                  */
2105                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2106                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2107         }
2108 }
2109
2110 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2111 {
2112         struct blk_mq_hw_ctx *hctx;
2113         int i;
2114
2115         queue_for_each_hw_ctx(q, hctx, i) {
2116                 if (shared)
2117                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2118                 else
2119                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2120         }
2121 }
2122
2123 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2124 {
2125         struct request_queue *q;
2126
2127         lockdep_assert_held(&set->tag_list_lock);
2128
2129         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2130                 blk_mq_freeze_queue(q);
2131                 queue_set_hctx_shared(q, shared);
2132                 blk_mq_unfreeze_queue(q);
2133         }
2134 }
2135
2136 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2137 {
2138         struct blk_mq_tag_set *set = q->tag_set;
2139
2140         mutex_lock(&set->tag_list_lock);
2141         list_del_rcu(&q->tag_set_list);
2142         INIT_LIST_HEAD(&q->tag_set_list);
2143         if (list_is_singular(&set->tag_list)) {
2144                 /* just transitioned to unshared */
2145                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2146                 /* update existing queue */
2147                 blk_mq_update_tag_set_depth(set, false);
2148         }
2149         mutex_unlock(&set->tag_list_lock);
2150
2151         synchronize_rcu();
2152 }
2153
2154 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2155                                      struct request_queue *q)
2156 {
2157         q->tag_set = set;
2158
2159         mutex_lock(&set->tag_list_lock);
2160
2161         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2162         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2163                 set->flags |= BLK_MQ_F_TAG_SHARED;
2164                 /* update existing queue */
2165                 blk_mq_update_tag_set_depth(set, true);
2166         }
2167         if (set->flags & BLK_MQ_F_TAG_SHARED)
2168                 queue_set_hctx_shared(q, true);
2169         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2170
2171         mutex_unlock(&set->tag_list_lock);
2172 }
2173
2174 /*
2175  * It is the actual release handler for mq, but we do it from
2176  * request queue's release handler for avoiding use-after-free
2177  * and headache because q->mq_kobj shouldn't have been introduced,
2178  * but we can't group ctx/kctx kobj without it.
2179  */
2180 void blk_mq_release(struct request_queue *q)
2181 {
2182         struct blk_mq_hw_ctx *hctx;
2183         unsigned int i;
2184
2185         /* hctx kobj stays in hctx */
2186         queue_for_each_hw_ctx(q, hctx, i) {
2187                 if (!hctx)
2188                         continue;
2189                 kobject_put(&hctx->kobj);
2190         }
2191
2192         q->mq_map = NULL;
2193
2194         kfree(q->queue_hw_ctx);
2195
2196         /*
2197          * release .mq_kobj and sw queue's kobject now because
2198          * both share lifetime with request queue.
2199          */
2200         blk_mq_sysfs_deinit(q);
2201
2202         free_percpu(q->queue_ctx);
2203 }
2204
2205 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2206 {
2207         struct request_queue *uninit_q, *q;
2208
2209         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2210         if (!uninit_q)
2211                 return ERR_PTR(-ENOMEM);
2212
2213         q = blk_mq_init_allocated_queue(set, uninit_q);
2214         if (IS_ERR(q))
2215                 blk_cleanup_queue(uninit_q);
2216
2217         return q;
2218 }
2219 EXPORT_SYMBOL(blk_mq_init_queue);
2220
2221 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2222                                                 struct request_queue *q)
2223 {
2224         int i, j;
2225         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2226
2227         blk_mq_sysfs_unregister(q);
2228         for (i = 0; i < set->nr_hw_queues; i++) {
2229                 int node;
2230
2231                 if (hctxs[i])
2232                         continue;
2233
2234                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2235                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2236                                         GFP_KERNEL, node);
2237                 if (!hctxs[i])
2238                         break;
2239
2240                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2241                                                 node)) {
2242                         kfree(hctxs[i]);
2243                         hctxs[i] = NULL;
2244                         break;
2245                 }
2246
2247                 atomic_set(&hctxs[i]->nr_active, 0);
2248                 hctxs[i]->numa_node = node;
2249                 hctxs[i]->queue_num = i;
2250
2251                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2252                         free_cpumask_var(hctxs[i]->cpumask);
2253                         kfree(hctxs[i]);
2254                         hctxs[i] = NULL;
2255                         break;
2256                 }
2257                 blk_mq_hctx_kobj_init(hctxs[i]);
2258         }
2259         for (j = i; j < q->nr_hw_queues; j++) {
2260                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2261
2262                 if (hctx) {
2263                         if (hctx->tags)
2264                                 blk_mq_free_map_and_requests(set, j);
2265                         blk_mq_exit_hctx(q, set, hctx, j);
2266                         kobject_put(&hctx->kobj);
2267                         hctxs[j] = NULL;
2268
2269                 }
2270         }
2271         q->nr_hw_queues = i;
2272         blk_mq_sysfs_register(q);
2273 }
2274
2275 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2276                                                   struct request_queue *q)
2277 {
2278         /* mark the queue as mq asap */
2279         q->mq_ops = set->ops;
2280
2281         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2282                                              blk_stat_rq_ddir, 2, q);
2283         if (!q->poll_cb)
2284                 goto err_exit;
2285
2286         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2287         if (!q->queue_ctx)
2288                 goto err_exit;
2289
2290         /* init q->mq_kobj and sw queues' kobjects */
2291         blk_mq_sysfs_init(q);
2292
2293         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2294                                                 GFP_KERNEL, set->numa_node);
2295         if (!q->queue_hw_ctx)
2296                 goto err_percpu;
2297
2298         q->mq_map = set->mq_map;
2299
2300         blk_mq_realloc_hw_ctxs(set, q);
2301         if (!q->nr_hw_queues)
2302                 goto err_hctxs;
2303
2304         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2305         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2306
2307         q->nr_queues = nr_cpu_ids;
2308
2309         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2310
2311         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2312                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2313
2314         q->sg_reserved_size = INT_MAX;
2315
2316         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2317         INIT_LIST_HEAD(&q->requeue_list);
2318         spin_lock_init(&q->requeue_lock);
2319
2320         blk_queue_make_request(q, blk_mq_make_request);
2321
2322         /*
2323          * Do this after blk_queue_make_request() overrides it...
2324          */
2325         q->nr_requests = set->queue_depth;
2326
2327         /*
2328          * Default to classic polling
2329          */
2330         q->poll_nsec = -1;
2331
2332         if (set->ops->complete)
2333                 blk_queue_softirq_done(q, set->ops->complete);
2334
2335         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2336
2337         get_online_cpus();
2338         mutex_lock(&all_q_mutex);
2339
2340         list_add_tail(&q->all_q_node, &all_q_list);
2341         blk_mq_add_queue_tag_set(set, q);
2342         blk_mq_map_swqueue(q, cpu_online_mask);
2343
2344         mutex_unlock(&all_q_mutex);
2345         put_online_cpus();
2346
2347         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2348                 int ret;
2349
2350                 ret = blk_mq_sched_init(q);
2351                 if (ret)
2352                         return ERR_PTR(ret);
2353         }
2354
2355         return q;
2356
2357 err_hctxs:
2358         kfree(q->queue_hw_ctx);
2359 err_percpu:
2360         free_percpu(q->queue_ctx);
2361 err_exit:
2362         q->mq_ops = NULL;
2363         return ERR_PTR(-ENOMEM);
2364 }
2365 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2366
2367 void blk_mq_free_queue(struct request_queue *q)
2368 {
2369         struct blk_mq_tag_set   *set = q->tag_set;
2370
2371         mutex_lock(&all_q_mutex);
2372         list_del_init(&q->all_q_node);
2373         mutex_unlock(&all_q_mutex);
2374
2375         blk_mq_del_queue_tag_set(q);
2376
2377         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2378 }
2379
2380 /* Basically redo blk_mq_init_queue with queue frozen */
2381 static void blk_mq_queue_reinit(struct request_queue *q,
2382                                 const struct cpumask *online_mask)
2383 {
2384         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2385
2386         blk_mq_sysfs_unregister(q);
2387
2388         /*
2389          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2390          * we should change hctx numa_node according to new topology (this
2391          * involves free and re-allocate memory, worthy doing?)
2392          */
2393
2394         blk_mq_map_swqueue(q, online_mask);
2395
2396         blk_mq_sysfs_register(q);
2397 }
2398
2399 /*
2400  * New online cpumask which is going to be set in this hotplug event.
2401  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2402  * one-by-one and dynamically allocating this could result in a failure.
2403  */
2404 static struct cpumask cpuhp_online_new;
2405
2406 static void blk_mq_queue_reinit_work(void)
2407 {
2408         struct request_queue *q;
2409
2410         mutex_lock(&all_q_mutex);
2411         /*
2412          * We need to freeze and reinit all existing queues.  Freezing
2413          * involves synchronous wait for an RCU grace period and doing it
2414          * one by one may take a long time.  Start freezing all queues in
2415          * one swoop and then wait for the completions so that freezing can
2416          * take place in parallel.
2417          */
2418         list_for_each_entry(q, &all_q_list, all_q_node)
2419                 blk_freeze_queue_start(q);
2420         list_for_each_entry(q, &all_q_list, all_q_node)
2421                 blk_mq_freeze_queue_wait(q);
2422
2423         list_for_each_entry(q, &all_q_list, all_q_node)
2424                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2425
2426         list_for_each_entry(q, &all_q_list, all_q_node)
2427                 blk_mq_unfreeze_queue(q);
2428
2429         mutex_unlock(&all_q_mutex);
2430 }
2431
2432 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2433 {
2434         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2435         blk_mq_queue_reinit_work();
2436         return 0;
2437 }
2438
2439 /*
2440  * Before hotadded cpu starts handling requests, new mappings must be
2441  * established.  Otherwise, these requests in hw queue might never be
2442  * dispatched.
2443  *
2444  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2445  * for CPU0, and ctx1 for CPU1).
2446  *
2447  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2448  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2449  *
2450  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2451  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2452  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2453  * ignored.
2454  */
2455 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2456 {
2457         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2458         cpumask_set_cpu(cpu, &cpuhp_online_new);
2459         blk_mq_queue_reinit_work();
2460         return 0;
2461 }
2462
2463 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2464 {
2465         int i;
2466
2467         for (i = 0; i < set->nr_hw_queues; i++)
2468                 if (!__blk_mq_alloc_rq_map(set, i))
2469                         goto out_unwind;
2470
2471         return 0;
2472
2473 out_unwind:
2474         while (--i >= 0)
2475                 blk_mq_free_rq_map(set->tags[i]);
2476
2477         return -ENOMEM;
2478 }
2479
2480 /*
2481  * Allocate the request maps associated with this tag_set. Note that this
2482  * may reduce the depth asked for, if memory is tight. set->queue_depth
2483  * will be updated to reflect the allocated depth.
2484  */
2485 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2486 {
2487         unsigned int depth;
2488         int err;
2489
2490         depth = set->queue_depth;
2491         do {
2492                 err = __blk_mq_alloc_rq_maps(set);
2493                 if (!err)
2494                         break;
2495
2496                 set->queue_depth >>= 1;
2497                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2498                         err = -ENOMEM;
2499                         break;
2500                 }
2501         } while (set->queue_depth);
2502
2503         if (!set->queue_depth || err) {
2504                 pr_err("blk-mq: failed to allocate request map\n");
2505                 return -ENOMEM;
2506         }
2507
2508         if (depth != set->queue_depth)
2509                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2510                                                 depth, set->queue_depth);
2511
2512         return 0;
2513 }
2514
2515 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2516 {
2517         if (set->ops->map_queues)
2518                 return set->ops->map_queues(set);
2519         else
2520                 return blk_mq_map_queues(set);
2521 }
2522
2523 /*
2524  * Alloc a tag set to be associated with one or more request queues.
2525  * May fail with EINVAL for various error conditions. May adjust the
2526  * requested depth down, if if it too large. In that case, the set
2527  * value will be stored in set->queue_depth.
2528  */
2529 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2530 {
2531         int ret;
2532
2533         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2534
2535         if (!set->nr_hw_queues)
2536                 return -EINVAL;
2537         if (!set->queue_depth)
2538                 return -EINVAL;
2539         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2540                 return -EINVAL;
2541
2542         if (!set->ops->queue_rq)
2543                 return -EINVAL;
2544
2545         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2546                 pr_info("blk-mq: reduced tag depth to %u\n",
2547                         BLK_MQ_MAX_DEPTH);
2548                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2549         }
2550
2551         /*
2552          * If a crashdump is active, then we are potentially in a very
2553          * memory constrained environment. Limit us to 1 queue and
2554          * 64 tags to prevent using too much memory.
2555          */
2556         if (is_kdump_kernel()) {
2557                 set->nr_hw_queues = 1;
2558                 set->queue_depth = min(64U, set->queue_depth);
2559         }
2560         /*
2561          * There is no use for more h/w queues than cpus.
2562          */
2563         if (set->nr_hw_queues > nr_cpu_ids)
2564                 set->nr_hw_queues = nr_cpu_ids;
2565
2566         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2567                                  GFP_KERNEL, set->numa_node);
2568         if (!set->tags)
2569                 return -ENOMEM;
2570
2571         ret = -ENOMEM;
2572         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2573                         GFP_KERNEL, set->numa_node);
2574         if (!set->mq_map)
2575                 goto out_free_tags;
2576
2577         ret = blk_mq_update_queue_map(set);
2578         if (ret)
2579                 goto out_free_mq_map;
2580
2581         ret = blk_mq_alloc_rq_maps(set);
2582         if (ret)
2583                 goto out_free_mq_map;
2584
2585         mutex_init(&set->tag_list_lock);
2586         INIT_LIST_HEAD(&set->tag_list);
2587
2588         return 0;
2589
2590 out_free_mq_map:
2591         kfree(set->mq_map);
2592         set->mq_map = NULL;
2593 out_free_tags:
2594         kfree(set->tags);
2595         set->tags = NULL;
2596         return ret;
2597 }
2598 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2599
2600 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2601 {
2602         int i;
2603
2604         for (i = 0; i < nr_cpu_ids; i++)
2605                 blk_mq_free_map_and_requests(set, i);
2606
2607         kfree(set->mq_map);
2608         set->mq_map = NULL;
2609
2610         kfree(set->tags);
2611         set->tags = NULL;
2612 }
2613 EXPORT_SYMBOL(blk_mq_free_tag_set);
2614
2615 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2616 {
2617         struct blk_mq_tag_set *set = q->tag_set;
2618         struct blk_mq_hw_ctx *hctx;
2619         int i, ret;
2620
2621         if (!set)
2622                 return -EINVAL;
2623
2624         blk_mq_freeze_queue(q);
2625         blk_mq_quiesce_queue(q);
2626
2627         ret = 0;
2628         queue_for_each_hw_ctx(q, hctx, i) {
2629                 if (!hctx->tags)
2630                         continue;
2631                 /*
2632                  * If we're using an MQ scheduler, just update the scheduler
2633                  * queue depth. This is similar to what the old code would do.
2634                  */
2635                 if (!hctx->sched_tags) {
2636                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2637                                                         min(nr, set->queue_depth),
2638                                                         false);
2639                 } else {
2640                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2641                                                         nr, true);
2642                 }
2643                 if (ret)
2644                         break;
2645         }
2646
2647         if (!ret)
2648                 q->nr_requests = nr;
2649
2650         blk_mq_unfreeze_queue(q);
2651         blk_mq_start_stopped_hw_queues(q, true);
2652
2653         return ret;
2654 }
2655
2656 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2657 {
2658         struct request_queue *q;
2659
2660         lockdep_assert_held(&set->tag_list_lock);
2661
2662         if (nr_hw_queues > nr_cpu_ids)
2663                 nr_hw_queues = nr_cpu_ids;
2664         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2665                 return;
2666
2667         list_for_each_entry(q, &set->tag_list, tag_set_list)
2668                 blk_mq_freeze_queue(q);
2669
2670         set->nr_hw_queues = nr_hw_queues;
2671         blk_mq_update_queue_map(set);
2672         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2673                 blk_mq_realloc_hw_ctxs(set, q);
2674                 blk_mq_queue_reinit(q, cpu_online_mask);
2675         }
2676
2677         list_for_each_entry(q, &set->tag_list, tag_set_list)
2678                 blk_mq_unfreeze_queue(q);
2679 }
2680 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2681
2682 /* Enable polling stats and return whether they were already enabled. */
2683 static bool blk_poll_stats_enable(struct request_queue *q)
2684 {
2685         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2686             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2687                 return true;
2688         blk_stat_add_callback(q, q->poll_cb);
2689         return false;
2690 }
2691
2692 static void blk_mq_poll_stats_start(struct request_queue *q)
2693 {
2694         /*
2695          * We don't arm the callback if polling stats are not enabled or the
2696          * callback is already active.
2697          */
2698         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699             blk_stat_is_active(q->poll_cb))
2700                 return;
2701
2702         blk_stat_activate_msecs(q->poll_cb, 100);
2703 }
2704
2705 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2706 {
2707         struct request_queue *q = cb->data;
2708
2709         if (cb->stat[READ].nr_samples)
2710                 q->poll_stat[READ] = cb->stat[READ];
2711         if (cb->stat[WRITE].nr_samples)
2712                 q->poll_stat[WRITE] = cb->stat[WRITE];
2713 }
2714
2715 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2716                                        struct blk_mq_hw_ctx *hctx,
2717                                        struct request *rq)
2718 {
2719         unsigned long ret = 0;
2720
2721         /*
2722          * If stats collection isn't on, don't sleep but turn it on for
2723          * future users
2724          */
2725         if (!blk_poll_stats_enable(q))
2726                 return 0;
2727
2728         /*
2729          * As an optimistic guess, use half of the mean service time
2730          * for this type of request. We can (and should) make this smarter.
2731          * For instance, if the completion latencies are tight, we can
2732          * get closer than just half the mean. This is especially
2733          * important on devices where the completion latencies are longer
2734          * than ~10 usec.
2735          */
2736         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2737                 ret = (q->poll_stat[READ].mean + 1) / 2;
2738         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2739                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2740
2741         return ret;
2742 }
2743
2744 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2745                                      struct blk_mq_hw_ctx *hctx,
2746                                      struct request *rq)
2747 {
2748         struct hrtimer_sleeper hs;
2749         enum hrtimer_mode mode;
2750         unsigned int nsecs;
2751         ktime_t kt;
2752
2753         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2754                 return false;
2755
2756         /*
2757          * poll_nsec can be:
2758          *
2759          * -1:  don't ever hybrid sleep
2760          *  0:  use half of prev avg
2761          * >0:  use this specific value
2762          */
2763         if (q->poll_nsec == -1)
2764                 return false;
2765         else if (q->poll_nsec > 0)
2766                 nsecs = q->poll_nsec;
2767         else
2768                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2769
2770         if (!nsecs)
2771                 return false;
2772
2773         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2774
2775         /*
2776          * This will be replaced with the stats tracking code, using
2777          * 'avg_completion_time / 2' as the pre-sleep target.
2778          */
2779         kt = nsecs;
2780
2781         mode = HRTIMER_MODE_REL;
2782         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2783         hrtimer_set_expires(&hs.timer, kt);
2784
2785         hrtimer_init_sleeper(&hs, current);
2786         do {
2787                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2788                         break;
2789                 set_current_state(TASK_UNINTERRUPTIBLE);
2790                 hrtimer_start_expires(&hs.timer, mode);
2791                 if (hs.task)
2792                         io_schedule();
2793                 hrtimer_cancel(&hs.timer);
2794                 mode = HRTIMER_MODE_ABS;
2795         } while (hs.task && !signal_pending(current));
2796
2797         __set_current_state(TASK_RUNNING);
2798         destroy_hrtimer_on_stack(&hs.timer);
2799         return true;
2800 }
2801
2802 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2803 {
2804         struct request_queue *q = hctx->queue;
2805         long state;
2806
2807         /*
2808          * If we sleep, have the caller restart the poll loop to reset
2809          * the state. Like for the other success return cases, the
2810          * caller is responsible for checking if the IO completed. If
2811          * the IO isn't complete, we'll get called again and will go
2812          * straight to the busy poll loop.
2813          */
2814         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2815                 return true;
2816
2817         hctx->poll_considered++;
2818
2819         state = current->state;
2820         while (!need_resched()) {
2821                 int ret;
2822
2823                 hctx->poll_invoked++;
2824
2825                 ret = q->mq_ops->poll(hctx, rq->tag);
2826                 if (ret > 0) {
2827                         hctx->poll_success++;
2828                         set_current_state(TASK_RUNNING);
2829                         return true;
2830                 }
2831
2832                 if (signal_pending_state(state, current))
2833                         set_current_state(TASK_RUNNING);
2834
2835                 if (current->state == TASK_RUNNING)
2836                         return true;
2837                 if (ret < 0)
2838                         break;
2839                 cpu_relax();
2840         }
2841
2842         return false;
2843 }
2844
2845 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2846 {
2847         struct blk_mq_hw_ctx *hctx;
2848         struct blk_plug *plug;
2849         struct request *rq;
2850
2851         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2852             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2853                 return false;
2854
2855         plug = current->plug;
2856         if (plug)
2857                 blk_flush_plug_list(plug, false);
2858
2859         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2860         if (!blk_qc_t_is_internal(cookie))
2861                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2862         else
2863                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2864
2865         return __blk_mq_poll(hctx, rq);
2866 }
2867 EXPORT_SYMBOL_GPL(blk_mq_poll);
2868
2869 void blk_mq_disable_hotplug(void)
2870 {
2871         mutex_lock(&all_q_mutex);
2872 }
2873
2874 void blk_mq_enable_hotplug(void)
2875 {
2876         mutex_unlock(&all_q_mutex);
2877 }
2878
2879 static int __init blk_mq_init(void)
2880 {
2881         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2882                                 blk_mq_hctx_notify_dead);
2883
2884         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2885                                   blk_mq_queue_reinit_prepare,
2886                                   blk_mq_queue_reinit_dead);
2887         return 0;
2888 }
2889 subsys_initcall(blk_mq_init);